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Abstract
This bachelor thesis is concerned with the manipulation of a robot model in augmented
reality, using a tablet device. It extends user interaction of the existing application for
robot programming – AREditor. When programming in AREditor, the user needs to set
robot poses in order to define points in space, which the robot needs to reach during program
execution. The existing solution of manually positioning the robot in AREditor only allows
incremental stepping of the physical robot, which is, in the majority of use cases insufficient.
The main goal is to design and implement an interaction scheme, through which the user
can easily position a robot model, displayed on-screen over the real robot. The user first
sets the pose of the model and then commands the physical robot to copy the chosen pose.
The robot arm tracks the current position of a 3D gizmo, which the user can drag in space
by moving the tablet, and its movement can be constrained to one of the axes or planes.
The solution also offers movement sensitivity controls, a custom coordinate system, and
a separate control for gizmo to camera distance. The proposed workflow streamlines the
process of setting the pose of a robot and enables users to speed up the program creation.

Abstrakt
Bakalárska práca sa zaoberá manipuláciou s modelom robota v rozšírenej realite za využitia
aplikácie pre tablet. Riešenie rozširuje možnosti interakcie v existujúcej aplikácii na vizuálne
programovanie robotov – AREditor. Užívateľ potrebuje pri programovaní v AREditore
nastaviť pózu robota, aby mohol definovať body v priestore, na ktoré sa má robot dostať
pri vykonávaní programu. Stávajúce riešenie v aplikácii umožňuje iba krokovať fyzického
robota po malých inkrementoch pozdĺž osí, čo je nedostatočné pre väčšinu účelov. Hlavným
cieľom práce je navrhnúť a implementovať systém, pomocou ktoréhu bude užívateľ schopný
rýchlo a jednoducho nastaviť pózu modelu robota, ktorý je premietnutý na obrazovke cez
skutočného robota. Užívateľ najskôr ľubovoľne nastaví pózu modelu robota, a následne
pošle príkaz skutočnému robotovi, aby zvolenú pózu skopíroval. V riešení bolo využité 3D
gizmo, ktorého polohu sleduje koncový bod robotického ramena. Gizmo je možné presúvať
v priestore za využitia kamery tabletu a rozšírenej reality, a jeho pohyb je možné obmedziť
na jednotlivé osi či roviny v priestore. Riešenie poskytuje možnosť ovládať citlivosť, s akou
hýbeme bodom v priestore, možnosť zmeniť súradnicový systém, a samostatné ovládanie
pre vzdialenosť gizma od tabletu. Vytvorené riešenie ponúka pohodlnejší spôsob, akým sa
dá nastaviť poloha robota, a môže zefektívniť proces programovania.
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Rozšířený abstrakt
S nástupom 4. industriálnej revolúcie sa roboty stali neoddeliteľnou súčasťou výrobného
procesu vo väčších firmách. Najväčšou výhodou robota je jeho programovateľnosť, vďaka
čomu môže byť prispôsobený na rôzne opakujúce sa úlohy. Programovanie robotov je
však zdĺhavý proces vyžadujúci expertízu. Pre menšie a stredné firmy, ktoré produkujú
široké spektrum produktov v menších kvantitách, to predstavuje bariéru, ktorá im bráni
v efektívnom využití robotického ramena. Vývoj nástrojov na vizuálne programovanie sa
stal predmetom mnohých výskumných projektov, ktorých cieľom je zjednodušiť a urýchliť
proces preprogramovania robotického ramena. Táto práca stavia na tabletovej aplikácii
AREditor, ktorá slúži na programovanie robotických pracovísk za využitia rozšírenej reality.

Programovanie v aplikácii AREditor typicky zahŕňa nastavenie robota do určitej pózy
a zaznamenanie polohy koncového bodu ramena (tzv. end effectoru) v priestore, čím je
vytvorený tzv. akčný bod. Na akčný bod sa môžu viazať rôzne akcie, ktoré má robot
vykonať na danom mieste, a prepojením akčných bodov sa vytvára tok programu. Ak je
robota možné ručne presunúť do ľubovoľnej polohy, je vytváranie akčných bodov jednodu-
chou úlohou. Ak však robot neponúka túto možnosť, je potrebné ho nastaviť do pozície
v aplikácii. AREditor v súčasnosti ponúka menu na krokovanie ramena o zvolený inkre-
ment pozdĺž jednotlivých osí. Toto riešenie nie je dostačujúce, ak je potrebné vykonať
veľký pohyb, pretože by vyžadovalo veľký počet menších pohybov, čo je veľmi zdĺhavé
a používateľsky neprívetivé. Táto práca sa zaoberá zlepšením tejto interakcie.

Cieľom tejto práce je navrhnúť a implementovať riešenie, pomocou ktoréhu bude užívateľ
schopný rýchlo a jednoducho nastaviť pózu modelu robota, ktorý na obrazovke prekrýva
skutočného robota. Aplikácia využíva rozšírenú realitu, a teda sa na obrazovke zobrazuje
živý obraz z kamery, do ktorého sú dosadené objekty navyše. Užívateľ prvotne nastaví pózu
modelu, a následne pošle signál skutočnému robotovi, aby zaujal identickú pózu.

Riešenie využíva 3D gizmo, ktoré je možné ťahať v priestore pohybom tabletu. Gizmo
sa skladá zo stredobodu, troch šípiek reprezentujúce jednotlivé osi, a troch štvorcov, ktoré
reprezentujú roviny definované osami. Každý z vymenovaných prvkov je možné uchopiť
a tak pohybovať gizmom iba v konkrétnej osi alebo rovine. Taktiež je možné pohybovať
voľne v priestore uchopením stredobodu. Riešenie ďalej ponúka možnosť regulovať citlivosť
pohybu, čím umožňuje užívateľovi hýbať bodom s vyššou presnosťou. Súčasťou riešenia
je navyše možnosť prepnúť na relatívny súradnicový systém, ktorý sa viaže na polohu
tabletu v priestore vo vzťahu k robotovi, a tým poskutuje možnosť hýbať bodom pozdĺž
užívateľom definovaných osí. V neposlednom rade boli do riešenia zapracované dve tlačidlá
na posúvanie bodu dopredu/dozadu.

Riešenie bolo implementované do AREditoru a následne bolo vykonané užívateľské testo-
vanie v robotickom laboratóriu na fakulte informatiky VUT. Testovanie vykonávalo päť
subjektov, ktorí jednoznačne zhodnotili, že predstavuje výrazné zlepšenie. Každý testujúci
pochopil, ako používať menu do niekoľkých minút a bol schopný vykonávať jednoduché
úlohy, ako napríklad nastavenie robota do špecifikovanej polohy či pohyb ramenom pozdĺž
zadanej osi, napr. hrany stola.

