
Palacký University Olomouc, Faculty of Science,
Department of Geoinformatics

Paris Lodron University Salzburg, Faculty of Natural Sciences,
Department of Geoinformatics

AUTOMATION OF PROCESSING GNSS TRACK
RECORDS FOR DESIGNING INTENSITY MAPS

Diploma thesis

Author

Bc. Benjamín ŠRAMO

Supervisor (Palacký University Olomouc)

Mgr. Radek BARVÍŘ, Ph.D.

Co-supervisor (Paris Lodron University Salzburg)

Prof. Bernd RESCH, Ph.D.

Erasmus Mundus Joint Master Degree Programme
Copernicus Master in Digital Earth

Specialization Track Geovisualization & Geocommunication
Olomouc, Czech republic, 2023

ANNOTATION

Automated processing of GNSS track data provides opportunities for effective
quantitative visualisation of mobility data. Presented processing tool and its settings for
matching GNSS track records to a road network for visualizing passage frequency.
Optimal tool parameterization and correctness rate are purposed for three case studies
in urban and rural environments. The published work aims to help cartographers to
effectively manipulate GNSS data. The functionality of the tool is demonstrated by
designing web and paper intensity maps, i.e. graduated-colour and graduated-symbol
maps.

KEYWORDS
mobility, GPX format, parametrisation, map matching, graduated-colour map,
graduated-symbol map

Number of pages: 45
Number of attachments: 9

This thesis has been composed by Benjamín Šramo for the Erasmus Mundus Joint
Master’s Degree Program in Copernicus Master in Digital Earth for the academic years
2021/2022 and 2022/2023 at the Department of Geoinformatics, Faculty of Natural
Sciences, Paris Lodron University Salzburg, and Department of Geoinformatics, Faculty
of Science, Palacký University Olomouc.

Hereby, I declare that this piece of work is entirely my own, the references cited
have been acknowledged and the thesis has not been previously submitted to
the fulfilment of the higher degree.

In Olomouc, 23. 5. 2023

Bc. Benjamín ŠRAMO

ACKNOWLEDGEMENT

I would like to thank my supervisor Mgr. Radek Barvíř, Ph.D., for finding an
interesting topic for the thesis. I thank him for his sincere interest in actively supervising
the thesis and improving its quality. I thank my fellow colleagues in Salzburg and
Olomouc for their words of encouragement during my studies.

Last but not least, I thank God, my family, my girlfriend and my closest friends for
supporting me in what I love to study, being there with me in my hardships and
celebrating my successes, hopefully, another success is waiting around the corner.

7

CONTENT

LIST OF ABBREVIATIONS ….…..…..…………………………………………...………………… 8

INTRODUCTION ... 9

1 OBJECTIVES ... 10

2 STATE OF ART .. 11

2.1 Global Navigation Satellite System ... 11

2.2 Map Matching .. 14

2.3 Geovisualization in Jupyter .. 16

3 METHODOLOGY .. 17

3.1 Study Area and Data.. 17

3.2 Automation Workflow... 18

3.3 Jupyter Notebook .. 20

3.4 Python Packages .. 20

4 TOOL DEVELOPMENT ... 22

4.1 Design ... 22

4.1.1 Pre-Processing .. 24

4.1.2 Data Mining .. 26

4.1.3 Post-Processing ... 30

4.1.4 Outputs .. 31

4.2 Debugging and Exceptions ... 33

4.3 Documentation and Distribution .. 34

5 TESTING AND ASSESSMENT ... 36

5.1 Olomouc Case Study .. 36

5.2 Malá Fatra Case Study ... 38

5.3 Slovak Paradise Case Study ... 40

6 RESULTS .. 42

7 DISCUSSION ... 43

CONCLUSION ... 45

REFERENCES AND INFORMATION SOURCES

ATTACHMENTS

8

LIST OF ABBREVIATIONS

Abbreviation Meaning

BSD Berkeley Source Distribution

EO Earth Observation

FOSS Free and Open-Source Software

GeoJSON Geographic JavaScript Object Notation

GI Geographic Information

GIS Geographic Information System

GNSS Global Navigation Satellite System

GPS Global Positioning System

GPX GPS Exchange Format

GUI Graphical User Interface

HMM Hidden Markov Model

HTML Hypertext Markup Language

MIT Massachusetts Institute of Technology

MM Map matching

OSM OpenStreetMap

RFID Radio-frequency Identification

UX User Experience

VGI Volunteered Geographic Information

WLAN Wireless Local Area Network

9

INTRODUCTION

Technologies for positioning services play a prominent role in infrastructure
development and periodic “smart” monitoring. Nowadays policymakers oversee urban
development through the lenses of smart city models. Raubal et al. (2017) consider
the integration of GNSS data to be the game-changing aspect for increasing
the sustainability of travel behaviour. Location-based sensors provide a network of data
sources ready to analyse. The network may be rich in multi-temporal or multi-user
layers. In this thesis, the focus is on the automated processing of trajectory data.

The trajectory data is a primary source for human mobility data mining (Crivellari
et al., 2022). The multi-temporal layers of motion data are a solid base for further
trajectory predictions (Chen & Liu & Yu, 2014), trajectory classification (Dabiri &
Heaslip, 2018), motion flow modelling (Song et al., 2014) or activity recognition (Gao &
Sun, 2012). Though Feng and Zhu (2016) explain that the first significant step is to
store the vast-volume of data which can rapidly accumulate. Secondly, while integrating
different data sources one needs to define a common metric resolution to compare data
with different sampling frequencies. Thirdly, the spatio-temporal queries run a complex
computation. Therefore, one must adapt appropriate techniques to perform such
an analysis.

Map matching (MM) is a fundamental approach for GNSS data consolidation.
The process assigns the position derived from the GNSS receiver to the target digital
model of a street network utilizing polylines that approximate the edges of the network
(Jensen & Tradišauskas, 2009). The MM approaches improve with the growing
measuring precision of the receivers and differ in implementing deterministic or
stochastic approaches. A stochastic method based on a Hidden Markov Model (HMM)
with non-emitting states is used in the thesis. The model can deal with missing
positions, and one can specify probability distributions of parameters related to signal
reception (Meert & Verbeke, 2018).

The results of multi-temporal data mining are beneficial for individual citizens to
inspect the spatial distribution of their movement behaviour over time (Feng & Zhu,
2016). Contrasting single-user data, multi-user data provide more objective information
about citizen mobility (Àvila Callau et al., 2020). Such information has the potential to
develop infrastructure sustainably.

Any GNSS data referred to a road network can be quantified and visualized in maps
of intensity. Not only individual citizens but also individuals responsible for the local
development of a particular mode of transport or recreational activity may benefit from
the visual outcomes. Therefore, the thesis results of the automated processing of GNSS
data is distributed in an open, user-friendly, self-explanatory environment and
integrates with free and open-source solutions.

10

1 OBJECTIVES

The aim of the thesis is to find an automated way of processing GNSS track data
into a linear georeferenced layer suitable for methods of quantitative visualization.
The presented approach and its settings for matching GNSS track records to a road
network for visualizing passage frequency. Examining the correctness rate of
the process supports the best workflow for integrating GPX files for automated data
processing. The work is published aiming to help cartographers with the effective
manipulation of mobility data for quantitative visualisation. The functionality will be
demonstrated by designing graduated-colour or graduated-symbol maps. The
methodological goals for the thesis study are following:

(1) automation of spatial analyses of GNSS trajectory data on a street network,
(2) implementation of possible appropriate quantitative geovisualization,
(3) assessment of results (1) and (2) and possibilities for further use.

11

2 STATE OF ART

 This chapter outlines the relevant research frontiers concerning the thesis
objectives. The first area is the global perspective on GNSS and its impact on large-scale
spatial studies. Secondly, the development of map matching for feasible path
approximations is discussed. Finally, the consecutive relationship of data mining and
dynamic geovisualization is emphasized by the described Python packages.

2.1 Global Navigation Satellite System

Global Navigation Satellite System (GNSS) can be attributed to two conceptual
systems, namely Radio Navigation Satellite Services (RNSS) representing the technical
architecture (EU Agency for Space Programme, 2022) and Location-Based Services
(LBS) representing the application infrastructure (Huang & Gao, 2018).

RNSS infrastructure provides satellite signals for positioning through GNSS
(American GPS, Russian GLONASS, European Galileo, Chinese BeiDou, etc.), regional
constellations (Japanese QZSS, Indian NavIC, etc.) and through Satellite-Based
Augmentation Systems (SBAS) for accuracy improvement (WAAS, EGNOS, MSAS, etc.)
(EU Agency for Space Programme, 2022). Figure 1 illustrates the GNSS constellations in
their prescribed orbits, the majority at an altitude of approximately 20 000 km (Borealis
Precision, 2023).

Figure 1: Satellite constellations of global GNSS, ©ESA.

12

GALILEO AND EGNOS

Galileo is the first GNSS that unlike other GNSS is not under military control
(fig. 2). The European player provides European citizens independence and sovereignty
from other global powers. The system provides global navigation, positioning, and
timing information together with several high-performance services. This GNSS has
been in operation since 2016 providing its services fully, freely and openly world-wide.
Most positioning devices work with multiple GNSS constellations; thus, Galileo provides
seamless interoperability with GPS, GLONASS and BeiDou. Such GNSS compatibility
grants accurate operational domain. User applications can relay on the positioning data
like never before and generate value for the economy and improve the quality of life (EU
Agency for Space Programme, 2022).

EGNOS, European Geostationary Navigation Overlay Service, is not a global
positioning service, but rather it is the augmentation service to improve the accuracy
and reliability of the satellite positioning services in Europe. EGNOS has been fully
operational since 2009. and openly serves the European public especially through
safety of life service in civil aviation, maritime, rail and road transportation (EU Agency
for Space Programme, 2022).

Figure 2: Logo of Galileo GNSS, ©ESA.

LOCATION-BASED SERVICES

LBS is a mobile application which interconnects through communication networks
providing a service and content based on positioning and spatial modelling (Huang &
Gao, 2018). In most cases, these user application services harness the current location
of a user (Huang & Gao, 2018). However, location history may also serve as a data
source for case-specific studies, such as mobility behaviour (Jonietz & Bucher, 2018).
Huang and Gao (2018) differentiate LBS based on outdoor positioning – GNSS, cellular
networks and Wi-Fi, and indoor – WLAN, Bluetooth, RFID. The services have a wide
range of application from sport tracking, marketing, emergency management,
healthcare, entertainment etc. (Huang & Gao, 2018). Furthermore, specific examples of
LBS for mobility are traffic simulation and travel forecasting (Jan et al., 2000), as well
as changes of mobility behaviour for sustainability (Jonietz & Bucher, 2018).

13

GNSS is the key component for positioning and its further services (fig. 3). The EU
Agency for the Space Programme (2022) forecasted that road navigation together with
customer solutions enabling LBS will dominate 90 % of the GNSS market for the period
2021–2031. Furthermore, it is estimated that the revenues from the added-value
services utilising GNSS will account for 72 % of total GNSS revenues in 2031. Therefore,
position-based solutions have a wide potential for expansion, especially in the segments
of Road & Automotive and Customer Solutions, Tourism & Health (EU Agency for Space
Programme, 2022).

Figure 3: Components responsible for location recording – positioning.

POSITIONING ACCURACY

Nowadays, the utilizing of outdoor GNSS location data is affected by the quality of
the signal coming from the satellites. Naturally, there are common geometric errors
such as ionospheric and atmospheric delays, these can be corrected by the SBAS.
Particularly in urbanised areas are common multipath effect errors or generally
different delusions of precision due to the cold start problem (Àvila Callau et al., 2020).

Moreover, Àvila Callau et al. (2020) call attention to the user-made distortions
in the case of VGI on citizen mobility. The study focuses on the detection and filtering
of GNSS trace outliers whose geometric characteristics differ significantly from
the characteristics of other coordinates that compose the complete trace. In conclusion,
Àvila Callau et al. (2020) state that filtering allows the scientist to divide the users
according to their level of reliability and principally the calculated error rate may
indicate the quality of the VGI source. Another method to handle the errors and gaps in
records due to various reasons is map matching (Jonietz & Bucher, 2018). Although,
the performance of MM is highly dependent on its calculation technique and
parametrization.

14

2.2 Map Matching

Map Matching is a process that assigns the coordinates of a trajectory to the target
digital model of a street network utilizing polylines that approximate the edges of
the network (Jensen & Tradišauskas, 2009). According to Feng and Zhu (2016),
the trajectory of a moving object expressed by a tuple of geographic coordinates is called
a geographical trajectory or a raw trajectory. In contrast, a semantic trajectory
is a sequence of meaningful places with a geotagged location. The street network is
a directed graph comprising nodes: road junctions and road ends, and edges: directed
road segments (Feng & Zhu, 2016). The polylines also called routes or matched paths
are sequences of edges in the street network where consecutive edges share a vertex
(Feng & Zhu, 2016).

In general, there are two types of MM: online and offline (Jensen & Tradišauskas,
2009). In the case of online MM, the location on the street network is calculated in real-
time, for instance in navigation systems. Whereas the offline MM works with static
historic or modelled datasets. The methods and parametrisation are tailored for the use
case, thus resulting in a better matching result. Such offline MM scenarios could be for
insurance or road pricing in pay-per-use pricing (Jensen & Tradišauskas, 2009).

The challenge for the MM algorithm and heuristics is the trade-off between
the possible roads by the location measurements and the feasibility of the path (Newson
& Krumm, 2009). Simple matching to the nearest road produces unrealistic solutions
as displayed in figure 4. Therefore, sophisticated algorithms employ the sequence of
measurements to ensure not only path proximity to the measurement, but also path
continuity, direction similarity (White et al., 2000), topology (Greenfeld, 2002). However,
the geometric methods mentioned here are still not satisfactory for noisy data in
the dense street network of an urbanised area.

Figure 4: Map matching of measured locations (black dots) to the road network. Merely matching to
the nearest road is prone to make mistakes (left: Newson & Krumm, 2009; right: Jensen &

Tradišauskas, 2009).

15

Newson & Krumm (2009) purpose a method to deal with multiple possible path
hypotheses through simultaneous probabilistic modelling – Hidden Markov Models
(HMM). The models can approximate the possible states and assign them probabilities.
The states are represented in the street segments and the transitions between the states
are governed by the connectivity of the street network (Newson & Krumm, 2009).
The MM algorithm in this thesis tool follows the HMM theory to ensure a higher
performance in various environments. The authors of the algorithm refer to non-
emitting states challenge, segments with missing measurement positions, that can be
resolved by the HMM (Meert & Verbeke, 2018).

