Palacky University Olomouc, Faculty of Science,

Department of Geoinformatics

Paris Lodron University Salzburg, Faculty of Natural Sciences,

Department of Geoinformatics

DEVELOPMENT OF A GEOREFERENCED EYE-
MOVEMENT DATA CREATION TOOL FOR
INTERACTIVE WEB MAPS

Diploma thesis

Minha Noor SULTAN (B.E.)

Supervisor (Palacky University Olomouc)

RNDr. Stanislav POPELKA, Ph.D.

Co-supervisor (Paris Lodron University Salzburg)

Prof. Dr. Josef STROBL

Erasmus Mundus Joint Master Degree Programme
Copernicus Master in Digital Earth
Specialization Track Geovisualization & Geocommunication

Olomouc, Czech Republic, 2021

m P .
& @ | s B i e sopon e
Olomoue @ lsj of the European Union

COPERNICUS MASTER
IN DIGITAL EARTH

ANNOTATION

This thesis study focuses on the development of a utility tool for the analysis of eye-
tracking data recorded on interactive web maps. The tool simplifies the labour-intensive
task of frame-by-frame analysis of screen recordings with overlaid eye-tracking data in the
current eye-tracking eco-systems. The tool’s main functionality is to convert the screen
coordinates of participant’s gaze to real world coordinates and allow exports in commonly
used spatial data formats. This study explores the existing state-of-art in an eye-tracking
analysis of dynamic cartographic products as well as the research and technology aiming
at improving the analysis techniques. The product of this thesis, called ET2Spatial, is tested
in depth in terms of performance and accuracy. Several use-case scenarios of the tool are
demonstrated in the evaluation section, and the capabilities of GIS software for visualizing
and analysing eye-tracking data are investigated. The tool and associated pilot studies aim
to enhance the research capabilities in the field of eye-tracking in Geovisualization.

KEYWORDS
Utility; eye-tracking; georeferencing; interactivity; user-logging; GIS
Number of pages: 73

Number of appendixes: 4

This thesis has been composed by Minha Noor SULTAN for the Erasmus Mundus Joint
Master’s Degree Program in Copernicus Master in Digital Earth for the academic year
2019/2020 at the Department of Geoinformatics, Faculty of Natural Sciences, Paris Lodron
University Salzburg, and Department of Geoinformatics, Faculty of Science, Palacky
University Olomouc.

Hereby, I declare that this piece of work is entirely my own, the references cited have
been acknowledged and the thesis has not been previously submitted to the fulfilment of
the higher degree.

May 20, 2021 Olomouc. Minha Noor SULTAN

I would like to thank my supervisor Dr. Popelka for his timely support and advice
throughout my work and my co-supervisor Prof. Strobl for his insightful consultation.
I would also like to extend a thank you to the participants who took part in the experiments
which helped me evaluate the usability of the tool. In addition, I would like to thank Ondfej
Riizicka for allowing me to extend his past diploma work as an asset in my current study.
Lastly but most importantly I would like to thank my family for supporting my ambition
of higher education.

Palacky University Olomouc

Faculty of Science
Academic year; 2020/2021

ASSIGNMENT OF DIPLOMA THESIS

(project, art work, art performance)

Name and surname: ~ Sultan MINHA NOOR

Personal number: R200676

Study programme: N0532A330010 Geoinformatics and Cartography

Field of study: Geoinformatics and Cartography

Work topic: DEVELOPMENT OF A GEOREFERENCED EYE-MOVEMENT DATA CREATION TOOL FOR INTERACTIVE WEB MAPS
Assigning department: Department of Geoinformatics

Theses guidelines

The aim of the thesis is to develop a tool that will allow recording eye-movement data during observation of an interactive web map. The tool will convert
the eye-tracker?s coordinates into real-world coordinates. It will allow geolocating the gaze position and ease the analysis of eye-tracking data, which
has to be done manually so far. The functionality of the tool will be proven on the example of several case studies. E.g. free-viewing, task solving with the
map, digitalization using the sight etc. The output of the thesis will be the developed tool as well as the results of case studies. The student will attach all
the collected datasets and all the animations to the thesis in digital form. The student will create a website about the thesis following the rules available
on the department?s website and a poster about the diploma thesis in A2 format. The student will submit entire text (text, attachments, poster, outputs,
input and output data) in digital form on a storage medium and the text of the thesis in two bound copies to the secretary of the department.

Extent of work report: max, 50 pages
Extent of graphics content: as needed
Form processing of diploma thesis: printed
Language of elaboration: English
Recommended resources:

Holmaist, K., Nystrom, M., Andersson, R., Dewhurst, R,, Jarodzka, H., & Van de Weijer, J. (2011). Eye tracking: A comprehensive guide to methods and
measures. Oxford: Oxford University Press.

Bojko, A. (2013). Eye tracking the user experience: A practical guide to research. Brooklyn: Rosenfeld Media,

Qoms, K, Coltekin, A., De Maeyer, P., Dupont, L., Fabrikant, S., Incoul, A, . . . Van der Haegen, L. (2015). Combining user logging with eye tracking for
interactive and dynamic applications. Behavior research methods, 47(4), 977-993.

Herman, L, Popelka, S., & Hejlova, V. (2017). Eye-tracking Analysis of Interactive 3D Geovisualization. Journal of Eye Movement Research, 10(3), 1-15.
doi:10.16910/jemr.10.3.2

Gobel, F., Kicfer, P., & Raubal, M. (2017, May). FeaturEyeTrack: a vector tile-based eye tracking framework for interactive maps. In Societal Geo-Innovation:
Short Papers, Posters and Poster Abstracts of the 20th AGILE Conference on Geographic Information Science. Wageningen University and Research (pp.
9-12).

Supervisors of diploma thesis: RNDr. Stanislav Popelka, Ph.D.
Department of Geoinformatics

Date of assignment of diploma thesis: ~ November 9, 2020
Submission deadline of diploma thesis: - May 6, 2021

UNIVERZITA PALACKEHO V OLOMOUCE
PRIRODOVEDECK A FAKULTA

LS.

doc. RNDr. Martin Kubala, Ph.D. prof. RNDr. Vit Vozenilek, CSc.
Dean Head of Department

Olomouc December 14, 2020

CONTENT

LIST OF ABBREVIATIONS ..iuiitiiiiiiiiiiieiiiiniiunieiiiaiiesrasesnssassssessssnse sos 9
INTRODUCTION uuciiitiniintiniiniieiiiiieitietietittttstsssiecntimmescatssssssessescnsensans 10
1 OBJECTIVES..iiiinninnuinsensisssissssssissssssssssssssiss 11
2 METHODOLOGY .12
2.1 SOIULION PIrOCESS .. .eeuviiiiieiieiieeite ettt et st 12

2.2 Data COllECION.eeeiiiiieiie ettt ettt ettt eaeeas 13

2.3 Used teChNOIOZIEScocuvieiiieiieiiieieeciee ettt ettt st enee s 14
STATE OF ART ..uucuuiiiuineinensninsnisessansssnssessassssssss 16

4 TOOL CREATION .19
4.1 User INteraction dataccoeoeeiiieiiiiiiieiieee ettt e 20

4.2 Eye-tracking datacocooiiiiiiiiiiieeieeeee e 22
4.2.1 RAW ZAZC POINLS ...eieureriiieiieeieeiieeieeieeereesteessreeseesaaeeseessseenseessseesseensns 23

4.2.2 FiXation POINTS ..eecviriciieeiiieesieeeiieeeeteeesieeeeteeesseeessaeeeaeeessseeessseeessseeas 24

4.3 Data Synchronization (SttChING)c.ccoveeiiiriiririiniericienereeeeteeeee e 25

4.4 Datd CONVEISIONeeriiiiiiiiieeieenite et eit et e st et e este e bt e sate e bt e e bt enbeesabeesbeesnneeeee 27
4.4.1 APPIOACH 1.ooiiiiiiiiiiciie e e 27

4.4.2 APPIOACH 2. e eae e e s 28

4,43 APPIOACh 3o e n 29

4.5 Datd EXPOTES ..ccuiiiiiiiiiiiieiieeie ettt sttt 31
4.5.1 GEOJSON ...ttt et s 32

4.5.2 SRhaPefile ...oooeiiieiiieee e s 33

4.6 Graphical User INterfacecooevviiriiiiiiiiniiniiiceceeeseeeeeteseere e 35
4.6.1 Desi@ning LayOUL.......cccueeiuieiiieiiieiieeiie ettt 36

4.6.2 Connecting fUNCHIONSeeeiieeeriieeiiie et e eireeeaeeeereeesaeeeeereees 37

5 TOOL EVALUATION 41
5.1 OULPUL ACCUTACY ..eeeuviieeiiieeiieeeiie ettt site et eesteeeseteeesebeeesaeeessaeesssaeensseesnnseeenns 41

5.2 ToOl PErfOrMANCEeeeviieeiiieeiieeeee e et bee e e e snee e 42

5.3 Use-case demMONSIIAtIONcceeeuieruieeiieniieeiie st eieeeeeeieeseteeteesiteesbeeseteeseesaneens 43
5.3.1 EXPEriments SETUPcceeeureriierieeiieeieeite et esite e esite e eseeeeseesnaeenseees 44

5.3.2 ViISUALIZALIONSeoiiiiiiiiiiieiieeie ettt 44

533 TaSK Q6. et 51

5314 TaSK 02 e 55

5.3.5 TaSK 03ttt 60

5.3.6 0 TaSK O4..eeeiiiieeee et e 65

6 RESULTS .cootiiitictineniicnisenssecssicessstcssessssssesssessssssessssssssssesssessassssssssssasssssssessassaes 68
6.1 ET2SPatial....ceiiiiiiieiiiecieecee et e e eaee e 68

0.2 SAMPIE USE-CASES....ueerurieiieeiiieiieeieeite et eteeeteebeeeteeteeseaeebeesabeeseesssesseessnaans
DISCUSSION.cuiiierennnnsanssssanssssssssssssssassasssssssssssssssssssssssssssasssssssossssssssssssssssssssssssossss
CONCLUSION .cuuiuiuicricricrissesssssssssssssssisssoses
REFERENCES AND INFORMATION SOURCES
ATTACHMENTS

LIST OF ABBREVIATIONS

Abbreviation Meaning

ET Eye-Tracking

API Application Programming Interface
CRS Coordinate Reference System

GCS Geographic Coordinate System
PCS Projected Coordinate System

GUI Graphical User Interface

JSON Java Script Object Notation

SHP Shapefile

CSv Comma Separated Values

EXE Executable file

IPYNB IPython Notebook

XML Extensible Markup Language
CMD Command Line

IDE Integrated Development Environment
DF Data Frame

MT MapTrack

DBF Data Base File

SHX Shape Index Format Extension

INTRODUCTION

Eye-tracking in the field of cartography has been active in the last few decades
particularly as the main pillar of cognition in geographic visualization. Usability analysts
employ gaze locations as a mechanism to derive insights into where the user focuses more
while reading a stimulus. This stimulus tends to be mostly static maps when it comes to
cartography. With the evolution of techniques in geovisualization and technology itself,
however, these stimuli have also evolved over time from analog to digital and from static
to dynamic. The interactive stimuli hence pose their own challenges when it comes to
evaluating their usability through eye-tracking techniques.

Interactive online maps have proliferated in recent decades to a very high extent of
usage frequency. Not only do these correspond to standout navigation platforms such as
Google Maps or Mapy.cz but also to numerous everyday web applications making use of
web mapping services and APIs. As such, evaluation of these interactive stimuli in an easy
and efficient way, from a human cognition perspective becomes an important topic to
explore.

Unlike static maps, the depicted content of the map in an interactive environment is
dependent on various factors which change drastically as soon as interaction is performed,
such as pan or zoom. Although the present-day eye-tracking systems provide tools for the
evaluation of an animated medium, it is not efficient for the evaluation of a web map for a
variety of reasons. First, the output reflects the screen coordinates through a recording of
the user’s interaction with the map. And to do a detailed analysis of the features and
variables on the map at different scale levels would be very labor-intensive as it would
require frame-by-frame evaluation. In addition, these screen coordinates do not have the
capability to provide intuition from a spatial perspective. Secondly, in most usability
studies, more than one participant is involved in experimentation since the map-reading
task can vary between different individuals. Comparison of data from different users’ eye-
tracking experiments is only possible through exhaustive manual efforts in traditional eye-
tracking software.

10

1 OBJECTIVES

The aim of the thesis is to develop a tool that will allow recording the eye-movement
data observed during interaction with a web map and store them as spatial data. The main
functionality of the tool will be to convert user’s gaze positions on a map to real-world
coordinates. The tool will allow easier analysis of eye-tracking data in the realm of
interactive online maps. Through individual spatial data exports from the tool, the
visualization and comparison of multiple user’s data simultaneously on a basemap will be
made more feasible. In summary, the project aims to simplify the task of eye-tracking
evaluation techniques on web maps by creating an application that takes factors like zoom
level and pan operations on the map into account.

The ambition is to build a tool that can extend previous research and development at
the Department of Geoinformatics, Palacky University Olomouc, and which suits the
existing setup of the Eye-tracking lab but at the same time enable room for additional
functionalities and allow independent cost-free usage by researchers under a public license.

A part of this study is to explore existing solutions pertaining to eye-tracking and
usability testing for interactive web maps, particularly automated solutions, and their
distinction in comparison to the current study. The study will touch on different approaches
for coordinate conversions as well as methods used for accuracy assessment.

The tool will be evaluated in terms of functionality as well as the quality of output. The
usability of the tool will be tested through the example of multiple visualizations and case
studies. The study will also tackle a non-conventional approach of inspecting eye-
movement data as spatial features, subjecting them to traditional spatial operations and
comparing them to standard techniques provided by eye-tracking software and hence the
applicability of spatial functions on the eye-tracking data will be gauged. The final output
will be an open-source desktop application with a simple GUI. A guide will be compiled
on the usage of the tool as well as on its scalability in terms of functionality and code.

11

2 METHODOLOGY

The solution to any problem starts with the identification and detailed research of the
subject matter. For the case of this diploma thesis, the discovery process of the problem
involved the usage of current software and methodologies available in the eye-tracking
laboratory. After the assessment of the techniques in place for the evaluation of web maps,
the problem was identified formally, and the overall concept of the study was formulated.
The introduction section explains the context in detail. The next step was to recognize the
group, concerned with the subject at hand, as end users and enlist their requirements. This
is where the specifics of the solution were consulted with the supervisor. Decisions
regarding the type of the end product, the inputs, and the outputs were made. Although
unconventional, the research on the technicalities of existing automated solution(s) such as
applications was done after setting up a framework for this study which resulted in a benefit
that no direct inspiration was taken from it rather it was used to provide insight on a similar
subject with different approach.

2.1 Solution Process

An executable file with a graphical user interface was chosen for the end product
instead of a command-line interface application. Considering the scope and designated
time for the thesis, the tool was planned to be compatible with the well-known technologies
first, for inputs and outputs. In order to start programming the tool, sample data was needed
to work with. The next section on Data Collection elaborates on how this sample data was
collected.

A scripting environment was then set up by installing the appropriate technologies on
the local system. The used technologies are further mentioned in section 2.3. Based on the
designed architecture of the system, the first task was to synchronize all the collected
datasets and determine the most efficient methodology for that. Before that, each of the
datasets were pre-processed and organized through the code. The eye-tracking data, after
synchronization with the user interaction data, was compiled in one place. Several logics
and formulas were separately tested in a script for the conversion of screen coordinates to
geographical coordinates. On each of these approaches, testing was performed to check
which one had the highest accuracy and which was later adopted for the tool itself. The
next task focused on determining suitable methods for the conversion of the new data files
to the desired output file formats.

Once the script was functional and giving expected output, a GUI was designed. The
tool was given the name ‘E72Spatial’ accompanied by the design of a logo. The GUI was
programmed and stitched to the main code and compiled afterward as a stand-alone exe
file.

The final objective, which was to demonstrate use cases, was done by collecting more
participants’ data in the eye-tracking lab and processing this data in GIS software.

12

@

Research

© Identify problem
v
Set parameters for study
v
Explore existing solutions

Sample Data Collection

Eye-tracking experiment
h 4
MapTrack tuning

Tool Progrqmming

Environment Configuration
—

v
Application Architecture
v
> Coordinate Conversion
-_—— v
Spatial Data export
v

Accuracy testing
Gui programml'ng

Tool Testing
Performance testing
User—fZedback
lmprovemvents in tool

b:/

Use-case demonstration

Eye-tracking (Map tasks)
v
Geovisualization
v

Analysis

A 4

Figure 1 Process Timeline.

2.2 Data Collection

The programming of the tool required initial data to work with, which consisted of eye-
tracking data and the user interaction data. This sample data was collected for one
participant only.

MapTrack

User interaction refers to the tactile input by the user, such as key presses, mouse clicks,
zoom, or pan. The user interaction data was exported through MapTrack. MapTrack is an
online application developed at the Palacky University by Ruzicka (2012). The application
logs basic map actions such as map center coordinates, zoom level, and time.

Eye-tracking
The initial experiment was done in the eye-tracking lab at the Department of
Geoinformatics, Palacky University. The data was recorded through SMI RED 250 eye-

tracker and was exported through the SMI BeGaze software. The data mainly consisted of
two exports pertaining to the raw data points, and the fixation data points.

13

2.3 Used technologies

For the creation of the tool, multiple technologies were used. ET2Spatial was made in
python along with several supporting modules as enlisted below:

Python

Python is a high-level interpreted programming language. This language was selected
as a programming medium because of familiarity, its simpler learning curve, and its large
pool of third-party packages for all kinds of disciplines. Python version 3.8 was installed
on the local system.
Pip

Pip is a tool that helps in the easy installation of python packages. It usually comes with
the python language installation and is called through cmd. All the python packages
mentioned in the technologies were installed through pip.

Pandas

Pandas is a python package that allows for efficient data manipulation and analysis.
Since this study was focused on manipulation of eye-tracking and user interaction data,
Pandas was an effective resource in building of the tool.