Implementované riešenie ponúka novú možnosť manipulácie s robotom v rozšírenej re-
alite. Výsledky testovania preukázali, že výsledný spôsob interakcie s robotom je intuitívny,
prívetivý, a môže viesť k zvýšeniu efektivity pri vytváraní programov. Riešenie je ideálne na
hrubé pohyby, ktoré bolo nepraktické vykonávať za pomoci pôvodného krokovacieho menu,
ale pri znížení citlivosti je vhodné aj na precíznejšie doladenie polohy. Menu je možné
používať samostatne, alebo v kombinácii s pôvodným krokovacím menu.
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Chapter 1

Introduction

Industrial robots have become an inseparable part of the manufacturing process in large
enterprises. In small to medium-sized enterprises (SMEs) where more types of products
are manufactured in smaller batches, the adoption of robots has been slower. Robots have
a high entry cost and are difficult and slow to reprogram. Having the ability to quickly and
easily reprogram industrial robots would allow them to be used more flexibly, making them
more viable for many SMEs and boosting productivity. The ARCOR2 system [10], along
with the Android application, AREditor, aims to streamline the reprogramming process by
utilizing augmented reality and a tablet device. However, the options for setting the pose
of the robot in the app are limited and hinder its usability.

The ARCOR2 system is a framework for visual programming of robots developed by
the Robo@FIT1 research group. AREditor is a related tablet application, which serves as
an interface to the system. When programming robots in AREditor, the user uses the robot
arm to define points in space. The robot is moved to the appropriate pose and a point is
recorded at the position of its end effector. Actions can then be assigned to these points,
which when linked together, create the program flow. When working with collaborative
robots, the operator can reposition the robot manually – by grabbing the robot arm and
physically dragging it to the desired spot. The task of repositioning the robot arm becomes
more tedious when the robot cannot be moved by hand. To move the robot arm, AREditor
provides incremental stepping functionality, allowing the user to move the end effector by
a selected increment in the direction of a chosen axis. This is sufficient for minor tweaking
and fine-tuning but becomes too slow and impractical when a more substantial repositioning
is necessary, as it requires multiple steps to achieve the desired pose. The operator may also
find it difficult to anticipate where the robot arm will end up due to a lack of visualization.
This work aims to improve human-robot interaction (HRI) within AREditor by creating
a new solution for robot positioning.

This thesis proposes a novel interaction scheme for rapid positioning of a robot, employ-
ing a model robot rendered on-screen over the real robot in the workspace. Through this
approach, the user can directly manipulate the model without affecting the robot, which
allows for a safe interaction, unconstrained by the movement speed limit of the particular
robot. Another benefit of this approach is the ability to visualize different poses before
committing to a final one, thus saving time repositioning. The solution takes advantage
of the AR nature of the application, utilizing tablet movement to move the end effector in
space. The result is a functional component in the AREditor application, that can be used

1https://www.fit.vut.cz/research/group/robo/.en
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to easily manipulate the robot’s pose, and could improve the efficiency of the programming
process.

The thesis is structured as follows: In the first chapter, a brief summary of related
research is presented. The second chapter contains a rundown of the ARCOR2 system
and the related user interface AREditor. In the following chapters, the design and imple-
mentation of the final system is described. Finally, the results of the usability testing are
presented and evaluated.
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Chapter 2

Related Work

With the arrival of Industry 4.0 and rising interest in industrial robots, simplification of
robot programming has been at the forefront for many researchers. Suzuki et al. [14]
compiled 460 papers on AR-enabled human-robot interaction (AR-HRI), categorizing the
works into various categories. The survey has shown that most of the research is focused on
facilitating programming and supporting real-time control of robot workplaces. However,
when it comes to devices used to interface with robots, most researchers favor on-body,
wearable devices (especially head-mounted displays) over handhelds, such as tablets.

2.1 Wearable devices
Head-mounted displays (HMDs) provide an immersive experience and free up the operator’s
hands, allowing them to perform work while having crucial information always in their
field of vision. However, the lack of a tangible device in the hands of the user raises the
question of how they will interact with the workplace. Popular approaches include gestures
[6, 12, 2], physical handheld pointers [7, 15], and less commonly voice commands [6]. Park
et al. [12] proposed a hands-free system utilizing head gestures and gaze for selection and
interaction. Chan et al. [6] created an interface allowing the user to set trajectory points on
the work surface using a combination of gaze and voice commands. Ong et al. [11] combined
a stereoscopic HMD with a physical handheld pointer, representing the end effector, which
can be seen in Figure 2.1. The robot arm follows the position of the pointer in space. In
this instance, the display is created by combining a VR headset and two webcams mounted
directly onto it. A much more prevalent approach is to use a see-through AR headset,
such as the Microsoft HoloLens. The SPEARED framework by Yigitbas et al. [15] uses
HoloLens to display the current robot working state and detected objects, but also the
current program in the form of code blocks, which can be modified in the AR environment.
In the case of SPEARED, there is no direct robot pose manipulation, all interaction is
conducted through code. Chan et al. [6] also utilize Microsoft HoloLens, but allow the user
to directly set trajectories by using a combination of gaze and voice commands.

2.2 Handheld devices
While there have been works focusing on AR-enabled robot programming systems for hand-
held devices, they certainly represent a minority, especially concerning direct robot pose
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Figure 2.1: Physical handheld pointer used as position target for the end effector used in
the work by Ong et al. [11].

manipulation. The interface often only allows the user to program ’pick and place’ tasks,
or the robot is programmed kinesthetically [5, 9].

Pertaining to controlling the robot pose explicitly, two main approaches can be dis-
cerned: individual joint setting and end effector location setting. Setting each joint rotation
individually is not suitable for end users lacking experience with robotics, and even skilled
operators rarely utilize it. Most implementations, however, provide both options. An ear-
lier work by Frank et al. [8] developed a system to control a planar robot on a tablet device,
which provides the user with the ability to control both end effector location and individual
angles through tapping and dragging on the screen. Zhang et al. [17] provide the user with
a set of arrows to control each joint separately, or to command the end effector directly,
which can be seen in Figure 2.2. A similar approach was taken in some older works [1].
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Figure 2.2: Mobile robot manipulation user interface by Zhang et al. [17].
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Chapter 3

ARCOR2

ARCOR2 (Augmented Reality Collaborative Robot) is a framework for visual programming
of industrial robots, that is actively being developed by the research group Robo@FIT. It
enables end-users to create programs by defining points in space and program steps that
are spatially visualized, allowing for an easy understanding of work processes. The system
can generate code from visually defined procedures and facilitates control of its execution.
Multiple robots, machines, and services can be included in a single workspace, with multiple
concurrent users to be connected. New robots and services can be integrated as plugins by
implementing an Object Type – a plugin into the system representing an interface between
ARCOR2 and a real-world object, e.g. a type of robot [10].

The system is divided into the back end, comprising several independent services, and
the front end (in this case, AREditor) [3]. The main service handling all incoming and
outgoing communication is ARServer. ARServer is in charge of propagating messages to
other services, holding system state, and sending out notifications upon changes. User
interface implementations such as AREditor can interact with the system state through
RPCs and receive asynchronous events.

3.1 Terminology
The following section is derived from [3].

• Scene – a scene contains action objects and their spatial relations. It serves as a rep-
resentation of the workspace and defines its layout.

• Project – A project is associated with a scene and consists of action points. It may
or may not include logic, which defines the program flow.

