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Abstrakt
Tato práce popisuje metodu analýzy transla£ního pohybu uºitím k°íºové korelace. Ukazu-
jeme, jakým zp·sobem se chová funkce k°íºové korelace obraz· s navzájem posunutými
objekty, a jak nám to umoº¬uje nacházet jejich vektory posunu. Pro následnou imple-
mentaci je nalezena efektivní metoda pro hledání pouze poºadovaného po£tu lokálních
maxim funkce.

Abstract
This thesis describes the method of following the multiple objects movement by means
of cross correlation. We are showing the form of cross-correlation function of functions
with mutually shifted objects and how it leads to search of their shift vectors. For the fur-
ther implementation, there is introduced the e�ective method for search of required count
of function's local maxima.

klí£ová slova
Fourierova transformace, posunuté funkce, posunuté objekty ve funkci konvoluce, funkce
k°íºové korelace, funkce fázové korelace, sub-pixelová p°esnost, posuny více objekt·

keywords
Fourier transform, shifted function, shifted objects in function, convolution, cross-corre-
lation function, phase-correlation function, sub-pixel precision, multiple object shifts
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Roz²í°ený abstrakt

Monitorování pohybu více objekt· v obraze je proces pouºitelný nap°íklad ke studiu
bun¥£ného transportu mikroskopických £ástic, £i k popisu pohybu a sociálního chování
ºivo£i²ných skupin. Dále m·ºe být pouºit i k pozorování vzájemných pohyb· vesmírných
t¥les, nebo k analýze záznam· z dopravních kamer.

Monitorování pohybu více objekt· v obraze uºitím k°íºové korelace je zobecn¥ním
metody pro hledání translace posunutých obraz·. Toto je totiº pouze monitorování
pohybu jediného objektu, kterým je celý obraz. Standartní registrace obraz· je pro-
ces hledání podobnosti mezi obrazy, to zahrnuje hledání jejich posun·, rotace a zm¥ny
m¥°ítka. Bereme-li v úvahu obraz sloºený z více objekt·, hledáme pouze posuny t¥chto
objekt·. Rozeznání rotace a zm¥ny m¥°ítka by totiº nemuselo být moºné bez z°ejmého
vztaºného bodu.

Obecné hledání vzájemných posun· objekt· lze realizovat pomocí metod detekce a sep-
arace struktur a jejich následným porovnáním. Tato metoda nicmén¥ vyºaduje, aby
struktury v obraze byly jasn¥ rozpoznatelné a a de�nované. Na druhou stranu na korelaci
zaloºené metody, které jsou dále popisovány v této práci, um¥jí rozpoznat translaci zt¥ºí
viditelných nebo i okem nerozeznatelných objekt· (nap°íklad p°i vysokém dynamickém
rozsahu). Tyto metody v²ak nemají dobré výsledky, nebo je nelze v·bec pouºít, pro
obrazy po°ízené s rozdílnou délkou expozice.

Korela£ní metody pouºívané pro sledování pohybu jediného objektu pouºívají p°eváºn¥
fázovou korelaci. Fázová korelace je k°íºová korelace po znormování. Toto normování
korela£ní funkce posunutých obraz· p°iná²í z°ejmé matematické výsledky v podob¥ Di-
rakovy distribuce, coº vede k vysoké p°esnosti registrace obrazu. P°i monitorování pohybu
více objekt· v²ak toto normování jiº k tak z°ejmým výsledk·m nevede, proto se v odvo-
zování matematického aparátu omezujeme výhradn¥ na k°íºovou korelaci. V implementaci
pak ale fázovou korelaci pouºíváme, protoºe i p°es to, ºe nemá tak z°ejmé matematické
od·vodn¥ní, jako v p°ípad¥ jediného objektu, pomáhá ke zp°esn¥ní výsledk· p°i hledání
posuv·.

Fázová i k°íºová korelace pracují s Fourierovy spektry obraz·, proto druhou kapitolu
dedikujeme popisu Fourierovy transformace a jejích vlastností. Ukazujeme, jakým zp·-
sobem p·sobí Fourierova transformace na posunuté obrazy a na obrazy s posunutými
objekty. De�nujeme zde i konvoluci funkcí a jakým zp·sobem je k°íºová korelace kon-
vertibilní na konvoluci. V²echny tyto koncepty p°edstavujeme prost°edky funkcionální
analýzy ve spojitém tvaru.

Nicmén¥ v programové implementaci pouºíváme algoritmus Rychlé Fourierovy trans-
formace (FFT), který vyuºívá diskrétní Fourierovu transformaci. Proto t°etí kapitola
p°edstavuje v²echny koncepty uvedené v druhé kapitole v diskrétním p°ípad¥. Ke korek-
tnímu de�nování v²ech t¥chto pojm· navíc zavádíme periodizaci funkce a p°edstavujeme
digitální obraz jako diskrétní funkci de�novanou na kone£ném po£tu bod· uspo°ádaných
ekvidistantn¥ do £tverce.



�tvrtá kapitola pak popisuje samotnou po£íta£ovou implementaci odvozených metod.
Nejprve popisujeme metody hledání posuv· pro jediný objekt, které jsou detailn¥ popsány
ve zdrojích (p°edev²ím [1]). Popisujeme nutnost úpravy vstupních obraz·, a to p°edev²ím
jejich tvar a nutnost pouºití Hanningova okna k o²et°ení okraj· obraz·. Následn¥ de�n-
ujeme i váhové funkce, které aplikujeme na Fourierova spektra obraz· k tomu, aby up-
ravily tvar funkce fázové korelace pro vy²²í p°esnost. Ukazujeme i momentovou metodou
hledání posun· pro sub-pixelovou p°esnost výsledk·. Následn¥ p°edstavujeme algoritmus
pro hledání posuv· více objekt· jako modi�kaci algoritmu pro hledání translace jediného
objektu. Posuvy hledáme jako lokální maxima funkce fázové korelace a to tak, ºe hledáme
maximum globální, které po zaznamenání výsledku smaºeme a hledáme dal²í. Nakonec
testujeme p°esnost implementovaného algoritmu a ospravedl¬ujeme tvrzení, ºe automati-
zace procesu hledání posuv· více objekt· uºitím k°íºové korelace není moºná.
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Chapter 1

Introduction

The Following of multiple object movement can be used in studies of microscopic
particles transport in cells, or to describe the movement and social behaviour of organisms
in the group. It can also be used to observe the mutual movement of space objects
or to analyse the records taken by tra�c surveillance system.

The Following of multiple object movement by means of cross-correlation is generaliza-
tion of the Finding mutual shift of shifted images (that means the Following of the move-
ment of single object, which is whole image). On the other hand to the standard image
registration (e.g. recognizes shifts, rotation and scale), we are working only with transla-
tional movement represented by shift vectors. It could not be possible to �nd rotations
and scales of the multiple objects without clear reference point.

The mutual shift search can be executed by the identi�cation of object structures
in the image and matching them separately to be followed. However, this method requires
the structures to be clearly visible in the image. On the other hand, the correlation based
method (described further in this thesis), can even recognize the movement of barely
or not visible structures. It is inapplicable to images with di�erent exposition though.

The correlation method of the translational movement analysis generally uses the phase-
correlation function. It demonstrates the results with high precision if used to follow
the movement of a single object. However, to follow the multiple objects movement we
need to use the cross-correlation function, because the norming of spectra does not bring
as clear mathematical results as in one object case. Despite this fact, the phase-correlation
function is used in the implementation. Reasons to do so are enlisted in Chapter 4.

The phase-correlation uses the Fourier spectra of the images, therefore we are devoting
the Chapter 2 to introduction of the Fourier transform and its properties in R2. However,
we use the Fast Fourier transform algorithm, which is the implementation of the dis-
crete Fourier transform, in computer programs implementation of the phase-correlation
function. Therefore, we are dedicating Chapter 3 to describe the discrete Fourier trans-
form and its properties for functions de�ned on a �nite number of points (which arranged
in square represent the digital image) together with cross-correlation and phase-correlation
function. Chapter 4 deals with implementation of the above mentioned method in com-
puter program for one object at �rst (based on the source [1]), then with implementation
of the adjustments of this method to follow the multiple objects movement.

15



Chapter 2

The Fourier transform

At �rst, we will establish all the theory for the continuous functions. Despite the fact
that the digital image is not continuous but discrete, we will summarize the theory for well
known continuous functions in the �rst distance. In that case we can use the conclusions
of the Mathematical and Functional analysis.

2.1 Basic notions

First of all, let us de�ne some basic concepts, which will be used in the following text.
There will be mostly concepts used in Functional analysis and they will not be de�ned
with proper background. Yet the related mathematical theory can be found in sources
mentioned in each de�nition. The exactness of the unmentioned mathematical theory
is not essential for purposes of this thesis, it serves mainly for deeper understanding.
Therefore, it is omitted.

De�nition 2.1. (Improper double integral)[1] Let f(x, y) be a function R2 −→ C.
Let R = 〈a,∞)× 〈c,∞), a, c ∈ R. If the following limits exist and are equal

lim
(b,d)−→(∞,∞)

b∫
a

 d∫
c

f(x, y)dy

 dx = lim
(b,d)−→(∞,∞)

d∫
c

 b∫
a

f(x, y)dx

 dy = A,

then we de�ne ∫∫
R

f(x, y)dxdy = A.

Analogically, the integral is de�ned for R = (−∞, b〉 × 〈c,∞), R = 〈a,∞) × (−∞, d〉
and R = (−∞, b〉 × (−∞, d〉. Furthermore, if all the following integrals exist and are
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�nite (or in case some integral are in�nite, they have same sign)∫∫
〈0,∞)2

f(x, y)dxdy = B,

∫∫
(−∞,0〉×〈0,∞)

f(x, y)dxdy = C,

∫∫
〈0,∞)×(−∞,0〉

f(x, y)dxdy = D,

∫∫
(−∞,0〉2

f(x, y)dxdy = E,

we de�ne
∞∫

−∞

∞∫
−∞

f(x, y)dxdy =

∫∫
(−∞,∞)2

f(x, y)dxdy = B + C +D + E.

De�nition 2.2. (Dirac distribution)[9] The two dimensional Dirac distribution is
a functional on the basic space. It is singular distribution and is represented by the integral
identity with testing function ϕ(x, y) as follows:

∞∫
−∞

∞∫
−∞

δ(x, y)ϕ(x, y)dxdy = ϕ(0, 0).

Where δ(x, y) ful�ls

∞∫
−∞

∞∫
−∞

δ(x, y)dxdy = 1, δ(x, y) = 0 if (x, y) 6= (0, 0).

More about functionals, basic space and distributions can be found in [9].

2.2 The Fourier transform and inverse Fourier trans-

form

The Fourier transform is the essential mathematical instrument in the Image analysis.
Because the image is two dimensional, we omit the one dimensional case completely.
Therefore, we are using the two dimensional case directly.

De�nition 2.3. (The Fourier transform of functions in L(R2))[8] Let f(x, y) ∈
L(R2). The Fourier transform of function f is a function F{f}(ξ, η) = F (ξ, η) : R2 −→ C
de�ned as

F (ξ, η) =

∞∫
−∞

∞∫
−∞

f(x, y)e−i(xξ+yη)dxdy.

Function F is also called the Fourier spectrum of function f .
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De�nition 2.4. (Inverse Fourier transform of functions in L(R2))[8] Let function
G(ξ, η) ∈ L(R2). The inverse Fourier transform of functionG is a function F−1{G}(x, y) =
g(x, y) : R2 −→ C de�ned as

g(x, y) =
1

4π2

∞∫
−∞

∞∫
−∞

G(ξ, η)ei(xξ+yη)dξdη.

The Fourier transform and also inverse Fourier transform exist and are bounded func-
tions ([1]). However, the inverse Fourier transform of the Fourier spectrum of some func-
tion in L(R2) may not even be de�ned or it could happen that F−1{F{f(x, y)}} 6= f(x).
The previous inequality can be shown on functions f(x, y) and g(x, y) which di�er on set
of cardinality zero. They have the same Fourier transform which obviously leads to men-
tioned inequality.

Theorem 2.5. (Fourier inversion theorem for functions in L(R2)) [7] If function
f(ξ, η) ∈ L(R2) and is continuous on R2, then for every (ξ, η) ∈ R2 holds

f(x, y) = lim
ε→0

1

4π2

∞∫
−∞

∞∫
−∞

F (ξ, η)ei(xξ+yη)e−ε
2 ξ

2+η2

2 dξdη.

If also F (ξ, η) ∈ L(R2) then

F−1{F{f(x, y)}} =
1

4π2

∞∫
−∞

∞∫
−∞

F (ξ, η)ei(xξ+yη)dξdη = f(x, y).

Proof. A proof and its general derivation can be found in [6].

2.3 Shift theorem

In this section, we are de�ning the shifted function, the function consisting of objects
and the function with shifted objects. They are all de�ned to best suit the continuous
representation of digital image. The shift theorems follow the de�nitions of shifted func-
tion and function with shifted objects to show, how the Fourier transform works applied
to these functions. We will consider the function to have just two objects at �rst and show
the general n-object case after that.

De�nition 2.6. (Shifted function) Let f(x, y) ∈ L(R2) and let x0, y0 ∈ R given num-
bers. The function fsh(x, y) is shifted function of function f(x, y) by x0 in x axis and by y0
in y axis i�

fsh(x, y) = f(x− x0, y − y0).

The vector (x0, y0) is called shift vector.

Theorem 2.7. (Shift theorem) Let f(x, y) ∈ L(R2), let F (ξ, η) be its Fourier spectrum
and let fsh(x, y) be its shifted function by vector (x0, y0). Let Fsh(ξ, η) be the Fourier
spectrum of the shifted function fsh(x, y). Then it holds

Fsh(ξ, η) = F (ξ, η)e−i(ξx0+ηy0).
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Proof. The proof taken from [1].

