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Abstrakt 
Tato práce popisuje metodu analýzy t rans lačn ího pohybu uži t ím křížové korelace. Ukazu­
jeme, j a k ý m způsobem se chová funkce křížové korelace obrazů s navzá jem posunu tými 
objekty, a jak n á m to umožňuje nacházet jejich vektory posunu. Pro nás lednou imple­
mentaci je nalezena efektivní metoda pro hledání pouze požadovaného poč tu lokálních 
maxim funkce. 

Abstract 
This thesis describes the method of following the multiple objects movement by means 
of cross correlation. We are showing the form of cross-correlation function of functions 
with mutually shifted objects and how it leads to search of their shift vectors. For the fur­
ther implementation, there is introduced the effective method for search of required count 
of function's local maxima. 

kl í čová slova 
Fourierova transformace, posunu té funkce, posunu té objekty ve funkci konvoluce, funkce 
křížové korelace, funkce fázové korelace, sub-pixelová přesnost , posuny více ob jek tů 

keywords 
Fourier transform, shifted function, shifted objects in function, convolution, cross-corre­
lation function, phase-correlation function, sub-pixel precision, multiple object shifts 
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Rozšířený abstrakt 

Monitorování pohybu více ob jek tů v obraze je proces použi te lný např ík lad ke studiu 
buněčného transportu mikroskopických částic, či k popisu pohybu a sociálního chování 
živočišných skupin. Dále může být použi t i k pozorování vzá jemných pohybů vesmírných 
těles, nebo k analýze záznamů z dopravních kamer. 

Monitorování pohybu více ob jek tů v obraze uži t ím křížové korelace je zobecněním 
metody pro hledání translace posunutých obrazů. Toto je tot iž pouze moni torování 
pohybu jed iného objektu, k t e rým je celý obraz. Š t a n d a r t n í registrace obrazů je pro­
ces hledání podobnosti mezi obrazy, to zahrnuje hledání jejich posunů, rotace a změny 
měří tka. Bereme-li v úvahu obraz složený z více objektů , h ledáme pouze posuny těchto 
objektů . Rozeznání rotace a změny měř í tka by tot iž nemuselo být možné bez zřejmého 
vz tažného bodu. 

Obecné hledání vzá jemných posunů objek tů lze realizovat pomocí metod detekce a sep­
arace struktur a jejich nás ledným porovnán ím. Tato metoda nicméně vyžaduje, aby 
struktury v obraze byly j asně rozpoznate lné a a definované. N a druhou stranu na korelaci 
založené metody, k teré jsou dále popisovány v t é t o práci , umějí rozpoznat translaci ztěží 
viditelných nebo i okem nerozeznatelných objek tů (např íklad při vysokém dynamickém 
rozsahu). Tyto metody však nemaj í dobré výsledky, nebo je nelze vůbec použí t , pro 
obrazy pořízené s rozdílnou délkou expozice. 

Korelační metody používané pro sledování pohybu jediného objektu používají převážně 
fázovou korelaci. Fázová korelace je křížová korelace po znormování . Toto normování 
korelační funkce posunutých obrazů př ináší zřejmé ma temat i cké výsledky v p o d o b ě D i -
rakovy distribuce, což vede k vysoké přesnost i registrace obrazu. P ř i moni torování pohybu 
více ob jek tů však toto normování již k tak zře jmým výs ledkům nevede, proto se v odvo­
zování ma temat i ckého a p a r á t u omezujeme výh radně na křížovou korelaci. V implementaci 
pak ale fázovou korelaci používáme, protože i přes to, že n e m á tak zřejmé matemat ické 
odůvodnění , jako v př ípadě jediného objektu, p o m á h á ke zpřesnění výsledků při h ledání 
posuvů. 

Fázová i křížová korelace pracují s Fourierovy spektry obrazů, proto druhou kapitolu 
dedikujeme popisu Fourierovy transformace a jejích vlas tnost í . Ukazujeme, j a k ý m způ­
sobem působí Fourierova transformace na posunu té obrazy a na obrazy s posunu tými 
objekty. Definujeme zde i konvoluci funkcí a j a k ý m způsobem je křížová korelace kon­
vertibilní na konvoluci. Všechny tyto koncepty předs tavujeme pros t ředky funkcionální 
analýzy ve spoj i tém tvaru. 

Nicméně v programové implementaci používáme algoritmus Rychlé Fourierovy trans­
formace ( F F T ) , k terý využívá diskrétní Fourierovu transformaci. Proto t ře t í kapitola 
představuje všechny koncepty uvedené v d ruhé kapitole v d iskré tn ím př ípadě . K e korek­
tn ímu definování všech těchto po jmů navíc zavádíme periodizaci funkce a předs tavujeme 
digitální obraz jako diskré tní funkci definovanou na konečném p o č t u b o d ů uspořádaných 
ekvidis tantně do čtverce. 



Č t v r t á kapitola pak popisuje samotnou počí tačovou implementaci odvozených metod. 
Nejprve popisujeme metody hledání posuvů pro jediný objekt, které jsou deta i lně popsány 
ve zdrojích (především [1]). Popisujeme nutnost úpravy vs tupních obrazů, a to především 
jejich tvar a nutnost použi t í Hanningova okna k ošetření okrajů obrazů. Následně defin­
ujeme i váhové funkce, k teré aplikujeme na Fourierova spektra obrazů k tomu, aby up­
ravily tvar funkce fázové korelace pro vyšší přesnost . Ukazujeme i momentovou metodou 
hledání posunů pro sub-pixelovou přesnost výsledků. Následně předs tavujeme algoritmus 
pro hledání posuvů více ob jek tů jako modifikaci algoritmu pro hledání translace jediného 
objektu. Posuvy h ledáme jako lokální maxima funkce fázové korelace a to tak, že h ledáme 
maximum globální, k teré po zaznamenán í výsledku smažeme a h ledáme další. Nakonec 
testujeme přesnost implementovaného algoritmu a ospravedlňujeme tvrzení , že automati­
zace procesu hledání posuvů více ob jek tů už i t ím křížové korelace není možná . 
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Chapter 1 

Introduction 

The Following of multiple object movement can be used in studies of microscopic 
particles transport in cells, or to describe the movement and social behaviour of organisms 
in the group. It can also be used to observe the mutual movement of space objects 
or to analyse the records taken by traffic surveillance system. 

The Following of multiple object movement by means of cross-correlation is generaliza­
tion of the Finding mutual shift of shifted images (that means the Following of the move­
ment of single object, which is whole image). On the other hand to the standard image 
registration (e.g. recognizes shifts, rotation and scale), we are working only with transla-
tional movement represented by shift vectors. It could not be possible to find rotations 
and scales of the multiple objects without clear reference point. 

The mutual shift search can be executed by the identification of object structures 
in the image and matching them separately to be followed. However, this method requires 
the structures to be clearly visible in the image. O n the other hand, the correlation based 
method (described further in this thesis), can even recognize the movement of barely 
or not visible structures. It is inapplicable to images with different exposition though. 

The correlation method of the translational movement analysis generally uses the phase-
correlation function. It demonstrates the results with high precision if used to follow 
the movement of a single object. However, to follow the multiple objects movement we 
need to use the cross-correlation function, because the norming of spectra does not bring 
as clear mathematical results as in one object case. Despite this fact, the phase-correlation 
function is used in the implementation. Reasons to do so are enlisted in Chapter 4. 

The phase-correlation uses the Fourier spectra of the images, therefore we are devoting 
the Chapter 2 to introduction of the Fourier transform and its properties in M 2 . However, 
we use the Fast Fourier transform algorithm, which is the implementation of the dis­
crete Fourier transform, in computer programs implementation of the phase-correlation 
function. Therefore, we are dedicating Chapter 3 to describe the discrete Fourier trans­
form and its properties for functions defined on a finite number of points (which arranged 
in square represent the digital image) together with cross-correlation and phase-correlation 
function. Chapter 4 deals with implementation of the above mentioned method in com­
puter program for one object at first (based on the source [1]), then with implementation 
of the adjustments of this method to follow the multiple objects movement. 
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Chapter 2 

The Fourier transform 

A t first, we wi l l establish all the theory for the continuous functions. Despite the fact 
that the digital image is not continuous but discrete, we wi l l summarize the theory for well 
known continuous functions in the first distance. In that case we can use the conclusions 
of the Mathematical and Functional analysis. 

2.1 Basic notions 

First of all , let us define some basic concepts, which wi l l be used in the following text. 
There wi l l be mostly concepts used in Functional analysis and they wi l l not be defined 
with proper background. Yet the related mathematical theory can be found in sources 
mentioned in each definition. The exactness of the unmentioned mathematical theory 
is not essential for purposes of this thesis, it serves mainly for deeper understanding. 
Therefore, it is omitted. 

Definition 2.1. (Improper double integral)[l] Let f(x,y) be a function M2 —> C . 
Let R = (a, o o ) x (c , o o ) , o , c 6 l If the following limits exist and are equal 

l im 
(b,d)—^(oo,oo) 

'/ \ f(f \ 
J f(x,y)dy I dx = 1™ / I / f(x,y)dx \ dy = A, 

\c / c \a / 

then we define 

J J f(x,y)dxdy = A. 
R 

Analogically, the integral is defined for R = ( — 0 0 , 6 ) x (c , 0 0 ) , R = (a, 0 0 ) x ( — 0 0 , d) 
and R = ( — 0 0 , 6 ) x (—00, d). Furthermore, if all the following integrals exist and are 
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finite (or in case some integral are infinite, they have same sign) 

(0,00)-

f(x,y)dxdy = B, 

f(x,y)dxdy = C, 

(-oo ,0>x(0 ,oo) 

J J f{x,y)dxdy = D. 
(0,oo) X ( - 0 0 , 0 ) 

J J f{x,y)dxdy = E. 

(-oo ,0> 2 

00 00 

J J f(x,y)dxdy= J J f(x, y)dxdy = B + C + D + E. 
—00 —00 (—00,oo) 2 

Definition 2.2. (Dirac distribution)[9] The two dimensional Dirac distribution is 
a functional on the basic space. It is singular distribution and is represented by the integral 
identity with testing function ip(x,y) as follows: 

we define 

5(x,y)ip(x,y)dxdy = <p(0, 0). 

—00 —00 

Where S(x,y) fulfils 
00 

S(x,y)dxdy = 1, S(x,y) = 0 if (x, y) ^ (0, 0). 

More about funct ional , basic space and distributions can be found in [9]. 

2.2 The Fourier transform and inverse Fourier trans­
form 

The Fourier transform is the essential mathematical instrument in the Image analysis. 
Because the image is two dimensional, we omit the one dimensional case completely. 
Therefore, we are using the two dimensional case directly. 

Definition 2.3. (The Fourier transform of functions in £ (M 2 ) ) [8 ] Let f(x,y) e 
£ ( M 2 ) . The Fourier transform of function / is a function J-"{f}(^, rj) = F(£, rf) : M? —> C 
defined as 

00 00 

F&V)=[ f f(x,y)e-^+^dxdy. 
—00 —00 

Function F is also called the Fourier spectrum of function / . 
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Definition 2.4. (Inverse Fourier transform of functions in £ (M 2 ) ) [8 ] Let function 
G(£, rf) G £ ( M 2 ) . The inverse Fourier transform of function G is a function Jr~1{G}(x, y) = 
g(x,y) : M2 —> C defined as 

oo oo 

g(x,y) = ^ f f G^,rj)e^+^^drj. 
— oo —oo 

The Fourier transform and also inverse Fourier transform exist and are bounded func­
tions ([1]). However, the inverse Fourier transform of the Fourier spectrum of some func­
tion in £ ( M 2 ) may not even be defined or it could happen that Jr~1{Jr{f(x, y)}} ^ f(x). 
The previous inequality can be shown on functions f(x,y) and g(x,y) which differ on set 
of cardinality zero. They have the same Fourier transform which obviously leads to men­
tioned inequality. 

Theorem 2.5. (Fourier inversion theorem for functions in £ ( M 2 ) ) [7] If function 
f(£,rj) G £ ( M 2 ) and is continuous on M 2 , then for every (£,rf) G M2 holds 

oo oo 
1 /"/•— ^Art+vv) p - t 2 ^ 

f(x,y) = Km— J J F(£,n)el^+m>e~e *~d£d?7. 
— oo —oo 

If also F{£,rj) G C(R2) then 

oo oo 

F-i{F{f(x,y)}} = ±^ f f F(^r])ei^+y^d^dr] = f(x,y). 
—oo —oo 

Proof. A proof and its general derivation can be found in [6]. • 

2.3 Shift theorem 
In this section, we are defining the shifted function, the function consisting of objects 

and the function with shifted objects. They are all defined to best suit the continuous 
representation of digital image. The shift theorems follow the definitions of shifted func­
tion and function with shifted objects to show, how the Fourier transform works applied 
to these functions. We wi l l consider the function to have just two objects at first and show 
the general n-object case after that. 

