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Symbols, Notation and Acronyms

θCH the characteristic angle under which the Cherenkov
radiation is emitted (Cherenkov angle)

θC critical angle of the incident ray
n refractive index
λ wavelength of light
β relativistic factor; β = v

c
, where v is velocity and c is the speed of light

µ parameter of the Poisson distribution
LQbar or bar ”L - shaped” fused silica bar (16 of them form optical part of

the ToF detector)
train four LQbars in the row
AFP forward detector called Atlas Forward Proton
ToF Time of Flight detector
ANN artificial neural network
NN neural network
PMT photomultiplier
MCP-PMT micro-channel plate photomultiplier
ID identification number
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Introduction

Detector AFP or unabbreviated Atlas Forward Proton is one of four forward detectors
of the ATLAS experiment which is among largest apparatus at the accelerator LHC
(Large Hadron Collider) in CERN. AFP’s stations are placed 205 m and 217 m in both
directions from ATLAS interaction point (IP). Positions of forward detectors mounted
in the forward area of ATLAS are schematically illustrated in the Figure 1.

Figure 1: ATLAS forward detectors. Position of each is marked by the small red
rectangle [8].

The closest forward detector to the ATLAS IP is LUCID (Luminosity measure-
ments Using Cherenkov Integrating Detector). It uses aluminium tubes filled with gas
(C4F10) as Cherenkov radiators and is dedicated to monitor LHC’s instantaneous lu-
minosity [26]. The second closest detector is the ZDC (Zero Degree Calorimeter). It
detects neutral forward particles at zero degrees with respect to the beam line using
quartz fibres which generate Cherenkov light. ZDC serves for heavy ion studies and it
is able to count neutral particles and measure their energy [26].

The detector ALFA (Absolute Luminosity For Atlas) consists of scintillating fibres
as well. They enable detection of protons scattered during proton-proton elastic and
diffractive interactions in the IP and these measurements are used for determination
of absolute luminosity and total cross section of pp interactions.

The AFP’s objective is very similar to the ALFA’s one: to observe protons that
are scattered during collisions by a very small angle (max hundreds of µrad). Such
protons originate from so-called diffractive processes (Figure 2) in which one or both
protons survive the collision and continue moving very close to the beam so that they
cannot be measured in the ATLAS detector but a dedicated forward detector is needed.
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Products of proton dissociations (labelled by the letter X in Figure 2) are detected in
the ATLAS IP.

During a diffractive event a proton emits a virtual colourless object called pomeron
(marked by double line in the Feynman diagrams in the Figure 2). Some of events (not
all) measurable by the AFP are visualised in the following Feynman diagrams.

(a) (b)

Figure 2: (a) Elastic event (on the left) and single diffractive dissociation on the right.
(b) Central diffraction with one or two protons surviving [25].

Other processes, the AFP aims to measure, are exclusive production of dijet and a
two-photon production of W pair (Figure 3).

Figure 3: On the left there is an exclusive production of dijet where the ”curly” lines
represent gluons and the ”bulb” stands for more complicated process. On the right
there is a two-photon production of W pair [16].

The AFP consists of two detector parts: the silicon tracker (pixel detector) and
the Time-of-Flight (ToF) detector. Both of them are mounted in a so-called Roman
Pot (Figure 4), a device enabling precise movement in very close distances to the main
beam of protons.
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Figure 4: The Roman Pot with the AFP detector inside [16].

This thesis focuses mainly on matters connected with ToF, so the pixel detector is
not discussed. Details of its function and construction may be found in [16]. In what
follows we will focus on the ToF its purpose within the AFP and principle of its function.

The LHC proton beam is not a homogeneous and continuous flux of protons. Pro-
tons are rather organised into groups called bunches. In the interaction points along
the LHC (such as the ATLAS IP) these bunches are crossed (so-called bunch-crossing)
and protons collide with each other. Interactions within one bunch-crossing do not
occur in a single infinitely small region (Figure 5), but the area is rather smeared in
the z-axis that is along the accelerator (usually several centimetres). This phenomenon
is called in-time pile-up. The main objective of ToF is to suppress such a pile-up.
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Figure 5: An interaction region within the ATLAS detector. Credits: ATLAS Experi-
ment c© 2016 CERN

Each ”ball” in the Figure 5 stands for a single pp interaction vertex. In the Figure
we can see 6 events occurring in the ATLAS IP, although in the high luminosity runs
there are actually many more of them (tens - hundreds).

There is one more phenomenon, a smearing in time - an out-of-time pile-up which
is formed by collisions occurring in previous or subsequent bunch-crossing than the
collision of interest [21]. Frequency of bunch-crossings on the LHC is set on 25 ns.
It puts a condition on detectors and their read-out electronics to be able to read fast
enough to differentiate from what bunch-crossing detected products originate.

From now we focus only on the in-time pile up. It causes that it is hard to differ-
entiate proton interactions or their products from each other within a bunch-crossing.
In the context of diffractive physics we need to be able to differentiate if protons mea-
sured by the AFP originate from the same vertex and thus are among the diffractive
events of interest or came from different vertices and therefore form a background.
Both situations are depicted in the Figure 6.

Figure 6: In the left there is a diffractive event with two protons and two jets emitted
whereas in the right there are two background vertices. Courtesy of Ladislav Chytka.
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The idea of the ToF functionality is schematically pictured in the Figure 7:

Figure 7: The upper figure shows an interaction region within the ATLAS detector.
The lower picture zooms in the interaction and shows the pile-up: three interactions
are happeaning in the same time. (Upper figure [24], lower figure courtesy of Tomas
Sykora.)

In the ATLAS IP (circled by the blue colour in the lower part of the picture)
there occurs three interactions. One of them is a diffractive event of interest with two
surviving protons (red lines in the lower part of the figure) and two jets (green line).
The ToF detector (purple line in front of the green rectangle) measures the time of
arrival of both protons on the left and right side from the ATLAS, tL and tR. These
times are measured by local clocks that are synchronised with respect to the reference
clock which is again synchronised with bunch-crossings. So the time of interaction is
well defined. The distance L between both AFP stations is known so by calculating
the length of each proton trajectory, c · tL and c · tR, we obtain the length difference
∆. Its magnitude gives evidence if protons came from the same vertex or not.

This mechanism will work only if the time resolution of the ToF detector is suffi-
ciently high. The goal was to reach approximately 10 ps which poses in terms of proton
trajectory length 3 mm (= 3 · 108[ms−1] · 10 · 10−12[s]). This practically means that it
would be possible (if the 10 ps is reached) to measure the position of the interaction
point with precision of 3√

2
mm.

The detection of protons starts in 16 ”L-shaped” bars made of fused silica, a
Cherenkov active medium. The Cherenkov radiation is emitted when the scattered
proton passes the bars. The theory of Cherenkov light is partially covered in the first
chapter. The details of bars construction and electronics parts of ToF are in details
discussed in Chapter 2 of this thesis.

For measurements of ToF a fast and accurate simulation of time distribution is
needed. Creating such a simulation is the subject of my thesis; two methods to achieve
it were adapted.

The first one follows the logic presented in [18] whose basis was purely geometrical.
This approach is presented in Chapter 4. Nevertheless, this model did not describe the
testing data generated by the full simulation - Geant4 well. Thus the second approach
was invented. It is based on usage of artificial neural network (ANN) whose funda-
mental principles is devoted Chapter 3. The idea was to use ANN for the regression of
the Cherenkov photon trajectory length distribution. The implementation of the Fast
Cherenkov simulation using neural networks is discussed in Chapter 5.
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The Appendix A includes a data sheet of suprasil UVL, a fused silica from which
some parts of LQbars have been manufactured. The Appendix B comprises a list of files
of the Fast Cherenkov simulation as well as other contents of the CD-ROM enclosed
to the printed version of this thesis.
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Chapter 1

Cherenkov Radiation and its
Production in LQBars

1.1 Basic Theory

The Cherenkov effect is analogical to the well-know sonic boom effect that occurs when
an aircraft or a bullet for instance exceeds the speed of sound in the air [11]. This causes
creation of a sonic shock wave that propagates in a characteristic cone (Figure 1.1).
When the aircraft passes through the points 4 to 0 it creates sound waves. These waves
add together to create a plain wave that propagates in the direction of arrows.

Figure 1.1: (a) An aircraft is creating a sonic boom [2]. (b) A scheme of soundwave
propagation [5].

Cherenkov radiation occurs when a velocity vparticle of a charged particle exceeds in
some medium the speed of light in that medium vlight. So these inequalities hold:

vparticle > vlight ⇒ (1.1)

⇒ βc >
c

n
⇒ (1.2)

⇒ β >
1

n
, (1.3)

where β(=
vparticle

c
) is a relativistic factor of incidental particle and n is a refractive index

of the given medium. We see that if refractive index is fixed there exist a minimal value
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of β, say βthreshold, for which the particle will emit Cherenkov radiation:

βthreshold =
1

nthreshold

. (1.4)

To be able to detect this radiation the medium must be transparent for light such
as ice, water, glass, atmosphere etc.