• Execution Package – A package is an executable snapshot of a project, that is entirely
self-contained. When a project needs to be released into a production environment,
an execution package is used.

• Object Type – A representation of a real-world object within the ARCOR2 environ-
ment, providing an interface to the object’s functionality. By implementing an Object
Type, new devices can be easily integrated into ARCOR2.

• Action Object – An instance of an Object Type within a scene.

7



• Action Point – A spatial point signifying a location for an action to take place. During
program execution, a robot reaches defined action points in sequence and performs
actions on them.

• Action – An action is a method of an Object Type, that can be performed by the
robot.

3.2 API
Communication between ARServer and AREditor takes place through WebSockets. The
communication protocol is based on RPCs and events, which are defined in the form of
python dataclasses1 and serialized into JSON when transported.

The dataclass representation of RPCs and events is used to create an OpenAPI2 repre-
sentation, which is subsequently used to generate C# models used in AREditor. In AREd-
itor, each RPC is represented by a generated class in the IO.Swagger.Model namespace,
and contains a method to serialize self to JSON.

3.2.1 RPCs

To each RPC (Remote Procedure Call) sent by AREditor, the server elicits a response.
The response contains the resulting data. If the request fails, the data field is empty, and
a message informing of the error is present. The following segment presents an example of
a successful request-response sequence:

RPC request:
InverseKinematics.Request(

id=28,
request=’InverseKinematics’,
args=InverseKinematics.Request.Args(

robot_id=’obj_edc94797032d410289f7cd241b5c6fe8’,
end_effector_id=’default’,
pose=Pose(...),
start_joints=[...],
avoid_collisions=True,
arm_id=None))

RPC response:
InverseKinematics.Response(

id=28,
response=’InverseKinematics’,
result=True,
messages=None,
data=[...])

Note that the result field is True, and there is no message. Had the request failed, the
response would look as follows:

1https://docs.python.org/3/library/dataclasses.html
2https://www.openapis.org/
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RPC response:
InverseKinematics.Response(

id=29,
response=’InverseKinematics’,
result=False,
messages=[’arcor2 (General): Failed to compute IK.’],
data=None)

In AREditor, RPC failure responses are usually handled as exceptions, and notifications
are created and displayed.

3.2.2 Events

The main purpose of events is to notify connected user interfaces of asynchronous events.
Events are an implementation of the observer design pattern3 and are used to keep all
connected interfaces synchronized with the system state. Notifications are usually sent
after an RPC has been processed or when an object in the scene has changed, e.g. a robot
has moved. The pattern then becomes:

1. RPC request

2. RPC processed; response sent

3. Event broadcasted

A typical use case can be observed in robot stepping. The user sends a request to move
the end effector, the end effector is moved, and after the movement has finished, an event is
sent to notify AREditor and all other connected user interfaces of the changed robot pose.

3.3 AREditor
AREditor is a mobile application used to interface with ARCOR2. Its main goal is to
enable users with little or no programming and robotics experience to create programs
within a robotic workspace easily. AREditor is currently the only implementation of an
ARCOR2 interface, providing access to the full ARCOR2 toolset [3].

From the application, users can create and modify scenes, projects, and execution pack-
ages, add action objects to the workspace, manipulate robot poses, define action points
and actions, and create program flows by linking actions together. The program flow can
be executed and monitored from within the application as well. AREditor can operate in
two modes, offline and online. In offline mode, the scene is stopped and robot actions such
as setting the pose are not available. In online mode, robot actions become available and
interactable, which allows the user to e.g. set the pose of the robot through the robot
stepping menu.

After connecting to ARServer, the user is presented with the main screen, from where
they can create or open scenes, projects, and packages. When a scene (project, package)
is opened, the application switches to the editor where the workspace can be viewed in
augmented reality.

Creating an executable program in AREditor involves the following steps:
3https://en.wikipedia.org/wiki/Observer_pattern
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• Connect to server – A user must first connect to the server where ARServer is running
by filling out the IP address, port (default is 6789), and username. Multiple users can
connect to the same instance of ARServer, provided they choose different usernames.

• Create a scene – To set up a workplace, a user must create a scene to represent the
given workspace and insert and position action objects in accordance with the real
layout of the physical workspace. When adding a robot, the user must fill out the
URL of the robot. A robot added to the scene can be moved and rotated using the
Object manipulation menu.

• Create a project – Each project is tied to a scene. When editing a project, the user
adds action points, which are later used as anchors for actions for the robot to perform.

• Define actions – User defines actions for the robot to execute at specified action
points.

• Define flow – Actions are linked together to create program flow.

• Program execution and monitoring – The user can begin execution of the program
and stop it on demand. The visual representation of the program can be exported
into a script.

3.3.1 Editor screen

The editor is the AR-enabled application part, where users can interact with the work-
space [4]. Available menus are listed on the left side of the screen, organized into groups,
and accessible through tabs: Favorites, Add, Utility, Home, and Robot. The right side
of the screen is occupied by the selector menu by default, which provides a list of action
objects in the workspace. When a different menu is selected from the list, the selector menu
is hidden and replaced by the corresponding menu, as pictured in Figure 3.1.

The editor is designed to be used while holding a tablet with two hands. This approach
introduces some limitations but helps prevent fatigue, often present when holding a tablet
with a single hand for prolonged periods. Widgets are located on either side of the screen
to allow for good visibility of the workspace, as well as to make the individual buttons
accessible by thumbs.

3D sight

The sight works as a de facto cursor. It is located in the middle of the screen and is the
main interaction method between the user and action objects. AREditor perpetually casts
rays from the center of the screen forward and checks for collisions with action objects in the
scene. By aiming the crosshair at an action object, the object is selected: it is highlighted
in the selector menu, and an outline is displayed around it, as seen in Figure 3.1. When
using the stepping menu or the object manipulation menu, the crosshair is used to select
the axis of movement.

Object manipulation menu

The object manipulation menu is used when adding action objects to a scene. The menu
provides tools for translation, rotation, and scaling of the object. When the menu is acti-
vated, a three-axis gizmo appears. The gizmo axes can be selected by aiming at them with
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(a) Selector menu, the default.

(b) ’Add object’ menu opened.

Figure 3.1: Editor screen.
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(a) Object manipulation menu (b) Robot stepping menu

Figure 3.2: Object manipulation and robot stepping menus.

the sight. By pointing the sight at a particular axis, it becomes selected, after which the
transform wheel can be used to move (rotate, scale) the object along said axis. The user
can also select the unit of the transform wheel, as well as move the object freely by holding
the ’hand’ icon and moving the tablet. The menu also offers undo and redo capabilities.
When creating a scene, the object manipulation menu is used to align action objects with
the real-world objects in the workspace.

Robot stepping menu

When working with non-collaborative robots that do not support physical repositioning,
the robot stepping menu is the main way of manually setting the pose of a robot within
AREditor. The appearance of the menu is similar to that of the object manipulation
menu, but the transform wheel is replaced by plus and minus buttons, which are used to
incrementally move the end effector along a specified axis. By stepping the robot, the end
effector is moved in the chosen direction by the selected unit.

