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Abstrakt 

Diplomová práce se zabývá návrhem algoritmu rozšířeného Kalmanova filtru, který 

integruje data z inerciálního navigačního systému (INS) a globálního polohovacího 

systému (GPS). Součástí algoritmu je i samotná mechanizace INS, určující na zá­

kladě dat z akcelerometrů a gyroskopů údaje o rychlosti, zeměpisné pozici a polo­

hových úhlech letadla. Vzhledem k rychlému nárůstu chybovosti INS je výstup ko­

rigován hodnotami rychlosti a pozice získané z GPS. Výsledný algoritmus je imple­

mentován v prostředí Simulink. Součástí práce je odvození jednotlivých stavových 

matic rozšířeného Kalmanova filtru. 

Summary 

This diploma thesis deals with Extended Kalman Filter algorithm fusing data from i -

nertial navigation system (INS) and Global Positioning System (GPS). The part of the 

developed algorithm is a mechanization of INS which processes data from accelero-

meters and gyroscopes to provide velocity, position and attitude angles. Due to rapid 

increase of INS output errors, the E K F is used to correct INS outputs by velocity and 

position from GPS. The final algorithm is developed in Simulink environment. This 

thesis includes derivation of E K F state matrices. 
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Chapter 1 

Introduction 

There are two possible approaches to navigation. The first is position fixing method 

based on measuring the ranges and bearings to known objects [1]. The Global Posi­

tioning System is an example of position fixing method. The second way called dead 

reckoning method which is based on measuring the changes in navigation quantities. 

These changes are integrated and added to previous values to get the actual value. 

These two approaches exibit complementary positives and negatives. Thus, integrated 

navigation solution provides benefits of both methods. 

Inertial navigation systems are among navigation systems based on dead recko­

ning. The INS has an impressively simple physical background. Fundamental idea 

comes from Newton's second motion of law and basic kinematics. Newton's second 

motion of law says that sum of forces acting the body is directly proportional to the 

mass and acceleration of the body. When acceleration of the body is measured with 

knowledge of initial conditons there can be simply found immediate velocity and posi­

tion by integrating this with respect to time. 

This implies the important advantage of these systems which is autonomy - inertial 

navigation systems do not need any external equipment except sensors (accelerometres 

and gyroscopes sensing the accelerations and angular rates) and navigation processor 

providing navigation solution. Thus, they are independent of external electromagnetic 

signals. Next advantages of INS are high short-term accuracy and short period output 

rate [1]. The continuous operation provides not just velocity and position, but also at­

titude1, angular rates and accelerations. Disadvantages include rapid increase of error 

with time due to integration in the calculation. Outputs from accelerometres and gyro­

scopes are corrupted by noises and biases and without corrections result in unbounded 

errors. This is more noticeable in case of low-cost sensors as sensors based on M E M S 

technology. High performance sensors used e.g. in military and spacecraft application 

provide more precision but costs are about hundred thousands dollars [1]. 

'When magnetometres are not part of sensors, the precision in heading is not sufficient 
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Global Positioning System as a system using position fixing method offers comple­

mentary positives and negatives. Low cost of user equipment and high long-term accu­

racy belong among the advantages of GPS. On the contrary this system is characterized 

by long period of output rate and possible unavailability because GPS is vulnerable to 

interference. Also high bandwidth noise is characteristic for GPS. Next potential draw­

back is a high short-term noise. 

Complete navigation system fusing both of them results in high performance and 

robustness due to complementary attributes of INS and GPS. A typical integration ar­

chitecture means that measurements from GPS used by an estimation algorithm to 

apply corrections to the navigation solution of INS. 

Estimation theory provides a powerful tool to estimate states of interest in aided 

navigation system. This tool is Kalman filter and it is a key to get an optimal solution 

from both measurements. Although the name, Kalman filter is an estimation algo­

rithm, rather then a filter [1]. It was invented in 1960s by a Hungarian mathematician 

R.E.Kalman [8]. This tool applies to wide range of disciplines but has irreplaceable 

function in control systems, avionics and space applications. 

The first aim of the thesis is to create mechanization of inertial navigation system. 

Inputs to the system are data from three accelerometres and three gyroscopes and out­

puts are immediate values of attitude (roll, pitch and yaw angle), velocity and position. 

Model of INS is created in Simulink environment and sources of data are supplied by 

company Honeywell International s.r.o. The second step is to implement an Extended 

Kalman Filter to apply corrections based on GPS measurements to outputs of INS. 

Thus, the final algorithm should be INS aided by GPS. The assigned task is to create 

an error state model of E K F which estimates values of corrections to attitude, velocity 

and position and further noise parametres of sensors to correct sensor outputs directly. 

The aim of the work is a system corrected as at the input (removing computed biases in 

every step) and as at the output (corrections to computed navigation quantities in every 

step). 

1.1 Outline of thesis 

This diploma thesis contains six chapters. Chapter 1 focuses on the basic summary 

of the thesis with emphasis on the current status of the INS/GPS fusion common ap­

proach. Chapter 2 describes the overview of INS, focused on the mathematical equa­

tions describing the implemented INS mechanization. The chosen approach to the 

creation of functional model of INS is presented and the necessary theory concerning 

the reference frames and transformation of the quantities between them. The term of 

INS mechanization is understood as a set of equations giving a solution in the form of 

position, velocity and attitude from inputs to the system (measured accelerations and 

angular rates). 
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At the beginning of Chapter 3, different integration schemas of INS and GPS are 

studied with their pros and cons. Thus, the selected algorithm of data fusion - Extended 

Kalman filter (EKF) is presented. In Chapter 4 single matrices necessary to create an 

E K F algorithm are derived and some implementation issues are discussed. The Chapter 

5 presents achieved results and describes developed Simulink models. The Chapter 6 

summarizes the thesis and provides suggestions for next work. Appendixes to thesis 

present discretization of INS velocity equation and practical use of Allan Variance 

(method suitable for analyzing inertial sensors). 

1.2 Current status of solved problematics 

Kalman filter as an extremely powerful tool for analyzing estimation problems was 

developed in 1960s. The next step was the development of the M E M S technology in 

1970s and their progress in the next decades enabling the quartz and silicon sensors 

to be mass produced at low cost using etching techniques with several sensors on a 

single silicon wafer [1]. The M E M S sensors are small and light, but currently their 

performance is relatively low. These lower grade inertial sensors are not suitable for 

inertial navigation, but their performance can be rapidly increased by integrating with 

a different navigation system (often GPS). Then even using these sensors in aerospace 

industry (rather in A H R S 2 than in INS) is possible. The connection of one of the 

great breakthroughs in estimation theory, Kalman filter, with M E M S technology sig­

nificantly expands possibilities in use of inertial sensors. 

My work is focused on Extended Kalman Filter algorithm to fuse data from INS 

and GPS. Nowadays some advanced INS/GPS integrations schemes exist. For example 

differential GPS improves position accuracy by calibrating out much of the temporally 

and spatially correlated biases in the pseudo-range values due to ephemeris prediction 

errors and residual satellite clock errors, ionospheric refraction or even tropospheric 

refraction [1]. The next possibility to increase performance of the M E M S sensors is 

the use of the adaptive Kalman filter to vary the assumed system noise. This approach 

results in speeding up the time of convergence of the state estimates with their true 

counterparts [1]. 

While Kalman filter is an ideal solution for real-time application, Kalman smoother 

is the way in such a case when measurements are needed after as well as before the 

time of interest. Kalman smoothing is realized by two main methods - the forward-

backward method and Rauch, Tung and Striebel method. More detailed information 

and next extensions to Kalman Filter can be found e.g. in [1], 

Recommended and actual sources to get detailed information about the topic dis­

cussed in this thesis are mainly [1], [2] and [5]. 

Attitude and Heading Reference System 
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Chapter 2 

Inertial Navigation Systems 

Inertial Navigation System contains Inertial Measurement Unit, which is a set of three 

mutually orthogonal accelerometres and three gyroscopes measuring angular rates. 

Outputs from accelerometres are processed to get position and velocity, angular rates 

are processed to get attitude. Thus, outputs from INS are following: 

vel = [vjy vE vd]t 

pos = [<p X h]T 

att = [<j) 9 \j/]T (2.1) 

where attitude angles (roll, pitch and yaw angle) describing rotation about axes of 

aircraft. The aeronautical convention defining these parametres as shown at Figure 2.1. 

Figure 2.1: Attitude angles [2] 
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Values measured by accelerometres are called specific forces. Specific force is the 

acceleration due to all forces except gravity [1]. An important conclusion is that the 

acceleration does not equal to specific force except situation with zero tilt angle. This 

is one reason to know attitude to compensate it. 

There are two commonly used mechanizations: 

• Strapdown or gimbaless INS means that sensors are strapped into vehicle and 

are aligned with the navigation body. Therefore, the sensors rotate with vehicle. 

The alignment is done in navigation processor analytically. Strapdown INS has 

much simple mechanical construction but exhibits higher error rates due to sen­

sor movement in all directions and following gravity influencing of all sensors. 