Map Matching is the critical part of query processing in the trajectory data mining
framework (fig. 5). The framework explains the phases for handling trajectory data, e.g.
GPX records, to create a value-added product to understand the data holistically. Feng
and Zhu (2016) describe the workflow as follows, firstly, in pre-processing phase one
aims to improve the quality of the raw data through calibration, sampling, cleaning,
segmentation etc. The following data management step handles the volume of data in
an efficient and scalable manner. Query processing retrieves new appropriate results
such as a new map-matched path from a GPX dataset. Lastly, the trajectory data
mining tasks summarize knowledge in spatial analyses. Through all these phases one
needs to protect the privacy of sensitive information represented in the data (Feng &
Zhu, 2016).

Figure 5: Framework of trajectory data mining (Feng & Zhu, 2016).

16

2.3 Geovisualization in Jupyter

The interactive aspect of Jupyter Notebooks is developed through
the implementation of widgets. These elements enable bidirectional communication
between the front-end and backend, the widgets link the capabilities of JavaScript
mapping libraries to Jupyter (Corlay & Renou, 2019). The interactive geovisualization of
the results close the circle of GIS functionality in Jupyter.

The Leafmap package (Wu, 2021) for interactive visualization is built upon FOSS
packages i.e., ipyleaflet responsible for interactive mapping (Renou et al., 2021), folium
displays data enabling LeafletJS extensions (Filipe et al., 2021), WhiteboxTools
for geoprocessing toolbox (Lindsay, 2018) and ipywidgets responsible for map
interactivity (Grout et al., 2021). Therefore, the added value of the Leafmap package is
the integration of the most popular visualization packages together in a manner that
requires minimal coding skills in the Jupyter Notebook (Wu, 2021). The tool developed
for the thesis implements the foliumap module of the Leafmap package (Wu, 2021).
The package displays the preliminary result in map preview and facilitates the decisions
for changes in parametrization; or allows the final web map to be saved as a HTML file
for the simple presentation of the results.

17

3 METHODOLOGY

The potential for GNSS track records is vast. However, the data mining of
positioning data creates a set of case-specific problems. Geospatial awareness and
knowledge are the solid base for a robust and actionable solution. The following
subchapters describe the principles and methods of how the objectives of the thesis
have been accomplished.

3.1 Study Area and Data

 Settlements dispose of an increasing number of mobility data provided by sensors,
especially when dealing with citizen volunteered geographic information – VGI (Callau et
al., 2020). Therefore, the purpose and potential applications of the automation of
mobility data are in the sphere of infrastructure development.

 The automation tool aims to work in any type of study area. Primarily the area is
determined by the input data. The tool has been tested in three different environments
(Chapter 5). Firstly, an urbanised area, Olomouc – a city in the eastern Czech Republic.
The city has the sixth largest population in Czechia. However, its cultural heritage,
quality higher education and well-known events attract tourists and students from
abroad to explore the city's riches. The area is characterised by a dense road
infrastructure. The second case study area is situated in the mountain range Malá
Fatra, Slovakia. The area covers a variety of landscapes – from rural settlements to
mountainous environments. Most of the region is located in the national park, so the
region is rich in natural beauty and is a popular site for hiking expeditions. The road
network density is diverse across the region, but it is rather sparse. The third case
study area is the National Park Slovak Paradise. The area is known for its rugged
terrain, gorges, and cliffs. Together with the dense vegetation the area is an interesting
testing example due to the high GNSS signal distortions. The area network density is
very low overall. All three study areas are known for their potential to attract visitors to
explore the region, therefore, the data-backed planning is vital for their sustainable
infrastructure development.

 The data provider is Mgr. Radek Barvíř, Ph. D., the supervisor of the thesis.
The positioning data track mobility, in particular running, cycling and hiking. The data
is supposed to represent VGI, therefore, the data source is diverse in the accuracy rates
and undocumented. The GNSS position has been received by the wearable devices or
a smartphone application listed below:

• Garmin Forerunner 255 (Galileo-enabled device),
• Garmin Forerunner 35 Optic,
• Lenovo K10 Note Dual SIM via application Strava,
• Lenovo A6 Note Dual SIM via application Strava (Galileo-enabled device),
• Lenovo A7000 Black via application Strava.

18

 Strava application is a mobile tracking application for over 30 types of activities. Its
key feature is to collect and store positioning data of an activity. The Strava community
has over 100 million sport enthusiasts in 195 countries (Strava, 2023).

 The provided data are in GPX format, which is an open standard defined in XML
schema. The de-facto XML standard version 1.1 has stayed here since 2004 (Foster,
n.d.). Generally, the measurements are recorded every 1–5 seconds, i.e. a very frequent
sampling rate. Therefore, the automation workflow offers an option for appropriate
generalization and compression of the datasets (Attachment 3).

3.2 Automation Workflow

The tool for automation of GPX data to the linear layer of passage frequencies
consists of the following parts: parametrization and data acquisition, map matching,
post-processing, result visualization and storage. In figure 6 is a general overview of the
automation workflow showimg preliminary processing steps resulting in two main
outputs – web map and geodata.

Figure 6: Workflow diagram and Python packages within the workflow.

19

The parametrization and data upload parts are the only parts expecting a direct
user interaction of the workflow. The user sets 11 parameters that have a direct impact
on the final product (fig. 7). The parameters consist of 2 directories for data input and
output, a parameter for street network download, 9 map matching parameters such as
level of generalization, GNSS measurement noise, thresholds etc. The detailed
explanation of parametrization is explained in Chapter 4.1.1. The data upload refers
to the link of GPX data either to the local file or to the given sample data web repository.
Access to the set of GPX files is mandatory for the automation process to execute.

Figure 7: View on the parameters and variables in Google Colab.

The core part of the data mining is the map matching. MM follows the structure of
a Python package responsible for matching the GNSS measurements to the street
network. The matching is enriched with the road network download (OSMnx) and track
generalization. The data mining starts with the download of the street network from
OSM, the extent is defined by the input data and the parameter for buffering. The MM
works on the probabilistic calculation of possible paths, therefore, the parametrization
is crucial for the result. The output of the analysis is a sequence of passed nodes on
the street network. The nodes construct matched routes to the network. In the same
step, the traces of mobility are concatenated into so-called tracks that serve as
a reference to the matched result. For more details see Chapter 4.1.2.

Post-processing has two main goals for automation. Firstly, the variables are
transformed into data structures ready for data geospatial visualization and storage.
Secondly, the matched routes are overlaid with a blank street network on which are
calculated frequencies i.e., the number of matched passages through the street, for
more details see Chapter 4.1.3.

The output map visualization serves the user as a preview of the result (Chapter
4.1.4). The asset supports the user with a simple visualization in the form of
an interactive web map. Based on the visualization one can readjust the
parametrization that would fit the characteristics of the study area and the input data.
The outputs can be saved or downloaded as two types of web maps in HTML format or
as GIS-ready data in GeoJSON, GeoPackage formats. More sophisticated and quality
maps can be made in GIS by integrating the output geodata (Attachment 4–6).

20

3.3 Jupyter Notebook

Since 2014 Jupyter has been growing to a popular spin-off project of IPython,
Interactive Python. FOSS principles ensure web computing independent of any
(programming) language. The Jupyter Notebook creates a web application allowing users
an easy manipulation with the code. In the notebook one can combine snippets of
computer code, computational outputs, and explanatory texts. “For data scientists,
Jupyter has emerged as a de-facto standard” (Perkel, 2018, p. 145).

Granger and Peréz (2021) present how Jupyter pioneered the data science with
conception of thinking and storytelling with code and data. The shift towards interactive
computation runs the code with “a human in the loop”. The human may modify
the code snippets and see the effects immediately. Thus, the execution is no longer
working in linear fashion, but rather the user is empowered to explore the calculation
more deeply and experimentally (Perkel, 2018).

Secondly, Granger and Peréz (2021) emphasize the notebook's ability to talk in the
universal language – storytelling. Such computational narrative leads the audience to
understanding and effective learning. Jupyter Notebooks bring options to add textual
descriptions, markdown with LaTeX support, multi-media content, etc.

The nature of the notebook supports the sharing of identical development
environments. The dissemination of the integrated computing environment increases
the further usability across target groups. This benefit is supported with notebooks that
run in the cloud (Perkel, 2018). Such cloud collaboration is becoming popular across
different platforms e.g., Google Colab, Binder, Code Ocean.

Google Colab is a freemium tool created by Google Research (Google, 2023). The
environment is fully cloud-based, i.e. local hardware independent, cloud back-up,
cross-platform. Moreover, it allows multi-user access to the notebook (Sherrer, 2022).
Therefore, the Python code developed for the thesis has been integrated in the Google
Colab environment.

3.4 Python Packages

Python packages promote modularity in programming. The packages consist of
modules ordered in hierarchical structure. The idea behind is to break down the large
tasks into small manageable modules.

Firstly, the reusability of packages improves the functionality of a wide range of
programs. Moreover, the code appears simple and organised, the package helps avoid
collisions between objects through separate namespaces. Therefore, it makes coding,
maintenance and debugging easier (Sturtz, 2022). Considering the open ability to create
and access free and open-source repositories, such as GitHub, the distribution and
popularity of Python packages is growing (fig. 8).

21

Figure 8: Growing popularity of the “Scientific Python” (Schlömer, 2020).

The central package for the automation is Leuven.MapMatching package (Meert,
2021a). It has been developed by Belgian scientists from KU Leuven, department of
Declarative Languages and Artificial Intelligence and the lab Sirris – Elucidata Group.
The package is deployed under an open Apache licence, Version 2.0. The added
functionality is responsible for the alignment of a GNSS trace to a map or road
segments (Meert, 2021a).

The second package enables the automation to work freely in any part of the world
where street networks are mapped by OpenStreetMap contributors. OSMNx facilitates
the download and basic data management steps for the street network of custom choice
(Boeing, 2017). The author of the package is Geoff Being, the professor of urban
planning and spatial analysis at University of South Carolina, and the distribution is
under MIT licence.

The major package for data processing is GeoPandas (Jordahl et al., 2020). It is
a geospatial processing package following Pandas structure for possible non-spatial
interoperability. BSD licence distributes the package functionality freely and openly
(Jordahl et al., 2020).

The last important package is responsible for data geovisualization in the Jupyter
environment. It is the Leafmap package (Wu, 2021), which is built on folium and
ipyleaflet packages substantial for interactive map creation. Its key advantage is
the capability to tie functionalities of different packages together with minimal coding
requirements on the user (Wu, 2021). However, the initiative is novel and needs better
user support for all the functionality integration.

22

4 TOOL DEVELOPMENT

The first objective of the thesis is to develop a tool for automated processing of
GNSS track records. Consolidation of GNSS records adds value for further
understanding of the data especially about the mobility of individuals. The whole
development started with the review of current approaches dealing with the issue
(Chapter 2). As different approaches were identified, the designing process of the tool's
functionality started (Chapter 4.1). Iteratively optimalizations have been implemented to
fit the methods to the overall intent. Debugging and raising the exceptions support
the smooth execution of the code (Chapter 4.2). Lastly, the documentation and
distribution are discussed in Chapter 4.3.

4.1 Design

In the Methodology (Chapter 3), one finds a general introduction to the framework
of the thesis. The Design chapter refers to the specifics of the tool development in
Jupyter Notebook, Python 3 kernel. The vital step of the design process is
the examination of the appropriate Python packages, which would support functionality
between each other regardless of the different version compatibility.

The final code has undergone many modifications to design the best possible
solution. For instance, in the beginning, the code worked with a geolocation parameter
to define the study extent. Later, the tool calculates the study area by itself from
the input data and the buffer parameter. Therefore, the upgrade brought the need to
enable computation with multiple study areas at once (Chapter 4.1.2). The second
modification, the author of the map-matching package was requested to add additional
functionality. The function deals with the cases where a road network is missing
(Chapter 4.1.2). Furthermore, the tool and output testing uncovered hidden
computational errors in frequency calculation (Chapter 4.1.3). Additionally, different
erroneous datasets have been tested to ensure the proper raising of exceptions (Chapter
4.2). Minor additional adjustments had to be implemented due to the release of new
package versions.

In the following sub-chapters, the code is explained in detail. The tool is distributed
through two main channels: the standalone Jupyter Notebook and the Voilà web
application (QuantStack, 2019) running on the Jupyter Notebook. Therefore, the subtle
differences of code design are outlined.

In the notebook tool, the code is written in cells, code snippets, that are
superimposed by the explanatory text. The code cells can be run sequentially or how
the user desires. During the processing the user is informed with the well-designed
preliminary messages. The advantage of the environment is that it provides the open-
source code, the user can modify the code as desired. The notebook is structured into

23

sections therefore one can navigate through the table of contents. In figure 9
the contents and structure of the notebook can be inspected.

Figure 9: Preview of the tool contents in Google Colab.

In case of a notebook enabled for Voilà, the core functionality resembles the one in
the notebook version. However, significant changes in the design of the code had to be
implemented, see the structure and its interaction flows in figure 10. The code loads at
the start of the application, although, the functions execute only after clicking on “run
button”. The processing steps are enclosed in functions that are called as the user
clicks on the button. All input and output variables can be accessed in user-friendly
widgets i.e., buttons, sliders, etc. The user does not interact with the code itself, rather
with the GUI through the Markdown content and the widgets. The preliminary and final
results are being shown through the output widget.

Limitations arise in the application customization beyond the tool parametrisation
provided in the widgets. Voilà installs and imports the only packages defined inside
the configuration file, the code is not modifiable from the GUI. For such special
customization needs, the standalone Jupyter Notebook is a more suitable environment.

24

Figure 10: Structure and interaction-flow design of Jupyter for Voilà.

4.1.1 Pre-Processing
Before any pre-processing steps, all dependencies should be installed and imported

into Jupyter. The dependencies are specified in the header of the notebook or in
the configuration file.

The pre-processing section is divided into two parts. The first part deals with
the declaration of variables and parameterisation, see the following code snippet.
The user is required to specify the location of the data repository containing the GPX
files and the output folder for the results. The notebook also offers the download of
ready-to-use example GPX files. The parameterisation deals with the study area extent

25

[line 6] and the MM essentials [lines 9–17]. These numerical variables have their default
values, nevertheless, it is essential to adapt the parameter values to the study area and
the input track records. Chapter 5 deals with the testing and optimal parameterisation
proposal.

The map-matching algorithm uses the KU Leuven solution (Meert & Verbeke, 2018),
which can handle low positioning accuracy and sparce sampling frequencies
considering the HMM (Chapter 2.2). The matching is an approximation; therefore,
the algorithm requires several probabilistic parameters determining the transition
probability. The parameters are described as follows. Minimum normalised probability of
observations eliminates the lattice where the probability falls below a certain confidence
level [line 10]. Maximum distance from the track determines a break from any further
matching [line 11]. Maximum lattice width restricts the lattice in search for a suitable
route [line 12] and the increase of the lattice width increments the width if no solution is
found [line 13]. Observation noise is the standard deviation of expected GNSS noise [line
14], the noise for non-emitting states expects a higher noise level [line 15]. Distance noise
for emitting and non-emitting states is a standard deviation of the difference between
the distance between states and the distance between observations (Meert, 2021b). In
line 9 of the code snippet, the user can set the tolerance in meters for record
simplification (Douglas & Peucker, 1973). The simplification flattens out the differences
in the spatio-temporal precision of the records.