NumPy

NumPy is a python library that brings high-level functionality for arrays and
mathematical functions in the python code. For the thesis, NumPy was employed to execute
mathematical formulas in the code.

xmltodict

xmltodict is another module in python that simplifies parsing and working with xml
data structures. The version installed by pip and used by the tool was xmltodict 0.12.0.
PyShp

PyShp is the python shapefile library that allows for ESRI shapefile reading and
writing. The PyShp version 2.1.3 was used. It was employed for the file format conversion
and export.

geojson

Geojson is a python library that helps encode and decode GeoJSON data. Geojson
version 2.5.0 was used for this project and was also employed in one of the file exports for
the ET2Spatial tool.

PyQTS5S

PyQTS5 is a python binding for QT v5, a comprehensive set of C++ libraries that enable
modern mobile and desktop interactive functionalities. In this study, PyQTS5 was used to
develop a GUI. PyQTS5 version 5.15.2 was installed through pip and used in code.

14

PyInstaller

Pylnstaller is a python module that packages the python script into an executable file
by reading all the dependencies. This module was used for generating an exe file after the
code was finalized. It was also installed through pip.

Others

Some other modules that were used in the code namely; math, os, xml.etree did not
need installation as they come inbuilt with python language.

Jupyter Notebook

Jupyter Notebook is an interactive open-source application that allows researchers to
create, share and visualize code and data among other things. It runs in the browser and
provides a simple lightweight yet powerful platform for scripting. For the current study,
Jupyter Notebook was used to create and test different parts of the code as ipynb.

SPYDER

Unlike Jupyter notebook, which can support multiple programming languages, SPYDER
is an IDE specifically for python. It can be downloaded for any operating system and
usually has well-known inbuilt python packages as well. For this thesis, SPYDER was used
to debug and compile the code after scripting and testing in Jupyter notebook. It was
particularly used for building a GUIL

QT Designer

QT Designer is a tool that implements PyQTS5 framework with a GUI interface and
allows users to design layouts in an easy and fast manner. Contrary to coding a layout and
visualizing the results each time on compiling the code, QT Designer offers drag and drop
capabilities to build a layout structure. For this study, QT Designer was used to
conceptualize and implement the GUI of the ET2Spatial tool.

For the second part of this study, the use cases and visualizations, QGIS version 3.12 and
ArcGIS Pro were used.

15

3 STATE OF ART

The number of users and researchers who use eye-tracking systems is growing
tremendously. The current technological development in eye-tracking software and
hardware is pursuing a trend whereby no advanced technical skills are needed to adopt
these systems. As such, the user base is expected to grow even further (Holmqvist et al.,
2011). This, combined with the frequency of data generation, requires efficient and faster
ways for data analysis. Cartography has been no alien to employing eye-tracking in the
usability study of maps. One of the earliest examples dating back to the evaluation of
simple drawn maps and aerial images (Enoch, 1959).

The maps as visual stimuli have changed since then, from static to dynamic. Eye-
tracking and analysis of eye-movement data on interactive stimuli are costly not only in
terms of time but also for data and storage since the standard mechanisms produce video
recordings with overlaid gaze points (Pfeiffer, 2012).

Another drawback of traditional eye-tracking mechanisms for interactive mediums is
the level of effort required in creation of areas of interest (AOI) during analysis. As opposed
to static maps, where the researcher can create polygons on stimuli for easier statistical
evaluation. Dynamic AOIs are a possible approach suggested by Holmqvist et al. (2011),
where the AOI can be established for non-static stimuli such as screen recording of a map.
A tool developed by Papenmeier and Huff (2010) facilitates drawing these dynamic AOIs.
However, the rapidly changing content of the interactive web mediums where users
perform pan zoom and clicks makes it nearly impractical to manually annotate the areas of
interests and makes it very labor-intensive because the video for each participant is
different.

Although research in the intersectional domain of eye-tracking and interactive web
maps is nowhere near saturated, it is not non-existent. Efforts have been made to understand
cognitive processes involving interactive dynamic screen maps, but very little knowledge
has been gathered until the last decade. In 2012 a study carried by Ooms et al. deployed
a technique for understanding user behavior with interactive maps. This technique involved
standard eye-tracking apparatus combined with a joystick for tactile input. The dynamic
map, however, was pre-recorded with its pan actions. The recordings were used as stimuli
in the eye-tracking experiment, and users logged a signal as soon as they identified the
subject. The study combined recordings from both input mediums to measure response
times of different user groups and conclude results about interaction. The experiments
pertain to larger research aiming at insight into users' cognitive processes while reading
interactive maps. Content-dependent analysis, contrary to content-independent analysis for
eye-tracking in cartography, needs sophisticated methods for evaluation (Ooms et al.,
2012). The study was pioneering for evaluating a dynamic medium; however, a dedicated
framework to assess the content was not used.

Gaze coordinates that can be transformed into geo-coordinates can provide more
information and feasible solution to the existing issues with interactive web maps
(Giannopoulos, Kiefer and Raubal, 2012; Ooms et al., 2015).

16

Gaze Map Matching was introduced, taking into account the aforementioned issue of
content-dependent analysis. The gaze metrics such as gaze sequences and gaze fixation
points are studied with respect to the underlying vector data to inspect the geographic
features as subjects (Kiefer & Giannopoulos, 2012).

When it comes to non-conventional usage of eye-tracking data in the field of
cartography and GIS, a handful of studies have been carried out so far. Considering eye-
tracking data as spatial features allows dedicated spatial functions to be applied to the eye-
tracking metrics such as scan paths, fixation, and raw gaze points. The traditional methods
and tools offered by eye-tracking software, however, lack the capability of studying the
gaze data metrics from a spatio-temporal perspective. The dataset has a very similar
structure to movements datasets of real-world features in geographic spaces. Hence
techniques designed for the evaluation of spatial movement data can also be resourceful in
the evaluation of gaze points data (Adrienko et al., 2012).

While these attempts at understanding the content of the interactive mediums have been
less, the research on open-source solutions for eye-tracking mechanisms on the dynamic
maps has been relatively scarce. One such attempt at an evaluation mechanism of an
interactive medium has been for 3D models. 3DgazeR helps in a less cumbersome analysis
of interactive 3D models. The tool works by calculating 3D coordinates (x,y,z) for each
point of view in a 3D scene. These coordinates are derived from the orientation and location
of virtual cameras as well as the screen coordinates of eye movements. The output
generates gaze points referenced to the 3D model, which can be visualized in QGIS
(Herman, Popelka & Hejlova, 2017). The tool addresses the problem of eye-tracking in an
interactive medium but is constrained to a 3D environment.

A Framework suggested by Ooms et al. (2015) captures the essence of the problem in
the best way. The study aims to build an application that is compliant with interactive map
mediums and logs user data and raw gaze samples. Several approaches are tested in the
study to determine which one fares best and can be used independently with a variety of
software. The study explores both desktop-based and online-based user data logging
solutions and settles on the desktop-based user-logging approach using PyHook as the
triumphant one because of its ability to work with a wide array of applications. This
approach logged all user mouse clicks and key presses on web pages which were eventually
synchronized with eye-tracking data through an imposed mouse-click command. The
conversion of the ET screen coordinates to geographic coordinates is done by calculating
the map extent, distances, and direction of the succeeding user-interaction movement. The
principle that the scale remains constant during pan operation helps in estimating the new
center coordinates of the viewing window in reference to the previous one. The
mathematical conversion itself is done through forward and inverse map projection
formulas. The use-cases focus on applying the methodology in other domains such as
marketing, psychology, and traffic science. Although the study is very similar to the current
thesis being developed, the proposed methodology differs from ET2Spatial in various
ways. Dedicated Map APIs are not taken into account, and the entire referencing procedure
is based on detailed user-logging actions such as pan, zoom, scroll, and click, which are

17

unneeded and far too complex for the scope of this thesis. However, some smaller parts of
the proposed technique have been adopted in this tool, such as the imposition of tactile user
input for easier synchronization of data. The suggested approach is very effective for
a generalized system working with interactive mediums, such as web pages and even static
photographs and maps. However, it does not fit the niche objectives of this diploma thesis.
In addition, the focus for the use-case of the ET2Spatial tool is for cartographic evaluation
and GIS analysis only, which requires a simpler lightweight approach than the one
suggested by the study.

FeatureEyeTrack, a tool developed at ETH Ziirich, measures the real-world coordinates
from a user’s screen coordinates for interactive web maps. It is the closest contender to the
tool developed in this thesis and shares the same goal of easing analysis of eye-tracking
data for dynamic online mediums. The framework involves an eye-tracker, a logger, and a
web map service. The logger records all the mouse clicks and user inputs, the extent of the
map, and the zoom level are fetched and stored in an SQLite database through a web page
featuring an interactive web map. The tool uses Mapbox API, and the main program written
in Java which receives the gaze data stream, which is then combined with the user logged
data, converted, and stored in the database (Gobel, Kiefer & Raubal, 2017). The concept
of FeatureEyeTrack is similar to ET2Spatial, developed in this study, but the framework,
approach, and used technologies are different in practice (More in section 4). Moreover,
FeatureEyeTrack is not available under a public license which created room for similar yet
niche tools to be developed by institutions. ET2Spatial mainly works in post-processing
mode and is independent of database requirements, system settings, and any installations.
It builds on free, open-source technologies and components and extends on existing works
of students at the department.

18

4 TOOL CREATION

The architecture of the solution comprises four main modules; eye-tracking module,
map interaction module, connection module, and conversion module. Figure 2 provides an
illustrative view of the solution.

The eye-tracking module consists of an eye-tracking device connected to
a 1920x1200 px screen. This module is responsible for sensing, recording, and exporting
gaze locations of the user. The map interaction module consists of a framework for
extracting the user’s interaction with the web map. In this study, MapTrack (Ruzicka, 2012)
is used. However, an application-independent approach is also discussed in section 4.1.
The map interaction module outputs the active map coordinates as latitude and longitude.
The connection module, which is one of the main components of the tool, is responsible
for data synchronization between the ET data and the user interaction data. Post connection
module, data gets passed on to the conversion module. The conversion module accounts
for the calculation of geographic coordinates from the screen coordinates.

‘ Web Map Service

Eye-tracking module Map Interaction module
Screen coordinates Map Coordinates

Key input ——- -~ A Key start
i:-; L Raw Poinis Map Center Lat, Long
-
o '
£ Screenx, y Time
5
B Time i Zoom level
g
5 » Fixation Points | :
S ,IS_W?C
—_— Screenx, y
Comparnson
Time e =

A 4
I
Point Lat, Long

Figure 2 Schema of ET2Spatial tool.

From a user perspective, a typical workflow activity would involve conducting ET
experiments on a web map such as Google Maps displayed through the MapTrack
application on the screen of an ET setup. The data from both, ET device and the MapTrack
application would be fed to the ET2Spatial tool. The tool then converts the points in the
datasets to spatial features that can be imported into any GIS software and overlaid for
multiple participants on a cartographic basemap. Figure 3 illustrates the said workflow.

19

Eye-tracking data | | User Interaction data |

MapTrack (Ruzicka, 2012) ET2Spatial

e = ; | Data Import

| Data Pre-processing

=Y % & | Calculation

| Data Synchronization |

Data Conversion

|
| Data Export | | GIS Software

SMI Eye-fracker]

Figure 3 User activity Diagram.

4.1 User Interaction data

User Interaction data implies the logged interaction of a user with a web application or
a website. These interactions can be registered by deploying custom JavaScript code on
a proxy server to detect different mouse and keyboard events on the client-side. Several
dedicated applications and tools are also available for doing these tasks. However, one
downside of using this approach is that some web map applications block certain user input
events from being registered, for instance, a mouse down event (Ooms et al., 2015).

On the other hand, Web Map APIs can potentially overcome this as they offer inbuilt
functions for registering user map events. Since, for the scope of this thesis, the concern is
only with the content of the web map itself and not with the layout of the webpage as
a whole, it was more practical to use an application that employs web map APIs for
registering events. The primary data needed from a user interaction framework, recorded
during an ET experiment, was the geographic coordinates of the current center of the web
map with an associated timestamp, the current zoom level, and a map pan event
registration.

MapTrack (Ruzicka, 2012) was chosen as the apt application for this thesis primarily
because of its ability to record the aforementioned web map events on the client side. In
addition, MapTrack, being open-source and a product developed at the Department of
Geoinformatics, Palacky University Olomouc, allowed access to the source code and hence
the possibility of small additions or tweaks if needed to create a harmonized framework
with the tool from this diploma thesis.

As briefly discussed in section 2.2, MapTrack is an online application hosted at the
domain of the department (http://eyetracking.upol.cz/maptrack/), which creates a registry

of user activity with the web map. As of now, the time of development of this thesis study,
MapTrack is configured to work with Google Maps only. Figure 4 shows the landing page
of the application, which requires a user id. This id is not restrained to a specific

20

http://eyetracking.upol.cz/maptrack/

alphabetical or numerical format. However, for the sake of conformity to ET experiments,
the id entered in MapTrack was identical to the one used in ET software for each
participant.

@ MapTrack x| +

&« C A Notsecure | eyetracking.upol.cz/maptrack/

Fill ID and press F2 to start

Figure 4 MapTrack Interface.

An initial experiment was done to collect sample data to work with. The MapTrack
application was displayed on the screen connected to the ET device and used as a (screen-
recording) stimulus. The sample map task involved finding the location of the Department
of Geoinformatics, Palacky University Olomouc, on the web map. Every time the user
scrolls or pans, the zoom level and map center are changed and registered. Once the
interaction of zoom, scroll and pan was recorded. For the sample experiment, it was stored
into an xml file that was available to download through the same web domain. Figure 5
shows the result directory as well as the structure of the xml data file. The experiment was
done in full-screen mode, which removed the need to filter out ET points outside the web
map. The mapsize, var which refers to participant id, and the start time stamp were stored
as global variables in the code.

[£2xml version="1.0"2>
<session>
<id»1612262249561</id>

<ip>158.194.94.96</ip>

Index of /maptrack/results <var-p03</var>

<start>2021-02-02 11:37:29</start>
<mapsize>1920x1200</mapsize>

Name Last modified size <scresn>1920x1200</scresn>
<browser>Chrome 88</browser>
a Parent Directory - <os>Windows</os>
I
N eV =
session-1617776425059-02.xml 0] | cETERESS
4 <event:
! session-1617776439635-2.xml @7-Apr-20821 @3:17 423 srime5.952< time>
seccion-1617776955122-999. xml @7-Apr-2821 @8:28 7.5K <name>zooml_in</name>
= L
session- 1617798651805 test.xml @7-Apr-2021 14:28 2.2K <value>0</value>
. <center>(49.750424105368495, 17.149688720703143) </center>
session-1617826@93005-d.xml @7-Apr-2821 22:85 3.2K . N . N
[y <zoom>»10</zoom>
<fevent>
<Eeventsr

Figure 5 xml file structure.

21

Through a loop, the xml file was parsed with the help of xml.etree library. Every child
element of the event was stored into a series which was later organized as pandas dataframe.
The columns were renamed for convenience. The center element stored as a string, was
split for separate lat, long values, and the data format was also changed to float. Time was
converted to milliseconds with the correct decimal places. Figure 6 shows the resulting
header and sample user interaction data after pre-processing.

MapTrack_RT Action MapCenter Zoom_level MapCenter_lat MapCenter_long
0 5952.000000 zoom_in (49.750424105368495, 17.149688720703143) 10.0 49.750423 17.149689
1 7566.000000 move (49.53967593673293, 17.333709716796893) 10.0 49.539677 17.333710
2 8201.000000 zoom_in (49.53885049359118, 17.317230224609393) 11.0 49.538849 17.317230
3 8451.000000 zoom_in (49.54241070589379, 17.309000532438578) 12.0 49.542412 17.309000
4 9438.000000 move (49.559116123519374, 17.339212934782328) 12.0 49.559116 17.339212
5 9940.000000 zoom_in (49.55265737281604, 17.323591749479593) 13.0 49.552658 17.323591
2 494E0 nNANNn mmmuin fA0 ETO4EENOI7RTRO 47 AATONADN4ARA0ION 190 Af E7OAEE 17 na7on4

Figure 6 Pre-processed user interaction data-header.

A downside of using the mapping APIs for collecting user interaction data is the
reliability on vendor-specific functions and hence creating a separate mechanism for every
web map such as OSM, Google Maps, or MapBox. Adjacent to the MapTrack solution, for
storing user interaction data, an application-independent solution was also researched.
Typically web map applications have map center coordinates in the URL, which tends to
change every time the user commits an action such as pan or zoom. Additionally, the URL
also contains information about zoom levels. This assumption can be made about any web
map platform or web map API implemented in REST. The web browser history contains
a registry for URLs that can harvest information about the map center coordinates and
zoom level at every time stamp.

Although browser extensions can bulk export the history as CSV, an automated
solution is through a python module called browserhistory, which fetches the said data for
Chrome, Safari, and Firefox in a CSV format. For web browsers, the timestamps are usually
noted up to seconds. Depending on the use case that may suffice, but for this thesis, the
accuracy was of prime importance; hence the timestamps needed to be in milliseconds.
This was one of the main reasons MapTrack was employed instead. However, the potential
for using browserhistory module for an application or API independent framework is
significant and worth detailed dissection.

4.2 Eye-tracking data

The ET experiment for collecting the sample data involved an SMI RED 250 eye-
tracker with a sampling frequency of 250Hz. The data was exported through SMI BeGaze
software. For this study, raw gaze points were used as well as identified fixations. The raw

22

points data stream exported by the eye tracker comprises of triples in the form of screen
X,y & t. These triples are typically aggregated spatio-temporally in reference to the
fixations. A fixation is registered when the eye rests on a screen location for a certain
amount of time compared to saccades which denote the quick eye movements between
fixations. The number of properties, as columns, for both raw points and fixations was kept
to basic minimum i.e. surplus information such as age, gender etc. was omitted temporarily
during export.