Fsh(ξ, η) =

∞∫
−∞

∞∫
−∞

f(x− x0, y − y0)e−i(xξ+yη)dxdy =

=

∣∣∣∣ s = x− x0 x = s+ x0 ds = dx
t = y − y0 y = t+ y0 dt = dy

∣∣∣∣ =

=

∞∫
−∞

∞∫
−∞

f(s, t)e−i(ξ(s+x0)+η(t+y0))dsdt =

=

∞∫
−∞

∞∫
−∞

f(s, t)e−i(sξ+tη)e−i(ξx0+ηy0)dsdt = F (ξ, η)e−i(ξx0+ηy0).

De�nition 2.8. (Multiple objects in function) Let n ∈ N be given number, let
function f(x, y) ∈ L(R2) and also functions fi(x, y) ∈ L(R2) for each i = 1, 2, . . . n.
Function f(x, y) consist of n objects i�

f(x, y) =
n∑
i=1

fi(x, y).

We call functions fi(x, y) the objects.

The function with multiple objects is de�ned as continuous case of multiple objects
in the image. The objects in an image are often represented by set of pixels which always
move together (they all have the same shift vector), or on the contrary are stationary
considering other objects (i.e. background). So the object de�ned on R2 is represented
by function fi(x, y) which is non-zero on the object set and zero elsewhere. This guarantees
that in the summation, the object's values are not changed (we are only adding zero,
because the objects are not overlapping). For purposes of this thesis we will distinguish
only objects which have di�erent shift than the rest of the image.

De�nition 2.9. (Function with shifted objects) Let f(x, y) be a function with n
objects, let xi, yi ∈ R given numbers for each i = 1, 2, . . . n. Function g(x, y) is function
with shifted objects considering f(x, y) i�

g(x, y) =
n∑
i=1

fi(x− xi, y − yi).

We say that object i is shifted by vector (xi, yi).

Let us remark that each object fi(x, y) of function f(x, y) is shifted in function g(x, y).
Therefore, we can say that objects fi,sh(x, y) = fi(x − xi, y − yi) are shifted functions
of functions (objects) fi(x, y) by vectors (xi, yi). Also considering n = 1, we are obtaining
the de�nition of the shifted function. So we can say, that the shifted function consists
of only one object, which is shifted.

Theorem 2.10. (Shift theorem for functions with two objects) Let f(x, y) be
a function with two objects (n = 2), let F1(ξ, η) and F2(ξ, η) be Fourier spectra of its
objects f1(x, y), f2(x, y). Let g(x, y) be function with shifted objects considering f(x, y)
and let G(ξ, η) be its Fourier spectrum. Then it holds

G(ξ, η) = F1(ξ, η)e−i(ξx1+ηy1) + F2(ξ, η)e−i(ξx2+ηy2).
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Proof.

G(ξ, η) =

∞∫
−∞

∞∫
−∞

g(x, y)e−i(xξ+yη)dxdy =

=

∞∫
−∞

∞∫
−∞

(f1(x− x1, y − y1) + f2(x− x2, y − y2))e−i(xξ+yη)dxdy =

=

∞∫
−∞

∞∫
−∞

f1(x− x1, y − y1)e−i(xξ+yη)dxdy +

+

∞∫
−∞

∞∫
−∞

f2(x− x2, y − y2)e−i(xξ+yη)dxdy =

=

∣∣∣∣∣∣∣∣
s = x− x1 x = s+ x1 ds = dx
t = y − y1 y = t+ y1 dt = dy
u = x− x2 x = u+ x2 du = dx
v = y − y2 y = v + y2 dv = dy

∣∣∣∣∣∣∣∣ =

=

∞∫
−∞

∞∫
−∞

f1(s, t)e
−i((s+x1)ξ+(t+y1)η)dsdt+

+

∞∫
−∞

∞∫
−∞

f2(u, v)e−i((u+x2)ξ+(v+y2)η)dudv =

=

∞∫
−∞

∞∫
−∞

f1(s, t)e
−i(sξ+tη)e−i(x1ξ+y1η)dsdt+

+

∞∫
−∞

∞∫
−∞

f2(u, v)e−i(uξ+vη)e−i(x2ξ+y2η)dudv =

= F1(ξ, η)e−i(ξx1+ηy1) + F2(ξ, η)e−i(ξx2+ηy2).

Theorem 2.11. (Shift theorem for functions with n objects) Let f(x, y) be a func-
tion with n objects and let Fi(ξ, η) be Fourier spectra of objects fi(x, y) for each i =
1, 2, . . . n. Let g(x, y) be function with shifted objects considering f(x, y) and let G(ξ, η)
be its Fourier spectrum. Then it holds

G(ξ, η) =
n∑
i=1

Fi(ξ, η)e−i(xiξ+yiη).

Proof. Proof can be derived as outward generalization of proof of the Theorem 2.10.

2.4 Properties of Fourier transform

Let us introduce some basic properties of the Fourier transform. They are not essential
for �nding the shifts of the images, but they are used in some of the proves that follow
in next sections.
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Theorem 2.12. Let f(x, y) ∈ L(R2) and let F (ξ, η) be its Fourier spectrum. Then

F{f(−x,−y)} = F (−ξ,−η).

Proof.

F (−ξ,−η) =

∣∣∣∣ σ = −ξ
τ = −η

∣∣∣∣ = F (σ, τ) =

∞∫
−∞

∞∫
−∞

f(s, t)e−i(sσ+tτ)dsdt =

=

∞∫
−∞

∞∫
−∞

f(s, t)e−i(−sξ−tη)dsdt =

∣∣∣∣ x = −s dx = −ds
t = −y dt = −dy

∣∣∣∣ =

=

∞∫
−∞

∞∫
−∞

f(−x,−y)e−i(xξ+yη)dxdy = F{f(−x,−y)}.

This theorem is just special case of Scale-change theorem if we consider α = −1. It

says that F{f(αx, αy)} =
1

α2
F

(
ξ

α
,
η

α

)
. The exact formulation of Scale-change theorem

can be found together with its proof in [1].

Theorem 2.13. [5] Let function f ∈ L(R2). Then

(a) F{f(x, y)} = 4π2F−1{f(−x,−y)},

(b) F−1{f(x, y)} =
1

4π2
F{f(−x,−y)}.

If f is also continuous and its Fourier spectrum F (ξ, η) ∈ L(R2), then

(c) F{F{f(x, y)}} = 4π2f(−x,−y),

(d) F−1{F−1{f(x, y)}} =
1

4π2
f(−x,−y).

Proof. Proof taken from [1].

(a)

4π2F−1{f(−x,−y)} = 4π2 1

4π2

∞∫
−∞

∞∫
−∞

f(−x,−y)ei(xξ+yη)dxdy =

=

∣∣∣∣ s = −x ds = −dx
t = −y dt = −dy

∣∣∣∣ =

=

∞∫
−∞

∞∫
−∞

f(s, t)e−i(sξ+tη)dsdt = F{f(x, y)}.
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(b)

F{f(x, y)} = 4π2F−1{f(−x,−y)}
∖
· 1

4π2

1

4π2
F{f(x, y)} = F−1{f(−x,−y)}

1

4π2
F{f(−x,−y)} = F−1{f(x, y)}

The last equality was obtained by substituting −x for x and −y for y.

(c)

F{F{f(x, y)}} =

∞∫
−∞

∞∫
−∞

F (ξ, η)e−i(xξ+yη)dξdη =

=

∞∫
−∞

∞∫
−∞

F (ξ, η)ei(x(−ξ)+y(−η)dξdη =

=

∣∣∣∣ σ = −ξ dσ = −dξ
τ = −η dτ = −dη

∣∣∣∣ =

∞∫
−∞

∞∫
−∞

F (−σ,−τ)ei(xσ+yτ)dσdτ =

= 4π2F−1{F{f(−x,−y)}} = 4π2f(−x,−y).

(d)

F−1{F−1{f(x, y)}} =
1

4π2

∞∫
−∞

∞∫
−∞

 1

4π2

∞∫
−∞

∞∫
−∞

f(s, t)ei(sξ+tη)dsdt

 ei(xξ+yη)dξdη =

=
1

16π4

∞∫
−∞

∞∫
−∞

 ∞∫
−∞

∞∫
−∞

f(s, t)e−i(−sξ−tη)dsdt

 ei(xξ+yη)dξdη =

=

∣∣∣∣ u = −s du = −ds
v = −t dv = −dt

∣∣∣∣ =

=
1

16π4

∞∫
−∞

∞∫
−∞

 ∞∫
−∞

∞∫
−∞

f(−u,−v)e−i(uξ+vη)dudv

 ei(xξ+yη)dξdη =

=
1

4π2
F−1{F{f(−x,−y)}} =

1

4π2
f(−x,−y).

Example 2.14. [5] Let us consider f(x, y) = δ(x−x0, y−y0). Then the Fourier transform
of the shifted Dirac distribution can be computed as

F{δ(x− x0, y − y0)} =

∞∫
−∞

∞∫
−∞

δ(x− x0, y − y0)e−i(xξ+yη)dxdy = e−i(x0ξ+y0η).
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Next let us consider f(x, y) = ei(x0x+y0y). Then the Fourier transform of this function
can by computed as

F{ei(x0x+y0y)} =

∞∫
−∞

∞∫
−∞

ei(x0x+y0y)e−i(xξ+yη)dxdy =

=

∞∫
−∞

∞∫
−∞

e−i(x(ξ−x0)+y(η−y0))dxdy = δ(ξ − x0, η − y0).

This is more generally shown in [5].

Theorem 2.15. [5] Let f(x, y) ∈ L(R2) and F (ξ, η) be its Fourier spectrum. The Fourier
spectrum of the complex conjugate of function f is the complex conjugate of its Fourier
spectra with reversed axes

F{f ∗(x, y)} = F ∗(−ξ,−η).

Proof. Proof taken from [5].

F{f ∗(x, y)} =

∞∫
−∞

∞∫
−∞

f ∗(x, y)e−i(xξ+yη)dxdy =

∞∫
−∞

∞∫
−∞

f ∗(x, y)ei(−xξ−yη)dxdy =

=

 ∞∫
−∞

∞∫
−∞

f(x, y)e−i(x(−ξ)+y(−η))dxdy

∗ = F ∗(−ξ,−η),

where the third equality holds because for a ∈ R is eia = cos a + i sin a, e−ia = cos a +
i sin(−a) = cos a− i sin a. Hence eia =

(
e−ia

)∗.
Theorem 2.16. [5] Let f(x, y) ∈ L(R2) and continuous, let F (ξ, η) ∈ L(R2) its Fourier
spectrum. Then the inverse Fourier transform of the complex conjugate of spectrum F
is the complex conjugate of function f with reversed axes, i.e. in every point where f is
continuous it holds

F−1{F ∗(ξ, η)} = f ∗(−x,−y).

Proof. Proof taken from [5].

F−1{F ∗(ξ, η)} =
1

4π2

∞∫
−∞

∞∫
−∞

F ∗(ξ, η)ei(xξ+yη)dξdη =

=
1

4π2

∞∫
−∞

∞∫
−∞

F ∗(ξ, η)e−i(−xξ−yη)dξdη =

=

 1

4π2

∞∫
−∞

∞∫
−∞

F (ξ, η)ei(x(−ξ)+y(−η))dξdη

∗ = f ∗(−x,−y).

Theorem 2.17. [1] Let f(x, y) ∈ L(R2) and continuous, let F (ξ, η) ∈ L(R2) its Fourier
spectrum. Function f is real function (i.e. f(x, y) = f ∗(x, y) ∀(x, y) ∈ R2) i� F (ξ, η) =
F ∗(−ξ,−η).
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Proof. Proof taken from [5]

1. Let us suppose that f is real function. Then it holds

F (ξ, η) = F{f(x, y)} = F{f ∗(x, y)} = F ∗(−ξ,−η).

2. Let us suppose that F (ξ, η) = F ∗(−ξ,−η).Then it holds

f(x, y) = F−1{F (ξ, η)} = F−1{F ∗(−ξ,−η)} = f ∗(x, y).

Corollary 2.18. [1] Let f(x, y) ∈ L(R2) be a real continuous function with a Fourier
spectrum F (ξ, η) ∈ L(R2). Let G(ξ, η) be a bounded function R2 −→ R such that
G(ξ, η) = G(−ξ,−η). Then

F−1{F (ξ, η) ·G(ξ, η)}

is real.

Proof. Proof taken from [1]. If f is real, then according to Theorem 2.17 it holds

F (ξ, η) = F ∗(−ξ,−η).

Multiplying the equality by G we obtain

F (ξ, η) ·G(ξ, η) = F ∗(−ξ,−η) ·G(−ξ,−η) = (F (−ξ,−η) ·G(−ξ,−η))∗.

Since G is bounded, there is no doubt about existence of the inverse Fourier transform.
And according to the Theorem 2.17 again,

F{F (ξ, η) ·G(ξ, η)}

is real.

2.5 Convolution and its properties

The convolution is often used in the Image analysis because of its compatibility with
the Fourier transform which is shown int Theorems 2.22. and 2.23..

De�nition 2.19. (Convolution)[8] Let functions f(x, y), g(x, y) ∈ L(R2). The convo-

lution of functions f, g is function

h(x, y) = f(x, y) ∗ g(x, y) =

∞∫
−∞

∞∫
−∞

f(s, t)g(x− s, y − t)dsdt.

Theorem 2.20. [1] Let functions f(x, y), g(x, y) ∈ L(R2). Then f ∗ g ∈ L(R2).

Proof. Proof taken from [1]. We start by proving that f(x, y) · g(u, v) ∈ L(R4), i.e.

∞∫
−∞

∞∫
−∞

∞∫
−∞

∞∫
−∞

|f(x, y)g(u, v)|du dv dx dy <∞.
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Let us tart by

∞∫
−∞

∞∫
−∞

∞∫
−∞

∞∫
−∞

|f(x, y)g(u, v)|du dv dx dy =

=

∞∫
−∞

∞∫
−∞

∞∫
−∞

∞∫
−∞

|f(x, y)| · |g(u, v)|du dv dx dy =

=

∞∫
−∞

∞∫
−∞

|f(x, y)|

 ∞∫
−∞

∞∫
−∞

|g(u, v)|du dv

 dx dy.

