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Abstrakt

Tato práce popisuje daľśı vývoj výukového sériového manipulátoru se třemi stupni
volnosti. Práce se zabývá jednoduchou mechanickou úpravou manipulátoru, ale
předevš́ım pak softwarovou část́ı. Výsledkem je pak hra pǐskvorky, kdy manipulátor
umožňuje hru proti lidskému protěǰsku.

Prvńı část práce je věnována zlepšeńı inicializačńıho procesu manipulátoru a
následně pak i návrhem vhodné polohové regulace.

V daľśı části je manipulátor rozš́ı̌ren o jeden stupeň volnosti. Součást́ı je i
návrh koncového efektoru vhodného pro psańı. Z takto upraveného manipulátoru
je sestaven kinematický model vhodný pro real-time ř́ızeńı.

Daľśım krokem v práci je návrh samotné aplikace hry pǐskvorky. Je navržen
vhodný hraćı algoritmus, včetně detekce a rozpoznáńı znak̊u v hraćım poli pomoćı
kamery. Následně je vše implementováno do real-time aplikace, kde komunikaci s
uživatelem zajǐsťuje navržené uživatelské rozhrańı.

Abstract

This thesis develops a series manipulator with three degrees of freedom. It improves
its mechanism and creates new software to carry out a manipulator vs human being
Tic-tac-toe application.

The first part of the thesis focuses on improving initialization of the relative
encoders and the positioning control of the manipulator.

The second part analyzes expanding the manipulator to 4dof. It Explains build-
ing a new kinematics model and also includes the mechanical design and manufac-
turing of a suitable end effecter for the Tic-tac-toe application.

Next part explains the Tic-tac-toe application. It analyzes the used hardware
and software including the Tic-tac-toe algorithm and the detection algorithm used
by the camera.

Last part of the thesis deals with building user interfaces in order to make
operating the manipulator and playing Tic-tac-toe more user friendly.
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1 Introduction

Robots are the language of the future that has been formed for the past few decades.
They are gradually becoming more and more important to industry, science and
even our everyday life. Series manipulators are an important branch in the field of
robotics that has been increasingly used in legged robots, industry automation such
as welding cars and many other applications.

The above motivated a number of my colleagues (students and graduates of
mechatronics) to create an open chain series manipulator with three degrees of
freedom. Their goal was for the manipulaotr to serve as an educational model
mainly used for practical demonstration of theories of dynamics and kinematics of
robots, which is a part of the of mechatronics curriculum of the fourth year.

The manipulator was created in the Mechlab laboratory. The mechanism was
designed and built by Eng.Tomas Ripel, whereas Eng.David Klimes designed and
realized the electronics as a part of his master’s thesis, which also included pro-
gramming some applications such as making the manipulator follow the movement
of a black object using a real time camera. Data transfer back and forth between a
Pc, which is the brains of the manipulator and the electronics is carried out by an
I/O card (Mf624) created by Humosoft and can be accessed using the Real Time
Simulink library.
A few essential blocks that secured the manipulator’s basic functions such as re-
ceiving encoders’ values, initialization of the manipulator, inverse kinematics and
sending PWM signals to the electronics were built in Simulink environment by both
Eng.Klimes and Eng.Suransky, whose thesis focused on applying different control
theories to the manipulator’s drives and comparing the results. The previous blocks
were combined in a Simulink library called Manipulator (RRR1).
Improving the manipulator’s mechanics and software to realize more complex appli-
cations such as Tic-tac-toe forms the goal of this thesis. These applications aim to
increase students’ interest in robotics, and serve as a good demonstration tool for
using a set of skills obtained through various courses along the studying of mecha-
tronics such as kinematics and dynamics of robots, artificial intelligence, control
theory and programming.

1RRR:refers to the fact that the manipulator consists of three rotational joints
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2 Goals Description

The following includes a detailed explanation of the goals set for this thesis to reach:

� Improvement of the initialization process of the encoders

The previously mentioned Manipulator (RRR) library includes a block that
is responsible for the initialization process of the relative encoders, which is ac-
complished by passing over or hitting index switches placed in already defined
positions [1]. By modifying the relative output value of the encoder to match
the position of the index switch, the absolute position is obtained. The initial-
ization process should ensure passing over these switches, which is essential for
the manipulator. It should produce a movement that will dependably make
the manipulator pass over or hit all index switches regardless of the starting
position.

� Adding one more degree of freedom to the manipulator

A series manipulator with three degrees of freedom is able to reach an (x, y, z)
coordinate within the working space boundaries, without the ability to control
the rotation angles of the end effecter, which is essential in many applications
such as writing, where the pen is required to be kept perpendicular to the
writing board. Adding one more drive to the manipulator (one more degree of
freedom) enables controlling the rotation of the end effecter around one global
axis.

� Choosing and implementing the algorithm of inverse kinematics

Regardless of the application desired to be accomplished, inverse kinematics
is used. Desired positioning and rotation is converted by inverse kinematics
to the corresponding joints’ coordinates that are the inputs of the controllers.
Inverse kinematics suffers from various singularities, and choosing the right
method that minimizes them is really essential. After creating inverse kine-
matics and choosing the right controllers, the precision of the manipulator,
which is the difference between the required position and the real one, can be
tested. Various factors play a role in the lack of precision the manipulator may
suffer from, and measuring how precise the manipulator can be is important
to verify how good the system works as a whole.