1 ## Set the directory location for data and output files
2 DATA_FOLDER = 'data' # path to your data repository
3 OUTPUT_FOLDER = 'output' # directory save the results
4
5 ## Study area for OpenStreetMap street network download
6 BUFFER_DIST = 100 # area around the GPX records; in meters
7
8 ## Map Matching parameters
9 TOLERANCE = 4 # threshold for GPX track simplification; in meters
10 MIN_PROB_NORM = 0.002 # eliminate the lattice where it drops below normalized probability
11 MAX_DIST = 100 # break for any further matching; in meters
12 MAX_LATTICE_WIDTH = 7 # search the route with this number of possible paths at every step
13 INCREASE_MAX_LATTICE_WIDTH = 4 # if no solution found, the width increments by the value
14 OBS_NOISE = 20 # expected GNSS noise, in meters
15 OBS_NOISE_NE = 60 # expected GNSS noise for non-emitting states , in meters
16 DIST_NOISE = 5 # difference between distance between matched route and distance […]
17 DIST_NOISE_NE = 15 # difference between distances for non-emitting states, in meters

Secondly, the next part of the pre-processing calculates the appropriate study areas
based on the input data, the GPX files, and the buffer distance variable. The following
code snippet iterates over the files in the data repository. From the valid GPX files, the
script extracts the points with their position record [line 11]. The metric buffer distance
is converted to the degrees in line 21 and the buffer areas are calculated [line 22]. The
areas polygons are the basis for further analysis i.e., downloading the OSM road
network.

Inside the code, one can find exceptions for unexpected errors. The script can skip
over an invalid GPX file. The execution will fail with an exception in the case of empty
data and in the case of the data being located in the polar regions i.e., above 80° or
below -80° of latitude. The code snippet ends with an output statement about the
number of study areas ready for analysis.

26

1 gpx_combined = gpd.GeoDataFrame(columns = ['latitude', 'longitude'])
2 for filename in listdir(DATA_FOLDER):
3 if filename.endswith(".gpx"):
4 try:
5 gpx_file = Converter(input_file = DATA_FOLDER + "/" + filename).gpx_to_dataframe()
6 except:
7 print(filename, "is NOT valid, the tool removed the file from repository.")
8 remove(join(DATA_FOLDER, filename))
9 continue
10

11
 gpx_point = gpd.GeoDataFrame(gpx_file, geometry=gpd.points_from_xy(gpx_file.longitude,
 gpx_file.latitude)).set_crs('epsg:4326')

12 gpx_combined = pd.concat([gpx_combined, gpx_point])
13
14 if gpx_combined.empty:
15 raise Exception("Uploaded data is empty.")
16
17 if (gpx_combined["latitude"] >= 80).any() or (gpx_combined["latitude"] <= -80).any():
18 raise Exception("Execution failed, uploaded data contains in polar region.")
19
20 latitude = gpx_combined["latitude"].iloc[0]
21 distance_deg = BUFFER_DIST / (111319.488 * np.cos(np.radians(latitude)))
22 gpx_buffer = gpx_combined["geometry"].buffer(distance_deg).set_crs(4326)
23 areas = gpx_buffer.unary_union
24 areas = gpd.GeoDataFrame(index=[0], crs='epsg:4326', geometry=[areas])
25 if areas.type[0] == "MultiPolygon":
26 areas = areas.explode()
27
28 print("From the GPX files have been calculated", len(areas.index), "area(s) for graph(s).")

4.1.2 Data Mining
The core of the whole automation is in the data-mining part. It brings together the

data from the pre-processing stage and calculates the most likely routes from the track
records. The tool can work with multiple study areas at once therefore the whole
datamining-computation is designed in two nested cycles. The first cycle iterates over
the areas and downloads the OpenStreetMap road network for the area. The second
cycle iterates over the GPX files within the study area and computes the routes on the
graph – the road network.

In the first code snippet represented below, one can see the declaration for
the expected variables: street_all [line 1] is a container for all road networks used in
the analysis, track_df [line 2] collects the coordinates of the tracks before matching,
route_df [line 3] is the store for all matched routes on the road network. In the first
cycle, the OSM road network is downloaded based on a network type and study area.
The network type is pre-selected network by the mode of transport. If the selection is
insufficient, one can create a custom filter based on the “highway” attribute of a road.
In case the network is not present in the area, the code skips the area with an exception
[line 14–16]. Finally, the script creates the in-memory representation of a map through
adding graph nodes and graph edges to InMemMap object – map_con [lines 22–26].
The structure of the object represents the connectivity of the graph to suggest the most
possible transitions (Meert, 2021b).

27

1 street_all = gpd.GeoDataFrame(columns = ['Latitude', 'Longitude'])
2 track_df = pd.DataFrame(columns = ['Latitude', 'Longitude','id'])
3 route_df = pd.DataFrame(columns = ['Latitude', 'Longitude','id'])
4 id = 1
5 for _, row in areas.iterrows():
6 ## A. Download graph based on network type
7 area_gdf = gpd.GeoDataFrame(index=[0], crs='epsg:4326', geometry=[row["geometry"]])
8 print("Building a graph for a specific area...")
9
10 try:
11 ### NETWORK TYPES {"all_private", "all", "bike", "drive", "drive_service", "walk"}
12 ### or TYPE YOUR OPTIONAL CUSTOM “HIGHWAY” FILTER HERE
13 graph = ox.graph_from_polygon(row["geometry"], network_type = 'all', simplify = False)
14 except:
15 print("WARNING: One area has no street network mapped.")
16 continue
17
18 print("===", graph, "\n") # number of nodes and edges
19 street_lines = ox.graph_to_gdfs(graph, nodes = False)
20 street_all = pd.concat([street_lines, street_all])
21 ### Map Object
22 map_con = InMemMap("road_network",
23 use_latlon = True,
24 use_rtree = True,
25 index_edges = True)
26 for node in graph.nodes:
27 lat = graph.nodes[node]['y']
28 lon = graph.nodes[node]['x']
29 map_con.add_node(node, (lat, lon))
30
31 for edge in graph.edges:
32 node_a, node_b = edge[0], edge[1]
33 map_con.add_edge(node_a, node_b)
34 map_con.add_edge(node_b, node_a)
35
36 map_con.purge() # remove nodes without location or edges
37

The second nested cycle prepares the GPX data for map matching and runs
the matching for each file in the study area. In the first part of the cycle, the track
positions are connected into a line trace, which is subsequently simplified based on
the TOLERANCE parameter [lines 61–62]. A path variable is a list of coordinate-pair
tuples [line 70] that feeds the map-matching algorithm. A track variable is a two-
dimensional list of coordinate-pairs [line 71], the concatenation of all tracks, track_df,
serves as the reference layer for the matched routes.

38 ## B. Map Matching
39 for filename in listdir(DATA_FOLDER):
40 if not filename.endswith(".gpx"):
41 continue
42
43 gpx_df = Converter(input_file = DATA_FOLDER + "/" + filename).gpx_to_dataframe()
44 try:

45
 gpx_point = gpd.GeoDataFrame(gpx_df, geometry = gpd.points_from_xy(gpx_df.longitude,
 gpx_df.latitude)).set_crs('epsg:4326')

46 except:
47 print("WARNING: The file has no record of position, the matching stopped.")
48 continue
49 gpx_point['id'] = 1
50 area_check = gpx_point.within(area_gdf)

28

51 if not area_check.iloc[0]:
52 continue # skip the GPX file outside of the graph
53 print("Map matching of " + filename + " started...")
54 try:
55 gpx_line = gpx_point.groupby(['id']) ['geometry'].apply(lambda x: LineString(x.tolist()))
56 except:
57 print("WARNING: The file has only one record of position, the matching stopped.")
58 continue
59
60 line_gdf = gpd.GeoDataFrame(gpx_line, geometry = 'geometry').set_crs('epsg:4326')
61 tolerance_deg = TOLERANCE / (111319.488 * np.cos(np.radians(latitude)))
62 line_gdf['geometry'] = line_gdf['geometry'].simplify(tolerance_deg) # simplify
63 gpx_coords = line_gdf.apply(lambda row: list((row.geometry).coords), axis=1)
64 passage = list(gpx_coords[1])
65 track = []
66 path = []
67 for i in range(len(passage)):
68 lat = passage[i][1]
69 lon = passage[i][0]
70 path.append((lat, lon))
71 track.append([lat, lon])
72
73 track = np.array(track)
74 df = pd.DataFrame(track, columns = ['Latitude', 'Longitude'])
75 df['id'] = id # id for grouping into one line
76 track_df = pd.concat([track_df, df])

The matching algorithm itself is executed in lines 77–96. The DistanceMatcher [line
77–87] differs from a simple matcher in that it takes into account the similarity of
the distances between the track observations and the matched states (Meert, 2021b).
Apart from the parameters defined at the beginning, the matcher is defined by:
the network graph – map_con, possible non-emitting states restriction – restrained_ne.
The match method matches the path to the graph with node repetition allowed [line 89].
If the matcher fails to match the entire path, the early stop index is returned (Meert,
2021b). Therefore, in case of an interrupted matching, a new matching is performed,
allowing jumps to a nearby edge [lines 90–94]. The reasons for the possible mismatch
can be on the side of the road-network data or due to an inappropriate MM
parameterisation. Finally, the matching returns a list of OSM node IDs through which
the matched route passes [line 96].

77 matcher = DistanceMatcher(map_con,
78 max_dist = MAX_DIST,
79 min_prob_norm = MIN_PROB_NORM,
80 max_lattice_width = MAX_LATTICE_WIDTH,
81 increase_max_lattice_width = INCREASE_MAX_LATTICE_WIDTH,
82 obs_noise = OBS_NOISE,
83 obs_noise_ne = OBS_NOISE_NE,
84 dist_noise = DIST_NOISE,
85 dist_noise_ne = DIST_NOISE_NE,
86 non_emitting_edgeid = False,
87 restrained_ne = False)
88
89 matcher.match(path, unique = False) # retain not only unique nodes in the sequence
90 if matcher.early_stop_idx is not None:
91 print("WARNING: Parts of the path were omitted from matching due to the road mismatch.")
92 from_matches = matcher.best_last_matches(k = MAX_LATTICE_WIDTH)
93 matcher.continue_with_distance(from_matches=from_matches, max_dist = MAX_DIST)
94 matcher.match(path, expand = True)
95
96 node_id = matcher.path_pred_onlynodes_withjumps # node_ids the route passes through
97

29

Originally, the map-matching package could not jump over areas with no road
network, i.e. with incomplete data or typically with no path to be mapped. The matching
would be interrupted with an early stop and the rest of the track left unmatched. Figure
11 illustrates the forced interruption due to the topologically incomplete data.
Collaboration with the developer community is essential, the author of the package was
able to add functionality that allows matching to continue with a given distance.
Essentially, the lines 90–94 integrate the newly added functionality to fix the bug in the
calculation. Moreover, the interaction resulted in both-sided code promotion.

Figure 11: Interrupted track matching in an area with no road network (Šramo, 2023).

The end of the code snippet is devoted to the processing of the preliminary result,
the sequence of node IDs, to create a set of matched roads [lines 98–116]. Based on the
ID the code can access to the geometry of the nodes and retrieve their coordinates. Each
road of a route is a connection of two consecutive nodes of the graph. These individual
roads are concatenated to form a route – route_df. At the end of the whole computation,
two variables are deleted [line 123]. This step unloads the cache memory and speeds up
the further analyses in the post-processing phase.

98 id_route = 1
99 for i in range(len(node_id)-1):

100 route_node = []
101 lat = graph.nodes[node_id[i]]['y']
102 lon = graph.nodes[node_id[i]]['x']
103 latlon = [lat, lon]
104 route_node.append(latlon)
105 lat2 = graph.nodes[node_id[i + 1]]['y']
106 lon2 = graph.nodes[node_id[i + 1]]['x']
107 latlon2 = [lat2, lon2]
108 route_node.append(latlon2)
109
110 route_node = np.array(route_node)
111 df = pd.DataFrame(route_node, columns = ['Latitude', 'Longitude'])
112 df['id'] = id_route # the same id for one line (street)

30

113 route_df = pd.concat([route_df, df])
114 id_route += 1
115
116 id += 1
117
118 print("Matching of " + filename + " finished successfully.\n")
119
120 if route_df.empty:
121 raise Exception("The map matching has no result.")
122
123 del graph, map_con

The user is notified with the execution proceedings regularly. In the case of
an exception [line 121] or warnings [lines 15, 47, 57, 91], the necessary information is
provided. Details about the debugging process and exceptions for the tool are discussed
in Chapter 4.2.

4.1.3 Post-Processing
The last processing phase deals with two main goals. Firstly, the lines 2–7 convert

the track_df and route_df variables into a geometry-enabled structure – GeoDataFrame.
Secondly, the calculation of frequencies is carried out on the streets. The reference
street network is cleaned from unnecessary attributes [line 9]. Then it is spatially
filtered where the network intersects only the matched routes [line 10], the redundant
duplicates are pruned from the street_freq [line 11]. A proper tool output check
uncovered a redundancy issue in the OSM data. After these important steps the code
can loop over the streets to calculate route frequencies on them [lines 14–16]. On each
street the algorithm calculates the number of routes that are identical in the geometry
attribute with the street – covers method (GeoPandas developers, 2022). The load of
the calculation increases exponentially with the size of the study area. After the cycle
the frequencies are added as a new attribute to the result variable street_freq.
The variable is GeoDataFrame with the following attributes: osmid, length, frequency
and geometry.

1 # Arrays of tracks and matched routes to GeoDataFrame

2
track_point = gpd.GeoDataFrame(track_df, geometry = gpd.points_from_xy(
 track_df.Longitude, track_df.Latitude))

3 track_lines = track_point.groupby(['id'])['geometry'].apply(lambda x: LineString(x.tolist()))
4 tracks_gdf = gpd.GeoDataFrame(track_lines, geometry = 'geometry').set_crs('epsg:4326')

5
route_point = gpd.GeoDataFrame(route_df, geometry = gpd.points_from_xy(route_df.Longitude,
 route_df.Latitude))

6 route_line = route_point.groupby(['id'])['geometry'].apply(lambda x: LineString(x.tolist()))
7 route_gdf = gpd.GeoDataFrame(route_line, geometry = 'geometry').set_crs('epsg:4326')
8 # Calculation of Frequencies
9 street_all = street_all.loc[:, ['osmid', 'length', 'geometry']]
10 street_freq = street_all.overlay(route_gdf, how = 'intersection') # drop streets out of the routes
11 street_freq = street_freq.drop_duplicates(subset=['osmid', 'length'])
12 frequency = []
13 print("Calculating passage frequences on streets...")
14 for _, row in street_freq.iterrows():
15 bool_series = route_gdf.covers(row["geometry"])
16 frequency.append(bool_series.values.sum())
17
18 street_freq["frequency"] = frequency
19 print("The length of matched roads is", round(street_freq["length"].sum()), "meters.")