Definition 2.6. (Shifted function) Let f(x,y) G £ ( M 2 ) and let x0,y0 G K. given num­
bers. The function fsh(x, y) is shifted function of function f(x, y) by x0 in x axis and by y0 

in y axis iff 

fsh(x,y) = f(x -x0,y- y0). 

The vector (x 0 ,yo) is called shift vector. 

Theorem 2.7. (Shift theorem) Let f(x,y) G £ ( M 2 ) , let F(£,rf) be its Fourier spectrum 
and let fsh(x,y) be its shifted function by vector (xo,yo). Let Fsh(£,r)) be the Fourier 
spectrum of the shifted function fsh(x,y). Then it holds 

Fsh(Z,V) = F(Z,V)e-^°+vyo), 
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Proof. The proof taken from [1]. 
oo oo 

f(x-xQ,y-yQ)e 

—oo —oo 

s = x — XQ x = s + XQ ds = dx 
t = y-yo y = t + y0 dt = dy 

oo oo 

f(s, t ) e - m s + x o ) + v i t + y o ) ) d s d t 

—oo —oo 

oo oo 

s,t)e-i(^+tv)e-^xo+vyo)dsdt = F(£, r?)e-i(?zo+wo). 

—oo —oo 

• 
Definition 2.8. (Multiple objects in function) Let n G N be given number, let 
function f(x,y) G £ ( M 2 ) and also functions fi(x,y) G £ ( M 2 ) for each % = 1,2, ...n. 
Function f(x,y) consist of n objects iff 

We call functions fi(x,y) the objects. 

The function with multiple objects is defined as continuous case of multiple objects 
in the image. The objects in an image are often represented by set of pixels which always 
move together (they all have the same shift vector), or on the contrary are stationary 
considering other objects (i.e. background). So the object defined on R2 is represented 
by function fi(x, y) which is non-zero on the object set and zero elsewhere. This guarantees 
that in the summation, the object's values are not changed (we are only adding zero, 
because the objects are not overlapping). For purposes of this thesis we wi l l distinguish 
only objects which have different shift than the rest of the image. 

Definition 2.9. (Function with shifted objects) Let f(x,y) be a function with n 
objects, let Xi,yi G K. given numbers for each % — 1,2, . . .n. Function g(x,y) is function 
with shifted objects considering f(x,y) iff 

We say that object % is shifted by vector (xi,yi). 

Let us remark that each object fi(x, y) of function f(x, y) is shifted in function g(x, y). 
Therefore, we can say that objects fijSh(x,y) = fi(x — xiyy — yi) are shifted functions 
of functions (objects) fi(x,y) by vectors (xi,yi). Also considering n — 1, we are obtaining 
the definition of the shifted function. So we can say, that the shifted function consists 
of only one object, which is shifted. 

Theorem 2.10. (Shift theorem for functions with two objects) Let f(x,y) be 
a function with two objects (n = 2), let F^^r]) and F2(^,i]) be Fourier spectra of its 
objects fi(x,y), f2(x,y). Let g(x,y) be function with shifted objects considering f(x,y) 
and let G(^,TJ) be its Fourier spectrum. Then it holds 

n 

i=l 

n 

i=l 
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Proof. 

-oo —oo 

oo oo 

G&v) = j j g(x,y)e-i^+yv)dxdy = 

(fi(x -xuy- yi) + f2(x -x2,y- y2))e~l{x(+yr>) dxdy 

-oo —oo 

oo oo 

-oo —oo 

oo oo 

+ fz(x - x2,y - y2)e dxdy 

+ 

s = x — x\ x = s + x\ ds = dx 
t = y-yi y = t + y1 dt = dy 
u = x — x2 x = u + x2 du = dx 
v = y - y 2 y = v + y2 dv = dy 

oo oo 

J j f1(s,t)e-^s+Xl^+{t+yMdsdt + 

f2(u, v)e-[({u+X2^+{v+y2)r!)dudv --

-oo —oo 

oo oo 

-oo —oo 

oo oo 

l / / 1 ( M ) e - « + 1 , „ e - . „ ^ , „ d s d 4 + 

-oo —oo 

oo oo 

+ f2(u, v)e-[{^+vr!)e-[{x^+y2r!)dudv •• 

F i ( ^ , 7 7 ) e - i K a ! l + W l ) + F2^,ri)e-^X2+m2). 

• 
Theorem 2.11. (Shift theorem for functions with n objects) Let f(x,y) be a func­
tion with n objects and let Fi(£,r)) be Fourier spectra of objects fi(x,y) for each i = 
1,2,... n. Let g(x, y) be function with shifted objects considering f(x, y) and let G(£, rj) 
be its Fourier spectrum. Then it holds 

i=l 

Proof. Proof can be derived as outward generalization of proof of the Theorem 2.10. • 

2.4 Properties of Fourier transform 
Let us introduce some basic properties of the Fourier transform. They are not essential 

for finding the shifts of the images, but they are used in some of the proves that follow 
in next sections. 
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Theorem 2.12. Let f(x,y) G C(M.2) and let F(£,rj) be its Fourier spectrum. Then 

r{f(-x,-y)} = F(-t,-r,). 

Proof. 

F(-£,-v) r = —7] 

-co —oo 
CO CO 

F ( « T , T ) = / / / ( M K ^ + ^ d s d * 

/ ( s , t ) e - i ( - s 5 - t ? 7 ) d s d t 

/ ( - x , - y ) e - i ^ + ^ d x d y = ^ { / ( - x , - y ) } . 

x = — s d x = — ds 
t = —y dt = —dy 

• 
This theorem is just special case of Scale-change theorem if we consider a = — 1. It 

says that F{f(ax, ay)} — —F 
cr \ a a 

. The exact formulation of Scale-change theorem 

can be found together with its proof in [1]. 

Theorem 2.13. [5] Let function / G £ ( R 2 ) . Then 

(a) F{f(x, y)} = 4TT 2 F~ l { f{-x , -y)}, 

(b) F-1{f{x,y)}=-±sF{f{-x,-y)}. 

If / is also continuous and its Fourier spectrum F(£,rj) G £ ( M 2 ) , then 

(c) F{F{f(x,y)}} = 47r2f(-x,-y), 

(d) F -{F ;{/(. '--//)}) ^Ji < .'/•• 

Proof. Proof taken from [1]. 

(a) 

CO CO 

A-K2F-l{f{-x,-y)} = 4 v r 2 ^ J j / ( - * , - y j e ^ + ^ d x d y 
— oo —oo 

s = —x ds = —dx 
t = —y dt = —dy 

oo oo 

f J f(s,t)e-^+^dsdt = F{f(x,y)}. 
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(b) 

T{f(x,y)} = A7r2T-1{f(-x,-y)} 

^{f(-x,-y)}=^-1{f(x,y)} 

1 
'4^2 

(c) 

The last equality was obtained by substituting — x for x and — y for y. 

F{F{f(x,y)}} =jl F(^V)e-^+yMdv 
-00 —00 

00 00 

i(x(-0+y(-v) d£dr/ 

cr = - e da = -dH 
r = —77 d r = —dry 

F(-a, -T)el(xa+yT)dadT 
-00 —00 

4 T T 2 J - 1 { J - { / ( - X , -y)}} = 47r2f(-x, -y). 

(d) 

00 00 / 00 00 \ 

J - 1 { ^ - 1 { / ( x , 1 / ) } } = i ^ I I - L I I / ( M ) e ^ W t e ^ + ^ d r ; 

00 00 / 00 00 

^ / / ( / / • ^ s ' t ) e ~ i ( ~ S ? ~ " ? ) d s d t e i ( z ? + O T ) d £ d r / 16TT4 . 
—00 —00 \-oo —00 

u = — s du = —ds 
v = — t dv = —dt 

00 00 / 00 00 

-00 —00 V o o —00 

^1{Jr{f(-x-y)}} = -^f(-x,-y). 

• 
Example 2.14. [5] Let us consider f(x, y) — 8(x — xo, y — yo). Then the Fourier transform 
of the shifted Dirac distribution can be computed as 

F{5{x - xQ,y - yQ)} = I I 5(x - x0,y - y0)e [{x(+yv)dxdy = e 
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Next let us consider f(x,y) = e

l ( - x ° x + y o V \ Then the Fourier transform of this function 
can by computed as 

oo 00 

^{e~,} = J J e<(*»'+v>y)e-<(*(+m>dxdy = 

A(x(S-x0)+y(r,-yo))dxdy = §(g - XQ,T) - yQ). 

-00 —00 
OO OO 

This is more generally shown in [5]. 

Theorem 2.15. [5] Let f(x,y) G C(R2) and F(£,r]) be its Fourier spectrum. The Fourier 
spectrum of the complex conjugate of function / is the complex conjugate of its Fourier 
spectra with reversed axes 

r{r(x,v)} = F>{-t,-n). 

Proof. Proof taken from [5]. 

oo oo oo oo 

Hf*(x,y)} = j j r(x,y)e-^+yv)dxdy= j J f*(x,y)^^dxdy = 

— oo — oo 

/(*, y)e-W-V+y(-^dxdy I = F*(-£, - 7 7 ) , 

-oo —oo 

oo oo 

where the third equality holds because for a G R is e m = cos a + i s i n a , e i a = cos a + 
isin(—a) = cos a — i s i n a . Hence e i a = (e~ i a) . • 

Theorem 2.16. [5] Let f(x,y) G C(R2) and continuous, let F(£,rj) G C(R2) its Fourier 
spectrum. Then the inverse Fourier transform of the complex conjugate of spectrum F 
is the complex conjugate of function / wi th reversed axes, i.e. in every point where / is 
continuous it holds 

F-l{F*(^V)} = r(-x,-y). 

Proof. Proof taken from [5]. 

oo oo 

1 

-oo —oo 

oo oo 

An2 

—oo —oo 

oo oo 

^ I I F{£, 7 7 ) e i ( x ( ^ ) + s / ( - r , ) ) d £ d ? 7 ) = f*(-x,-y). 

• 
Theorem 2.17. [1] Let f(x,y) G C(R2) and continuous, let F(£,r}) G C{R2) its Fourier 
spectrum. Function / is real function (i.e. f(x,y) = f*(x,y) V(x, y) G R2) iff F(£,rj) = 
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Proof. Proof taken from [5] 

1. Let us suppose that / is real function. Then it holds 

mv) = r{f{x,v)} = HP{*,y)} = F*{-£, -v)-

2. Let us suppose that 77) = £, — 77).Then it holds 

f(x, y) = F-'mt, rj)} = F-'iF^-Z, -rj)} = f*(x, y). 

• 
Corollary 2.18. [1] Let f(x,y) G £ ( M 2 ) be a real continuous function with a Fourier 
spectrum 77) G £ ( M 2 ) . Let G(£,rf) be a bounded function M2 —> K. such that 
G(Z,v)=G(-£,-ri). Then 

is real. 

Proof. Proof taken from [1]. If / is real, then according to Theorem 2.17 it holds 

F{£,ri) = F*{-Z, - 7 7 ) . 

Mult ip ly ing the equality by G we obtain 

Ffov) • = -77) • G ( - e , -rj) = -77) • G ( - £ - 7 7 ) ) * . 

Since G is bounded, there is no doubt about existence of the inverse Fourier transform. 
A n d according to the Theorem 2.17 again, 

J - { F ( £ , 7 7 ) - G ( £ , 7 7 ) } 

is real. • 

2.5 Convolution and its properties 
The convolution is often used in the Image analysis because of its compatibility with 

the Fourier transform which is shown int Theorems 2.22. and 2.23.. 

Definition 2.19. (Convolution)[8] Let functions f(x,y),g(x,y) G £ ( M 2 ) . The convo­
lution of functions / , g is function 

00 00 

y) = /(*, y) , g { x , : l //'./>. t)g(x - - f ) d « B . 

— OO —OO 

Theorem 2.20. [1] Let functions f(x,y),g(x,y) G C{R2). Then f *g e £{R2). 