15



� Creating Tic-tac-toe application

The previous steps form the core to any desired application planned to be
carried out by the manipulator. Playing Tic-tac-toe against a human being
seems as practical application that will be attractive to students, and make
them interact with the manipulator. It demonstrates the practical use of
theoretical knowledge obtained through various courses, and increases students
interest in the field of robotics.The application includes creating a Tic-tac-toe
algorithm, drawing X and O symbols by the manipulator, programming a real
time camera to detect the person’s moves, and connecting the previous sub
parts together to make the application work.

� Creating GUIs (Graphical user interfaces)

Making programs more user friendly is really essential, and Matlab enables this
by using the Graphical User Interface (GUI) environment to create a control
panel of the desired program. GUI can communicate with Simulink models,
and change their parameters by simple slider gains, push buttons and boxes.
It can also show generated data in the model through graphs. The goal is to
create two GUIs:

– GUI that enables the user to play Tic-tac-toe against the manipulator,
and displays the progress of the game taking place on the drawing board.

– GUI that enables the user to command the manipulator to perform some
basic tasks such as drawing a symbol with a changing speed and size be-
sides displaying data like current consumed by each motor and controllers
errors.

16



3 solution procedures

In addition to Improving the initialization process to be more dependalbe, expand-
ing the manipulator by one more joint and solving the problem of inverse kinemaitcs
accomplishes the foundations for designing and programming the Tic-tac-toe appli-
cation. This approach is explained through the following sections.
Figure below shows the initial state of the manipulator at the begining of work on
the thesis.

Fig. 3.1: 3dof series manipulator.

17



3.1: Initialization of the manipulator

3.1 Initialization of the manipulator

After studying the Manipulator (RRR) library, it was obvious that the initialization
blocks need some modifications. These blocks should ensure for the parts of the
manipulator to pass over or hit the index switches in order to get absolute position
from the used relative encoders attached to each of the three motors[1].

3.1.1 Previous initialization blocks and their disadvantages

To initialize the manipulator each of the previous blocks creates a movement of the
corresponding drive in both directions to an already defined angle θ without any
information about hitting the limit switches that defines the working boundaries
of each drive. This movement is generated by thesignal generator block used in
Simulink. What was mentioned above implicates two problems:

� These blocks do not always ensure passing over the index switch, because it
might be out of range (the angle between the index switch and the starting
position is bigger than θ).

� In case the angle between the starting position and the limit switch is smaller
than θ, the initialization block will command the manipulator to exceed the
defined working space and causes the securing electronics [1] to take over,
which is not desirable.

3.1.2 Using State Flow to create more robust initialization block

Using classical Simulink blocks to carry out the initialization was a bit complicated
[1]. Therefore State Flow1 seemed as a good alternative. The main idea was to
solve both problems that the previous blocks had, which implies a non limited
initialization range and knowledge about hitting the limit switches. Taking into
consideration the applications required by the manipulator needs the initialization
process to avoid a certain area, where the drawing board and its stand are positioned,
see fig 3.22. The following provides a detailed explanation of the improved blocks:

Initialization block of the first drive

The first drive rotates the manipulator around the Z axis, see fig 3.1. This block
besides initializing the drive it also enables stopping it. To avoid collision with the
drawing board it is initialized first, while both drives second and third are kept at
their starting positions. The figure below shows the corresponding State Flow chart
with its inputs and outputs.

1“State Flow is an environment for modeling and simulating combinatorial and sequential de-
cision logic based on state machines and flow charts”[?]
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3.1: Initialization of the manipulator

Fig. 3.2: Inputs and outputs of the initialization block of the first drive.

� pos in: The joint’s coordinate, which the state flow chart receives and should
pass through after initialization is done (may be the output of inverse kine-
matics).

� stop: Enables to stop the first drive by applying a none zero value to this
input.

� index: Signal received from the index switch after being processed in the
Encoder block [1].

� pos Encoder: position obtained by the encoder also after being processed.

� ini2,ini3: Signals indicating whether drives 2 and 3 are initialized.

� ini 23: Output signal that indicates initialization of the first drive.

� pos out: Output position sent by the chart to the controller.

Note: Fig. 3.2 shows a pulse generator that runs the state flow diagram at a fre-
quency that equals half the frequency, which the Simulink model runs at. Therefore
getting a delay equal to the state flow diagram step requires two back to back delay
blocks with a default delay time.
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3.1: Initialization of the manipulator

Initialization block’s structure

Fig. 3.3: State Flow chart of the initialization block of the second drive.

The main idea is to turn the drive in one direction till one of two situations occurs:

� Till it runs over the index switch, then the drive will be initialized

� Till it hits the limit switch, then the drive will be turned in the opposite
direction till it runs over the index switch and it will be also initialized.

Turning the drive in one direction or the other is easily done by incrementing or
decrementing the output position. Although the signal of the limit switch is not
available (it is not fed to the I/O card), hitting the switch (stopping) can be figured
out By comparing the output position of the encoder to the output position of the
initialization block. If the output position of the encoder is not changing, while the
output position of the initialization block still is, it indicates that the drive has hit
its limit, and the program starts turning it in the opposite direction. When the
drive runs over the limit switch it becomes initialized, and then it is turned to an
already defined position suitable for drivers 2 and 3 to be initialized in. The first
drive waits there till the initialization process of the remaining drives is complete.
After that, a feedback signal is sent to the first initialization block indicating that
the whole manipulator has been initialized, and the input signal can be passed.

Initialization blocks of the second and third drives

These two blocks are really similar, therefore explaining one of them will be enough,
so let it be the initialization block of the second drive. The inputs and outputs of

20



3.1: Initialization of the manipulator

the State Flow chart are similar to fig. 3.2 with one input missing, which is the
pos encoder. Also it receives a signal indicating whether the first drive is initialized
and outputs a signal indicating its initialization state.