31

4.1.4 Outputs
The output preview dynamically presents the results to the user in web maps.

There is no need to export the data first, but it supports the idea of allowing the user to
interactively modify the results as needed within the Jupyter environment. By
the repetitive optimisation of the parameters, the user gains the knowledge of how
the algorithm works in a particular area. In the case of such a parameter-dependent
tool, the output preview is a crucial element for practical use.

The final output, streets with frequencies, is displayed in a map preview using
the Leafmap Python package (Wu, 2021). The map preview consists of functionality
such as map zoom, full-screen view, geolocation, distance and area measuring tool, link
to the tool documentation and the layer switcher (fig. 12 & 13). The interface allows
the user to interact with two linear layers: the reference layer of GNSS track records
[lines 6–9] and the road passages, which are styled in graduated colours [lines 10–21].
The symbology is designed for the light (fig. 12) and the dark basemaps (fig. 13).

1 m_light = leafmap.Map(width = "100%",
2 height = "480",
3 draw_control = False,
4 attribution_control = True,
5 tiles = "CartoDB positron")
6 m_light.add_gdf(tracks_gdf,
7 layer_name = "GPX tracks",
8 info_mode = None,
9 style = {'color':'blue', 'weight':0.5, 'opacity': 0.5})
10 m_light.add_data(street_freq,
11 "frequency",
12 cmap = "Wistia", # color ramp
13 scheme = "Quantiles", # classification scheme
14 k = 5, # max. number of classes (saved in attribute)
15 add_legend = True,
16 legend_title = "Number of passages",
17 legend_position = "bottomright",
18 layer_name = "road passages",
19 style_function = lambda feat: {"color": feat["properties"]["color"],
20 "weight": 4,
21 'opacity': 0.9})

22
m_light.add_text("INTENSITY OF MOBILITY ON ROAD NETWORK", fontsize = 22, fontcolor='#404040',
 bold = True, padding = '0px', background = True, bg_color = 'white',
 border_radius = '5px', position = 'topright')

23

m_light.add_text("
 <img width = '250' alt = 'Asset 3logo' src = 'https://user-
 images.githubusercontent.com/47752920/234973760-c8157fdd-a3cf-43cf-88b0-
 4dc8096cfe7c.png'>", background = False, position = 'topright')

24 m_light.zoom_to_gdf(street_freq)
25 m_light

32

Figure 12: Light version of output preview with a map layout description.

Figure 13: Dark version of output preview with a map layout description.

At the end of the iterative optimisation process, the user can save the output data
or download it from the cloud. The script allows saving the linear data in two GIS-ready
formats, GeoJSON and GeoPackage [lines 2, 3]. Secondly, the user can choose to
download the light or dark version of the Leaflet map in HTML [lines 5, 6]. These web
maps serve as a simple data preview for users with no further experience in GIS and
cartography.

1 # Save the final linear layer with frequencies to GeoJSON and GeoPackage file
2 street_freq.to_file(OUTPUT_FOLDER + "/lines_freq.json", driver="GeoJSON")
3 street_freq.to_file(OUTPUT_FOLDER + "/lines_freq.gpkg", driver="GPKG")
4 # Save the interactive map to html
5 m_light.to_html(OUTPUT_FOLDER + "/light_map.html")
6 m_dark.to_html(OUTPUT_FOLDER + "/dark_map.html")

33

See Attachments 4–6 for examples of how the cartographic output of the data can
be designed in linear graduated-symbol maps. The visualisation follows the frequency
classification previously stored in the attributes in the tool. The class value in
the attribute greatly simplifies the symbolization process in GIS. The background
imagery for the print maps is the Sentinel-2 cloud-free composite by EOX IT Services
GmbH (2020). Sentinel-2 satellites are part of European EO programme Copernicus. In
the case of Olomouc, a different high-resolution imagery is used for the city mapping.
The author designed the maps in ArcGIS Pro 3.0.2 and the layout was finalised in Adobe
Illustrator 27.5.

4.2 Debugging and Exceptions

According to Heusser (2022), debugging involves several steps which include
identifying the problem, isolating its source, and finally, either fixing the issue or
finding a workaround. The final step is to test the solution to ensure that it effectively
resolves the problem. These bugs occur due to coding errors or when the program is not
maintained properly, a collision of new package versions may cause the code to fail.

The notebook's advantage is that it runs the code snippets independently;
therefore, the debugging is easier compared to one block of script. Nevertheless, in some
cases, the use of debugging modules or packages is inevitable. The tool has been
debugged in the most naïve way – logging. Logging is an intuitive way to track
the source of the error through print statements. No installation is required, but
the frequent prints may appear spammy (Trablesi, 2020).

The tool has been tested with different erroneous datasets to ensure the proper
raising of exceptions. The error test GPX files were the following: files with only one or
no point location, a data file within a polar region and a GPX file with an incorrect XML
schema. For each case, there are designed suitable ways either to continue running the
code or stop the execution by raising an exception, see the examples in Chapter 4.1.

34

4.3 Documentation and Distribution

Documentation and distribution are the most important aspects for the further use
of the tool. The overall presentation has to communicate the tool's capabilities. The level
of detail in documentation varies based on the platform and the target user group.
The most basic commentaries are in the Voilà web application interface, one can
proceed to detailed documentation through a hyperlink. The GitHub start page
introduces the workflow and the solutions in more general terms. The Jupyter Notebook
together with the thesis provides the most detailed documentation and instructions for
experienced users.

Each type of distribution is an attachment to the thesis. The solutions are tied
together with the name “gpx2intensity” and its logo (fig. 14). The tool is built on open-
licensed packages, so the entire use of the tool follows the FOSS principles. GitHub is
a repository for the scripts and is a portal to subordinate applications like Google Colab
and Voilà. The tool code solutions are presented in three Jupyter Notebooks:

1. gpx2intensity_tool.ipynb tool aimed at users with coding skills (Attachment 1),
2. gpx2intensity.ipynb – modification of the notebook for the Voilà application

(Attachment 2),
3. gpx_compression.py is a Python script for GPX file compression (Attachment 3).

Figure 14: Logo of the tool “gpx2intensity” (source: author).

The web application runs on a free cloud server – Binder. It is a way to share
reproducible and interactive environments, for example, JupyterHub, from online
repositories (Ragan-Kelley et al., 2018). The scripting difference between the tool and
the tool modification for Voilà is explained at the beginning of Chapter 4.1.
The structure subordinates to the application UX. The user runs the whole sequence of
functions with one click on the “Run Button” (fig. 10). Download buttons support user-
friendly interaction with the outputs of the tool.

Figure 15 is the preview of the start page of the web application. The tool requires
the upload of the local GPX files, for instance, the test data from the GitHub repository
(Attachment 9). The default values of parameters can be changed. After clicking on the
“Run the Tool” button the preliminary messages are printed. Finally, the runtime and
the results are displayed with the options to download the result data or the web maps.
In the imprint section, the user can find further links to the documentation or licencing.

https://github.com/bsramo144/Thesis-Jupyter/tree/main/sample_data

35

Figure 15: gpx2intensity web-application start page with a layout annotation.

36

5 TESTING AND ASSESSMENT

The possibilities of cloud-based tools are wide. Therefore, it is essential to
determine the scope and limitations of the tool for possible use cases. The testing and
assessment part consists of three case studies: in urban (Chapter 5.1), mixed rural and
mountainous (Chapter 5.2), and rugged natural (Chapter 5.3) environments. Each case
study aims to find suitable parameterisation for the area. The parameters are set to
critical break values to determine overfitting or underfitting by visual comparison of
the reference tracks with the new matched routes in the output web map. Secondly,
the best representative output result has been assessed in the frequency correctness
rate. Reasonings and advice about further applications are suggested in the following
sub-chapters.

5.1 Olomouc Case Study

As mentioned earlier in Chapter 3.1, Olomouc is a Czech city with an interesting
cultural heritage pulling visitors to come (fig. 16). Well-maintained infrastructure will
make the life experience for the locals and visitors more enjoyable and make it more
attractive for new ones to arrive. The case study aims to create an exemplary intensity
map of sample mobility data provided by Mgr. Radek Barvíř, Ph. D.

The positioning data have been processed through the web application
“gpx2intensity” multiple times to find the most suitable parametrisation. The street
network of the area is very dense in built-up areas, it creates larger possibilities for
routing. Therefore, it is important to keep the detail of the positioning and the optimal
track simplification tolerance set to 2 metres (tab. 1). Table 1 presents the list of testing
runs, for each run a parameter is altered to find the optimal solution. Three pairs of
parameters are altered altogether. The first pair is the maximum lattice width with its
increase because they are mutually correlated by design. The same reason for pairing
the parameters is for the observation noise and its non-emitting-state alternative, and
for the distance noise and its non-emitting-state alternative. The most optimal fitting
result is in the ninth testing run with the execution time of 293 seconds and 107,2 km
of matched routes (tab. 1). From 165,2 km of input tracks, the routes with frequencies
decreased the length by 58 km.

In the second part of the assessment, 20 control points have been identified from
the expert perspective to evaluate the frequency precision. The location of the control
points can be inspected in the final map presentation (Attachment 4). At each control
point the reference value is compared to the result of the tool calculation. Control point
4 shows incorrect frequency due to the wrong route choice of the map matching.
In contrast, the wrong value at point 10 is due to the incorrect choice of roads on one
street. The overall precision at the control points is 90 %. The sensitivity rate of 93,9 %
indicates the number of passages assigned correctly (tab. 1).

37

Ta
bl

e
1:

 P
ar

am
et

er
iz

at
io

n
m

at
ri

c
of

 t
es

t
ru

ns
 i

n
O

lo
m

ou
c

an
d

fr
eq

ue
nc

y
pr

ec
is

io
n

as
se

ss
m

en
t.

Th
e

pa
ra

m
et

er
s

ar
e

se
t

to
 c

ri
tic

al
 b

re
ak

 v
al

ue
s

to
 d

et
er

m
in

e
ov

er
fit

tin
g/

un
de

rf
itt

in
g

by
 c

om
pa

ri
ng

 th
e

re
fe

re
nc

e
tr

ac
ks

 w
ith

 th
e

ne
w

 m
at

ch
ed

 r
ou

te
s

in
 th

e
in

te
ra

ct
iv

e
w

eb
 m

ap
 .

Th
e

op
tim

al
 s

ol
ut

io
n

is
 r

un
 n

um
be

r
9.

 It
 h

as

re
tu

rn
ed

 9
0

%
 o

f c
or

re
ct

 m
ea

su
re

m
en

ts
 a

t c
on

tr
ol

 p
oi

nt
s,

 th
e

se
ns

iti
vi

ty
 o

f t
he

 c
or

re
ct

 m
at

ch
in

g
is

 a
t 9

3,
9

%
 b

as
ed

 o
n

th
e

co
nt

ro
l s

am
pl

es
.

38

Figure 16: City of Olomouc in November (Fidler, 2013).

5.2 Malá Fatra Case Study

Malá Fatra is a mountain range that is part of the Western Carpathians in Slovakia
(fig. 17). The study area extends to the rural areas of Terchová in the north and Strečno
in the west. Therefore, the road network is not dense in most cases, however, the
settlements increase the diversity of the network. The highest elevation point of
the records is at Veľký Kriváň – 1 709 m above sea level, the lowest is at Nezbudská
Lúčka 356 m above sea level. Another factor influencing the GNSS signal quality is
the dense forest vegetation. Therefore, generally the positioning above the tree line
provides records with a low delusion of precision, thus better map-matching results.

In table 2, the optimal parameterisation for the best result fits the test run number
9. As the study area is more distributed compared to the previous study, hence the time
of tool computation increased rapidly to 862 seconds. The total length of the matched
routes with frequencies is 132,9 km, which is 66,4 km less than the input single track
records.

The precision assessment has used 15 control points expertly sampled on critical
spots. See the distribution of the points in the map, which is Attachment 5 to
the thesis. All incorrect frequencies captured in the control points are due to the low
positioning precision. In case of the control point 4, the spatial delusion is too large to
match the graph. On the other hand, control point 14 is overestimated due to the noisy,
oscillating track record. Many other smaller oscillating records have been smoothed by
the simplification function – the TOLERANCE parameter.

39

Ta
bl

e
2:

 P
ar

am
et

er
iz

at
io

n
m

at
ri

c
of

 te
st

 r
un

s
in

 M
al

á
Fa

tr
a

an
d

fr
eq

ue
nc

y
pr

ec
is

io
n

as
se

ss
m

en
t.

Fi
gu

re
 1

7:
 M

al
á

Fa
tr

a
m

ou
nt

ai
n

ri
dg

e
co

ve
re

d
w

ith
 li

m
es

to
ne

 n
ap

pe
s

(s
ou

rc
e:

 a
ut

ho
r)

.

40

5.3 Slovak Paradise Case Study

Slovak Paradise National Park is known for its attractive rugged relief, i.e. gorges,
canyons, karst landforms etc. (fig. 18). This interesting environment generates
challenges in terms of GNSS signal quality. The records are noisy in a very sparse road
network.

The parameterisation for this study differentiates from the previous two
significantly. The network is sparse and generally homogenous over the study area.
The optimal parametrisation returns 91,8 km long routes with frequencies in 325
seconds (tab. 3). The validation of the result is done through 10 control points, see their
distribution in Attachment 6. At every control point, the calculated frequencies
corresponded to the reference values (tab. 3). The precision based on the control points
is 100 %. However, the points did not capture the overestimations due to the noisy and
oscillating records. The errors due to the wrong road choice do not arise, because
the road possibilities are much lower than in the urbanised area.

Figure 18: Hiking in the Slovak Paradise, Suchá Belá (source: author).

41

Ta
bl

e
3:

 P
ar

am
et

er
iz

at
io

n
m

at
ri

c
of

 te
st

 r
un

s
in

 S
lo

va
k

Pa
ra

di
se

 a
nd

 fr
eq

ue
nc

y
pr

ec
is

io
n

as
se

ss
m

en
t.

42

6 RESULTS

The thesis consists of two main parts: the tool development (Chapter 4) and the
testing and assessment (Chapter 5). The development follows the previous research of
processing GNSS track records. The automated approach is unique to consolidate
the positioning data in one linear layer with passage frequencies. Testing purposes
the parameterisation methodology for optimal results. And the assessment part proves
the result for a particular level of accuracy.