Cherenkov radiation has an electromagnetic nature and therefore can be generated
only by a charged particle in a dielectric medium. The reason for its generation is
following: When a charged particle moves through a dielectric medium it polarises its
atoms, so the electron gas surrounding the atomic nuclei excites to the higher energetic
states. Thus electrons are displaced from the nuclei and dipoles are formed. Then these
dipoles collapse and emit electromagnetic radiation. In case the initial particle moves
slowly (vparticle < vlight) the field of dipoles is perfectly symmetrical with respect to the
position of the particle and the resultant radiation neutralises (Figure 1.2(a)). Whereas
if the particle is highly relativistic (vparticle > vlight) delayed polarisation is observed.
The dipoles organise into a cone (Figure 1.2(b)) and emit radiation perpendicularly to
this cone surface.

Figure 1.2: Polarisation of dielectric medium by a charged particle which is slower (a)
or faster (b) than the speed of light in that medium [1].

Spectrum of wavelengths of Cherenkov radiation is given by the equation (1.6), so
the maximum count of photons belongs to near ultraviolet part. Photons are generated
in a cone (Figure 1.3) defined by a Cherenkov angle θCH which is described by an
equation [18]:

cos θCH =
1

βn
. (1.5)
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Figure 1.3: The characteristic cone of the Cherenkov radiation [4].

It is worth stressing that n is a function of wavelength of light λ; n = n(λ). There-
fore θCH is different for photons with different wavelength.

The amount of emitted Cherenkov photons dN per unit interval of distance dx and
per unit energy dE is described by Frank-Tamm formula that takes form [3]:

d2N

dxdE
=

α2Z2

remec2

(
1− 1

β2n2(E)

)
, (1.6)

d2N

dxdE
∼ 370Z2

[
photons

eV · cm

](
1− 1

β2n2(E)

)
. (1.7)

Z2 is a multiplicity of particle’s charge (a charge of particle q equals eZ), α is the
fine-structure constant (= 1

137
), re and me are classic radius and mass of an electron.

We use natural units, so e equals one. When applying equation (1.5) we can simplify
the relation and get:

d2N

dxdE
= 370Z2 sin2 θCH. (1.8)

For the description of photon’s production the Poisson distribution may be used
whose probability mass function P of discrete random variable X is given by:

P (X = k) =
µke−µ

k!
, (1.9)

where µ is a parameter and k = 0, 1, 2, ... Poisson distribution expresses the number
of occurrences of certain event in a fixed space or time if the average rate of occur-
rences is defined and events occur independently of time. For the Cherenkov radiation
production these conditions are satisfied. As the parameter we take [18]

µ =
dN

dx
· StepLength (1.10)

where StepLength is the length of proton trajectory in the Cherenkov active material.
After inserting equation (1.8) we obtain:

µ = 370 · Z2 sin2 θCH · dE · StepLength. (1.11)
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1.2 Cherenkov Radiation Propagation in an LQBar

As mentioned earlier the optical part of the AFP ToF detector is made of ”L - shaped”
fussed silica bars called LQbars where the Cherenkov radiation is emitted. Its trans-
mission through LQbars can be viewed in the approximation of geometrical optics.
Photons are generated to form a surface of a characteristic cone and each photon can
be substituted by a line. Inside an LQbar the radiation is mainly transferred by total
internal reflections from sides of the LQbar (see Figure 1.4).

Figure 1.4: Visualisation of the Cherenkov photons (orange lines) in two LQbars. The
incidental proton comes in the direction of the green base vector. (Courtesy of Tomas
Komarek).

This phenomenon is in accordance with the Snell’s law which characterises the
behaviour of a light ray on a border between two enviroments with different refractive
indices n1 and n2.

n1 sin θ1 = n2 sin θ2. (1.12)

Angles θ1 and θ2 are taken with respect to the normal of boundary. When the angle
of incident ray exceeds certain critical value θC the ray does not get to the second
environment at all, but is reflected back to the material from which the ray came
(Figure 1.5).

Figure 1.5: Behaviour of the incident ray on the boundary between two environ-
ments [19].
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For the critical angle we can express from equation (1.12) following relationship

sin θC =
n2

n1

. (1.13)

If we consider the transit from glass to the vacuum and when we take into account
that refractive index of the air n2 is approximately 1 there can be derived a relationship
between Cherenkov angle θCH and critical angle θC. We express from relations (1.5)
and (1.13) 1

n1
and put them equal:

sin θC = β · cos θCH , (1.14)

θC = arcsin(cos θCH) . (1.15)

For highly relativistic particles the factor β ∼ 1.
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Chapter 2

The AFP ToF Detector

2.0.1 Construction of the Optical Part of the AFP ToF

The optical part of the ToF detector is composed of 16 ”L-shaped” bars made of
suprasil (synthetic fused silica) called LQbars. They are bound in a holder to be in
direct contact with the photomultiplier (Figure 2.1).

Figure 2.1: (a) Sketch of the optical part of ToF. Proton passes through the second
train. (b) A photo of the optical part of ToF mounted in the holder.

The set of bars in the horizontal row is called a train. There are obviously 4 trains;
train 1 is the most upper one and the train 4 is the lowest one. When the scattered
proton comes through horizontal part of the bars so-called radiator it causes creation
of the Cherenkov radiation. The light than travels through the bars mainly via total
internal reflections to the vertical part of the bars called light guide which is glued to
the radiator. Under the light guide there is a photomultiplier. Each LQbar has also a
metallised elbow covered with aluminium that has a function of a mirror [22].

Incoming protons enter ToF practically parallel (deviations are few hundreds of
µrad) to the edge of bars as visible from the Figure 2.1. The edge of every bar is cut
under Cherenkov angle θCH which is for fused silica ∼ 48 ◦. This cut causes that vast
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majority of emitted Cherenkov photons go straightly with minimal number of total
reflections to the metallised elbow and to the photomultiplier.

The design of bars is such that radiators in a train are not off the same length.
The proton first enters the longest one and continues to the shortest one. This has the
effect that photons created along the whole proton path emitted in the same direction
arrive to the photomultiplier in the same time (time compensation).

When photons do not satisfy the condition of total reflection or due to probability
of reflectance from the boundary between bar and the air they escape from the bar. It
may happen that they get to some other bar where they will reflect and such photons
are detected in different bar than they came from. This is called optical crosstalk and
has negative influence on the time resolution of bars [20]. Another type of crosstalk
is also present, an electronic crosstalk, connected with the inner arrangement of the
photomultiplier. The resolution of single bar is under 30 ps [23]. When having 4 bars
in a row (a train) the resolution is ideally ∼ 15 ps if bars are uncorrelated [23].

For the train 1 and later train 2 there was developed a certain improvement in
design called taper angle [22]. It is another cut situated just under the metallised elbow
(Figure 2.2(a)). The purpose of the taper is to straighten the photon trajectories and
thus detect them in the photomultiplier in the shortest possible time (Figure 2.2(b)).
Another reason is to be able to detect photons that does not fall on the elbow to reflect
but just under it. For many of them the condition of total reflection is not satisfied
and therefore they are lost.

Figure 2.2: A scheme of taper [22]

The train 1 has one extra feature; its radiator’s width is only 2 mm to decrease the
possibility of multiple proton hits.

2.0.2 Electronics Part of the AFP ToF

The simplified scheme of the AFP ToF prototype is introduced in this subsection (see
Figure 2.3).
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Figure 2.3: The electronic modules of the AFP ToF [20].

Cherenkov photons from the light guide get into the photomultiplier. We use the
miniPLANACON multi-channel plate photomultiplier (MCP-PMT) by Photonis com-
pany1. The light is transformed here into an electrical pulse from whose falling edge
the time information can be derived. The statistics of incoming photons influences the
amplitude of the signal not its shape [16].

The output signal is amplified in two steps by preamplifiers (pre-amp ”a” and ”b”).
Thus we get raw signal whose amplitude is equivalent to the number of generated pho-
toelectrons. The next step is the CDF (constant fraction discriminator) an electronic
device determining when the signal came (the time of leading edge of the signal) re-
gardless of its amplitude. This is crucial for precise timing, because the signal coming
from the MCP-PMT does not preserves amplitude but the shape of the signal. In case
the time was determined when the signal reached some threshold value, resulting time
would vary for signals with same shape but different amplitude which is undesirable
(Figure 2.4). Whereas CFD fixes the constant fraction of the signal’s peak causing the
time being independent from maximal amplitude of the signal.

Figure 2.4: Difference between threshold-based and constant fraction based determi-
nation of time [10].

1Data sheet available online: https://www.photonis.com/uploads/datasheet/pd/Mini-
PLANACON-4x4-datasheet.pdf
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The HPTDC (High Precision Time to Digital Converter) ensures the transfer of
time recording into the digital form. The last part is the RCE a system for the data
acquisition.
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Chapter 3

Artificial Neural Network

In this thesis we consider two options how to simulate motion of the Cherenkov radia-
tion in the LQbars. One of them is geometrically based and will be discussed in detail
in Chapter 4. This chapter is devoted to the theory of the second approach which is
rather different and consists of using artificial neural network (ANN) based fitting of
dedicated histograms.

3.1 General Description of Function

The artificial neural network (ANN or just NN) is a computational algorithm or model
whose function is based on artificial neurons - simple units loosely resembling function
of brain neurons and their axons. As in the brain so in the ANN neurons form a struc-
ture with large number of connections between themselves; by training (or calibrating)
are these connections strengthened or weakened to get proper output from the ANN.
The model is created in the way it may learn itself rather then being preprogrammed
for some specific purpose. ANNs are non-linear processing systems used for vast range
of tasks and can be trained for accomplishing several issues using sample data.