Proof. Proof taken from [1]. We start by proving that f(x,y) • g(u,v) G £ ( M 4 ) , i.e. 
00 00 00 00 

-00 —00 —00 —00 
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Let us tart by 

oo oo oo oo 

\f(x,y)g(u,v)\du dv dx dy 

—oo —oo —oo —oo 

oo oo oo oo 

I I I I\f(x'V)\'\9(u>v)\dudv(ixdV 
-oo —oo —oo —oo 

oo oo / oo oo 

J J \f(x,y)\ I J J \g(u,v)\dudv J dxdy. 

Let us denote 

1=1 I \g(u,v)\dudv. 

—oo —oo 

Since g G £ ( M 2 ) therefore 0 < / < oo. Hence we can use Fubini 's Theorem it holds 

oo oo / oo oo \ 

J J \f(x^y)\ij j \g{u,v)\dudv J dxdy = 
—oo — oo \-oo — oo / 

oo oo oo oo 

J j \f(x,y)\dxdy J J \g(u,v)\dudv < oo. 

Thus f(x, y) • g(u, v) e £ ( E 4 ) . B y making the substitution u = p — s,x = s,v = q — t, 
y = z we obtain 

o o o o o o o o o o o o o o o o 

f i l l f(xiy">9(uiv")dudvdxdy = J J J J f(s^)9{p-s,q-t)dsdtdpdq, 
—oo —oo —oo —oo —oo —oo —oo —oo 

which says that function 

oo oo 

{f*g)(p,q)= j J f(p-s,q-t)g(s,t)dsdt 
— oo — oo 

belongs to C(R2). • 

Theorem 2.21. [1] Let functions f(x,y),g(x,y) G £(R2) wi th Fourier spectra F ( £ , r / ) , 

G{£,T}). Then 

F{f(x,y)*g(x,y)} = F(^V)-G(^V). 
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Proof. Proof taken from [8]. 

oo oo / oo oo 

^{1*9} = I I | / / f(s,t)g(x - s , y - t)dsdt | e ^ ^ d x d y = 

- J J [J J *Ma - s>y ~ t)e~iix^dxdy | dsdt = 
-oo — oo \-oo —oo 

oo oo / oo oo 

/ ( M ) / g{x-s,y-t)e~'<x^dxdy dsdt = 

p = x — s x = s + p dx = dp 
q = y - t y = t + q dy = dq 

oo oo / oo oo \ 

= J J f(s,t) I I J g(p,q)e-i^+s^+t^dpdq) dsdt 
-oo —oo 

oo CO 

-oo —oo 

oo oo 

f(s,t) I / / g{P,q)e-i^+^e-i^+t^dpdq I dsd* = 
-oo —oo 

oo oo 

= f J f{s,t)e-^+t*»dsdt J J g(p,q)e-[^+^dpdq 
— CO —oo —oo —oo 

= F(Z,v)-G(£,ri). 

• 
Theorem 2.22. [1] Let functions f(x,y),g(x,y) € C(M.2) and continuous with Fourier 
spectra F ( £ , rj), G(£, rj) G £ ( M 2 ) . Then 

J -{ / ( : r ,y ) = ^ F ( £ , r / ) * G(£, r / ) . 

Proof. Proof taken from |1 | . 

oo oo 

Hf-9} = I [ f(x,y)g(x,y)e-^+vi)dxdy = 

-oo —oo 
oo oo 

1 
F(a, r)e<xa+y^dadr I g(x, y)e~i^+VT') dxdy 

47T 2 

.̂ — OO \ — OO — OO 

OO OO / OO OO 

i / j F ^ T ) " J J 9(x,y)e-i{x^+y^-^dxdy dadr 
-oo —oo 

oo oo 

• 
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Theorem 2.23. (Distributivity of convolution) Let f(x,y),g(x,y),h(x,y) G £(M.2) 
Then it holds 

f(x, y) * (g(x, y) + h(x, y)) = f(x, y) * g(x, y) + f(x, y) * h(x, y). 

Proof. Let us denote k(x,y) = g(x,y) + h(x,y). Then it holds 

oo oo 

f(x,y) * (g(x,y) + h(x,y)) = f(x,y)*k(x,y)=f J f(s,t)k(x - s,y - t)dsdt = 
— oo —oo 

f(s, t)(g(x -s,y-t) + h(x-s,y- t))dsdt = 

-oo —oo 

oo oo 

+ 

J J f{s,t)g(x - s,y-t)dsdt + 
— oo —oo 

oo oo 

J J f(s,t)h(x — s,y — t)dsdt — 
— oo —oo 

f(x, y) * g(x, y) + f(x, y) * h(x, y). 

• 

2.6 Cross correlation, phase correlation 
The phase correlation is the most effective tool for obtaining the shift of two func­

tions. It is normalized cross correlation and the norming is possible only for one object. 
The norming is based on the suppression of the high frequencies of the Fourier spectrum. 
However, it is only possible to use the cross correlation for more objects in the function. 

Definition 2.24. (Cross-power spectrum, normalized cross-power spectrum)[1] 
Let functions f(x,y),g(x,y) G £ ( M 2 ) have Fourier spectra F(£,r)),G(£,r)). The cross-
power spectrum of functions f,g is function C/, f l (£, 77) : M 2 —> C defined as 

Cf^,V)=F(Z,v)-G*(Z,V). 

The normalized cross-power spectrum is function Zftg(£,rj) : M 2 —> C defined as 

\F{t,r,)-G{t,r,)Y 

Definition 2.25. (Cross-corelation function, phase-correlation function)[1] Let 
functions f(x,y),g(x,y) G £ ( M 2 ) have Fourier spectra F(^,rj),G(^,rj). The function 
Qf,g{x,y) : R2 —> C defined as 

Qf,9(x,y) = F-l{Cf,g(^rj)} = F-l{F(^rj) • GTfor,)} 

is called the cross-correlation function of functions f,g. Function Pfj9(x,y) : M.2 —> C 
defined as 

is called phase-correlation function of functions f,g. 
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Theorem 2.26. (Cross-correlation function of real functions)[1] Let functions 
fix, y), g(x, y) G £ ( M 2 ) continuous real ( / = /* , g = g*) and with Fourier spectra F ( £ , rj), 
G(£,rf) G £ ( M 2 ) . Then the cross-correlation function of these functions is real. 

Proof. Proof taken from [1]. Using Theorems 2.5, 2.16, 2.22 we can compute 

Qf,g{x,y) = F-1{F(Z,r])-G*(Z,r])}=F-1{F{f(x,y)}-F{g*(-x,-y)}} = 

= fix, y) * g*(-x, -y) = f(x, y) * g(-x, -y), 

which is a real function. • 

Remark 2.27. Noticeably, the cross-correlation function can by transformed to convo­
lution as follows: 

Qf,g(x, V) = /(x> V) * 9*(~x, -y) = fix, y) * gi-x, -y), 

where f{x,y),g(x,y) G £ ( M 2 ) continuous real. This matter of fact is often used for easier 
computation in the Image analysis. It wi l l also be used as useful property of cross-
correlation function in some of following proves. 

Theorem 2.28. (Phase correlation function of shifted functions)[l] Let f{x,y) G 

£ ( M 2 ) and let 77) be its Fourier spectrum. Let us consider fshix,y) shifted function 
(see Definition 2.6) of function f(x,y) by vector ix0,y0) and let Fshi£,r)) be Fourier 
spectrum of the shifted function. Then the phase-correlation function of functions / , fsh 
is Dirac distribution shifted by (—x0, —yo) 

pf,fsh(x,y) = Six + x0,y + y0). 

Proof. The proof taken from [1]. The Shift Theorem 2.7 implies that 

Z f , (c n ) = F i ^ - F ^ j e - ^ y ^ y ( x o ^ y o v ) 

^JJshKSl'l) I 771/£ „ \ TP(C „ \ i(W+7/nn1l C 

Therefore 

\F(€>v) • Fi^rfe-'^+yw)] 

= jr-i{e-m-*oM-™))} = six + x0,y + y0). 

• 
Obviously the phase-correlation is the perfect tool for finding mutual shifts of shifted 

functions. The only remaining task is to find the only non-zero element's coordinates 
and the shift can be obtained after multiplication with —1. 

Theorem 2.29. (Cross-correlation function of shifted functions) Let f{x,y) G 

£ ( M 2 ) continuous real and let us suppose function fsh{x,y) be shifted function of function 
f(x,y). Then the cross-correlation function of functions f,fsh has its global maximum 
in [-x0, -yo] , i-e. 

Qfjsh(x,y) < Qfjsh(-x0, -yo) V(x,y) e R2. 
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Proof. The one dimensional proof can be found in [10]. Let us begin with equality 

(/(«, t) - f(s - x - x0,t -y - y0))2 = 
= f(s, t) - 2f(s, t)f(s - x - x0,t - y - y0) + f(s - x - x0,t - y - y0). 

B y integrating both sides we obtain 

(f(s, t) - f(s - x - x0,t-y - yo)) 2 dsdt = 

oo oo 

J J f(s,t)dsdt-2 J J f(s,t)f(s-x-x0,t-y-y0)dsdt + 

-oo —oo 

oo oo 

-oo —oo 

oo oo 

+ / / f2(s-x-x0,t-y-y0)dsdt. 

The last integral can be modified as follows 

f(s - x - xQ, t - y - y0)dsdt 
u = s — x — XQ du = ds 
v = t — y — yo dv = dt 

f2(u, v)dudv 
s = u ds = du 
t = v dt — dv 

-oo —oo 

oo oo 

J j f(s,t)dsdt. 

-oo —oo 

oo oo 

Using the modification we obtain 

f(s, t)f(s - x - x Q , t - y - y0)dsdt = 

oo oo 

= J J f(s,t)dsdt-^ J J (f(s,t)-f(s-x-x0,t-y-y0))2dsdt. 
— oo —oo —oo —oo 

Since the last integral is non-negative, we can write 

oo oo oo oo 

J J f(s,t)f(s-x-x0,t-y-y0)dsdt< J J f(s,t)dsdt. 
— oo —oo —oo —oo 

Now let us formulate the integral form of the cross-correlation function of shifted functions: 

Qfjsh(x>y) = f(x,y)*fsh(-x,-y) = f(x,y)*f(-x-xo,-y-yo) = 

f(s, t)f(s - x - x 0 , t - y - y0)dsdt. 
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A n d for (x,y) = (—x0, —yo) we obtain 

oo oo oo oo 

QfJsh(-xo,-yo)= J J f(s,t)f(s,t)dsdt= J J f(s,t)dsdt. 
—oo —oo —oo —oo 

Then the previous inequality can be rewritten as 

Qfjsh(x,v) < Qfjsh(-xo, -yo) v(x,y) e R2. 

• 

Qf,u(x>v) 

Figure 2.1: Typica l shape of autocorrelation function showing clear global maximum 

On the other hand to phase-correlation function, it is not so easy to find the shift using 
cross-correlation. The task is to find the global maximum (its coordinates) of the cross-
correlation function and then to multiply it wi th —1. There would be an issue if the func­
tion had more than one global maximum. This case fortunately can not happen, because 
the cross-correlation function of an image with itself (autocorrelation function) has very 
specific shape shown in the Figure 2.1. The cross-correlation function of shifted images is 
just the shifted autocorrelation function. 

Theorem 2.30. (Cross-correlation function of functions with two shifted ob­
jects) Let f(x,y) e £ ( M 2 ) continuous real and it has objects fi(x,y), f2(x,y). Let g(x,y) 

be function with shifted objects according to f(x, y) by shift vectors (xi, yi), (x2, y 2 ) which 
are sufficiently different. Then the cross-correlation function of functions / , g has local 
maxima [—xi, — yi] and [—x2,— y2\. 

Proof. It holds 

Qf,g(x>y) = f(x,y) * g(-x,-y) = 

= (fi(x,y) + f2(x,y)) • ( f i ( - x - x 1 , - y - y 1 ) + f 2 ( - x - x 2 , - y - y 2 ) ) = 

= fi(x,y) * fi(-x - Xi, -y - yi) +fi(x,y) * f2(-x - x2, -y - y2) + 

+ f2(x, y) * fi(-x - x u - y - yi) + f2(x, y) * f2(-x - x2, -y - y2) = 

= Qfufi.sh + Qh,h,Bh + Qh,h,sh + Qh,h,sh-

which is summation of positive functions with sufficiently far global maxima. It means, 
that maxima are preserved as local maxima. • 
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We require the shift vectors to be sufficiently different for the maxima to stay maxima 
in summed function. If the maxima are to close, they wi l l merge in one, or they could 
became even more close. Because of the very specific shape of autocorrelation function, 
there is no problem in existence of local maxima in the summed function. The global 
maximas in original functions are significant enough. 