• Stabilized mechanization means that the instrument platform is isolated not to 

rotate with vehicle. The angle to the gravity vector is constant. Transformation of 

the measured values from body to navigation frame is not needed. Due to smaller 

dynamic range, the sensing provides higher accuracy [5]. Gimbals arrangement 

can be very complicated and with high maintenance costs. When need of change 

some sensor occurs, complicated system must be dismantled and then completed 

in surgically clean environment, not to mention long calibration procedures [6]. 

Further strapdown INS will be considered. 

2.1 Coordinate frames 

Transformation of measured and computed quantities between various reference frames 

is needed. User wants to get his position in geographic coordinates. Sensor outputs are 

relative to inertial frame of reference, but the rotating Earth does not satisfy condi­

tions of inertial frame. GPS also determines the position of receiver with a respect to 

satellites. Reference frames and transformation procedure are described in this chapter. 

2.1.1 Earth-Centered Inertial Frame 

Newton's laws are valid only in inertial frame of reference. Inertial frame of reference 

means non-rotating and non-accelerating frame. Earth-Centered Inertial Frame has 

a center at the Earth's center of gravity. Axes are non-rotating and directed to the 

distant stars. Z-axis is parallel to the spin axis of the Earth, x-axis points to the vernal 

equinox point ant the y-axis is the axis completing right-handed orthogonal frame. The 

vernal equinox is the point of intersection of ascending node of ecliptic and the celestial 

equator. ' E C I frame is marked by a notation i . 

'This reference frame also doesn't satisfy conditions for inertial frame due to non-constant velocity of 
Earth's motion around the Sun and due to Galaxy's rotation. This approximation is sufficient for navigation 
purposes. 
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Figure 2.2: ECI frame [5] 

Figure 2.3: ECEF frame [5] 

2.1.2 Earth-Centered Earth-Fixed Frame 

The origin of the ECEF frame is at the Earth's center of gravity. Axes are fixed with 

respect to the Earth. Z-axis is the same as at the i-frame, x-axis points to mean meridian 

of Greenwich and y-axis completes right-handed orthogonal frame. The rotation rate 

vector of the e-frame with respect to the i-frame projected in e-frame is defined as [3]: 

4 = [ 0 0 f f l j / (2.2) 

The angular velocity of e-frame relative to i-frame is Co!e = 7,292115 x 10~5rads~l 

according to WGS 84. The constant rotation rate is assumed for navigation purposes 

although sidereal day2 has not constant length. Variations are caused by wind, ice 

forming and melting and their size do not exceed several milliseconds [5]. ECEF frame 

is marked by a notation e. 

Position vector in the e-frame is computed according to the equation 2.3 [3]: 

X - h) cos <p cos A 
re = y = -h) cos <p sin A 

z _ (RN(1 -e2)+h) sin<p 

where <p means geodetic latitude, A denotes geodetic longitude, h altitude, is the 

radius of curvature in the prime vertical and e is the first eccentricity of the reference 

2Sidereal day is the period of rotation of the Earth with respect to the distant stars, solar day is defined 
with respect to the Sun 
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Figure 2.4: N-frame [5] 

ellipsoid. 

2.1.3 Local Navigation Frame 

The origin of local navigation frame is at the point of the initial location of sensors. This 

frame is crucial for user because there is a need to know a position relative to north, east 

an down directions. Thus, this frame is also called as a NED coordinate system. X-axis 

points to the true north, z-axis is orthogonal to the surface of the reference ellipsoid and 

y-axis points to the east and completes the right-handed orthogonal frame. The notation 

of the local frame is n-frame. 

The use of n-frame causes problems around the Earth's poles. To maintain orienta­

tion of x-axis to the north, the rotation about z-axis occurs. When strapdown system is 

used, rotation is performed just analytically, but problem appears when the stabilised 

platform is used. The solution is the use of w-frame. 

2.1.4 Wander Azimuth Frame 

The distinction between n-frame and w-frame is in the shift of x and y-axes. The angle 

of displacement is called a wander angle. The wander angle is equal to the meridian 

convergence from the point of alignment [7]. Using w-frame instead of n-frame avoids 

problems with singularity around Earth's poles. 

2.1.5 Body Frame 

The body frame or also vehicle frame is tightly bounded to the platform where sensors 

are placed. Its origin is identical with the origin of the local navigation frame, but 

the axes are aligned with the movement of vehicle. Outputs from accelerometres and 

gyroscopes are measured in the body frame and then are transformed. The x-axis of 

the body frame corresponds to roll axis, y-axis corresponds to pitch axis and z-axis 

corresponds to yaw axis. 
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Figure 2.5: B-frame [3] 

2.2 Transformation Equations 

Approaches to transform quantities from one coordinate frame to another are described 

in this section. Commonly used techniques are quaternions, Euler angles, direction 

cosine matrixes and rotation vectors. Detailed description can be found e.g. in [1], 

Imaginary frames 'a ' and 'V are used to describe each method of transformation. 

2.2.1 Quaternion 

Quaternion is described as a non-commutative extension of complex numbers with the 

scalar part and three dimensional vector part. The scalar part s = qo represents the 

magnitude of rotation and the vector part v = [q\ qiqi] represents the axis about which 

that rotation takes place [1]. The main advantage is that quaternions do not suffer from 

gimbal lock. The next advantage is an amount and linearity of equations, on the other 

hand this approach is not too intuitive. The quaternion attitude definition: 

(2.4) 

where ji represents the rotation angle and u = [ui u2113] is the unit vector describing 
rotation axis. 

Definition of product of two quaternions [3]: 

qo ' cos(f) 
s qi Ml sin(^-) 

V qi u2 sin(^) 

. q 3 . 
M3 sin(^) 

qb = qc*qb= 
S\S2-v\v2 

S1V2+S2V1 + VI X V2 
(2.5) 

Quaternion obtained from DCM [1]: 

go : - C l l +C22 +C33 

8 



q\ 
C32 - C23 

4?0 

C 1 3 - C 3 1 

4?o 

93 
C21 - C 1 2 

4?o 
(2.6) 

Quaternion obtained from Euler angles [3]: 

<? ¥ 9 
COS COS j COS I 

• i W 9 
sin I cos ^ cos j -

cos j cos J sin ^ 

• 0 • v 9 
- sin ^ sin j cos | 

0 • V • 9 
- cos I sin sin | 

- sin j sin J cos § 

(2.7) 

Quaternion obtained from rotation vector [3]: 

where 

cos||0.5p 
sin ||0.5p 

cos ||0.5p | |=1-

||0.5p|| 

II0-5PII2 

2! 

0.5p 

|0-5p| 
4! 

(2.8) 

sin||0.5p|| = 1 
||0.5p||2 , ||0.5p| 

3! 5! 

Symbol||. || means Euclidean form. 

2.2.2 Direction Cosine Matrix 

Direction Cosine Matrix (DCM) is the matrix of size 3x3. Cb

a means D C M transfor­

ming vector from coordinate frame a to coordinate frame b. When using D C M , diffe­

rential equations are linear and no singularity can occur, but the number of equations 

which needs to be considered is higher than other approaches. 

DCM expressed using rotation vector [3]: 

C* ••1+ „ , (px)-
1 — cos ||p I 

(px) (px) , 
IIPII IIPII 

where symbol p x denotes skew-symmetric matrix3 of vector p = [pxpy pz]' 

Skew-symmetric matrices are used to avoid vector multiplication 

(2.9) 
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0 -Pz 
0 

Py 

0 
(px) Pz (2.10) 

. ~Py Px 

DCM obtained from quaternions [1]: 

q\ + q\-q\-q\ 2{q\q2- q?,qo) 2(q[qi+q2qo) 

Cb

a= 2{q\qi + <?3<?o) q\-q\ + q\-q\ ^iqiqi-qiqo) 
2(qiq3-q2qo) 2(q2q3+qiq0) q\~q\~q\ + q\ 

(2.11) 

DCM obtained from Euler angles [1]: 

cos 9 cos y (—co&(psmy/ + sm(psm9cosy/) (sin <p sin y + cos <p sin 9 cosy/) 

Euler angles are a very intuitive kind of representation attitude. This trinity of angles 

[9 <p y] describes rotation around three axes x, y and z. In such a case when the atti­

tude of the body frame with respect to the local navigation frame is described, the roll 

rotation (j) represents bank, the pitch rotation 9 is elevation and y is known as hea­

ding. Disadvantage of this method is non-linearity of equations and singularity at ±90 

degrees. 

Euler Angles obtained from D C M [3]: 

2.2.3 Euler Angles 

9 = tan (2.13) 

(2.14) 

y = tan 
1 C21 

(2.15) 

Euler Angles computed from quaternion [1]: 

9 = tan 1 2(<?Q<?l+<?2<?3) 
l-2{q\-q\) 

(2.16) 

0 = s i n (2(q2q0-qm)) (2.17) 
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(2.18) 

2.2.4 Rotation Vector 

Describing rotation by rotation vector is a method coming from Euler's and Chasles's 

theorems. Information about vector which rotation occurs around and rate of rotation 

is needed for describing an attitude relative to local navigation frame [8]. The positive 

features of this method include the fact that differential equations explicitly account for 

non-commutavity effects. Among the disadvantages are the non-linearity of equations 

and singularity at 2nn rad. When small angle approximation is used, the rotation vector 

coincides with Euler angles. 