Neurons are organised into certain patterns serving different purposes. The basic
conception of artificial neuron function is visualised in the Figure 3.1. There are five
input values x1,...,x5 into a neuron while each connection has its given weight w1,...,w5.
This set of weights is updated during the process of learning. The first step of the
neuron is to calculate weighted sum ζ:

ζ =
n=5∑
i=1

wixi . (3.1)

The second step is than to insert the value of the weighted sum into the given
activation function σ(ζ):

y = σ(ζ) (3.2)

to get an output value y of the neuron. There are several types of activation functions
and will be mentioned later.
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Figure 3.1: Ilustration of neuron’s function [6].

The general diagram of ANN function is depicted in the Figure 3.2. It principally
consists of three layers: input layer containing as many neurons as is the number of
input variables (in the Figure 3.2 there are 4 input neurons marked by circles), one or
more hidden layers (here it is shown 1 hidden layer consisting of 5 neurons) and an
output layer (made of 1 neuron). ANNs tend to have for each degree of system freedom
one input neuron. The same holds for the output of the ANN.

Figure 3.2: Chart of an ANN architecture [9].
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The principle of the ANN function is following: There is a set of input variables
x1, ..., xi that describe a given issue and they are somehow connected with the desired
output variable y or the set of variables y1, ..., ym. One input neuron stands for one
input variable into the ANN. All neurons in the input layer are connected with all
neurons in the first hidden layer (their number is h). Every such artificial synapse has
its weight: w11,w12,w13, ...,wih. Each neuron in the hidden layer calculates a weighted
sum and inserts its result into the activation function as described in equations (3.1)
and (3.2). This value (let us call it u1, ...,uh) is an output of each neuron in the hidden
layer. All neurons in the hidden layer have weighted synapses (wu1 , ..., wuh in the case
of one output) to a neuron or neurons in the output layer that function in the same
manner as described above. The output neuron contains weighted sum from values
of all neurons in the hidden layer. By inserting the result into the equation (3.2) we
get the output value y of the ANN. This was the description of so-called feed-forward
neural network, the simplest NN containing only forward paths and no feedback. That
means neurons in one layer never get values and weights from the following layers but
only from the previous layers.

Generally, ANNs are used to manage two types of issues: regression and classi-
fication. The first issue is connected with description of behaviour of a continuous
variable whose values are arbitrary. Classification task is to correctly predict values of
a variable which can reach only from 0 to 1.

Now we render two statements justifying the usage of NNs in both upper cases. It
is possible to prove that the structure with one hidden layer containing finite number
of neurons can approximate any continuous function (Universal approximation theo-
rem). The theorem was proved by George Cybenko in 1989 for sigmoid activation
functions [15]. Another theorem that applies to ANN states: If ANN is trained with
output variable that has values only 0 and 1, the approximated function of inputs X
is the probability of output = 1, knowing X [7].

The ANN can be trained with the set of data where for each input the output
value is specified. There are two stages that the ANN has to accomplish: training
and testing. During training the algorithm goes through some part of the data and
calibrates weight of each synapse. After that it tests using the rest of the data how
successful the training was. This process is repeated many times; each repetition is
referred to as an epoch.

3.2 ANN Implementation in the ROOT Framework

The ROOT is a scientific framework used mainly in the field of particle physics. It
is used as an C/C++ interpreter and compiler. ROOT incorporates several C++ li-
braries for handling graphs, histograms, large data samples and also a library with
implemented feed-forward ANN called multi layer perceptron. The library is repre-
sented by files TMultiLayerPerceptron.h and TMultiLayerPerceptron.cxx.
There are several types of constructor, here there is discussed only the one used during
the work on the Fast Cherenkov simulation:

TMultiLayerPerceptron::TMultiLayerPerceptron (const char *layout,

TTree *data, const char *training = "Entry$%2==0",

const char *test = "", TNeuron::ENeuronType type = TNeuron::kSigmoid,
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const char *extF = "", const char *extD = "")

The structure of the ANN form in particular input and output variables, number of
hidden layers and number of neurons in these layers is defined in a string layout with
specific structure. E.g.: "vtxx,vtxy,vtxz,vtxphi,vtxtheta:20:@trlen" means that
expressions before the colon constitutes 5 input variables divided by commas. The
number in the middle means one hidden layer containing 20 neurons. There can by of
course more hidden layers; it is always necessary to divide them by a colon. The last
character @trlen stands for an output variable that has to be normalised by the ANN.
If @ is omitted no normalisation is done. Another possibility is to finish the whole
expression with ! i.e. "vtxx,vtxy,vtxz,vtxphi,vtxtheta:20:var1!" to force the
usage of Softmax activation function in the output layer only.

Values of input and output variables are stated in a TTree called data, a ROOT
structure for storing data. In strings training and test one can specify what data
will be used for the training and for testing of the NN. The specification is done via
characteristic expressions using the class TTreeFormula. The formula Entry$%2==0

means that half of the events will be taken for training and the second half for testing.
Expression TNeuron::ENeuronType type = TNeuron::kSigmoid allows to choose

which activation function (in ROOT manual often referred to as neuron type) will be
used. In the class TNeuron there are implemented several types like:

• kSigmoid

is defined as:

f(x) =
1

1 + e−x
(3.3)

and its range is (0; 1) (Figure 3.3). It is set default in the constructor.

Figure 3.3: The sigmoid function [14].

• kLinear

• kTanh

• kGauss

• kSoftmax

is used when the ANN should deal with classification task and there are more
output variables.
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• kExternal

is defined by the user.

Before the training can start it is possible to choose a training method by calling
function: void TMultiLayerPerceptron::SetLearningMethod

(TMultiLayerPerceptron::ELearningMethod method) . There is a choice between
several implemented methods:

• kStochastic

turned out to markedly slow down the learning process.

• kBatch

• kSteepestDescent

• kRibierePolak

• kFletcherReeves

• kBFGS

or unabbreviated the Broyden, Fletcher, Goldfarb, Shanno method is defaultly
set and gives the best results.

The training itself is switched on by calling function
void TMultiLayerPerceptron::Train(Int t nEpoch, Option t *option = "text",

Double t minE = 0).
The first argument says how many times the NN is going through the data set to

learn from it, i.e. how many epochs is set. The most useful options (divided by a dash)
are:

• "text"

that is a text output on the screen. It describes quadratic error of training and
testing.

• "graph"

causes the graph of the error being plotted. It may look like the one in the
Figure 3.4
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Figure 3.4: The plot of evolution of the error during the training.

• "update=10"

symbolises that values of the error are updated and printed on the screen after
10 training epochs.

For instance the method Train could be used like this:
p mlp->Train(ntrain, "text,graph,update=10"); .

After the training the weights of artificial synapses can be dumped into a text file by
calling method Bool t TMultiLayerPerceptron::DumpWeights(Option t *filename

= "weights.txt"). This file can be used when the user decides to train the NN again.
In such a case before calling Train it should be called method
Bool t TMultiLayerPerceptron::LoadWeights(Option t *filename =

"weights.txt"). The loading of weights to initialise the learning process should no-
ticeably improve the result.

The mathematical expression of the the trained ANN network is generally a very
large formula and for further use it should be exported into a standalone code. This is
done by calling function:
void Export (Option t* filename = "NNfunction",

Option t* language = "C++") which is a member of TMultiLayerPerceptron class.
The programming language Python is also supported by typing option "python". The
function Export creates a class called NNfunction which contains a function double

nnFunction::Value(int index,double in0, double in1, ..., double ini). The
variable index expresses the numerical order of the output neurons from the ANN, so
if the user wants to know the value of the first output neuron he puts index equal to
0. Variables in0, ..., ini are the input variables.

The resulting NN analysis can be visualised. It is enabled by class TMLPAnalyzer

whose constructor is:
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TMLPAnalyzer::TMLPAnalyzer (TMultiLayerPerceptron net) .

Firstly, the analysis must be initialised using function
void TMLPAnalyzer::GatherInformations ( ). This method collects useful infor-
mation about the network. Secondly, it is recommended to call
void TMLPAnalyzer::CheckNetwork ( ) to get information about the NN in the ter-
minal (Figure 3.5). The most useful is the lower part of the Figure where we see the
influence of each variable on the training. It helps to judge to which variables is the
ANN sensitive and which of them are useful.

Figure 3.5: The terminal output from the ANN training.

This may be visualised graphically by function void TMLPAnalyzer::DrawDInputs

( ) . It uses the test data sample to perform small variation of the input to the NN and
draws the distribution of influence of the NN output (top left part of the Figure 3.6).
Such plot helps with the optimisation of the NN.

To plot the network structure the function void TMultiLayerPerceptron::Draw

( ) is called. Neurons are marked by blue circles and width of synapses are proportional
to the weights (top right part of the Figure 3.6).
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Figure 3.6: A graphical output of the ANN training.