If the objects / i , / 2 are not the same, there wi l l not be formed another maxima, because 
they are not correlated. On the other hand, there wi l l be formed two new maxima if 
f2(x,y) = fi(x — x0,y — y0) (i.e. the objects are just shifted). The coordinates of the new 
maxima would be [—XQ — x2, —yo — 2/2], [%o — %i,yo — 2/1], which can be easily proven 
analogically to proof of the Theorem 2.29. These maxima are comprising the mutual 
position of the objects and their shifts together. 

Theorem 2.31. (Cross-correlation function of fuctions with n shifted objets) 
Let f(x,y) G £ ( M 2 ) continuous real and it has objects fi(x,y), % — 1,2, ...,n. Let g(x,y) 

be function with shifted objects according to f(x, y) by shift vectors ( X J , y,) which are suf­
ficiently different. Then the cross-correlation function of functions / , g has local maxima 
[—Xi, —yi\. A n d it holds 

n n 

i=i j=i 

Proof. Proof can be derived as outward generalization of proof of the Theorem 2.30. • 
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Chapter 3 

The discrete Fourier Transform 

3.1 Digital image 
A t first, we need to define what do we mean by digital image to work with them. 

The digital image is two dimensional discrete representation of real-world scene that rep­
resents a momentary event from the three-dimensional spatial world which is created 
by a digital camera. The digital image like this contains an additive noise. It changes 
image we wanted to capture and we try to get r id of it in digital image processing. It 
is usually caused by increased temperature of camera sensor or some dust on the lens. 
To further image processing done in this thesis, we assume the image to be without addi­
tive noise. The images without additive noise can be also created in graphic programmes, 
but they are no longer real-world representations (i.e. photography). We wi l l use them 
as testing images. 

We wi l l consider the image to be a two dimensional discrete function of the square 
shape in following chapters. That means that we wi l l know the values of function only 
on integer coordinates. The values of an image are also consider to be integer, when we 
want to display it by some output displaying device. Yet, we wi l l work with complex-
valued (or real-valued) images in following chapter. This approach is more general and al­
lows us to be more precise. 

Definition 3.1. (Digital gray-scale image)[1] Let R = {0 ,1 , . . . , A - l } 2 , ,N G N 
and let W = {0,1, ...,w — 1}, w G N . Function 

f(x,y):R^W 

is called a digital gray-scale image. Where A is called the image width and the image 
height. Elements of R are called pixels and value of / in pixel (x, y) is called the pixel 
value. The value of w determines the image dynamic range. The dynamic range is n bits 
per pixel (it is an n-bit image) if w — 2n. 

A n image is usually defined to be rectangular, but it is sufficient for needs of this thesis 
for image to be square for phase correlation (or cross correlation) to work properly. 

We usually use matrix to represent image and we call it image matrix. However there 
is no sense to use operation defined to matrices for image matrix, because it is just table 
of pixel values in coordinates (x,y). Every operation applied to image matrix is meant 
to be applied on each pixel separately. 

The dynamic range of the image is given by the memory representation of the image 
in computer. The n determines, how much bits need to be used to save one pixel. We use 
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the dynamic range of this form to best use of the memory. Also the output displaying 
devices are made to display in classic dynamic range. 

Definition 3.2. (Digital color image)[1] A digital color image is a triple of digital 
gray-scale images (r, g, b) which are called the red, green and blue color channels. 

For purposes of image registration we convert the digital color image into gray scale 
image. To do that we compute a convex combination of the red, green and blue color 
channels 

f(x, y) = Round(c r r (x , y) + cgg(x, y) + cbb(x, y)), 

where cr, cg, Cb G (0,1) and cr+cg+Cb = 1. The constants cr, cg, Cb should be chosen to min­
imize the standard deviation of additive noise in image / . There is no rule for choosing 
constants that works for all images. For general images (taken without any color filters) 
we use assessment around 

_ 1 _ 6 _ 2 

Definition 3.3. (Additive noise)[1] Let / be a digital gray-scale image represent­
ing an ideal image (containing no additive noise), let n be a digital gray-scale image 
of the same size as / , whose pixel values are rounded independent realization of random 
variable X, which usually has normal distribution. Let 

f(x, y) + n(x, y) if 0 < f(x, y) + n(x, y) < w, 

w — 1 if f(x, y) + n(x, y) > w 
h{x,y) 

then we say that image h contains additive noise. Image n is called noise image. 

3.2 The Discrete Fourier transform and inverse Fourier 
transform 

Definition 3.4. (Discrete Fourier transform)[8] Let / (x,y) : {0 ,1 , . . . , A — 1} x 
{ 0 , 1 , . . . , A - 1} = {0,1 , . . . , JV - l } 2 —> C,N e N. The discrete Fourier transform 
of function (image) f{x,y) is function £>{/}(£, ?y) = F(£,rf) : {0, l , . . . , i V — l } 2 —> C 
defined as 

N-1N-1 

v{fKZ,v) = F&v) = EE/(I'»)e"^W4w)-
x=0 y=0 

Function F is also called the Fourier spectrum of function / . 

Definition 3.5. (Inverse discrete Fourier transform)[8] Let function (image) f{x,y) 
be a function { 0 , 1 , — l } 2 —> C , N e N and let F ( £ , 77) be its discrete Fourier trans­
form. The inverse discrete Fourier transform of function F(£, 77) is function V~1{F}{x, y) = 
g(x, y) : { 0 , 1 , N - l } 2 -»• C defined as 

1 N-lN-l 

V-i{F}(x,y) = W 2 J 2 J 2 F ^ > ¥ i X " + V V ) -
(=0 »7=0 

Theorem 3.6. (Fourier inversion theorem )[1] Let f{x,y) be a function (image) 
{0 ,1 , . . . , A — l } 2 —> C,N e N and let F(£,rf) be its discrete Fourier transform. Then 
the inverse discrete Fourier transform of function F(£,r)) is function f{x,y), i.e. 

V-1{V{f(x,y)}} = f(x,y). 
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Proof. Proof taken from [1]. 

A — 1 A - l 

AT2 
5=0 »7=0 
A - l A - l A - l A - l 

g=0 »7=0 s=0 t=0 

1 A - l A - l A - l A - l 

s=0 t=0 5=0 »?=0 

A - l A - l / A - l , \ / A - l 

^EE/h«) E H E( -» M " 
s=0 t=0 \5=0 / \ » ? = 0 

A - l „ . A - l 
let us denote ^(s) = (e ̂ ' ^ s ^ ) ? and = (e <))'?. g(s) is finite geometrical 

5=0 »?=o 
2iri series, therefore we can compute its sum. If e s) = 1 (i.e. x — s), then g(s) = N 

Otherwise, x — s e Z — {0} and 

1 - (e N (X SA , _ 27Ti(x-S) 1 _ 1 

o ( s ) = v >— = - - = = o 
y y ' i-^Wix-s) i _ e ^ ( x - s ) 1_m(x-a) Similarly, 

Therefore, 

g(t) 
N iiy = t 

0 else. 

V~l{V{f(x, y)}} = ±f{x, y)-N-N = f(x, y). 

• 
On the contrary to the Fourier transform, the discrete Fourier transform always exists 

due to the fact that the summation is over a finite number of points. We also do not need 
to make restrictions to the functions as we need to in continuous case. 

To further work with images (especially with shifted images) we need to define the pe-
riodized functions (images), so it would be possible to work with coordinates, which lay 
out of function domain. 

Definition 3.7. (Periodization of function and its Fourier spectrum )[1] Let 
f(x,y) be a function {0,1,. . . ,N - l } 2 —> C , N e N and let F(£,rj) be its Fourier 
spectrum. The periodization of the Fourier spectrum F if function F(£, rj) : Z 2 —> C 
defined as 

A - l A - l 

x=0 y=0 

The periodization of function f is function f(x,y) : Z 2 —> C defined as 

A - l A - l N2 

5=0 »?=0 
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Remark 3.8. [1] For further usage of periodized functions let us remark some basic 
equalities. Let f(x,y) be a function {0,1, . . . ,JV — l } 2 —> C , J V e N . Then for every 
(x,y),(£,rj) G {0 ,1 , . . . , AT - l } 2 and k, I G Z it holds 

= f(x + kN,y + lN), 

= F(^ + kN,V + lN). 

In particular 

f(x, y) = f(x, y), f(-x, -y) = f(N -x,N-y), 
F ( £ , r/) = r/), - r / ) = F ( 7 V - £, N - 77). 

Definition 3.9. (Discrete Fourier transform of periodized functions) [1] Let f(x, y) 
be function { 0 , 1 , N — l } 2 —> C , TV G N . The discrete Fourier transform of the peri-
odization of function / , f(x, y) : Z 2 —> C is function £>{/}(£, rj) = F(£, rj) : { 0 , 1 , N — 
l } 2 —> C defined as 

N-l N-l 

~ ~N 

x=0 y=0 

Definition 3.10. (Inverse discrete Fourier transform of periodized functions) [1] 
Let f(x,y) be a function { 0 , 1 , J V - l } 2 —> C , TV G N and let F(£,rj) be its discrete 
Fourier transform with periodization F(£, rj) : Z 2 —> C . The inverse discrete Fourier 
transform of function F(£,rj) is function V~1{F}(x,y) : { 0 , 1 , N — l } 2 —> C defined 
as 

V-l{F}(x,y) = ± J 2 J 2 P ( ^ > ¥ ^ + V V ) -
f = 0 T]=0 

Corollary 3.11. [1] Let f(x, y) be a function { 0 , 1 , N - 1 } 2 —> C , N eN wi th Fourier 
spectrum F(£,rf). For every (x,y) G { 0 , 1 , J V — l } 2 , it holds: 

V{f(x,y)} = V{f(x,y)}, 

f(x,y)}} = V-1{F(Z,rj)}=f(x,y). 

Proof. The claim is consequence of Definitions 3.9, 3.10 and Theorem 3.6. • 

Corollary 3.12. [1] Let f(x, y) be a function {0,1, ...N — l } 2 — > C , N eN wi th Fourier 
spectrum F(£,r)). For every k, I G Z it holds: 

fc+AT-1 Z + i V - 1 
— Tv 

£ > { / ( * , ! / ) } = E E /fovK 
1 fc+Ar-lZ+Ar-l 

^ { ^ r / ) } = ^ E E F(^,r])e^ix^+yv). 
N2 

£=fc rj=l 

Proof. The proof taken from [1]. The first claim is consequence of the fact, that both func­
tions / and Q-^r^+y^ for fixed £, rj G Z are TV-periodic. The second claim is consequence 
of the fact that both functions F and ew^+wi) for fixed x,y G Z are TV-periodic. • 
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3.3 Shift theorem for images 
This section serves to introduce the concept of the shifted images and objects in the im­

age. We wi l l use the periodization of the image, because the shifts could lead out 
of the function domain. We wi l l consider only integer shifts, because non-integer ones 
would lead out of the function domain. Even so, the mutual shifts finding method intro­
duced in following chapter wi l l compute even the non-integer shifts. 

Definition 3.13. (Shifted periodized images) Let image f(x, y) be a function {0,1 , . . . . 
N — l } 2 — > C , A e N , let f(x,y) be periodization of function / and let x0,y0 e Z be 
given numbers. The function fsh(x,y) is shifted image of image f(x,y) by vector (x0,y0) 
iff 

fsh(x,y) = f(x - x 0 , y - y0). 

Theorem 3.14. (Shift theorem for periodized images)[l] Let image f(x,y) be func­
tion { 0 , 1 , A — l } 2 —> C , i V e N and let F(£, rj) be its Fourier spectrum. Let fsh(x, y) 
be shifted image of image f(x,y) and let Fsh(£,rj) be its Fourier spectrum. Then it holds 

Fsh(^r])=e-^X0^F(^r]). 

Proof. The following proof is shown in [1]. 

N-1N-1 N-1N-1 

Fsk(Z, i)) = E E Mx, y)e-W*^ = E E / > " *o, V - y o K ^ ^ = 
x=0 y=0 x=0 y=0 

N-l-xo N-l-y0 S = X — XQ 

t = y-yo 

e N 

- E E />.*K 
S=—XQ t = — XQ 

N-l-x0 N-l-yo 

^ (.'•,<+,/,„,) ^2 ^2 f(s,t)e~^i(-s^+tv)=e~^L(-xo^+yov)F(^,r]). 
=-XQ t=-XQ 

The last equality is due to Corollary 3.11. • 

Definition 3.15. (Shifted images in greater scale) Let fc(x,y) be an image (of greater 
scale) { 0 , 1 , N - l } 2 —> C , N e N. Let x0, y0 e Z , k, I e N 0 , M e N be given numbers 
such that 

M < N, 

k + x0>0, k + M + x 0 > N - l . 
l + yo>0, l + M + y0 > N - 1. 

and let function / be 

f(x,y) 
fG(x,y) i f (x,y) G {k,k + l,...,k + M-l} x {I, I + 1 , I + M - 1} 

0 else. 