Fig. 3.4: State Flow chart of the initialization block of the second drive.

The second drive waits for the first drive to be initialized, and then it begins its
initialization process. Starting position of the second drive is always near zero value
because of the moment generated by the weight of the part attached to the motor.
This means that it is enough to turn the drive by an already defined angle in one
direction, and if it does not run over the index switch it starts turning in the opposite
direction till it runs over it. This explains not using the output position of the second
encoder, important for figuring out, whether the drive hits the limit switch. When
the second drive is initialized, it waits till a signal indicating the initialization of the
third drive is received, and then it starts passing the input position.

Differences between initialization of the second and third drives

Index switch of the third drive is both an index and a limit switch, which means
that the initialization block turns the drive in one direction till it hits the previous
switch, and initialization is done. In order for the drive to be slow while colliding
with the switch, the increment of the output starts big then it gradually decreases.
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3.2: PID positioning controllers

3.2 PID positioning controllers

The outputs of the initialization blocks represent the desired rotation angle of each
drive. To position each drive according to the desired value, controllers with feedback
loops are used.

Fig. 3.5: Illustration of closed loop control.

Single loop control suffers from unacceptable static error, and the dynamic
reaction is not swift enough. Series manipulator accumulates error due its design,
and a small error in a joint coordinate can be reflected as a big deviation in the
position of the end effecter. More accurate and fast controllers can be accomplished
by using a cascade loop control as shown in the figure below.

Fig. 3.6: Cascade control of drives positioning.

Instead of using only one PID [9] to control the joint’s positioning, two con-
trollers are used. The outer one controls position, and receives desired value by the

22



3.2: PID positioning controllers

initialization block, and real value processed by the encoder block. The inner PID
controls a faster changing parameter which is the speed of the drive, its set point is
controlled by the outer PID. Through using derivation and filtering the value of the
actual speed is obtained from the actual value of the encoder without the need for
an additional sensor. Controlling a faster changing parameter such as speed implies
a faster dynamic reaction by the controller and a smaller static error.

Note: The encoders are directly attached to the motors, which implies that
their values do not include the mechanical clearances of the gears. Therefore by
comparing the desired value of the controller with the actual value of the encoder,
the response of each controller can be precisely analyzed.

3.2.1 Step response of the first controller

Fig. 3.7: Response of the first drive.

The graph in the left shows the response of the first controller to a desired value in
the form of a step with an amplitude of one radian. Although the amplitude of the
step is big the real value settles down in approximately one second, and in less than
half of a second the error absolute value goes down to 0,007 radians, which indicates
a fairly good dynamic response. The graph in the right shows the static error of the
controller, which is really small (less than 0,0002 radians).
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3.2: PID positioning controllers

3.2.2 Step response of the second controller

Fig. 3.8: Response of the second drive.

The static error of the second controller is bigger. Its absolute value is about 0,0015
radians, but it is still small enough. Dynamic response of the controller is similar to
the previous response, and the real value settles down in approximately one second,
and in less than half of a second the error goes down to 0,0035 radians.

3.2.3 Step response of the third controller

Fig. 3.9: Response of the third drive.
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3.2: PID positioning controllers

The graph in the left shows the response of the third controller to a desired value in
the form of a step with amplitude of 0,5 radian. Although the amplitude of the step
is big, the real value settles down in one second, and in less than half of a second
the error goes down to 0,003 radians, which also indicates a fairly good dynamic
response . The graph in the right shows the static error of the controller, which is
really small (less than 0,0015 radians).

Note: The previous controllers will be used in applications, where the manip-
ulator is expected to write. This means that the desired steps will be much smaller
and the controllers will be fast enough to respond, though controllers with a slow
dynamic response might cause deformations in written characters.

Note: Tuning the controllers has been done experimentally. Reached results
can be improved, but they are sufficient for writing applications.
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3.3: Adding one more degree of freedom to the manipulator

3.3 Adding one more degree of freedom to the ma-
nipulator

In series manipulators number of joint’s n when less than 7 indicates number of
Cartesian coordinates that can be controlled [2]. In writing and drawing appli-
cations, keeping the pen perpendicular to the board is essential. To control the
rotation angle of the end effecter besides its (x,y,z) coordinates , one more joint
should be added to the manipulator. This can be done by attaching a servo motor
to the third arm of the manipulator, and controlling its rotation angle through the
Mf624 card by sending a PWM with a changing duty cycle.

3.3.1 Mechanical design of the end effecter

To attach a pen to the servo motor a proper end effecter should be designed and
realized.

Requirements set for the design of the end effecter

� The end effecter should ensure firm attachment to the servo motor.

� Should hold the pen tightly and ensure minimum clearance between the pen
holder and the pen itself.

� Should allow the pen to be pushed upwards, and return it to its initial position
after pressing is over, which is really essential when pressing against the board
during writing.

� Should enable changing pens easily.

The design shown in fig. 3.10 consists of two parts attached by a tension spring,
which allows the pen to be pushed and returned to its initial position. Mechanical
clearance between the pen holder and the pen is only around 0,4 mm and the pen
is held by a magnetic force. A magnet is glued to the top of the upper part of the
design, and a small piece of iron is glued to the pen, which generates the needed
magnetic force.
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3.3: Adding one more degree of freedom to the manipulator

Fig. 3.10: Solid works design of the end effecter.