Detailed information is given in the ROOT manual [7] and in two example macros [12]
one solving a regression issue and the second dealing with classification.
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Chapter 4

Geometrical Solution of Fast
Cherenkov Simulation

Since GEANT4 treats each photon individually which is rather time consuming it
became useful to implement a Fast Cherenkov simulation algorithm. The major idea
of such simulation is to approximate each photon in terms of geometrical optics - by an
effective trajectory through the LQbar. The issue is firstly treated purely geometrically.
Secondly, effects like absorption of photon in the bar or on the metallised elbow, etc.
are taken into account.

4.1 Basic Concept

The first step of Fast Cherenkov simulation is to calculate the length of photon trajec-
tory in the bar. However this photon path is non-trivial as the photon reflects from the
sides of the bar in 3-dimensional space. The main idea is to straighten its trajectory,
take into account space angles under which the photon was radiated and calculate the
trajectory length.

When the photon is generated it must be tested whether it conforms to conditions
of total reflection in the bar. Therefore angles under which the photon was radiated
with respect to the bar are proposed. Let us consider an element of the bar depicted
in the Figure 4.1.
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Figure 4.1: Part of the bar with photon (red line) emitted in the bottom right corner
reflecting from plains number 1 and 2 [18].

The photon (red line) originates from the lower corner and reflects from upper
plain (number 2) and side plain (number 1) in the upper corner. The radiation of the
photon is described by two angles, α (between plain 2 and the diagonal of plain 1) and
δ (between photon trajectory and the diagonal of plain 1). Notice that the diagonal of
plain 1 forms perpendicular projection of photon trajectory to the side plain. Angles
θr1 and θr2 are reflection angles from plains 2 and 1 respectively. They are defined as
angles between the photon trajectory and the normal to the reflection plain.

If the photon should reflect, it has to follow these conditions of total reflection:

θr1 > θC , (4.1)

θr2 > θC . (4.2)

The probability, expressed from the Fresnel equations [13], that the photon reflects
even if its angle of incidence on the boundary is smaller than the critical angle was
neglected.

If we express cosines of reflection angles in terms of angles α and δ

cos θr1 = sinα cos δ , (4.3)

cos θr2 = sin δ , (4.4)

conditions in equations (4.1) and (4.2) take form:

cos θr1 < sinα cos δ , (4.5)

cos θr2 < sin δ , (4.6)

for α, δ ∈ (0; π
2
) rad. The inequalities are opposite because the function cosine is in

this interval decreasing whereas sine is increasing.
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4.2 Description of Geometrical Principles of Pho-

ton Motion in the Bar

In this section there is considered a bar without taper. Three basic situations of photon
motion in the bar are discussed.

As mentioned earlier, edges of bars are cut under the Cherenkov angle 48 ◦. This
causes large number of photons going straightly or with minimum reflections on the
metallised elbow to deflect there to the photomultiplier. Firstly, this option is treated.
We will call it option 1 pass in case photon reflects on the mirror to the photomultiplier
or option 1 not pass when the photon is reflected back to the direction it came from
(Figures 4.2(a) and (b)).

(a) (b)

Figure 4.2: Part of the bar with Al mirror is depicted. A photon deflects on the mirror
to the PMT (a) (option 1 pass) or it reflects back (b) (option 1 not pass). Courtesy of
Tomas Komarek.

It may happen that the photon was emitted under such an angle that it misses the
metallised mirror and goes straightly to the light guide (the second part of the bar)
where it reflects from the bar, let’s call it option 2 pass (Figure 4.3(a)) or flees from
the bar, option 2 not pass (Figure 4.3(b)).
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(a) (b)

Figure 4.3: (a) Option 2 pass, (b) option 2 not pass. Courtesy of Tomas Komarek.

At last there are photons emitted in such a way they are heading not to the mirror
but oppositely to the cut edge of the bar (option 3 ) (Figure 4.4(a)). This is the
most complex issue as there are more possibilities where the photon may be reflected
(Figure 4.4(b), Figure 4.5(a) and (b)).

(a) (b)

Figure 4.4: (a) Option 3 pass, (b) option 3 pass in another way. Courtesy of Tomas
Komarek.

(a) (b)

Figure 4.5: (a) Option 3 pass, (b) option 3 not pass. Courtesy of Tomas Komarek.

35



The goal of the fast simulation is to create algorithm to differentiate between these
options and to calculate the length of photon trajectories. Each option’s solution is
now treated separately in devoted subsection.

4.2.1 Option 1

From geometrical drawings it is possible to derive that angles α and δ under which the
photon was emitted (Figure 4.1) are not changed for the particle that reflects from the
mirror to the light guide. This key finding makes place for considerable simplification
of the whole issue because it does not matter whether the bar is curved or flat which
is of course simpler.

Henceforth we will consider only side view of the bar. In the following it is presented
how to calculate trajectory length L of the photon in the bar.

Figure 4.6: A sketch exlaining the solution of the option 1. Courtesy of Tomas Ko-
marek.

In the Figure 4.6 there is a side view of an LQbar that was straightened so the
mirror covered by Al poses an axis of symmetry. In this bar in the point A there was
radiated a photon (red line) under an angle α. This photon reflects from the mirror
and gets to the photomultiplier (PMT). According to the law of reflection, the angle
α is not changed when photon reflects from the sides of the bar. The left side of the
bar may be understood as a second axis of symmetry. So the trajectory of photon can
be straightened and calculated:

Leff =
|A PMT |

cosα
, (4.7)
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where |A PMT | is the distance from the point of photon’s emission to the PMT. This
distance is calculated simply: we add lengths of radiator and light guide (LRAD +LLG)
and subtract distance of the point A from the beginning of the bar.

The motion of photons takes place in the space so using the Figure 4.1 it can be
derived the desired trajectory length [18]:

L =
|A PMT |
cosα · cos δ

. (4.8)

When implementing the code one must be capable of deciding whether the photon:

1. falls on the mirror

2. reflects from the mirror to the PMT and not back to the direction it came from
(Figure 4.2(b)).

In this, the Figure 4.6, may be helpful. If the photon is to fall on the mirror, it must
cross the blue line within the ”special” area. The blue line represents mirroring of Al
mirror over the second axis of symmetry. In case, the photon for instance crossed the
blue line but then the orange line entering the neighbouring gray cell of ”special” area,
it would be reflected back to the radiator.

The way of calculating the length L presented above is not the only possible one.
Another easy mean is to establish a coordinate system like the one in the Figure 4.7
bellow.

Figure 4.7: Coordinate system used for calculating of the length L.

In such a system we specify coordinates of point A = [Ax, Ay, Az] and then by
means of analytical geometry we calculate coordinates of the point B = [Bx, By, Bz].
Point B forms the intersection between the line of photon (characterised by the point A
and its direction vector S) and the line parallel to the z-axis in the distance LRAD +LLG

(position of PMT) from the beginning. The relation for the length L is:

L =
√

(Bx − Ax)2 + (LRAD + LLG − Ay)2 + (Bz − Az)2 . (4.9)
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Both relations (4.8) and (4.9) were implemented and provide same results. The
second possibility is especially useful when angles α and δ are not known and have to
be calculated separately.

4.2.2 Option 2

For this option one more condition of total reflection must be derived because the
photon falls on the side of the light guide under different angle than α. Basically we
need to set new angle of incidence of photon trajectory on the x-z plane (labelled by
number 3 in the Figure 4.1). Let us call this angle θr3. Any photon that misses the Al
mirror and gets into the PMT has to follow this condition:

θr3 > θC . (4.10)

Or it may be expressed as function of angles α and δ:

cosα cos δ > cos θC . (4.11)

The principle of trajectory length calculation is introduced in the following diagram.

Figure 4.8: A sketch to the exlanation of the solution for the option 2.

This option is recognized in such a way that unlike the option 1, the photon in the
”special” area (gray rectangle) does not cross the blue line (representing the Al mirror)
and it crosses the yellow line (meaning the right side of the bar.)
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The calculation of L has 2 steps. The first one pays close resemblance to the one
presented within the option 1. We find coordinates of the point B′ that is the point
B mirrored through the second axis of symmetry. In the point B the photon hits the
side of the light guide. Having these coordinates we can calculate length L1.

The second step is to calculate coordinates of the point C where the straightened
photon trajectory intersects the line parallel to the y-axis in distance LLG + HRAD,
where HRAD is hight of the radiator. The length of the second part of the trajectory
L2 is:

L2 =
√

(LLG +HRAD −Bx)2 + (Cy −By)2 + (Cz −Bz)2 . (4.12)

The whole length is an addition of both lengths:

L = L1 + L2 . (4.13)

4.2.3 Option 3

Without loss of generality it is presented only solution of the situation depicted in the
Figure 4.4(b) (the figure ”a” is only a special case of ”b”). Firstly, the condition of the
total reflection on the cut edge has to be found which is done in the very same manner
as described within the options 1 and 2. The normal to the cut edge is expressed
and by means of analytic geometry the angle τ between the photon trajectory and the
normal is calculated. This angle has to be greater as the critical angle θC.

Henceforth it is considered only upper view of the bar because only in this view
the cut edge is clearly visible. The principle of solution is evident from the following
sketch.

Figure 4.9: A sketch to the exlanation of the solution for the option 3.