A n image g(x,y) : { 0 , 1 , A — l } 2 —> C is shifted image of image / if it holds 

max{0, xo} < x < m i n { A — 1, A — 1 + xo}, 

IT 

0 else. 
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This is illustrated in [1] together with the definition. 

Theorem 3.16. (Shift Theorem)[l] Let f(x,y),g(x,y) be shifted images in greater 
scale and let F(^,rj),G(^,rj) by their Fourier spectra. Then it holds 

G ^ v ) = e - ¥ ( ^ + y o v ) F { ^ v ) , 

Proof. Proof taken from [1]. 

N-1N-1 k+M-l+x0l+M-l+yo 

x=0 y=0 x=k+x0 y=l+yo 

k+M-l+x0 l+M-l+y0 

= E E f ( x - x 0 , y - y 0 ) e - ^ + ^ = 
x=k+xo y=l+y0 

k+M-1 t+M-1 
S = X — XQ 

t = y-yo E E / ( M K 
2n 

N 
k(£(s+x0)+v(t+yo)) 

s=k t=l 

k+M-1 l+M-1 

J2 J2 f{s,t)e-W*+t4 = e-3Pl**+»tiF{t,r,). 
s=k t=l 

• 
We are introducing the concept of images cropped out of the greater scale because it 

is the easiest way to obtain testing image for finding mutual shift of shifted images. We 
are not using it further in this thesis though. 

Definition 3.17. (Multiple objects in image) Let n e N be given number, let images 
f(x,y),fi(x,y) be functions { 0 , 1 , N — l } 2 —> C , i V e N for each % — 1,2, . . . ,n . Image 
f(x,y) consists of n objects fi(x,y) iff 

f(x,y) = ^2fi(x,y). 
i=l 

Introducing this concept of multiple objects in image could be problematic, if we 
were trying to create an image by the summation of multiple images. We know from 
the definition of the digital gray-scale image, that the image function can reach only non-
negative values and the values are bounded. That could lead to summation of images, 
which result could overcome the dynamic range. Hence, the object image functions could 
take its values even from negative integer numbers. However, this is not the concept 
of creating image consisted of multiple objects but the formal description of an image, 
which is created in classical way. 

Definition 3.18. (Periodized image with shifted objects) Let f(x,y) be an image 
with n shifted objects fi(xi,yi) and let fi(x,y) be their periodizations, let Xi,yi G Z be 
given numbers for each % = 1,2, . . . ,n . Image g(x,y) : {0,1,N — l } 2 —> C , TV e N is 
image with shifted objects considering f(x,y) iff 

g(x, y) = E fc(x ~x^y~ Vi 
i=i 
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To work with shifts, we need to consider periodized image again. Same as in continuous 
case, let us remark that each object fi(x,y) of image f(x,y) is shifted in image g(x,y). 

Therefore, we can say that objects fijSh(x, y) = fi(x — Xi,y — yi) are shifted images of image 
functions (objects) fi(x,y) by vectors (xi,yi). Also considering n — 1, we are obtaining 
the definition of the shifted image. So we can say, that the shifted function consist of only 
one object, which is shifted. 

Theorem 3.19. (Shift theorem for images with two objects) Let f(x,y) be a func­
tion with two objects (n = 2), let Fi(£,77) and F2(^,rj) be Fourier spectra of its objects 
fi(x, y), f2(x, y). Let g(x,y) be function with shifted objects considering f(x,y) and let 
G(£,rj) be its Fourier spectrum. Then it holds 

f(xi£.+yiri) 

Proof. 
N-l N-l 

£X>(*,y)e-^<*-*"> = 
x=0 y=0 

N-l N-l 

^ ^ { h { x - x^y - V l ) + ]2{x - x2,y - y2))e-^{x^+yri) 

x=0 y=0 

N-l N-l 

E E ~ ^ y - y i ) e - 2 ^ + m ) + 
x=0 y=0 

N-l N-l 

E E ~ x * > y - y 2 ) e - ^ ^ + O T ) = 
x=0 y=0 

X — X\ X = S + X\ 
N-l-xi N-l-yi 

E E 
s=—xi t=—yi 

t = y-yi y = t + yi 
U = X — X2 x = u + x2 

v = y-y2 y = v + y2 

N-I-X2 N-l-y2 

+ £ £ l. 
u=—x2 v=—y2 

N-l-xi N-l-yi 

= E E / i ( M ) e " ^ 
s=-xi t=-yi 

N-1-X2 N-l-y2 

+ E E Mu,v)e-^u^)e-¥(^+yiv) 
u=—x2 v=—y2 

+ 

r 2 ( u , v ) e - 2 - ^ { { u + x ^ + { v + y 2 ) r ! ) 

^f(s^+tv)e-^(x^+yiv) + 

Fi(t,v)e f-ixiZ+yiii) + F2(t,r])e- f(x2^+y2v) 

• 
Theorem 3.20. (Shift theorem for images with n objects) Let f(x,y) be an image 
with n objects and let Fi(£,r)) be Fourier spectra of its objects fi(x,y) for each % = 
1,2, ...,n. Let g(x,y) be an image with shifted objects considering f(x,y) and let G(£, rj) 
be its Fourier spectrum. Then it holds 

n 

G(e,r/) = E^(e,r/)e-^^+^. 

Proof. Proof can be derived as outward generalization of proof of Theorem 3.19. • 
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3.4 Properties of discrete Fourier transform 
As in continuous case, we are introducing some basic properties of the discrete Fourier 

transform which we are using in following sections. 

Theorem 3.21. [8] Let image f(x,y) be a function {0,1 , . . . , TV - l } 2 —> C , TV e N 
with Fourier spectrum F(£, rj) and let / , F be their periodizations. The discrete Fourier 
transform of function / with reversed axes is function F wi th reversed axes. The inverse 
discrete Fourier transform of function F wi th reversed axes is function / with reversed 
axes, i.e. 

V{f(-x,-y)} = F{-Z,-ri) = F{N-Z,N-ri), 

V-'lPi-^-r])} = f ( - x , - y ) = f(N-x,N-y). 

Proof. Proof taken from [1]. 

V{f(-x,-y)} = J2 E /(-*> 

N-l N-l 
-{xi+yq) 

x=0 y=0 

0 0 

S = —X 

t = -y 

£ £ f(s,t)e-^-^)=F(-£,-v). 
s=-N+lt=-N+l 

The last equality is due to the Corollary 3.12. The second claim is obtained from the first 
one by applying discrete inverse Fourier transform to its both sides. This step always 
works due to Theorem 3.6. • 

Theorem 3.22. [4] Let image f(x, y) be a function { 0 , 1 , 7 V - 1 } 2 —y C , TV e N and let 
F ( £ , 77) be its Fourier spectrum. Then the Fourier transform of the complex conjugate 
of function / is £, —77) i.e. 

V{r(x,y)} = F*(-Z,-r]). 

Proof, proof taken from [1]. 

N-l N-l N-l N-l 

x=0 y=0 x=0 y=0 

'N-l N-l \ * 

E E y ) ^ ( - x ^ m ) = H-Zi -v)-
, s = 0 y=0 J 

• 
Theorem 3.23. [1] Let f(x,y) be a function {0,1, . . . , 7 V - l } 2 —> C , TV e N . Then it 
holds 

(a) V{V{f(x,y)}} = N2f(-x,-y), 

(b) P " 1 { P - 1 {f(x, y)}} = -^f(-x, -y), 
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(c) V{f(x,y)} = N'V-1 [f(-x, -y)] , 

(d) V-l{f(x,y)} = —V\f(-x,-y) 

Proof. Proof taken from [1]. 

(a) 

V{V{f(x,y)}} 
N-l N-l 

5=0 v=0 

N-l N-l 

5=0 v=0 

a 

T -T] 
E E F ( - < 7 , - r ) e * W > 

a=-N+l r=-N+l 

N'V-1 {V{f(-x, -y)}} = N2f(-x, -y). 

(b) 

V-'iV-^fix^y)}} 
N-l N-l / N-l N-l 

5=0 v=0 \ s=0 t=0 

N-l N-l /N-l N-l 

s E E E E * ' ) 
g = 0 » ? = 0 \ s = 0 t = 0 

A T - 1 J V - 1 

AT4 

U 

V ^ E E E E K-u,-i 
5=0 »7=0 \ M = - A T + 1 u = - i V + l 

AT2' 
j^f(-x,-y). 

(c) is obtained from (a) by applying the inverse discrete Fourier transform to both its 
sides 

(d) is obtained from (b) by applying the discrete Fourier transform to both its sides, or 
by substituting —x for x and —y for y and dividing both sides by TV 2. 

• 
Theorem 3.24. [1] Let image f(x,y) be a function {0,1, . . . ,7V - l } 2 —> C , TV e N 
and have Fourier spectrum F(£, rj). The function / is real, i.e. f(x, y) = f*(x, y) V(x, y) e 
{ 0 , 1 , T V - l } 2 , iff 77) = -77). 

Proof. Proof taken from [1]. 

1. Let us suppose that / is a real function. Then Theorem 3.22 implies that 

= V{f{x,y)} = V{f*(x,y)} = F*{-£, -77). 
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2. Let us suppose that 77) = £, —77). Then Theorem 3.22 and the Theorem 
3.6 imply that 

f(x,y) = V-'iF^n)} = V-^Fi-t, = V-1 {V{f*(x,y)}} = f*(x,y). 

• 
Corollary 3.25. [1] Let function f(x,y) : { 0 , 1 , N — l } 2 — > R , N e N . Let function 
G(£, rj) : { 0 , 1 , N — l } 2 —> R such that G(£, rf) = G ( - f , -77). Then 

is real. 

Proof. Proof taken from [1]. According to Theorem 3.24 if / is real, then 

F{£,ri) = F*{-Z, -77). 

B y mult iplying the equality by G, we obtain 

m V) • G{£, 77) = F*{-£, -77) • G ( - f , -7/) = -77) • G ( - f , - » 7 ) ) * • 

Then again according to Theorem 3.24 

is real. • 

3.5 Discrete periodic convolution 

The discrete periodic convolution is the most used tool in image processing. It is 
usually used with much smaller kernel. We wi l l also use the discrete periodic convolution 
to reduce complexity of the computations. 

Definition 3.26. (Discrete periodic convolution)[8] Let images f(x,y),g(x,y) be 
functions { 0 , 1 , N — l } 2 —> C , i V 6 H . The discrete periodic convolution of functions 
/, g is function { 0 , 1 , N — l } 2 —> C defined as 

N-l N-l 

h(x, y) = f(x, y) * g(x, y) = ^2Y1 f(s> ~ S > 2/ ~ * ) • 
s=0 t=0 

Theorem 3.27. [1] Let images f(x,y),g(x,y) be functions { 0 , 1 , N - l } 2 —> C,N 
and have Fourier spectra 77), 77). Then 

V{f(x,y)*g(x,y)} = F(Z,r])-G(Z,r]). 

41 



Proof. Similar proof can be found in [8]. Let h(x,y) = f(x,y) * g(x,y), then 

N-1N-1 /N-l N-l \ 

x=0 y=0 \s=0 t=0 J 
N-1N-1 N-1N-1 

2:r i 

E E f ( s > ^ E E ^ - 5 ' 1 ' - N 

x=0 y=0 s=0 t=0 

N-1N-1 N-l-s N-l-t 

E E / ( ^ ) E E -gM*-^*^™ = 
x=0 y=0 p=—s q=—t 
N-1N-1 N-l-s N-l-t 

E E / ( M ) e ^ ( ^ E E ^ ) e - ^ + ^ 
x=0 y=0 p=—s q=—t 

p = x — s 
q = y - t 

• 

Theorem 3.28. [4] Let images f(x,y),g(x,y) be functions { 0 , 1 , N - l } 2 —> C , N e N 
and have Fourier spectra F(£,r)),G(£,r)). Then 

V{f(x, y) • g(x, y)} = ±F{£, V) * G{£, V). 