Let us denote

I =

∞∫
−∞

∞∫
−∞

|g(u, v)|du dv.

Since g ∈ L(R2) therefore 0 ≤ I <∞. Hence we can use Fubini's Theorem it holds

∞∫
−∞

∞∫
−∞

|f(x, y)|

 ∞∫
−∞

∞∫
−∞

|g(u, v)|du dv

 dx dy =

∞∫
−∞

∞∫
−∞

|f(x, y)| dx dy

∞∫
−∞

∞∫
−∞

|g(u, v)| du dv <∞.

Thus f(x, y) · g(u, v) ∈ L(R4). By making the substitution u = p − s, x = s, v = q − t,
y = z we obtain

∞∫
−∞

∞∫
−∞

∞∫
−∞

∞∫
−∞

f(x, y)g(u, v)du dv dx dy =

∞∫
−∞

∞∫
−∞

∞∫
−∞

∞∫
−∞

f(s, t)g(p− s, q − t)ds dt dp dq,

which says that function

(f ∗ g)(p, q) =

∞∫
−∞

∞∫
−∞

f(p− s, q − t)g(s, t)dsdt

belongs to L(R2).

Theorem 2.21. [1] Let functions f(x, y), g(x, y) ∈ L(R2) with Fourier spectra F (ξ, η),
G(ξ, η). Then

F{f(x, y) ∗ g(x, y)} = F (ξ, η) ·G(ξ, η).
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Proof. Proof taken from [8].

F{f ∗ g} =

∞∫
−∞

∞∫
−∞

 ∞∫
−∞

∞∫
−∞

f(s, t)g(x− s, y − t)dsdt

 e−i(xξ+yη)dxdy =

=

∞∫
−∞

∞∫
−∞

 ∞∫
−∞

∞∫
−∞

f(s, t)g(x− s, y − t)e−i(xξ+yη)dxdy

 dsdt =

=

∞∫
−∞

∞∫
−∞

f(s, t)

 ∞∫
−∞

∞∫
−∞

g(x− s, y − t)e−i(xξ+yη)dxdy

 dsdt =

=

∣∣∣∣ p = x− s x = s+ p dx = dp
q = y − t y = t+ q dy = dq

∣∣∣∣ =

=

∞∫
−∞

∞∫
−∞

f(s, t)

 ∞∫
−∞

∞∫
−∞

g(p, q)e−i((p+s)ξ+(q+t)η)dpdq

 dsdt =

=

∞∫
−∞

∞∫
−∞

f(s, t)

 ∞∫
−∞

∞∫
−∞

g(p, q)e−i(pξ+qη)e−i(sξ+tη)dpdq

 dsdt =

=

∞∫
−∞

∞∫
−∞

f(s, t)e−i(sξ+tη)dsdt

∞∫
−∞

∞∫
−∞

g(p, q)e−i(pξ+qη)dpdq =

= F (ξ, η) ·G(ξ, η).

Theorem 2.22. [1] Let functions f(x, y), g(x, y) ∈ L(R2) and continuous with Fourier
spectra F (ξ, η), G(ξ, η) ∈ L(R2). Then

F{f(x, y) · g(x, y)} =
1

4π2
F (ξ, η) ∗G(ξ, η).

Proof. Proof taken from [1].

F{f · g} =

∞∫
−∞

∞∫
−∞

f(x, y)g(x, y)e−i(xξ+yη)dxdy =

=

∞∫
−∞

∞∫
−∞

 1

4π2

∞∫
−∞

∞∫
−∞

F (σ, τ)ei(xσ+yτ)dσdτ

 g(x, y)e−i(xξ+yη)dxdy =

=
1

4π2

∞∫
−∞

∞∫
−∞

F (σ, τ)

 ∞∫
−∞

∞∫
−∞

g(x, y)e−i(x(ξ−σ)+y(η−τ))dxdy

 dσdτ =

=
1

4π2

∞∫
−∞

∞∫
−∞

F (σ, τ)G(ξ − σ, η − τ)dσdτ =
1

4π2
F (ξ, η) ∗G(ξ, η).
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Theorem 2.23. (Distributivity of convolution) Let f(x, y), g(x, y), h(x, y) ∈ L(R2).
Then it holds

f(x, y) ∗ (g(x, y) + h(x, y)) = f(x, y) ∗ g(x, y) + f(x, y) ∗ h(x, y).

Proof. Let us denote k(x, y) = g(x, y) + h(x, y). Then it holds

f(x, y) ∗ (g(x, y) + h(x, y)) = f(x, y) ∗ k(x, y) =

∞∫
−∞

∞∫
−∞

f(s, t)k(x− s, y − t)dsdt =

=

∞∫
−∞

∞∫
−∞

f(s, t)(g(x− s, y − t) + h(x− s, y − t))dsdt =

=

∞∫
−∞

∞∫
−∞

f(s, t)g(x− s, y − t)dsdt+

+

∞∫
−∞

∞∫
−∞

f(s, t)h(x− s, y − t)dsdt =

= f(x, y) ∗ g(x, y) + f(x, y) ∗ h(x, y).

2.6 Cross correlation, phase correlation

The phase correlation is the most e�ective tool for obtaining the shift of two func-
tions. It is normalized cross correlation and the norming is possible only for one object.
The norming is based on the suppression of the high frequencies of the Fourier spectrum.
However, it is only possible to use the cross correlation for more objects in the function.

De�nition 2.24. (Cross-power spectrum, normalized cross-power spectrum)[1]
Let functions f(x, y), g(x, y) ∈ L(R2) have Fourier spectra F (ξ, η), G(ξ, η). The cross-

power spectrum of functions f, g is function Cf,g(ξ, η) : R2 −→ C de�ned as

Cf,g(ξ, η) = F (ξ, η) ·G∗(ξ, η).

The normalized cross-power spectrum is function Zf,g(ξ, η) : R2 −→ C de�ned as

Zf,g(ξ, η) =
F (ξ, η) ·G∗(ξ, η)

|F (ξ, η) ·G(ξ, η)|
.

De�nition 2.25. (Cross-corelation function, phase-correlation function)[1] Let
functions f(x, y), g(x, y) ∈ L(R2) have Fourier spectra F (ξ, η), G(ξ, η). The function
Qf,g(x, y) : R2 −→ C de�ned as

Qf,g(x, y) = F−1{Cf,g(ξ, η)} = F−1{F (ξ, η) ·G∗(ξ, η)}

is called the cross-correlation function of functions f, g. Function Pf,g(x, y) : R2 −→ C
de�ned as

Pf,g(x, y) = F−1{Zf,g(ξ, η)} = F−1
{
F (ξ, η) ·G∗(ξ, η)

|F (ξ, η) ·G(ξ, η)|

}
is called phase-correlation function of functions f, g.
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Theorem 2.26. (Cross-correlation function of real functions)[1] Let functions
f(x, y), g(x, y) ∈ L(R2) continuous real (f = f ∗, g = g∗) and with Fourier spectra F (ξ, η),
G(ξ, η) ∈ L(R2). Then the cross-correlation function of these functions is real.

Proof. Proof taken from [1]. Using Theorems 2.5, 2.16, 2.22 we can compute

Qf,g(x, y) = F−1{F (ξ, η) ·G∗(ξ, η)} = F−1{F{f(x, y)} · F{g∗(−x,−y)}} =

= f(x, y) ∗ g∗(−x,−y) = f(x, y) ∗ g(−x,−y),

which is a real function.

Remark 2.27. Noticeably, the cross-correlation function can by transformed to convo-
lution as follows:

Qf,g(x, y) = f(x, y) ∗ g∗(−x,−y) = f(x, y) ∗ g(−x,−y),

where f(x, y), g(x, y) ∈ L(R2) continuous real. This matter of fact is often used for easier
computation in the Image analysis. It will also be used as useful property of cross-
correlation function in some of following proves.

Theorem 2.28. (Phase correlation function of shifted functions)[1] Let f(x, y) ∈
L(R2) and let F (ξ, η) be its Fourier spectrum. Let us consider fsh(x, y) shifted function
(see De�nition 2.6) of function f(x, y) by vector (x0, y0) and let Fsh(ξ, η) be Fourier
spectrum of the shifted function. Then the phase-correlation function of functions f, fsh
is Dirac distribution shifted by (−x0,−y0)

Pf,fsh(x, y) = δ(x+ x0, y + y0).

Proof. The proof taken from [1]. The Shift Theorem 2.7 implies that

Zf,fsh(ξ, η) =
F (ξ, η) · F ∗(ξ, η)(e−i(x0ξ+y0η))∗

|F (ξ, η) · F (ξ, η)e−i(x0ξ+y0η)|
= ei(x0ξ+y0η).

Therefore

Pf,fsh(x, y) = F−1{Zf,fsh(ξ, η)} = F−1{ei(x0ξ+y0η)} =

= F−1{e−i(ξ(−x0)+η(−y0))} = δ(x+ x0, y + y0).

Obviously the phase-correlation is the perfect tool for �nding mutual shifts of shifted
functions. The only remaining task is to �nd the only non-zero element's coordinates
and the shift can be obtained after multiplication with −1.

Theorem 2.29. (Cross-correlation function of shifted functions) Let f(x, y) ∈
L(R2) continuous real and let us suppose function fsh(x, y) be shifted function of function
f(x, y). Then the cross-correlation function of functions f, fsh has its global maximum
in [−x0,−y0], i.e.

Qf,fsh(x, y) ≤ Qf,fsh(−x0,−y0) ∀(x, y) ∈ R2.
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Proof. The one dimensional proof can be found in [10]. Let us begin with equality

(f(s, t)− f(s− x− x0, t− y − y0))2 =

= f 2(s, t)− 2f(s, t)f(s− x− x0, t− y − y0) + f 2(s− x− x0, t− y − y0).

By integrating both sides we obtain

∞∫
−∞

∞∫
−∞

(f(s, t)− f(s− x− x0, t− y − y0))2 dsdt =

=

∞∫
−∞

∞∫
−∞

f 2(s, t)dsdt− 2

∞∫
−∞

∞∫
−∞

f(s, t)f(s− x− x0, t− y − y0)dsdt+

+

∞∫
−∞

∞∫
−∞

f 2(s− x− x0, t− y − y0)dsdt.

The last integral can be modi�ed as follows

∞∫
−∞

∞∫
−∞

f 2(s− x− x0, t− y − y0)dsdt =

∣∣∣∣ u = s− x− x0 du = ds
v = t− y − y0 dv = dt

∣∣∣∣ =

=

∞∫
−∞

∞∫
−∞

f 2(u, v)dudv =

∣∣∣∣ s = u ds = du
t = v dt = dv

∣∣∣∣ =

=

∞∫
−∞

∞∫
−∞

f 2(s, t)dsdt.

Using the modi�cation we obtain

∞∫
−∞

∞∫
−∞

f(s, t)f(s− x− x0, t− y − y0)dsdt =

=

∞∫
−∞

∞∫
−∞

f 2(s, t)dsdt− 1

2

∞∫
−∞

∞∫
−∞

(f(s, t)− f(s− x− x0, t− y − y0))2 dsdt.

Since the last integral is non-negative, we can write

∞∫
−∞

∞∫
−∞

f(s, t)f(s− x− x0, t− y − y0)dsdt ≤
∞∫

−∞

∞∫
−∞

f 2(s, t)dsdt.

Now let us formulate the integral form of the cross-correlation function of shifted functions:

Qf,fsh(x, y) = f(x, y) ∗ f ∗sh(−x,−y) = f(x, y) ∗ f(−x− x0,−y − y0) =

=

∞∫
−∞

∞∫
−∞

f(s, t)f(s− x− x0, t− y − y0)dsdt.
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And for (x, y) = (−x0,−y0) we obtain

Qf,fsh(−x0,−y0) =

∞∫
−∞

∞∫
−∞

f(s, t)f(s, t)dsdt =

∞∫
−∞

∞∫
−∞

f 2(s, t)dsdt.

Then the previous inequality can be rewritten as

Qf,fsh(x, y) ≤ Qf,fsh(−x0,−y0) ∀(x, y) ∈ R2.

0

Qf,fsh(x,y)

x
y=0

Figure 2.1: Typical shape of autocorrelation function showing clear global maximum

On the other hand to phase-correlation function, it is not so easy to �nd the shift using
cross-correlation. The task is to �nd the global maximum (its coordinates) of the cross-
correlation function and then to multiply it with −1. There would be an issue if the func-
tion had more than one global maximum. This case fortunately can not happen, because
the cross-correlation function of an image with itself (autocorrelation function) has very
speci�c shape shown in the Figure 2.1. The cross-correlation function of shifted images is
just the shifted autocorrelation function.

Theorem 2.30. (Cross-correlation function of functions with two shifted ob-
jects) Let f(x, y) ∈ L(R2) continuous real and it has objects f1(x, y), f2(x, y). Let g(x, y)
be function with shifted objects according to f(x, y) by shift vectors (x1, y1), (x2, y2) which
are su�ciently di�erent. Then the cross-correlation function of functions f, g has local
maxima [−x1,−y1] and [−x2,−y2].

Proof. It holds

Qf,g(x, y) = f(x, y) ∗ g(−x,−y) =

= (f1(x, y) + f2(x, y)) · (f1(−x− x1,−y − y1) + f2(−x− x2,−y − y2)) =

= f1(x, y) ∗ f1(−x− x1,−y − y1) + f1(x, y) ∗ f2(−x− x2,−y − y2) +

+ f2(x, y) ∗ f1(−x− x1,−y − y1) + f2(x, y) ∗ f2(−x− x2,−y − y2) =

= Qf1,f1,sh +Qf2,f2,sh +Qf1,f2,sh +Qf2,f1,sh ,

which is summation of positive functions with su�ciently far global maxima. It means,
that maxima are preserved as local maxima.
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We require the shift vectors to be su�ciently di�erent for the maxima to stay maxima
in summed function. If the maxima are to close, they will merge in one, or they could
became even more close. Because of the very speci�c shape of autocorrelation function,
there is no problem in existence of local maxima in the summed function. The global
maximas in original functions are signi�cant enough.