The fourth axis of symmetry is introduced: the cut edge of the bar. Through this
axis the point A is mirrored into point A′. The new coordinates may be calculated in
the following way. The general equations of the edge and line segment |A A′| are:

By −
cos θCH√

1− cos2 θCH

·Bz = 0 , (4.14)

cos θCH√
1− cos2 θCH

·By +Bz −
cos θCH√

1− cos2 θCH

· Ay − Az = 0 . (4.15)
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The solution of this set of equations are two coordinates of the point B = [Bx, By, Bz]

that is in the middle between A and A′. That means: y =
Ay+A′y

2
and z = Az+A′z

2
.

By = Ay cos2 θCH + Az cos θCH sin θCH , (4.16)

Bz = Ay cos θCH sin θCH + Az sin2 θCH . (4.17)

Combining these relations together we obtain mirrored coordinates A′y and A′z:

A′y = 2Ay cos2 θCH − Ay + 2Az cos θCH sin θCH , (4.18)

A′z = 2Ay cos θCH sin θCH − Az + 2Az sin2 θCH . (4.19)

So the point A′ becomes new initial point and the photon has also different direction
vector. Now the issue is treated as option 1 or 2.

4.2.4 Comparison with the Full Simulation in GEANT4

Because of verification of proper functionality there was generated a data sample in
Geant4 containing all necessary information about photons i.e. coordinates of their
initial position and direction angles. This data was inserted into the code of Cherenkov
simulation and results were compared.

Into the tested code were also implemented these effects:

1. reflectivity on the Al mirror (90%),

2. transmission of fused silica to the light which is 99% for wavelength typical for the
Cherenkov radiation (this information was obtain from the data sheet of suprasil,
the material of the bars, included in the Appendix A),

3. attenuation in the glue that connects radiator and light guide. Its value is a
function of wavelength and the implementation was retaken from Geant4.

Firstly, only options 1 and 2 and separately 3 were verified (Figures 4.10 and 4.11).
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Figure 4.10: The comparison of length histograms between the Fast Cherenkov code
and Geant data. Only options 1 and 2 are considered.

Figure 4.11: The comparison of length histograms between the Fast Cherenkov code
and Geant data. Only option 3 is considered.

Secondly, all three options were put together (Figure 4.12).
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Figure 4.12: The comparison of length histograms between the Fast Cherenkov code
and Geant data. All options are considered.

It is obvious that the tested code does not describe the Geant data very well. The
leading edge is in a good agreement, however in the region of length (130 - 140) mm the
code throws away huge number of particles so the second peak is completely missing.

In order to disclose the reason, there were done drawings by hand of few photons.
It was discovered that some photons are treated as different options by the code and
by Geant. In some cases the drawings agreed with the result Geant rendered.

When implementing more complex possibilities in the option 3 the problem has
risen that photons did not fulfil the condition of total reflection and were lost. In
the Geant data, however, these photons came through. This phenomenon was most
probably caused by an error in the code. Despite considerable efford, the error was not
found yet.
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Chapter 5

Implementation of the Fast
Cherenkov Simulation Using the
ANN

In this chapter there are discussed matters concerning details of the training of neural
networks, the choice of input variables and training samples preparation. The whole
process of Fast Cherenkov Simulation implementation is described as well as validation
of the output with full simulation in Geant4.

5.1 The Strategy

The objective of the AFP ToF is to measure the time when the proton entered the
LQbars. The global time of each bunch-crossing t0 is known, so the only task is to
simulate what time t each photon needs to pass through the bar.

The first step to achieve this is to calculate each photon’s trajectory length L. The
idea is to use the neural network for regression of the histograms of trajectory length
generated by Geant4. Examples of such histograms for bars with and without taper
respectively are shown in the Figures 5.1 and 5.2.
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Figure 5.1: Histogram of photon trajectory length for the bar 1A (with taper).

Figure 5.2: Histogram of photon trajectory length for the bar 3A (without taper).

The second step is to calculate probability of absorption pabs [18] of the photon in
the bar:

pabs = 1− e−µabs(E)·L , (5.1)

where µabs stands for the attenuation coefficient of the material of bars and it is a
function of energy (µabs = µabs(E)).

In the third step the time tphoton needed by the photon to pass through the bar may
be expressed:

tphoton =
L

vc

=
n(λ)

c
· L . (5.2)
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Nonetheless, for purpose of comparison with Geant data it is necessary to calculate
time of flight t0 of the proton from some chosen plain (yellow plain in the Figure 5.3)
until it radiates give photon. In Geant the trigger plain (blue plain) is shifted with
respect to the yellow plain by the time approximately ttrig = 25 ps. So the final time
plotted in histograms takes form:

t = tphoton + t0 + ttrig . (5.3)

Figure 5.3: Sketch explaining time corrections.

5.2 Architecture and Training of the NN

5.2.1 Input Data and Variables

The data source for the training of neural network was prepared in Geant4. The
Geant implementation allows for various settings like the number of bars placed in the
holder or select which part of radiator is hit with incoming protons. For the purpose
of the Fast Cherenkov Simulation preparation only one selected LQbar was simulated
having protons randomly distributed in a square window spanning 5 mm from its edge
(Figure 5.4).
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Figure 5.4: Global coordinates and the window for protons.

The reason for such position is that the best resolution for the bars, observed during
testing campaigns, was just at the edge of bars compared to further distances of the
window from the cut edge [23].

The number of generated protons was chosen different for LQbars with and without
taper mainly for the fact that these bars have different proportions in globypos coordi-
nate. So for LQbars with taper we generated 30 000 protons and for LQbars without
taper only 10 000 protons were sufficient with regard to the simpler design of the bar.
The energy of protons was set to 7 TeV.

Geant4 dumps the information about all protons and emitted photons into a ROOT
file which is comprised of four TTrees called: PhotonTrack, Sensor, EventInfo,

RunInfo. In the Table 5.1 there is introduced a list of the most important variables of
these TTrees and their meaning. All variables of such a TTree can be found in a ROOT
file called tofsim set14 1A new moved random 1000Evt.root (generated for the bar
1A) on the enclosed CD-ROM.
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TTree name
Variable Unit Meaning

PhotonTrack

trackid - Identification number (ID) of the generated photon
(or of its track).

vtxx mm Position coordinates of the photon’s emission in the local
vtxy mm coordinate system of the bar (Figure 5.5).
vtxz mm
vtxdirx mm Direction coordinates of photon in the local coordinate
vtxdiry mm system of the bar.
vtxdirz mm
vtxwl nm Wavelength of the emitted photon.

Sensor

eventid - ID of the event. Photons originating from one event
have same eventid.

trackid - ID of the photon (or of its track).
barid - ID of the bar from which the photon fell on the PMT.

ID’s layout is specified in the Figure 5.6.
vtxbarid - ID of the bar where the photon was emitted.
time ns Arrival time of the photon into the PMT with respect to

a trigger plain which is situated before A bars.
trlen mm Length of the photon trajectory.
wl nm Wavelength of the photon and its value equals to the

vtxwl for the given photon.
vtxphi rad Angle under which the photon was radiated in the

plane globypos - globxpos (Figure 5.7).
vtxtheta rad Cherenkov angle of the photon. It is measured from

the axis globzpos (Figure 5.7).
EventInfo

gpxpos mm Global position coordinates of the gun of the event, x
gpypos mm y
gpzpos mm z
gptheta rad Angle between the direction vector of proton and the

axis globzpos.
gpphi rad Angle of projection of the proton’s trajectory into in the

plane globypos - globxpos
For the purpose of training of NN both angles are set
zero, so proton’s directions are parallel to the cut edge.

Table 5.1: Some of variables used in the TTree and their explanation.
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Figure 5.5: Local and global coordinate system.

Figure 5.6: Maping of the LQbars to barids. This figure shows the front view of the
ToF like the one in the Figure 2.1(b).

Figure 5.7: Description of the meaning of angles vtxtheta and vtxphi. Photon track
is substituted by a red full arrow and the projection of the track by dotted red arrow.
In this case, the original proton is parallel to the globzpos axis.
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5.2.2 Training of the ANN

Variables relevant for the training of the ANN were, after several tests, set these: vtxx,
vtxy, vtxz, vtxphi, vtxtheta. For the purpose of training the original ROOT file
has to be recreated because these variables are placed in two separate trees. For the
training we also use only photons that passed the whole bar and got to the PMT
(our sensor). An example of such an input TTree is enclosed on the CD-ROM under
the name inputTree 1A new moved random 1000Evt.root. Into the input Tree there
must be also added information about the photon track length trlen.

Several layouts of the ANN were tried e.g. 1 hidden layer containing from 20 to
50 neurons or 2 hidden layers comprising from 20 to 30 neurons each. Also the more
complicated structures containing 3 or 4 hidden layers with 20 neurons each were tested.
It was discovered that the best agreement between Geant data and the output of the
NN is reached with 2 hidden layers each made of 25 neurons with sigmoid activation
function (kSigmoid) and default training method (kBFGS). The final structure is in the
Figure 5.8.

Figure 5.8: The final structure of the ANN.

Continuous testing also revealed that it is convenient to train the NN twice. At the
end of the first training the weights of synapses are dumped into a special text file (for
details see the Section 3.2 of this thesis). At the beginning of the second training this
file is loaded and weights are used to initialise the training. This procedure enables
lowering of training error and ensures the proper placement of the leading edge of
length histograms.

5.3 Correlation of Variables

The choice of input variables is crucial for the training process and the results ob-
tained from exported code representing the trained NN. At the end of the training
the algorithm optionally analyses the influence of each variable on the output. This
information should be carefully considered as it helps to get rid of useless variables
that burden the network.