Rotation vector obtained from quaternion [3]: 

P = 7 [<7i<?2 43] 3 (2.19) 

fc"2(1 3! 
||0,5p|| 4 ||0,5p| 

5! 7! 
+ ...) (2.20) 

|0,5p| 
q\ + ql + q\ 

10 
(2.21) 

Rotation vector obtained from D C M [3]: 

/ C23 - C32 
X 

2sin^ 

where 

X=arccos 

C31 - C 1 3 

V C12 - C 2 1 

f r ( C * ) - l 

(2.22) 

where tr(C%) denotes trace of matrix. 

2.3 INS Mechanization 

Mechanization of INS is a process where outputs from accelerometres and gyroscopes 

are used to obtain navigation solution - values of attitude, velocity and position in n-

frame. There is a consensus at continuous time equations as a result of more than 

twenty years of strapdown INS development [3]: 

v"=C"hfb +gn- (2ffl£ + cC) x v" (2.23) 
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Figure 2.6: Schematic of an inertial navigation processor [1] 

(2.24) 

h=-vD (2.25) 

C £ = C £ K x ) - ( < , x ) C £ (2.26) 

where CjJ means direction cosine matrix from b-frame to n-frame and g" is a vector of 

gravity. The angular rates have following meaning: co"e is Earth's rotation rate with 

respect to i-frame and co"n means turn rate of the n-frame with respect to the e-frame. 

Ce

n is a Direction Cosine Matrix from n-frame to e-frame and v q is a downward velocity. 

Angular rate cofb is measured by I M U and a>"n is computed as a sum of cofe and a>"n. 
Implemented equations are given by discretizing these equations. 

Common process of computing navigation quantities is described at Figure 2.6. 

The model is realized in the Simulink environment and works on frequency 100 Hz. 

Subsystem Trajectory Generator was supplied by Honeywell International company. It 

contains following data: I M U sensor outputs and true values about position, velocity 

and attitude used for verification of the correct function. 

2.3.1 Velocity Update 

Velocity in n-frame is calculated using equation 2.23. This equation is in continuous 

form. Laplace transform and Z-transform was applied to get this equation in discrete 

form. The process of derivation is provided in Appendix A . After discretization, the 

implemented equation is as follows: 
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(/+a|)-> •G& + G&_i) (2.27) 

Symbols and k — 1 mean current and previous state, r is a sample time and / is an 

unit matrix of size 3 x 3 . Matrix A is given by the equation 2.28 and represents Coriolis 

force correction. The actual value of Coriolis force correction is a sum of doubled 

Earth rate and transport rate. This sum is transformed from vector to skew-symmetric 

matrix. 

A = (2ffl£ + flfi,)x (2.28) 

2.3.2 Position Update 

Equations in continuous form [8]: 

Rui + h 
(2.29) 

ve 

(RN + h) cos <p 

Derivation of altitude h is computed according to equation 2.25. 

Thus, implemented equations are following: 

(2.30) 

Rui + h 
dVN (2.31) 

VE 

(RN + h) cos <p 
dvE 

-vDdvD 

(2.32) 

(2.33) 

2.3.3 Attitude Update 

There is a need to say that results in yaw angle exhibit more inaccuracy than in the roll 

and pitch angle. The justification is that for complex AHRS solution magnetometres 

are next necessary sensors to precise heading computation. Thus, greater inaccuracy in 

the yaw angle is not caused by an error in algorithm. 

Attitude is computed using equation 2.24. Implementation was obtained from [5]: 

Ik c o s M 7 . 
2 qk-i (2.34) 

q is a symbol of quaternion, v and Q. are quantities computed according to [5]: 
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Constant name Value 
Earth's gravitational constant /J = 3.986004418 • 10 1 4 m V 2 

Earth's angular rate (die =7.2921158- l O " 3 rads-1 

Flattening of the ellipsoid f — ->c,s ->-/->-> W.1 
Eccentricity of the ellipsoid e=0.0818191908426 

Equatorial radius Ro = 6378137m 
Polar radius RP = 6356752.3142m 

Table 2.1: WGS 84 values used for the computing of the gravity vector 

v=co. col k-i)- CO; b(k) 
T 
2 

(2.35) 

0 -vx -Vy -Vz 

V v 0 v- ~Vy 
V .v 0 V v 

v- Vy -Vx 0 

(2.36) 

Thus D C M is obtained from quaternion using 2.11 and Euler angles are obtained from 

D C M usinq equations 2.13 to 2.154. Matrix Q. is called as a skew-symmetric matrix of 

vector v. 

2.3.4 Gravity Vector Update 

Gravity vector is computed from actual position according to the following equations 

[1]: 

>: 

,2 

— (l+f+"w^r)h+^h2 (2.37) 

, . l+0.01931853sin 2(p 
g(<p) = 9.7803253359 — (2.38) 

J l - e 2 sin 2 )̂ 

The equation 2.38 describes a simple WGS-84 model of the acceleration due to 

gravity at the ellipsoid as a function of latitude. This is a gravity field model including 

outward centrifugal acceleration due to Earth's rotation (virtual force arising from the 

use of rotating resolving axes). To get rid of this acceleration and obtain just gravi­

tational acceleration there is a need to subtract this. Thus, gravitational acceleration 

varies with height and needs to be scaled. This resulted in equation 2.37 [1]. 

Used values of Earth's parameters are taken from WGS 84 and are summarized in 

Table 2.1. 

4 The direct conversion from quaternion to Euler angles is not used, because direction cosine matrix is 
used for the computing of velocity 
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2.4 Inertial Sensors Error Model 

Inertial sensors are accelerometres and gyroscopes measuring specific forces and an­

gular rates without external device. There are various types of inertial sensors. Ac­

celerometres can operate on the piezoelectric or capatitive principle to convert mecha­

nical motion into an electrical signal. Technology of gyroscope can be fiber-optical, 

ring laser or based on spinning mass [1]. Used technology differs in cost, size, per­

formance, possible use and other factors. The current status of the development of 

low-cost sensors is marked by using M E M S technology. 

M E M S (Micro-Electrical-Mechanical Systems) technology uses sophisticated place­

ment of electronical and micro-mechanical elements to silicon wafer via etching tech­

nology. The advantages of M E M S sensor are small size and weight, low cost and power 

consumption and relatively great shock tolerance. Of course, their performance is poor 

in comparison to very accurate laser-ring sensors. 

There is no perfect sensor without any error. Every sensor output is corrupted and 

there is a need to analyze errors and remove the maximum possible amount of thems. 

The errors of I M U sensors can be divided into several categories. They include biases, 

scale factor, cross-coupling errors and random noise. 

2.4.1 Biases 

The bias is a constant error exhibited by all accelerometers and gyros. The bias is 

often one of major contributors to overall error. Bias is the composition of static and 

dynamic part. The static component of bias (also known as bias offset) is constant 

through I M U operation, but it differs run-to-run [1]. Bias offset can be calibrated by 

measurement without any I M U input. The dynamic part is called bias instability or in-

run bias variation and varies over period of order a minute. Typically it represents about 

10 % size of the static bias [1]. Accelerometer bias is denoted as ba = (bayX,ba:y,ba,z) 
and respectively gyro bias is denoted as bg = (bgtX,bgiy,bgtZ). 

2.4.2 Scale Factor and Cross-Coupling Errors 

The scale factor error represents error in the mapping of the input-output relationship. 

The scale factor error of sensor output is proportional to the true value. The denoting of 

accelerometer scale factor errors is sa = (sa,x,Sa,y,Sa,z) a r , d t n e denoting of gyroscope 

scale factor error is sg = (sgrt,sg,y,sg,z). The scale factor is illustrated at Figure 2.7. 

Cross-coupling error (or misalingnment error) comes from misalingnment of the 

sensitive axes. It is caused by production constraints. Generally, misalingnment er­

rors do not significinantly contribute to overall error, even though some low-cost I M U 

sensors can be exception. 
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Figure 2.7: The scale factor error [2] 

2.4.3 Random noise 

Random noise occurs in all I M U sensors and it is caused by various reasons. Mechani­

cal instabilities are manifested at spinning-mass gyros, high-frequency resonances cause 

noise in vibratory gyros etc. M E M S sensors are loaded with a lot of random noise. The 

denotation is wa = (wa^,waj,wa^) at accelerometres and wg = (wgx,wg^,wg^z) at gy­

roscopes. 

2.4.4 Alignment of INS 

I M U sensor outputs are integrated to get the navigational solution. This implies the 

need of the initial estimation of values. The estimation includes initialization, cali­

bration and alignment. The initial phase of ground alingnment is the levelling which 

provides the estimate of initial attitude. The alignment is defined as determining the 

relative orientation of the INS platform and the reference navigation frame axes. The 

initialization means initial estimate of velocity and position and calibration is a process 

of determining of various factors to calibrate inertial instruments [2]. 