Proof. Proof taken from [1]. Let h(x,y) = f(x,y) * g(x,y). Using the Fourier Inversion 
Theorem 3.6 we can compute V{h(x,y)} as 

N-l N-l 

V{h(x,y)} = E E ^ ^ ^ ^ e " f W + m ) = 

x=0 y=0 

N-l N-l / „ N-l N-l 

E E \W2 E E * V , r ) e * W g ^ y ) ^ ^ 
4 N2 

x=0 y=0 \ cr=0 r = 0 
N-l N-l N-l N-l 

N2 
L E E ^ T) E E ^ > y ) e - ^ ^ - ) ^ - r ) ) 

cr=0 r = 0 x=0 j/=0 

A T - 1 N-l 

E E F ^ - ^ ^ - R ) = A ^ F ( ^ ^) * G ^ 
cr=0 r = 0 

• 

Theorem 3.29. (Distributivity of discrete periodic convolution) Let images f(x, y). 
g(x, y), h(x, y) be functions {0,1, ...TV - l } 2 —> C , N e N . Then it holds 

f(x, y) * (g(x, y) + h(x, y)) = f(x, y) * g(x, y) + f(x, y) * h(x, y). 
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Proof. Let us denote k(x,y) = g{x,y) + h(x,y). Then 

N-l N-l 

f(x,y) *(g(x,y) + h(x,y)) = f(x,y)*k(x,y) = ^^f(s,t)k(x-s,y-t) 
s=0 t=0 

N-l 

= Yl ( s > - 8 , y - t ) + h(x-s,y- t)) = 
t=o 
N-l N-l 

/ ( x , y) * #(x, y) + / ( x , y) * h(x, y). 

• 

3.6 Cross correlation, phase correlation 
The concept of cross correlation and phase correlation is very similar to the continuous 

case, it brings the same problems with the same solutions. 

Definition 3.30. (Cross-power spectrum, normalized cross-power spectrum)[3] 
Let images f(x)y))g(x,y) be functions {0,1, ...,N — l } 2 —> C , TV e N and have Fourier 
spectra F(£, r/), G(£, rj). The cross-power spectrum of functions / , g is function Cft9(£, rj) : 
{ 0 , 1 , . . , N - l } 2 — > C defined as 

Cf,g(Z,V)=F(Z,v)-G*(Z,V). 

The normalized cross-power spectrum of functions / , g is function Zfj9(£, rj) : { 0 , 1 , T V — 
l } 2 — • C defined by 

F(£,ri)-G'(Z,ri) 

Definition 3.31. (Cross-correlation function, phase-correlation function) [1] Let 
functions F(x,y),G(x,y) : {0 ,1 , . . . ,7V — l } 2 —> C , N e N have Fourier spectra F(£,rf), 
G(£,rj). The function Qf,g{x,y) : {0,1,. . . ,N - l } 2 —> C defined as 

Qf,g(x,y) = V-'iCf^r,)} = B^Ffor,) • G*(Z,V)} 

is called cross-correlation function of functions / , g. Function Pfj9(x,y) : { 0 , 1 , . . . , ^ — 
I } 2 —> C defined as 

pu{x,v) = v {z,M,n)} = v ( | F ( { i l ) ) . G ( { i l ) ) | ) 

is called phase-correlation function of functions / , g. 

Theorem 3.32. (Cross-correlation function for real functions)[1] Let / ( x , y),g(x, y) 
be functions {0,1 , . . . , A?" — l } 2 —>• 1 , / V e N (real functions) and have Fourier spectra 
F(£,rf),G(£,r}). Then the cross-correlation function of these function is real. 

Proof. Proof taken from [1]. Using Theorems 3.6, 3.22 we obtain 

Qf,9(x,y) = V-1{F(Z,rl)-G*(Z,r])} = V-1{V{f(x,y)}-V{g~*(-x,-y)}} = 

= V'1 [V{f(x,y) *g*(-x, -y)}} = f(x,y)*g*(-x,-y) = 

= f(x,y)*g(-x,-y), 

which is a real function. • 
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Remark 3.33. Noticeably, the cross-correlation function can be transformed to convolu­
tion as follows: 

QfAx> V) = /(x> y) * 9*(~x, ~y) = f(x, y) * g(-x, -y), 

where f(x,y),g(x,y) G £ ( M 2 ) continuous real. This matter of fact is often used to reduce 
complexity of the computations. It wi l l also be used as useful property of cross-correlation 
function in some of following proves. 

Definition 3.34. (Discrete impulse function)[1] Let d(x,y) be a function defined 
on {0 ,1 , . . . ,N - l } 2 as 

' l if (x,y) = (0,0), 
0 else. 

d{x,y) 

function d is called discrete impulse function. 

For the purposes of finding mutual shifts, we need to consider the cross-power spec­
trum, cross-correlation function, normalized cross-power spectrum and phase correlation 
function to be periodized. We assume the periodization of these functions because we need 
to obtain negative coordinates for the positive shifts (see following theorems). However, 
this wi l l lead to existence of periodized maxima too. 

Theorem 3.35. (Phase-correlation function of shifted images) [1] Let image f(x, y) 
be a function {0,1, . . . ,JV — l } 2 —> C,N G N and let -F(£, r/) be its Fourier spectrum. 
Let us consider fsh(x,y) to be a shifted image (see Definition 3.13) of f(x,y) and let 
Fsh(£,,v) be its Fourier spectrum. Then the phase-correlation function of functions f,fsh 
is the discrete impulse function shifted by (—xo, —yo) 

pf,fsh(x>y) = d(x + x0,y + y0)-

Proof. Proof taken from [1]. Shift Theorem 3.14 implies that 

F(£,rj) • F*(£,rj) (e-^(x^+yov)V 
JfJs 

' — e ^pOo?+?/o»?) 

F{£,rj) • F{£,ri)e- N 

Further, according to the Theorem 3.23 (d) we can write 

v-l{zfJsh(t;,v)} = ± v {Z,j.h{-Z-T,)} = ± v {eW-*™\ 

N-l N-l 

" »7=U 

1 N-l N-l 

_ V P-¥(x°z+y°v)p-^(^+yv) 
vT2 L^t L^i 

2;r i 
e N

Lv(y+yo) 

e N

L(y+yo) 

E 
r?=0 

N-l 

E 
»7=0 

Similarly to the proof of the Fourier Inversion Theorem 3.6, let us denote g(x) = 
N-l / 27vi \ £ N-l / 27vi \r) 

(e~~^(x+x°^) and g(y) = (e~~^(y+yo^) . Where both functions g(x) and g{y) are 
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finite geometrical series. If x = —x0 + kN (k is arbitrary integer number), g(x) = N since 
all elements of the series are equal to 1. Otherwise 

1 - f e _^ ( s + S o )J 1 _ e-2ni(x+x0) 1 _ 1 

g{x) = — ; — = — r = — T = 0. 

Analogically, 

g{y) 
N Hy=-yQ + IN, I E Z, 
0 else. 

Hence, 

Í 1 if (x, y) = (-x0 + kN, -y0 + IN) 
PftB(x, y) = V~\ZLg{i, v)} = < for some k, I e Z , 

[o else 

= d(x + x0,y + y0). 

• 

Figure 3.1: Typica l shape of discrete autocorrelation function showing clear periodic 
global maxima 

On the contrary to continuous case, there is more than one global maxima. However, 
we know, that their location is TV-periodic. Which was proven. The shape of discrete 
autocorrelation function can be seen in Figure 3.1. 

Theorem 3.36. (Cross-correlation function of shifted images) Let image f(x,y) 
be a function { 0 , 1 , T V — l } 2 —> R, N e N and let us consider fsh(x,y) to be a shifted 
image (see Definition 3.13) of f(x,y). Then the cross-correlation function of functions 
/, fsh has its global maxima in [—x0 + kN, —y0 + IN], where k, I 6 Z i.e. 

Qf,fsh(x,y) < Qf,fsh(-Xo + kN, -y0 + IN) V(x ,y ) e R2. 
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Proof. Let us begin with equality 

(f(s,t)-f(s-x-x0,t-y-y0)yj = 

= f(s, t) - 2f(s, t)f(s - x - x0,t - y - y 0 ) + f2(s - x - x0,t - y - y0). 

B y summation of both sides we obtain 

N-l N-l N-l N-l 

E E (/( s > t)-f{8-x-x0,t-y-yoj) = E E *) -
s=0 t=0 s=0 t=0 

N-l N-l N-l N-l 

- 2 E E - x - x0,t - y - y0) + ̂ ^2 f2(s - x - x0,t - y - y0). 
s=0 t=0 s=0 t=0 

Due to 27r-periodicity of f(x,y) we can write 

N-l N-l N-l N-l 

E E / 2 ( s - * - ^ - ^ - ^ ) = E E / 2 M ) -

s=0 t=0 s=0 t=0 

Using this equality we obtain 

N-l N-l 

E E - x - - y - vo) = 
s=0 t=0 
N-l N-l 1 N-l N-l 2 

= E E ^ t ) - 2 ^ ^ ( / ( M ) " / " ( j _ J ! " i [ t t , t " y " t t l ) ) • 

s=0 t=0 s=0 t=0 

Since the last sum is finite and its members are non-negative, we can write 

N-l N-l N-l N-l 

^ / ( S , t ) / > - i - % i - ! / - ! / o ) < E E ^ ( S ' * ) -
s=0 i =0 s=0 t=0 

Now let us formulate the summation form of the cross-correlation function of shifted 
functions: 

Qfjsh(x>y) = f(x,y)* fsh(~xi-y) = f(x,y)*f(-x-x0,-y-y0) = 
N-l N-l 

= ^2^2f(s,t)f(s-x-x0,t-y-y0). 
s=0 t=0 

A n d for (x, y) = (—x0 + kN, —y0 + IN) we obtain 

N-l N-l N-l N-l 

Qf,fsh(~xo + kN, -y0 + IN) = E E = E E Z^*)-

s=0 t=0 s=0 t=0 

Then the previous inequality can be rewritten as 

»2 
y) < QfJah(-x0 + kN, - y 0 + /TV) V(x, y) e 

• 
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Theorem 3.37. (Cross-correlation function of images with two shifted objects) 
Let image f(x,y) be a function {0,1, . . . ,7V — l } 2 —> M , N E N and let it have ob­
jects fi(x,y), f2(x,y) (see Definition 3.18 of image with shifted objects). Let g{x,y) be 
an image with shifted objects according to f(x,y) by shift vectors (xi,yi), (£2,2/2) which 
are sufficiently different. Then the cross-correlation function of functions / , g has local 
maxima [—Xi + kiN, —yi + liN] and [—x2 + k2N, —y2 + l2N] where ki,k2,li,l2 E N. 

Proof. It holds 

Qf,g(x>y) = f(x,y) *g(-x,-y) = 

= (fi(x,y) + f2(x,y)) • (fi(-x - xl: -y - yx) + f2(-x - x2,-y -y2)) = 

= fi(x,y) * fi(~x - xu -y - y i ) + fi(x,y) * f2(-x - x2, -y - y2) + 

+ h{x, y) * fi(-x -Xi,-y- y{) + f2(x, y) * f2(-x - x2, -y - y2) = 

= Qfufi.sh + Qh,h,sh + Qh,h,sh + Qh,h,sh-

which is summation of positive functions with sufficiently far global maxima. It means, 
that maxima are preserved as local maxima. • 

Theorem 3.38. (Cross-correlation function of functions with n shifted objects) 
Let image f(x,y) be a function {0,1, ...,N — l } 2 —> R, N E N and let it have objects 
fi(x,y),i = 1,2, ...,n. Let g(x,y) be an image with shifted objects according to f(x,y) 
by shift vectors (xi, yi) which are sufficiently different. Then the cross-correlation function 
of functions / , g has local maxima [—Xi + kiN, —yi + UN] . A n d it holds 

n n 

Qf,g{x,y) = E ^ . / w 
i=l 3=1 

Proof. The proof can be obtained as outward generalization of proof of Theorem 3.37. • 
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Chapter 4 

Implementation 

We wi l l focus on implementation of the previously introduced mathematical conclu­
sions in this chapter. In first three sections, we wi l l establish the basic form of input images 
for the algorithm to work properly. Next, we wi l l introduce the algorithm for computing 
the shifts of shifted images and the sub-pixel precision of finding those shifts. A t last, we 
wi l l consider images containing multiple objects and computing the shifts of the objects. 
We are considering Finding the shifts of shifted images at first, because the algorithm is 
similar to Following of multiple objects movement to this point. It is also more showing. 
The next section is devoted to further adjustment of the previous algorithm for purposes 
of finding multiple shifts. A n d we are testing the precision of the algorithm in last section. 