When a step is initiated, the buttons are disabled until the movement is concluded.
While necessary to make the menu safer to use, this presents a limitation in usability. If
the robot needs to be moved to a vastly different position, it would require several steps,
taking a long time. The menu is best utilized when doing small adjustments to the end
effector position, which is also its intended purpose, as reflected by the increments that are
available to the user (0.1 mm, 1 mm, 1 cm, 5 cm, 1 dm).

The robot stepping menu also offers two more toggles, a safe/unsafe movement switch
and a global/local space switch. Both menus can be seen in Figure 3.2.

3.3.2 Architecture

Each individual menu in AREditor is represented by a prefab with a custom controller
attached. Aside from the menus, AREditor comprises several singleton classes handling
the most important functionality such as communication with ARServer, holding the ap-
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plication state, and managing the active scene or project. They handle incoming RPC
responses, notifications and provide events, to which the individual screens and menus can
dynamically subscribe.

GameManager is the main controller of the application. It manages different screens,
holds the application state and the connection status, notifies users of changes, and builds
and runs execution packages. Connection to ARServer is created here, using Websocket-
Manager.

The WebsocketManager is responsible for communication with ARServer. It provides
methods for creating a connection, creates and sends RPCs, holds the WebSocket context,
processes received data, and broadcasts events, informing subscribed menus of changes on
connection status, robot pose, action objects addition/removal, etc.

For outgoing data, each type of RPC request is represented by a class, generated from
ARCOR2 dataclasses by the OpenAPI Generator CLI4. When an RPC is being sent, the
appropriate class is instantiated, and the data is serialized and sent through the WebSocket.
The response data are awaited and deserialized using either a corresponding class or an
anonymous type5 and based on the @event field value in the response, the corresponding
event is dispatched.

4https://openapi-generator.tech/
5https://learn.microsoft.com/en-us/dotnet/csharp/fundamentals/types/anonymous-types
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Chapter 4

Design

In this chapter, I will go over the design requirements for the proposed improvement of the
robot interaction in AREditor, and the individual elements of the final design.

When programming robots using the ARCOR2 system, a user typically sets action
points at the position of the end effector. An action point is a spatially anchored container,
that holds a position and orientation [3]. Actions can then be assigned to action points and
program flow is created. The user, therefore, needs to be able to quickly and easily position
the robot end effector to the applicable point in space so that they can set an action point
there. The design should allow the user to make large movements of the robot arm in
a single pass (as opposed to the robot stepping menu, where each movement is made up of
several small movements), but also provide a reasonable degree of precision.

In most previous works on mobile devices, the explicit pose setting of a robot was
resolved using on-screen arrows. While this approach works and was briefly considered,
a better solution exists. In AREditor, selecting (and moving) objects in the object manip-
ulation menu is already done by utilizing rays cast from the camera, aimed at a chosen
object within the scene. This principle can be applied to robot positioning, as described in
the next section.

The goal of this design was to provide flexibility while not obscuring the screen space.
This is a problem often seen in mobile AR interfaces. Another aim was to make the
interaction scheme feel natural and easy to learn, making it accessible to end-users of
varied levels of experience with tablets or robotics.

4.1 Movement
Two approaches to robot pose setting were considered: moving individual joints, and moving
the end effector only (utilizing inverse kinematics to calculate the joint values). The first
approach was deemed unnecessary, as it is rarely needed. In the vast majority of use cases,
setting only the end effector position is sufficient, as the robot is capable of calculating the
joint configuration based on a position in space. Secondly, as seen in [18] or [9], giving the
user access to manipulating joints individually could result in a high number of buttons,
obscuring the screen and complicating usage.

By shifting focus from individual joints to the end effector, the problem can be reduced
to a simple point moving in 3D space, and axes can be drawn from the end effector to
facilitate movement in all directions. The individual axes serve as handles, which can be
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selected with the sight. Early designs featured arrows or joysticks on-screen to be used to
move the end effector along the selected axis (see Figure 4.1).

The interface can further be simplified by utilizing tablet movement tracking. After
having selected the axis, the point can be simply moved by moving the tablet. The second
design iteration featured a single button for axis selection and arrows (joysticks) were
abandoned, as shown in Figure 4.2 (a). In this variant, the option to move the point in
space freely was added. Instead of selecting one of the axes, the user can select the origin
of the gizmo to enable unconstrained movement (Figure 4.2 (b)). Furthermore, inspired
by 3D software such as Fusion 3601 or Godot Engine2, the gizmo was modified to include
additional handles in the form of planes, which allow movement constrained to two axes
at a time. This option could be used when the end effector must be moved to a different
location while maintaining its height, for example.

1https://www.autodesk.com/products/fusion-360/
2https://godotengine.org/
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(a) Design with two sets of joysticks, to control all three axes.

(b) Arrows replace joysticks, and a dial to set the gizmo rotation.

Figure 4.1: Early designs with on-screen touch controls.
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(a) Selectable axes

(b) Selectable end effector

Figure 4.2: Design variants employing tablet movement. These were later combined into
singular design.

4.1.1 Forward/backward buttons.

To facilitate movement in the direction from the user to the robot, an additional control
was added. To move the end effector forward, one would have to move the tablet forward
the same amount, which proved to be impractical in some scenarios. In order to allow the
operator to keep the same distance from the robot throughout the session, a different way
to move the end effector along said axis was necessary. A dual button control was added,
featuring slanted arrow icons to illustrate the forward/backward direction of movement
(Figure 4.3).
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The original intended functionality of the buttons was to move the point along a line
defined by the tablet position and the direction the camera is facing. Through testing, it was
discovered to be frustrating to use, as the point would move in a slight downward/upward
direction, because there was always a height difference between the tablet and the point
position. During the implementation phase, the buttons’ effect was modified to only affect
the point’s position in the horizontal plane, ignoring the vertical axis. This change reflected
the usual intended use of the buttons better.

Figure 4.3: Forward/backward buttons.

4.1.2 Sensitivity sliders

When dragging the point, the end effector position moves to the exact position of the
raycast at a specified distance. This is the most intuitive outcome, as the user can always
predict, where the end effector will end up, but positioning with higher precision can be
cumbersome. By introducing variable sensitivity, the user can modify the ratio of tablet
movement to end effector movement, and thus make more precise adjustments easier.

Another issue is distance. When standing farther away, the same tablet movement
results in a larger robot movement. For example, when standing 1.5 meters away and
rotating the tablet by 15∘, while having the X axis selected, the end effector will move by
40 centimeters. If the operator stood a meter farther, the end effector would move by 66
centimeters, which is illustrated in Figure 4.4. Having adjustable sensitivity can therefore
be useful in scenarios, where the operator has to stand far away. The slider value acts as
a distance multiplier and is by default set to 1, which moves the end effector to the exact
final raycast hit and can be lowered to shorten the distance traveled by the robot arm.

Similarly, a slider for the forward/backward buttons was added, to control the speed of
the movement.