The Jupyter Notebooks for the direct interaction (Attachment 1) or the indirect
through the web application (Attachment 2), allow the user to upload the GPX files to
process them under specific parametrisation. A simple tool for compression of the GPX
data has been developed to handle the large input datasets in a systematic manner
(Attachment 3). After the calculation of passage frequencies, the user can inspect the
processing outputs in two modes of web maps. The final outputs can be saved in two
data formats and two web maps. The cloud-based tool is open to an expert user group
throughout the world. The reference network data come from the global database of
OpenStreetMap contributors. However, the ability of the result to convey a strong
message originates from the credibility and objectivity of the input GNSS track records.

Testing and assessment in three different case studies support the importance of
human knowledge in the loop of automation. Optimal parametrisation plays the most
important role in the outcome. Generally, the frequency precision above 90 % grants
the gpx2intensity tool to provide an innovative source of information for road
infrastructure development, especially for active transport, i.e. hiking, running, cycling
etc. Attachments 4–6 are demonstrations of how the intensity maps for mobility can be
designed in graduated-symbol symbology. The presented maps visualize the records of
a single user; therefore, their primary purpose is to present the visual design. The
content itself, passage frequencies, is not credible for further distribution.

43

7 DISCUSSION

The thesis investigates the possibilities of utilising a Jupyter Notebook for workflow
automation of positioning data. The notebook runs on Python kernel, the processing of
the automation is not as fast and efficient as it would be if run in other programming
language. The notebook's advantage is its wide user group. The explanatory text
superimposed in the code increases the chances for multiple users to manipulate the
data-mining tool appropriately.

The community developing Python packages in the data science field, including GI
science, is growing. Accordingly, all the development accounts for the growing
popularity of Jupyter Notebooks. The notebooks are effective in delivering the essential
knowledge to guide the end-user to successful results. Furthermore, the Voilà extends
the code abstraction to the web application enabling ipyWidgets in GUI. Such web
application demands computing power on the cloud. A recent initiative Binder pioneered
to provide free cloud servers for virtual environments (Ragan-Kelley et al., 2018).
The solution has become popular for collaboration among data scientists. However,
the Binder sever can overload easily and the web application depends on the server
availability at the time. The alternative approach is the collaborative notebook at Google
Colab by Google Research (Google, 2023). It runs on the freemium business model.
The basic computing power is free with further paid alternatives to increase the services
and capabilities. Unfortunately, Google Research does not offer a free cloud server to
run a web application like Voilà.

The next core idea, the integration of VGI together with scientific methods is
a current trend in GI science (Àvila Callau, 2020). The VGI diversity is a benefit and
a drawback at the same time. The diversity of data sources, crowd-sourcing, covers
the environment in such a way that from the individual records, one can zoom out to
the general, abstracted character of the region. The more data providers in an area,
the better and more objective is the understanding of the study area. For instance, a
case study for urban development can examine the behaviour of e-scooter riders within
a city. The service providers dispose of the positioning data of their scooters, such VGI
provides a multi-user sample of scooter driver traces. After the data mining processes,
the most frequent passages could be subjected to a development test. It is a data-
oriented method to address sustainable mobility development in urban areas.
The thesis objective is not to generate similar actionable outcomes but rather to design
a tool that is easy to implement in any environment. The tool is tested on diverse
positioning data from different devices in different study areas. The datasets come from
a single data provider; therefore, the results are highly subjective.

As mentioned earlier, the VGI bring drawbacks by its nature. Compared to data
collected according to scientific principles, the general public does not follow
the principles for data collection, the quality of VGI is variable and undocumented due
to the different devices or methodologies, the contributors are not experts and have
different interests while collecting data (Àvila Callau, 2020). Nonetheless, the advancing

44

technology capabilities and its democratisation allow users to contribute to “citizen
science” with their data, such as GNSS track records of mobility.

Lastly, the gpx2intensity tool resolves the challenge of unifying positioning data of
different levels of detail. The most possible approximation to reference street network,
a route, creates the common ground to combine the different VGI sources together.
The map-matching algorithm enables HMM to calculate routing for track parts with
non-emitting states as well (Newson & Krumm, 2009). The tool parameterisation and
computation are heavy. The processing of VGI requires expert knowledge, thus the very
necessary information for the user is given within the tool. The result of automation
summarises the total passage frequencies of the input positioning data. The notebook is
distributed on online platforms, from which the user can run the tool on the cloud, or
one can download the notebook and run it locally. Primarily, the tool pre-processes the
geographic data for the cartographers to design graduated-symbol or graduated-colour
maps. In the case of non-cartographers, the secondary output is a web map in two
colour modes generated automatically. The continuation of the tool development can
lead to data processing for other methods of geovisualization. Apart from the mobility
behaviour, one can investigate the origin-destination relationships. In most cases,
the primary purpose for mobility is the transport from point “A” to point “B”. Therefore,
in the future the tool could be improved to visualize the GNSS track records in the edge-
path bundling presented by Wallinger et al. (2022).

45

CONCLUSION

The “Automation of Processing GNSS Track Records for Designing Intensity Maps”
compiles the solid foundation of the state-of-the-art and the growing importance of
GNSS, data mining of track records and the geovisualization in Jupyter Notebook
(Chapter 2). Based on the previous research done in the field, Chapter 3 describes
the methodology to accomplish the first two sub-goals: (1) automation of spatial
analyses of GNSS trajectory data on street network, (2) implementation of possible
appropriate quantitative geovisualization. The tool development (Chapter 4) discusses
the design, debugging and exceptions, and documentation and distribution of
the product. Lastly, the third sub-goal has been addressed in the chapters of Testing
and Assessment (Chapter 5), Results (Chapter 6) and Discussion (Chapter 7). The aim
is to assess the results and outline the possibilities for further use.

The thesis overall provides a scientific approach to solving the challenges of
geovisualization of positioning data. The work profits from the community publishing
reproducible, free and open-source research. New ideas for processing big geographic
data, coming from satellites, sensors, wearable devices etc., have a vast potential to
keep the development processes sustainable. Such approaches lead to an increased
quality of life and prosperity in the form of economic assets. The geoprocessing tool is
distributed in cloud platforms of two types. The published work anticipates contributing
to the GI community with a new method to process GNSS track records and providing
the groundwork for future developments either in the infrastructure or geovisualization
perspective.

REFERENCES AND INFORAMTION SOURCES

ÀVILA CALLAU, Aitor, Yolanda PÉREZ-ALBERT, and David SERRANO GINÉ. Quality of
GNSS Traces from VGI: A Data Cleaning Method Based on Activity Type and User
Experience. Online. ISPRS International Journal of Geo-Information, vol. 9
(December 2020), no. 12, p. 727. ISSN 2220-9964. Available from:
https://doi.org/10.3390/ijgi9120727. [viewed 2023-05-16].

BOEING, Geoff. OSMnx: New methods for acquiring, constructing, analyzing, and
visualizing complex street networks. Online. Computers, Environment and Urban
Systems, vol. 65 (September 2017), pp. 126–139. ISSN 0198-9715. Available from:
https://doi.org/10.1016/j.compenvurbsys.2017.05.004. [viewed 2023-05-16].

BOREALIS PRECISION. GNSS Knowledge - Step 1 - Satellites. Online. Borealis Precision
- Industry Leading Representative. 2023. Available from:
https://www.gnss.ca/gnss/1291-step-1-satellites. [viewed 2023-05-19].

CHEN, Meng, Yang LIU, and Xiaohui YU. Nlpmm: A next location predictor with markov
modeling. In: Proceedings of the Pacific-Asia Conference on Knowledge Discovery
and Data Mining, pp. 186–197. Tainan, Taiwan, 2014-05-13 – 2014-05-16. [n.d.].

CORLAY, Sylvain, and Martin RENOU. Interactive GIS in Jupyter with ipyleaflet. Online.
Medium. 2019. Available from: https://blog.jupyter.org/interactive-gis-in-jupyter-
with-ipyleaflet-52f9657fa7a. [viewed 2023-04-17].

CRIVELLARI, Alessandro, Bernd RESCH, and Yuhui SHI. TraceBERT—A Feasibility
Study on Reconstructing Spatial–Temporal Gaps from Incomplete Motion Trajectories
via BERT Training Process on Discrete Location Sequences. Online. Sensors, vol. 22
(February 2022), no. 4, p. 1682. ISSN 1424-8220. Available from:
https://doi.org/10.3390/s22041682. [viewed 2023-05-16].

DABIRI, Sina, and Kevin HEASLIP. Inferring transportation modes from GPS trajectories
using a convolutional neural network. Online. Transportation Research Part C:
Emerging Technologies, vol. 86 (2018), pp. 360–371. ISSN 0968-090X. Available
from: https://doi.org/10.1016/j.trc.2017.11.021. [viewed 2023-04-10].

DOUGLAS, DAVID H., and THOMAS K. PEUCKER. Algorithms for the reduction of the
number of points required to represent a digitized line or its caricature. Online.
Cartographica: The International Journal for Geographic Information and
Geovisualization, vol. 10 (1973), no. 2, pp. 112–122. ISSN 1911-9925. Available
from: https://doi.org/10.3138/fm57-6770-u75u-7727. [viewed 2023-05-16].

EOX IT SERVICES GMBH. The global and cloudless Sentinel-2 map by EOX. Online.
Sentinel-2 cloudless map of the world by EOX. 2020. Available from:
https://s2maps.eu/. [viewed 2023-04-17].

EU AGENCY FOR SPACE PROGRAMME. Market Overview. In: EUSPA EO and GNSS
Market Report, pp. 9–29. 2022.

https://doi.org/10.3390/ijgi9120727
https://doi.org/10.1016/j.compenvurbsys.2017.05.004
https://blog.jupyter.org/interactive-gis-in-jupyter-with-ipyleaflet-52f9657fa7a
https://blog.jupyter.org/interactive-gis-in-jupyter-with-ipyleaflet-52f9657fa7a
https://doi.org/10.3390/s22041682
https://doi.org/10.1016/j.trc.2017.11.021
https://doi.org/10.3138/fm57-6770-u75u-7727

FENG, Zhenni, and Yanmin ZHU. A Survey on Trajectory Data Mining: Techniques and
Applications. Online. IEEE Access, vol. 4 (2016), pp. 2056–2067. ISSN 2169-3536.
Available from: https://doi.org/10.1109/access.2016.2553681. [viewed 2023-05-
16].

FIDLER, Jan. City of Olomouc in November. Image. 2013. Available from:
https://live.staticflickr.com/2828/10931928614_de9502cd7a_b.jpg. [viewed 2023-
05-19].

FILIPE, Frank ANEMA, Rob STORY, James GARDINER, Martin JOURNOIS, et al.
python-visualization/folium: v0.14.0. Online. Zenodo. 2022-12-12. Available from:
https://zenodo.org/record/7430093#.ZGPC2nb7RhF. [viewed 2023-04-16].

FOSTER, Dan. GPX: the GPS Exchange Format. Online. TopoGrafix. [n.d.]. Available
from: https://www.topografix.com/gpx.asp. [viewed 2023-04-11].

GAO, Qing-Bin and Shi-Liang SUN. Trajectory-based human activity recognition using
Hidden Conditional Random Fields. Online. In: 2012 International Conference on
Machine Learning and Cybernetics (ICMLC 2012). Xian, 2012-07-15 – 2012-07-17.
IEEE, 2012. ISBN 9781467314879. Available from:
https://doi.org/10.1109/icmlc.2012.6359507. [viewed 2023-04-16].

GEOPANDAS DEVELOPERS. geopandas.GeoSeries.covers. Online. GeoPandas 0.13.0
documentation. 2022. Available from:
https://geopandas.org/en/stable/docs/reference/api/geopandas.GeoSeries.covers
.html. [viewed 2023-02-07].

GOOGLE. Google Colab. Online. Google Research. 2023. Available from:
https://research.google.com/colaboratory/faq.html. [viewed 2023-05-03].

GREENFELD, Joshua S. Matching GPS Observations to Locations on a Digital Map. In:
81th Annual Meeting of the Transportation Research Board. Washington, DC, USA.
2002.

GROUT, Jason. ipywidgets: Interactive Widgets for the Jupyter Notebook. Online.
GitHub. 2021. Available from: https://github.com/jupyter-widgets/ipywidgets.
[viewed 2023-05-16].

HEUSSER, Matt. What is debugging? Online. Software Quality. 2022. Available from:
https://www.techtarget.com/searchsoftwarequality/definition/debugging. [viewed
2023-05-03].

HUANG, Haosheng, and Song GAO. Location-Based Services. Online. Geographic
Information Science & Technology Body of Knowledge, vol. 2018 (January 2018),
Q1. Available from: https://doi.org/10.22224/gistbok/2018.1.14. [viewed 2023-
05-16].

JAN, Oliver, Alan J. HOROWITZ, and Zhong-Ren PENG. Using Global Positioning System
Data to Understand Variations in Path Choice. Online. Transportation Research
Record: Journal of the Transportation Research Board, vol. 1725 (2000), no. 1, pp.
37–44. ISSN 2169-4052. Available from: https://doi.org/10.3141/1725-06. [viewed
2023-05-16].

https://doi.org/10.1109/access.2016.2553681
https://zenodo.org/record/7430093#.ZGPC2nb7RhF
https://www.topografix.com/gpx.asp
https://doi.org/10.1109/icmlc.2012.6359507
https://geopandas.org/en/stable/docs/reference/api/geopandas.GeoSeries.covers.html
https://geopandas.org/en/stable/docs/reference/api/geopandas.GeoSeries.covers.html
https://github.com/jupyter-widgets/ipywidgets
https://www.techtarget.com/searchsoftwarequality/definition/debugging
https://doi.org/10.22224/gistbok/2018.1.14
https://doi.org/10.3141/1725-06

JENSEN, Christian S., and Nerius TRADIŠAUSKAS. Map Matching. Online. In:
Encyclopedia of Database Systems, pp. 1692–1696. Boston, MA: Springer US,
2009. ISBN 9780387355443. Available from: https://doi.org/10.1007/978-0-387-
39940-9_215. [viewed 2023-02-07].

JONIETZ, David, and Dominik BUCHER. Continuous trajectory pattern mining for
mobility behaviour change detection. In: 14th International Conference on Location
Based Services, pp. 211–230. Springer International Publishing, 2018.

JORDAHL, Kelsey, Joris VAN DEN BOSSCHE, Martin FLEISCHMANN, Jacob
WASSERMAN, James MCBRIDE, et al. geopandas/geopandas: v0.8.1. Online.
Zendo. 2020. Available from: https://doi.org/10.5281/zenodo.3946761. [viewed
2023-01-16].