For purposes of this thesis, we wi l l consider idealized testing images (i.e. images 
without any noise). That does not mean, that the algorithm does not work for non-
idealized images taken by some camera. The following adjustments of the image wi l l deal 
with most of the problems, which wi l l be shortly mentioned. 

A l l the theoretical background except the last section is drawn from [1] if not said 
otherwise. 

As introduced in Chapter 3, the digital gray-scale image has integer values. A l l 
the spectra computed as defined in the Chapter 3 have non-integer values on the other 
hand. To visualize the spectra, we consider them to be digital image too. This causes 
no problem, because the cross-correlation function of real functions is also real (as proven 
in Corollary 3.25). Thus, we transform the values to fit into fitting dynamic range 
and round them. We also display al l the spectra in logarithmic brightness scale to better 
see the non-zero values. 

4.1 Input images 

A t first, let us discus the size of the input gray-scale image. Generally the N can 
be arbitrary. However, for speeding up the Fast Fourier Transform algorithm [2] used 
for computing the discrete Fourier Transform, we need the TV to be composite number. If 
N is a prime number, the number of elementary operations (a multiplication and addition 
of two complex numbers) is TV 2. If N — NiN2...Nk, NL e N , Vt = 1, 2 , k then the num­
ber of operations needed is TV Y^=i Ni- In particular, for N = 2k there is 2kN = 2N l og 2 N 
elementary operations required. Therefore, we wi l l use TV's which are divisible by higher 
power of 2, at least 16, better 256 or higher, and which are not divisible by a high prime 
number. 

If we are working with images which are smaller than NxN, we center the image inside 
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the N x N square image and surround it by black area. Let us assume that image / has 
width p and height v. Let i V e N b e previously discussed form such that p < N, v < N. 
Then we create image fc from image / by 

fc(x,y) 
Ho, V ~ vo) if Ho < x < Ho + n - 1, i / 0 < y < vQ + v - 1 

else. 

where po 
N — p N -v 

. A s shown in [1]. 

4.2 Window function 
The discrete Fourier transform works either with periodic images or makes them pe­

riodic (see Definition 3.7). A n d in general case, an image does not have the same values 
on the edges and by periodizing an image we obtain image with great jumps in values 
on the+previous edges. They often lead to incorrect results. Therefore, it is neces­
sary to ensure that the edges are smoothed out. This is done by mult iplying the image 
by suitable function so called window function. Commonly used window functions are 
the Gaussian and the Hanning window functions. They both are zero or almost zero 
on the edges and one on the majority of image interior. 

Definition 4.1. (Gaussian window function) [1] Let sets 

A = (-a,a) x (-b,b), a, 6 e , 

B = {(x,y);x2 + y2 < r 2 } , r e i j . 

Let a e R+ be a given number. Let p(X, A) be the distance of the point X = (x, y) from 
set A, i.e 

p(X, A) = inf{d eR,d = p(X, Y),Y e A}, 

where p(X, Y) is the Euclidean metric. Then function 

p2(X,A) 

wGR{x,y) a 2 

is called the rectangular Gaussian window function. Function 

_P2(X,B) 

u>cc(x,y)=e (J2 

is called the circular Gaussian window function. 

Definition 4.2. (Hanning window functional] Let sets A, B and metric p be same 
as in previous definition. Then function 

/ I ( l + c o S ^ ^ ) HP(X,A)<a, 
WHR[x,y) = < 2 V o- J 

[0 if p(X, A) > a 

is called the rectangular Hanning window function. Function 

i t p { X , B ) < e , 
u>Hc{x,y) = < 2 V o- J 

[0 if p{X,B)>a 

is called the circular Hanning window function. 
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The window functions are defined symmetrical with center in [0, 0], applied to images 
they need to be shifted by ( | , | ) , i-e. the image / is multiplied by a window function 

w [x 0" 
N 
2 ' • 

wGR(x,y),wGc(x,y) 

-a — 3cr 

Figure 4.1: Graph of a y = 0 cut of function waR(x,y),wac(x,y) for r = a, from [1] 

WHR(x,y),wHC(x,y) 

Figure 4.2: Graph of a y = 0 cut of function WHR(X, y), WHC(%, y) for r = a, from [1] 

We are using the Hanning window function in the implementation. That is due 
to the zero on the edges, which it creates. On the other hand, Gauss window func­
tion does not create zeros necessarily, it creates almost zeros, which are sufficient after all . 
However, it preserves smaller part of the image for the same a and has steeper decrease. 

As we can see at Figures 4.1 and 4.2, the choice of set A or B together with appropriate 
a is significant. W i t h wrong choice of the previously mentioned, we could end up with 
edges not even almost zero. 

The rectangular window functions keep more information of the image. However, there 
is s t i l l some information about image edges. It is not necessary to apply the same image 
function to both images, in some cases it can be even preferable to use different image 
functions, depending on the distribution of structures in the image. 

4.3 Low-pass weight function 
The usage of low-pass together with high-pass weight functions is very good way 

to get r id of the influence of additive noise and variable impulse noise. They also reveal 
hardly visible structures in high dynamic range image. Noises are mainly represented 
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in the highest spatial frequencies of the image spectra, hardly visible structures (for ex­
ample largest-scale structures such as optics vignetting and diffuse light in the optical 
system) are mainly represented in the lowest spatial frequencies of the images. We use 
the low-pass weight function to suppress the highest spatial frequencies of the image 
and the+high-pass weight function to suppress the lowest frequencies. The way of using 
these weight functions is to multiply the Fourier spectra by them. 

However, the high-pass weight function is mentioned only for completeness, it is not 
used in the implementation. It might seem that it is not necessary to use the low-pass 
weight function too. In artificially made images, there is no additive or variable impulse 
noise. But as we can see in the program, the Gaussian low-pass weight function (see 
Definition 4.4) helps to bring up the peaks of the phase-correlation function and it helps 
with more precise computation of sub-pixel shifts too, as wi l l be mentioned later. 

Definition 4.3. (Low-pass high-pass weight functional] Let r-y, r 2 , <7i, <r2 € M + such 
that r l < r 2 . Function Hrij(71(£,rj) : M2 —> (0,1) defined as 

( f 2 

1 + cos — ^ ~ 

\ J 

if (n-a1f<—(e + V2)<r2

1 

else 

is called high-pass weight function. Function HT2'a2(£,r)) : M 2 —> (0,1) defined as 

4 

/ 
7T 

1 + cos 
a2 

\ 

i f r 2 < — ( £ 2 + 7 7 2 ) < ( r 2 + cr 2) 2 

/ 
0 else 

is called the low-pass weight function. Function H^'^(^,rj) : M 2 —> (0,1) defined as 

(£, 77) = Hruai (£, 7/) • IT*"* (£, 7/) 

is called the low-pass high-pass weight function. 

The low-pass high-pass function can be seen in Figure 4.3. 
Further, we wi l l consider only the low-pass weight function, because (as mentioned) 

we are using only it in the program. The alone low-pass weight function can be seen 
in Figure 4.4. 

Like window function, the low-pass weight function is defined symmetrical with center 
[0,0]. Appl ied on images, it needs to be shifted by ( y , y ) , i.e. we multiply the Fourier 
spectra of the images by function Hr2'a2 (£ — y , 77 — y ) . 

It is possible to use different weight functions on each image. For instance, we can 
estimate different additive noises in images in some cases. However, choosing appropriate 
parameters is complicated and it is usually done manually. 

In most cases, the computed shifts are not less precise, if we apply the low-pass function 
only once on the normalized cross-power spectrum of the images (the reason why it is 
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Figure 4.3: Graph of a 77 = 0 cut of function i J ^ 2 ' ^ 2 ^ , 77), shown in [1] 

A 

Figure 4.4: Graph of a 77 = 0 cut of function Hr2'a2(^,r]) 

used the normalized spectrum wi l l be explained later). It fastens the computations and it 
enables us to avoid dividing by zero. Then the formula for modified phase correlation is 

/ F(Z,V)-G?(Z,V) \\ 

\m,v)\-m,v)\J) 
which remains real due to Corollary 3.25. 

If there is no need to use low-pass function (as in our case with no additional noise 
in artificial created images), it can be replaced by the Gaussian low-pass weight function. 

Figure 4.5: Details of peaks of the phase-correlation function (normalized autocorrelation 
function) with Gaussian low-pass weight function applied to the normalized cross-power 
spectrum, where A = 2,4, 8 , 1 6 , 1 0 2 4 
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Definition 4.4. (Gaussian low-pass weight functional] Let A e M Q . Function 
Hx(£,ri) : M 2 —> (0,1) defined as 

is called the Gaussian low-pass weight function wi th parameter A. 

Influence of the A parameter of the Gaussian low-pass weight function is illustrated 
in Figure 4.5. 

4.4 Finding shifts of shifted images 
As said, we wi l l find the shifts of shifted images at first. Let us summarize all the mod­

ifications and algorithms and after that, let us describe particular steps. The further 
described algorithm is the algorithm used in the program executed after uploading the in­
put images (best in *.bmp format) and after clicking on button F ind t r a n s l a t i o n only. 

The method is taken from [1]. 
A l l the methods and procedures used to find shifts of shifted objects were developed 

by prof. Miloslav Druckmiiller. 
Let us denote / , f s h to be input images, which we are finding the shift of. For com­

puting the Fourier transform, we wi l l use a square N x N (where N is an even number). 

1. Mult ipl icat ion of the images f,fsh by Hanning window function, obtaining images 
fwi fsh,w 

2. Centering images f w , f s h , w in the square N x N pixels, obtaining images fc, fsh,c 

3. Computing the normalized cross-power spectrum Z f c j s h c of images fc,fsh,c 

4. Mult ipl icat ion of Zfcjsh c by Gaussian low-pass weight function, obtaining function 
Z w 

5. Computing the modified phase-correlation function as inverse discrete Fourier trans­
form P of Zw 

6. Finding the shift vector (—xo, —yo) as the coordinates of the global maximum 
of function P i.e. the coordinates [XOJZ/O] 

B y the choice of first applying the Hanning window function before the step 2, we 
are choosing to make the most of the image unchanged. We could swap the steps 1 and 
2, but this way, we are keeping more information. In the program we can manually set 
the window function's parameters. 

The normalized cross-power spectrum assures, that all the spatial frequencies are 
brought to consideration with same weight. There could occur problem with division 
by zero though. This problem appears in pixels with some of the spectra zero valued. It 
is treated in the program. When it comes to division by zero, there is no dividing at all 
and we consider just the cross-correlation spectrum value in this pixel. This does not lead 
to mistakes in finding shifts, because the value remains zero. 

We also use the normalized cross-power spectrum to follow shifts of multiple objects 
in image, despite the fact that there is no theoretical justification as in case of finding 
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shift of shifted images. It does not bring as clear result as the Dirac impulse. But it is 
beneficial too, because it helps to get the peak in correlation function to be steeper, which 
leads to better recognition of similar shifts. 

For the fourth step in the algorithm, we are choosing the A of the Gaussian low-pass 
weight function. The form of the parameter is A = 2 a and we are manually setting the a. 

Step five is executed as defined in the Definition 3.5. 
The output generated by the last step are the integer coordinates of the maximum 

valued pixel. The shift vector can be more precise (sub-pixel) by bringing to consideration 
even the neighbouring pixels. This wi l l be more precisely described in following section. 

It can happen that the shift vector is incorrect. It can be solvable by manual change 
of the low-pass weight function parameter. 

4.5 Sub-pixel precision 
This section derives from [1]. 
According to shape and values of the neighbourhood of the peak, there can be more 

precise estimation of the shift than only integer valued position of the global maximum. 
We use the method based on geometric moments in the program. The sub-pixel 

precision estimate (x0,y0) of the shift vector is computed as 

/ M 1 > 0 M 0 , i \ 

where M f c j Z is the geometric moment computed over a circle with center [x0, y0] and radius 
e e R+, i.e. 

M M = J2J2 xkylp(xo + x,yo + y), k,i — 0, l, 
x2+y2<e 

where P(x, y) is the modified phase correlation function computed in the algorithm in Sec­
tion 4.4. 

The parameter e needs to be manually set in the dependency on the size of the non­
zero area around peak and its shape. The e-area taken in consideration in the calculation 
is shown in the thumbnail. 

4.6 Following of multiple objects movement 
Theoretical results for Finding shifts of multiple objects in image are in Theorems 2.30, 

2.31, 3.37 and 3.38. They all assume that objects are identical but shifted (as defined 
in Definitions 2.9 and 3.18). 