4.1.3 User-relative coordinate system

Often when positioning the robot, the user could benefit from being able to move the robot
in a straight line along an arbitrary axis in space, e.g. to align it with a different object
in the scene. The user could also want to move the robot arm perpendicular to their own
current position in space.

To achieve this functionality, two approaches were examined. Initially, a dial for rotating
the gizmo around its vertical axis was considered (Figure 4.1(b)), which would be used by
manually dragging using a thumb. While this could work, it would require the user to focus
on setting the rotation of the gizmo first, before being able to move along desired axis. It
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Figure 4.4: The same tablet rotation from different distances.

would also add another control to the screen. A more intuitive approach is to make the
gizmo rotate relative to the tablet position. In this scenario, the gizmo rotates as the user
moves around the workplace, with one axis staying perpendicular to the camera position
and the second one oriented towards the camera position, which is illustrated in Figure
4.5. Another addition is a lock button, which allows the operator to lock the gizmo in its
current rotation. This solution enables movement along arbitrary axes, which can be aligned
with other objects in the workplace by simply walking toward them while maintaining the
repeatability of movements provided by the lock button.

4.2 Component layout
The user interface was designed as a set of several separate submenus: the main menu,
forward/backward buttons, and a confirmation dialog. An ’invalid pose’ notification was
also included in the design.

The main menu’s central component is the select button, but it also contains a label
indicating the current selection, a sensitivity slider, and the coordinate system switch. The
select button has a label describing the functionality, which is hidden when dragging to
indicate that the movement is active. The coordinate system switch has two switchable
states, world and user, through which the user-relative coordinate system can be enabled.
When the user state is selected, a lock button appears, which locks the gizmo’s current
rotation.

The layout follows previously established conventions in AREditor. The main menu is
located on the right side of the screen, with the confirmation dialog beneath. The main
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Figure 4.5: The user-relative coordinate system demonstration.

menu is always visible, the other menus are turned on and off as required. If the pose of
the robot model is the same as the real robot, the confirmation dialog is not visible. It only
appears, when a movement robot model is executed, and is only enabled, when the user
concludes the movement. The confirmation dialog contains two buttons, apply and revert,
through which the operator can send the pose to be applied to the real robot, or revert the
model to the default state (copy the pose of the real robot). Additionally, while dragging,
the left menu along with the online/offline switch are hidden. The layout of the menus can
be seen in Figure 4.6.

4.2.1 Invalid pose indication

To inform the user that the pose is out of bounds, visual indicators were included in the
design. The original notification system was insufficient for the purposes of this solution for
two reasons: readability and performance, the first of which will be characterized in this
section. Performance is discussed in the Implementation chapter.

Notifications in the original notification system are implemented as temporary messages
in the top right corner of the screen. A notification is presented in the form of a semi-
transparent grey box, which contains text. If the notification informs of a failed RPC
request, it usually contains a title and the error message from ARServer. The notification
fades in, is displayed for a brief period, and then fades out.

This work entails a different form of notification. The user has to be notified the moment
an impossible pose is reached, and vice versa, when the point is back in a valid position, for
quicker understanding of the current state. The message should also be simpler, as there
is no need to display the full RPC response message.

The new notification is a red box, containing the text ’Invalid pose’ written in large,
white text. The RPC response message was removed. It appears immediately after the user
moves the end effector beyond the reach of the robot, and is hidden once the end effector
is back in the work envelope of the robot arm. A comparison between the old and the new
notifications can be seen in Figure 4.7.
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(a) The layout when not moving.

(b) The layout when moving the end effector.

Figure 4.6: The layout of menus.
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(a) The old notification.

(b) The new notification.

Figure 4.7: A comparison of the old notification and the new notification.

An additional visual cue was added to further indicate, that the robot is in an unreach-
able pose. Upon leaving the work envelope, the robot model is displayed in red. A more
elaborate, albeit similar approach was taken in [11], where the overlaid robot model arm is
displayed in colors from green to red, based on the manipulability of the robot. The system
calculates manipulability based on a scale proposed by Yoshikawa [16]. In the ARCOR2
system, no such manipulability scale is implemented and is out of the scope of this work,
therefore a simpler, yet still effective, approach was chosen.
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Chapter 5

Implementation

The system was integrated into AREditor as a new menu in the ’Robot’ category titled
Model positioning menu. The menu is a single prefab, with the main part of the solution
being the attached ModelPositioningMenu controller. In order to use the menu, the scene
must be in online mode, and a robot and end effector must be selected. By opening the
menu, the robot model is displayed in full opacity, and the SceneManager is temporarily
unsubscribed from the events RobotEefUpdated and RobotJointsUpdated. By doing so,
the robot model is disconnected from the real-world robot and its pose can be manipulated
independently. When the menu is closed, the connection is restored.

5.1 Movement
Upon opening the menu, a 3D gizmo is instantiated in the position of the end effector. Each
of the gizmo’s axes and planes, as well as the center point of the gizmo, serve as a handle,
which can be selected and dragged by moving the tablet. Raycasting is utilized to track
the tablet’s movement in space:

1. When the user starts dragging, a ray is cast from the screen’s center and a point along
the ray is recorded at a specified distance (originalPosition).

2. During every frame while dragging, a new ray is cast and the targetPosition is
recorded.

3. The difference between originalPosition and targetPosition serves as the trans-
lation vector.

Originally, the collision point between the ray and the handle was used as the original-
Position. While this may seem like the more appropriate approach, it would require the
user to be pointing directly at a handle when initiating movement, requiring additional
precision. This made starting the movement unreliable and frustrating. An attempted
solution to this problem was to use the last recorded collision between the handle and the
ray as the starting position, but that created a problem where the gizmo would snap into
position when the movement was initiated, as the originalPosition and targetPosition
were already in two different locations at the beginning of the movement.

By defining the original position as a point along a ray in the current frame, the starting
point of the translation is in the exact spot the camera is presently facing, eliminating initial
snapping to position, as well as the need to aim directly at the handle.
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Raycast collisions are still used to select the handle. When a collision is reported,
the length of the ray from the camera to the handle is recorded, which later serves as
the distance of the originalPosition and targetPosition along the ray. In Figure 5.1,
a visual description of how a movement is projected onto an axis can be found.

a)
b)

c)

(a) At 1.00 sensitivity.

a)
b)

c)

(b) At 0.80 sensitivity

Figure 5.1: An illustration of movement along the X-axis. a) original point position, b)
target point position, c) final end effector position.

The translation vector is transformed into the local space of the gizmo using the
Unity method Transform.InverseTransformVector() and is first applied to a dummy
GameObject. In order to gain access to an empty Transform, creating an empty GameObject
first is necessary because Unity does not allow Transforms to be instantiated if they’re not
connected to a GameObject. The dummy’s Transform is reset at the beginning of every
frame; the position is set to the original point position pre-translation, and the rotation is
set to the gizmo’s rotation. Using the Unity method Transform.Translate(), the trans-
lation is applied, either unconstrained or only on selected axis/axes, depending on the
selected handle. By using the Translate() method, the translation is applied relative to
the object’s local axes, taking the current rotation of the gizmo into account, which enables
the user-relative coordinate system to function by simply rotating the gizmo to face the
user.