LINDSAY, John. WhiteboxTools User Manual. Online. John Lindsay | Home. 2018.
Available from: https://jblindsay.github.io/wbt_book. [viewed 2023-04-16].

MEERT, Wannes, and Mathias VERBEKE. HMM with non-emitting states for Map
Matching. In: European Conference on Data Analysis. Paderborn, Germany, 2018-
07-04 – 2018-07-06. 2018.

MEERT, Wannes. Leuven.MapMatching toolbox for aligning GPS measurements to
locations on a map. Online. GitHub. 2021a. Available from:
https://github.com/wannesm/LeuvenMapMatching. [viewed 2023-02-13].

MEERT, Wannes. LeuvenMapMatching/distance.py. Online. GitHub. 2021b. Available
from: https://github.com/wannesm/LeuvenMapMatching/blob/master/leuvenma
pmatching/matcher/distance.py. [viewed 2023-01-10].

PERKEL, Jeffrey M. Why Jupyter is data scientists’ computational notebook of choice.
Online. Nature, vol. 563 (October 2018), no. 7729, pp. 145–146. ISSN 1476-4687.
Available from: https://doi.org/10.1038/d41586-018-07196-1. [viewed 2023-05-
16].

QUANTSTACK. And voilà! Online. Medium. 2019. Available from:
https://blog.jupyter.org/and-voilà-f6a2c08a4a93. [viewed 2023-04-16].

RAGAN-KELLEY, B., C. WILING, F. AKICI, D. LIPPA, D. NIEDERHUT, et al. Binder 2.0-
Reproducible, interactive, sharable environments for science at scale. In: Proceedings
of the 17th python in science conference, pp. 113–120. 2018.

RAUBAL, Martin, David JONIETZ, Francesco CIARI, Konstantinos BOULOUCHOS,
Stefan HIRSCHBERG, et al. Towards an Energy Efficient and Climate Compatible
Future Swiss Transportation System. Online. ETH Zurich Research Collection,
2017. Available from: https://doi.org/10.3929/ethz-b-000201484.

RENOU, Martin, Sylvain CORLAY, David BROCHART, Jason GROUT, Brian E.
GRANGER, et al. jupyter-widgets/ipyleaflet: A Jupyter - Leaflet.js bridge. Online.
GitHub. 2021. Available from: https://github.com/jupyter-widgets/ipyleaflet.
[viewed 2023-04-16].

https://doi.org/10.1007/978-0-387-39940-9_215
https://doi.org/10.1007/978-0-387-39940-9_215
https://doi.org/10.5281/zenodo.3946761
https://jblindsay.github.io/wbt_book
https://github.com/wannesm/LeuvenMapMatching
https://github.com/wannesm/LeuvenMapMatching/blob/master/leuvenmapmatching/matcher/distance.py
https://github.com/wannesm/LeuvenMapMatching/blob/master/leuvenmapmatching/matcher/distance.py
https://doi.org/10.1038/d41586-018-07196-1
https://blog.jupyter.org/and-voil%C3%A0-f6a2c08a4a93
https://doi.org/10.3929/ethz-b-000201484
https://github.com/jupyter-widgets/ipyleaflet

SCHLÖMER, N. Scientific Python. Image. 2020. Available from: https://user-
images.githubusercontent.com/181628/80079616-cfe52400-8550-11ea-95a6-
cdcab06530c1.png. [viewed 2023-04-16].

SHERRER, Kara. Google Colab vs Jupyter Notebook: Compare data science software.
Online. TechRepublic. 2022. Available from:
https://www.techrepublic.com/article/google-colab-vs-jupyter-notebook/. [viewed
2023-04-17].

SONG, Xuan, Quanshi ZHANG, Yoshihide SEKIMOTO, and Ryosuke SHIBASAKI.
Prediction of human emergency behavior and their mobility following large-scale
disaster. Online. In: KDD '14: The 20th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining. New York, NY, USA: ACM, 2014. ISBN
9781450329569. Available from: https://doi.org/10.1145/2623330.2623628.
[viewed 2023-05-16].

STRAVA. About Us. Online. Strava | Running, Cycling & Hiking App. 2023. Available
from: https://www.strava.com/about. [viewed 2023-05-20].

STURTZ, John. Python Modules and Packages – An Introduction. Online. Python
Tutorials – Real Python. 2022. Available from: https://realpython.com/python-
modules-packages/. [viewed 2023-04-16].

ŠRAMO, Benjamín. How to match GPX data that pass through an area with no road
network? Image. 2023. Available from: https://github.com/wannesm/
LeuvenMapMatching/issues/42. [viewed 2023-05-19].

TRABELSI, Eyal. Debugging Jupyter Notebooks Will Boost Your Productivity. Online.
Medium. 2020. Available from: https://towardsdatascience.com/debugging-
jupyter-notebooks-will-boost-your-productivity-a33387f4fa62. [viewed 2023-05-02].

WALLINGER, Markus, Daniel ARCHAMBAULT, David AUBER, Martin NOLLENBURG,
and Jaakko PELTONEN. Edge-Path Bundling: A Less Ambiguous Edge Bundling
Approach. Online. IEEE Transactions on Visualization and Computer Graphics, vol.
28 (January 2022), no. 1, pp. 313–323. ISSN 1941-0506. Available from:
https://doi.org/10.1109/tvcg.2021.3114795. [viewed 2023-05-18].

WHITE, Christopher E., David BERNSTEIN, and Alain L. KORNHAUSER. Some map
matching algorithms for personal navigation assistants. Online. Transportation
Research Part C: Emerging Technologies, vol. 8 (2000), no. 1-6, pp. 91–108. ISSN
0968-090X. Available from: https://doi.org/10.1016/s0968-090x(00)00026-7.
[viewed 2023-05-16].

WU, Qiusheng. Leafmap: A Python package for interactive mapping and geospatial
analysis with minimal coding in a Jupyter environment. Online. Journal of Open
Source Software, vol. 6 (2021), no. 63, p. 3414. ISSN 2475-9066. Available from:
https://doi.org/10.21105/joss.03414. [viewed 2023-04-16].

https://user-images.githubusercontent.com/181628/80079616-cfe52400-8550-11ea-95a6-cdcab06530c1.png
https://user-images.githubusercontent.com/181628/80079616-cfe52400-8550-11ea-95a6-cdcab06530c1.png
https://user-images.githubusercontent.com/181628/80079616-cfe52400-8550-11ea-95a6-cdcab06530c1.png
https://www.techrepublic.com/article/google-colab-vs-jupyter-notebook/
https://doi.org/10.1145/2623330.2623628
https://www.strava.com/about
https://realpython.com/python-modules-packages/
https://realpython.com/python-modules-packages/
https://github.com/wannesm/LeuvenMapMatching/issues/42
https://github.com/wannesm/LeuvenMapMatching/issues/42
https://towardsdatascience.com/debugging-jupyter-notebooks-will-boost-your-productivity-a33387f4fa62
https://towardsdatascience.com/debugging-jupyter-notebooks-will-boost-your-productivity-a33387f4fa62
https://doi.org/10.1109/tvcg.2021.3114795
https://doi.org/10.1016/s0968-090x(00)00026-7
https://doi.org/10.21105/joss.03414

ATTACHMENTS

LIST OF ATTACHMENTS

Bound Attachments:

Attachment 1 gpx2intensity_tool.ipynb (preview with the link to the source code)

Attachment 2 gpx2intensity.ipynb (preview with the link to the source code)

Attachment 3 gpx_compression.py (preview with the link to the source code)

Attachment 4 Map of Intensity: Olomouc, Case Study (A3 format)

Attachment 5 Map of Intensity: Malá Fatra, Case Study (A3 format)

Attachment 6 Map of Intensity: Slovak Paradise, Case Study (A3 format)

Free Attachments:

Attachment 7 Thesis Website

Attachment 8 Poster (A2 format)

Attachment 9 Sample GNSS Track Records (32 GPX files)

Attachment 1 gpx2intensity_tool.ipynb (original location at Google Colab)

1 !pip list -v # check all preinstalled packages and their versions

1 !pip install numpy==1.23.0
2 #!pip install -U numpy
3 !pip install pyproj
4 !pip install gpx-converter
5 !pip install geopandas # geoprocessing
6 !pip install git+https://github.com/wannesm/LeuvenMapMatching.git # map matching
7 !pip install osmnx # OpenStreetMap street network data access
8 !apt-get install -y libspatialindex-dev # map visualization
9 !pip install fiona # map visualization
10 !pip install rtree # map visualization
11 !pip install mapclassify # map visualization
12 !pip install leafmap # map visualization

1 from os.path import exists, join, basename
2 from os import listdir, remove
3 from urllib.request import urlretrieve
4 import osmnx as ox
5 from shapely.geometry import Polygon, Point, LineString, MultiPolygon
6 from leuvenmapmatching.map.inmem import InMemMap
7 import numpy as np
8 import pandas as pd
9 import geopandas as gpd
10 from gpx_converter import Converter
11 from leuvenmapmatching.matcher.distance import DistanceMatcher
12 import leafmap.foliumap as leafmap
13 import mapclassify

https://colab.research.google.com/drive/1FHZmFP5zzuIhBWDRs0thnTZoyAMKdOce

1 ## Set the directory location for data and output files
2 DATA_FOLDER = 'data' # path to your data repository
3 OUTPUT_FOLDER = 'output' # directory save the results
4
5 ## Study area for OpenStreetMap street network download
6 BUFFER_DIST = 100 # area around the GPX records; in meters
7
8 ## Map Matching parameters
9 TOLERANCE = 4 # threshold for GPX track simplification; in meters
10 MIN_PROB_NORM = 0.002 # eliminate the lattice where it drops below normalized probability
11 MAX_DIST = 100 # break for any further matching; in meters
12 MAX_LATTICE_WIDTH = 7 # search the route with this number of possible paths at every step
13 INCREASE_MAX_LATTICE_WIDTH = 4 # if no solution found, the width increments by the value
14 OBS_NOISE = 20 # expected GNSS noise, in meters
15 OBS_NOISE_NE = 60 # expected GNSS noise for non-emitting states , in meters
16 DIST_NOISE = 5 # difference between distance between matched route and distance […]
17 DIST_NOISE_NE = 15 # difference between distances for non-emitting states, in meters

1 ## Downloading sample data from GitHub
2 data_repo_url = 'https://raw.githubusercontent.com/… '
3 files = ['filename.gpx',
4 'filename_XY.gpx']
5
6 def download(url):
7 filename = join(DATA_FOLDER, basename(url))
8 if not exists(filename):
9 local, _ = urlretrieve(url, filename)
10 print('Downloaded ' + local)
11
12 for data in files:
13 download(data_repo_url + data)

1 gpx_combined = gpd.GeoDataFrame(columns = ['latitude', 'longitude'])
2 for filename in listdir(DATA_FOLDER):
3 if filename.endswith(".gpx"):
4 try:
5 gpx_file = Converter(input_file = DATA_FOLDER + "/" + filename).gpx_to_dataframe()
6 except:
7 print(filename, "is NOT valid, the tool removed the file from repository.")
8 remove(join(DATA_FOLDER, filename))
9 continue
10

11
 gpx_point = gpd.GeoDataFrame(gpx_file, geometry=gpd.points_from_xy(gpx_file.longitude,
 gpx_file.latitude)).set_crs('epsg:4326')

12 gpx_combined = pd.concat([gpx_combined, gpx_point])
13
14 if gpx_combined.empty:
15 raise Exception("Uploaded data is empty.")
16
17 if (gpx_combined["latitude"] >= 80).any() or (gpx_combined["latitude"] <= -80).any():
18 raise Exception("Execution failed, uploaded data contains in polar region.")
19
20 latitude = gpx_combined["latitude"].iloc[0]
21 distance_deg = BUFFER_DIST / (111319.488 * np.cos(np.radians(latitude)))
22 gpx_buffer = gpx_combined["geometry"].buffer(distance_deg).set_crs(4326)
23 areas = gpx_buffer.unary_union
24 areas = gpd.GeoDataFrame(index=[0], crs='epsg:4326', geometry=[areas])
25 if areas.type[0] == "MultiPolygon":
26 areas = areas.explode()
27
28 print("From the GPX files have been calculated", len(areas.index), "area(s) for graph(s).")

1 street_all = gpd.GeoDataFrame(columns = ['Latitude', 'Longitude'])
2 track_df = pd.DataFrame(columns = ['Latitude', 'Longitude','id'])
3 route_df = pd.DataFrame(columns = ['Latitude', 'Longitude','id'])
4 id = 1
5 for _, row in areas.iterrows():
6 ## A. Download graph based on network type
7 area_gdf = gpd.GeoDataFrame(index=[0], crs='epsg:4326', geometry=[row["geometry"]])
8 print("Building a graph for a specific area...")
9
10 try:
11 ### NETWORK TYPES {"all_private", "all", "bike", "drive", "drive_service", "walk"}
12 ### or TYPE YOUR OPTIONAL CUSTOM “HIGHWAY” FILTER HERE
13 graph = ox.graph_from_polygon(row["geometry"], network_type = 'all', simplify = False)
14 except:
15 print("WARNING: One area has no street network mapped.")
16 continue
17
18 print("===", graph, "\n") # number of nodes and edges
19 street_lines = ox.graph_to_gdfs(graph, nodes = False)
20 street_all = pd.concat([street_lines, street_all])
21 ### Map Object
22 map_con = InMemMap("road_network",
23 use_latlon = True,
24 use_rtree = True,
25 index_edges = True)
26 for node in graph.nodes:
27 lat = graph.nodes[node]['y']
28 lon = graph.nodes[node]['x']
29 map_con.add_node(node, (lat, lon))
30
31 for edge in graph.edges:
32 node_a, node_b = edge[0], edge[1]
33 map_con.add_edge(node_a, node_b)
34 map_con.add_edge(node_b, node_a)
35
36 map_con.purge() # remove nodes without location or edges
37

38 ## B. Map Matching
39 for filename in listdir(DATA_FOLDER):
40 if not filename.endswith(".gpx"):
41 continue
42
43 gpx_df = Converter(input_file = DATA_FOLDER + "/" + filename).gpx_to_dataframe()
44 try:

45
 gpx_point = gpd.GeoDataFrame(gpx_df, geometry = gpd.points_from_xy(gpx_df.longitude,
 gpx_df.latitude)).set_crs('epsg:4326')