If the objects f1, f2 are not the same, there will not be formed another maxima, because
they are not correlated. On the other hand, there will be formed two new maxima if
f2(x, y) = f1(x−x0, y− y0) (i.e. the objects are just shifted). The coordinates of the new
maxima would be [−x0 − x2,−y0 − y2], [x0 − x1, y0 − y1], which can be easily proven
analogically to proof of the Theorem 2.29. These maxima are comprising the mutual
position of the objects and their shifts together.

Theorem 2.31. (Cross-correlation function of fuctions with n shifted objets)
Let f(x, y) ∈ L(R2) continuous real and it has objects fi(x, y), i = 1, 2, ..., n. Let g(x, y)
be function with shifted objects according to f(x, y) by shift vectors (xi, yi) which are suf-
�ciently di�erent. Then the cross-correlation function of functions f, g has local maxima
[−xi,−yi]. And it holds

Qf,g(x, y) =
n∑
i=1

n∑
j=1

Qfi,fj,sh .

Proof. Proof can be derived as outward generalization of proof of the Theorem 2.30.
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Chapter 3

The discrete Fourier Transform

3.1 Digital image

At �rst, we need to de�ne what do we mean by digital image to work with them.
The digital image is two dimensional discrete representation of real-world scene that rep-
resents a momentary event from the three-dimensional spatial world which is created
by a digital camera. The digital image like this contains an additive noise. It changes
image we wanted to capture and we try to get rid of it in digital image processing. It
is usually caused by increased temperature of camera sensor or some dust on the lens.
To further image processing done in this thesis, we assume the image to be without addi-
tive noise. The images without additive noise can be also created in graphic programmes,
but they are no longer real-world representations (i.e. photography). We will use them
as testing images.

We will consider the image to be a two dimensional discrete function of the square
shape in following chapters. That means that we will know the values of function only
on integer coordinates. The values of an image are also consider to be integer, when we
want to display it by some output displaying device. Yet, we will work with complex-
valued (or real-valued) images in following chapter. This approach is more general and al-
lows us to be more precise.

De�nition 3.1. (Digital gray-scale image)[1] Let R = {0, 1, ..., N − 1}2, , N ∈ N
and let W = {0, 1, ..., w − 1}, w ∈ N. Function

f(x, y) : R −→ W

is called a digital gray-scale image. Where N is called the image width and the image

height. Elements of R are called pixels and value of f in pixel (x, y) is called the pixel

value. The value of w determines the image dynamic range. The dynamic range is n bits

per pixel (it is an n-bit image) if w = 2n.

An image is usually de�ned to be rectangular, but it is su�cient for needs of this thesis
for image to be square for phase correlation (or cross correlation) to work properly.

We usually use matrix to represent image and we call it image matrix. However there
is no sense to use operation de�ned to matrices for image matrix, because it is just table
of pixel values in coordinates (x, y). Every operation applied to image matrix is meant
to be applied on each pixel separately.

The dynamic range of the image is given by the memory representation of the image
in computer. The n determines, how much bits need to be used to save one pixel. We use
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the dynamic range of this form to best use of the memory. Also the output displaying
devices are made to display in classic dynamic range.

De�nition 3.2. (Digital color image)[1] A digital color image is a triple of digital
gray-scale images (r, g, b) which are called the red, green and blue color channels.

For purposes of image registration we convert the digital color image into gray scale
image. To do that we compute a convex combination of the red, green and blue color
channels

f(x, y) = Round(crr(x, y) + cgg(x, y) + cbb(x, y)),

where cr, cg, cb ∈ 〈0, 1〉 and cr+cg+cb = 1. The constants cr, cg, cb should be chosen to min-
imize the standard deviation of additive noise in image f . There is no rule for choosing
constants that works for all images. For general images (taken without any color �lters)
we use assessment around

cr =
1

9
, cg =

6

9
, cb =

2

9
.

De�nition 3.3. (Additive noise)[1] Let f be a digital gray-scale image represent-
ing an ideal image (containing no additive noise), let n be a digital gray-scale image
of the same size as f , whose pixel values are rounded independent realization of random
variable X, which usually has normal distribution. Let

h(x, y) =

{
f(x, y) + n(x, y) if 0 ≤ f(x, y) + n(x, y) < w,

w − 1 if f(x, y) + n(x, y) ≥ w

then we say that image h contains additive noise. Image n is called noise image.

3.2 The Discrete Fourier transform and inverse Fourier

transform

De�nition 3.4. (Discrete Fourier transform)[8] Let f (x, y) : {0, 1, ..., N − 1} ×
{0, 1, ..., N − 1} = {0, 1, ..., N − 1}2 −→ C, N ∈ N. The discrete Fourier transform

of function (image) f(x, y) is function D{f}(ξ, η) = F (ξ, η) : {0, 1, ..., N − 1}2 → C
de�ned as

D{f}(ξ, η) = F (ξ, η) =
N−1∑
x=0

N−1∑
y=0

f(x, y)e−
2πi
N

(xξ+yη).

Function F is also called the Fourier spectrum of function f .

De�nition 3.5. (Inverse discrete Fourier transform)[8] Let function (image) f(x, y)
be a function {0, 1, ..., N − 1}2 → C, N ∈ N and let F (ξ, η) be its discrete Fourier trans-
form. The inverse discrete Fourier transform of function F (ξ, η) is functionD−1{F}(x, y) =
g(x, y) : {0, 1, ..., N − 1}2 → C de�ned as

D−1{F}(x, y) =
1

N2

N−1∑
ξ=0

N−1∑
η=0

F (ξ, η)e
2πi
N

(xξ+yη).

Theorem 3.6. (Fourier inversion theorem )[1] Let f(x, y) be a function (image)
{0, 1, ..., N − 1}2 → C, N ∈ N and let F (ξ, η) be its discrete Fourier transform. Then
the inverse discrete Fourier transform of function F (ξ, η) is function f(x, y), i.e.

D−1{D{f(x, y)}} = f(x, y).
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Proof. Proof taken from [1].

D−1{D{f(x, y)}} =
1

N2

N−1∑
ξ=0

N−1∑
η=0

F (ξ, η)e
2πi
N

(xξ+yη) =

=
1

N2

N−1∑
ξ=0

N−1∑
η=0

N−1∑
s=0

N−1∑
t=0

f(s, t)e−
2πi
N

(sξ+tη)e
2πi
N

(xξ+yη) =

=
1

N2

N−1∑
s=0

N−1∑
t=0

f(s, t)
N−1∑
ξ=0

N−1∑
η=0

eξ
2πi
N

(x−s)eη
2πi
N

(y−t) =

=
1

N2

N−1∑
s=0

N−1∑
t=0

f(s, t)

(
N−1∑
ξ=0

(
e

2πi
N

(x−s)
)ξ)(N−1∑

η=0

(
e

2πi
N

(y−t)
)η)

,

let us denote g(s) =
N−1∑
ξ=0

(e
2πi
N

(x−s))ξ and g(t) =
N−1∑
η=0

(e
2πi
N

(y−t))η. g(s) is �nite geometrical

series, therefore we can compute its sum. If e
2πi
N

(x−s) = 1 (i.e. x = s), then g(s) = N .
Otherwise, x− s ∈ Z− {0} and

g(s) =
1−

(
e

2πi
N

(x−s)
)N

1− e
2πi
N

(x−s)
=

1− e2πi(x−s)

1− e
2πi
N

(x−s)
=

1− 1

1− e
2πi
N

(x−s)
= 0.

Similarly,

g(t) =

{
N if y = t

0 else.

Therefore,

D−1{D{f(x, y)}} =
1

N2
f(x, y) ·N ·N = f(x, y).

On the contrary to the Fourier transform, the discrete Fourier transform always exists
due to the fact that the summation is over a �nite number of points. We also do not need
to make restrictions to the functions as we need to in continuous case.

To further work with images (especially with shifted images) we need to de�ne the pe-
riodized functions (images), so it would be possible to work with coordinates, which lay
out of function domain.

De�nition 3.7. (Periodization of function and its Fourier spectrum )[1] Let
f(x, y) be a function {0, 1, ..., N − 1}2 −→ C, N ∈ N and let F (ξ, η) be its Fourier
spectrum. The periodization of the Fourier spectrum F if function F̃ (ξ, η) : Z2 −→ C
de�ned as

F̃ (ξ, η) =
N−1∑
x=0

N−1∑
y=0

f(x, y)e
−2πi
N

(xξ+yη).

The periodization of function f is function f̃(x, y) : Z2 −→ C de�ned as

f̃(x, y) =
1

N2

N−1∑
ξ=0

N−1∑
η=0

F (ξ, η)e
2πi
N

(xξ+yη).
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Remark 3.8. [1] For further usage of periodized functions let us remark some basic
equalities. Let f(x, y) be a function {0, 1, ..., N − 1}2 −→ C, N ∈ N. Then for every
(x, y), (ξ, η) ∈ {0, 1, ..., N − 1}2 and k, l ∈ Z it holds

f(x, y) = f̃(x+ kN, y + lN),

F (ξ, η) = F̃ (ξ + kN, η + lN).

In particular

f̃(x, y) = f(x, y), f̃(−x,−y) = f(N − x,N − y),

F̃ (ξ, η) = F (ξ, η), F̃ (−ξ,−η) = F (N − ξ,N − η).

De�nition 3.9. (Discrete Fourier transform of periodized functions)[1] Let f(x, y)
be function {0, 1, ..., N − 1}2 −→ C, N ∈ N. The discrete Fourier transform of the peri-
odization of function f, f̃(x, y) : Z2 −→ C is function D{f̃}(ξ, η) = F (ξ, η) : {0, 1, ..., N −
1}2 −→ C de�ned as

F (ξ, η) =
N−1∑
x=0

N−1∑
y=0

= f̃(x, y)e−
2πi
N

(xξ+yη).

De�nition 3.10. (Inverse discrete Fourier transform of periodized functions)[1]
Let f(x, y) be a function {0, 1, ..., N − 1}2 −→ C, N ∈ N and let F (ξ, η) be its discrete
Fourier transform with periodization F̃ (ξ, η) : Z2 −→ C. The inverse discrete Fourier
transform of function F̃ (ξ, η) is function D−1{F̃}(x, y) : {0, 1, ..., N − 1}2 −→ C de�ned
as

D−1{F̃}(x, y) =
1

N2

N−1∑
ξ=0

N−1∑
η=0

F̃ (ξ, η)e
2πi
N

(xξ+yη).

Corollary 3.11. [1] Let f(x, y) be a function {0, 1, ..., N−1}2 −→ C, N ∈ N with Fourier
spectrum F (ξ, η). For every (x, y) ∈ {0, 1, ..., N − 1}2, it holds:

D {f(x, y)} = D
{
f̃(x, y)

}
,

D−1
{
D
{
f̃(x, y)

}}
= D−1

{
F̃ (ξ, η)

}
= f(x, y).

Proof. The claim is consequence of De�nitions 3.9, 3.10 and Theorem 3.6.

Corollary 3.12. [1] Let f(x, y) be a function {0, 1, ...N −1}2 −→ C, N ∈ N with Fourier
spectrum F (ξ, η). For every k, l ∈ Z it holds:

D {f(x, y)} =
k+N−1∑
x=k

l+N−1∑
y=l

f̃(x, y)e−
2πi
N

(xξ+yη),

D−1 {F (ξ, η)} =
1

N2

k+N−1∑
ξ=k

l+N−1∑
η=l

F̃ (ξ, η)e
2πi
N

(xξ+yη).

Proof. The proof taken from [1]. The �rst claim is consequence of the fact, that both func-
tions f̃ and e−

2πi
N

(xξ+yη) for �xed ξ, η ∈ Z are N -periodic. The second claim is consequence
of the fact that both functions F̃ and e

2πi
N

(xξ+yη) for �xed x, y ∈ Z are N -periodic.
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3.3 Shift theorem for images

This section serves to introduce the concept of the shifted images and objects in the im-
age. We will use the periodization of the image, because the shifts could lead out
of the function domain. We will consider only integer shifts, because non-integer ones
would lead out of the function domain. Even so, the mutual shifts �nding method intro-
duced in following chapter will compute even the non-integer shifts.

De�nition 3.13. (Shifted periodized images) Let image f(x, y) be a function {0, 1, ...,
N − 1}2 −→ C, N ∈ N, let f̃(x, y) be periodization of function f and let x0, y0 ∈ Z be
given numbers. The function fsh(x, y) is shifted image of image f(x, y) by vector (x0, y0)
i�

fsh(x, y) = f̃(x− x0, y − y0).

Theorem 3.14. (Shift theorem for periodized images)[1] Let image f(x, y) be func-
tion {0, 1, ..., N − 1}2 −→ C, N ∈ N and let F (ξ, η) be its Fourier spectrum. Let fsh(x, y)
be shifted image of image f(x, y) and let Fsh(ξ, η) be its Fourier spectrum. Then it holds

Fsh(ξ, η) = e−
2πi
N

(x0ξ+y0η)F (ξ, η).

Proof. The following proof is shown in [1].

Fsh(ξ, η) =
N−1∑
x=0

N−1∑
y=0

fsh(x, y)e−
2πi
N

(xξ+yη) =
N−1∑
x=0

N−1∑
y=0

f̃(x− x0, y − y0)e−
2πi
N

(xξ+yη) =

=

∣∣∣∣ s = x− x0
t = y − y0

∣∣∣∣ =

N−1−x0∑
s=−x0

N−1−y0∑
t=−x0

f̃(s, t)e−
2πi
N

(ξ(s+x0)+η(t+y0)) =

= e−
2πi
N

(x0ξ+y0η)

N−1−x0∑
s=−x0

N−1−y0∑
t=−x0

f̃(s, t)e−
2πi
N

(sξ+tη) = e−
2πi
N

(x0ξ+y0η)F (ξ, η).