Forward/backward buttons’ functionality is facilitated by moving the target point po-
sition in world space. During every frame, if either the forward or backward button is
held, the direction vector from the camera to the target point is obtained and normal-
ized, multiplied by the current sensitivity multiplier, and added to a Vector3 variable,
forwardBackwardAdjust. Originally, the entire forwardBackwardAdjust was then added
to the target point, but it was later changed to only add the X and Z coordinates. This
constrains the effect of the forward/backward buttons to the horizontal plane, which was
discovered to be a more user-friendly approach. The variable is reset when the movement
is completed.
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Figure 5.2: Unity vs ROS world coordinate systems [13].

Calculating pose

The MoveHereModel() method is responsible for sending inverse kinematics requests. While
a movement is active, the MoveHereModel() method is continually called from the Update()
function. The method is asynchronous and is only called if the previous call has finished,
which is achieved by using a flag. This also prevents overlapping requests from being sent
to ARServer. The target position, represented by a Vector3, is processed in three steps:

1. Because the Unity world space is not equivalent to the scene space, the point is trans-
formed from world space to the local space of the scene using Transform.Inverse-
TransformPoint().

2. The point is converted from the Unity coordinate system to the ROS1 coordinate
system. Unity uses a left-handed, with a y-up world coordinate system. Ros is
slightly different, as it uses a right-handed, with a z-up world coordinate system [13].
In Figure 5.2, the difference between Unity and ROS coordinate systems is displayed.

3. A Position is created from the Vector3 representation, which casts the float values
to decimal. Decimals are more appropriate when dealing with small values, as the
system handles them more accurately2.

Maintaining unconfirmed pose

When the menu is closed before a pose is applied, the pose is logged and reapplied on the
next open. When the menu is first opened, the controller checks, whether the variable for
holding the last confirmed position has been set. If it has not been set yet, it means, that
the menu is opened for the first time, and the pose of the model should be set to the pose
of the real-world robot. If it has been set, it compares the value to the current position of
the end effector of the real-world robot. If the values are not equivalent, the model pose

1https://www.ros.org/
2https://learn.microsoft.com/en-us/dotnet/csharp/language-reference/builtin-types/floating-point-

numeric-types
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was not applied before closing the menu, and should therefore be restored. The model is
moved to the unapplied position and the confirmation dialog is enabled. When a scene is
closed, the unapplied poses are reset.

Multiple robot support

The menu provides the illusion of a separate session for each robot in the workspace. This
is done by maintaining a dictionary of last point positions, where the keys are robot IDs.
Upon opening the menu, a value retrieval is attempted using the current selected robot’s
ID as the key. If the key does not exist in the dictionary, it indicates that the menu has not
been opened before for the selected robot. When the menu is closed, the dictionary entry
is created or updated. The method Dictionary.TryGetValue() was used to avoid having
to catch exceptions, as that would often be the case3.

5.2 Gizmo
The 3D gizmo used in this system is a variant4 of the gizmo prefab used in other menus, such
as RobotSteppingMenu. The gizmo was modified by removing distance labels and adding
planes, as well as a custom controller, GizmoVariant, which provides helper methods for
highlighting planes and axes, as well as flipping the gizmo around the X, Y, and Z axes.
Upon opening the menu, the gizmo is instantiated as a child of DraggablePoint, which is
located in the gizmo origin and is used as a handle for dragging in all three axes.

When an axis (plane, point) is selected, the movement can be initiated by pressing and
holding the main button. To signify which handle has been selected, all unselected axes
and planes are gradually hidden by manipulating their scale, and the selected axis or axes
are lengthened. The effect is displayed in Figure 5.3. If the DraggablePoint is the selected
handle, all axes are hidden. A coroutine was used to gradually change the scale of a chosen
axis across several frames5. The advantage of using a coroutine is that they can be started
and stopped, instead of perpetually checking the state every frame. This makes them better
suited for infrequent tasks, such as scaling the axes upon initiating movement. Another
benefit is cleaner code in the Update() method.

//the parameter "scale" is the target scale of the axis
private IEnumerator AxisScale(GameObject axis, Vector3 scale) {

//coroutine is concluded once the scale is within a~threshold
while (Vector3.Distance(axis.transform.localScale, scale) > 0.01f) {

//linear interpolation is used to smooth the animation
axis.transform.localScale = Vector3.Lerp(axis.transform.localScale,

scale, 0.25f);

//return control to Unity, and continue in the next frame
yield return null;

3https://learn.microsoft.com/en-us/dotnet/api/system.collections.generic.dictionary-
2.trygetvalue?view=net-8.0

4https://docs.unity3d.com/Manual/PrefabVariants.html
5https://docs.unity3d.com/Manual/Coroutines.html
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}

//after the threshold is crossed, the final scale is applied directly
axis.transform.localScale = scale;

}

(a) Gizmo while not moving, with the Y-axis selected.

(b) Gizmo while moving along the Y-axis.

Figure 5.3: The gizmo.

The typical use case is that of a user walking freely in the workspace, looking at the
robot from different sides. To allow easy access from all sides, the gizmo is flipped on
the corresponding axis, if the camera moves across it. This is done by transforming the
position of the camera from world space into local space of the DraggablePoint using
the Unity method Transform.InverseTransformPoint() and checking the coordinates
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for positive/negative values. The flip itself is achieved by simply multiplying the chosen
coordinate value by -1.

When the user-relative coordinate system is enabled, the gizmo’s X-axis always faces the
camera. The Unity method Transform.LookAt() was used, and the rotation was limited
by modifying the target’s Y-coordinate:6

//Y coordinate set to self to constrain rotation
Vector3 targetPosition = new Vector3(

Camera.main.transform.position.x,
pointInstance.transform.position.y,
Camera.main.transform.position.z
);

pointInstance.transform.LookAt(targetPosition);

5.3 Clipping shader
When a plane is selected as a form of movement, it needs to be visually indicated. An
approach that was initially tested was stretching the plane, analogous to the way axes are
elongated when selected. The idea was, that the plane would cut through the middle of
the robot, visualizing its position in relation to the robot in space. Due to how rendering
works, however, this is not easily achievable. Either the robot or the plane will always be
rendered on top. The solution to this problem is a custom shader.