4.2.1 Raw gaze points

During the export of raw gaze points file from SMI BeGaze software, timestamp of day,
recording time in milliseconds, point of regard x and y, and participant information were
deemed necessary to work with. The file was exported from the software as a text file and
read through a CSV python library within the script. The file was also converted to a pandas
data frame that allowed for easier visualization of data sheets and offered efficient methods
to manipulate rows and columns in the data. The pre-processing steps in the script for the
raw data points involved:

e Data slicing vertically; this implies column selection. Although the user can
select only required columns during ET data export from an ET software,
specific columns mentioned above were extracted explicitly through script
regardless to reduce active data size in case of a large number of columns in the
original export.

¢ Data slicing horizontally; this implies row selection. The row selection was an
important step which played a part in further data synchronization (section 4.3).
ET systems have the ability to record key inputs in addition to the main eye-
tracking. One advantage of MapTrack initiation and termination mechanism is
the ‘F2’ key press which also gets registered by the eye-tracker in the file output.
This input is used to crop the raw points dataset such that only the points
recorded during the usage of the web map are considered.

e Renaming; columns were renamed for the sake of convenience. The term RT in
the script refers to Recording time.

e C(leaning: the text file contained special characters for missing values. The rows
with these characters for any one of the columns were removed to avoid errors
in later calculations.

¢ Indexing: many functions in organized data structures such as pandas df rely on
proper indexing. The index for the pre-processed raw data was reset after
subjection to slicing and deletion operations.

e Time column formatting: After the raw points data was synchronized with the
user interaction data through key input, the recording time needed adjustment as
well. To achieve that, time length lengthl was calculated by subtracting the
initial time stamp in the unsliced data from the timestamp at index 0 in the newly
sliced dataset. This length was then subtracted from each entry in the R7 column
to create a formatted time column Format RT.

23

TOD RT Screen_x Screen_y Participant Format_RT

0 11:37:20:456 §564251.3 1005.9 5392 P03 1.1
1 11:37:20:460 85642553 1006.3 536.9 PO2 5.1
2 11:37:20:464 §564259.3 1005.6 536.2 P03 9.1
3 11:37:20:468 85642633 10041 535.7 PO2 131
4 11:37:29:473 85642677 1001.2 5356 P03 17.5

Figure 7 Pre-processed raw points data-header.

4.2.2 Fixation points

The raw gaze points file is sufficient on its own for an independent export if needed, but

the fixations file depends on the time calculations from the raw points file for

synchronization to the user interaction data. To prepare the fixations points data following

steps were pursued in the code:

e Data slicing vertically: Similar to the procedure in raw points pre-processing,

the columns from the original text file were selected to only the necessary

ones for processing i.e., Fixation start time, Duration, Fixation position X, y,

and participant number.

e Renaming

e C(leaning: Same procedure to remove entries with non-numeric values was

applied.

e Indexing: the dataset was assigned new index values using dedicated pandas

function

e Time column formatting: The fixation start time in the original fixations file

were the relevant time stamps needed for calculations; however, these times

were not synchronized to the time window for the actual user web interaction.

Only the fixations that occurred during the participant’s usage of the web map

were needed. It meant that the fixations occurring during the prompt slides

and instructions reading had to be excluded. As mentioned, fixations file

exported from SMI BeGaze does not include a record of the user’s key inputs.

Hence the method followed for the raw points file could not be applied here.

The time length calculated for the raw points was also utilized here by

subtracting it from the fixation start times. Consequently, the negative values

from the results were filtered out as it implied those fixations happened before

the user initiated MapTrack. These results were stored in a new column

Sync_time. The data was now synchronized at the same starting time as the

user interaction. To remove the fixations that happed after the MapTrack

application was closed, another length /ength2 was calculated. This value was

24

computed by subtracting the first and last timestamps of raw gaze points
which yielded the total gaze time on a web map. All the values in Sync_time
that were greater than length2 were filtered out.

Participant Fix_start_time Duration Fix_x Fix_y Sync_time

0 P03 13472.0 2945 8438 6698 3499
1 P03 138111 190.0 629.7 4896 639.0
2 P03 14068.8 1989 6406 3887 946.7
3 P03 143212 2186 12083 7304 1199.1
4 P03 146041 2031 1079.2 676.3 1482.0
§ PO3 148491 2600 9003 52486 1727.0
] PO3 151447 2185 8453 4901 20226

Figure 8 Pre-processed fixations points data-header.

4.3 Data Synchronization (Stitching)

The concept of synchronization is important for this thesis study because it contributes
to the temporal and spatial accuracy of the output of the tool. It implies that all the input
datasets have the same starting and ending point in terms of time. As mentioned earlier, an
imposed tactile user input from the web map recorded by the ET can significantly help. In
the raw data file, F2 was used to synchronize it with MapTrack data. The fixations data
was synchronized to the MapTrack data through variables in the raw data file. Once these
three datasets were pre-processed and synced, the next step was to combine map interaction
properties such as map center Lat Long and zoom level to raw data and fixations data
individually. This step would stitch the datasets based on time comparisons and be
necessary for the coordinate calculation later (section 4.4).

Data stitching required iterating over each row in both the ET raw dataframe(df) and the
MT df. Pandas provide efficient data handling functions especially accessing df values
through multiple options. However, the iteration over rows on both tables through loops
proved to be complicated using in a pandas df. The iterrows() function gives a series in
return for every row it is iterated over and which is susceptible to data type changes. In
addition, iteration over df is tricky, especially if the values are being modified because the
iterrows() returns a copy instead of a view (pandas documentation). Hence, the data frames
were converted to dictionary data structures to ease the process of looping and modifying
values.

subset et raw=subset et raw.to dict(orient='records')

The dictionary was oriented by ‘records’ which meant that every item would have
a column name and its associated value for the specific row. It is a list-like structure

25

[{column->value}]. Figure 9 shows the dictionary structure of pre-processed ET raw points
data.

[{'TOD': '11:37:29:456",
'RT': 8564251.3,
‘Screen_x': '1085.9°,
'Screen_ y': '539.2',
'Participant’': 'Pe3’,
'Format RT': 1.1000000014901161},
{'ToD": '11:37:29:460",
'RT': 8564255.3,
‘Screen_x': '1086.3",
'Screen_y': '536.9°,
‘Participant’': 'Pe3’,
'Format_RT': 5.100000001490116},
{'TOD': '11:37:29:464",
'RT': 8564259,3,

Figure 9 Dictionary structure

Figure 10 shows the logic for the stitching operation. Every row in the time column of the
fixations data table is compared to the corresponding row in the time column of the
MapTrack data table. The sync_time (see Fig 8) values are compared to the MapTrack RT
(see Fig 6). If the time in row i of fixations data is greater than or equal to the time in row
i of user interaction data but less than the time of the succeeding row in the user interaction
data table, the Map center coordinates and zoom level from the MT table get appended to
the fixations table for that row.

Pre-processed ET fix table Pre-processed MapTrack data table
Sync_time MapTrack_RT MapCenter Zoomivl
r ------ :r I latlong
1 I: h row i
1 greater than
[/ 1
) —_— &
1 & less than

1
L
row j+1

Figure 10 Data stitching schema

The logic is implemented in code as follows:
combinedl = []
idx = 0
for rl in subsetxml mt:
rl maptrack = float (rl['MapTrack RT'])
for idx2, r2 in enumerate (subset et raw[idx:], start=idx):
r2 sync = float (r2['Format RT'])

26

if r2 sync > rl maptrack:
idx = idx2
break
combinedl.append ({ **rl, **r2})

An empty table is declared for adding map center Lat Long for every time stamp in raw
table. The first loop is iterating over the MT data table, which starts from an index 1 initially
set to 0. The next loop is also starting from index 1 and using is the index values of the raw
table as index 2 for iteration, but it breaks as soon as the condition is satisfied, and the
index moves to the next value in the MT data table. The values are appended to the empty
table at the end of second loop. The resulting dictionary is converted back to a data frame,
and the columns are formatted for the appropriate data type. This process was done for the
fixations data as well.

4.4 Data Conversion

Once the raw points data table and the fixation points data table were populated with
azoom level and map center coordinates for every time stamp, the next step was to
calculate the real-world point coordinates. Several approaches were researched and tested
for the said calculations, out of which only the ones with higher accuracy and relevancy
have been discussed here.

4.4.1 Approachl

The first approach revolved around finding the screen distance between the gaze point
and the screen center. The screen center was calculated through screen size stored during
the MT data import. The screen distance was then multiplied by distance per pixel to get
the distance in meters. Distance per pixel was calculated using existing formulae found
online. One of the sources was Open Street Map documentation. The meters per pixel
formula takes into account the latitude at which the point is located. Since the latitude of
the ET gaze point was the subject in question and unknown, the known map center latitude
was substituted in the formula instead. After calculating distance in meters, the output was
converted to decimal degrees and added to the map center latitude and longitude.

The resulting coordinates obtained through this method were off by one degree. In
practice, especially at smaller zoom levels, this would lead to inaccuracies in visualizations
and analyses. This inaccuracy in calculation can be accounted to the fact that the latitude
of the desired location is needed to calculate meters per pixel; since that is unknown and
the whole subject of this study, the map’s center latitude is used, which can be significantly
different from the latitude at gaze location on smaller zoom levels.

Some mapping libraries provide inbuilt functionalities for getting distance per pixel, such
as the this.getResolution function in OpenLayers.

dist x px=abs (screen x-center x)

dist y px=abs (screen y-center y)

27

metersPx = 156543.03392 * np.cos (np.deg2rad(mapcenter lat)) / pow (2,
zoomlvl) #formula by Google

metersPx2 = 40075016.686 * np.cos (np.deg2rad(mapcenter lat)) / pow(2,
zoomlv1+8) #formula by OSM

dist x m=dist x px * metersPx

dist y m=dist y px * metersPx

Dist dd x=dist x m/(111.32*1000*np.cos (np.deg2rad (mapcenter lat)))
Dist dd y=dist y m/(111.32*1000*np.cos (np.deg2rad (mapcenter lat)))

point long=mapcenter long-Dist dd x

point lat=mapcenter lat+Dist dd y

4.4.2 Approach 2

The second approach used map extent coordinates and screen coordinates of points as
inputs. The idea behind this approach was the transformation of the points from one
coordinate system to another coordinate system, i.e. from the screen coordinate system to
the geographical coordinate system. The formula remaps values from one range to another.
The maximum and minimum values of both the screen and the map were used in addition
to the screen point coordinate.

The output was then latitude for the y screen coordinate and longitude for x screen
coordinate as input. The y coordinate had to be adjusted since the origin of a traditional
screen coordinate system is on the top left, and hence the y values progress in a direction
opposite to a geographic coordinate or cartesian coordinate system. The accuracy of this
approach was 5-6 seconds which was very good for the scope of this study.

screen y adjusted=mapHeight-screen y
point long= Long min+ (Long max-Long min) * ((screen x-0)/(1920-0))

point lat= Lat min+(Lat max-Lat min)* ((screen y adjusted-0)/(1200-0))

Since the map bounding box or the map extent coordinates were not a direct input i.e.
the values were not directly exported by MT; this approach was not prioritized. In order to
pursue this approach, two possibilities were considered; the first was to derive map extent
from map center coordinates, the second was to modify the MT code to return map extent
values. The former option was researched and tested, but it yielded very inaccurate map
extent values using map center coordinates. The latter option was reserved as a backup
option in case approach 3 were to fail. In addition, using only map center coordinates for
calculations meant lesser reliability on web map-specific libraries, and from a scalability
perspective was considered a better option, such as if the browserhistory module was to be
pursued later.

28

4.4.3 Approach3

The third approach was the one taken forward to implement in the tool for this diploma
thesis. The inputs were the same as the first approach; zoom level, map center coordinates,
and screen coordinates. These inputs were used in the Web Mercator projection formula
shown in Fig 11.

Web Mercator is a variation of spherical projection, which is the de facto standard used
by web mapping platforms such as Google Maps, OpenStreetMaps, and Mapbox. It is
slightly different from the Mercator projection because it employs spherical formula at all
scales, unlike the Mercator maps with the ellipsoidal version of projection at a large scale

(Fig 11).

Spherical Forward--earth to map Ellipsoid Forward--earth to map

.X:RO\.—;‘\.O) e x=a*(Aho)
e v = R Inftan(n/4 + /2) o yi=0.5%a*In((1 +Sin() /(1 - sin(®) * [(1- e * Sn() / (1 +e * Sin(@d)F)
Spherical Inverse--map to earth Ellipsoid Inverse--map to earth
©Pom2-2 arctan(e’Y’R) D = [r/2] -2 * ArcTan(exp(-y / a)] * [(1 - & * sin($) / (1 + e * sin($))P3*2)
_ . = [n/2] -2 ¥ ArcTan([exp(-y / a)] * - e * sin| e * sin €
.}\‘7X/R+?\‘0 e L= dotx/a

Figure 11 Mercator Projection formulae (Source: USNA, 2012).

The Web Mercator variation adjusts the world coordinates before applying the zoom.
The origin of the coordinate system is on the top left, same as that of a display screen, and
hence take tiles and pixels into account (Fig 12). OpenStreetMap provides good
comprehensive documentation online on this subject, such as the technique behind the
tiling of slippy maps (2019).

266 :
. \‘_zzmm level (X + E}J pixels

2r

:25“. w0 levie] m ¥ .
Y= \\EJ {?r In[tan(] . E)DJ pixels

Figure 12 Web Mercator projection formula (Source: Wiki Web Mercator).

The map center coordinates, latitude and longitude are first converted to projected
coordinates x and y through a forward spherical Mercator projection but with the Web
Mercator variation. The latitude (¢) and the longitude (A) are converted to radians and
multiplied to the constant terms. Since the zoom level is the same for both the latitude and
longitude, it was grouped together with the constant terms and calculated separately in the
code. 256/2m * 270°mlevel refers to the constant terms that are termed as unit distance in the
code shown below. After calculating map center x and y through the coordinates and
forward projection formula, the distances in x and y direction are calculated as xDist and
vDist columns through the screen distances from the ET screen coordinates of the points.
This yields the x and y locations of the points in the projected coordinate system. The final
latitude and longitude of these points are computed using the inverse Mercator projection

29

formula as shown above. The implementation of this in code with the pandas df columns
for fixations points data is shown below. In addition, the resulting header of this calculation
is shown in Fig 13.

#Approach 3
et fix combined['unit distance']=(256/(2*np.pi))*

2**et fix combined['Zoom level']
#forward projection

et fix combined['mapcenter x']=et fix combined['unit distance']*
(np.deg2rad (et fix combined['MapCenter long'])
+np.pi)

et fix combined['mapcenter y']=et fix combined['unit distance']*
(np.pi-np.log(np.tan((np.pi/4)+
np.deg2rad(et fix combined['MapCenter lat'])/2)))

et fix combined['xDist']=et fix combined['mapcenter x']- (mapWidth/2-
et fix combined['Fix x'])
et fix combined['yDist']=et fix combined['mapcenter y']- (mapHeight/2-
[

et fix combined['Fix y'])

#inverse projection formula for point to latlong

et fix combined['XPoint']=(et fix combined['xDist']/

et fix combined['unit distance'])-np.pi
et fix combined['YPoint']=- (et fix combined['yDist']/
et fix combined['unit distance']) + np.pi

et fix combined['Longitude']=np.rad2deg (et fix combined['XPoint'])
et fix combined['Latitude']=np.rad2deg((np.arctan (np.exp
(et fix combined['YPoint']))-(np.pi/4))*2)

30

Zoom_level MapCenter_lat MapCenter_long Fix_start_time Duration Fix_x Fix_y Sync_time ind unit_distance

r o P ey P T R e R
1 10.0 49.750423 17.149689 138111 190.0 699.700012 489.600006 689.000000 1 4.172151e+04
2 10.0 49750423 17.149689 14058.8 198.9 640599976 388.700012 946.700012 2 4.172151e+04
3 10.0 49.750423 17.149689 14321.2 218.6 1208.300049 739.400024 1199.099976 3 4.172157e+04
4 10.0 49750423 17.149689 14604.1 2031 1079.199951 676.299938 1482.000000 4 4.172151e+04
5 10.0 49.750423 17.149689 148491 260.0 900.209988 524509976 1727.000000 5 4.172151e+04
13 10.0 49.750423 17.149689 151447 2185 845209988 490100006 2022599976 6 4.172157e+04
7 10.0 49.750423 17.149689 15436.4 1800 1514.300049 750400024 2314300048 7 4.172151e+04
o inn A0 TENAT2 dmadoeo PP PRy o Zacdoonz 5 aad PP

mapcenter_x mapcenter_y xDist yDist XPoint ¥Point Longitude Latitude

1.435600e+05 §.918676e+04 1.434438e+05 8.925656e+04 0296533 1.002251 16.990112 49.688450
1.435600e+05 8.913676e+04 1.432007e+05 B2.907636e+04 0293080 1.008570 16.792221 40543283
eee® 1.435600e+05 8.918676e+04 1.432406e+05 B8.897546e+04 0291663 1.008989 16.711060 49.937549
1.435600e+05 §.9186T6e+04 1.438083e+05 8.932616e+04 0305270 1.000583 17.400677 49.626575
1.435600e+05 8.918676e+04 1.436792e+05 8.926306e+04 0302176 1.002095 17.313385 49.682675
1.435600e+05 8.913676e+04 1.435003e+05 2.911136e+04 0297388 1.005731 17.067703 49.817280
1.435600e+05 8.913676e+04 1.434453e+05 B2.907686e+04 0296569 1.006558 16.992172 40.847341
1.435600e+05 §.9186T6e+04 1.441143e+05 8.933716e+04 0312604 1.000319 17.910904 49.616759

Figure 13 Final table-header

4.5 Data Exports

Once the script was functional for data conversion i.e., the points were converted from
screen coordinates to geographic coordinates; the next step was file conversion and export.
The main file formats considered for exports in the ET2Spatial tool were Geojson and
Shapefile. The reason for selecting these file formats was their widespread usage and
popularity amongst the GIS community and their compatibility with most GIS software
such as QGIS and ArcGIS. Geojson can also be easily visualized with mapping libraries
and APIs such as leaflet, Mapbox, and Google Maps.