The last equality is due to Corollary 3.11.

De�nition 3.15. (Shifted images in greater scale) Let fG(x, y) be an image (of greater
scale) {0, 1, ..., N − 1}2 −→ C, N ∈ N. Let x0, y0 ∈ Z, k, l ∈ N0,M ∈ N be given numbers
such that

M < N,

k + x0 ≥ 0, k +M + x0 ≥ N − 1,
l + y0 ≥ 0, l +M + y0 ≥ N − 1.

and let function f be

f(x, y) =

{
fG(x, y) if (x, y) ∈ {k, k + 1, ..., k +M − 1} × {l, l + 1, ..., l +M − 1}
0 else.

An image g(x, y) : {0, 1, ..., N − 1}2 −→ C is shifted image of image f if it holds

g(x, y) =

f(x− x0, y − y0) if
max{0, x0} ≤ x ≤ min{N − 1, N − 1 + x0},
max{0, y0} ≤ y ≤ min{N − 1, N − 1 + y0},

0 else.
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This is illustrated in [1] together with the de�nition.

Theorem 3.16. (Shift Theorem)[1] Let f(x, y), g(x, y) be shifted images in greater
scale and let F (ξ, η), G(ξ, η) by their Fourier spectra. Then it holds

G(ξ, η) = e−
2πi
N

(x0ξ+y0η)F (ξ, η).

Proof. Proof taken from [1].

G(ξ, η) =
N−1∑
x=0

N−1∑
y=0

g(x, y)e−
2πi
N

(xξ+yη) =

k+M−1+x0∑
x=k+x0

l+M−1+y0∑
y=l+y0

g(x, y)e−
2πi
N

(xξ+yη) =

=

k+M−1+x0∑
x=k+x0

l+M−1+y0∑
y=l+y0

f(x− x0, y − y0)e−
2πi
N

(xξ+yη) =

=

∣∣∣∣ s = x− x0
t = y − y0

∣∣∣∣ =
k+M−1∑
s=k

t+M−1∑
t=l

f(s, t)e−
2πi
N

(ξ(s+x0)+η(t+y0)) =

= e−
2πi
N

(x0ξ+y0η)

k+M−1∑
s=k

l+M−1∑
t=l

f(s, t)e−
2πi
N

(sξ+tη) = e−
2πi
N

(x0ξ+y0η)F (ξ, η).

We are introducing the concept of images cropped out of the greater scale because it
is the easiest way to obtain testing image for �nding mutual shift of shifted images. We
are not using it further in this thesis though.

De�nition 3.17. (Multiple objects in image) Let n ∈ N be given number, let images
f(x, y), fi(x, y) be functions {0, 1, ..., N − 1}2 −→ C, N ∈ N for each i = 1, 2, ..., n. Image
f(x, y) consists of n objects fi(x, y) i�

f(x, y) =
n∑
i=1

fi(x, y).

Introducing this concept of multiple objects in image could be problematic, if we
were trying to create an image by the summation of multiple images. We know from
the de�nition of the digital gray-scale image, that the image function can reach only non-
negative values and the values are bounded. That could lead to summation of images,
which result could overcome the dynamic range. Hence, the object image functions could
take its values even from negative integer numbers. However, this is not the concept
of creating image consisted of multiple objects but the formal description of an image,
which is created in classical way.

De�nition 3.18. (Periodized image with shifted objects) Let f(x, y) be an image
with n shifted objects fi(xi, yi) and let f̃i(x, y) be their periodizations, let xi, yi ∈ Z be
given numbers for each i = 1, 2, ..., n. Image g(x, y) : {0, 1, ..., N − 1}2 −→ C, N ∈ N is
image with shifted objects considering f(x, y) i�

g(x, y) =
n∑
i=1

f̃i(x− xi, y − yi).
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To work with shifts, we need to consider periodized image again. Same as in continuous
case, let us remark that each object fi(x, y) of image f(x, y) is shifted in image g(x, y).
Therefore, we can say that objects fi,sh(x, y) = fi(x−xi, y−yi) are shifted images of image
functions (objects) fi(x, y) by vectors (xi, yi). Also considering n = 1, we are obtaining
the de�nition of the shifted image. So we can say, that the shifted function consist of only
one object, which is shifted.

Theorem 3.19. (Shift theorem for images with two objects) Let f(x, y) be a func-
tion with two objects (n = 2), let F1(ξ, η) and F2(ξ, η) be Fourier spectra of its objects
f1(x, y), f2(x, y). Let g(x, y) be function with shifted objects considering f(x, y) and let
G(ξ, η) be its Fourier spectrum. Then it holds

G(ξ, η) = F1(ξ, η)e−
2πi
N

(x1ξ+y1η) + F2(ξ, η)e−
2πi
N

(x2ξ+y2η).

Proof.

G(ξ, η) =
N−1∑
x=0

N−1∑
y=0

g(x, y)e−
2πi
N

(xξ+yη) =

=
N−1∑
x=0

N−1∑
y=0

(f̃1(x− x1, y − y1) + f̃2(x− x2, y − y2))e−
2πi
N

(xξ+yη) =

=
N−1∑
x=0

N−1∑
y=0

f̃1(x− x1, y − y1)e−
2πi
N

(xξ+yη) +

+
N−1∑
x=0

N−1∑
y=0

f̃2(x− x2, y − y2)e−
2πi
N

(xξ+yη) =

=

∣∣∣∣∣∣∣∣
s = x− x1 x = s+ x1
t = y − y1 y = t+ y1
u = x− x2 x = u+ x2
v = y − y2 y = v + y2

∣∣∣∣∣∣∣∣ =

N−1−x1∑
s=−x1

N−1−y1∑
t=−y1

f̃1(s, t)e
− 2πi
N

((s+x1)ξ+(t+y1)η) +

+

N−1−x2∑
u=−x2

N−1−y2∑
v=−y2

f̃2(u, v)e−
2πi
N

((u+x2)ξ+(v+y2)η) =

=

N−1−x1∑
s=−x1

N−1−y1∑
t=−y1

f̃1(s, t)e
− 2πi
N

(sξ+tη)e−
2πi
N

(x1ξ+y1η) +

+

N−1−x2∑
u=−x2

N−1−y2∑
v=−y2

f̃2(u, v)e−
2πi
N

(uξ+vη)e−
2πi
N

(x2ξ+y2η) =

= F1(ξ, η)e−
2πi
N

(x1ξ+y1η) + F2(ξ, η)e−
2πi
N

(x2ξ+y2η).

Theorem 3.20. (Shift theorem for images with n objects) Let f(x, y) be an image
with n objects and let Fi(ξ, η) be Fourier spectra of its objects fi(x, y) for each i =
1, 2, ..., n. Let g(x, y) be an image with shifted objects considering f(x, y) and let G(ξ, η)
be its Fourier spectrum. Then it holds

G(ξ, η) =
n∑
i=1

Fi(ξ, η)e−
2πi
N

(xiξ+yiη).

Proof. Proof can be derived as outward generalization of proof of Theorem 3.19.
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3.4 Properties of discrete Fourier transform

As in continuous case, we are introducing some basic properties of the discrete Fourier
transform which we are using in following sections.

Theorem 3.21. [8] Let image f(x, y) be a function {0, 1, ..., N − 1}2 −→ C, N ∈ N
with Fourier spectrum F (ξ, η) and let f̃ , F̃ be their periodizations. The discrete Fourier
transform of function f with reversed axes is function F with reversed axes. The inverse
discrete Fourier transform of function F with reversed axes is function f with reversed
axes, i.e.

D
{
f̃(−x,−y)

}
= F̃ (−ξ,−η) = F (N − ξ,N − η),

D−1
{
F̃ (−ξ,−η)

}
= f̃(−x,−y) = f(N − x,N − y).

Proof. Proof taken from [1].

D
{
f̃(−x,−y)

}
=

N−1∑
x=0

N−1∑
y=0

f̃(−x,−y)e−
2πi
N

(xξ+yη) =

∣∣∣∣ s = −x
t = −y

∣∣∣∣ =

=
0∑

s=−N+1

0∑
t=−N+1

f̃(s, t)e−
2πi
N

(−sξ−tη) = F̃ (−ξ,−η).

The last equality is due to the Corollary 3.12. The second claim is obtained from the �rst
one by applying discrete inverse Fourier transform to its both sides. This step always
works due to Theorem 3.6.

Theorem 3.22. [4] Let image f(x, y) be a function {0, 1, ..., N−1}2 −→ C, N ∈ N and let
F (ξ, η) be its Fourier spectrum. Then the Fourier transform of the complex conjugate
of function f is F̃ ∗(−ξ,−η) i.e.

D {f ∗(x, y)} = F̃ ∗(−ξ,−η).

Proof. proof taken from [1].

D {f ∗(x, y)} =
N−1∑
x=0

N−1∑
y=0

f ∗(x, y)e−
2πi
N

(xξ+yη) =
N−1∑
x=0

N−1∑
y=0

f ∗(x, y)e
2πi
N

(−xξ−yη) =

=

(
N−1∑
x=0

N−1∑
y=0

f(x, y)e−
2πi
N

(−xξ−yη)

)∗
= F̃ ∗(−ξ,−η).

Theorem 3.23. [1] Let f(x, y) be a function {0, 1, ..., N − 1}2 −→ C, N ∈ N. Then it
holds

(a) D {D {f(x, y)}} = N2f̃(−x,−y),

(b) D−1 {D−1 {f(x, y)}} =
1

N2
f̃(−x,−y),
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(c) D {f(x, y)} = N2D−1
{
f̃(−x,−y)

}
,

(d) D−1 {f(x, y)} =
1

N2
D
{
f̃(−x,−y)

}
.

Proof. Proof taken from [1].

(a)

D {D{f(x, y)}} =
N−1∑
ξ=0

N−1∑
η=0

F (ξ, η)e−
2πi
N

(xξ+yη) =
N−1∑
ξ=0

N−1∑
η=0

F (ξ, η)e
2πi
N

(−xξ−yη) =

=

∣∣∣∣ σ = −ξ
τ = −η

∣∣∣∣ =
0∑

σ=−N+1

0∑
τ=−N+1

F̃ (−σ,−τ)e
2πi
N

(xσ+yτ) =

= N2D−1
{
D{f̃(−x,−y)}

}
= N2f̃(−x,−y).

(b)

D−1
{
D−1{f(x, y)}

}
=

1

N2

N−1∑
ξ=0

N−1∑
η=0

(
1

N2

N−1∑
s=0

N−1∑
t=0

f(s, t)e
2πi
N

(sξ+tη)

)
e

2πi
N

(xξ+yη) =

=
1

N4

N−1∑
ξ=0

N−1∑
η=0

(
N−1∑
s=0

N−1∑
t=0

f(s, t)e−
2πi
N

(−sξ−tη)

)
e

2πi
N

(xξ+yη) =

=

∣∣∣∣ u = −s
v = −t

∣∣∣∣ =
1

N4

N−1∑
ξ=0

N−1∑
η=0

(
0∑

u=−N+1

0∑
v=−N+1

f̃(−u,−v) ·

· e−
2πi
N

(uξ+vη)
)

e
2πi
N

(xξ+yη) =

=
1

N2
D−1

{
D{f̃(−x,−y)}

}
=

1

N2
f̃(−x,−y).

(c) is obtained from (a) by applying the inverse discrete Fourier transform to both its
sides

(d) is obtained from (b) by applying the discrete Fourier transform to both its sides, or
by substituting −x for x and −y for y and dividing both sides by N2.

Theorem 3.24. [1] Let image f(x, y) be a function {0, 1, ..., N − 1}2 −→ C, N ∈ N
and have Fourier spectrum F (ξ, η). The function f is real, i.e. f(x, y) = f ∗(x, y) ∀(x, y) ∈
{0, 1, ..., N − 1}2, i� F (ξ, η) = F̃ ∗(−ξ,−η).

Proof. Proof taken from [1].

1. Let us suppose that f is a real function. Then Theorem 3.22 implies that

F (ξ, η) = D{f(x, y)} = D{f ∗(x, y)} = F̃ ∗(−ξ,−η).
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2. Let us suppose that F (ξ, η) = F̃ ∗(−ξ,−η). Then Theorem 3.22 and the Theorem
3.6 imply that

f(x, y) = D−1{F (ξ, η)} = D−1{F̃ ∗(−ξ,−η)} = D−1 {D{f ∗(x, y)}} = f ∗(x, y).

Corollary 3.25. [1] Let function f(x, y) : {0, 1, ..., N − 1}2 −→ R, N ∈ N. Let function
G(ξ, η) : {0, 1, ..., N − 1}2 −→ R such that G(ξ, η) = G̃(−ξ,−η). Then

D−1{F (ξ, η) ·G(ξ, η)}

is real.

Proof. Proof taken from [1]. According to Theorem 3.24 if f is real, then

F (ξ, η) = F̃ ∗(−ξ,−η).

By multiplying the equality by G, we obtain

F (ξ, η) ·G(ξ, η) = F̃ ∗(−ξ,−η) · G̃(−ξ,−η) =
(
F̃ (−ξ,−η) · G̃(−ξ,−η)

)∗
.

Then again according to Theorem 3.24

D−1{F (ξ, η) ·G(ξ, η)}

is real.

3.5 Discrete periodic convolution

The discrete periodic convolution is the most used tool in image processing. It is
usually used with much smaller kernel. We will also use the discrete periodic convolution
to reduce complexity of the computations.