There are two features of special importance that have major effect on the ANN’s
training and results: Firstly, at least one of the input variables must be correlated
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to the output. Otherwise the trained NN will not provide good results. In our case
this variable is the angle vtxphi and its dependence is shown in the Figure 5.9. The
importance of this angle is also evidenced by the text output of ANN training which
shows that vtxphi has bigger influence on the resulting length than other variables.

Figure 5.9: Correlation between the angle vtxphi and the photon trajectory length
trlen. (Source Geant4.)

This structure was at first introduced in the article [22] and it was called wings. In
the central part vtxphi ∈ (-1; 1) rad there are photons going straightly on the mirror
and to the PMT; this part will be called mid wing. The upper part of the plot, vtxphi
∈ (1; 3.2) rad, is called up wing and the lower part (vtxphi ∈ (-1; - 3.2) rad) is down
wing. The biggest number of photons is situated at low lengths (Figure 5.10).
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Figure 5.10: Histogram of wings.

Secondly, the correlation between the input and output variable has to be unam-
biguous. When we look back on the Figures 5.9 and 5.10 we see that this condition
does not hold especially for up and down wings. Therefore a set of cuts is proposed to
clean the training data sample.

5.3.1 Cuts

The exact formula of cuts differs from LQbar to LQbar; bear in mind that each bar
has different length of the radiator because of the effect of compensation of photon’s
arrival time. Also the fine structure of wings is more complex for bars with taper. For
these reasons only general principles of cutting of data are discussed.

Bars without taper require only in most cases cuts on long trajectories. It was
discovered that only cca 8 % of all photons have trlen > 300 mm. Moreover these
photons form the major part of unwelcome ambiguities. After the cut the up wing of
the bar 3A may look like in the Figures 5.11 and 5.12.
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Figure 5.11: Plot of the up wing of bar 3A (without taper) after the cut.

Figure 5.12: Histogram of the up wing of bar 3A after the cut.

The lower region (down wing) has very similar cuts. The mid wing i.e. the region
vtxphi ∈ (-1; 1) rad requires only cuts for particles with longer trajectories: In the
case of bar 3A all lengths should be smaller than 156 mm. Photons with greater length
deviate from the main ”curve” (Figure 5.13) of the mid wing.
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Figure 5.13: Graph of the mid wing of the bar 3A after the cut.

Bars with taper with respect to bars without taper evince complex fine structure
of the wings and therefore have more ambiguities. After several test the best results
were obtained when each of the three wings is separated into two or three parts. Spans
of these intervals along with the cuts on trajectory length for bars 1A and 1C are
presented in the Table 5.2. It is convenient to train different NN for each of these
intervals with one exception mentioned later.

1A
name of the interval vtxphi ∈ trlen

sector 1 up wing (2.58; 3.2) < 144
sector 2 up wing (1.; 2.58) < 325
sector A mid wing (0.5; 1.) < 159
centre mid wing (−0.5; 0.5) < 146
sector B mid wing (−1.; −0.5) < 159
sector 2 down wing (−2.58; −1.) < 325
sector 1 down wing (−3.2; −2.58) < 144
1C
sector 1 up wing (2.6; 3.2) > 105 && < 144
sector 2 up wing (1.; 2.6) > 105 && < 275
sector A mid wing (0.5; 1.) < 145
centre mid wing (−0.5; 0.5) < 132
sector B mid wing (−1.; −0.5) < 144
sector 2 down wing (−2.6; −1.) > 115 && < 275
sector 1 down wing (−3.2; −2.6) > 105 && < 131

Table 5.2: Intervals of the testing data and their cuts.
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For instance, the reason for the separation of up wing into sectors 1 and 2 is apparent
from the Figure 5.14(a) and (b). There we can see rapid change of the structure of the
data: In the sector 1 the distribution of the data is random whereas in the sector 2
photons create certain ”stripes” which are more fine than ”clusters” in the Figure 5.11.

(a) (b)

Figure 5.14: Detail of the up wing, boundary between sector 1 and 2.

For the data from sector 1 it is therefore convenient to be trained separately from
sector 2. Nevertheless, the whole sector 2 is made of ”stripes” (Figure 5.15) which
spoils the training. So for the testing of the data from sector 2 it is better to train
sector 2 together with sector 1, but use such NN only for data from sector 2.

Figure 5.15: Fine ”stripe” structure of the sector 2 up wing.

Conditions on length proposed in the Table 5.2 are only very rough. Here is given
an example of the data from sector B mid wing before the cut (Figures 5.16(a)) and
after the cut (Figure 5.16(b)).
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(a) (b)

Figure 5.16: Graph of the sector B mid wing before the cut (a) and after the cut (b).

(a) (b)

Figure 5.17: Histogram of the sector B mid wing before the cut (a) and after the cut
(b).

Obviously these cuts are done with respect to places with largest counts of photons
(Figure 5.17(a) and (b)) bearing in mind the natural structure of the data and omitting
ambiguities.

Very similar cuts are done for sector A; they are just a bit moved in the length and
vtxphi.

5.4 Results for Single LQBar

This section is devoted to the presentation of results of training for single bar without
and with taper. To do so all NNs have to work together to simulate the whole span
of the angle vtxphi. In order to demonstrate the correctness of the NN’s function the
comparison between the trained NN and Geant data is done here.

For the purpose of testing of trained neural networks, it is convenient to generate
new data sample in Geant instead of using the same sample for training of NN and for
testing. This prevents of ”overfitting” the NN.

5.4.1 Results for the LQBar without Taper

Here we provide results for bar 3A because only this bar has been trained for reasons
provided later.
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To judge how good is the agreement between NN and Geant the data from Geant
were inserted into the NN and histograms of the photon track length for both Geant
and NN were created (Figure 5.18). A ratio histogram of their division was also found
useful.

Figure 5.18: Comparison of photon track length given by Geant (red histogram) and
calculated by NN (blue histogram).

We see that the NN describes the data almost perfectly. The secondary peak is a
little overestimated by the ANN, but that is not so important as the first peak enters
sooner to the PMT to give information of the presence of the proton.

In the table in the upper right hand corner there is information about statistics.
The last line, ∆ > 3 mm, says how many percent of photons had track length difference
(track length Geant - track length NN) bigger than 3 mm. It is also very meaningful
to create a histogram of such difference (Figure 5.19).
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Figure 5.19: Histogram of photon track difference: track length Geant minus track
length NN.

This histogram shows that vast majority of photons has correctly calculated track
length. The RMS is also sufficiently small in comparison with the desired resolution of
10 ps which poses 3 mm of proton trajectory length.

5.4.2 Results for the LQBar with Taper

In this subsection we present results for bar 1A. The same histograms as in the previous
subsection for track length (Figure 5.20) and its difference (Figure 5.21) were created.

Figure 5.20: Comparison of photon track length given by Geant and calculated by NN.
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Figure 5.21: Histogram of photon track difference: track length Geant minus track
length NN.

Although the simulation of this bar was more complicated (7 NNs were used for
each interval of vtxphi), the training has good results. Notice that due to the effect
of taper the secondary peak in the track length histogram is merged into the primary
one.

5.5 Implementation of the Trains

It was found out that for the simulation of the whole train it is not necessary to train
dedicated ANN for each bar. LQbars without taper differ from each other only by
the length of radiator and light guide. These bars are in trains 3 and 4 which have
only different width of radiators (the dimension in vtxy coordinate), 5 mm and 5.5
mm respectively. Therefore, it is possible to find a constant by which the track length
histograms of bars are moved from each other.

Trains without taper have two peaks which have to be moved separately as same
as the minimum between them. For example the distance between primary peaks of
trains 3 and 4 is approximately 5.7 mm. The exact values of shifts are provided in the
code of Fast Cherenkov enclosed on the CD in the library called routines network in
functions move train34 and move train12. Thus it is possible to use the NN trained
only for bar 3A to all bars in trains 3 and 4.

Shapes of track length histograms for trains with taper differ from each other more
than these histograms for trains without taper. It is due to the train 1 has different
width (2 mm) and the slope of the taper than train 2 that is 4 mm wide. These
circumstances cause changes of the shape of the track length histogram within one
train and the presence of the tertiary peak in the train 2. In order to describe the data
sufficiently new ANN for the bar 1C has been trained. So to summarise: the NN for
1A is used to approximate bar 1B, 2A and 2B when necessary shift is applied. The
NN for 1C approximates 1D, 2C and 2D.

We provide an example of shift of 1A to 1B (Figure 5.22) and 1A to 2A (Figure 5.23).
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Figure 5.22: Histogram of photon track length from Geant for the LQbar 1B (red
histogram) and track length calculated using the NN for bar 1A (blue histogram) with
the appropriate shift applied.

Figure 5.23: Histogram of photon track length from Geant for the LQbar 2A (red
histogram) and track length calculated using the NN for bar 1A (blue histogram) with
the appropriate shift applied.

The tertiary peak is omitted in this approximation as its importance is very low in
this phase of simulation of the ToF detector. It is obvious that this shifting describes
the data from the full simulation well.
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5.5.1 Influence of the Proton’s Smearing

In real operation of the LHC the protons measured by the AFP have non-zero smearing
angle gptheta with respect to the globzpos - globypos plane. Magnitude of such an
angle was considered 300 µrad. A corresponding data sample for the train 1 was created
in order to find out the influence of the smearing on the NN. Result for the bar 1A is
given in the Figure 5.24.