The script generated a separate file for every participant with the label mirroring the
participant id that was stored at the beginning of the script. The converted raw gaze points
file and the converted fixations points file were given as an output for each participant. The
shapefile function generated a CSV file as a byproduct which, if needed, could also be used
in GIS software as an alternative.

When it comes to the structure of the files being exported, only the necessary columns
were exported, namely; Latitude, Longitude, Zoom level, Time, and Id. Where Latitude
and Longitude are in decimal degrees and Time is in millisecond stamps. The fixations file
has an extra duration column, which also gives the amount of time the user fixated gaze on
that point in milliseconds. The Id is the explicit id from the data frame assigned at the time
of data pre-processing and creation of formatted time columns and is in the temporal order
of the points. It can be used to re-order points in the shapefile easily.

31

4.5.1 GeoJSON

GeoJSON is an extension of JSON file format that is designed for the representation of
spatial features along with their non-spatial attributes. GeoJSON is an open standard GIS
file format that encodes geographical features as either points, lines, or polygons and can
have additional attributes as properties. For this study, the python module geojson was used
which has the ability to encode and decode geojson files as well as classes for individual
GeoJSON objects.

#GeoJSON fixations file
featuresf = et fix combined.apply (

lambda row: Feature (geometry=Point ((float (row['Longitude']),
float (row['Latitude'])))),

axis=1l) .tolist ()

all the other columns used as properties
propertiesf=et fix combined[['Zoom level',
'Duration’',

'Sync_time']].to dict('records')

whole geojson object
feature collection=FeatureCollection (features=featuresf,

properties=propertiesf)

#taking user selection path

folderpath= os.path.normpath
(QtWidgets.QFileDialog.getExistingDirectory
(self, 'Select Folder for fixation points GeoJSON file'))

filename=p num+r' fixationpoints.geojson'

fi=os.path.join (folderpath, filename)

with open(fi, 'w', encoding='utf-8') as f:

Json.dump (feature collection, f, ensure ascii=False)

In the above code, the features are defined using the latitude and longitude columns
computed from previous calculations. The features defined the geometry of the points and
were stored in a list. The attributes selected for export were the zoom level, duration, and
time. The respected columns were selected from the data frame and stored in the properties
dictionary. To compile a GeoJSON object which is a feature collection, the inbuilt function
from the module was used. Both the features list and the properties dictionary were sent as
inputs to the function. The result was dumped to a user-defined folder path using another
pre-defined module function. Fig 14 shows a sample GeoJSON output.

32

"type": "FeatureCollection”,
“features": [

I
L

"geometry”: {
"coordinates™: [
16.99e112,
49.b63845
I

type”: "Point"
})

"properties™: {
"Duration™: 294.5,
"Time": 349.8999938964844,
"Zoom": 1@

})

"type": "Feature"”

})

Figure 14 Sample Output GeoJSON

4.5.2 Shapefile

The main output of the ET2Spatial tool was the ESRI Shapefile of the converted ET
data points. A separate shapefile was generated for the fixations data frame and for the raw
points data frame. Each of these shapefiles had attributes as described in section 4.5. Python
module pyshp provides functionalities to read and write shapefiles. It generates dbf and
shx file extensions in addition to the shp file format. Pyshp module is compatible with
python version 2.7 and above. In the code, pyshp is imported as shapefile.

Since a part of the shapefile creation process was the import of the data points in CSV
format, the CSV file was exported to a folder location instead of only keeping it in the
temporary memory, which could potentially be used as an alternative in the visualization
process. The header file was defined with the same columns as in the GeoJSON export, but
an additional index column was added as well. The index column was created during the
pre-processing stage, where the implicit index values were assigned as an explicit index to
indicate a temporal order of values. Although CSV export usually outputs the implicit index
of the pandas data frame as a separate unnamed column, the defined index column was
separately exported nevertheless to keep the original indices associated with the ET point
data.

#csv
header = ["ind","Zoom level", "Format RT", "Longitude", "Latitude"]
et raw combined.to csv(f'/path/{p num} rawpoints.csv', columns = header)

In addition to the shapefile creation, a projection file was also generated, the purpose
of which was to keep a record of the projection system in which the converted ET spatial

33

points were. A blog tutorial by Geospatiality (2015) was used as a guide to create a function
for this purpose. It involved passing the EPSG code in the function arguments. The EPSG
code was passed as a parameter in the URL of spatialreference.org, a site that has
a comprehensive database of all geographic projections. The result was exported in Well-
Known-Text format after formatting spaces and newline characters. A sample export is
shown below.

def getPROJ (self,epsg code) :
from urllib.request import urlopen
with urlopen ("http://spatialreference.org/
ref/epsg/{0}/prettywkt/".format (epsg code)) as wkt:
format spaces = wkt.read() .decode ('utf-8"').replace(" ","")
result = format_spaces.replace("\n", "
return result
Export:
PROJCS ["NAD83 (NSRS2007) /MichiganCentral", GEOGCS ["NAD83 (NSRS2007) ", DATUM [
"NAD83 National Spatial Reference System 2007", SPHEROID["GRS1980", 637813
7,298.257222101, AUTHORITY ["EPSG","7019"]], TOWGS84[(0,0,0,0,0,0,0] ,AUTHORI
TY["EPSG","6759"]], PRIMEM["Greenwich", 0, AUTHORITY ["EPSG", "8901"]],UNIT["
degree",0.01745329251994328, AUTHORITY ["EPSG","9122"]],AUTHORITY["EPSG","
4759"1],UNIT["metre",1, AUTHORITY ["EPSG","9001"]], PROJECTION["Lambert Con
formal Conic 2SP"],PARAMETER|["standard parallel 1",45.7],PARAMETER["stan
dard parallel 2",44.18333333333333],PARAMETER(["latitude of origin",43.31
666666666667], PARAMETER ["central meridian", -

84.36666666666666], PARAMETER["false easting",6000000], PARAMETER["false n
orthing",0],AUTHORITY["EPSG","3587"],AXIS["X",EAST],AXIS["Y",NORTH]]

After the CSV export, a shapefile writer class object was initiated. To export attributes
of the points in the shapefile, new fields were created through the inbuilt shapefile class
function and with a data type declared for each attribute. N refers to double integer, the
length of which is limited to 18 characters. F refers to floating point numbers and with the
same length restriction as an integer. It was important that the newly created fields did not
have any attribute that was not present in the CSV file header because the fields would be
populated by iterating through rows of the CSV file for each of the mentioned columns. In
the for loop, the values for each row were separately stored in the corresponding variables.
Out of these, the latitude and longitude variables were used to create the geometry of the
points, and the rest were added as attributes or records. The counter was used to enumerate
the total number of features and which was also a part of the output written to the shapefile.
Finally, a projection file was written along with the shapefile, using the getPRO.J function
described above. The output and visualizations of these functions are discussed in section
5.3.

create a point shapefile

import shapefile as shp

34

raw_shp=shp.Writer ('/path/')s
fensure geometry and attributes match

raw_shp.autoBalance = 1

create the field names and data type for each.
raw_shp.field("ind", "N")
raw_shp.field("Zoom_level", "N'")
raw_shp.field("Format_RT", "E")
#count the features
counter = 1
access the CSV file
with open('/path/', 'rt') as csvfile:
reader = csv.reader (csvfile, delimiter="',")
skip the header
next (reader, None)
#iterate through every row and assign attributes to variables
for row in reader:

ind=row[1]

zoom_level = row[2]
time = row[3]
longitude = row[4]

latitude = row[5]

create the point geometry
raw_shp.point (float (longitude), float (latitude))

add attribute data

raw_shp.record(ind, zoom level, time)

#fprint "Feature " + str(counter) + " added to Shapefile."
counter = counter + 1

raw_shp.close ()

create a projection file

prj = open(f"/path/{p num}raw", "w")
epsg = getPROJ("3587")

prj.write (epsqg)

prj.close ()

4.6 Graphical User Interface

After creating and testing the functionality of all the relevant functions in the python
script using Jupyter Notebook, the next step was to create a user interface for the script.
The python script, which was in ipython notebook format was first migrated to a compiler
environment. The script was imported as a python file in SPYDER IDE.

35

4.6.1 Designing Layout

The conceptual layout of the user interface was kept very simple with a button for each;
main imports, function, and exports. The size of the window was kept small because there
were no visual aspects to the processing. In addition, basic level function completion
notifications were aimed for during the design process. QT Designer simplified the
execution of the user interface of ET2Spatial from conceptual layout to a concrete code.
QT Designer is a tool that helps build quick graphical user interfaces by drag and drop
mechanism. It allows users to design the layout with slots, buttons, and widgets.
QT Designer is based on the QT GUI framework written in C++. The output from the QT
Designer can be easily integrated into any code.

i Qt Designer - o x
File Edit Form View Semings Window Help
DB 00 BEERE NS MBS N

‘Widget Box 8 x Object Inspector 8 x
e Filer
25 Layouts. = .Dbjen Class o)
& vertical ""‘V""‘ ~ MainWindow QMainWindow
g Harizontal Layout v B centralwidget QWidget

Gnd Layout Title exBrowser
8 rorm Layout line Line
i Spacers line_2 Line
; Harizontal Spacer Upload RawPoints s e e v F splitter Qsplitter

Vertical Spacer exponCSVbution QPushButton
v Buttans Upload FixationPoints File must be n .t extension expartisonButton GPushButton
(=] push Button expartShpButton QPushButton
[Tool Butten L~ Woliter? OSofmer V]
@ Radio Button Property Editor 8 x
Check Box - .

Fiter =

@) Command Link Button ‘ 4 ‘-
[Dialog Button Bax e
v Item Views (Model-Based) Property Value =
[v view [Coomea
R Tree View objectName MainWindow
H Tavle view | owidger |
[column view windowModality NonMadal
[undo View enabled
v ltem Widgets (Item-Based) > geometry 1(0, 0), 800 x 600]
List Widget > sizePolicy [Preferred, Prefered, 0, 0]
1§ Tree Widget > minimumSize 0x0
) Tavie widget > maximumSize 16777215 x 16777215 v
B2 Containers Resource Browser 8 x
[/¢
I3 scroll Area
5 Tool Box resource roat
I Tab Widget
@ Stacked Widget
[Frame

(2] widget

B ™MD Area

3 Dock Widget

v Input Widgets
Combo Box

Font Combo Box " Signal/Slot Edfor | Action Editor Resource Browser

i
Figure 15 Prototype GUI in QT Designer

The main components of the layout of ET2Spatial were organized through QT
Designer. In addition to the buttons and title of the window, a progress bar was added. The
font size, type, and color were changed in the software. Files created in QT Designer are
usually saved in .ui format. The user interaction layout code created in this manner was,
however, a skeleton structure without any functionality associated with the buttons.
Figure 15 shows the initial layout of ET2Spatial that was composed using QT Designer
software.

The rest of the tweaks in layout and the stitching of buttons to functions were done in
SPYDER IDE using PyQt5. As described in section 2.3, PyQt5 is a set of comprehensive
python libraries, originally written in C++, that enable interactive functionalities such as
forms and graphical user interfaces. Riverbank Computing, which is the developer and
distributor of PyQt, has extensive documentation on PyQt5 and which was used frequently

36

during the next steps of this thesis study. To make the ui file accessible and for editing
features through programming, the file format was converted from .ui to .py.

Pyuic5 -x ETtool.ui -o ETtool.py

The pyuic5 command, along with the input ui file and desired output .py file, was
specified in the command line. The python file that was generated as a result contained all
the relevant libraries needed for integration into the main code.

A logo was also created as a part of the layout designing procedure of GUI; although
not necessary for this thesis study, it was done to give the tool more user-friendliness and
quick impression. The idea behind the logo was to keep it very illustrative and simple.
Since the two main aspects of the tool were eye-tracking and spatial locations, an eye shape
with a map marker in the center was used to convey the main concept. Figure 16 shows the
final logo used in the tool; this logo was meant to be utilized as an icon for the layout

Figure 16 ET2Spatial icon.

window as well.

4.6.2 Connecting functions

The python script tested on sample data so far was structured procedurally with line-
by-line execution of the program. This code, however, needed to be restructured into
functions in a modular manner to be able to connect to buttons and called with single
commands. Three import functions were set up for the raw data points, fixation data points,
and user interaction data. The general logic behind the raw data points and the fixation data
points was the same.

In the code shown below, the setupUi(self,MainWindow) function enables the
initialization as well as formatting of different widgets and buttons, which can also call
functions from other parts of the code as inputs. One example of the raw data points,
namely RawFiles(self) function, is depicted. This function is connected to the Upload
RawPoints button through the self.RawButton.clicked.connect (self.RawFiles)
command. Within the RawFiles(self) function, a global variable is first declared, then a user
file input function is called through the PyQt library which outputs a path in return from
the user’s selection. This path is formatted and fed to the read CSV function of pandas,
which reads the input file and stores it into a data frame in the variable declared before.
Upon completing this function, a notification is given to the user on the user interface by

37

replacing the default text label next to the button with the name of the uploaded file in bold
green text (see section 6).

class Ui MainWindow (QDialog) :
def setupUi (self, MainWindow) :
self.RawButton.setFont (font)
self.RawButton.setObjectName ("RawButton")
self.retranslateUi (MainWindow)

self.RawButton.clicked.connect (self.RawFiles)

def RawFiles (self):
#IMPORT RAW POINTS FILE AND STORE IN DF
global et raw
global path r
filetype = 'Text file(*.txt)'
rname=QFileDialog.getOpenFileName (self, 'Open
File',filter=filetype)
path r=os.path.normpath (rname[0])
et raw = pd.read csv(path r,delimiter="\t")
if (path r is not None):
self.labelR.setText (os.path.basename (path r))
self.labelR.setStyleSheet ("color:green; font-weight: bold;
font-size: 10pt")

The Ui_MainWindow class (shown above) is initialized in the main function.
if name == " main ":
import sys
app = QtWidgets.QApplication (sys.argv)
MainWindow = QtWidgets.QMainWindow ()
ui = Ui MainWindow ()
ui.setupUi (MainWindow)
MainWindow.show ()

sys.exit (app.exec ())

Similarly, the button for Upload FixationPoints in the GUI was connected to the
FixFiles(self) function in the code. Figures 17 and 18 outlines the function behind each
component of the ET2Spatial GUIL

Finally, one button called Reset was added to provide convenience to the user. The tool
does not have a capability for multiple imports and conversion simultaneously. In many
cases, including this thesis study, there is more than one participant for which the data
needs to be converted. Restarting the application again and again would be very ineffective
and although the user could upload data for the new participant and start over, the

38

configuration of the user interface could be confusing. To simplify this problem,
ResetProgress(self) function was defined in the MainWindow class. The only purpose was
to delete the existing main variables from memory and reset the labels next to the upload
buttons. This would signify a restart of the tool and the progress.

_Import Raw Function Import Fix Function
7 N S ~
—— Store as df l i Store as df ——
| 1 : | + :
|
| Readfile | | Readfile |
- I Lt !
! |
| Select file | | Select file |
| | | |
| | i
' T ! Upload Raw points R o
N 4

Upload Fixation points

Upload User Interacti Iy Select file
|

1

|

data :II
])

> Convert

A A

Export Geojson

Export Shapefile

Figure 17 GUI widget connections imports.

Convert Function

i Data formatting function Conversion function
: Herate and store xml Synchronize function

|

|

Upload Raw points

Upload Fixation points

Upload User Interaction
data
Export Geojson Funcfign

ST T I Convert
| I
: Convert df to geojson }
! | i <
I Sellect folder | Export Geojson

I
! I
:_ TR | Export Shapefile <
\‘-\. //

Figure 18 GUI widget connections convert & exports.

39

The code was also optimized for error handling during the imports. If the user forgets
to specify one of the three files, a warning window was configured to show up when
clicking the Convert button.

Since one of the objectives of this study was to create a standalone desktop application,
an exe file was generated from the python file. This was done using PylInstaller module.
Cx_Freeze and Pytoexe modules have a similar purpose and were tested as well, but they
resulted in unresolvable dependencies with the python environment on the local machine.
PylInstaller gives the option to create a folder with all the necessary modules, libraries, and
dependencies along with the exe or create a single standalone executable file packaged
with all the dependencies implicitly. The latter option was pursued. The code below was
executed through a command prompt. The logo designed previously was also specified to
be used as an icon for the tool. -F refers to one file output in contrast to multiple files.

pyinstaller -w -F -1 "D:\icon256.ico" ET.py

One con of generating a single exe file was the comparatively larger size of the
executable file and the time needed for its initialization. To give notification on the
initialization progress, a command line interface was added. This command line window
pops up as soon as the executable file is clicked. It generates notifications on the
compilation of the tool and after completion, opens the GUI window of ET2Spatial. Figure
19 shows the final interface window of ET2Spatial.

9 DACDE Thesis\new version tool\dist\ET2Spatial.exe -

1 LOADER:

@ ET25patial Tool

ET2Spatial

Upload RawPoints File must be in . bet extension

Upload FixationPoints File must be in . bt extension

Upload Userlnteraction File must be in .xml extension

Convert Data

Export Shapefile

Export GeolSON

Reset

Figure 19 ET2Spatial GUI and initialization

40

S TOOL EVALUATION

Quality control is a part of the lifecycle in product development of any kind,
particularly in software development software quality concept implies that the software
functions according to expectations. For the evaluation of ET2Spatial tool, a similar
concept was adopted. The evaluation benchmarks were categorized into output accuracy,
tool performance, and use case scenarios. The evaluation was an important part of the thesis
study as it gave insights into how effective and useful the developed tool was. It also
allowed analyzing the strengths and weaknesses of the thesis study in detail.

5.1 QOutput Accuracy

Output accuracy refers to the positional accuracy of the exported spatial data from the
tool i.e., whether the geographical coordinates of the eye-tracking points were at the exact
locations they were supposed to be. To determine the accuracy of the exports, three
mechanisms were established which held more credibility when used in combination than
individually.