Note: Torque required to be generated by the servo in this application is really
minimum, this is why it was chosen without calculating the maximum needed torque.

Note: Both previous parts were realized using a 3d printer with 0,2 mm toler-
ance. Therefore the mechanical clearance between the pen holder and the pen was
set to 0,4 mm.

3.3.2 Calculating maximum deviation of the end effecter

Fig. 3.11: Calculating maximum deviation of the end effecter.
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3.3: Adding one more degree of freedom to the manipulator

Due to mechanical clearance the pen endures deviation that may cause an error in
the positioning of the end effecter. It is really important to calculate the maximum
error that could occur to decide how convenient this design is.

L = L2 − L′ (3.1)

L′ =
L3

cosα
(3.2)

tanα =
L2 − L3

cosα
L1

2

(3.3)

L1. sinα = 2L2. cosα− 2L3 (3.4)

L1. sinα = 2L2.
√

1− sinα2 − 2L3 (3.5)

(L1. sinα− 2L3)
2 = (2L2.

√
1− sin2 α)2 (3.6)

L2
1. sin

2 α + 4L1.L3. sin alpha = 4L2
2(1− sin2 α)2 (3.7)

(L2
1 + 4L2

3) sin2 α + 4L1.L3. sinα + 4(L2
3 − L2

2) = 0 (3.8)

α is a small angle
sinα ≈ α (3.9)

(L2
1 + 4L2

3)α
2 + 4L1.L3.α + 4(L2

3 − L2
2) = 0 (3.10)

by solving equation 3.10
α = 6, 179.10−3 rad (3.11)

α ≈ sinα (3.12)

Ls = (
L1

2
+ 30) sinα = 0, 35 mm (3.13)

α: Maximum deviation angle.
Ls : Maximum deviation of the end effector
Note: Maximum deviation of the end effecter is small and the previous design is
acceptable.
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3.4: Manipulator’s kinematics:

3.4 Manipulator’s kinematics:

Regardless of the desired application by the manipulator2, inverse kinematics is
substantial part of the designed program. Inverse kinematics transforms desired
Cartesian coordinates of the end effecter that are much easier to work with to the
corresponding joints’ coordinates [2] needed as desired values for the controllers. For
simple manipulators the problem of inverse kinematics can be solved analytically, but
this solution is really hard to reach when more complex manipulators are analyzed.
Therefore iterative algorithms that include forward kinematics in each step are used
to solve the nonlinear equations describing the inverse kinematics problem.

3.4.1 Forward kinematics of the manipulator

The first step of building the algorithm of inverse kinematics is solving the forward
kinematics problem of the given manipulator, which is the transformation of the
joint’s coordinates into the corresponding Cartesian position of the end effecter[2].
General forward kinematics 3 problem can be formaulated as follows:

X = f(q) (3.14)

X: The Cartesian coordinate vector.
q: The joints’ coordinate vector.
It can be solved for the transitional coordinates (x, y, z) using the following equa-
tions: 

x

y

z

1

 = Tn0.


0

0

0

1

 (3.15)

Tn0(q1, q2......, qn) = T10(q1).T21(q2).......Tn−1,n(qn) (3.16)

Tn0: Transformational matrix of the manipulator
T10, T21, ......, Tn,n−1: Transformational submatrices
q1, q2, .....qn: Joints’ coordinates.

2The manipulator analyzed by this thesis is an open chain series manipulator an RRRR type
(consists of four rotational joints), see fig. 3.22

3Analyzed kinematics is related to open chain series manipulators
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3.4: Manipulator’s kinematics:

Deriving Transformational sub-matrices of the manipulator

Fig. 3.12: The analyzed RRRR manipulator.

By analyzing figure 3.12, and using the general rotational matrices around Z and X
axis [2] , the following transformational submatrices are obtained:

T43 =


1 0 0 lf

0 cos q4 − sin q4 L4. sin q4

0 sin q4 cos q4 −L4. cos q4

0 0 0 1

 (3.17)

T32 =


1 0 0 0

0 cos q3 − sin q3 L3. sin q3

0 sin q3 cos q3 −L3. cos q3

0 0 0 1

 (3.18)

T32 =


1 0 0 0

0 cos q2 − sin q2 L2. sin q2

0 sin q2 cos q2 −L2. cos q2

0 0 0 1

 (3.19)

T32 =


cos q1 − sin q1 0 −lf
sin q1 cos q1 0 0

0 0 1 L1

0 0 0 1

 (3.20)
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3.4: Manipulator’s kinematics:

T40 = T10.T21.T32.T43 (3.21)

Substituting T40 into equation 3.15, forward kinematics of the manipulator for the
transitional coordinates is solved, and the following results are obtained:

x = lf . cos q1−L2. sin q1. sin q2−L4. sin q1. sin (q2 + q3 + q4)−L3. sin q1 sin (q2 + q3)−lf
(3.22)

y = lf . sin q1 − L2. cos q1. sin q2 − L4. cos q1. sin (q2 + q3 + q4)− L3. cos q1 sin (q2 + q3)
(3.23)

z = L1 − L2. cos q2 − L4.cosq4 + q3 + q2 − L3.cos(q2 + q3) (3.24)

Solving forward kinematics for the rotational coordinates

To control the angle at which the end effecter (pen) will reach the drawing board,
we need to solve forward kinematics for the angle of rotation around the global X
axis ϕ. Inverse kinematics input will be (x, y, z) transitional coordinates besides ϕ
(rotation around the global X axis ). Two methods are used to solve the previous
problem:

� Special(only relates to the analyzed manipulator): two possible sequences of
rotation are considered to accomplish a desired movement by the manipulator:

– First sequence: q2, q3, q4
4 change regardless to the changing order, so the

end effector rotates around the global X axis. After that q1 changes, and
the manipulator rotates around the current Zc axis (Matches the global
one). In the previous case obviously:

ϕ = q2 + q3 + q4 (3.25)

– Second sequence: q1 changes first, the manipulator rotates around the
global Z axis.
After that q2, q3, q4 change, and the end effecter rotates around the current
Xc axis (different form the global one).
The second sequence can be proven to be equivelent to the first sequence
using the following theory: Rotating a body around global axes in the
X, Y, Z order is equivelent to rotating it around the current axes in the
Zc, Yc, Xc order [2]. Therefore both previously analyzed sequences are
equivelant. Hence in both cases,equation 3.25 is reached.