Figure 5.24: Histograms of photon track length for the LQbar 1A created using Geant
data with non-zero smearing angle.

The effect of smearing is not noticeable which makes place for significant simplifi-
cation of description of proton’s paths through bars during the implementation of the
Cherenkov photon’s generator.

5.6 Implementation of the Generator of Cherenkov

Photons

For purpose of final use of the Fast Cherenkov simulation it is crucial to implement
algorithm for generation of Cherenkov photons. This procedure has several steps which
are discussed within this section. The logics of the generator’s function follows the way
of implementation in Geant.

Functions for Cherenkov photon’s generation are implemented in the library
routines generator and they are called by the function Generator of the
fast cherenkov library. This function is responsible for defining single proton’s track
along which photons are generated (by calling function ProtonGenerator). Coordi-
nates and angles of photons along with other important variables are dumped into
vectors (function generator photon). It is iterated through these vectors and using
trained NNs dedicated histogram for given bar is filled (function network). A simplified
block diagram of the Fast Cherenkov code is shown in the Figure 5.25.
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Figure 5.25: Simplified block diagram of the Fast Cherenkov simulation.

There are several steps that the generator has to perform:

• Generation of the point where protons enter the bar

The position coordinates of protons while hitting the surface of the bar are gen-
erated by function ProtonGenerator. The NNs are trained only for protons
coming in a 5 mm large window, see Figure 5.4. So the range of local x coordi-
nate generated by this function, vtxx (Figure 5.5), is from 0 to 5

cos(42 ◦)
(length

of the projection of the window in the side of the bar). In order to fill every
train the range of the globypos coordinate spans from 0 to the value of hight of
all four trains (between each train there is a space 0.1 mm wide). The globypos
coordinate carries thus information which train was hit. However, in order to fill
NNs with y coordinates they have been trained for local y coordinates of each
train, vtxy, has to be generated separately. Ranges of vtxy for each train are
given in the Table 5.3.

61



train span of the interval of vtxy [mm]
1 0 - 2
2 0 - 2
3 0 - 5
4 0 - 5

Table 5.3: Spans of generated y-coordinates for each train.

The direction vector of every generated proton is parallel to the cut edge of
the bar. In local coordinates the vector is: (−1; 0; 1

tan(42 ◦)
). This simplification

is possible due to smearing of proton’s direction has no effect on track length
histograms (see Subsection 5.5.1).

• Calculation of the mean number of photons per track

The implementation of this calculation closely follows the theory described in
the Chapter 2 of this thesis. The mean number of photons follows from the
Poisson distribution whose parameter µ is obtained from the equation (1.11).
The expression dE was substituted by the difference of maximal and minimal
wavelength of photons that pass through the bar according to Geant (654nm−
200nm = 454nm = 4.54 · 10−5 cm).

The value of the parameter StepLength was set different for each train so that
the mean value of generated photons per proton track is by few procent higher
than the value of photons that pass in Geant. This is necessary because unlike
Geant the Fast Cherenkov simulation does not have any other mechanism to
calculate probability whether the photons passes the bar or not except the effect
of attenuation. The total number of generated photons in the generator may
differ from the value in Geant because other effect play role, e.g. optical crosstalk
whose influence is mentioned later.

Refractive index in the Frank-Tamm formula (equation (1.7)) is obtained by a
random generation of wavelength which lies in the above interval. Then it is
transformed into the refractive index. The transformation is based on fitting of
the data given in the data sheet for suprasil UVL (enclosed in the Appendix A).
Parameters of the fit are shown in the table in the Figure 5.26 and the fitting
function is implemented in the function RefractiveIndexFunction.
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Figure 5.26: Dependece of photon’s wavelength on the refractive index of suprasil UVL.
False error bars were inserted to help ROOT in finding the best fit parameters.

LQbars are made of several types of suprasil; the UVL was chosen as an approx-
imation of them. It is expected that potential variations have minor impact.

• Generation of direction angles of photon

It was discovered that the generator used together with NNs provides better
results when values of angles vtxtheta and vtxphi are not generated uniformly,
but their evolution copies shapes from Geant for photons that passed the bar.
The kinematic region shaped according to Geant is in the Figure 5.27.

Figure 5.27: Kinematic region of angles vtxtheta and vtxphi.
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This has been achieved by saving bin’s values of normalised histograms of wave-
length because it depends on refractive index and on the Cherenkov angle (equa-
tion 1.5)) and of vtxphi. These values are found in functions generator wl and
generator phi of the library routines generator. Because these histograms
are normalised they have meaning of the probability, so using the generator of
random numbers it is possible to shape the original uniform distribution of values
of angles.

5.7 Results for the Whole ToF

In this chapter there are presented results for all bars in the ToF detector. In the
function network of the routines network library there is a code that distinguishes
between bars and calculates corresponding track length and arrival time. The generator
of Cherenkov photons is used as the source of data for neural networks and their output
is compared with Geant data sample created for whole ToF.

5.7.1 Implementation of Attenuation

Before the track length histograms of bars are introduced it has to be explained how
the attenuation is implemented. The relation for the probability of photon’s absorption
in the bar is found in the equation (5.1). The length L is obtained from the NN and
for the attenuation coefficient applies relation:

µabs =
1

Labs

, (5.4)

where Labs = Labs(λ) is the attenuation length which is a function of wavelength. Its
evolution is typical for the given material and its measurement for fused silica was
published in the article [17]. According to the results from that article a plot and fit
has been made (Figure 5.28).

Figure 5.28: Dependence of photon’s wavelength on attenuation length of suprasil.
False error bars were inserted to help ROOT in finding the best fit parameters.

The fit function is polynomial of the third order and fit parameters are implemented
in the function likelihoodAbs of the library routines network.
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5.7.2 Track Length Histograms

Track length histograms for one chosen bar of each train are presented now, because
the shape of histograms within train is very much the same. The effect of attenuation
is implemented as described above. In Geant there was prepared a data sample which
comprises 8000 protons (only 7 178 protons actually passed through the bars) and
this sample was compared to the output of the Fast Cherenkov simulation fed by its
generator of photons.

Figure 5.29: Track length histogram for bar 1A.

Figure 5.30: Track length histogram for bar 2D.

65



Figure 5.31: Track length histogram for bar 3A.

Figure 5.32: Track length histogram for bar 4D.

Especially bars of trains 3 and 4 are in very good agreement with Geant. However,
bars in trains 1 and 2 are still sufficiently well described.

5.7.3 Influence of Optical Crosstalk

All the previous comparisons between the Fast simulation and Geant were done for
photons that originated in one bar and got to the PMT from the same bar, i.e. the
optical crosstalk between bars was neglected. Here we present histograms of Geant
data without any filtration. To evaluate the impact of crosstalk bars 1A and 1B and
3A and 3B may be compared with each other as A bars are not influenced by the
crosstalk.
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Figure 5.33: Comparison between Fast simulatin and Geant data with crosstalk for bar
1A.

Figure 5.34: Comparison between Fast simulatin and Geant data with crosstalk for bar
1B.
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Figure 5.35: Comparison between Fast simulatin and Geant data with crosstalk for bar
3A.

Figure 5.36: Comparison between Fast simulatin and Geant data with crosstalk for bar
3B.

The impact of crosstalk lies in increase of photon’s count and in change of the
histograms’ shape. Actual version of the Fast Cherenkov simulation does not contain
this effect.

5.7.4 Arrival Time Histograms

The arrival time was calculated obtained using relation (5.2) and (5.3). Histograms for
the same bars like in the Subsection 5.7.2. are provided.
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Figure 5.37: Arrival time histograms for bar 1A.

Figure 5.38: Arrival time histograms for bar 2D.
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Figure 5.39: Arrival time histograms for bar 3A.

Figure 5.40: Arrival time histograms for bar 4D.
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Conclusion

The goal of this master thesis is an implementation of the code for the transmission
of Cherenkov radiation through LQbars with and without taper and comparison of
results with the output of the full simulation in Geant4.

The first strategy of implementation was based on principles of analytic geometry.
The trajectory of photon through the LQbar was straightened and its length calculated.
The algorithm differentiated between three scenarios of photon’s transmission: photon
reflects from the metallised mirror to the PMT or misses the mirror but still gets to
the PMT and photon reflects from the cut edge (Figures 4.2(a) - 4.4(b)). To determine
whether the photon transmits through the bar or leaves it the fulfilment of conditions
of total internal reflection was tested. In case these conditions were not met the particle
was considered lost. The likelihood of photon’s reflectance on the border between silica
and air when the angle of incidence is smaller than the critical angle was neglected.

Into the final track length histograms there were implemented effects of reflectivity
on the Al mirror, transmission of the fused silica and attenuation in the glue con-
necting radiator and light guide. Resulting histogram for all three scenarios is in the
Figure 4.12. The disagreement between Geant data and geometrical model is consid-
erable. We assume that this might have negative impact on quality of the pulse from
the PMT. The reason of this disagreement is most probably the error in the code and
the neglecting of probability of photon’s reflectance when critical angle is not reached
could also play role.