The first evaluation mechanism was based on the concept of reverse conversion
whereby the known geographic coordinates of a point were fed into an algorithm to output
screen coordinates. This was done through the transformation formula mentioned in section
4.4.2. The transformation formula converts a point from one coordinate system to another
using bounding box coordinates. Since the approach was not utilized to calculate
coordinates in the tool itself, it was used for evaluation. The approach, however, did not
have to be programmed into code for usage because one such application! was already
developed as a part of one of the semester projects in the Masters study. The said
application was written in Java. It took geographic coordinates from a database of user
tweets and converted the points to screen coordinates to display them in a desktop window
with a basemap. This application was tweaked to take user input for geographic coordinates
instead of fetching from an existing database. The main inputs of the application were x
minimum and X maximum as longitudes, y minimum and y maximum as latitudes, and the
point latitude and longitude. Additionally, the output coordinate system bounding
coordinates were also specified i.e., the screen width and height. To find the bounding box
of the point on full-screen mode and at a fixed zoom level, an online tool bboxfinder® was
used. The point and its bounding box coordinates and the screen size (the same output from
MapTrack) were entered into the application. As a result, the screen coordinates of the
point were obtained.

The resultant screen coordinate was then used as a control as it had known geographic
coordinates. The same screen coordinates for the said point were passed through the
conversion framework of this study or through ET2Spatial to check how much the output

! Twitter time series Visualizer, a semester project developed in alliance with three group members. Done as
a requirement for Software Development course during third semester.
2 http://bboxfinder.com/

41

http://bboxfinder.com/

deviated from the actual geographic coordinates. Figure 20 depicts the graphic explanation
of the evaluation mechanism carried out for this study. One thing to note is that better
accuracy was observed for map exploration at a higher zoom level than at a small scale. As
mentioned in section 4.4.3, the web Mercator projection formula is used for common web
maps for transformation such as Google Maps, Bing Maps, Open Street Maps etc. Hence,
the output of the tool correlates well in terms of accuracy when overlaid over the web maps
using the same projection.

In addition to the structured methodology for accuracy evaluation, a rough
interpretation of the output was also made through visual analysis. The geographic
coordinates of the points, as exported by the tool, were overlaid on a basemap. These points
were visually compared to the point positions on a single frame in the video recording
exported through the eye-tracking software.

g Screen size Bbox Geo Coords 9

Sample Point Geo Coords ------ P Lat1, Long 1

Zoom Level

g Compare

Sample Point screen X, y--- P screen x, sereen ¥

P Lat2, Long 2

Figure 20 Accuracy evaluation mechanism.

5.2 Tool performance

The second part of the tool assessment was the functional quality i.e., how smooth the
tool functions when executed on different systems. While packaging the tool in a single
executable file, all the dependencies were included. These packaged python dependencies
would allow users to run the tool without installing any modules or language by themselves
and would also prevent any system environment clashes. To test this however, the tool was
run on four different laptops with a Windows operating system. No noticeable problem
was observed during these trials.

One small weakness of the tool was its compilation or initialization time. The common
initialization time was 40-50 seconds. However, as mentioned earlier, a command-line
interface was added to portray the initialization process before the final graphical user
interface shows up. This was added to lower the inconvenience during usage.

42

While testing the tool on different systems, user feedback was also administered, and
improvements were made in the graphical user interface, such as displaying notifications
on file uploads, the transparency of the window, and so on.

Finally, the tool was tested for the performance of its imports, conversion, and export
functions. Thirty-four datasets were converted through the tool, out of which only two
failed to give correct outputs. The reason for these two failed attempts was the non-
compliance with the pre-requisites of raw data files such as the F2 key inputs. The tool has
a very basic level error handling. But to manage unexpected scenarios, a README file
was prepared to give the users guidance and information on which columns are necessary
during export from the eye-tracking software and how to use the tool.

5.3 Use-case demonstration

The final evaluation criteria for the diploma thesis was the proof of concept. Several
use case scenarios were established to show the possible capabilities of the exports from
the tool.

One of the main driving forces behind this thesis study was the inability of the
traditional ET software to overlay multiple participant data for interactive media on one
file. Figure 21 shows the main problem the ET2Spatial tool addresses. In addition to the
main visualization capabilities, this section enlists and explores multiple scenarios where
the exported ET coordinates can be treated in a spatial context and subjected to dedicated
GIS functions in the software. The results will not be judged based on the accuracy of the
tasks but the merits and demerits of using GIS software and spatial function to analyze and
visualize the ET data. The goal of these pilot studies is to provide and test possible
application areas of ET2Spatial.

Concerning the visualizations, precision is only possible if the correct basemaps are
loaded that were used at the time of experimentation. Particularly for the usability analyses,
the tool can only be meaningful if the exact cartographic renderer is accessed through the
GIS software. In QGIS, this process was very straightforward and was done using XYZ
tiles functionality whereby the desired basemap was fetched through web url and added as
a layer to the project. The process for ArcGIS was not a one-step procedure as it required
the use of ArcGIS Online to add the basemap as a web layer and then accessing this content
through the online portal in ArcGIS Pro. For map tasks demonstrated in the upcoming
sections, mainly Google Maps Roadmap (Czech place labels) and Satellite map were used.
The ET spatial data was imported into the GIS software and projected in the WGS 84
Geographic Coordinate System.

43

Traditional Approach Output of the Tool

Separate videos for each participant Georeferenced datain GIS

POT P02
e ST
© 9\ o
hs GEn
Fe 7Y

Figure 21 Main use-case scenario.

5.3.1 Experiments Setup

The study environment for collecting the data consisted of an eye-tracker i.e., SMI
RED 250 for recording gaze points, a web application MapTrack for the web map
interactivity data, SMI Experiment Center for setting up the map tasks and instructions,
and SMI BeGaze for exporting the ET data. For post-processing of the results, ArcGIS Pro
and QGIS were used. There were eight participants who undertook the experiment and
were asked to solve several map tasks (Section 5.3.3-5.3.6). The participants were aged 25-
35 and consisted of local as well as foreign students. All the participants included in the
study had previous experience with web map usage.

5.3.2 Visualizations

The visualization aspect of the use-cases focuses on the different techniques that can
be applied for displaying the eye-tracking data through manipulation of symbology,
labeling, and custom rulesets.

Multiple participant data overlay

The first visualization tested for use-cases was the actualization of the main problem
scenario. Figure 22 shows the eye-tracking fixation points of multiple participants
displayed on the same basemap in ArcGIS.

44

L 2 | < ot
® 00
‘ L <
4 %O ..%3a\zhmj
L Qo
> © N s 5
. m.rw? e
% o . W o,
I“l.o 6‘. ¢
. ? art 6} %
Lo e
®<> § o
* P05 ®
& PD4 . Feli cl--'-=":.-l.'|®
* P03 o @ °
* P02
< P01 L+

®

Figure 22 Multiple Participant Visualization.

Unlike the traditional eye-tracking software, the symbology for each of the participants
can be manipulated as desired. The basemap itself has a few optimization options, such as
color toning and transparency. In this case, the basemap was changed to grayscale to better
distinguish the point symbology from the map features. A convenient way to have
a structured symbology for all the points is by merging the point datasets for all the
participants into one layer.

Scale-based rendering

The eye-tracking points were recorded with different variables during the user’s
interaction with the map i.e., every point was recorded at a certain zoom level and at
a certain timestamp. Different zoom levels imply that the underlying content of the map
can be different for each value. An accurate position of the ET point is not meaningful
unless displayed at the correct scale with the original basemap to analyse the content user
was looking at during the experiment. As done with the multiple participant visualization,
it is possible to symbolize the ET data based on zoom level and to generate a category for
each with different colors and shapes. Labeling can also help in this regard. Figure 23
shows the fixation points of a single user labeled by zoom levels and categorized as well
in terms of colors.

45

S
7 B gds - Q?B c‘I?o. d
Qe = 10 0 d
i @ (T et 10
Y DR ik
ci—‘ i b? .? C?.I’D 8 10
v's 10,9710 d e 0
é
8 OBC? 7 S q %' e 5.9 & % ’ é 0, i 2
v . g e A & A
4 15 & EX) <& griversce
A Cortna %
o
% e 5 & ® \ 'y $ d
)B é i rer I Udin luléla'i
g &% oy F

Coordinate | 1634952,5904062 ' Seale | 1:2503261 |~ | @@ Magrifier | 100% +| Rotatio

Figure 23 Categorization by zoom level.

This approach, although aesthetic, can be quite cumbersome while doing analysis or
visual inspection. The reason being that the analyst would need to manually zoom to the
right scale for every point to see what content lies on the cartographic renderer, and
secondly, most GIS software such as ArcGIS or QGIS do not have a ‘zoom level’ displayed
in the windows rather a map scale. This map scale is usually formalized in easy terms as a
zoom level for online web maps and can be used in scale-based rendering. Scale-based
rendering means that the symbology or labels on the map appear at different scales. This
option is usually a part of most sophisticated GIS software.

Figure 24 shows the example of scale-based rendering which was set up as a part of the
visualization use-case series for this study. In QGIS, the points were symbolized using the
rule-based symbology, which categorizes points into different groups, in this case, the
zoom levels, and then a minimum and maximum scale for each category can be defined.
Resulting points in one category, such as zoom level 8 appear only when the user scrolls
to a scale of 1:2311162 and beyond. The information on the scale value range associated
with every zoom level was fetched through documentation online.

Scale-based rendering is a very convenient feature of the GIS software and is even more
apt for this study, where the points are dependent on different zoom levels. It rids the
analyst of labor-intensive manual scrolling for each point and for each zoom level during
analysis and automates the process by only displaying relevant points at every scale.

46

oSalzburg
v _— T
Y &
..
3 éd ¢ @ S
C% Q
g r@Bruck
; S
% o1 g 3 ' dgcf &
g "
SQ da 8
& = o :
. ; e
.? | .9 ‘? ¢ | E
P [_ N & ' rh
<] | |
y A # - |] | .3 679989,6032221 % Scale | 1:2503261 | = H Magnifier
= l
1 a 3
9 @
, €¢ l
L ‘? . @
i 9]
. 5 @
o ol 9
9 o
% 4

Coordinate | 1568388,5390826 % Ecale | 1:1251631 |~ | |i@ Me

Figure 24 Scale-based rendering of ET points.

Attribute based visualization

The symbols can be varied based on their attributes. Similar to the examples shown
before where the point symbols were categorized as unique symbols with varying colors,
the graduated or proportional symbology for point datasets gives unique visualization
capabilities. For the eye-tracking fixation points, the fixation duration can be used as
a parameter for the graduated symbology or proportional symbology varying by size. This
technique of visualization is somewhat similar to the standard ET software. Figure 25
shows example fixation points displayed over a static map image in the software Ogama.

Ogama is open-source software that allows analysis of eye-tracking data. It allows
visualization of ET data in the form of circles representing fixations, which vary in size by
their duration, scan paths, attention maps, and spotlights. The colors for the circle
symbology can be customized. The labels, however only represent the sequence of
fixations.

47

ns [@] Start | Options | |8 ¥ | Specials X @Al o B E | importtxport A F
L | Fd

EH Choce : > Py o

77] > m
m []
44
R ol o =
e Ostrava

m 2 : AL -

@ - A

= ¢ Vot ex EH g

@
e,
o W c
il
m - hod :._
4 =
m = =
) e = e

d J00:15:566
SubjectMName TriallD TrialSequence CountInTrial Start Time Length PosY
I -: 5 5 1 0 2% [791015625 | 429.7.
PO3 5 5 2 260 208 63 8125 |4829
P03 |5 5 3 B 568 62 25 (1286

FO3 5 |5

4 1148 a2 37 8438 [827.2

Figure 25 Example of fixations on the map image in Ogama.

In comparison, the GIS software have much more options regarding symbology and
labeling. Figure 26 Fixation points with graduated symbologyshows the fixations points
displayed in ArcGIS Pro as graduated symbols with time duration as labels and a variable.
Unlike the ET software where the symbol for the fixations can only be circle, GIS software
allow customization of symbols in terms of shapes, colors and combination of both. The
maximum and minimum symbol range can also be adjusted to fit the purpose of analysis.

"0 5
@

91 _1¢8 B
¢ o ‘;le
212 @' :
lO (913}35 N gl
140 pira L85 248
@ ¢ o © (f@ - &8

134

o 4% 42

1
45 <]
& 8@ 188
@314

@ 168
Tad
e

Figure 26 Fixation points with graduated symbology.

48

Custom scanpaths

Scanpath, in eye-tracking, is the sequence of locations in user’s gaze i.e., the areas the
user viewed on screen one after another. Scanpaths are one of the basic visual analytics
mechanisms in eye-tracking and almost every ET software has features for consructing and
displaying them. Figure 27 shows the default scanpaths built by Ogama software for three
participants. Like many other ET software there are options to customize the colors and
sizes of the scanpaths, although ET software such as SMI BeGaze offer more sophisticated
options for customizations. These scanpaths however are over non-interactive media and
are non-interactive themselves. In addition, as mentioned before, the labeling capabilities
are very constrained.

These scanpaths can be recreated in the GIS software with multiple possibilities. Figure
28 shows the scanpaths created in ArcGIS Pro. Using point to line tool, a new feature
dataset was created, this dataset was displayed in addition to the fixation point data layer.
The order field takes input for the order of points and the index column was specified here.
The symbology for both the point and line dataset can be manipulated separately.

The index column, as exported from ET2Spatial tool, allows sequential temporal
ordering of points. The index label is hence used to specify the gaze sequence of the
participants as scanpaths. The additional zoom level labels can help in understanding the
trend of using zoom levels by the users while doing map tasks. In the referenced Figure 28,
the red labels represent the zoom level associated with each fixation point. The interactivity
of scroll and pan in the GIS software also allows the labels to be explored more clearly
when zoomed in to a smaller area which otherwise might appear clustered in static images
in frame-by-frame analysis through ET software. One thing to note is that in Figure 28, the
scanpaths have been generated for the whole experiment and for all users combined, which
is not a straightforward possibility in ET software such as Ogama.

-15)% | W20 |3

Figure 27 Example scanpaths Ogama.

49

2 Ostra

Pilsen] 9

Ain
gensburg

Trenan

Trnava -
itra
5t Polte

Gyor

Szekes
Veszprem

Figure 28 Scanpaths in ArcGIS Pro with zoom level labels in red.

Many interesting avenues are opened to explore users' cognitive behavior with
interactive maps when the scanpaths are aggregated not just by their temporal sequence but
with participant and zoom level individually. To take the multiple labelling ability one step
further. In Figure 29 the left image shows the scanpaths categorized by zoom levels. These
lines were aggregated on the zoom column and depict the temporal sequence of fixations
at every zoom level. So, for instance, the yellow line shows the sequence of fixations by
all users at zoom level 15. A convenient addition to this would be the scale-based rendering
for every category. In the right figure, the lines were aggregated for every participant; this
scenario is the closest to the one shown for ET software in Figure 27. For the sequence
labels in these cases, the index would need to be reset for each category, something that is
done automatically in the ET software for every participant.

e Gaglham

Gaglham

Zoom_level
o -— 11
48 L4 13
— 14
15

%0

Figure 29 Scanpaths aggregated by zoom level vs participant.

50

5.3.3 Task 01

The visualizations demonstrated the capabilities of GIS software using the basic
symbology manipulation options. The next few tasks exhibit the usage of ET data in a
spatial context and how different GIS functions may or may not improve the analysis
capabilities.

Task details: The first map task was to find the city of Salzburg, particularly to identify
the city center. The initial web map window was set to the bounding region of Olomouc,
where the Department is located. There were eight participants in total, each of whom was
asked to find their way to Salzburg through interaction with the web map.

Analysis: The focus for analysis on the first task was to be able to answer simple
questions such as which participants were able to fulfil the task, what was the average
duration of fixations within Salzburg, what were the most common zoom levels used during
the analysis etc.

To start off, the raw data from SMI BeGaze was exported and then converted through
ET2Spatial. This converted spatial data was imported into ArcGIS Pro for every participant
and projected into WGS 84 using the define projection tool. All the participant data points
were merged into one file, and the source information was retained in the new merged file
to have a separate participant column for further analysis. For this analysis, only fixation
points were used because they give more insight into the user’s focus rather than raw ET
gaze points. Figure 30 shows the data for all participants after import, project, and merge

functions.
®
Leads L4 dafbied =
ambur
5 °
E
aham METHERLANDS i
Wt The Hague ofmsterdam Berling POLAND
ondon L] W ars aw
o GERMANY -
Brussels ...-.|. ,ﬁ,. ...
°
BELGIUM', i Tﬂf"?—.ﬁk‘fﬁf °® + 3 Katowice
e % T 5 ‘
Dy Hurffibego @ * ‘s = Lyive
Luxembourg™ 7P e %, : 'y
Stuttagart ”
Helier oF aris é.:: s ® :‘:‘? ee¥e's A o,
®
%% r-.u:ﬁ.:]—-. e, o
i . Buoags!
o * ot T Ll

FRANCE T caRy -

N '
S WL ZERT *
. @ " s I cr ok ..
Lyon & s G raaey, ® ROMANIA

o MG
[P
rdeaux ® @ ..ll;‘lxll.-\.. s
& BOSNIA AMND Belgrade
HERZFEGOVIMNA

Toulouse Mon®co - 5 arajevo SERBIA

Figure 30 Merged fixation points in ArcGIS Pro for task 01.

The red point shows the location of the center of Salzburg, a feature that was manually
created to give a visual reference to the rest of the points. The usage of supplementary

51

spatial data is elaborated more in Task 02. The Salzburg point was used to create a buffer
of ~4 km from the city center using the Modify Features toolset.

ach - "
?‘é“
4 H1llw1n;
Eiel'gherm / gl

4L

2104 Freilassing J

Ainring

JOBJECTID COUNT MIN_Zoom_level MAX Zoom_level MEAN_FirstFie = MIMN_FirstFie = MEAMN_Duration
1 138 10 18 | 15038.202899 9034 312471014

Figure 31 Fixation points within buffer zone.