The calibration of I M U sensors can be off-line in laboratory or on-line using state-

augmentation techniques. The initial estimate of velocity, position and attitude with 

their error is needed at least at the start of operating. When aiding INS is considered, 

estimates are further needed. Correct initialization is important not just to get integra­

ting constants. For example, the incorrect estimate of position affects gravity vector 

and Coriolis force compensation. Also wrong estimate of initial attitude results in 

incorrect velocity computation etc. Thus, alignment, initialization and calibration are 

critical to system performance [2]. The problem of initialization is often solved via 

estimation theory. Therefore, the initialization is performed using the same tools as 

normal operation (when aided INS is used). 
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Chapter 3 

INS/GPS Data Fusion 

Brief reasons to integrate INS and GPS were presented in Chapter 1. Complementary 

disadvantages of these systems exhort to use both of them together. The dominant 

errors of INS are low frequency drifts, on the contrary the main GPS error consists in 

high bandwidth noise. But there are other possible navigation systems which can be 

used to aid INS. In the area of personal navigation, odometres or some other low-cost 

dead-reckoning systems are used [1]. In aviation, the fusion of INS and GPS is an 

ideal solution to get continuous high bandwidth information. Due to the development 

of M E M S technology, the price of inertial sensors has been significantly decreased. 

The weaknesses of GPS include the vulnerability to outages, low data rate and 

no attitude information1. On the other hand, the GPS errors are bounded and the GPS 

equipment is cheap. INS is an autonomous system with high data rate, but is susceptible 

to error drifting. Any inaccuracy in sensor informations due to integration in INS 

mechanization leads to errors which grow with time. Prices of IMUs which provide 

sufficient-quality solutions for periods longer than the order of minutes are very high. 

So, integration of GPS and INS allows to create a reliable navigational system even 

with inexpensive inertial sensors. 

There exists several integration approaches. They differ in a way how corrections 

gained from integration algorithm are applied back to the INS, what types of GPS infor­

mation are used (if just position and velocity or directly pseudorange and carrier phase) 

and if GPS equipment uses outputs from integration algorithm or not. Integration al­

gorithm can work as the total state or as the error state - in the first case the algorithm 

computes true values of navigational quantities, in the case of error state approach the 

algorithm computes corrections (distinctions from true values are intended). As the 

assignment of my thesis is the error state approach, only this method will be discussed 

further. 

There is no precise definition of particular integration approaches, so commonly 

1 If carrier phases with multiple antennas are not used [8]. 
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Figure 3.1: Open and closed loop of INS/GPS data fusion [1] 

used terms according to Groves are presented. Basic types are loose, tight and deep 

integration differing in the degree of integration. The greater degree of integration 

brings better performance and higher reliability, but on the other hand the independence 

of both systems is lost. My thesis focuses on the loose integration, thus this type is 

described more detailed. 

The integration schemas can also be divided into open or closed solutions. In other 

words, if computed corrections of sensors are fed back to the INS (closed loop) or 

if just corrections to INS outputs are processed (open loop). Decision about suitable 

approach is a question of quality of inertial sensors and integration algorithm. Higher 

quality sensors with not so powerful algorithm justifies use of open loop. When ratio 

of quality is opposite, the use of closed loop makes more sense. The issue is if raw 

data from sensors are meaningful to maintain and use the open-loop configuration as 

integrity monitoring. Based on quality of analyzed and simulated sensors, the closed 

loop solution was chosen. 

3.1 Global Positioning System 

GPS is the global navigation satellite system operated by U.S. Department of Defense. 

The GPS user equipment measures time delays and decodes messages from visible 

satellites to determine position and accurate time anywhere on Earth. Limited accuracy 

services are freely available to civil users. This section describes the basic principle of 

operating and typical error sources. 

GPS consists of three segments - space, control and user. The space segment con­

tains from 24 to 32 satellites. Satellites move in six circular orbits at altitude of 20,200 

km. These satellites broadcast signals to control segment and to users. The inclination 

angle relative to the equator is 55 degrees, the spacing of orbits is 60 degrees. The 

constellation is designed with at least four satellites visible anytime [9]. 

18 



The control segment represents the network of monitor stations which provides 

correction for each satellite. The next part of control segment are control stations which 

calculate the needed correction to the satellite motion2 and the navigation data message 

to be send back to the space segment. The validity of each navigation message is several 

hours and contains data about ephemeris (precise satellite orbit), ionospheric refraction 

model etc. The user segment consists of passive users. 

Global Positioning Service provides two levels of accuracy - Precise Positioning 

Service (PPS) and Standard Precisioning Service (SPS). PPS is available just for au­

thorized users (U.S. Army and selected allies armies). The approach to PPS is allowed 

by the decoding key. The PPS enables to achieve accuracy in tens of centimetres. 

SPS is a free service accesible to unlimited number of users with accuracy about 100 

metres3. 

The principle of GPS is based on time-of-arrival ranging [5]. The GPS receiver cal­

culates the required time for transmission from the satellite to the receiver. This time 

interval is converted to distance by the multiplication by speed of light. This distance 

is called pseudorange due to errors in the satellite's and the receiver's clock. At least 

four satellites are needed for succesful positioning. One known range gives informa­

tion that the searched position is on the sphere. Three ranges lead to the intersection of 

three spheres which gives two points. One of them can be excluded because approxi­

mate position is known. Thus, the fourth measure is needed for the elimination of the 

receiver clock's bias. 

Receiver clock's bias is time varying error that affects all simultaneous range mea­

surements in the same manner [5]. This error can be estimated when four satellites 

are visible. The next type of error is a satellite clock's bias. This bias is estimated by 

monitor stations and then sent to the user segment to correct range. The atmospheric 

delay is an error caused by conditions influencing speed of light as temperature, pres­

sure and humidity changes (tropospheric atmospheric delay) and level of air ionization 

(ionospheric atmospheric delay). 

Selective Availability errors are purposely added to decrease accuracy for nonau-

thorized users. The SA error can be achieved in two ways - by corrupting the broad­

casting of ephemeris data or by dithering satellite oscillator frequency [5]. 

3.1.1 GPS signal and its processing 

This subsection is based on [9]. Every GPS satellite broadcasts on two frequencies: 

L i = 1575,42 MHz 

2Maneuvres are known as station keeping used to keep correct satellite track. 
3 Using differential GPS in the surroundings of control stations significantly improves accuracy. 
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L2 = 1227,6 MHz 

The GPS signal is described by a following equation [9]: 

s(t) = AcC(t)D(t) sin(2riLif) + ApiP{t)D{t) cos(2IILir) +Ap2P{t)D(t) co&(2UL2t) 

(3.1) 

Carrier waves are modulated by C(t) and D(t) codes. Codes and data have values +1 

and — 1. Thus, the modulation type is Binary-Phase Shift Keying (BPSK). The meaning 

of codes C(t) and D(t) is enabling of distance measuring and separation of individual 

satellite's signals. Data D(t) are used for ephemeris data transmission. Satellite posi­

tions are computed in user's receiver from ephemeris data. 

Codes are pseudorandom sequences used to increase resistence to interference (due 

to spread spectrum transmission). The next reason to use codes is for separation of 

satellites (code multiplex). Code C(t) is called Gold code. Gold codes have bounded 

small cross-correlations within a set, which is used for sharing frequency by multiple 

transmitters. The bit rate is 1,023 MB/s. The designation of this code is C/A, Coarse 

Acquisition. 

The code P(t) is so-called Precision code. It is a pseudorandom sequence with 

period of an aprrox. 266 days (but only seven days long part is used). The bit rate is 

10,230 MB/s. This code enables greater precision due to longer and faster code which 

increases frequency spreading. Also user can measure at both frequencies when using 

P(t) code. Using of both frequencies helps to deal with ionospheric refraction. 

GPS errors is possible to divide into three groups. The first of them are errors 

formed in the space segment. These errors come mainly from stability of satellite's 

frequency issues and prediction of satellite's perturbance. Greater error obtained from 

the control segment comes from ephemeris prediction. At the side of user, the main 

part of error is ionospheric refraction. Further, the tropospheric refraction, receiver's 

noise or multipath propagation of signal contribute to overall error. 

3.2 Integration Schemas 

3.2.1 Loosely Coupled Integration 

The loosely coupled integration of INS and GPS is characterized by the use of GPS 

outputs (position and velocity) to compare with INS output. Differences between INS 

and GPS solution are utilized as measurement. System model of estimation algorithm 

is based on INS error dynamics equations. The output from estimation algorithm, of-
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ten the Extended Kalman Filter 4 , is used as correction and applied back to the INS. 

The integrated navigation solution is then the corrected INS navigation solution. INS 

and GPS provide the independent solution and the estimation algorithm forms the third 

solution. The advantage is a simplicity, redundancy and existence of the independent 

GPS solution in case of the open-loop solution. Another advantage is the faster pro­

cessing time (compared to the tightly coupled integration) due to smaller dimensions 

in state vectors [13]. When the loosely coupled integration scheme is selected, the im­

portant question is the choice of measurement iteration rate. Too rapid rate leads to 

instability, on the contrary too slow rate can cause less observability [1]. This method 

needs four visible satellites which limits the use for terrestrial applications. Also the 

situation with frequent outages of GPS requires more accurate sensors (to maintain 

acceptable precision during outages). 