� General(using rotational matrix of the manipulator): equation 3.25 can be
proven to be true using rotational matirx R40, which is a submatix of the
transforamtional matrix T40:

4 Analyzed manipulator and its rotational angles q1, q2, q3, q4 are shown in figure 3.12
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3.4: Manipulator’s kinematics:

R40 = T40(1..3, 1..3) (3.26)

Accoridng to the inverse problem of RPY 56 , ϕ is obtained:

ϕ = arctan r32, r33 = arctan
sin (q2 + q3 + q4)

cos (q2 + q3 + q4)
= q2 + q3 + q4 (3.27)

3.4.2 Algorithm of inverse kinematics

The problem of inverse kinematics can be formulated as follows [2]:

q = f−1(X) (3.28)

It represents a set of nonlinear equations, that can be solved by using iteration based
on the Jacobean of the manipulator.

∆q = J−1.∆X (3.29)

J =


∂f1
q1

... ... ∂f1
qn

. . . .

. . . .
∂fm
q1

... ... ∂fm
qn

 (3.30)

J: Jacobean.
(f1...fm): Cartesian coodinates expressed as functions of the joints’ coodinates.
By substituting equations 3.22 3.23 3.24 3.25 into equation 3.30 the Jacobean of the
manipulator is obtained,and then the inverse kinematics is solved using the following
iterative process [2]:

xk = f(qk) (3.31)

qk+1 = qk + J−1(x̂− xk) (3.32)

êk = (x̂− xk)when êk < Error, position has been reached (3.33)

xk: End effecter Cartesian coordinates in the current step.
qk, qk+1: Joints’ coordinates in the current step and the next one.
x̂: Desired Cartesian coordinates of the end effector.
ê: Distance between reached position and desired one.
To use previous algorithm on the manipulaotr one more problem should be dealt
with, which is sigularity.

det(J) = 0 (3.34)

5RPY(Roll,Pitch,Yaw): One form of Euler’s angles used mostly in aviation
6Inverse porblem of RPY:refers to obtaining angles of rotation around X,Y,Z axes through an

already known rotational matrix
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3.4: Manipulator’s kinematics:

Solving equation 3.34 shows that the Jocbean’s determinant equals zero for various
combinations of the joints’ cooridnates. This means that the manipulaor suffers
from singularity in some points within the working space boundaries, and the origin
of the Global X,Y,Z system is one of them, which implies that the inverse of the
Jacobean matirx can not be calculated at these points.
Therefore previous algorithm can not be implemented using usual Jacobean inverse
or even pseudo inverse 7, which also is not possible to calculate for some joints’
coordinates. Therefore Levenberg-Marquardt Damped Least Squares method has
been used. This method expands the pseudo inverse by an identity matrix multiplied
with a constant to maintain a non zero value near singularities.

∆q = JT (JJT + λ2I) (3.35)

λ: Damping constant.
“The damping constant depends on the details of the multibody, and the target po-
sitions, and must be chosen carefully to make the equation numerically stable. The
damping constant should be large enough so that the solutions well-behave near sin-
gularities, but if it is chosen too large, then the convergence rate is too slow.” [3]
The Damping constant λ was experimentally set to 0.001 , which ensured proper
calculation near singularties and a fast convergence of the algorithm.
The algorithm of inverse kinematics was implemented into Matlab Simulink envi-
ronmet using an embedded matlab function. The Simulink block is shown in the
figure below 8.

Fig. 3.13: Simulink block for inverse kinematics

7Moore–Penrose pseudo inverse: it can be used instead of the usual Jacobean inverse enables
solution for rectangular matrices and redundant manipulators: J† = JT (JJT )−1

8Source code of the inverse kinematics block is in the attachments.
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3.5: Measuring manipulator’s precision

3.5 Measuring manipulator’s precision

The main factors that affect the manipulator’s precision are:

� Controllers: The used controllers have a static and a dynamic error, see section
3.2.

� Inverse kinematics: The equations of inverse kinematics are solved through
iteration which implies a small error that the algorithm allows (1e-5). Also
the lengths of the manipulator’s parts that are used in the algorithm of inverse
kinematics can suffer from measurement errors.

� Mechanical clearance: Gears Mounted on the shaft of the Dc motors and
gears used in the servo motor suffer from mechanical clearance. Mechanical
clearance also exists in the end effector 3.3.2.

To study the effects of the previous factors on the precision of the manipulator, a
triangulation position sensor with high precision has been used. This sensor has a
precision of 10−6m and a range of 10 cm that starts at 5 cm away form the sensor and
ends at the 15 cm mark. The manipulator has been commanded to move along one
global axis with the sensor detecting the change in position of the end effector. The
data collected by the sensor have been compared to the desired value, and the value
calculated by forward kinematics applied on the angles measured by the encoders.
This comparison enables specifying, how much each of the previously mentioned
factors affects the manipulator’s precision.