De�nition 3.26. (Discrete periodic convolution)[8] Let images f(x, y), g(x, y) be
functions {0, 1, ..., N − 1}2 −→ C, N ∈ N. The discrete periodic convolution of functions
f, g is function {0, 1, ..., N − 1}2 −→ C de�ned as

h(x, y) = f(x, y) ∗ g(x, y) =
N−1∑
s=0

N−1∑
t=0

f(s, t)g̃(x− s, y − t).

Theorem 3.27. [1] Let images f(x, y), g(x, y) be functions {0, 1, ..., N−1}2 −→ C, N ∈ N
and have Fourier spectra F (ξ, η), G(ξ, η). Then

D{f(x, y) ∗ g(x, y)} = F (ξ, η) ·G(ξ, η).

41



Proof. Similar proof can be found in [8]. Let h(x, y) = f(x, y) ∗ g(x, y), then

D{h(x, y)} =
N−1∑
x=0

N−1∑
y=0

(
N−1∑
s=0

N−1∑
t=0

f(s, t)g̃(x− s, y − t)

)
e−

2πi
N

(xξ+yη) =

=
N−1∑
x=0

N−1∑
y=0

f(s, t)
N−1∑
s=0

N−1∑
t=0

g̃(x− s, y − t)e−
2πi
N

(xξ+yη) =

∣∣∣∣ p = x− s
q = y − t

∣∣∣∣ =

=
N−1∑
x=0

N−1∑
y=0

f(s, t)
N−1−s∑
p=−s

N−1−t∑
q=−t

g̃(p, q)e−
2πi
N

((p+s)ξ+(q+t)η) =

=
N−1∑
x=0

N−1∑
y=0

f(s, t)e−
2πi
N

(sξ+tη)

N−1−s∑
p=−s

N−1−t∑
q=−t

g̃(p, q)e−
2πi
N

(pξ+qη) =

= F (ξ, η) ·G(ξ, η).

Theorem 3.28. [4] Let images f(x, y), g(x, y) be functions {0, 1, ..., N−1}2 −→ C, N ∈ N
and have Fourier spectra F (ξ, η), G(ξ, η). Then

D{f(x, y) · g(x, y)} =
1

N2
F (ξ, η) ∗G(ξ, η).

Proof. Proof taken from [1]. Let h(x, y) = f(x, y) ∗ g(x, y). Using the Fourier Inversion
Theorem 3.6 we can compute D{h(x, y)} as

D{h(x, y)} =
N−1∑
x=0

N−1∑
y=0

f(x, y)g(x, y)e−
2πi
N

(xξ+yη) =

=
N−1∑
x=0

N−1∑
y=0

(
1

N2

N−1∑
σ=0

N−1∑
τ=0

F (σ, τ)e
2πi
N

(xσ+yτ)

)
g(x, y)e−

2πi
N

(xξ+yη) =

=
1

N2

N−1∑
σ=0

N−1∑
τ=0

F (σ, τ)
N−1∑
x=0

N−1∑
y=0

g(x, y)e−
2πi
N

(x(ξ−σ)+y(η−τ)) =

=
1

N2

N−1∑
σ=0

N−1∑
τ=0

F (σ, τ)G̃(ξ − σ, η − τ) =
1

N2
F (ξ, η) ∗G(ξ, η).

Theorem 3.29. (Distributivity of discrete periodic convolution) Let images f(x, y),
g(x, y), h(x, y) be functions {0, 1, ...N − 1}2 −→ C, N ∈ N. Then it holds

f(x, y) ∗ (g(x, y) + h(x, y)) = f(x, y) ∗ g(x, y) + f(x, y) ∗ h(x, y).
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Proof. Let us denote k(x, y) = g(x, y) + h(x, y). Then

f(x, y) ∗ (g(x, y) + h(x, y)) = f(x, y) ∗ k(x, y) =
N−1∑
s=0

N−1∑
t=0

f(s, t)k̃(x− s, y − t) =

=
N−1∑
t=0

f(s, t)(g̃(x− s, y − t) + h̃(x− s, y − t)) =

=
N−1∑
t=0

f(s, t)g̃(x− s, y − t) +
N−1∑
t=0

f(s, t)h̃(x− s, y − t)) =

= f(x, y) ∗ g(x, y) + f(x, y) ∗ h(x, y).

3.6 Cross correlation, phase correlation

The concept of cross correlation and phase correlation is very similar to the continuous
case, it brings the same problems with the same solutions.

De�nition 3.30. (Cross-power spectrum, normalized cross-power spectrum)[3]
Let images f(x, y), g(x, y) be functions {0, 1, ..., N − 1}2 −→ C, N ∈ N and have Fourier
spectra F (ξ, η), G(ξ, η). The cross-power spectrum of functions f, g is function Cf,g(ξ, η) :
{0, 1, .., N − 1}2 −→ C de�ned as

Cf,g(ξ, η) = F (ξ, η) ·G∗(ξ, η).

The normalized cross-power spectrum of functions f, g is function Zf,g(ξ, η) : {0, 1, ..., N−
1}2 −→ C de�ned by

Zf,g(ξ, η) =
F (ξ, η) ·G∗(ξ, η)

|F (ξ, η) ·G(ξ, η)|
.

De�nition 3.31. (Cross-correlation function, phase-correlation function)[1] Let
functions F (x, y), G(x, y) : {0, 1, ..., N − 1}2 −→ C, N ∈ N have Fourier spectra F (ξ, η),
G(ξ, η). The function Qf,g(x, y) : {0, 1, ..., N − 1}2 −→ C de�ned as

Qf,g(x, y) = D−1{Cf,g(ξ, η)} = D−1{F (ξ, η) ·G∗(ξ, η)}

is called cross-correlation function of functions f, g. Function Pf,g(x, y) : {0, 1, ..., N −
1}2 −→ C de�ned as

Pf,g(x, y) = D−1{Zf,g(ξ, η)} = D−1
{
F (ξ, η) ·G∗(ξ, η)

|F (ξ, η) ·G(ξ, η)|

}
is called phase-correlation function of functions f, g.

Theorem 3.32. (Cross-correlation function for real functions)[1] Let f(x, y), g(x, y)
be functions {0, 1, ..., N − 1}2 −→ R, N ∈ N (real functions) and have Fourier spectra
F (ξ, η), G(ξ, η). Then the cross-correlation function of these function is real.

Proof. Proof taken from [1]. Using Theorems 3.6, 3.22 we obtain

Qf,g(x, y) = D−1{F (ξ, η) ·G∗(ξ, η)} = D−1
{
D{f(x, y)} · D{g̃∗(−x,−y)}

}
=

= D−1
{
D{f(x, y) ∗ g̃∗(−x,−y)}

}
= f(x, y) ∗ g̃∗(−x,−y) =

= f(x, y) ∗ g̃(−x,−y),

which is a real function.
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Remark 3.33. Noticeably, the cross-correlation function can be transformed to convolu-
tion as follows:

Qf,g(x, y) = f(x, y) ∗ g∗(−x,−y) = f(x, y) ∗ g(−x,−y),

where f(x, y), g(x, y) ∈ L(R2) continuous real. This matter of fact is often used to reduce
complexity of the computations. It will also be used as useful property of cross-correlation
function in some of following proves.

De�nition 3.34. (Discrete impulse function)[1] Let d(x, y) be a function de�ned
on {0, 1, ..., N − 1}2 as

d(x, y) =

{
1 if (x, y) = (0, 0),

0 else.

function d is called discrete impulse function.

For the purposes of �nding mutual shifts, we need to consider the cross-power spec-
trum, cross-correlation function, normalized cross-power spectrum and phase correlation
function to be periodized. We assume the periodization of these functions because we need
to obtain negative coordinates for the positive shifts (see following theorems). However,
this will lead to existence of periodized maxima too.

Theorem 3.35. (Phase-correlation function of shifted images)[1] Let image f(x, y)
be a function {0, 1, ..., N − 1}2 −→ C, N ∈ N and let F (ξ, η) be its Fourier spectrum.
Let us consider fsh(x, y) to be a shifted image (see De�nition 3.13) of f(x, y) and let
Fsh(ξ, η) be its Fourier spectrum. Then the phase-correlation function of functions f, fsh
is the discrete impulse function shifted by (−x0,−y0)

Pf,fsh(x, y) = d̃(x+ x0, y + y0).

Proof. Proof taken from [1]. Shift Theorem 3.14 implies that

Zf,fsh(ξ, η) =
F (ξ, η) · F ∗(ξ, η)

(
e−

2πi
N

(x0ξ+y0η)
)∗∣∣∣F (ξ, η) · F (ξ, η)e−

2πi
N

(x0ξ+y0η)
∣∣∣ = e

2πi
N

(x0ξ+y0η).

Further, according to the Theorem 3.23 (d) we can write

D−1{Zf,fsh(ξ, η)} =
1

N2
D
{
Z̃f,fsh(−ξ,−η)

}
=

1

N2
D
{

e
2πi
N

(−x0ξ−y0η)
}

=

=
1

N2

N−1∑
ξ=0

N−1∑
η=0

e−
2πi
N

(x0ξ+y0η)e−
2πi
N

(xξ+yη) =

=
1

N2

(
N−1∑
ξ=0

e−
2πi
N
ξ(x+x0)

)(
N−1∑
η=0

e−
2πi
N
η(y+y0)

)
=

=
1

N2

(
N−1∑
ξ=0

(
e−

2πi
N

(x+x0)
)ξ)(N−1∑

η=0

(
e−

2πi
N

(y+y0)
)η)

.

Similarly to the proof of the Fourier Inversion Theorem 3.6, let us denote g(x) =
N−1∑
ξ=0

(
e−

2πi
N

(x+x0)
)ξ

and g(y) =
N−1∑
η=0

(
e−

2πi
N

(y+y0)
)η
. Where both functions g(x) and g(y) are

44



�nite geometrical series. If x = −x0 +kN (k is arbitrary integer number), g(x) = N since
all elements of the series are equal to 1. Otherwise

g(x) =
1−

(
e−

2πi
N

(x+x0)
)N

1− e−
2πi
N

(x+x0)
=

1− e−2πi(x+x0)

1− e−
2πi
N

(x+x0)
=

1− 1

1− e−
2πi
N

(x+x0)
= 0.

Analogically,

g(y) =

{
N if y = −y0 + lN, l ∈ Z,
0 else.

Hence,

Pf,g(x, y) = D−1{Zf,g(ξ, η)} =


1 if (x, y) = (−x0 + kN,−y0 + lN)

for some k, l ∈ Z,
0 else

= d̃(x+ x0, y + y0).

0

Qf,fsh(x,y)

x
y=0

N-N

Figure 3.1: Typical shape of discrete autocorrelation function showing clear periodic
global maxima

On the contrary to continuous case, there is more than one global maxima. However,
we know, that their location is N -periodic. Which was proven. The shape of discrete
autocorrelation function can be seen in Figure 3.1.

Theorem 3.36. (Cross-correlation function of shifted images) Let image f(x, y)
be a function {0, 1, ..., N − 1}2 −→ R, N ∈ N and let us consider fsh(x, y) to be a shifted
image (see De�nition 3.13) of f(x, y). Then the cross-correlation function of functions
f, fsh has its global maxima in [−x0 + kN,−y0 + lN ], where k, l ∈ Z i.e.

Qf,fsh(x, y) ≤ Qf,fsh(−x0 + kN,−y0 + lN) ∀(x, y) ∈ R2.
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Proof. Let us begin with equality(
f(s, t)− f̃(s− x− x0, t− y − y0)

)2
=

= f 2(s, t)− 2f(s, t)f̃(s− x− x0, t− y − y0) + f̃ 2(s− x− x0, t− y − y0).

By summation of both sides we obtain

N−1∑
s=0

N−1∑
t=0

(
f(s, t)− f̃(s− x− x0, t− y − y0)

)2
=

N−1∑
s=0

N−1∑
t=0

f 2(s, t)−

− 2
N−1∑
s=0

N−1∑
t=0

f(s, t)f̃(s− x− x0, t− y − y0) +
N−1∑
s=0

N−1∑
t=0

f̃ 2(s− x− x0, t− y − y0).

Due to 2π-periodicity of f̃(x, y) we can write

N−1∑
s=0

N−1∑
t=0

f̃ 2(s− x− x0, t− y − y0) =
N−1∑
s=0

N−1∑
t=0

f 2(s, t).

Using this equality we obtain

N−1∑
s=0

N−1∑
t=0

f(s, t)f̃(s− x− x0, t− y − y0) =

=
N−1∑
s=0

N−1∑
t=0

f 2(s, t)− 1

2

N−1∑
s=0

N−1∑
t=0

(
f(s, t)− f̃(s− x− x0, t− y − y0)

)2
.

Since the last sum is �nite and its members are non-negative, we can write

N−1∑
s=0

N−1∑
t=0

f(s, t)f̃(s− x− x0, t− y − y0) ≤
N−1∑
s=0

N−1∑
t=0

f 2(s, t).

Now let us formulate the summation form of the cross-correlation function of shifted
functions:

Qf,fsh(x, y) = f(x, y) ∗ f ∗sh(−x,−y) = f(x, y) ∗ f̃(−x− x0,−y − y0) =

=
N−1∑
s=0

N−1∑
t=0

f(s, t)f̃(s− x− x0, t− y − y0).

And for (x, y) = (−x0 + kN,−y0 + lN) we obtain

Qf,fsh(−x0 + kN,−y0 + lN) =
N−1∑
s=0

N−1∑
t=0

f(s, t)f̃(s, t) =
N−1∑
s=0

N−1∑
t=0

f 2(s, t).

Then the previous inequality can be rewritten as

Qf,fsh(x, y) ≤ Qf,fsh(−x0 + kN,−y0 + lN) ∀(x, y) ∈ R2.