3.2.2 Tightly Coupled Integration 

In case of tightly coupled integration input as measurement to the estimation algorithm 

are pseudo-range and pseudo-range rates from GPS [1]. The use of just one of them is 

possible, but in practice the use of both is advantageous due to their complementarity.5 

Satellite ephemeris data are used to derive pseudo-range from INS. The advantage of 

this way of integration is a greater resistance against interference and jamming and the 

fact that the integrated solution is avalaible even in such a case when less than four 

satellites are visible. The difficulty is that the system designer must have access to 

4 Next possibilities are unscented Kalman filter or particle filters [12] 
5 Pseudo-ranges come from code tracking and pseudo-range rates come from carrier tracking which is 

more accurate and less robust than code tracking [1] . 
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GPS equipment hardware. So this access is not suitable for general using [5]. Another 

disadvantage is the loss of independent GPS solution and greater computational load. 

According to Solimeno, the computational load (number of operations) of the tightly 

coupled system compared to the loosely coupled system increases linearly with the 

number of visible satellites. 

3.2.3 Deep integration 

Deep integration approach (also known as ultra-tight) enables GPS outputs to be genera­

ted by means of the corrected INS solution, information from navigation data message 

and GPS error estimates. This architecture improves noise resistance. As well as the 

previous solution for short time intervals, this kind of system is operational when less 

than four satellites are available [1]. 

3.3 Kalman Filtering 

The Kalman filter represents one of most widely used method to estimate variables in 

navigation systems. Its use enables to integrate measurements from various sources 

into optimal solution which provides better performance than either of them alone. 

This chapter presents basic principles of this algorithm. 

The Kalman filter is a linear statistical estimation algorithm invented by R. E. 

Kalman. The assumption is that the observed system is driven by noise which is chara­

cterized by stochastic quantities and that sensors are disrupted by the same type of 

noise. The Kalman filter is an optimal filter minimizing variance for known stochastic 

22 



Calculation ol satellite 
positions and velocities; 
clock, ionosphere, and 
troposphere corrections 

GN5S 
receiver 

CNSS NCO 
control 
;i!tj until m 
—~T 

Is and Qs 

Inert] al 
navigation 
equations 

INS/GNSS 
Integration 
Kalmar filter 

INS 
correction 

Integrated navigation solution 

Figure 3.4: Deep integration [1] 

linear model with gaussian zero-mean noise and known covariance [6]. The estimator 

is driven by same inputs as the observed system and the estimate is based on comparing 

both inputs (computed and measured). 

The algorithm estimates system parametres in real time based on measuring. Mea­

surements are function of estimated parameters [1]. This results in rapid decrease of 

noise and other errors inseparably associated with each type of measurement. The 

algorithm contains two phases - prediction and then update of estimate based on mea­

surement. 

Basic elements of Kalman filter are following - the state vector and covariance 

matrix, the process model, the measurement vector and covariance matrix, model of 

measurement and, finally, the algorithm. The state vector is understood as system 

parametres which are needed to be estimated. In this case estimated variables are at­

titude errors, velocity errors, position errors and biases of accelerometers and gyro­

scopes. This results in fifteen components of state vector. The error covariance matrix 

describes correlation between estimated errors. The process model (or system model) 

describes the dynamics of the system - the variance of states with time. The measure­

ment vector is a vector of measured quantities. Analogously to error covariance matrix, 

the measurement noise covariance matrix defines noise characteristics of measurement. 

Measurement model describes dependence of measurement vector on state vector. 

Algorithm itself contains ten steps at one iteration. First four steps belong to system 

propagation phase, next six steps to measurement-updated phase. First phase predicts 

the state vector estimate and error covariance matrix from the time of validity of the last 

measurement set to the time of current set of measurements using the known properties 

of the system. The measurement-update phase occurs after gain of new measurement. 
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Detailed description of algorithm can be found in [1] or in [14]. 

Discrete-time system is described by following equations: 

Xk+i=FkXk + Gkuk + wk 
(3.2) 

yk+i = Hk+iXk+i + vk+\ (3.3) 

where x denotes state vector, F is the state transition matrix, G is the system noise 

distribution matrix, u is the input vector, w is the process noise, y is the vector of 

measurement, H is the measurement matrix and v is measurement noise. Noises are 

considered to be uncorelated, zero-mean and satisfying following conditions [14]: 

wK~{0,Qk) 

vk ~ (0,Rk) 

(3.4) 

(3.5) 

E [wkw]] = Qkdk-j (3.6) 

E [vjfcvj] = RÁ-j (3.7) 
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E[vkw]]=0 (3.8) 

Symbol 5&_j denotes Kronecker delta function acquiring value 1 in case k = 1 and 
value 0 otherwise. Q is process noise covariance matrix, R is measurement noise co-
variance matrix and E [x] means expected value of parameter x. 

System-propagation phase of Kalman filter is described by: 

Xk\k-i = Fk-\xk-\\k-\ +Gk-iUk-i\k-i (3-9) 

Pk\k-i =Fk-iPk-l\k-iFkLl+Qk-i (3.10) 

Significance of different variables: 

xk-1 \k-1 a n estimate of state vector in time tk- i . 

xk\k-i prediction of state vector in time tk before the processing of measurement 

vector yk 

Pk\k-\ prediction of covariance matrix in time tk before the processing of mea­

surement vector yk 

Measurement-update phase of Kalman filter: 

Kk=Pk\k-iHT

k(HkPk\k-iHT

k+Rk)-1 (3.11) 

xk\k = xk\k-i +Kk{yk-Hkxk\k-\) (3.12) 

Pk\k = (J — KkHk)Pk\k_ i (I — KkHk)T + KkRkK[ (3.13) 

Significance of different variables: 

Kk Kalman gain 

xk\k Estimate of state vector x after the measurement update 

Pk\k Estimate of covariance matrix after the measurement update 

/ Identity matrix 

Discretization of matrix F is usually performed using power-series expansion [1]: 

2 o 

Common solution to discretize matrix Q is following [4]: 
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Qk = faGQGT$ (3.15) 

The tuning of the Kalman filter means selecting optimal values of matrixes Qt, Rt 
and initial values of the error covariance matrix PQ. The computing of a Kalman gain 

as a ratio of Pk\k-i a n d Rk is an essential feature of the system. The underestimation of 

this ratio leads to a very slow convergence to correct values. On the contrary too large 

Kalman gain can cause instability or noising of state estimates due to the measurement 

noise having too great influence on them [1]. Thus, it can be said that the tuning of 

Kalman filter is kind of decision between convergence rate and stability. 

Thus, the summary is a following: succesfull implementation of Kalman filter 

means correct setting of matrices F,G, Q, R, and H. The own Kalman Filter algorithm 

is then realized by five equations 3.9 to 3.13. 

3.4 Extended Kalman Filter 

In case of nonlinear processes like a navigation system, the extension to the Kalman 

filter is used. The Extended Kalman filter (EKF) linearizes values about the current 

mean and covariance [15]. Because E K F is a just local linear approximation, it can 

easily diverge. The next distinction from Kalman filter is in fact that computing of 

covariance matrices is not possible to do off-line. The reason is that covariance matrices 

are function of measurement in E K F [16]. 

In a standard Kalman filter vector of measurement y is a linear function of the state 

vector x. In case of EKF, matrices F and H are substituted by nonlinear functions 

of the state vector f(x) and h(x). Thus, the discrete system is described by following 
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equations [1]: 

Xk+i = fk(xk,uk,wk) (3.16) 

yk+\ = h+\(xk+\, Wk+\) (3-17) 

wjt~(0,flfc) (3.18) 

vk ~ (0 , ^ ) (3.19) 

where / is a nonlinear function of state vector and h is a measurement vector. 

Extended Kalman filter algorithm is the same in equations 3.9 to 3.13 with follo­
wing Jacobian evaluating in each step: 

Fk-i = ^ - \ x k \ k (3.20) 

Hk=^p-\xklk (3.21) 
ox 

Linearization of F and H matrices results in fact that error covariance matrix P and 

Kalman gain K are dependent on the state estimates. This can lead to problems with 

stability of E K F [1]. To maintain this independency linearized Kalman filter can be 

used6. 

6 In this solution F and H matrixes are linearized about predetermined state vector, which determines use 
in application where approximated trajectory is known [1] 
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Chapter 4 

Development of integration 
algorithm 

There are two possibilities of designing E K F for INS and GPS data fusion - total state or 

error model approach. The total state approach means that estimated states are directly 

navigation outputs as attitude, velocity and position. For the purpose of my thesis, the 

developing of error model E K F was assigned. The final developed algorithm estimates 

errors in attitude, velocity and position and accelerometer and gyro biases. Thus, the 

state vector has a following form: 

K 

\ 

(4.1) 

Perturbation of navigation quantities is given by following equations [4]: 

•8r„ (4.2) 

vn=vn + 8vn (4.3) 

Cl={I-En)Cn

h 

In equation 4.4 En means skew symmetric form of attitude error matrix: 

(4.4) 

'There are two possibilities how to correct attitude - to D C M or to quaternion. The quaternion approach 
is presented in Section 4.4 
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En (4.5) 

Symbol"denotes quantity perturbated by error which is designated by 5. Next, the 

symbol for attitude error 6 \jf-b is simplified to e. 