46 except:
47 print("WARNING: The file has no record of position, the matching stopped.")
48 continue
49 gpx_point['id'] = 1
50 area_check = gpx_point.within(area_gdf)
51 if not area_check.iloc[0]:
52 continue # skip the GPX file outside of the graph
53 print("Map matching of " + filename + " started...")
54 try:
55 gpx_line = gpx_point.groupby(['id']) ['geometry'].apply(lambda x: LineString(x.tolist()))
56 except:
57 print("WARNING: The file has only one record of position, the matching stopped.")
58 continue
59
60 line_gdf = gpd.GeoDataFrame(gpx_line, geometry = 'geometry').set_crs('epsg:4326')
61 tolerance_deg = TOLERANCE / (111319.488 * np.cos(np.radians(latitude)))
62 line_gdf['geometry'] = line_gdf['geometry'].simplify(tolerance_deg) # simplify
63 gpx_coords = line_gdf.apply(lambda row: list((row.geometry).coords), axis=1)
64 passage = list(gpx_coords[1])
65 track = []
66 path = []
67 for i in range(len(passage)):
68 lat = passage[i][1]
69 lon = passage[i][0]
70 path.append((lat, lon))
71 track.append([lat, lon])
72
73 track = np.array(track)
74 df = pd.DataFrame(track, columns = ['Latitude', 'Longitude'])
75 df['id'] = id # id for grouping into one line
76 track_df = pd.concat([track_df, df])
77 matcher = DistanceMatcher(map_con,
78 max_dist = MAX_DIST,
79 min_prob_norm = MIN_PROB_NORM,
80 max_lattice_width = MAX_LATTICE_WIDTH,
81 increase_max_lattice_width = INCREASE_MAX_LATTICE_WIDTH,
82 obs_noise = OBS_NOISE,
83 obs_noise_ne = OBS_NOISE_NE,
84 dist_noise = DIST_NOISE,
85 dist_noise_ne = DIST_NOISE_NE,
86 non_emitting_edgeid = False,
87 restrained_ne = False)
88
89 matcher.match(path, unique = False) # retain not only unique nodes in the sequence
90 if matcher.early_stop_idx is not None:
91 print("WARNING: Parts of the path were omitted from matching due to the road mismatch.")
92 from_matches = matcher.best_last_matches(k = MAX_LATTICE_WIDTH)
93 matcher.continue_with_distance(from_matches=from_matches, max_dist = MAX_DIST)
94 matcher.match(path, expand = True)
95
96 node_id = matcher.path_pred_onlynodes_withjumps # node_ids the route passes through
97
98 id_route = 1
99 for i in range(len(node_id)-1):

100 route_node = []
101 lat = graph.nodes[node_id[i]]['y']

102 lon = graph.nodes[node_id[i]]['x']
103 latlon = [lat, lon]
104 route_node.append(latlon)
105 lat2 = graph.nodes[node_id[i + 1]]['y']
106 lon2 = graph.nodes[node_id[i + 1]]['x']
107 latlon2 = [lat2, lon2]
108 route_node.append(latlon2)
109
110 route_node = np.array(route_node)
111 df = pd.DataFrame(route_node, columns = ['Latitude', 'Longitude'])
112 df['id'] = id_route # the same id for one line (street)
113 route_df = pd.concat([route_df, df])
114 id_route += 1
115
116 id += 1
117
118 print("Matching of " + filename + " finished successfully.\n")
119
120 if route_df.empty:
121 raise Exception("The map matching has no result.")
122
123 del graph, map_con

1 # Arrays of tracks and matched routes to GeoDataFrame

2
track_point = gpd.GeoDataFrame(track_df, geometry = gpd.points_from_xy(
 track_df.Longitude, track_df.Latitude))

3 track_lines = track_point.groupby(['id'])['geometry'].apply(lambda x: LineString(x.tolist()))
4 tracks_gdf = gpd.GeoDataFrame(track_lines, geometry = 'geometry').set_crs('epsg:4326')

5
route_point = gpd.GeoDataFrame(route_df, geometry = gpd.points_from_xy(route_df.Longitude,
 route_df.Latitude))

6 route_line = route_point.groupby(['id'])['geometry'].apply(lambda x: LineString(x.tolist()))
7 route_gdf = gpd.GeoDataFrame(route_line, geometry = 'geometry').set_crs('epsg:4326')
8 # Calculation of Frequencies
9 street_all = street_all.loc[:, ['osmid', 'length', 'geometry']]
10 street_freq = street_all.overlay(route_gdf, how = 'intersection') # drop streets out of the routes
11 street_freq = street_freq.drop_duplicates(subset=['osmid', 'length'])
12 frequency = []
13 print("Calculating passage frequences on streets...")
14 for _, row in street_freq.iterrows():
15 bool_series = route_gdf.covers(row["geometry"])
16 frequency.append(bool_series.values.sum())
17
18 street_freq["frequency"] = frequency
19 print("The length of matched roads is", round(street_freq["length"].sum()), "meters.")

1 m_light = leafmap.Map(width = "100%",
2 height = "480",
3 draw_control = False,
4 attribution_control = True,
5 tiles = "CartoDB positron")
6 m_light.add_gdf(tracks_gdf,
7 layer_name = "GPX tracks",
8 info_mode = None,
9 style = {'color':'blue', 'weight':0.5, 'opacity': 0.5})
10 m_light.add_data(street_freq,
11 "frequency",
12 cmap = "Wistia", # color ramp
13 scheme = "Quantiles", # classification scheme
14 k = 5, # max. number of classes (saved in attribute)
15 add_legend = True,
16 legend_title = "Number of passages",
17 legend_position = "bottomright",
18 layer_name = "road passages",
19 style_function = lambda feat: {"color": feat["properties"]["color"],
20 "weight": 4,
21 'opacity': 0.9})

22
m_light.add_text("INTENSITY OF MOBILITY ON ROAD NETWORK", fontsize = 22, fontcolor='#404040',
 bold = True, padding = '0px', background = True, bg_color = 'white',
 border_radius = '5px', position = 'topright')

23

m_light.add_text("
 <img width = '250' alt = 'Asset 3logo' src = 'https://user-
 images.githubusercontent.com/47752920/234973760-c8157fdd-a3cf-43cf-88b0-
 4dc8096cfe7c.png'>", background = False, position = 'topright')

24 m_light.zoom_to_gdf(street_freq)
25 m_light

1 m_dark = leafmap.Map(width = "100%",
2 height = "480",
3 draw_control = False,
4 attribution_control = True,
5 tiles = "Cartodbdark_matter")
6 m_dark.add_gdf(tracks_gdf,
7 layer_name = "GPX tracks",
8 info_mode = None,
9 style = {'color':'red', 'weight':0.5, 'opacity': 0.5})
10 m_dark.add_data(street_freq,
11 "frequency",
12 cmap = "YlOrBr_r", # color ramp
13 scheme = "Quantiles", # classification scheme
14 k = 5, # max. number of classes (saved in attribute)
15 add_legend = True,
16 legend_title = "Number of passages",
17 legend_position = "bottomright",
18 layer_name = "road passages",
19 style_function = lambda feat: {"color": feat["properties"]["color"],
20 "weight": 4,
21 'opacity': 0.9})

22
m_dark.add_text("INTENSITY OF MOBILITY ON ROAD NETWORK", fontsize = 22, fontcolor='#404040',
 bold = True, padding = '0px', background = True, bg_color = 'white',
 border_radius = '5px', position = 'topright')

23

m_dark.add_text("
 <img width = '250' alt = 'Asset 3logo' src = 'https://user-
 images.githubusercontent.com/47752920/234973760-c8157fdd-a3cf-43cf-88b0-
 4dc8096cfe7c.png'>", background = False, position = 'topright')

24 m_dark.zoom_to_gdf(street_freq)
25 m_dark

1 # Save the final linear layer with frequencies to GeoJSON and GeoPackage file
2 street_freq.to_file(OUTPUT_FOLDER + "/lines_freq.json", driver="GeoJSON")
3 street_freq.to_file(OUTPUT_FOLDER + "/lines_freq.gpkg", driver="GPKG")
4 # Save the interactive map to html
5 m_light.to_html(OUTPUT_FOLDER + "/light_map.html")
6 m_dark.to_html(OUTPUT_FOLDER + "/dark_map.html")

Attachment 2 gpx2intensity.ipynb (the original source code on GitHub)

%%html
<style>
 table {float:left}
 .folium-map leaflet-container leaflet-fade-anim leaflet-grab leaflet-touch-drag {
 display: inline-block;
 }
</style>

import ipywidgets as widget
from IPython.display import FileLink, HTML
from os.path import exists, join, basename
from os import listdir, remove
import osmnx as ox
from shapely.geometry import Polygon, Point, LineString, box
from leuvenmapmatching.map.inmem import InMemMap
import numpy as np
import pandas as pd
import geopandas as gpd
from gpx_converter import Converter
from leuvenmapmatching.matcher.distance import DistanceMatcher
import leafmap.foliumap as leafmap
import time

upload_out = widget.Output()
upload_out

def clear_upload():
 with upload_out:
 upload_out.clear_output()
 DATA_UPLOAD = widget.FileUpload(
 accept='.gpx',
 multiple=True,
 description='Upload files')
 display(DATA_UPLOAD)
 return DATA_UPLOAD

DATA_UPLOAD = clear_upload()

https://github.com/bsramo144/Thesis-Jupyter/blob/main/gpx2intensity.ipynb

BUFFER_DIST = widget.IntSlider(
 value=140,
 min=40,
 max=300,
 step=20,
 description='Buffer',
 continuous_update=False,
 orientation='horizontal',
 readout=True,
 readout_format='d',
)
TOLERANCE = widget.IntSlider(
 value=2,
 min=0,
 max=10,
 step=1,
 description='Tolerance',
 continuous_update=False,
 orientation='horizontal',
 readout=True,
 readout_format='d',
)
MAX_DIST = widget.IntSlider(
 value=120,
 min=20,
 max=300,
 step=20,
 description='Max. Distance',
 continuous_update=False,
 orientation='horizontal',
 readout=True,
 readout_format='d'
)
OBS_NOISE = widget.IntSlider(
 value=16,
 min=2,
 max=50,
 step=2,
 description='Obs. Noise',
 disabled=False,
 continuous_update=False,
 orientation='horizontal',
 readout=True,
 readout_format='d'
)
OBS_NOISE_NE = widget.IntSlider(
 value=30,
 min=5,
 max=150,
 step=5,
 description='Obs.Noise NE',
 disabled=False,
 continuous_update=False,
 orientation='horizontal',
 readout=True,
 readout_format='d'
)
DIST_NOISE = widget.IntSlider(
 value=5,
 min=1,
 max=50,
 step=1,
 description='Dist. Noise',
 disabled=False,

 continuous_update=False,
 orientation='horizontal',
 readout=True,
 readout_format='d'
)
DIST_NOISE_NE = widget.IntSlider(
 value=16,
 min=4,
 max=100,
 step=2,
 description='Dist.Noise NE',
 disabled=False,
 continuous_update=False,
 orientation='horizontal',
 readout=True,
 readout_format='d'
)
MAX_LATTICE_WIDTH = widget.IntSlider(
 value=7,
 min=1,
 max=20,
 step=1,
 description='Max Lattice',
 disabled=False,
 continuous_update=False,
 orientation='horizontal',
 readout=True,
 readout_format='d'
)
INCREASE_MAX_LATTICE_WIDTH = widget.IntSlider(
 value=5,
 min=1,
 max=10,
 step=1,
 description='Increase Latt.',
 disabled=False,
 continuous_update=False,
 orientation='horizontal',
 readout=True,
 readout_format='d'
)
MIN_PROB_NORM = widget.FloatSlider(
 value=0.002,
 min=0,
 max=0.01,
 step=0.001,
 description='Min Proba.',
 continuous_update=False,
 orientation='horizontal',
 readout=True,
 readout_format='.3f',
)

items = [widget.VBox([BUFFER_DIST, TOLERANCE, MIN_PROB_NORM]),
 widget.VBox([MAX_DIST, MAX_LATTICE_WIDTH, INCREASE_MAX_LATTICE_WIDTH]),
 widget.VBox([OBS_NOISE, OBS_NOISE_NE, DIST_NOISE, DIST_NOISE_NE])]
accordion = widget.Accordion(children=items)
accordion.set_title(0,"Environment Parameters")
accordion.set_title(1,"Thresholding of Matching")
accordion.set_title(2,"Measurement Noise")
accordion

def upload(DATA_UPLOAD):
 for filename in listdir("data_upload"):
 if filename.endswith(".gpx"):
 remove(join("data_upload", filename))

 if len(DATA_UPLOAD) == 0:
 with output:
 raise Exception("NO file has been uploaded. Check if the size of the files exceeds the
upload limit 10 MB.")
 raise Exception("Reload the page and upload new files again.")
 raise Exception(0)

 for elem in DATA_UPLOAD.items():
 name, file_info = elem
 data_path = join("data_upload", name)
 with open (data_path, 'wb') as file:
 file.write(file_info['content'])

def study_areas(BUFFER_DIST):
 gpx_combined = gpd.GeoDataFrame(columns = ['latitude', 'longitude'])
 for filename in listdir("data_upload"):
 if filename.endswith(".gpx"):
 try:
 gpx_file = Converter(input_file = "data_upload/"+ filename).gpx_to_dataframe()
 except:
 with output:
 print(" WARNING:", filename, "is invalid GPX file, the tool will skip the
file.")
 remove(join("data_upload", filename))
 continue

 gpx_point = gpd.GeoDataFrame(gpx_file, geometry=gpd.points_from_xy(gpx_file.longitude,
gpx_file.latitude)).set_crs('epsg:4326')
 gpx_combined = pd.concat([gpx_combined, gpx_point])

 if gpx_combined.empty:
 with output:
 raise Exception("Uploaded data is empty.")
 raise Exception(0)

 if (gpx_combined["latitude"] >= 80).any() or (gpx_combined["latitude"] <= -80).any():
 with output:
 raise Exception("Execution failed, uploaded data contains coordinates in polar area.
Reload the page and upload new files again.")
 raise Exception("Reload the page and upload new files again.")
 raise Exception(0)

 latitude = gpx_combined["latitude"].iloc[0]
 distance_deg = BUFFER_DIST / (111319.488 * np.cos(np.radians(latitude))) # metric system to
degree distance
 gpx_buffer = gpx_combined.buffer(distance_deg).set_crs(4326)
 areas = gpx_buffer.unary_union
 areas = gpd.GeoDataFrame(index=[0], crs='epsg:4326', geometry=[areas])
 if areas.type[0] == "MultiPolygon":
 areas = areas.explode()
 with output:
 print("From the uploaded GPX files have been calcualted", len(areas.index), "area(s) for
graph(s). \n")
 return latitude, areas