46



Theorem 3.37. (Cross-correlation function of images with two shifted objects)
Let image f(x, y) be a function {0, 1, ..., N − 1}2 −→ R, N ∈ N and let it have ob-
jects f1(x, y), f2(x, y) (see De�nition 3.18 of image with shifted objects). Let g(x, y) be
an image with shifted objects according to f(x, y) by shift vectors (x1, y1), (x2, y2) which
are su�ciently di�erent. Then the cross-correlation function of functions f, g has local
maxima [−x1 + k1N,−y1 + l1N ] and [−x2 + k2N,−y2 + l2N ] where k1, k2, l1, l2 ∈ N.

Proof. It holds

Qf,g(x, y) = f(x, y) ∗ g̃(−x,−y) =

= (f1(x, y) + f2(x, y)) · (f̃1(−x− x1,−y − y1) + f̃2(−x− x2,−y − y2)) =

= f1(x, y) ∗ f̃1(−x− x1,−y − y1) + f1(x, y) ∗ f̃2(−x− x2,−y − y2) +

+ f2(x, y) ∗ f̃1(−x− x1,−y − y1) + f̃2(x, y) ∗ f̃2(−x− x2,−y − y2) =

= Qf1,f1,sh +Qf2,f2,sh +Qf1,f2,sh +Qf2,f1,sh ,

which is summation of positive functions with su�ciently far global maxima. It means,
that maxima are preserved as local maxima.

Theorem 3.38. (Cross-correlation function of functions with n shifted objects)
Let image f(x, y) be a function {0, 1, ..., N − 1}2 −→ R, N ∈ N and let it have objects
fi(x, y), i = 1, 2, ..., n. Let g(x, y) be an image with shifted objects according to f(x, y)
by shift vectors (xi, yi) which are su�ciently di�erent. Then the cross-correlation function
of functions f, g has local maxima [−xi + kiN,−yi + liN ] . And it holds

Qf,g(x, y) =
n∑
i=1

n∑
j=1

Qfi,fj,sh .

Proof. The proof can be obtained as outward generalization of proof of Theorem 3.37.
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Chapter 4

Implementation

We will focus on implementation of the previously introduced mathematical conclu-
sions in this chapter. In �rst three sections, we will establish the basic form of input images
for the algorithm to work properly. Next, we will introduce the algorithm for computing
the shifts of shifted images and the sub-pixel precision of �nding those shifts. At last, we
will consider images containing multiple objects and computing the shifts of the objects.
We are considering Finding the shifts of shifted images at �rst, because the algorithm is
similar to Following of multiple objects movement to this point. It is also more showing.
The next section is devoted to further adjustment of the previous algorithm for purposes
of �nding multiple shifts. And we are testing the precision of the algorithm in last section.

For purposes of this thesis, we will consider idealized testing images (i.e. images
without any noise). That does not mean, that the algorithm does not work for non-
idealized images taken by some camera. The following adjustments of the image will deal
with most of the problems, which will be shortly mentioned.

All the theoretical background except the last section is drawn from [1] if not said
otherwise.

As introduced in Chapter 3, the digital gray-scale image has integer values. All
the spectra computed as de�ned in the Chapter 3 have non-integer values on the other
hand. To visualize the spectra, we consider them to be digital image too. This causes
no problem, because the cross-correlation function of real functions is also real (as proven
in Corollary 3.25). Thus, we transform the values to �t into �tting dynamic range
and round them. We also display all the spectra in logarithmic brightness scale to better
see the non-zero values.

4.1 Input images

At �rst, let us discus the size of the input gray-scale image. Generally the N can
be arbitrary. However, for speeding up the Fast Fourier Transform algorithm [2] used
for computing the discrete Fourier Transform, we need the N to be composite number. If
N is a prime number, the number of elementary operations (a multiplication and addition
of two complex numbers) is N2. If N = N1N2...Nk, Nι ∈ N,∀ι = 1, 2, ..., k then the num-
ber of operations needed isN

∑k
ι=1Ni. In particular, forN = 2k there is 2kN = 2N log2N

elementary operations required. Therefore, we will use N 's which are divisible by higher
power of 2, at least 16, better 256 or higher, and which are not divisible by a high prime
number.

If we are working with images which are smaller thanN×N , we center the image inside
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the N ×N square image and surround it by black area. Let us assume that image f has
width µ and height ν. Let N ∈ N be previously discussed form such that µ ≤ N, ν ≤ N .
Then we create image fc from image f by

fc(x, y) =

{
f(x− µ0, y − ν0) if µ0 ≤ x ≤ µ0 + µ− 1, ν0 ≤ y ≤ ν0 + ν − 1

0 else,

where µ0 =

⌊
N − µ

2

⌋
, ν0 =

⌊
N − ν

2

⌋
. As shown in [1].

4.2 Window function

The discrete Fourier transform works either with periodic images or makes them pe-
riodic (see De�nition 3.7). And in general case, an image does not have the same values
on the edges and by periodizing an image we obtain image with great jumps in values
on the+previous edges. They often lead to incorrect results. Therefore, it is neces-
sary to ensure that the edges are smoothed out. This is done by multiplying the image
by suitable function so called window function. Commonly used window functions are
the Gaussian and the Hanning window functions. They both are zero or almost zero
on the edges and one on the majority of image interior.

De�nition 4.1. (Gaussian window function)[1] Let sets

A = 〈−a, a〉 × 〈−b, b〉, a, b ∈ R+
0 ,

B = {(x, y);x2 + y2 ≤ r2}, r ∈ R+
0 .

Let σ ∈ R+ be a given number. Let ρ(X,A) be the distance of the point X = (x, y) from
set A, i.e

ρ(X,A) = inf{d ∈ R, d = ρ(X, Y ), Y ∈ A},
where ρ(X, Y ) is the Euclidean metric. Then function

wGR(x, y) = e
−
ρ2(X,A)

σ2

is called the rectangular Gaussian window function. Function

wGC(x, y) = e
−
ρ2(X,B)

σ2

is called the circular Gaussian window function.

De�nition 4.2. (Hanning window function)[1] Let sets A,B and metric ρ be same
as in previous de�nition. Then function

wHR(x, y) =


1

2

(
1 + cos

πρ(X,A)

σ

)
if ρ(X,A) ≤ σ,

0 if ρ(X,A) > σ

is called the rectangular Hanning window function. Function

wHC(x, y) =


1

2

(
1 + cos

πρ(X,B)

σ

)
if ρ(X,B) ≤ σ,

0 if ρ(X,B) > σ

is called the circular Hanning window function.
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The window functions are de�ned symmetrical with center in [0, 0], applied to images
they need to be shifted by

(
1
2
, 1
2

)
, i.e. the image f is multiplied by a window function

w
(
x− N

2
, y − N

2

)
.

Figure 4.1: Graph of a y = 0 cut of function wGR(x, y), wGC(x, y) for r = a, from [1]

Figure 4.2: Graph of a y = 0 cut of function wHR(x, y), wHC(x, y) for r = a, from [1]

We are using the Hanning window function in the implementation. That is due
to the zero on the edges, which it creates. On the other hand, Gauss window func-
tion does not create zeros necessarily, it creates almost zeros, which are su�cient after all.
However, it preserves smaller part of the image for the same σ and has steeper decrease.

As we can see at Figures 4.1 and 4.2, the choice of set A or B together with appropriate
σ is signi�cant. With wrong choice of the previously mentioned, we could end up with
edges not even almost zero.

The rectangular window functions keep more information of the image. However, there
is still some information about image edges. It is not necessary to apply the same image
function to both images, in some cases it can be even preferable to use di�erent image
functions, depending on the distribution of structures in the image.

4.3 Low-pass weight function

The usage of low-pass together with high-pass weight functions is very good way
to get rid of the in�uence of additive noise and variable impulse noise. They also reveal
hardly visible structures in high dynamic range image. Noises are mainly represented
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in the highest spatial frequencies of the image spectra, hardly visible structures (for ex-
ample largest-scale structures such as optics vignetting and di�use light in the optical
system) are mainly represented in the lowest spatial frequencies of the images. We use
the low-pass weight function to suppress the highest spatial frequencies of the image
and the+high-pass weight function to suppress the lowest frequencies. The way of using
these weight functions is to multiply the Fourier spectra by them.

However, the high-pass weight function is mentioned only for completeness, it is not
used in the implementation. It might seem that it is not necessary to use the low-pass
weight function too. In arti�cially made images, there is no additive or variable impulse
noise. But as we can see in the program, the Gaussian low-pass weight function (see
De�nition 4.4) helps to bring up the peaks of the phase-correlation function and it helps
with more precise computation of sub-pixel shifts too, as will be mentioned later.

De�nition 4.3. (Low-pass high-pass weight function)[1] Let r1, r2, σ1, σ2 ∈ R+ such
that r1 < r2. Function Hr1,σ1(ξ, η) : R2 −→ 〈0, 1〉 de�ned as

Hr1,σ1(ξ, η) =



0 if
4

N2
(ξ2 + η2) < (r1 − σ1)2

1

2

1 + cos

π

(
r1 −

2

N

√
ξ2 + η2

)
σ1

 if (r1 − σ1)2 ≤
4

N2
(ξ2 + η2) < r21

1 else

is called high-pass weight function. Function Hr2,σ2(ξ, η) : R2 −→ 〈0, 1〉 de�ned as

Hr2,σ2(ξ, η) =



1 if
4

N2
(ξ2 + η2) < r22

1

2

1 + cos

π

(
r2 −

2

N

√
ξ2 + η2

)
σ2

 if r22 ≤
4

N2
(ξ2 + η2) < (r2 + σ2)

2

0 else

is called the low-pass weight function. Function Hr2,σ2
r1,σ1

(ξ, η) : R2 −→ 〈0, 1〉 de�ned as

Hr2,σ2
r1,σ1

(ξ, η) = Hr1,σ1(ξ, η) ·Hr2,σ2(ξ, η)

is called the low-pass high-pass weight function.

The low-pass high-pass function can be seen in Figure 4.3.
Further, we will consider only the low-pass weight function, because (as mentioned)

we are using only it in the program. The alone low-pass weight function can be seen
in Figure 4.4.

Like window function, the low-pass weight function is de�ned symmetrical with center
[0, 0]. Applied on images, it needs to be shifted by (N

2
, N

2
), i.e. we multiply the Fourier

spectra of the images by function Hr2,σ2
(
ξ − N

2
, η − N

2

)
.

It is possible to use di�erent weight functions on each image. For instance, we can
estimate di�erent additive noises in images in some cases. However, choosing appropriate
parameters is complicated and it is usually done manually.

In most cases, the computed shifts are not less precise, if we apply the low-pass function
only once on the normalized cross-power spectrum of the images (the reason why it is
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Figure 4.3: Graph of a η = 0 cut of function Hr2,σ2
r1,σ1

(ξ, η), shown in [1]

Figure 4.4: Graph of a η = 0 cut of function Hr2,σ2(ξ, η)

used the normalized spectrum will be explained later). It fastens the computations and it
enables us to avoid dividing by zero. Then the formula for modi�ed phase correlation is

D−1
{
Hr2,σ2

(
F (ξ, η) ·G∗(ξ, η)

|F (ξ, η)| · |G(ξ, η)|

)}
which remains real due to Corollary 3.25.

If there is no need to use low-pass function (as in our case with no additional noise
in arti�cial created images), it can be replaced by the Gaussian low-pass weight function.

Figure 4.5: Details of peaks of the phase-correlation function (normalized autocorrelation
function) with Gaussian low-pass weight function applied to the normalized cross-power
spectrum, where λ = 2, 4, 8, 16, ..., 1024
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De�nition 4.4. (Gaussian low-pass weight function)[1] Let λ ∈ R+
0 . Function

Hλ(ξ, η) : R2 −→ (0, 1〉 de�ned as

Hλ(ξ, η) = e
−λ
ξ2 + η2

N2

is called the Gaussian low-pass weight function with parameter λ.

In�uence of the λ parameter of the Gaussian low-pass weight function is illustrated
in Figure 4.5.

4.4 Finding shifts of shifted images

As said, we will �nd the shifts of shifted images at �rst. Let us summarize all the mod-
i�cations and algorithms and after that, let us describe particular steps. The further
described algorithm is the algorithm used in the program executed after uploading the in-
put images (best in *.bmp format) and after clicking on button Find translation only.
The method is taken from [1].

All the methods and procedures used to �nd shifts of shifted objects were developed
by prof. Miloslav Druckmüller.

Let us denote f, fsh to be input images, which we are �nding the shift of. For com-
puting the Fourier transform, we will use a square N ×N (where N is an even number).

1. Multiplication of the images f, fsh by Hanning window function, obtaining images
fw, fsh,w

2. Centering images fw, fsh,w in the square N ×N pixels, obtaining images fc, fsh,c

3. Computing the normalized cross-power spectrum Zfc,fsh,c of images fc, fsh,c

4. Multiplication of Zfc,fsh,c by Gaussian low-pass weight function, obtaining function
Zw

5. Computing the modi�ed phase-correlation function as inverse discrete Fourier trans-
form P of Zw

6. Finding the shift vector (−x0,−y0) as the coordinates of the global maximum
of function P i.e. the coordinates [x0, y0]

By the choice of �rst applying the Hanning window function before the step 2, we
are choosing to make the most of the image unchanged. We could swap the steps 1 and
2, but this way, we are keeping more information. In the program we can manually set
the window function's parameters.

The normalized cross-power spectrum assures, that all the spatial frequencies are
brought to consideration with same weight. There could occur problem with division
by zero though. This problem appears in pixels with some of the spectra zero valued. It
is treated in the program. When it comes to division by zero, there is no dividing at all
and we consider just the cross-correlation spectrum value in this pixel. This does not lead
to mistakes in �nding shifts, because the value remains zero.

We also use the normalized cross-power spectrum to follow shifts of multiple objects
in image, despite the fact that there is no theoretical justi�cation as in case of �nding
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shift of shifted images. It does not bring as clear result as the Dirac impulse. But it is
bene�cial too, because it helps to get the peak in correlation function to be steeper, which
leads to better recognition of similar shifts.