The system matrix F has a following form [1]: 

(4.6) 

F l 2 F l 3 03 cn

b \ 
Fix F22 F23 L 6 03 

03 F32 F33 03 03 

o3 03 03 03 03 

V o3 03 03 03 03 ) 

Then, matrix G has the following form: 

/ 0 -cn

b \ 
0 

0 0 
0 0 

V 0 0 ) 

(4.7) 

Forcing (or input) vector function u is given by I M U outputs: 

The system noise covariance matrix contains standard deviations of sensors noise 

(4.8) 

2. 

Q 

( 0 0 0 0 0 

0 p i 0 0 0 0 
0 0 <4 0 0 0 
0 0 0 a2 

'-'(OX 
0 0 

0 0 0 0 0 

\ 0 0 0 0 0 ) 

(4.9) 

The transformation of matrixes F and Q to discrete form was described in equation 3.15 

and 3.14. The meaning of matrix is in the level of confidence to the measurements. 

According to Shin, the norm of Qt bigger than the real one means the measurements 

have more confidence3 then INS alone. On the contrary, the norm of Qu smaller than 

the real one, E K F has a tendency to diverge. For purpose of my thesis the result is to 

2 Setting correct values of noise covariance matrix is a question of tuning Kalman filter. Not always 
precise standard deviations give the best performance 

'Measurements are noisy due to measurement noise, thus estimates exhibit the same level of noise 
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give more confidence to GPS, consequently to measurements. Reason is that low-cost 

sensors are considered and simulated. The tuning of the E K F gives us the proper values 

of Q matrix members. My E K F was tuned manually until parametres of accuracy and 

stability were optimal, but some more sophisticated methods can be used. One of 

automatic real-time tuning methods is Adaptive Kalman Filter. More information can 

be found for example in [1], 

Measurement model is given by equation 6.1. Vector of measurement is given by 

difference between INS and GPS values: 

(4.10) 
^_ / velINS - velGPS \ 

\ pOSiNS- pOSGPS J 

Matrix H known as measurement matrix has the following form in my implemen­

tation: 

H= 
-h 0 3 0 3 

0 3 0 3 0 3 

(4.11) 

where 0 3 means zero matrix 3x3 and / 3 represents unit matrix of size 3x3. 

Measurement noise covariance matrix R is given by standard deviations of mea­

surement sensors: 

R 

( 0 0 0 0 0 \ 
0 0 0 0 0 

0 0 °l 0 0 0 

0 0 0 < 0 0 

0 0 0 0 < 0 

\ 0 0 0 0 0 < J 

(4.12) 

In case of simulated GPS (true values with added noise) the parametres of R matrix 

are directly known. In case of real measurement, these parametres are identified i.e. by 

laboratory testing. 

4.1 Attitude Error Analysis 

Attitude dynamics is given by following equation [3]: 

CI = C f t f l&x) = Cn

h((D!hx)-Cn

b(C<D?nx) (4.13) 

The application of the derivative of equation 4.4 to equal the equation 4.13 gives [3]: 

{I-En)&b-E"Cl = {I-En)Cn

b « x ) - « x ) + 5 « x ) - 5 « x ) (4.14) 
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(I-E")C"h K x ) - ( o ) f „ x ) +(I-E")C"b S(a)»x) 

= ( / - £ " ) ^ « x ) + ( / - £ " ) C ^ 5 « x ) - 5 ( a ) f „ 

Thus, result after reduction is: 

-E»C»b = (I-E")C"h [s(o>» x) -5(0)f„x) 

-C" 5(o)f&x)-5(o)fnx) 

Further, error equation for 5(cö^ x) is derived [3]: 

a £ + 5cB£ = CZ(J + £ » ) « + 5<) 

This can be rewritten as: 

Thus, time derivation of attitude error can be expressed as [3]: 

*» = 5<-«x)e»-CZ5fl& 

Attitude error dynamics is given by the following equation [3]: 

e" = Fn5r» + F 1 3 5v" - « x ) e " - C£S©f6 

Biases are assumed to be constant: 

z>« = o 

bg = 0 

Submatrix F[2 of system matrix is the following 3x3 matrix: 

( 0 F 1 2 i 2 0 

F1221 0 0 

\ 0 Fi232 0 

Where single submatrices are: 
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1̂212 

^1221 

fl232 : 

- 1 
RE+h 

1 

RN + h 

tan<p RE+h 

Submatrix F13 of system matrix is the following 3x3 matrix: 

F13 

Where single submatrices are: 

( F1311 0 F1313 

0 0 F1323 

\ 1̂331 0 F1333 

f i3 i i = -Gfesinp 

fl313 

F1323 

VE 
{RE+hf 

~VN 

(RN + h)2 

Fmi = OieCOSCp-

F1333 

VE 
(RE + h) cos2 <p 

V£tan<p 
[RE + hf 

(4.24) 

(4.25) 

(4.26) 

(4.27) 

(4.28) 

(4.29) 

(4.30) 

(4.31) 

(4.32) 

4.2 Velocity Error Analysis 

This derivation is based on [3] and [4]. Velocity dynamics equation is given by the 

following expression: 

v" = C l / - ( 2 < + < ) x v " + / 

The application of perturbation of 4.33 gives: 

8v" + v» = (J - En)Cn

h{fh + 8f)-

(4.33) 

(4.34) 

- (2a£ + a& + 2 5 a £ + Sag,) x (8v" + ^)+g" + 8g" 
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Therefore, the reduction yields: 

-(2(ol + (o"en)xv"-e"xf" + Cn

b8fb 

- ( 2 5 < + <S<) x8Vl + f"xe" + q j 5 / * 

With respect to the following expressions 

/ (Oe cos (p 

0 

\ — ©esin<p 

/ vE/RE+h 
a>„, -vN/RN + h 

RE+h 

The application of perturbation to sum 2(d"e + (o"n gives: 
V 

28(0" + 8(0" = 8Q.v8v" + 8Q.r8rn 

where 

SO, 
0 

•\/{RN + h) 

0 

l/(RE + h) 0 
0 0 

•tan(p/(RE+h) 0 

8Q.r 

-2(0esin(p 0 -vE/(RE+h)2 

0 vN/{RN + h)2 

\ -2© e cos<p-[v E / ((RE + h) cos2 q>)} 0 vEtan(p/(RE + h)2 

From 4.35 and 4.38 the velocity error function is derived: 

v" x (28(d? +8(dn

en) = (v"x)(8Q.r8r'r + 8Q.v8vn) 

{vnx)8Q.r8r/1 + {vnx)8Q.v8vn 
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The next step is the developed multiplication: 

(Vnx)dü.r: 

-2VE COE COS (p • 
( Ä £ + f t ) c o s 2 <p 

2(De(vN cos (p — VDsinq>)-\ V-£^L 

2v£0)esin(j!) 

A - v w v q , v | t a n ( j ) \ 

(RN+h)2 ^ (RM+h)2 

a -VEVD _ v j y v g t a n f p 

( Ä B + A ) c o s 2 <p (RN+h)2 (RN+h)2 

0 v l - l _ ! Í + (RN+h)2 J 

(4.42) 

(v"x)<5ay 

v q -VE n 
a vp i " w t a n y n 

u RE+h " l " u 

VjV — V£ Q 
(4.43) 

rĉ +ft RE+h 

Using previous equations the velocity error dynamics equation 4.33 can be reformu­

lated: 

5v" = F2i£n +F22 8vn + F23 8r" + Cn

h8fb 

where single submatrices of matrix F are following: 

(4.44) 

F2l=C"hfhx=fx (4.45) 

F22 

( F22n F22\2 f*2213 

F222\ F2222 F2223 

\ Í2231 2̂232 0 

2̂21 
VD 

RN + h 

(4.46) 

(4.47) 

F22 12 -2(Oie sin <f> — 2 V £ tan <p 
RE + h 

(4.48) 

2̂213 
i',v 

RN + h 

F222\ = 2(0ie sin <p 
V £ tan <p 

2̂222 : 

RE + h 

VN tan <p + Vß 

(4.49) 

(4.50) 

(4.51) 

F2223 = 2<aÍÉ>cos<p-
V £ 

(4.52) 

2̂231 = —2 (4.53) 
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2̂232 = -2(OieCOS(p-2 VE 
RE + h 

Submatrix F23 has the following form: 

F23 

( F2311 0 F2313 

F2321 0 F2323 

V F2331 o F2333 

2̂311 = -2vECOieCOS(p 

Í2313 

(RE + h) cos 2 <p 

VNVD vE tan (p 
(RE+h)2~ (RN + hf 

2̂321 
VNVE 

(RE + h) cos2 <p 
- 2vN<x>ie cos <p — 2VD0) ! (, sin q> 

Í2323 
VAřV£tan(j? — V £ V ß 

(fl£+/l)2 

F2331 = 2^0)^ sin <p 

(4.54) 

(4.55) 

(4.56) 

(4.57) 

(4.58) 

(4.59) 

(4.60) 

F2333 
( f l £ + / i ) 2 ( Ä w + / i ) 2 rg 

(4.61) 

where go is given by equation 2.38 and geocentric radius at the surface rg is given by: 

rg = Ä £ A / c o s 2 < p + ( l -e 2 ) 2 s in 2 <p (4.62) 