When enabled, the clipping shader is assigned to the material of the robot renderer. A
float4 property _Plane represents the clipping plane in the shader. The first three values
are the normal of the plane, and the fourth is the distance to the origin, along the plane’s
normal. In the surface shader, the dot product of the surface point’s world position and
the plane position is calculated. The fourth value is added to account for the distance of
the plane from the origin. If the result is positive, the point is above the plane, if the result
is zero, the point lies directly on the plane, and if the result is negative, the point is below
the plane. All the points below the plane have an alternate color added to their base color.

void surf (Input i, inout SurfaceOutputStandard o) {
//dot product is evaluated
float distance = dot(i.worldPos, _Plane.xyz);

//distance from origin is added
distance = distance + _Plane.w;

//point is above the plane, render normally
if (distance > 0) {

fixed4 col = tex2D(_MainTex, i.uv_MainTex);
col *= _Color;
o.Albedo = col.rgb;

//point is below the plane, add tint
} else {

6https://discussions.unity.com/t/lookat-to-only-rotate-on-y-axis-how/10895/3
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fixed4 col = tex2D(_MainTex, i.uv_MainTex);
col *= _Color;
o.Albedo = col.rgb + _AlternateColor.rgb;

}
}

The clipping plane property is set from the ClippingPlane.cs script, which is attached
to an empty GameObject and inherits the gizmo’s Transform. The clipping plane holds
a list of materials with the clipping shader assigned. Materials are added and removed from
the list to enable and disable the shader during runtime. In each frame, the script7 creates
a new plane, loops through the material list, and sets the _Plane property in the shader.

void Update() {
//create plane
Plane plane;

plane = new Plane(transform.up, transform.position);

//transfer values from plane to vector4
Vector4 planeRepresentation = new Vector4(plane.normal.x, plane.normal.

y, plane.normal.z, plane.distance);

//pass vector to shaders
foreach (Material material in Materials) {

material.SetVector("_Plane", planeRepresentation);
}

}

This creates a horizontal plane at the position of the gizmo. There are, however, three
planes that can be selected. In order to properly split the model when a different plane
is used, the ClippingPlane object is rotated accordingly. Another aspect to consider is
the camera’s location in reference to the gizmo; if not accounted for, it would result in the
colors being switched (red in front of the plane, regular behind it).

This approach to visualizing the plane was abandoned in later development. While the
effect worked well, the stretched plane covering much of the workspace was deemed too
irritating. A more suitable approach was used to indicate, which plane the movement is
constrained to: instead of stretching the plane itself, the two axes that define the plane
are elongated. This method is more elegant, as it uses visual elements the user is already
familiar with, instead of introducing new ones.

5.4 Invalid pose indication
The pose validity is indicated by a custom notification and by tinting the robot itself. In
this section, the performance issues caused by the original notification system are described,
and the new replacement notification is showcased. The section also provides information
on how the red tint effect was achieved.

7Adapted method from https://www.ronja-tutorials.com/post/021-plane-clipping/ and
https://www.youtube.com/watch?v=shOH7pJSxk8.
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5.4.1 Notifications

Severe performance issues were noted during development when dragging the point out of
bounds. The notifications were identified as the root cause. Each notification is an instance
of NotificationEntry, created by the singleton Notifications. The lifespan of each
instance is tied to a timer. When dragging the robot arm, an inverse kinematics request
is sent to ARServer nearly every frame. If the operator moves the target point outside the
work envelope of the robot, the RPC fails, and an RPC response informing of failure is
sent. AREditor creates a notification for each of these responses. This essentially floods
the app with notifications and results in severe lag, sometimes causing the tablet to freeze
for tens of seconds at a time.

The new notification is a single GameObject already instantiated within the Model-
PositioningMenu and its state is switched between active and inactive based on the current
target point position and therefore pose validity.

5.4.2 Robot display

When the target point is unreachable, the robot turns red. This was implemented with
a surface shader in the file InvalidPose.shader. The red color is added to the base color,
which tints the robot red while preserving the original texture:

void surf (Input IN, inout SurfaceOutputStandard o)
{

//main color is obtained from the main texture
fixed4 c = tex2D (_MainTex, IN.uv_MainTex) * _Color;
//red color is added
o.Albedo = c.rgb + _RedColor.rgb;

}

The shader is applied to the materials of the robot renderers at runtime. A robot
renderer contains three materials when the outline is enabled: mask, object material, and
outline. If the outline is disabled, only the object material is present. The following code
snippet illustrates how the red shader is enabled (adapted from a function for setting
visibility in RobotActionObject). Disabling the shader is done by applying the ’Standard’
shader, which is done correspondingly. The effect is pictured in Figure 5.4.

private void EnableInvalidShader() {
materialEnabled = MaterialEnabled.invalid;
foreach (Renderer i in robot.robotRenderers) {

if (i.materials.Length == 3) {
i.materials[1].shader = Shader.Find("InvalidPose");

} else {
i.material.shader = Shader.Find("InvalidPose");

}
}

}
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(a) Default robot materials. (b) ’Invalid pose’ shader.

Figure 5.4: Dobot Magician displayed with the default materials, and with the red tint
applied.
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Chapter 6

Usability testing

Testing took place in the robotics laboratory at FIT. Due to scheduling conflicts, the testers
were split into two groups of 3 and 2, and the testing was done in two separate sessions.
The test subjects were students of the third year at BUT FIT.

The test subjects were first asked questions to assess their level of experience with
tablets, AR, and robotics. All subjects shared a moderate level of experience with tablets
and a low to moderate level of experience with AR, but none have come in contact with
robot programming. As the solution is targeted towards end-users with no experience with
robotics, this makes the subject group ideal for usability testing. The general outline of the
testing consisted of several points:

• Ask questions about experience, briefly explain, what AREditor is for

• Present the subject with the application, observe initial instincts

• Explain, how the model positioning menu generally works, notice how quickly the
subject picks it up

• Gradually explain all the features of the menu

• Present simple tasks to the subject

• Show the subject the robot stepping menu

• Ask them to compare the two menus

• Conclude testing, ask for any additional feedback

Subjects were also encouraged to ask questions and give feedback throughout the entire
testing.

Subject 1
The first subject initially assumed, that the select button worked like a joystick and at-
tempted to use it as such (pulling to the sides when holding it down). However, after
explaining how the menu is supposed to be used, they picked it up within seconds.

The subject was able to accomplish simple tasks such as positioning the robot to the
given coordination and moving the end effector along a global axis. When tasked with
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moving the end effector along the edge of the table which is not aligned with the global
coordinate system, the subject enabled the user-relative coordinate system, aligned them-
selves with the table, and moved the robot using the correct axis. The subject correctly
assumed the purpose of the ’Apply pose’ and ’Revert pose’ buttons.

After reviewing the robot stepping menu, the subject concluded, that the new solution
is a significant improvement. They especially liked the ability to simply drag the model
into a pose and visualize it, in contrast with the robot stepper, where they could not easily
tell where the robot arm would end up after a button press.

The subject struggled when they stopped moving the point while out of reach of the
robot. They did not know, how to navigate back into the robot work envelope. The point’s
position in space was difficult to understand to the subject, as the robot arm was used
as the main reference point. The subject also suggested labeling the sensitivity slider,
and assessed, that before using a plane for movement, they couldn’t tell, what it was for,
although that was apparent once they selected it for the first time. When it comes to the
clipping shader, the subject failed to notice it, and when brought up, they were unsure of
its purpose.

Subject 2
When tasked with moving the robot arm to a designated location, without any prior expla-
nation of how the system works, the second subject successfully did so. Given the task of
moving the robot arm along an arbitrary axis, the subject correctly assessed, that the user-
relative coordinate system should be enabled, but then they selected the horizontal plane
instead of the Y-Axis accidentally. The subject also correctly assumed the purpose of the
forward/backward buttons, but the sensitivity range was too high, making it impractical
to use. This was amended before further testing.