Spatial overlay operations such as union, intersection, difference etc. can be used to
analyze the ET features further. Figure 31 shows the resulting fixation points after intersect
tool was applied on the points with city buffer. Basic statistics were generated in the
attribute table of the buffer layer as well as showing the minimum and maximum zoom
levels used by participants when in the vicinity of Salzburg, which turned out to be between
the range of 10 and 18. The mean of the first fixation represents the average time it took
for all participants to fixate on location in the vicinity of Salzburg for the first time i.e., the
average time for the first fixation within the buffer. This meant that, on average, it took 15s
for participants to locate Salzburg on the map. The first individual fixation was at 9034ms.

Who spent the most time on Salzburg?
14,000
12,000

10,000

8,000
6,000
4,000
P01 P02 P03 PO4 P05 PO6

Sum of Duration

Q

Participant #

Figure 32 Chart 1: Duration vs Participants.

52

Time it took to identify Salzburg

25,776
24,000
21,333

20,000
17,983

16,000 15,743

13,025
12,000

9,034

Time of first fixation {ms)

8,000

4,000

PO1 PO2 P03 PO4 P05 P0G

Participant #

Figure 33 Chart 2: First fixation vs. Participants.

ArcGIS offers some basic exploratory data analytics through charts, plots, and
histograms. This allows the investigation of non-spatial attribute data without having to
migrate to different software. Figure 32 and Figure 33 show answers to interesting
questions by querying the attributes of spatial data falling within the Salzburg buffer. One
thing to note is that although the ET experiment for this task had eight participants, only
six participants had fixations that fell within the AOI namely, the Salzburg buffer zone.

Relationship between Zoom level and Duration

1,000

o
800 O
- @ ® ® @ @
§ 600 @
g
g o ® 8 8
& 400 ® Q ®
© @
200 (@] ﬁ g
@ o]
o @ @
11 12 13 14 15 16 17
Zoom level

Relationship between Zoom level and First Fixation

24,000

20,000

Size of symbol= duration

16,000 R2 = 0.56

First fixation time (ms)

12,000

Zoom level

Figure 34 Chart 3 (top): Duration vs Zoom, Chart 4 (bottom): Fixation vs Zoom.

53

The charts in Figure 34 depict more relations between the users and map usage during
this task. For instance, zoom level 15 had the most fixation duration time, from which
a conclusion can be made that it was used the most for identifying and exploring Salzburg.
This zoom level also had the first fixation at 9034ms, a figure mentioned in the first
summary table of this task. The relationship between time for the first fixation for each
participant and the corresponding zoom level was negative, as unraveled by chart 4. The
earliest first fixation happened at a higher zoom level than the first fixation at the highest
timestamp. Chart 3 tells that this earliest first fixation was for P05, whereas the latest one
was for PO3. Another intriguing observation was that even though the label for Salzburg
appears at minimum zoom level 6 on Google Maps, the first fixations on the city were
made on zoom level 10 onwards.

When the data inside the Salzburg buffer is compared to the overall dataset, it can be
observed that the zoom level range used by participants varied more for the whole task.
Interestingly, the mean fixation duration for the whole task was smaller compared to the
mean fixation duration within Salzburg.

Distribution of Zoom level by Participants

u_ allN__

Zoom level

I

PO1 PO2 PO3 PO4 P05 P06 PO7 P03
Participant#

Distribution of Duration

250
200

150

Count

100 — Mean : 285.3830

50

Duration

Figure 35 Chart 5 (top): Distribution of zoom level task01, Chart 6 (bottom):
Distribution of Duration task 01.

54

5.34 Task 02

Task details: The second map task was to find the department of Geoinformatics,
Palacky University Olomouc, particularly to identify its building (KGI). The initial web
map window was set to the bounding region of the Czech Republic at a smaller scale. There
were seven participants for this task, each of whom was asked to locate the building on the
map. The Google basemap was set to the roadmap, similar to the previous task.

Analysis: The focus of analysis for this task was to do proximity analysis using spatial
techniques. Since all the participants were from the department itself, it was expected that
all participants would have similar behavior and success while using the interactive map.
This usage trend was the subject of this analysis. However, to introduce some variation in
the task, the participants were divided into two subgroups i.e., the local participants, which
were staff members or students native to the Czech Republic, and the foreign participants,
which were international students and were temporary residents in the city. In the analysis,
any similarities or differences in the map usage for this task were explored.

The first step was to import all fixation point shapefiles for all the participants. The
shapefiles were then merged into one main shapefile and projected into WGS 84. Figure
36 shows the extent of the initial web map window and the resulting fixation points by the
participants merged to one shapefile.

ey T
o = Jeleni Hora e o =
o P d 7 1 o =
Cv'kwwunmu et ilerecy, Valbich - Censtg\
o —~ Latéum 9,) - O%ol\
72 L 4 o
o Hradec 4 §
o Ka:ln:v Vary = E3 Kra‘ljovo 3 Kal%w
Y mm Prah v
o N e g % .
o g Pardupice ° Sl
. 5
' RER e © & Ost(r)@fa Blls:gl
) & ° -
eSko oo o G
s o, A "
Tabor o Ol 7 e
b o > ° . = 2
Brno ?gn < Zilina
o
e Ceské 8 (
=) Budéjovice ~
Straubing E. -. fEes] e gl Nérod|
o . é“ : e AL o
shiit Pasav | ot o B /
dshu SOV M/) J i 5 g) 9 7 Jeleni Hora o e Genst
hemnitz 1. 7 Y, X ens!
Linec Cvikov Ust{e= LU LD L
5 ——tabem & - Opoli
™ o ol
@ ED
r Hradec =
L/ Karlovy Vary = 3 Krélové Kal%
¥ e o
& Praha g :
8 : ca e z E.-..LIO . i §
- *+* Pardubice . e
e L] . Ostrgval, Bilskg
Plzeii B3 JEA > o ¥ o
) é . 7
eSko ¢* . I,-J‘ v
%+ B ¥
Tébor 4 'O“g%’n"- g
q . B &4)
Brno Zlin Zilina
) 5 ° o
Ceské
no Budéjovice _ i 1
E[raulltn ng [+) [E3 _4.Trel°|cm Nar(
o | " \ o Niz|
@ e (% . Sl
shut p"&‘:; J —) | E75)
/ A [cen

Figure 36 Merged fixation points in ArcGIS Pro for task 02.

55

The first investigation was to find the trend of usage of zoom level during this task for
all participants. A line chart was prepared in ArcGIS for showing the zoom levels for each
participant and the associated counts. Figure 37 shows how the most used range for all
participants was zoom 16-18, with the highest usage of level 17 shown by participant 04
and the most diverse range of usage shown by participant 06 up to zoom level 21.

24

20
PO1b

16 +po2b
%’ PO3b
© 12 * po4b
posh
g + posh
\ PO7b
4
_.--—-‘—-_ﬂ—-:-___"_:_""; ‘/’
8 5 1 11 12 13 14 15 16 17 18 19 20 21

Zoom_level

Figure 37 Chart 7 Zoom level distribution by participants.

A point feature dataset containing a single point placed at the location of KGI was
created and overlaid on the point dataset. This point was then used to create distances to
all other fixation points. Using create origin to destination links tool in ArcGIS, lines with
distance labels in feet were generated. The output from this tool gave an idea of the distance
variation between the farthest and the closest points.

7__@1431, -
; 177N 141 B
Kunstét- &l s

Brn
23} g

Figure 38 Distance links from KGI.

56

The distance links are helpful in visual inspection. However, for analysis, a different
approach was needed to populate the attribute table with the closest features from the KGI
point and the distances to them. For this, the Near tool was used, which in legacy toolset
in ArcGIS Pro was point distance. The near distances were generated without any radius
specified, to give an idea about distance distribution and the standard deviation through
charts. The distance in decimal degrees is shown as an added column in Figure 39.

Field: E Add E Calculate | Selection: E?E Select By Attributes -Er? Zoom To ?é Switch & Clear E Delete 5‘
4 OBIECTID ™ | Shape™ ind Zoom_level Duration Sync_time MERGE_SRC = MNEAR_FID'| MEAR_DIST -
I 3 Paint 2 8 27N 2043 P02b 1 3.233425
3 Paint - g 140 2778 |P02b 1 2.91285¢
69 Point 12 9 205 3866 PO7b 1 2.134956
- Point 3 8 351 2367 |P02b 1 2121245
58 Point 1 9 191 346 PO7b 1 2.116124
59 Paint 2 9 355 611 |PO7hb 1 2.028792

Figure 39 Distance calculation of nearest fixation points to KGI.

The Near tool was used to create NEAR _DIST column for both the local subgroup and
foreign subgroup datasets separately. Distance charts were then created to see the
distribution of fixation point distances from the actual target point. Figure 40 and Figure 41
show these distribution charts. The point highlighted in the map shows the cluster of
features with the closest distances or the highest bar in the chart. This was one method
through which the fixations closest to the subject could be sorted.

Katovice
o
Krakov e
® e o) mo =
L y
® ° > Ostrgval, Bilsko-Béla
o 5
) o : K
* o &0 * Novy L dec
) &c . ™ el

! \ Distribution of Fixation points (Foreign Participants)

Kt Péite \.-’w;ien 10 — Mean : 0.34844

Count

StdDev : 0.69779

— Normal Dist.

0 02 03 0506 08 1 11 13 15 16 18 19 21 23 24 28 27 29 31 32 L:]
Near Distance (dd)

Figure 40 Chart 8 Near distance distribution of Foreign Participant's fixations.

57

A thorough look at the charts tells that the standard deviation for the foreign participant
subgroup was 0.67 which was more than the local participants value of 0.43. The mean for
the local participants was 0.15, which was lower than 0.34 for the foreign participants. The
conclusion that the local participants were visually closer to the KGI department on the
map during this map task was in line with the assumption that the local group would
perform better at this map task due to familiarity.

Hradec

1 Katovice
Krélové o
Praha g Krakov
® & =
-] |
@ Pardubi Ostraval Bilsko-Béla
)]
Ceéko <« °
Tabor ¥
(=]
Zilin
l:.|-:_-.|' e -
udéjovic :
G encin arodny.pa
Niz Tatry
Slovensko

Distribution of Fixation Points (Local Participants)

120

100

=]
— Mean : 0.1504

Count

&0 StdDev : 0.433842
0 — Normal Dist.

20

0 —
0 0103 0405060809 1 1113 14 15 16 18 18 2 22 23 24 25 =

MNear Distance (dd)

Figure 41 Chart 9 Near distance distribution of Local Participant's fixations.

The Near tool was one way of determining the nearest features, Spatial join tool was
also used to demonstrate its capability in analysis regard. Figure 42 shows points within
100m zone of the KGI department and which were further analyzed.

Figure 42 Nearest neighbors within 100m.

58

When the dataset for the whole task is plotted to find any correlation between zoom
level and the duration of the fixation points, no correlation was found. The R2 value
indicates zero meaning the duration users spend of a certain fixation is irrespective of the
zoom level, hence irrespective of the level of information displayed on the base map,
particularly for this task. The reasoning behind this can be owed to the fact that the
participants used memory and familiarity more than the zoom dependent content for this
task.

Relationship between Zoom_level and Duration

L
3,000

2,500

= 2,000 e o
2 °
5 1500 ° o . . .
&) . ® ® . . - H
1,000 L]] L] e
L] e ° ®
L]
L] L]
500 g & s ° ° 8 o
|
° . ° ° H

14 15 16 17 18 15 20 21

)
w
=
o
-
=
-
=
-
w

Zoom_level

Figure 43 Chart 10 Scatterplot zoom vs. duration task 02.

Some sophisticated visualization techniques can help interpret quick information about
the data without doing detailed analysis, such as creating charts and slicing data. One
interesting symbology technique is bivariate symbology, where two variables can be
represented with different colors. The values of color assigned to each variable depend on
the division of data into high-low groups by means of frequency distribution. Figure 44
shows the bivariate symbology applied to the nearest neighbors found through the spatial
join.

| ™
| ® OO ®
coe ©
)
o A
@ oo -
hat e
L])

B Zoom_level
Duration

LJ High-

Yy
o
f@ Low

Low High

Figure 44 Bivariate analysis of nearest points.

59

5.3.5 Task 03

Task details: The third map task was to find the Department of Geoinformatics, KGI
(Katedra Geoinformatiky, KGI), similar to the last task. The initial web map window was
again set to the extent of the Czech Republic. The only difference in this task was the
Google basemap which was set to satellite map rather than a labeled roadmap.

Analysis: The analysis in this task was aimed one step above the previous ones in levels
of complexity. The focus was to demonstrate the use of additional spatial data for eye-
tracking points and how it could elevate the analysis capabilities. Attention was on
questions like what are the major differences in user interaction with a base map without
labels and a basemap with labels and symbols. And how much extra area was observed on
the satellite map in comparison to the roadmap.

To start off, the same routine of importing, merging, and projecting fixation points was
applied. Near tool was used to populate near distances in decimal degrees, like in task 02.
Bar charts were again created to be able to compare the standard deviation of fixation point

distances between the satellite base map and roadmap for local and foreign participants
each.

Distribution of Fixation Points (Local Participants)

I

0 02 02 05 06 08 1 11 13 15 16 1.8 1.9 21 23 24 26 27 29 2.1 32 =
Near Distance (dd)

— Mean : 0.33972

Count

— StdDev : 0.52157

— Normal Dist.

Figure 45 Chart 11 Distribution of near distances of Local Participants.

Figure 45 and Figure 46 show the mean near distance and the standard deviation in the
near distances for the local participants and the foreign participants. The mean
displacement of the fixations from KGI for the local participants on the satellite basemap
was 0.33 dd (decimal degrees) compared to 0.93 for the foreign participants.

60

Distribution of Fixation Points (Foreign Participants)

— Mean :0.93594

Count
d
S

— StdDev : 0.84361

— Normal Dist.

0 04 07 11 15 18 22 25 29 33 36 4 44 47 51 54 58 62 65 69 73 [:%l
Near Distance (dd)

Figure 46 Chart 12 Distribution of near distances Foreign Participants.

Although the local subgroup performed better again than the foreign group in this task,
the performance was lower when compared to task 02, where the local participants had a
mean displacement of 0.15. The difference for the foreign group in mean and standard
deviation was even more drastic, as shown in chart 12. The higher displacements have
higher occurrences, implying that the participants had more fixations away from the desired
location, i.e., less accurate fixations and the map reading was more complex than the
roadmap.

Figure 47 Areas with visual density; yellow: Satellite basemap, pink: Road Basemap

61

The next analysis was to determine how much extra area was observed without the use
of labels on the basemap. For this analysis, raw eye-tracking points were used instead of
fixations. Both the raw points shapefiles for the road basemap and the satellite basemap
were imported and merged.

Resultingly, there were two feature datasets of points; one containing the points of all
participants that were recorded on the road basemap during task 02 and the other containing
points of all participants that were recorded on the satellite basemap during task 03. The
points were converted to a raster to represent a continuous surface of areas with high gaze
point density.

Figure 47 shows the raster pixels in yellow showing the gaze density of points for the
satellite map, whereas the pink areas show the areas of visual attention derived from points
for the roadmap. At first sight, it can be evaluated that the visual area covered by the
satellite task is more than the roadmap one.

Figure 48 Common visual density areas in orange (left), Exclusive visual density areas in
hatched symbology (right).

Attention maps are present in standard ET software as well, although as heatmap
variations. Visual focus areas created through GIS software give more manipulation
options, especially for analysis. The areas that were common for the two layers in Figure
47 were exported as a new layer using the Intersect tool. The orange areas (in Figure 48)
represent the pixels that participants viewed during both tasks, i.e., when observing the
basemap with labels and without labels and only imagery. Most of this layer covers the
area of Olomouc city.

Using this common layer, exclusive visual density zones were created for both the
satellite basemap and the road basemap. Erase tool was used to perform this difference
operation. The yellow hatched layer shows the zones of visual density that were made over
satellite basemap but were not present in the road basemap. The same was done for road
basemap areas by erasing the common areas.

A summarized version of these layers in shown in Figure 49 where the exclusive focus
areas for task 02 are represented in hatched pink symbol and for task 03 are represented in
hatched yellow symbols.

62

The raster layers were converted to polygon for easier statistical analysis and without
simplifying the geometry. The calculate field option in the attribute table was then used to
generate the area for the whole layer. The area calculation was possible by keeping the
layers in raster format as well. The area for the common visual focus zones was 0.1424
kilometers, for the imagery only i.e., the satellite basemap layer, it was 1.0310, and for the
road basemap, visual focus zone was 0.3710. Hence 2.77 times more map area was
explored while using the satellite basemap compared to the road basemap and performing
the same task.

Common
Roadmap only |
Imagery only

Figure 49 Visual Focus Zones task 02 v task 03

As mentioned in the prompt of this task’s analysis, one objective was to demonstrate
the usage of additional spatial datasets. The merged fixation points file for all participants
in task 03 was again utilized. In addition, the shapefiles of the boundary of the Czech
Republic, the boundary of Olomouc city, and the point shapefile of KGI were imported and
used to determine which and how many fixations were closer to the country boundary than
the city and which ones were closer to the department rather than the city boundary. It was
an interesting technique to analyze how close the participants were while trying to find the
department without any boundaries or labels on the basemap.

The Near tool was used to find the closest features from the points. Input features were
the merged fixation points file. And for the Near features, all three supplementary spatial
datasets were specified i.e., KGI point, the Czechia boundary, and the Olomouc boundary.
The additional shapefiles were first converted from polygon to lines. However, the points
that fall within the polygon would have a Near distance to the polygons as zero. In the

63

fixation point shapefile, new columns were added. NEAR _FC column specified the nearest
feature for every point in the shapefile. Figure 50 shows the fixation points categorized as
red, blue, or green based on the feature they are closest to. The symbolization of points in
this regard gives a quick impression of the points with spatial proximity to areas of interest
on different levels. Figure 51 is one basic statistics generated for this analysis which shows
that most participants spent more time near KGI on the satellite map on average. This could
be attributed to the attempt at identification of the Department building. The next highest
duration on average was near Olomouc, which was perhaps to locate the correct city or
town.

NEAR_FC

@ Mear KGI
@ Mear Czechia
0 Mear Olomouc

Figure 50 Proximity Analysis with additional spatial data.