For the fourth step in the algorithm, we are choosing the λ of the Gaussian low-pass
weight function. The form of the parameter is λ = 2a and we are manually setting the a.

Step �ve is executed as de�ned in the De�nition 3.5.
The output generated by the last step are the integer coordinates of the maximum

valued pixel. The shift vector can be more precise (sub-pixel) by bringing to consideration
even the neighbouring pixels. This will be more precisely described in following section.

It can happen that the shift vector is incorrect. It can be solvable by manual change
of the low-pass weight function parameter.

4.5 Sub-pixel precision

This section derives from [1].
According to shape and values of the neighbourhood of the peak, there can be more

precise estimation of the shift than only integer valued position of the global maximum.
We use the method based on geometric moments in the program. The sub-pixel

precision estimate (x̄0, ȳ0) of the shift vector is computed as

(x̄0, ȳ0) =

(
M1,0

M0,1

,
M0,1

M0,1

)
,

whereMk,l is the geometric moment computed over a circle with center [x0, y0] and radius
ε ∈ R+, i.e.

Mk,l =
∑∑
x2+y2<ε

xkylP (x0 + x, y0 + y), k, l = 0, 1,

where P (x, y) is the modi�ed phase correlation function computed in the algorithm in Sec-
tion 4.4.

The parameter ε needs to be manually set in the dependency on the size of the non-
zero area around peak and its shape. The ε-area taken in consideration in the calculation
is shown in the thumbnail.

4.6 Following of multiple objects movement

Theoretical results for Finding shifts of multiple objects in image are in Theorems 2.30,
2.31, 3.37 and 3.38. They all assume that objects are identical but shifted (as de�ned
in De�nitions 2.9 and 3.18).

So we are looking for local maxima in the modi�ed phase correlation function computed
by the algorithm introduced in Section 4.4. This part is more up to user than the previous
parts. In the images with just one shift-vector, it is usually not so di�cult to �nd the global
maxima. In the case of Following of multiple objects movement, there could be a lot
more incorrect results (i.e. local maxima which are not representing any shift vector,
but for example the similarity of the objects). Thus, it is up to user to decide whether
the result is the one which is wanted.

As is shown in the Theorems 3.35 and 3.36, the phase correlation function is periodic
as result of periodicity or periodization of the input images in process. The peaks farther
from the [0, 0] are representing the periodized objects shifts. There are no obstacles
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in Following of multiple objects movement, though. That is due to the fact, that the phase
correlation function has lower values farther from the [0, 0]. In other words the local
maxima close to the [0, 0] have higher values than the ones farther.

This allows us to follow the multiple objects movement without high complexity
of the computations. The �rst shift vector is found as global maxima of the phase correla-
tion function (and with sub-pixel precision). The next shifts are found after transforma-
tion of the phase correlation function. The peak found in previous step must be deleted.
That is performed by setting of the values of the peak and the pixels surrounding it to 1

20

of the peak value. The size of the deleted surroundings is manually set by the user.
The next shift is then found as the global maximum of the transformed phase correlation
function.

The program used to implement the algorithm of Following multiple objects movement
was developed by prof. Miloslav Druckmüller and then modi�ed. All the adjustments were
made in units FFT and MainFormPhaseCorr.

The algorithm is executed by clicking on button Find multiple object translation

as follows:
Let us denote f, g to be input images, which we are following the multiple objects

movement in. For computing the Fourier transform, we will use a square N ×N (where
N is an even number).

1. Multiplication of the images f, g by Hanning window function, obtaining images
fw, gw

2. Centering images fw, gw in the square N ×N pixels, obtaining images fc, gc

3. Computing the normalized cross-power spectrum Zfc,gc of images fc, gc

4. Multiplication of Zfc,gc by Gaussian low-pass weight function, obtaining function
Zw

5. Computing the modi�ed phase-correlation function as inverse discrete Fourier trans-
form P1 of Zw

6. Finding the shift vector (−x1,−y1) as the coordinates of the global maximum
of function P1 i.e. the coordinates [x1, y1]

7. Finding the estimate of the sub-pixel shift vector by the geometrical moment method
(see Section 4.5), obtaining estimate (−x̄1,−ȳ1)

8. Deleting the peak [x1, y1] together with its ε surroundings, if Find next

transformation is executed, obtaining transformed function P2

9. Finding the shift vector (−x2,−y2) as the coordinates of the global maximum
of function P2 i.e. the coordinates [x2, y2]

10. Finding the estimate of the sub-pixel shift vector by the geometrical moment method,
obtaining estimate (−x̄2,−ȳ2)

We can repeat the steps 8.-10. after executing the Find next transformation, if we
are not satis�ed with the results or if we need to �nd next shift. All found shifts are
recorded. The program can be seen in Figure 4.6.
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Figure 4.6: Program at work and with thumbnail after deleting the �rst global maximum

As mentioned above, it is possible to get the result which does not represent any
of the shift vectors. In the Following of multiple objects movement, we can not revise
it just by changing the low-pass weight function's parameter. It is due to the fact, that
the phase correlation function needs to be recomputed after the parameter change. This
would lead to restoration of all the deleted maxima. That would obviously compromise
the process. Thus, while obtaining result, which is not representing any of the shift
vectors, we are just looking for another shift, ignoring the incorrect result.

Figure 4.7: Illustration of incorrect shift search due to the similarity of the shift vectors.
The shift vectors of the objects are (17, 4; 3, 8) and (20; 3, 8). Images illustrate the cuts
of the phase correlation function with parameters of Gaussian low pass function equal to 4,
8, 16, 32, 64 (from the left). Clearly, the peaks of the last one are not distinguishable
from each other

There are also restrictions on the form of image to proper work of the algorithm.
As mentioned in the theoretical bases, the shift vectors need to be su�ciently di�erent,
or the peaks will merge and the algorithm can not distinguish them. On the other hand,
if they are not su�ciently di�erent and neither are almost the same, the shift vector
of the almost merged peaks will be incorrect (it will be almost correct but not very
precise). This is illustrated in Figure 4.7.
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[9,02;-13,98]

[16,98; 3,02]

[-10,02; 12,98]

[-17,98; -3,98]

Figure 4.8: Illustration of incorrect shift search due to the similarity of the objects (they
are same in this case). On the left are input images (master image on the top, image
with shifted objects on the bottom) with shift vectors (17, 4; 3, 8) and (−17, 4;−3, 8).
The shifts are not clear, but from the found two shifts there have to be chosen the related
ones

Other problem mentioned in the Theorem 2.30 may occur if some of the objects are
similar or even same up to shift. This leads to creation of high local maxima as well.
It is up to the user to judge which shifts are relevant in this case. This is illustrated
in Figure 4.8.

There could also be another instance of incorrect shift search if the shift is too large.
This means that if the shift of the object is greater than µ

2
or ν

2
in dependence of relevant

axis, i.e. if the shift is greater than the half of the size of image f . Due to the periodicity
of the function and due to the fact, that the maxima closer to [0, 0] are greater than
the farther ones, there would be found a local maxima which is not linked to any shift. It
is again up to user to decide, whether the found shift is relevant or not. This can be seen
in Figure 4.9.

Due to the above mentioned problems and needs of user's judgement, it is clear that
the process of Following the multiple objects movement by means of cross correlation can
not be automatized.
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[-39,88; 24,99]

[-73,07;-19,70]

Figure 4.9: Illustration of incorrect shift search due to the too large shift. On the left
are input images (master image on the top, image with shifted objects on the bottom),
the size of the images is 128×128 and shift vectors of the shifted objects are (39, 8;−25, 6)
and (80; 75). The lower peak clearly does not correspond to any of the shift vectors.
Neither there is peak representing the second shift vector in next found coordinates in this
case

4.6.1 Testing precision on simulated data

The testing of the precision of implementation was executed on more the 30 arti�cially
made testing images. For the simpli�cation of the image creation, the original objects
are white shapes on the black background. They were individually shifted by prede-
�ned shifts into all combinations of basic directions. The sub-pixel shifts were realized
on the �rst decimals and by means of bilinear interpolation. The shifted objects were
summed as de�ned in the De�nitions 2.8, 3.17 with particular emphasis on them not
to overlap and by the rules for the algorithm best to work as mentioned above. Most
of the images consist of two objects however, there are also images with only one object
or with three objects.

All the testing images are square with size N = 128 and they are enclosed on the CD.
There is one master image (reference image, which are all the shifts related to) named
C_0_0__S_0_0__T_0_0.bmp or just with part of the name. The letter represents the shape
(C for circle, S for square, T for triangle), �rst number attached to letter represents the shift
in x axis, the second number in y axis. There are another images with shifted objects
with known shifts described in their names as explained.

The testing was executed with sub-pixel method mentioned in the Section 4.5. The best
estimations of the �rst shifts were performed by individual choices of low-pass weight func-
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tion's parameter and ε-surroundings to best �t the known shifts.
However, the next shifts search can be a�ected only by the choice of the ε-surroundings.
On the contrary to the Finding the shifts of shifted image (which can be performed

precise up to the third decimal), the Following of multiple objects movement is precise
only to the whole pixels. There were deviations up to 0, 8 in all directions and even
in coordinates of the �rst peak, which could not be improved even by altering of both
mentioned parameters.
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Chapter 5

Conclusion

The main goal of this thesis was to describe the method of Following the multiple
objects movement by means of cross correlation, to generalize it for two and more objects
and to implement it.

The second chapter introduces the continuous Fourier transform and the inverse Fourier
transform. There are presented the concepts of the shifted functions, the objects in the func-
tion and the function with shifted objects. There is also shown the impact of the Fourier
transform applied to the shifted functions and the function with shifted objects consider-
ing the original functions. The convolution and the concept of cross correlation are also
introduced in this chapter. We are introducing the cross-correlation function of shifted
function in order to �nd their shift. Then we generalize it for two and more objects
and show, that it can be used to follow the multiple objects movement. The second chap-
ter serves to basically de�ne all the notions mentioned above by means of the Functional
analysis.

The third chapter presents all concepts of the �rst chapter in the discrete case. It is nec-
essary to work with digital images, which are the discrete analogy of continuous function.
There is also presented the periodization of the function essential for work with shifted
images. We are introducing the cross-correlation function of shifted images in discrete
case as well. There is also proven, that the discrete cross-correlation function of func-
tions with shifted objects can be used to �nd their shifts. Which is the theoretical base
for further implementation.

The fourth chapter describes the implementation of the aforesaid principles. At �rst,
we are introducing the algorithm of Finding shifts of shifted images. The form of the in-
put images is pointed out, especially their size and the window function and low-pass
weight function, which have to be applied to the images. Furthermore, we are introduc-
ing the algorithm of Finding shifts of shifted images. This algorithm leads to the algorithm
of Following the multiple objects movement directly. There are also shown the problems
connected to the algorithm, primarily including the form of input images. Thus, we jus-
tify the statement, that the process of following of multiple objects movement by means
of cross correlation can not be automatized. Lastly, we are testing the precision of the al-
gorithm and �nding out, that it computes with precision in whole pixels on the arti�-
cial made images. That is the degradation of the precision performed by the algorithm
of Finding the shifts of the shifted images.
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Used symbols

N the set of natural numbers
Z the set of integer numbers
R the set of real numbers
C the set of complex numbers
L(R2) space of all functions R2 −→ C with �nite integral of |f |
C1 class of continuous functions with continuous derivatives
a∗ the complex conjugate of a ∈ C
bac the integral part of real number a
F the Fourier transform, see De�nition 2.3
F−1 the inverse Fourier transform, see De�nition 2.4
D the discrete Fourier transform, see De�nition 3.4
D−1 the inverse discrete Fourier transform, see De�nition 3.5
f(x, y), g(x, y) functions from L(R2) or functions {0, 1, ..., N − 1}2 −→ R,

N ∈ N
N size of the domain of functions de�ned on {0, 1, ..., N − 1}2

−→ R, N ∈ N, N is supposed to be even number
fi(x, y) objects of the functions, see De�nitions 2.8,3.17
n number of objects in the function, see De�nitions 2.8,3.17
fsh, fi,sh shifted functions of functions f, fi, see De�nitions 2.6,3.13
F (ξ, η), G(ξ, η) the Fourier spectra of functions f(x, y), g(x, y), see

De�nitions 2.3, 3.4
Fi(ξ, η) the Fourier spectra of objects fi
Fsh(ξ, η), Fi,sh(ξ, η) the Fourier spectra of shifted functions fsh, fi,sh
(xi, yi) the shift vector of object fi,sh, or shift vector of shifted

function fsh, see De�nitions 2.6, 3.13, 2.9, 3.18
f ∗ g the convolution of functions f, g, see De�nitions 2.19, 3.26
f̃ , g̃, f̃i the periodization of functions f, g, fi, see De�nition 3.7
Cf,g(ξ, η) the cross-power spectrum of functions f, g, see

De�nitions 2.24, 3.30
Zf,g(ξ, η) the normalized cross-power spectrum of functions f, g, see

De�nitions 2.24, 3.30
Qf,g(x, y) the cross-correlation function of functions f, g, see

De�nitions 2.25, 3.31
Pf,g(x, y) the phase correlation function of functions f, g, see

De�nitions 2.25, 3.31
δ(x, y) the Dirac distribution, see De�nition 2.2
d(x, y) the discrete impulse function, see De�nition 3.34
µ, ν the width and height of the input image, see Section 4.1
wGR, wGC , wHR, wHC Gaussian and Hanning, rectangular and singular window
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functions, see De�nitions 4.2, 4.1
λ the parameter of Gaussian low-pass weight function, see

De�nition 4.4
fc, gc, fsh,c the centred input images surrounded by black area, see

Section 4.1
(x̄i, ȳi) the sub-pixel estimation of shift vector, see

Section 4.5
ε the radius of the surroundings of the peak in sub-pixel peak

search, see Section 4.5
ε the radius of deleted surroundings of the peak, see

Section 4.6
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Appendix

CD with program in Delphi 7 and with testing images in *.bmp.
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