4.3 Position Error Analysis 

This derivation is based on [3] and [4]. The development of position error dynamics is 

based on time derivative of the position vector: 

( * 
A 

V h 

( RN+h 

00 

V 0 

0 
1 

(RE+h)cos<p 

0 

Position error dynamics is given by: 

(4.63) 

8ř" =F32 8vn+F33 8rn (4.64) 

where 
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^ 3 2 : 

/ dip dip dip \ 

dvpj dv£ dvp 

dX dX dX 

dvp dv£ dvp 

dh dh dh 

\ dvN dvE dvp ) 

I F3211 0 0 
= 0 F3222 0 

V 0 0 - 1 

where elements of submatrix Fyi has the following form: 

Matrix F 3 3 i s given by: 

Fyi 11 
1 

Rfj + h 

F3222 : 

(RE + h) cos <p 

F 3 3 

/ dip dip dip \ 

' 5f JI I I 
d A d A d A 

<9A dh 

dh dh dh 

\ dip dX dh ) 

(4.65) 

(4.66) 

(4.67) 

/ 0 0 F3313 

F3321 0 F2223 

V 0 0 0 

(4.68) 

where elements of submatrix F33 has the following form: 

F3313 

^3321 

f*3323= 

{RN + h)2 

VE sin (p 
(RE+h) cos2<p 

VE 

(RE+h)2 cos (p 

(4.69) 

(4.70) 

(4.71) 

4.4 Applying corrections 

The important finding about corrections is that corrections have to be applied inside the 

loop. This means that subtracting computed error have to be processed before delaying 

the value and sending it to next computations. Corrections to velocity, position and 

sensor outputs are simply subtracted from actual values. The more complicated is 
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situation in attitude. Correction to D C M can be processed as shown in equation 4.4. 

The second possibility implemented in my solution is applying correction to quaternion 

[2]: 

8qo qi qi qi 
Sqi __ I -qo -qj, q2 

8q2
 2 q3 - q o - q i 

_ 5c73 J [ -q2 qi -qo 

The tuning of E K F includes setting of initial values covariance matrix P (overall 15 

values in order corresponding to state vector) and elements of matrix Q (6 values 

corresponding to standard deviations of I M U sensors noise) and analogously, elements 

of matrix R (6 values corresponding to standard deviations of the GPS noise). It was 

observed that increasing values of matrix Q leads to expecting higher noise in sensors 

and thus in constantly higher error. On the other hand underestimating of these values 

causes worse estimates in single steps, although average error is not higher. Overesti­

mating of elements of matrix R did not cause measurable effects. Decreasing the values 

leads to significantly higher average error. The course of errors was steady. 

The major influence has setting of last six elements of matrix P. These quantities 

are responsible for initial estimates of biases. Higher than optimal values causes over­

estimated bias. Lower values decrease impact of corrections and cause that some noise 

is not eliminated. 

£i 

£3 

(4.72) 
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Chapter 5 

Achieved Results 

The description of Simulink models and achieved performance in different configura­

tions is discussed in this chapter. The subsystem Trajectory Generator was supplied 

by the company Honeywell International, s.r.o. It contains the following data: the sen­

sor measurements (true values without noise) and true values of output quantities for 

simulation time more than 30,000 steps (corresponding to approx. 300 seconds when 

frequency 100 Hz for INS is used). Also necessary initial conditions were supplied. 

5.1 Simulink model description 

This section describes implemented Simulink models which are attached to this the­

sis. Two models are attached - the first is called SimpleEKF.mdl, the second model 

is FullEKF.mdl. The distinction is that the simple model estimates just corrections to 

velocity and position and the accelerometer biases. So, in this case gyros are not noisy 

and then there is no need to correct computed attitude angles. This simple E K F has 

nine states. 

The fully implemented model computes also corrections to attitude and gyros bi­

ases. The reason to do development in these two steps is that the simple model is 

significantly easier to implement and tune. As can be seen at the results, the simpli­

fied model computes very well and has no problems with stability. The full model is 

much more complex and has slight problems with stability. Moreover the tuning of this 

model to get the maximum performance was more demanding. 

The models contain five main subsystems. The first of them is called Trajectory 

Generator and among others contains data from sensors and true values of output quan­

tities. The next subsystem, Correction and initial conditions, consists of computed state 

vector transferred to correction vector. The transfer is done by Accumulator functions. 

These functions remove the constant part of the error. Further, initial conditions for 

velocity, position and attitude are established in this part of the model. So, the state 
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Sensor Outputs 

DCM 

Angular 
rates 

Figure 5.1: Schematic of my INS solution 

vector is the only input to this subsystem, and the correction vector and vector of initial 

conditions are outputs. 

The third big subsystem is INS - mechanization of inertial navigation system. In­

puts are correction vector, vector if initial conditions, reset signal and sensor outputs. 

The INS subsystem is divided into next five subsystems. The Attitude update com­

putes attitude angles and D C M matrix from body to navigation frame. The imple­

mented equations are described in section 2.3.3 of this thesis. The Gravity subsystem 

provides actual value of gravity vector computed from position value in the last step. 

The calculation procedure is done by section 2.3.4. The Coriolis correction subsys­

tem is responsible for computing Coriolis force correction to use in velocity update. 

Next outputs are actual values of Earth's radii at given position and angular rate co"n. 
These quantities are needed further in E K F algorithm. The Velocity update subsystem 

computes velocity and accelerometer output in navigation frame (also needed further). 

The equations are described in section 2.3.1. The Position update subsystem gives a 

position output. My developed model of INS is briefly outlined at Figure 5.1. 

The key part of this model is E K F subsystem where corrections to INS are com­

puted. GPS outputs are created in the subsystem Measure vector by adding noise to 

true values of velocity and position. Vector of measurement is then obtained by subtrac­

ting simulated GPS outputs from INS values. The Matlab m-function E K F is algorithm 

where single matrices are computed and then own E K F algorithm is processed. Outputs 

from E K F algorithm are correction vector and covariance matrix. Values of correction 

vector are zeroed at every step. The setting of initial values of covariance matrix P is 

done in the attached m-file. The m-file also reads trajectory data from directory. The 

brief schematic of my E K F operation is presented at Figure 5.2. 

The fifth subsystem Display Results compares computed data to true values of navi­

gation quantities and displays them in graphs. 

Processing 

Gravity Velocity 

compensation update 

Coriolis 
correction 

Position 

update 

At t i tude 

update 

Results 
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Figure 5.2: Schematic of my E K F architecture 

5.2 Results 

True values of position, velocity and attitude are described at Figure 5.1 to 5.3. The 

first step was the creation of inertial navigation system with use of ideal sensors. The 

performance of the system was observed by comparing to the true values. The outputs 

from the comparation between developed INS with simulated ideal sensors and true 

values are described at the Figure 5.4 (position), Figure 5.5 (velocity) and Figure 5.6 

(attitude). These errors are given just by internal proceeding of INS. The next step 

was adding noises to the accelerometers and gyroscopes. The values of added noise 

was chosen to match common low-cost M E M S sensors. Specifically, parametres of 

added noises are defined in Table 5.1. Results from INS with noisy accelerometers are 

presented at the Figure 5.7 (position) and 5.8 (velocity). As can be seen, adding noises 

to the sensors results in a very rapid increase in error. After 300 seconds, the position 

error is more than 3,000 metres in altitude. Results from INS with noisy accelerometers 

and gyroscopes are displayed at the Figure 5.9 to 5.11. 

After the succesful development of INS mechanization, GPS measurements were 

created. To simulate GPS, noises were added to the true values of position and ve­

locity. Values of added noise were chosen to match the GPS accuracy approximately. 

The added noise has parametres as specified in Table 5.2 and the set GPS precision 

can be seen at Figure 5.12 for position and Figure 5.13 for velocity. Seeds were set to 

be not correlated to approximate simulated measurements to real GPS. The next step 

was the development of simplified E K F estimating only errors in velocity, position and 

accelerometer bias (gyros were operating without added noise in that case). This sim­

plified E K F state vector has nine elements (correction to attitude and gyros missing). 

The most demanding task was the tuning of E K F to provide best results. This tuning 
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Quantity Noise Type Mean Variance Seed 
GPS Latitude random number 0 le-12 55 

GPS Longitude random number 0 le-12 45 
GPS Altitude random number 0 2,5 60 

GPS Velocity North random number 0 0,001 23 
GPS Velocity East random number 0 0,001 15 

GPS Velocity Down random number 0 0,001 30 

Table 5.1: GPS noise parametres 

Sensor Type Mean Size Seed 
accX random 0 0.001 55 
accY random 0 0.001 45 
accZ random 0 0.001 60 
gyrX random 0 4.3e-5 55 
gyrY random 0 4.3e-5 45 
gyrZ random 0 4.3e-5 60 

Table 5.2: Sensor noise parametres 

is done mainly by the setting of covariance matrix P initial values. The covariance 

matrix is a matrix of size 9 x 9 where the matrix element on the diagonal corresponds 

to the order of state vector elements. During the tuning of E K F it was observed that the 

values corresponding to sensor biases influence the performance of the system most 

significantly. Results from this reduced E K F model are displayed at Figure 5.14 for 

position and at Figure 5.15 for velocity. Attitude errors are not displayed because noise 

was not added to gyroscope in this model. 