When using the robot stepping menu, the subject also found it hard to predict, where
the end effector would end up, and preferred the model positioning menu due to its trans-
parency.

The second subject, just like the first subject, suggested labeling the sensitivity sliders.
They also found it frustrating when going out of bounds and having to find the way back,
partly due to having no sense of depth. The clipping shader served no purpose other than
a source of confusion in this testing too.

Subject 3
The third subject initially attempted to drag the gizmo arrows with their finger on-screen,
but quickly caught on. When tasked with moving the point along the axis of the table, the
subject correctly utilized the user-relative coordinate system, aligned themselves with the
edge of the table, and proceeded to move the point along the right axis. They also correctly
understood the functionality of the planes. In comparison with the robot stepping menu,
the model positioning menu was deemed far more user-friendly.

Various times during the testing, when attempting to move the point across the robot
itself, the subject stopped and backtracked, if the robot turned red. This suggests, that
the subject also struggles to interpret, where the point is in relation to the robot while
out of bounds. As with the previous subjects, the clipping shader also went unnoticed and
misunderstood.
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Subjects 4 and 5
On the second day of testing, the tasks were slightly modified to better reflect real-life
scenarios. Colored cubes were used as targets, and the subjects’ job was to move the end
effector towards them.

The fourth and fifth subjects came in at the same time and tested alternately. The
fourth subject attempted to move the gizmo using their finger, analogous to subject 3, but
very quickly realized how it worked. As the fifth subject was present during this time, their
first instinct could not be observed. They both understood the purpose of the user-relative
coordinate system, and they utilized the forward/backward buttons during various tasks.

One thing that subjects 4 and 5 did differently was utilize the robot stepping menu.
While they agreed that it is tedious to use for large movements, it can be useful for precise
adjustments. When tasked with aligning the end effector with a cube, they often opted for
a workflow that included both the model positioning menu and the robot stepping menu.

6.1 Evaluation
In total, 5 people over 2 days tested the application. They all concluded, that the model
positioning menu is an improvement over the robot stepping menu in terms of usability,
speed, and transparency. Table 6.1 below shows the results of the tests.

1 2 3 4 5
Principle grasp fast immediate fast very fast very fast
Movement
choice

EE, axes EE, planes EE, axes Axes, EE EE, axes

Movement is-
sues

no issues misselected
axis

no issues misselected
axis

no issues

User-relative
coord. system
usage

yes yes yes yes yes

FW/BW but-
tons usage

no no occasionally often occasionally

Sensitivity
slider usage

no yes yes yes no

Robot stepping
menu usage

no no no yes yes

Clipping shader
understanding

no no no no no

Table 6.1: Usability testing evaluation

This testing yields several key insights. Firstly, most subjects naturally gravitated
towards the end effector as their initial choice of movement mode. Axes saw more use
as each session progressed, showing that they are better suited for tasks requiring a level
of precision, but they are not as intuitive to use at first. Axes were most often used
in combination with the user-relative coordinate system. The planes were used sparsely
throughout the testing, and occasionally they were selected accidentally. Consequently, the
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planes were made smaller and were moved further away from the axes to prevent any future
incidents of similar nature.

The forward/backward buttons saw moderate use, the problem was the sensitivity range,
which was lowered afterward. Because the robot used in the testing is small, simply moving
the tablet forward in place of using the buttons was the easier option in most circumstances.

The clipping shader as a visual indicator provided no value to any subjects when testing,
even confusing some, and was subsequently removed altogether.

The most common problem among the testers was understanding, where the point was
located if they accidentally went outside the robot’s work envelope. This stems from the lack
of depth perception when working with augmented reality on a tablet. While moving the
point within range, the robot arm pose functions as the main source of visual information,
which the user can use to identify where the point is located. If the point is dragged outside
of the range of the robot, the robot pose is no longer updated and the user loses a visual
reference point. To address this issue, a slight modification to the way movement works was
made. After the modification, if the user releases the button and concludes the movement
while out of bounds, the point snaps back into the last valid position. Originally, the point
would stay in the invalid position, leaving the user to manually drag it back.

Overall, the outcome of the testing proves the implemented solution’s usability. The
test subjects were able to learn to use it quickly and complete the tasks presented without
major complications. The menu presents an improvement over the robot stepping menu,
but the two menus can be used in tandem, as demonstrated by subjects 4 and 5. Because
the overlaid model is never calibrated with perfect precision, it can be difficult to use when
making smaller adjustments, which is where the robot stepping menu is better utilized.
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Chapter 7

Conclusion

The goal of this thesis was to design and develop an interaction method for positioning
a robot model in augmented reality, that can be used while programming robots in AREd-
itor. The implemented system should allow operators to efficiently set poses of robots
that do not support manual repositioning, and thus enable them to visually program more
efficiently.

Current research in controlling robot arms using augmented reality was assessed and
the gained knowledge was used to inform the design process. The existing options for
positioning robot arms in AREditor were also evaluated and built upon.

A new system for manipulating the robot was designed, which takes advantage of the
AR nature of the application and utilizes tablet movement tracking to move the end effector.
The new system provides users with a flexible toolset for performing complex and precise
robot movements while consisting of a low number of on-screen controls. The system also
provides visual feedback for indicating movement constraints and invalid pose reports.

The system was implemented into AREditor as a new menu, alongside the robot step-
ping menu. Raycasts were used as a basis for tablet movement tracking, and a variety of
techniques were employed to visualize the selected handle, the validity of the robot pose,
and the dimension of movement. To signify a plane’s position relative to the robot, a custom
shader was written, but was later abandoned, as it provided limited clarity of vision.

Usability testing was realized in the robotics laboratory at FIT over two days. The
subjects unanimously concluded that the new system is a significant improvement over the
original solution both in terms of speed and ease of use. Each subject was able to learn
to control the system within minutes and was able to accomplish simple tasks consisting
of moving the robot arm to given positions in the workspace and moving the arm in the
direction of an arbitrary axis. Given the positive results of the testing, the goal to improve
the robot positioning process in AREditor can be considered accomplished.

In future works, the system can be built upon in a variety of ways. The lack of depth
perception is currently the biggest limitation when working with augmented reality on
tablet devices. Future research aiming to alleviate this issue could focus on projecting the
point on the table, employing shadows, or displaying guiding lines of some form. A welcome
feature in the menu would also be the option to rotate the end effector, which is currently
only available from the robot stepping menu.

Another aspect that can be improved in this work is the approach to invalid poses. A
better solution would be to only allow the point to move within the robot’s work envelope,
making every pose set by the user valid. This is not possible using the current workflow of
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sending inverse kinematics requests and awaiting results, and would require a predefined
area, where the robot can reach.
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Appendix A

CD contents

The CD included with this work contains the following items:

• A PDF version of this thesis, along with the LATEX source files.

• Source code: as AREditor is a large project, only the relevant files have been included.

• git.diff: a file listing all changes made to the original repository.

• A short video showcasing the work.

• The exported version of AREditor in APK format.

• link.txt: A text file containing a link to the AREditor GitHub, where installation
instructions can be found.
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