def map_matching(latitude, areas, TOLERANCE, MAX_DIST, MIN_PROB_NORM, MAX_LATTICE_WIDTH,
INCREASE_MAX_LATTICE_WIDTH, OBS_NOISE, OBS_NOISE_NE, DIST_NOISE, DIST_NOISE_NE):
 street_all = gpd.GeoDataFrame(columns = ['Latitude', 'Longitude'])
 track_df = pd.DataFrame(columns = ['Latitude', 'Longitude','id'])
 route_df = pd.DataFrame(columns = ['Latitude', 'Longitude','id'])
 id = 1
 for _, row in areas.iterrows():
 ## Download graph based on netwotk type
 ### possible network types {"all_private", "all", "bike", "drive", "drive_service", "walk"}
 with output:
 print("Building graph for a specific area...")
 area_gdf = gpd.GeoDataFrame(index=[0], crs='epsg:4326', geometry=[row["geometry"]])

 try:
 graph = ox.graph_from_polygon(row["geometry"], network_type = 'all', simplify = False)
 except:
 with output:
 print("In the area is no street network mapped. \n Reload the page and upload new
files again.")
 continue

 with output:
 print(graph, "\n") # number of nodes and edges
 street_lines = ox.graph_to_gdfs(graph, nodes = False)
 street_all = pd.concat([street_lines, street_all])
 ## Leuven Map Object
 map_con = InMemMap("road_network",
 use_latlon = True,
 use_rtree = True,
 index_edges = True)
 for node in graph.nodes:
 lat = graph.nodes[node]['y']
 lon = graph.nodes[node]['x']
 map_con.add_node(node, (lat, lon))

 for edge in graph.edges:
 node_a, node_b = edge[0], edge[1]
 map_con.add_edge(node_a, node_b)
 map_con.add_edge(node_b, node_a)

 map_con.purge() # remove nodes without location or edges
 ## Map Matching
 for filename in listdir("data_upload"):
 if not filename.endswith(".gpx"):
 continue

 gpx_df = Converter(input_file = "data_upload/" + filename).gpx_to_dataframe()
 gpx_point = gpd.GeoDataFrame(gpx_df, geometry = gpd.points_from_xy(gpx_df.longitude,
gpx_df.latitude)).set_crs('epsg:4326')
 gpx_point['id'] = 1
 area_check = gpx_point.within(area_gdf)
 if not area_check.iloc[0]:
 continue # skip the GPX file outside of the graph

 with output:
 print(" Map matching of " + filename + " started...")
 try:
 gpx_line = gpx_point.groupby(['id']) ['geometry'].apply(lambda x:
LineString(x.tolist()))
 except:
 with output:
 print(" WARNING: The file has only one record of position, therefore, the
matching stopped.")
 continue

 line_gdf = gpd.GeoDataFrame(gpx_line, geometry = 'geometry').set_crs('epsg:4326')
 tolerance_deg = TOLERANCE / (111319.488 * np.cos(np.radians(latitude))) # metric
system to degree distance
 line_gdf['geometry'] = line_gdf['geometry'].simplify(tolerance_deg) # reducing line
vertices inside the tolerance
 gpx_coords = line_gdf.apply(lambda row: list((row.geometry).coords), axis=1)
 # for row in gpx_coords.items():
 passage = list(gpx_coords[1])
 track = []
 path = []
 for i in range(len(passage)):
 lat = passage[i][1]
 lon = passage[i][0]
 path.append((lat, lon))
 track.append([lat, lon])

 track = np.array(track)
 df = pd.DataFrame(track, columns = ['Latitude', 'Longitude'])
 df['id'] = id # id for grouping into one line
 track_df = pd.concat([track_df, df])
 matcher = DistanceMatcher(map_con,
 max_dist = MAX_DIST,
 min_prob_norm = MIN_PROB_NORM,
 max_lattice_width = MAX_LATTICE_WIDTH,
 increase_max_lattice_width = INCREASE_MAX_LATTICE_WIDTH,
 obs_noise = OBS_NOISE,
 obs_noise_ne = OBS_NOISE_NE,
 dist_noise = DIST_NOISE,
 dist_noise_ne = DIST_NOISE_NE,
 non_emitting_edgeid = False,
 restrained_ne = False)

 matcher.match(path, unique = False) # retain only unique nodes in the sequence (avoid
repetitions)
 if matcher.early_stop_idx is not None:
 with output:
 print(" Parts of the path were omitted from matching due to the road
mismatch.")
 from_matches = matcher.best_last_matches(k = MAX_LATTICE_WIDTH)
 matcher.continue_with_distance(from_matches = from_matches, max_dist = MAX_DIST)
 matcher.match(path, expand = True)

 node_id = matcher.path_pred_onlynodes_withjumps # retrieve the node_ids the route
passes through
 id_route = 1
 for i in range(len(node_id)-1):
 route_node = []
 lat = graph.nodes[node_id[i]]['y']
 lon = graph.nodes[node_id[i]]['x']
 latlon = [lat, lon]
 route_node.append(latlon)
 lat2 = graph.nodes[node_id[i + 1]]['y']
 lon2 = graph.nodes[node_id[i + 1]]['x']
 latlon2 = [lat2, lon2]
 route_node.append(latlon2)
 route_node = np.array(route_node)
 df = pd.DataFrame(route_node, columns = ['Latitude', 'Longitude'])
 df['id'] = id_route # the same id for one line (street)
 route_df = pd.concat([route_df, df])
 id_route += 1

 id += 1
 with output:

 print(" Matching of " + filename + " finished successfully.\n")

 if route_df.empty:
 with output:
 raise Exception("The map matching has no result, the execution has terminated.
Reload the page and upload new files again.")
 raise Exception(0)

 del graph, street_lines, map_con, node_id
 return street_all, track_df, route_df

def post_process(track_df, route_df, street_all, start_time):
 track_point = gpd.GeoDataFrame(track_df, geometry=gpd.points_from_xy(track_df.Longitude,
track_df.Latitude))
 track_lines = track_point.groupby(['id']) ['geometry'].apply(lambda x: LineString(x.tolist()))
 tracks_gdf = gpd.GeoDataFrame(track_lines, geometry='geometry').set_crs('epsg:4326')
 #print(tracks_gdf[:10])
 route_point = gpd.GeoDataFrame(route_df, geometry=gpd.points_from_xy(route_df.Longitude,
route_df.Latitude))
 route_line = route_point.groupby(['id']) ['geometry'].apply(lambda x: LineString(x.tolist()))
 route_gdf = gpd.GeoDataFrame(route_line, geometry='geometry').set_crs('epsg:4326')
 #print(route_gdf[:10])
 street_all = street_all.loc[:, ['osmid', 'length', 'geometry']] # drop unnecessary columns.
 with output:
 print("Calculating passage frequences on streets, this part may take time...")
 street_freq = street_all.overlay(route_gdf, how='intersection') # drop geometries not part of
the routes
 street_freq = street_freq.drop_duplicates(subset=['osmid', 'length'])
 frequency = []
 for _, row in street_freq.iterrows():
 series = route_gdf.covers(row["geometry"])
 frequency.append(series.values.sum())
 street_freq["frequency"] = frequency
 #street_freq = street_freq.dissolve(by='osmid')
 output.clear_output()
 with output:
 print("The length of matched roads is", round(street_freq["length"].sum()), "meters.")
 print("The execution has finished in %s seconds." % (round(time.time() - start_time)))
 print("\n\n")

 return tracks_gdf, street_freq

def map_vis(tracks_gdf, street_freq):
 m_light = leafmap.Map(width="100%",
 height="380",
 draw_control=False,
 attribution_control=True,
 tiles="CartoDB positron")
 m_light.add_gdf(tracks_gdf,
 layer_name='tracks',
 info_mode=None,
 style={'color':'blue', 'weight':0.5, 'opacity': 0.5})
 m_light.add_data(street_freq,
 "frequency",
 cmap = "Wistia",
 scheme='Quantiles',
 k=5,
 add_legend=True,
 legend_title="Number of passages",
 legend_position="bottomright",
 layer_name="passages",
 style_function = lambda feat: {"color": feat["properties"]["color"],
 "weight": 4,
 'opacity': 0.9})
 m_light.add_text("INTENSITY OF MOBILITY ON ROAD NETWORK", fontsize=22, fontcolor='#404040',

bold=True, padding='0px', background=True, bg_color='white', border_radius='5px',
position='topright')
 m_light.add_text("<img
width='250' alt='Asset 3logo' src='https://user-images.githubusercontent.com/47752920/234973760-
c8157fdd-a3cf-43cf-88b0-4dc8096cfe7c.png'>", background=False, position='topright')
 m_light.zoom_to_gdf(street_freq)

 m_dark = leafmap.Map(width="100%",
 height="380",
 draw_control=False,
 attribution_control=True,
 tiles="Cartodbdark_matter")
 m_dark.add_gdf(tracks_gdf,
 layer_name='tracks',
 info_mode=None,
 style={'color':'red', 'weight':0.5, 'opacity': 0.5})
 m_dark.add_data(street_freq,
 "frequency",
 cmap = "YlOrBr_r",
 scheme='Quantiles',
 k=5,
 add_legend=True,
 legend_title="Number of passages",
 legend_position="bottomright",
 layer_name="passages",
 style_function = lambda feat:{"color": feat["properties"]["color"],
 "weight": 4,
 'opacity': 0.8})
 m_dark.add_text("INTENSITY OF MOBILITY ON ROAD NETWORK", fontsize=22, fontcolor='white',
bold=True, padding='0px', background=True, bg_color='#404040', border_radius='5px',
position='topright')
 m_dark.add_text("<img
width='250' alt='Asset 3logo' src='https://user-images.githubusercontent.com/47752920/234973760-
c8157fdd-a3cf-43cf-88b0-4dc8096cfe7c.png'>", background=False, position='topright')
 m_dark.zoom_to_gdf(street_freq)

 return m_light, m_dark

def save_results(street_freq, m_light, m_dark):
 street_freq.to_file("data_upload/lines.json", driver="GeoJSON")
 street_freq.to_file("data_upload/lines.gpkg", driver="GPKG")
 m_light.to_html("data_upload/light_map.html")
 m_dark.to_html("data_upload/dark_map.html")

def download_button(name, button_title):
 file_name = str(FileLink("data_upload/"+name)).rpartition('/')[2]
 html_voila = '<a style="color: white; border-radius: 3px;" class="lm-Widget p-Widget
jupyter-widgets jupyter-button widget-button mod-primary"
href="../../files/data_upload/'+file_name+'"
download="'+file_name+'">'+button_title+''
 html_jupyter = '<a style="color: white; border-radius: 3px;" class="lm-Widget p-Widget
jupyter-widgets jupyter-button widget-button mod-primary"
href="../../data_upload/'+file_name+'" download="'+file_name+'">'+button_title+''
 display(HTML(html_voila))

def click(b):
 global DATA_UPLOAD
 start_time = time.time()
 output.clear_output()
 with output:
 print("CALCULATION STARTED \n")
 upload(DATA_UPLOAD.value)
 with output:
 print("(1/3) Creating study area zones around the uploaded data.")
 latitude, areas = study_areas(BUFFER_DIST.value)

 with output:
 print("===")
 print("(2/3) Matching GPX files to the street graph of the study area.")
 street_all, track_df, route_df = map_matching(latitude, areas, TOLERANCE.value,
 MAX_DIST.value, MIN_PROB_NORM.value,
MAX_LATTICE_WIDTH.value, INCREASE_MAX_LATTICE_WIDTH.value, OBS_NOISE.value, OBS_NOISE_NE.value,
DIST_NOISE.value, DIST_NOISE_NE.value)

 with output:
 print("===")
 print("(3/3) Post-processing of the results.")

 tracks_gdf, street_freq = post_process(track_df, route_df, street_all, start_time)
 m_light, m_dark = map_vis(tracks_gdf, street_freq)
 with output:
 display(m_light, m_dark)

 save_results(street_freq, m_light, m_dark)
 with output:
 display(HTML("Download outputs:"))
 display(HTML("Linear Features (.json, .gpkg)"))
 download_button('lines.json', 'GeoJson')
 download_button('lines.gpkg', 'GeoPackage')
 display(HTML("Web Map (.html)"))
 download_button('light_map.html', 'Light Mode')
 download_button('dark_map.html', 'Dark Mode')

 DATA_UPLOAD = clear_upload()
 return DATA_UPLOAD

output = widget.Output()
RUN_BUTTON = widget.Button(description='Run the Tool', button_style='primary')
RUN_BUTTON.on_click(click)
RUN_BUTTON

output

Attachment 3 gpx_compression.py (the original source code on GitHub)

!pip install gpx-converter
!pip install geopandas

import pandas as pd
import geopandas as gpd
from os import listdir
from gpx_converter import Converter
from shapely.geometry import LineString
import numpy as np

NOTE: data repo named "data"
for filename in listdir("data"):
 if not filename.endswith(".gpx"):
 continue

 gpx_df = Converter(input_file = "data/" + filename).gpx_to_dataframe()
 try:
 gpx_point = gpd.GeoDataFrame(gpx_df, geometry = gpd.points_from_xy(gpx_df.longitude,
gpx_df.latitude)).set_crs('epsg:4326')
 except:
 print("WARNING: The file has no record of position, therefore, the matching stopped.")
 continue

 gpx_point['id'] = 1
 try:
 gpx_line = gpx_point.groupby(['id']) ['geometry'].apply(lambda x: LineString(x.tolist()))
 except:
 print("WARNING: The file has only one record of position, therefore, the matching stopped.")
 continue

 line_gdf = gpd.GeoDataFrame(gpx_line, geometry = 'geometry').set_crs('epsg:4326')
 latitude = gpx_point["latitude"].iloc[0]
 tolerance = 1 / (111319.488 * np.cos(latitude)) # 1 meter, metric system to degree distance
 line_gdf['geometry'] = line_gdf['geometry'].simplify(tolerance)

 geom = line_gdf.iloc[0,0]
 x,y = geom.coords.xy
 coords = pd.DataFrame({'LAT':y,'LON':x})
 new_gpx = Converter.dataframe_to_gpx(coords, lats_colname='LAT', longs_colname='LON',
output_file='data/g_' + filename)
 print("New generalised file " + filename + " saved.")

https://github.com/bsramo144/Thesis-Jupyter/blob/main/scripts/gpx_compression.py

	INTRODUCTION
	1 OBJECTIVES
	2 STATE OF ART
	2.1 Global Navigation Satellite System
	2.2 Map Matching
	2.3 Geovisualization in Jupyter

	3 METHODOLOGY
	3.1 Study Area and Data
	3.2 Automation Workflow
	3.3 Jupyter Notebook
	3.4 Python Packages

	4
	4 TOOL DEVELOPMENT
	4.1 Design
	4.1.1 Pre-Processing
	4.1.2 Data Mining
	4.1.3 Post-Processing
	4.1.4 Outputs

	4.2 Debugging and Exceptions
	4.3 Documentation and Distribution

	5 TESTING AND ASSESSMENT
	5.1 Olomouc Case Study
	5.2 Malá Fatra Case Study
	5.3 Slovak Paradise Case Study

	6 RESULTS
	7 DISCUSSION
	CONCLUSION