When this simplified E K F provided satisfactory results, the system was extended to 

estimate also corrections to attitude angles and gyroscopes outputs. This step implied 

the enlargement of state vector, F, G and H matrices and the re-tuning of the entire 

system. The change of covariance matrix P initial values proved to be insufficient, so 

the tuning of the system has required also to move Q and R matrix elements. Although 

a lot of time was spent on E K F tuning, some small issues with stability (mainly in 

velocity as can be seen in graphs) remained. Nevertheless, the achieved performance 

of the system is in line with expectations as can be seen at Figure 5.16 (position), 5.17 

(velocity) and 5.18 (attitude). 
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Figure 5.3: True values of position 
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Figure 5.5: True values of attitude 
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Figure 5.6: Position errors from INS with ideal sensors 
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Figure 5.7: Velocity errors from INS with ideal sensors 
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Figure 5.8: Attitude errors from INS with ideal sensors 
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Figure 5.9: Position errors from INS with noisy accelerometers 
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;ure 5.10: Velocity errors from INS with noisy accelerometers 
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Figure 5.11: Position errors from INS with noisy sensors 
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Figure 5.12: Velocity errors from INS with noisy sensors 
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Figure 5.13: Attitude errors from noisy sensors 
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Figure 5.14: GPS Position errors 
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Figure 5.15: GPS Velocity errors 
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;ure 5.16: Simple E K F Position errors (noise only in accelerometers) 
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;ure 5.17: Simple E K F Velocity errors (noise only in accelerometers) 
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Figure 5.18: Full E K F Position errors 
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Figure 5.19: Full E K F Velocity errors 
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Figure 5.20: Full E K F Attitude errors 
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Chapter 6 

Conclusion 

6.1 Summary 

The main objective of this thesis is the development of the fully functional algorithm for 

the inertial navigation system and for the sensor fusion method via Extended Kalman 

Filter. The parametres of the developed system (choosing INS error model, loosely 

coupled integration schema etc.) were specified by the assigning company. This thesis 

presents the necessary knowledge to built the system from INS up to complete solution 

providing the corrected navigation solution in every step. 

Chapter 1 presents the brief current status of problematics with references to actual 

available sources. INS mechanization equations are presented in Chapter 2, including 

transformation equations and sensor errors outline. Chapter 3 briefly describes Global 

Positioning System and presents different ways of integration schemas with emphasis 

on the Extended Kalman filter. One of the most important knowledge is the content of 

Chapter 4 where the E K F algorithm equations are developed. Chapter 5 displays the 

achieved results and the last chapter provides the final summary. 

The major objective was to develop a low-cost INS/GPS navigation system. The 

research led to following contributions: 

1. The discrete form of INS mechanization equations was developed using Laplace 
and bilinear transformation and succesfully implemented 

2. The error analysis of low-cost M E M S sensors was done via Allan Variance to 
understand sensor behavior 

3. The loosely coupled INS/GPS integration algorithm was developed by the use of 

fifteen-state Extended Kalman Filter 

4. The knowledge about designing and tuning E K F was acquired 
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6.2 Future work recommendations 

The further work based on theme of this thesis can involve: 

• dealing with different operational frequencies of fused systems (more informa­

tion can be found in [17]) 

• comparing different ways to deal with system non-linearity (e.g. Extended Kalman 
Filter versus Unscented Kalman Filter) 

• research and development in the area of automatic tuning methods (Monte Carlo 

simulation or similar) 

• more detailed model of sensor errors (algorithm considering bias, scale factor 

errors and nonorthogonalities is presented e.g. in [3]) 

• more accurate evaluating algorithms (different dynamics of trajectories, simula­

tion of GPS outages, experimental car tests etc.) 

6.3 Conclusion 

The thesis provides the complete solution to implement Extended Kalman Filter for 

INS and GPS data fusion. During implementation following conclusions were de­

duced: 

1. To ensure correct function of E K F algorithm, proper way to apply corrections 

back to INS is crucial. The corrections have to be applied inside the loop to 

apply the corrections before values are delayed and used for next computations. 

2. The tuning of E K F is a question of setting proper initial values of covariance 

matrices P, Q and R. This includes overall 27 values to be set. The major impact 

has the setting of initial values of covariance matrix P corresponding to biases 

of sensors (last six numbers). Higher than optimal values cause overestimated 

bias. Lower values decrease impact of corrections and cause that some noise is 

not eliminated. 

3. The error state E K F algorithm computes corrections at every step. The important 

fact is that the state vector has to be zeroed at every step. 

4. Corrections applied to sensor outputs (computed biases) have to be accumulated1 

in every step to ensure correct processing. 

1 Current and previous values are added 
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5. Simple E K F model estimating position, velocity and accelerometer errors re­

duces the following errors achieved after 300 seconds: The error about 3,000 

metres in position (altitude) and 20 m/s in velocity (east direction) is reduced to 

0.03 metres in position and 0.005 m/s in velocity. Accuracy of GPS which is 

used as a measurement fed into E K F is about ten metres in position and 0.03 m/s 

in velocity. 

6. The full E K F model estimating moreover attitude and gyro error has the follo­

wing results after 300 seconds: The position error is reduced from almost 2,000 

metres in latitude to 0.05 metres and the velocity error is reduced from about 

25 metres per second in north direction to 0.1 m/s. The attitude error values 

0.06 radians have been improved to one third of the noncompensated error. The 

resulting accuracy in attitude is up to 0.02 radians which corresponds to 1.15 

degrees. This accuracy in all parametres is sufficient, but the error behavior in 

time exhibits a mild instability. This is most probably caused by the tuning which 

needs more sophisticated methods exceeding the format of master's thesis. 
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Appendix A - Content of 
attached CD 

Directory Full E KF : 

• FullEKF_2007a.mdl 

• FullEKF_2010a.mdl 

• FullEKF_init.m 

Directory Simple E K F : 

• SimpleEKF_2007a.mdl 

• SimpleEKF_2010a.mdl 

• SimpleEKF_init.m 

Directory Trajectories 

File ReadMe.txt 
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Appendix B - Discretization of 
INS Velocity Update 

Velocity update equation in the continous form has the following form: 

Curb i n i i ,~n \ w n 
bf +8 + (2®ie + ®en) X V 

To avoid the vector product, the skew symmetrix matrix is used: 

A = ( 2 a £ + < „ ) x 

The Laplace transform is applied: 

sV(s)=Cn

bfb(s)+gn(s)+AV(s) 

The Z transform is applied: 

_ 2 i - r '  
s " r i + z - i 

^\^V(z)=C"hFh(z) + G(z)-AV(z) 

- ^ ) = C ^ ( z ) + 4-G(z) 4- ® - A V ( z ) - A ^ M 

| ( v * - vjfc-j) = C £ F » + C ^ 6 _ ! + + G H - A V * - A v t _ i 

| V j t + Av^ = C£F» + Cn

hFk

h_x + Gk + Gk_l + | v * _ ! - A v t _ i 
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- A | ) V , _ 

vjfc = ( / + A - ) - l ( / - A | ) V , _ ! +1 ( C ^ f + + G , + G M ) 
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Appendix C - Allan Variance 

The Allan Variance is a method of measuring frequency stability, mainly of oscillators, 

clocks or amplifiers. But this method is suitable for simple long term stability analysis 

at sensors which exhibit non-white noise. The root mean square variation is a sufficient 

method just for white noise. When this method is applied to non-white noise, the root 

mean square variation gradually converges to infinity. David W. Allan developed Allan 

Variance (also known as two-sample variance) to enable convergency in any case. 

The Allan Variance basic equation can be seen at 6.1. 

2 ( « ( T ) - 1 ) ^ 

The basic idea is to divide long sequence of data to bins based on an averaging 

time. Then the difference in average between successive bins are squared, adding them 

all up and divided by a rescaling factor . The square root of the result is a quantitive 

measure of how much the average value changed at that particular values of averaging 

time [10]. Then the procedure is repeated with increased averaging time T. The result 

of the procedure is a graph called sigma-tau. The x-axis displays averaging times and 

the y-axis displays rate in degrees per time interval, usually at log-log scale. The sigma-

tau graph provides characteristics of several basic noise types according to asymptotics 

properties. The left side of the graph, short averaging times, the Allan Variance is 

highest due to noise in sensor. The slope of Allan Variance is a characteristic of angle 

random walk. As the averaging time increases, the Allan Variance decreases up to the 

minimum point. From this point Allan Variance starts to increase again due to the rate 

random walk of the sensor [10]. The minimum point on the curve is the best stability 

which can be reached with fully modeled sensor and active bias estimation. The rate 

random walk parametres help predict the time scale at which the drift of sensor occurs 

[11]. 

The Allan Variance method was applied to I M U sensors i F O G - I M U - l - A of i M A R 

company. The static tests lasting more than 13 hours were done. The result for ac-

celerometer and gyroscope in x-direction is displayed at Figure 6.1. The bias stability 

value from Allan Variance gives a better result than the manufacturer indicates. 
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Figure 6.1: The Allan Variance on i F O G - I M U - l - A for accelerometer and gyroscope in 
x-axis 
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