� Comparing the value calculated by forward kinematics with the sensor value
shows error in position caused by mechanical clearances and forward kinemat-
ics, which is used to calculate end’s effecter position that correponds to the
encoders’ measured angles.

� Comparing Desired value and the value calculated by forward kinematics shows
error in position caused by controllers, inverse kinematics and forward kine-
matics. Blocks that seperate the previous two values.

� Comparing desired value with sensor value shows overall position error.

Fig.3.14 shows the Simulink model used to make the previous comparisons. A
desired value that has the shape of a stair is applied. The triangulation sensor
sends its signal to the Simulink mode through the I/O card, whereas the outputs of
the encoder blocks are connected to the forward kinematics block to calculate the
position that corresponds to the values of their rotation angles.
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3.5: Measuring manipulator’s precision

Fig. 3.14: Simulink model for measuring precision.

3.5.1 Measuring precision along the global Z axis

While moving along the Z axis the previously explained comparisons are made.

Fig. 3.15: Measuring precision along the Z axis/small steps.
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3.5: Measuring manipulator’s precision

Fig. 3.16: Measuring precision along the Z axis/big steps.

Applying two types of desired value:

� Stairs with small step figure 3.15.

� Stairs with big step figure 3.16.

Shows:

� Graph of the value calculated by forward kinematics, and the graph of sensor
value are almost identical in both cases, which implies small position error due
to the algorithm of forward kinematics and the mechanical clearances. Factors
that cause the difference between both values.

� Comparing the graph of the desired value with big steps to the graph of the
value calculated by forward kinematics shows a big dynamic error and a really
small static error. The small static error implies a small error caused by inverse
and forward kinematics, on the other hand the big dynamic error implies the
responsibility of the controller for the error , see section 3.2 . The previous
conclusion explains the offset between the graph of desired value with small
steps on one hand and the graphs of the sensor value and the value calculated
by forward kinematics on the other, which is due to the dynamic error of the
controller. Note that previous offset does not occur in figure 3.16

� Comparing static error between the graph of the desired value with big steps
figure 3.16 and the graph of calculated value by forward kinematics to the
static error between the graph of the desired value with big steps and the
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3.5: Measuring manipulator’s precision

graph of the sensor value shows that the first static error is smaller, which
reflects the mechanical clearances in the gears and the end effecter.

3.5.2 Measuring precision along the global X axis

Positioning of the manipulator parts while moving along the X axis differs form thier
positioning while moving along the Z axis, which implies differences in the gears’
mechanical clearance and the response of the controllers. Hence, the previously
explained comparisons are also carried out while moving along the X axis.

Fig. 3.17: Measuring precision along the X axis/small steps.
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3.5: Measuring manipulator’s precision

Fig. 3.18: Measuring precision along the X axis/big steps.

Figures 3.17 3.18 shows almost the same resutls reached along the Z aixs, but
with some differences:

� Bigger dynamic error obvious in fig 3.17 due to the different positioning of the
parts of the manipulaor during the movement along the x axis, which might
cause a different response by the controllers .

� Static error is still really small, which implies the precision of forward and
inverse kinematics.

� Also the difference in the positioning of the manipulator’s parts during the
movements along the X axis causes a change in the mechanical clearances of
the gears, which explains the slightly bigger difference between the graph of
the value calculated by forward kinematics and the graph of the sensor value
compared to fig 3.15 3.16.

Note: Movement along the Y axis is identical to the movement along the X axis.
The parts of the manipulator move in the same way, which implies reaching the
same results.
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3.5: Measuring manipulator’s precision

3.5.3 Visual demonstration of the manipulator’s precision

By using the manipulator to draw on a millimeter paper a more clear idea about its
precision is formed.

Drawing two parallel lines

Fig. 3.19: two parallel lines drawn by the manipulator

Figure 3.19 compares two red lines drawn by the manipulator to the desired black
lines. The lines are desired to be parallel to the X axis see fig 3.1, which is in turn
parallel to the horizontal lines of the millimeter paper. The offset between both lines
is desired to be 5 cm. Note that the previous requirements are fairly well fulfilled.
Drawn lines and compared ones are almost identical.

Drawing a sine wave

Fig. 3.20: A sine wave drawn by the manipulator

Figure above compares a red sine wave drawn by the manipulator to a desired black
sine wave . The sine wave is desired to have an amplitude of 2 cm, and its average
value parallel to the horizontal lines of the millimeter paper. Note that the previous
requirements are fairly well fulfilled. Desired and drawn sine waves are really similar.
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3.6: Programming the manipulator to play Tic-tac-toe

3.6 Programming the manipulator to play Tic-tac-toe

Fig. 3.21: Tic-tac-toe application diagram.

Fig. 3.22: Hardware components for the Tic-tac-toe application.
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3.6: Programming the manipulator to play Tic-tac-toe

Figure 3.21 illustrates a block diagram of the designed solution for the Tic-tac-toe
application, whereas figure 3.22 shows hardware components used to realize the
previous solution. The application’s goal is to enable the manipulator to play Tic-
tac-toe against a human being, and it can be described as follows:

� The application is palying Tic-tac-toe person vs manipulator on a white
erasable board showed in fig 3.22.

� The manipulator draws the playing field, which consits of five raws and five
columns.

� The person chooses a playing symbol (X or O) and sets the manipulator to
have the opposite one.