Distribution of Duration by Participants and Near Features

w
E 1500 Near Features
c
-8 Czechia
[1+]
5 1,000 KGI
(]
Olomouc
500 ? T
g ~bm =8 B
0 _— N
PO1t PO2t P03t POAt P05t P06t POTL E

Participants

Figure 51 Chart 13 Duration distribution of Participants task 03

64

5.3.6 Task 04

Task details: The last task was a free viewing map task where the users were asked to
freely explore Chicago's city for a fixed time of 50 seconds. The Google basemap in this
task was set to the roadmap, and the extent bounds were set to the region of Illinois where
Chicago was visible at the center of the map (Figure 53).

Analysis: The main questions addressed for the analysis of this task were, which
districts were the participants focusing on the most. And if there was a trend or pattern to
the fixation points during this map task. Although more sophisticated analysis could be
done here, such as which features did users pay attention to such as parks, hospitals,
universities etc. but it required a detailed spatial dataset of the city and filtering it for the
needs of this study, all of which was beyond the scope of this diploma thesis where the
focus was only to demonstrate the capabilities of the tool rather than a detailed analysis.

The points for all the participant's fixation points were merged in ArcGIS Pro and
projected in WGS 84. To evaluate the trend or the point pattern, the Spatial Autocorrelation
tool was used. This pattern analysis was just a sample study however. Spatial
Autocorrelation generates Moran’s I index values which tell how dispersed or clustered the
data is and whether the null hypothesis can be rejected or not based on the z-score and p-

values which are measures of spatial correlation.

® . &) T
]
- Morridge L
Me & SchijerPark 19} ®
s ED] @ — Y
£ 1294] .
¥ > ® ® IR,
® anklin Pa e
ranklin Park =
43 ° 3 L)
— - —
i,-gvi fa = —~ L} ¢ (84)
t {20} MelrosePark ® o o
e o i€
g — o7 Gak Park
| L g — X . ®
o N .
e o
= Bega | >
o VY ;
Cicero. » =
b 13 ° ‘s
== {45 (50
oy (P . oo
(24 33 z o o -
- °
s e e o bl
L Grange e, @D . 50} .
® ® ®
*
- Pl)
o fo0 o . . o ®
L] L] PR & o .
. ° ~ ® »
® ®
Btdford Park » o "‘
= N . L0
5 438
o & 5 e o (& e (a0 ~
Jidge e - » ==
¥ Ridge . Briddvls Burbgnk ~L LA =

Figure 52 Merged fixation points task 04.

Since the input points for this study are eye-tracking points and not actual spatial
features, the whole merged dataset cannot be used. For one the points are dependent on the
zoom level, which means that for an accurate analysis the pattern must be evaluated for
each zoom level separately. On screen, the distance between fixations remains constant at

65

every zoom level but when this data is converted to real-world coordinates, higher zoom
level points tend to ‘spatially cluster’ together.

Two new shapefiles were created and merged based on zoom level. Figure 53 shows
points for all participants at zoom 7 and zoom 16. These points were given as an input to
the spatial autocorrelation tool with duration as the variable in order to judge whether there
was clustering and whether at that zoom level the similar values of duration were clustered

together.
Global Moran's I Summary Global Moran's I Summary
Moran's Index: 8.86327 Moran's Index: B.884156
Expected Index: -8.85 Expected Index: -@.887812
Variance: 8.8a2 Variance: B.802R883 4 T 1 I @ '
o TTECOrE: -8.223659 zZ-score: 2.815117 -
| p-value: 8.8230822 p-value: 8.843892 'm 2 e
: Zoom 7 Zoom 16 o @ e wrigiey Buila
Oshkosh - T T VT e
55 o T u & Kinzi
Wopsse @ : o :) L @' Chicago .
o Riverwalk ®
<] & 2 ® W Wacker Dr
© : NEW EASTSIDE
Madi e o : =200 E
=i Miwatay Grand Rapids : 4
Waukeshg e & E ¢ d Gate
= © @ Ty g La I 3 o 1
e G I8 v [© (7] o -
- RE:kford (3 L oy |y;r_.'li_‘ Sl mm ol “” titute
Sedar Rapids ©seruftio @ = w o
Chicago g] = | e
i - Naperville © i J o
e o I @ . ° e Ty g o Stz 3 @ Toledd . ¢ 9
Davenport & G =
] 5 g 8 S s (cinaharr
Pt gt o i g, A 9 oA
L] e d University g ° (M) ° IR
L @ of lllig L T
Petie T 1y @ &rant Park
2 at Chicag o a
: % : 1%
T - £
P Mot Co L ° 2] c*

Figure 53 Moran's I indices at zoom 7 & 16.

The generated Moran’s I value for points at zoom level 16 indicates a very slight
clustering of like values for the duration. This might mean that larger fixations were made
in areas closer together. The index can be interpreted for this case because the p-value is
statistically significant (0.04). This statistic can be of importance to explore further such as
which values are clustered and at what regions. On the other hand, at zoom 7, the negative
Moran’s Index indicates dispersion or spatial heterogeneity and the p-value is not
statistically significant indicating no spatial autocorrelation in the data. Similarly other
zoom levels can be investigated in the same manner to unravel point patterns and spatial
autocorrelation to give insight into the datasets.

When it comes to visualization of the areas of high fixation density in terms of duration
multiple ways can be used. The graduated symbology or proportional symbology is one
way, as was demonstrated in previous sections. Kernel density or point density layers can
also be generated however manipulating the input parameters to generate an appropriate
layer can be confusing just for visualization purposes. The proportional symbology, on the
other hand, can give an unpleasing or inconvenient appearance when lots of points are
clustered together, and the symbols overlap. Proportional symbols work fine when the scale
is flexible, and points are evenly spread out. But for visualization at a fixed scale or fixed
zoom level, a tessellation layer can be generated. This method shows hexagons of a high
or low density of points.

66

To achieve this visualization, a tessellation was first created with a basic unit of 1km.
In the case of this task, 1km was considered sufficient to distinguish different zones of
Chicago. This tessellation layer was combined with the fixation points layer using the
Spatial Join tool. The count of points falling within each unit was written to the table and
which could be categorized with either natural breaks or manual class size in the symbology
tab. The transparency was decreased to create an overlay appearance. Figure 54 shows the
fixation density of points for the whole dataset. Figure 55 shows the fixation density of
points recorded at zoom level 16 only. This type of visualization can help determine which
areas or which districts were mostly focused on by the participants. It is an effective way
of quick visual inspection. For instance, at zoom 16, most fixations were made over the

Navy Pier.

Jak Park

Al
Lnicano
Cs

=0
<4
=10
M =<6
: M :x
Figure 54 Fixation density overlay (all fixations).
8 Lineol mu.u.,\:‘:.;-dne
) e 9
il I <0
a: <1
; 3
@] M <
M ::

Figure 55 Fixation density overlay (fixations at zoom 16).

67

6 RESULTS

The results described in this chapter are a summarized conclusion of Chapter 4, which
focused on creating a tool, and Chapter 5, which enlisted the possibilities of use-cases of
the tool.

6.1 ET2Spatial

ET2Spatial is a desktop-based tool that allows the conversion of eye-tracking points,
recorded on an interactive web map, to real-world coordinates. The tool is built on python
and in the form of a stand-alone executable file. It is capable of running without any
installations. The main inputs of the tool are:

~ Raw eye-tracking gaze points, exported from the ET software in the form of
a text file.

~ Fixation eye-tracking points, exported from the ET software in the form of a
text file.

~ User interaction data, containing information about the user’s logged inputs
with the web map, in the form of xml file.

The output file contains the geographic coordinates and attribute values such as zoom
level, sequence of points, and fixation duration. The tool gives outputs in three formats,
ESRI Shapefile, GeoJSON, and CSV. A separate output is created for each participant.
Additionally, a file containing information on the projection of converted points is also
generated. The packaged file, along with the executable, contains a readme file that gives
information on the input file structure requirements of the tool.

The tool is mainly configured to work with the SMI eye-tracking system; for eye-
tracking data and MapTrack (Ruzicka, 2012); for the user-interaction data, both of which
are commonly employed in the current research environment of the eye-tracking lab at the
university. Hence, ET2Spatial is expected to contribute to the existing tools and framework
that are already in place at the Department of Geoinformatics, Palacky University
Olomouc. The tool, however, is created using open-source technologies and has the
potential of being scaled up.

The conversion of points from screen coordinates to geographic coordinates is done
primarily through forward and reverse Web Mercator projection formulae, used by the web
map such as Google Maps, OSM etc. themselves. Regardless, the accuracy of the output
from the tool has been verified through a structured mechanism (section 5.1).

The tool has been examined for performance on multiple participants, and in total, 34
datasets were put to the test for conversion. The tool allows the conversion of a new dataset
without restarting the whole application using the Reset feature. Notifications are also
displayed when different functions are performed (Figure 56).

68

@ ET2Spatial Tool -] X

ET2Spatial
Upload RawPeints Raw Data - PO3.Ixt
Upload FixationPoints Fixations - P03.txt
Uplead Userlnteraction session-1612262249561-p03.xml

Convert Data

Export Shapefile

Export GeoJSON

Reset

Figure 56 ET2Spatial Interface.

6.2 Sample Use-cases

The main goal of the tool was to ease the eye-tracking analysis of web maps, which
was evaluated and demonstrated through multiple use-case scenarios (section 5.3.2). The
eye-tracking data of multiple participants was converted through the tool and visualized
over the same basemap. Different symbology techniques were applied to the eye-tracking
data in GIS software to compare it to the options present in standard ET software. In
addition, some traditional ET software features such as scanpaths and attention zones were
recreated in the GIS software to prove the capability of visualizing spatial ET data in a GIS
environment. Overall, the visualization of converted spatial data in ArcGIS and QGIS
provided promising results with features such as scale-based rendering of points, multiple
custom paths generation, attribute-based categorization, and custom labeling.

Apart from the successful data visualization capabilities, four test tasks were carried
out to test the advanced spatial functionalities on eye-tracking points. The four ET
experiments were taken by seven participants who were asked to use the web map through
common interaction methods such as zoom, scroll etc. and solve the map tasks:

~ Task 01: Find Salzburg city center on the map, starting from Olomouc as the
extent window. Google roadmap (with labels) as basemap.

~ Task 02: Find KGI, UPOL building on the map, starting from the Czech
Republic as extent window, Google roadmap (with labels) as basemap.

69

~ Task 03: Find KGI, UPOL building, starting from the Czech Republic as an
extent window. Google satellite map (without labels) as basemap.

~ Task 04: Explore the city of Chicago, starting from Chicago as an extent
window. Google roadmap (with labels) as basemap.

Each task was evaluated through different spatial techniques such as buffer zone
analysis for AOI, proximity analysis, nearest features analysis, determination of point
density and spatial auto-correlation, general statistical analysis of attributes, and usage of
supplementary spatial data with ET points. Figure 57 shows the summarized usage of zoom
level on the interactive web environment by the participants in all the above-mentioned
tasks as well as their mean fixation duration. All the analyses demonstrated capable results
and possibilities of the usage of the tool in research.

Distribution of Zoom Level by Tasks

0 -

16 |
Mean Value

14 [i
*143

12 | 121
*13.7

[d

.

Zoam Level

Task 01 Task 02 Task 03 Task 04

Distribution of Duration by Tasks

3,500

3,000

2,500 ——r Mean Value
® 235
2,000 * 268
® 337
1,500

* 336

Fixation Duration

1,000

500

B -

Task 01 Task 02 Task 03 Task 04

Figure 57 Chart 14 (top) Summarized zoom level usage in tasks,
Chart 15 (bottom); Summarized fixation duration in tasks.

70

7 DISCUSSION

The driving force behind this thesis study was the cumbersome analysis techniques for
eye-tracking data captured on interactive stimuli, particularly web maps. The tool
developed as a result addressed these issues by converting the points from one coordinate
system to another. The priority was to develop a solution that would, at a basic level, cater
to the needs of the research environment at the department but would also be able to be
used independently. The tool created, hence, is very niche and works with specific
technologies as of now i.e., MapTrack and SMI RED ET system. MapTrack is open-source,
and can be used by anyone through the internet with the results of interaction readily
available in xml format. Thereby it rids the user of dependency on a third-party propriety
system to be able to use ET2Spatial. On the other hand, although ET2Sspatial is configured
with the output from SMI BeGaze, the tool can theoretically work with output from any
ET system if naming conventions for the columns are followed. Apart from MapTrack, the
python module browserhistory (section 4.1) can fetch user-interaction data without relying
on any other software. The tool can be scaled to include this module if the circumstances
favor its usage over MapTrack.

The tool was mainly developed on open-source technologies such as modules and
libraries in python. The sufficiently available documentation and community support in
this regard helped ease the development process of the tool. One thing to be pointed out is
that in the code, Pandas module was chosen for manipulation of data considering eye-
tracking data structuring and analysis requirements. Overall, this was a good choice, but it
had certain limitations, e.g., in row iteration during data stitching from different data frames
and sources, a problem that was eventually solved by using dictionaries instead of
dataframes in specific parts of the code.

Notifications were added to the tool for user convenience on functions such as imports,
exports, and conversion. An additional notification appears when the user forgets to input
one or more files. However, the code is not intelligent enough to prompt the user if the files
of participants are mixed up. To compensate for that, the file name of the uploaded files
appears on the tool window to give the user an inclination of which participant data is being
handled. Although the code for the tool has basic level error handling, there are many
scenarios that rely on user vigilance instead of code intelligence. On testing, one such
scenario was found to be the incorrect keyboard logs in input files.

The tool takes the input of one participant’s files at a time, which in large experiments
could be time-consuming. The tool can be scaled to have a bulk file upload feature, but to
simplify the continuous conversion process for multiple participants, the reset feature was
added and which proved to be helpful during the testing on 34 datasets used in the
evaluation.

A fair advantage of transforming the eye-tracking points into the geographic space was
the availability of spatial functions that could be applied to the eye-tracking data of several
participants. These GIS functions could help in analyzing the ET data from a spatial
perspective. For most of the use-cases and visualizations, ArcGIS was used because of the

71

range of spatial operations available in the software. The open-source alternative to it,
QGIS, was also tested with data visualizations and basic level spatial functions. An
important aspect of the analysis of ET points in GIS software is the usage of the
cartographic renderer. These cartographic renderers need to be the same as the ones used
during the eye-tracking experiment. Conveniently, Both ArcGIS and QGIS had ways to
include custom basemaps such as Google satellite basemap or roadmap.

The evaluation of the tool was done through several use-case scenarios, some of which
compared the attributes such as any correlation between zoom level and duration. When
ET points are imported in the GIS software after conversion through the tool, they are
displayed as spatial features, but these are mock spatial features in essence as they do not
have an actual ground presence. This needs to be kept in mind when performing analysis
and choosing spatial functions and attributes of features. An example is the correlation
study between ET point distances and the zoom level. The correlation, in this case, would
always exist because the distances being considered are spatial distances, and when points
are projected from screen space to geographic space, points at higher zoom levels would
tend to cluster together. A point pattern analysis for ET features with these attributes would
hence hold no value.

The case studies presented in this thesis are all done on basemaps such as on Google
Maps API. However, there is a possibility to overlay additional vector or raster datasets on
the basemaps. One such example can be of the CLC (Corrine Landcover Classes) dataset
from Copernicus where the usability of the products can be tested and compared against
the underlying imagery basemap. There is also a vast potential of research in the field of
remote sensing and eye-tracking where geo-referenced eye-tracking datasets can be used
to impart human intelligence to the Machine Learning algorithms and for that purpose
Sentinel datasets can be used as stimuli.

Since the participant group was small, consisting of only seven-eight people, the results
for some of the analyses do not hold a conclusive value rather show a good range of the
capabilities that GIS software and ET data could offer together. Overall, the tool can be
a resourceful aid in future research carried out at the department and elsewhere. The pilot
experiments with associated analysis shown in this study could be used as a guide in
manipulating the output data from the tool.

72

8 CONCLUSION

Standard eye-tracking systems offer good evaluation techniques for static stimuli when
it comes to geovisualization products. However, the current practices carried out for
analysis with eye-tracking on interactive mediums such as web maps are very cumbersome
and time-consuming. Research done in this regard has been scarce, and the availability of
free, open-source tools addressing the issue is far lesser.

The goal of this study was to create a tool that would solve the problems of eye-tracking
analysis on dynamic interactive web maps and supplement the research eco-system in the
eye-tracking lab at UPOL. The tool developed as a result of this thesis, namely ET2Spatial,
converts screen coordinates recorded during an eye-tracking experiment to real-world
geographic coordinates.

ET2Spatial was developed in python using a variety of modules. The tool takes three
input files; the raw ET points, fixation points, and the user interaction data. These input
datasets are pre-processed, synchronized based on timestamps, and stitched together. The
main conversion of points relies on the Web Mercator projection formulas. Eventually, the
tool offers export in shapefile format along with a CSV and a geojson format.

The tool was evaluated in terms of accuracy of output, performance, and its general
usability. Four eye-tracking experiments were carried out with a small group of participants
who solved map tasks on interactive basemaps such as Google Maps. In total, 34 eye-
tracking datasets were passed through the tool for conversion. Post-conversion, these ET
datasets were imported in GIS software such as ArcGIS and QGIS to test the visualization
capabilities as well as the evaluation of points with spatial techniques. The pilot studies
demonstrated good results and multiple options for visualizing eye-tracking data in the GIS
environment and the usage of spatial functions to amplify the scope of analysis.

Using GIS environments to analyze and visualize eye-tracking points proved to open
many new potential avenues of research questions and capabilities. The custom symbology
and labeling options in GIS software gave much more control over the visualization aspect
of cartographic products compared to standard ET software. The tool also eased the
problem of visualizing multiple participant’s ET data on the same layer, which was one of
the main driving forces behind tool creation. The manipulation of ET points from a spatial
perspective gave additional investigation capabilities.