So we are looking for local maxima in the modified phase correlation function computed 
by the algorithm introduced in Section 4.4. This part is more up to user than the previous 
parts. In the images with just one shift-vector, it is usually not so difficult to find the global 
maxima. In the case of Following of multiple objects movement, there could be a lot 
more incorrect results (i.e. local maxima which are not representing any shift vector, 
but for example the similarity of the objects). Thus, it is up to user to decide whether 
the result is the one which is wanted. 

As is shown in the Theorems 3.35 and 3.36, the phase correlation function is periodic 
as result of periodicity or periodization of the input images in process. The peaks farther 
from the [0,0] are representing the periodized objects shifts. There are no obstacles 
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in Following of multiple objects movement, though. That is due to the fact, that the phase 
correlation function has lower values farther from the [0,0]. In other words the local 
maxima close to the [0, 0] have higher values than the ones farther. 

This allows us to follow the multiple objects movement without high complexity 
of the computations. The first shift vector is found as global maxima of the phase correla­
tion function (and wi th sub-pixel precision). The next shifts are found after transforma­
tion of the phase correlation function. The peak found in previous step must be deleted. 
That is performed by setting of the values of the peak and the pixels surrounding it to ^ 
of the peak value. The size of the deleted surroundings is manually set by the user. 
The next shift is then found as the global maximum of the transformed phase correlation 
function. 

The program used to implement the algorithm of Following multiple objects movement 
was developed by prof. Miloslav Druckmiiller and then modified. A l l the adjustments were 
made in units FFT and MainFormPhaseCorr. 

The algorithm is executed by clicking on button F ind m u l t i p l e object t r a n s l a t i o n 

as follows: 
Let us denote / , g to be input images, which we are following the multiple objects 

movement in. For computing the Fourier transform, we wi l l use a square N x N (where 
N is an even number). 

1. Mult ipl icat ion of the images f,g by Hanning window function, obtaining images 

2. Centering images fw,gw in the square N x N pixels, obtaining images fc,gc 

3. Computing the normalized cross-power spectrum Zfcj9c of images fc, gc 

4. Mult ipl icat ion of ZfC!gc by Gaussian low-pass weight function, obtaining function 
Zw 

5. Computing the modified phase-correlation function as inverse discrete Fourier trans­
form Pi of Zw 

6. Finding the shift vector (—xi,— yi) as the coordinates of the global maximum 
of function Pi i.e. the coordinates [xi,yi] 

7. F inding the estimate of the sub-pixel shift vector by the geometrical moment method 
(see Section 4.5), obtaining estimate (—Xi, —y~i) 

8. Deleting the peak [£1,2/1] together with its e surroundings, if F ind next 
transformation is executed, obtaining transformed function P2 

9. Finding the shift vector (—x2, —y2) as the coordinates of the global maximum 
of function P2 i.e. the coordinates [x2,y2] 

10. Finding the estimate of the sub-pixel shift vector by the geometrical moment method, 
obtaining estimate (—x2, —y2) 

We can repeat the steps 8.-10. after executing the F ind next transformation, if we 
are not satisfied with the results or if we need to find next shift. A l l found shifts are 
recorded. The program can be seen in Figure 4.6. 

55 



Figure 4.6: Program at work and with thumbnail after deleting the first global maximum 

As mentioned above, it is possible to get the result which does not represent any 
of the shift vectors. In the Following of multiple objects movement, we can not revise 
it just by changing the low-pass weight function's parameter. It is due to the fact, that 
the phase correlation function needs to be recomputed after the parameter change. This 
would lead to restoration of all the deleted maxima. That would obviously compromise 
the process. Thus, while obtaining result, which is not representing any of the shift 
vectors, we are just looking for another shift, ignoring the incorrect result. 

Figure 4.7: Illustration of incorrect shift search due to the similarity of the shift vectors. 
The shift vectors of the objects are (17,4; 3, 8) and (20; 3, 8). Images illustrate the cuts 
of the phase correlation function with parameters of Gaussian low pass function equal to 4, 
8, 16, 32, 64 (from the left). Clearly, the peaks of the last one are not distinguishable 
from each other 

There are also restrictions on the form of image to proper work of the algorithm. 
As mentioned in the theoretical bases, the shift vectors need to be sufficiently different, 
or the peaks wi l l merge and the algorithm can not distinguish them. On the other hand, 
if they are not sufficiently different and neither are almost the same, the shift vector 
of the almost merged peaks wi l l be incorrect (it wi l l be almost correct but not very 
precise). This is illustrated in Figure 4.7. 
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[-10,02; 12,98] 

Figure 4.8: Illustration of incorrect shift search due to the similarity of the objects (they 
are same in this case). O n the left are input images (master image on the top, image 
with shifted objects on the bottom) with shift vectors (17,4; 3,8) and (—17,4;—3, 8). 
The shifts are not clear, but from the found two shifts there have to be chosen the related 
ones 

Other problem mentioned in the Theorem 2.30 may occur if some of the objects are 
similar or even same up to shift. This leads to creation of high local maxima as well. 
It is up to the user to judge which shifts are relevant in this case. This is illustrated 
in Figure 4.8. 

There could also be another instance of incorrect shift search if the shift is too large. 
This means that if the shift of the object is greater than | or | in dependence of relevant 
axis, i.e. if the shift is greater than the half of the size of image / . Due to the periodicity 
of the function and due to the fact, that the maxima closer to [0, 0] are greater than 
the farther ones, there would be found a local maxima which is not linked to any shift. It 
is again up to user to decide, whether the found shift is relevant or not. This can be seen 
in Figure 4.9. 

Due to the above mentioned problems and needs of user's judgement, it is clear that 
the process of Following the multiple objects movement by means of cross correlation can 
not be automatized. 
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[-73,07;-19,70] 

[-39,88; 24,99] 

Figure 4.9: Illustration of incorrect shift search due to the too large shift. O n the left 
are input images (master image on the top, image with shifted objects on the bottom), 
the size of the images is 128 x 128 and shift vectors of the shifted objects are (39, 8; —25, 6) 
and (80; 75). The lower peak clearly does not correspond to any of the shift vectors. 
Neither there is peak representing the second shift vector in next found coordinates in this 
case 

4.6.1 Testing precision on simulated data 

The testing of the precision of implementation was executed on more the 30 artificially 
made testing images. For the simplification of the image creation, the original objects 
are white shapes on the black background. They were individually shifted by prede­
fined shifts into all combinations of basic directions. The sub-pixel shifts were realized 
on the first decimals and by means of bilinear interpolation. The shifted objects were 
summed as defined in the Definitions 2.8, 3.17 with particular emphasis on them not 
to overlap and by the rules for the algorithm best to work as mentioned above. Most 
of the images consist of two objects however, there are also images with only one object 
or wi th three objects. 

A l l the testing images are square with size N = 128 and they are enclosed on the C D . 
There is one master image (reference image, which are al l the shifts related to) named 
C_0_0 S_0_0 T_0_0 .bmp or just with part of the name. The letter represents the shape 
(C for circle, S for square, T for triangle), first number attached to letter represents the shift 
in x axis, the second number in y axis. There are another images with shifted objects 
with known shifts described in their names as explained. 

The testing was executed with sub-pixel method mentioned in the Section 4.5. The best 
estimations of the first shifts were performed by individual choices of low-pass weight func-
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tion's parameter and e-surroundings to best fit the known shifts. 
However, the next shifts search can be affected only by the choice of the e-surroundings. 
On the contrary to the Finding the shifts of shifted image (which can be performed 

precise up to the third decimal), the Following of multiple objects movement is precise 
only to the whole pixels. There were deviations up to 0, 8 in all directions and even 
in coordinates of the first peak, which could not be improved even by altering of both 
mentioned parameters. 
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Chapter 5 

Conclusion 

The main goal of this thesis was to describe the method of Following the multiple 
objects movement by means of cross correlation, to generalize it for two and more objects 
and to implement it. 

The second chapter introduces the continuous Fourier transform and the inverse Fourier 
transform. There are presented the concepts of the shifted functions, the objects in the func­
tion and the function with shifted objects. There is also shown the impact of the Fourier 
transform applied to the shifted functions and the function with shifted objects consider­
ing the original functions. The convolution and the concept of cross correlation are also 
introduced in this chapter. We are introducing the cross-correlation function of shifted 
function in order to find their shift. Then we generalize it for two and more objects 
and show, that it can be used to follow the multiple objects movement. The second chap­
ter serves to basically define all the notions mentioned above by means of the Functional 
analysis. 

The third chapter presents all concepts of the first chapter in the discrete case. It is nec­
essary to work with digital images, which are the discrete analogy of continuous function. 
There is also presented the periodization of the function essential for work with shifted 
images. We are introducing the cross-correlation function of shifted images in discrete 
case as well. There is also proven, that the discrete cross-correlation function of func­
tions with shifted objects can be used to find their shifts. Which is the theoretical base 
for further implementation. 

The fourth chapter describes the implementation of the aforesaid principles. A t first, 
we are introducing the algorithm of Finding shifts of shifted images. The form of the in­
put images is pointed out, especially their size and the window function and low-pass 
weight function, which have to be applied to the images. Furthermore, we are introduc­
ing the algorithm of Finding shifts of shifted images. This algorithm leads to the algorithm 
of Following the multiple objects movement directly. There are also shown the problems 
connected to the algorithm, primarily including the form of input images. Thus, we jus­
tify the statement, that the process of following of multiple objects movement by means 
of cross correlation can not be automatized. Lastly, we are testing the precision of the al­
gorithm and finding out, that it computes with precision in whole pixels on the artifi­
cial made images. That is the degradation of the precision performed by the algorithm 
of Finding the shifts of the shifted images. 
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Used symbols 

N the set of natural numbers 
Z the set of integer numbers 
K. the set of real numbers 
C the set of complex numbers 
£ ( M 2 ) space of all functions M 2 —y C with finite integral of | / | 
C1 class of continuous functions with continuous derivatives 
a* the complex conjugate of a e C 
|_aj the integral part of real number a 
J7 the Fourier transform, see Definition 2.3 
J 7 - 1 the inverse Fourier transform, see Definition 2.4 
T> the discrete Fourier transform, see Definition 3.4 
T>~x the inverse discrete Fourier transform, see Definition 3.5 
f(x,y),g(x,y) functions from £ ( M 2 ) or functions { 0 , 1 , N — l } 2 —y M, 

J V e N 

N size of the domain of functions defined on { 0 , 1 , N — l } 2 

—y M , N e N , N is supposed to be even number 
fi(x,y) objects of the functions, see Definitions 2.8,3.17 
n number of objects in the function, see Definitions 2.8,3.17 
fsh,fi,sh shifted functions of functions / , s e e Definitions 2.6,3.13 
F ( £ , 77), G(£, rf) the Fourier spectra of functions f(x, y),g(x, y), see 

Definitions 2.3, 3.4 
Fj(^, T]) the Fourier spectra of objects / , 
Fsh(£, r]), FitSh(£, r]) the Fourier spectra of shifted functions fsh, fitSh 

(xi, yi) the shift vector of object fi:Sh, or shift vector of shifted 
function fsh, see Definitions 2.6, 3.13, 2.9, 3.18 

f * g the convolution of functions / , g, see Definitions 2.19, 3.26 
/, g, fi the periodization of functions / , g, fi: see Definition 3.7 
Gf,g(£,v) the cross-power spectrum of functions f,g, see 

Definitions 2.24, 3.30 
Zf,g{£>-iri) the normalized cross-power spectrum of functions / , g, see 

Definitions 2.24, 3.30 
Qfj9(x,y) the cross-correlation function of functions / , g, see 

Definitions 2.25, 3.31 
Pft9(x,y) the phase correlation function of functions / , g, see 

Definitions 2.25, 3.31 
5(x,y) the Dirac distribution, see Definition 2.2 
d(x, y) the discrete impulse function, see Definition 3.34 
fx, v the width and height of the input image, see Section 4.1 
WGR,WGC,WHR,WHC Gaussian and Hanning, rectangular and singular window 
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functions, see Definitions 4.2, 4.1 
A the parameter of Gaussian low-pass weight function, see 

Definition 4.4 
fc,gc, fsh,c the centred input images surrounded by black ctr6ct, S66 

Section 4.1 
(xi,y~i) the sub-pixel estimation of shift vector, see 

Section 4.5 
e the radius of the surroundings of the peak in sub-pixel peak 

search, see Section 4.5 
e the radius of deleted surroundings of the peak, see 

Section 4.6 
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Appendix 

C D with program in Delphi 7 and with testing images in * . bmp. 
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