� When it is the person’s turn to play, he should draw a symbol in one of the
empty fields on the board.

� When it is the manipulator’s turn to paly, the person should press a button
in the model to allow the manipulator to perform its move.

� When the game is over, the manipulator erases the playing field.

In order to achieve the previous game requirments The following software and hard-
ware components are needed:

� Real time camera: Programmed to detect the opponent’s moves made on the
playing board9. It sends the corresponding data to the Pc through serial port,
see figure 3.22 3.21.

� The manipulator: See fig 3.22.

� PC: Equipped with an I/O card that enables communication with the ma-
nipulator’s electronics and encoders. The Pc is the brains of the application.
It sends through the I/O card driving signals to the electronics that in turns
drives the motors on the manipulator, whereas the encoders provide necessary
feedback for the program 10 running on the pc. The program consists of the
following blocks:

– Tic-tac-toe algorithm: By receiving data from the camera, it decides
which move is best for the manipulator to play.

– Control block: Generates Cartesian coordinates , responsible for drawing
symbols, drawing the playing field and erasing. It receives the coor-
dinates of the desired move and generates the corresponding Cartesian
coordinates .

9The NI 1742 camera is used for this application [6]
10Matlab Simulink enviroment 2012b is used for programming. It enables accessing the Mf624

I/O card by using the Humosoft Real Time Windows Target toolbox
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3.6: Programming the manipulator to play Tic-tac-toe

– Inverse kinematics: Converts Cartesian cooridnates to the corresponding
joints’ coordinates, for more information see section 3.4.2.

– Initialization blocks: Responsible for the initalization process, necessary
for the relative encoders, for more information see section 3.1.

– Controllers: Used with the manipulator in a closed loop to control its
joints’ coordinates values, for more information see section 3.2.

3.6.1 Control block

It generates Cartesian coordinates that correspond to each desired sub-application.
In order to enable switching between these sub-applications easily, State Flow was
used for realizing this block.

Fig. 3.23: Control block

The inputs and outputs of the control block shown in figure 3.23 are:

� row,column: They define the position of the desired move.

� button: A State Flow event, on its rising or falling edge, the manipulator
starts drawing the chosen symbol in an already defined position.

� symbol: Sets the symbol to be drawn, 1 for (X) and 0 for(O).

� finish: Commands the manipulator to fininsh the application. 0 for normal
mode, 1 for finishing.

� X out,Y out,Z out,phi: The generated Cartesian coordinates.
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3.6: Programming the manipulator to play Tic-tac-toe

� X out p,Y out p,Z out p: The generated Cartesian coordinates in the pre-
vious step of the real time process.

� erase: Erasing flag, tells when to start the erasing process.

� Pl fl d: Playing field flag, shows whether playing field has been drawn or not.

� ctr: Counter for the number of drawn symbols by the manipulator.

The following figure provides an insight into the Control block’s State Flow
chart, the main sub-charts it consists from, and how switching between them is
done.

Fig. 3.24: The Control block’s State Flow chart

Step by step the previous sub-charts will be explained:

� start stop sub-chart

The control block’s chart shown in figure 3.24 starts executing at the
start stop sub-chart, which waits till initialization 11 is done, and then moves
the manipulator to a position above the playing board, avoiding collision with
the board during the process. It is also reponsible for finishing the application
and returning the manipulator to its starting position, when the input finish
is set to one.

11for more information about the initialization process see section 3.1
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3.6: Programming the manipulator to play Tic-tac-toe

Fig. 3.25: start stop sub-chart

The manipulator stays at the wiat 1 block, which generates the Cartesian
coordinates corresponding to a position near the drawing board, this allows
the camera to capture the board without the manipulator blocking its vision.
The manipulator waits in the previous position for the user’s command, which
can be applied by the event button. After drawing or erasing is done the
Control block chart returns to start stop sub-chart, which in turn returns
to the wait 1 block,see figures 3.24 3.25.

wait 1 block generates movement by applying a desired position in the form
of a step. In order to slow down the movement of the manipulator to the
desired position, the cut off frequency of the filters12 that process the desired
input of the controllers is decreased. This is carried out by the fr sw output
of the control chart, see figure 3.23.
Note: The user only commands the manipulator to move from waiting posi-
tion to draw a symbol, but when erasing flag or drawing a playing field flag
are on, the manipulator moves to perform the given task without waiting for
the user.

12Filters are used to provide safe operating of the manipulator.
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3.6: Programming the manipulator to play Tic-tac-toe

� Drawing playing field sub-chart

When the Pl fld p flag (indicates whether the field has been drawn or
not) is off the state flow chart moves from the wait 1 block to the Draw-
ing playing field sub-chart,see figures 3.24 3.23. The previous sub-chart gen-
erates Cartesian coordinates for drawing the playing field of the Tic-tac-toe
game. It is a 5 by 5 game so the manipulator draws 4 lines parallel to the
global X axis and four lines parallel to the global Y axis, each of them is 15
cm long with an offset of 3 cm between every two neighboring lines parallel to
he same axis. To draw one of the previous lines one coordinate stays constant
and the other is increased slowly with each time step of the real time model.
The increment is done by using the (X out or Y out) outputs as delayed
inputs (X out p or Y out p) of the Control chart, see figure 3.23, and the
following equation is used:

X out = X out p + inc (same fo the Y coordinate) (3.36)

inc: Used increment or decrement.
After drawing each line, the pen is lifted off the paper. The constant coordinate
value is changed, and the pen is lowered back to the paper. Lifting and lowering
the pen is done by incrementing or decrementing the Z coordinate, which is
carried out in the same way as with the X,Y coordinates. When drawing the
playing field is done the playing field flag is set to one, and the State Flow
chart moves back to the wait 1 block in the start stop sub-chart, and waits
there for the user’s command,see figures 3.24,3.25.
Note:The complete sub-chart is in the attachments.