ET2Spatial builds on the existing technology developed at the department, i.e.,
MapTrack, and aims to provide a harmonized framework for carrying out future research.
Despite being slightly technology-specific, the tool is open-source and can be used
anywhere provided an eye-tracking system exists. The tool has the potential to be scaled
up and can be employed for usability studies of interactive cartographic mediums as well
as analysis of human interaction and cognition with web maps.

73

REFERENCES AND INFORMATION SOURCES

ANDRIENKO, G., ANDRIENKO, N., BURCH, M., & WEISKOPF, D. (2012). Visual
analytics methodology for eye movement studies. /EEE Transactions on
Visualization and Computer Graphics, 18(12), 2889-2898.

ENOCH, J. M. (1959). Effect of the size of a complex display upon visual search. JOSA4,
49(3), 280-286.

GOBEL, F., KIEFER, P., & RAUBAL, M. (2017). FeaturEyeTrack: a vector tile-based
eye tracking framework for interactive maps. In Societal Geo-Innovation: Short
Papers, Posters and Poster Abstracts of the 20th AGILE Conference on Geographic
Information Science. Wageningen University and Research (pp. 9-12).

HERMAN, L., POPELKA, S., & HEJLOVA, V. (2017). Eye-tracking analysis of
interactive 3d geovisualization. Journal of eye movement research, 10(3), 2.

KIEFER, P., GIANNOPOULOS, I., RAUBAL, M., & DUCHOWSKI, A. (2017). Eye
tracking for spatial research: Cognition, computation, challenges. Spatial Cognition &
Computation, 17(1-2), 1-19.

KIEFER, P., & GIANNOPOULOS, I. (2012). Gaze map matching: mapping eye tracking
data to geographic vector features. In Proceedings of the 20th International
Conference on Advances in Geographic Information Systems (pp. 359-368).

OOMS, K., COLTEKIN, A., DE MAEYER, P., DUPONT, L., FABRIKANT, S.,
INCOUL, A., ... & VAN DER HAEGEN, L. (2015). Combining user logging with

eye tracking for interactive and dynamic applications. Behavior research
methods, 47(4), 977-993.

OOMS, K., DE MAEYER, P., FACK, V., VAN ASSCHE, E., & WITLOX, F. (2012).
Interpreting maps through the eyes of expert and novice users. International Journal
of Geographical Information Science, 26(10), 1773-1788.

PAPENMEIER, F., & HUFF, M. (2010). DynAOI: A tool for matching eye-movement
data with dynamic areas of interest in animations and movies. Behavior research
methods, 42(1), 179-187.

PFEIFFER, T. (2012, March). Measuring and visualizing attention in space with 3D
attention volumes. In Proceedings of the Symposium on Eye Tracking Research and
Applications (pp. 29-36).

RUZICKA, O. (2012). Profil uzivatele webovych map. Univerzita Palackého
v Olomouci. Thesis.

SMI (SensoMotoric Instruments). (2017). In BeGaze Manual (pp. 339-375). Accessed at:
https://gazeintelligence.com/smi-product-manual

Internet Sources:

Generate a Projection File (.prj) using Python [Online]. 2015 [cit. 2021-04-02].
Geospatiality. Available Online: https://glenbambrick.com/2015/08/09/prj/

Geojson 2.5.0 [online]. [cit. 2021-04-13]. Python Software Foundation: Sean Gillies.
Available Online: https://pypi.org/project/geojson/

How Spatial Autocorrelation (Global Moran's I) works [Online]. [cit. 2021-05-03].
ArcGIS Pro. Available Online: https://pro.arcgis.com/en/pro-app/latest/tool-
reference/spatial-statistics/h-how-spatial-autocorrelation-moran-s-i-spatial-st.htm

Jupyter [online]. [cit. 2021-01-20]. Project Jupyter. Available Online:
https://jupyter.org/install.html

Map Projection [Online]. 2012 [cit. 2021-03-22]. USNA. Available Online:
https://www.usna.edu/Users/oceano/pguth/md_help/html/mapbOiem.htm

NumPy v1.20 Manual [online]. 2008-2021 [cit. 2021-03-06]. The SciPy community.
Available Online: https://numpy.org/doc/stable/

Pandas Documentation [online]. 2008-2021 [cit. 2021-03-03]. Pandas Development
Team. Available Online: https://pandas.pydata.org/docs/

Pyinstaller 4.3 [online]. [cit. 2021-04-23]. Python Software Foundation. Available
Online: https://pypi.org/project/pyinstaller/

Pip 21.1.1 [online]. [cit. 2021-02-30]. Python Software Foundation. Available Online:
https://pypi.org/project/pip/

Pyshp 2.1.3 [online]. [cit. 2021-04-10]. Python Software Foundation: Joel Lawhead.
Available Online: https://pypi.org/project/pyshp/

Python 3.8.10 Documentation [online]. 2001-2021 [cit. 2021-02-30]. Python Software
Foundation. Available Online: https://docs.python.org/3.8/

PyQt5 5.15.4 [online]. [cit. 2021-03-20]. Python Software Foundation: Riverbank
Computing Limited. Available Online: https://pypi.org/project/PyQt5/

https://gazeintelligence.com/smi-product-manual
https://glenbambrick.com/2015/08/09/prj/
https://pypi.org/project/geojson/
https://pro.arcgis.com/en/pro-app/latest/tool-reference/spatial-statistics/h-how-spatial-autocorrelation-moran-s-i-spatial-st.htm
https://pro.arcgis.com/en/pro-app/latest/tool-reference/spatial-statistics/h-how-spatial-autocorrelation-moran-s-i-spatial-st.htm
https://jupyter.org/install.html
https://www.usna.edu/Users/oceano/pguth/md_help/html/mapb0iem.htm
https://numpy.org/doc/stable/
https://pandas.pydata.org/docs/
https://pypi.org/project/pyinstaller/
https://pypi.org/project/pip/
https://pypi.org/project/pyshp/
https://docs.python.org/3.8/
https://pypi.org/project/PyQt5/

Slippy map tilenames [Online]. 2019 [cit. 2021-03-25]. OpenStreetMap Wiki. Available
Online: https://wiki.openstreetmap.org/wiki/Slippy _map_tilenames

Spyder [online]. [cit. 2021-01-20]. Spyder IDE. Available Online: https://www.spyder-
ide.org/

Web Mercator projection [Online]. 2021 [cit. 2021-03-27]. Wikipedia. Available Online:
https://en.wikipedia.org/wiki/Web_Mercator projection

Xmltodict 0.12.0 [online]. [cit. 2021-03-10]. Python Software Foundation. Available
Online: https://pypi.org/project/xmltodict/

Zoom Levels [Online]. 2019 [cit. 2021-03-25]. OpenStreetMap Wiki. Available Online:
https://wiki.openstreetmap.org/wiki/Zoom_levels

https://wiki.openstreetmap.org/wiki/Slippy_map_tilenames
https://www.spyder-ide.org/
https://www.spyder-ide.org/
https://en.wikipedia.org/wiki/Web_Mercator_projection
https://pypi.org/project/xmltodict/
https://wiki.openstreetmap.org/wiki/Zoom_levels

ATTACHMENTS

Code Snippets from ET.py (Full code on Pen Drive)

—-*- coding: utf-8 -*-

wun

Created 2021
Palacky University Olomouc

Qauthor:

Minha Noor Sultan

Copernicus Masters in Digital Earth

wun

class Ui MainWindow (QDialog) :

def

def

def

setupUi (self, MainWindow) :
MainWindow.setObjectName ("ET Tool")
MainWindow.setWindowIcon (QtGui.QIcon ('icon256.png'))
MainWindow.resize (800, 600)

font = QtGui.QFont ()

self.retranslateUi (MainWindow)
self.RawButton.clicked.connect (self.RawFiles)
self.FixButton.clicked.connect (self.FixFiles)
self.xmlButton.clicked.connect (self.XFiles)
self.convertButton.clicked.connect (self.Convert)

self.exportCSVbutton.clicked.connect (self.expCSV)
self.exportdsonButton.clicked.connect (self.expJSON)
self.exportShpButton.clicked.connect (self.expSHP)
self.Reset.clicked.connect (self.ResetProgress)
QtCore.QMetaObject.connectSlotsByName (MainWindow)

RawFiles (self) :
#IMPORT RAW POINTS FILE AND STORE IN DF
global et raw
global path r
filetype = 'Text file(*.txt)'
rname=QFileDialog.getOpenFileName (self, 'Open
File',filter=filetype)
path r=os.path.normpath (rname[0])
et raw = pd.read csv(path r,delimiter="\t")
if (path r is not None) :

self.labelR.setText (os.path.basename (path r))

self.labelR.setStyleSheet ("color: green; font-weight:

font-size: 10pt")

Convert (self) :
#CONVERT THE COORDINATES
try:
et raw
et fix
path x
except NameError:
msg= QMessageBox ()
msg.setIcon (QMessageBox.Critical)
msg.setText ('Upload all files!')

bold;

msg.setWindowTitle ('WARNING')
msg.exec ()

else:
self.progressBar.setValue (1)
xtree = et.parse (path x)
xroot = xtree.getroot ()

#store Participant number
global p num

p_num=xroot.find("var") .text
#store Map Size
m_size=xroot.find("mapsize") .text

m size=m size.split('x")

m size=pd.to numeric(m_ size)
mapWidth=int (m size[0])
mapHeight=int (m _size[l])

print (mapwWidth)

#screen center
center x=m size[0]/2
center y=m size[l]/2

#store Starting time

TOD start=xroot.find("start") .text

#convert xml to dataframe
dfcols = ['MapTrack RT', 'Action', 'MapCenter', 'Zoom level']

subsetxml mt = pd.DataFrame (columns=dfcols)

for i in xtree.iter (tag='event'):

subsetxml mt = subsetxml mt.append (
pd.Series([i.find('time") .text, i.find('name') .text,
i.find('center') .text, i.find('zoom') .text],
index=dfcols), ignore index=True)

#format MapCenter into lat and long
#split
subsetxml mt[['MapCenter lat', 'MapCenter long']]=
subsetxml mt.MapCenter.str.split (expand=True)
#remove characters
subsetxml mt['MapCenter lat'] =
subsetxml mt['MapCenter lat'].str.strip('(,")
subsetxml mt['MapCenter long'] =
subsetxml mt['MapCenter long'].str.strip(')')
#change data type
subsetxml mt['MapCenter lat']=
pd.to numeric (subsetxml mt.MapCenter lat, downcast='float')
subsetxml mt['MapCenter long']=
pd.to numeric (subsetxml mt.MapCenter long, downcast='float')
subsetxml mt['Zoom level'l]=
pd.to numeric (subsetxml mt.Zoom level, downcast='float')
subsetxml mt['MapTrack RT']=
pd.to numeric (subsetxml mt.MapTrack RT, downcast='float')
subsetxml mt['MapTrack RT']=
subsetxml mt['MapTrack RT']*1000 #convert to milliseconds
#index refresh
subsetxml mt=subsetxml mt.reset index (drop=True)
#convert to dict
subsetxml mt=subsetxml mt.to dict (orient='records')
self.progressBar.setValue (10)
#DATA FORMATTING RAW DATA

#convert the column names to strings
et raw.columns = et raw.columns.astype ("str")
et raw.columns = et raw.columns.str.strip()

#slice rows by selection

test rows=et raw.loc[et raw['Content']=="'F2"']
ind=test rows.index

subset et raw=et raw.loc[ind[0]:ind[1]]

#slice columns by selection
subset et raw=
subset et raw[['Time of Day [h:m:s:ms]"',
'RecordingTime [ms]', 'Point of Regard Right X [px]',
'Point of Regard Right Y [px]', 'Participant',
#'Gender', 'Age']]

#rename columns
subset et raw=subset et raw.rename
(columns={"'Time of Day [h:m:s:ms]': 'TOD',
'RecordingTime [ms]':'RT',
'Point of Regard Right X [px]'
:'Screen x',
'Point of Regard Right Y[px]'
:'Screen_y' })
#RAW DATA SYNCHRONIZATION

fcalculating length for synchronization
length=subset et raw.loc[ind[0], 'RT']-
et raw.loc[0, '"RecordingTime [ms]']

#calculating length 2 for sync of fix data end time
length2=subset et raw.loc[ind[1l],'RT']-
subset et raw.loc[ind[O0], 'RT']

#formatted Recording time, starting at f2
subset et raw['Format RT']=subset et raw['RT']-
subset et raw.loc[ind[O], "RT']

#exclude the row with -
subset et raw =
subset et raw.loc[(subset et raw["Screen x"]!= '-")
| (subset et raw["Screen y"]!= '-')]

#drop index

subset et raw=subset et raw.reset index(drop=True)
#add index column

subset et raw['ind'] =subset et raw.index

#convert from df to dict
subset et raw=subset et raw.to dict(orient='records')
self.progressBar.setValue (15)

def expCSV (self,raw, fix) :
#csv raw

header2 = ["ind","Zoom level", "Format RT", "Longitude",
"Latitude"]
et raw combined.to csv(raw, columns = header2)

print ('csv exported')

def expJSON (self) :

GUIDE.txt

Tool: ET2Spatial

This tool converts the screen coordinates of eye-tracking data recorded on a webmap, to real-
world coordinates.

HOW TO USE:-

-Download the tool as a zip. After unzipping, double click the exe file. The tool takes maximum 1
minute to compile. The icon files should be in the same directory as the exe file

For Eye-tracking Data following convention should be followed:

-In the Raw gaze points: ['Time of Day [h:m:s:ms]','/RecordingTime [ms]','Point of Regard Right
X [px]','Point of Regard Right Y [px]','Participant’,'Gender','Age']

-In the Fixations gaze points following elements should exist: ['Event Start Trial Time
[ms]','Event Duration [ms]','Fixation Position X [px]','Fixation Position Y
[px]"Participant','Gender','Age']

-For the User Interaction file, The tool currently only works with MapTrack export
(http://eyetracking.upol.cz/maptrack/results)

-On the initiation of the tool a terminal window also opens, The notifications for the export
buttons are printed in this window.

SYSTEM SETUP:-

The tool is standalone and should not need additional installations. However in case of problems,
these are the recommended steps:

1. Installation of Python v 3.5+ on the local system
(https://www.python.org/downloads/release/python-387/), Make sure that you add python to
PATH

2. Installation of the packages. In the requirements.txt all the necessary modules are listed, you
can install them individually or through 'pip install -r requirements.txt' in shell.

EXPORTS:-
The exports are named after the participant number which was given in input files.

The tool exports 1) shapefile: Which will produce CSV and Shapefiles for both raw points and
fixation points. The shapefiles are exported in the EPSG 3857 Projection System.

2) GeoJSON: Which will produce GeoJSON for both raw points and fixation
points

SHAPEFILE:-

.shp, .shx, .dbf

The shapefile has the following contents:
———————— Raw Points.shp

ind : index or serial number in temporal order
latitude: in decimal degrees
longitude: in decimal degrees
zoom level: the Google maps zoom factor at which each point was recorded
Format RT: the time stamp in millisecond for each point
-------- Fixation Points.shp
ind : index or serial number in temporal order
latitude: in decimal degrees
longitude: in decimal degrees
zoom level: the Google maps zoom factor at which each point was recorded
Sync_time: the time stamp in millisecond for each point
Duration: the amount of time of a fixation on screen
Along with the shapefile export there is a:
PROJECTION FILE:It contains the information on the projection of the exported points
in WKT format

CSV FILES: all the above mentioned attributes of points in csv format.

GEOJSON:-
The geojson file contains a point geometry file with associated properties:
-------- Raw Points.geojson
Geometry: latitude, longitude
Properties: zoom level, Format RT
———————— Fixation Points.geojson
Geometry: latitude, longitude

Properties: zoom level, Sync_time, Duration

GETTING DATA FROM MAPTRACK:

To use MapTrack data with Eye-tracker, it must be selected as a stimulus in presentation
settings.

Enter the participant Id, Matching with the one entered in Eye-tracking system. Press F11
to enter fullscreen mode. Press F2 to start.

After the experiment is finished, Press F2 again to terminate the 'interaction mode'. The
results can be accessed at: http://eyetracking.upol.cz/maptrack/results/

Download the xml file for the relevant participant ID and finished time.

LIST OF ATTACHMENTS
Bound Attachments

Attachment 1: Code Snippets of ET2Spatial.

Attachment 2: Guide text on how to run tool.

Free Attachments
Attachment 3: Poster

Attachment 4: USB Pen Drive/DVD

Structure of Pen Drive/DVD
Directories:
Code
ET2Spatial Tool
Eye-tracking Project (SMI Experiment file & MapTrack files)
Input Data (Data exports from SMI BeGaze & MapTrack for Task 1, 2, 3 & 4)
Output Data & Analysis (File exports from ET2Spatial & ArcGIS/QGIS project files)
Poster
Text

Website

	1 Objectives
	2 Methodology
	2.1 Solution Process
	2.2 Data Collection
	MapTrack
	Eye-tracking

	2.3 Used technologies
	Python
	Pandas
	NumPy
	xmltodict
	geojson
	PyQT5
	PyInstaller
	Others
	Jupyter Notebook
	SPYDER

	3 State of art
	4 Tool Creation
	4.1 User Interaction data
	4.2 Eye-tracking data
	4.2.1 Raw gaze points
	4.2.2 Fixation points

	4.3 Data Synchronization (Stitching)
	4.4 Data Conversion
	4.4.1 Approach 1
	4.4.2 Approach 2
	4.4.3 Approach 3

	4.5 Data Exports
	4.5.1 GeoJSON
	4.5.2 Shapefile

	4.6 Graphical User Interface
	4.6.1 Designing Layout
	4.6.2 Connecting functions

	5 Tool Evaluation
	5.1 Output Accuracy
	5.2 Tool performance
	5.3 Use-case demonstration
	5.3.1 Experiments Setup
	5.3.2 Visualizations
	Multiple participant data overlay
	Scale-based rendering
	Attribute based visualization
	Custom scanpaths

	5.3.3 Task 01
	5.3.4 Task 02
	5.3.5 Task 03
	5.3.6 Task 04

	6 Results
	6.1 ET2Spatial
	6.2 Sample Use-cases

	7 Discussion
	8 Conclusion