The second strategy of implementation of the Fast Cherenov code is based on the
employment of neural networks for regression of track length histograms. Usage of
NNs is supported by the Universal Approximation Theorem (see Section 3.1). The
continuous function approximated by the NN is obtained from the dependence of track
length on the angle vtxphi. When appropriate cuts are applied a piecewise smooth
function arise.

To evaluate the correct function of the trained neural network a Geant data sample
was compared with the output of the NN for the very same data. The results for bar
with and without taper respectively are shown in Figures 5.20 and 5.18. These plots
show that NNs describe the Geant data well. NNs were trained only for three chosen
bars; the others were approximated by the shift of the track length histogram by some
constant.

An important part of the Fast Cherenkov simulation is the generator of Cherenkov
photons that supplies neural networks with input data. To verify the correct func-
tioning of the generator we generated protons in the same volume of bars like in the
Geant data sample and compared both (Figures 5.29 - 5.32). In these histograms there
is implemented the effect of attenuation of light in the fused silica. The track length
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histograms were subsequently converted into arrival time distributions (Figures 5.37
- 5.40).

It has to be mentioned that during a real operation of the ToF detector there is
an influence of light leakage between bars. Its impact is visible from the Figures 5.33
- 5.36. The aim of the presented Fast simulation was not to describe this effect.

The main difference between the Fast simulation and Geant lies in the statistics
of photons and in case of some bars deformation of the shape. Photon’s statistics
influences only the amplitude of the output pulse of the PMT. The usage of the CFD
ensures that the time of rising edge of signals with higher and smaller amplitude is
set the same. Concerning the shape of the distributions it is still very similar to the
Geant, so we expect that the response of the PMT should be also similar. To quantify
the impact on the overall time resolution more precise model of MCP-PMT would be
needed.

Finally, the CPU time consumption of Fast Cherenkov and Geant was evaluated.
Fast simulation is 2.6 times faster than Geant for the same data sample. It is worth
stressing that this value depends on the machine used for running, too. This result
also makes the Fast Cherenkov simulation being an suitable alternative to the full
simulation in Geant4.
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Suprasil® UVL

Suprasil® UVL synthetic fused silica is manufactured
using a patented, environmentally friendly process
resulting in a glass of exceptional purity and excellent
visual quality. It is a very homogeneous synthetic fused
silica glass for deep UV optical applications.

Suprasil® UVL is chlorine-free resulting in outstanding
laser damage resistance due to the reduced tendency
to form E’ centres.

Suprasil® UVL is free of bubbles and inclusions and
due to its ultra-high purity, has exceptional optical
transmission in the deep ultraviolet and visible, with a
useful range from below 180 nm through to 2000 nm.

0

10000

20000

30000

40000

50000

60000 

0.00 E + 00 5.00 E + 17 1.00 E + 18 1.50 E + 18 2.00 E + 18 2.50 E + 18

H2 concentration [molecule/cm³]

PL 193 nm
excitationSpec

Measurement parameters: lExc = 193 nm; Rep. Rate = 200 Hz; P = 50 mJ
H2 specification: ≥ 4 . 1017 molecules / cm3 in CA

PL
-in

te
ns

ity
at

65
0

nm
a.

u.

Suprasil® UVL

Refractive Index Homogeneity1) <– 10 ppm –

lower values upon request

Striae

Visible striae 3 Directions Free

ISO 10110-4 Class 5 in Functional Direction

MIL-G-174B A in Functional Direction

Birefringence / Residual Strain1)

(Typical values) <– 5 nm/cm

Bubbles

Bubble class (DIN 58927) 0

Maximum number of inclusions2) 0

Fluorescence

(254 nm excitations)
None

1) Stress induced birefringence and optical homogeneity are valid

for 80 % of the diameter of an ingot or for 90 % diameter of a

machined component.

2) Bubbles and Inclusion with ø ≤ 80 µm are not counted.

Inclusion free down to 10 µm upon request.

Photoluminescence @ 193 nm

Transmission – Typical Internal Transmission (10 mm path length)

� = 193.4 nm � = 248 nm

Suprasil® UVL > 99 % > 99.5 %



Typical Transmission Spectrum Sample thickness: 10mm
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Thermal Properties
Strain point*: 950°C
Annealing point*: 1100°C
Softening point*: 1710°C
Coefficient of thermal expansion:
(Average K-1 0-600°C) 0.54 x 10-6

*Note that these values may vary,
depending on the thermal history of the glass.

Other Properties
Abbe number: 67.8
Density: 2.2 g/cm3

Hardness (Mohs scale): 6-7

Refractive Index & Thermal Coefficient (at 20°C & 1 bar / 760 mm Hg)

n t n s n r n c n c’ n He-Ne n D

Wavelength (nm) 1128.95 1064.00 1060.00 1013.98 852.11 706.52 656.27 643.85 632.80 589.29

Refractive Index (n) 1.44887 1.44963 1.44968 1.45024 1.45247 1.45515 1.45637 1.45670 1.45702 1.45840

Thermal Coefficient (dn/dT (ppm/K)) 9.6 9.6 9.6 9.6 9.7 9.9 9.9 10.0 10.0 10.1

n d n e n F’ n g n h n l n KrF

Wavelength (nm) 587.56 546.07 486.13 435.83 404.66 365.01 334.24 312.66 253.73 248.30

Refractive Index (n) 1.45846 1.46008 1.46313 1.46669 1.46962 1.47454 1.47975 1.48447 1.50547 1.50838

Thermal Coefficient (dn/dT (ppm/K)) 10.1 10.2 10.4 10.6 10.8 11.2 11.6 12.0 13.9 14.2

n ArF

Wavelength (nm) 248.00 228.87 214.51 206.27 194.23 193.40 193.00 184.95

Refractive Index (n) 1.50855 1.52109 1.53365 1.54259 1.55884 1.56014 1.56077 1.57495

Thermal Coefficient (dn/dT (ppm/K)) 14.2 15.5 17.0 18.1 20.3 20.5 20.6 22.7

Germany

Heraeus Quarzglas

GmbH & Co. KG

Optics

Quarzstraße 8

63450 Hanau

Phone +49 (6181) 35-62 85

Fax +49 (6181) 35-62 70

sales.hqs.optics.de@heraeus.com

China

Heraeus ShinEtsu Quartz

(China), Inc.

QianJiang Tower

20th Floor, Room A

No. 971 Dongfang Road

200122 Shanghai

Phone +86 (21) 68672266-809

Fax +86 (21) 68751434

sales.hqs.optics.cn@heraeus.com

USA

Heraeus Quartz

America, LLC.

Optics

100 Heraeus Blvd.

Buford, GA 30518

Phone +1 (678) 714-4350

Fax +1 (678) 714-4355

sales.hqs.optics.us@heraeus.com

UK

Heraeus Quarzglas GB

4 Tannery House

Tannery Lane

Send, Woking

Surrey GU23 7EF

Phone +44 (1483) 213323

Fax +44 (1483) 213329

sales.hqs.optics.uk@heraeus.com

Typical Chemical Analysis

Typical trace elements in ppb Al Ca Co Cr Cu Fe K Li Mg

Suprasil® UVL <10 <10 <10 <10 <10 <10 <10 <10 <10

Typical trace elements in ppb Mn Na Ti V Zn Zr in ppm Cl OH

Suprasil® UVL <10 <10 <10 <10 <10 <10 <0.15 800-1200
(limits of detection)
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Appendix B

Contents of enclosed CD

• folder fast cherenkov simulation:

– commonhdr local.h

– fast cherenkov.c

– fast cherenkov.h

– README.txt

– routines generator.c

– routines generator.h

– routines network.c

– routines network.h

– run.c

– 25 25hi 5000ep 1A new moved random centre midwing/

– 25 25hi 5000ep 1A new moved random sectorA midwing/

– 25 25hi 5000ep 1A new moved random sectorB midwing/

– 25 25hi 5000ep 1A new moved random trlen 325 vtxphi 1 downwing/

– 25 25hi 5000ep 1A new moved random trlen 325 vtxphi 1 upwing/

– 25 25hi 5000ep 1A new moved random vtxphi 2 58 sector1 downwing/

– 25 25hi 5000ep 1A new moved random vtxphi 2 58 sector1 upwing/

– 25 25hi 5000ep 1C new moved random centre midwing/

– 25 25hi 5000ep 1C new moved random sectorA midwing/

– 25 25hi 5000ep 1C new moved random sectorB midwing/

– 25 25hi 5000ep 1C new moved random trlen 275 vtxphi 1 downwing/

– 25 25hi 5000ep 1C new moved random trlen 275 vtxphi 1 upwing/

– 25 25hi 5000ep 1C new moved random vtxphi 2 6 sector1 downwing/

– 25 25hi 5000ep 1C new moved random vtxphi 2 6 sector1 upwing/

– 25 25hi 5000ep 3A new moved random midwing/

– 25 25hi 5000ep 3A new moved random trlen 290 vtxphi 1 downwing/

– 25 25hi 5000ep 3A new moved random trlen 290 vtxphi 1 upwing/

• inputTree 1A new moved random 1000Evt.root
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• tofsim set14 1A new moved random 1000Evt.root

• jirakovaK diploma thesis printVersion.pdf

• jirakovaK diploma thesis versionWithReferences.pdf
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