� Drawing X sub-chart

By changing the input of the event button the State Flow chart moves form
the wait 1 block to the Drawing X sub-chart, which generates Cartesian
coordinates for drawing an X in a field that corresponds to the generated
coordinates of the Tic-tac-toe algorithm block. Every X symbol consists of
two intersecting lines wiht a slope of 45o and 135o. Both lines are drawn by
incrementing X coordinate, and calculating the Y coordinate using the line’s
equation. The drawn lines are offseted according to the field’s coordinates to
be drawn in the desired position.
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3.6: Programming the manipulator to play Tic-tac-toe

Fig. 3.26: Drawing an X

To draw an X according to the coordinates generated by the Tic-tac-toe algo-
rithm in the playing field showed above, the following steps are implemented
into the Drawing X sub-chart:

– Calculating the coordinates of the begining point for drawing the first
line using the following equations:

x ini = x11− (column− 1)L− L

5
; (3.37)

y ini = y11− (row − 1)L− L

5
; (3.38)

x ini,y ini: Coordinates of the starting point.
x11,y11: Cooridnates of the upper right corner of the playing field, see
figure 3.26
row,column:Coordinates generated by the Tic-tac-toe algorithm.
L: Length of one field

– Drawing the first line using the following equations in every time step of
the real time process:

h1 = y ini− x ini; (3.39)

X out = X out p− inc; (3.40)

Y out = X out p+ h1 (3.41)
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3.6: Programming the manipulator to play Tic-tac-toe

h1: Point of intersection of the first line with the Y axis.
X out,X out p, Y out, Y out p: Inputs/outputs of the Control chart,
see figure 3.23.
inc: An already set increment.

– drawing the second line, which starts at a point that has the same Y
coordinate as the ending point of the first line, but its x coordinate is
x ini.

h2 = Y end+ x ini (3.42)

X out = X out p+ inc (3.43)

Y out = −X out p+ h2; (3.44)

h2:Point of intersection of the second line with the Y axis.
Y end: The Y coordinate of the end point of the first line.

– While drawing an X the pen is needed to be lowered and lifited off the
paper, which is done by incrementing or decrementing the Z coordinate.

When drawing an X is done, the state flow chart moves back to the wait 1
block in the start stop sub-chart, and waits there for the user’s command,see
figures 3.24,3.25.

� Drawing O sub-chart

This sub-chart generates Cartesian coordinates that correspond to drawing a
circle in a field defined by the Tic-tac-toe algorithm’s output. By changing the
input of the event button the state flow chart moves from the wait 1 block to
the Drawing O sub-chart, see figure 3.24 3.25. Drawing a circle is devided
into four parts, and each part represents a bit more than a quarter of a circle.
Deviding the drawing into the previous parts has two reasons:

– To ensure closing the circle (connecting its beginning with its end)
– In each part one coordinate is incremented or decreased, while the other

is calculated using a single equation derived from the equation defining
the circle 13, which would not be possible if the circle was drawn as a
whole.

The circle’s center is offseted according to the coordinates generated by the
Tic-tac-toe algorithm in order for it to be drawn in the desired field. The
Drawing O sub-chart consits of the following steps:

13The circle equation is: (X out− x0)2 + (Y out− y0)2 = R2
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3.6: Programming the manipulator to play Tic-tac-toe

Fig. 3.27: Steps of drawing a circle

– Calcualting coordinates of the circle’s center and its radius:

x0 = x11− (column− 1)L− L

2
(3.45)

y0 = y11− (row − 1)L− L

2
; (3.46)

R =
L

4
; (3.47)

x0, y0: Coordinates of the circle’s center. R: Circle’s radius.
– Drawing the first part of the circle, see figure 3.27 :

X out = X out p− inc (3.48)

Y out = −
√
R2 − (X out p− inc− x0)2 + y0; (3.49)

These equations are used in each time step of the real time process, till
the first part is drawn.

– Drawing the second part, see fig 3.27:

Y out = Y out p+ inc (3.50)

X out = −
√
R2 − (Y out p+ inc− y0)2 + x0; (3.51)

These equations are used in each time step of the real time process, till
the second part is drawn.
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– Drawing the third part is similar to drawing the first part, but X out is
incremented, and in the equation of Y out the square root has a positive
sign.

– Also drawing the fourth part is similar to drawing the second part,
butY out is decreased, and in the equation of X out the square root
has a positive sign.

After drawing the fourth part is done, the pen is lifted of the paper, and the
state flow chart moves back to the wait 1 block in the start stop sub-chart,
and waits there for the user’s command,see figures 3.24,3.25.

� Erase sub-chart

To erase what was drawn on the playing board a small sponge that is attached
to the lateral surface of the the end effector is used, see fig3.22. In order For
the sponge to contact the playing filed, the rotation angle of the end effecter
around the global X axis has to be equal to 90o, whereas it was equal to 0o

while drawing. The Erase flag Matlab function turns on the erasing flag
based on the number of symbols drawn by the manipulator and the number
of symbols detected by the camera ,see figure 3.23. When the number is equal
to 25, the flag is turned on and the State flow chart, which receives it as an
input moves from wait 1 block in the start stop sub-chart to the Erase sub-
chart,see figures 3.24 3.25. Simultaneously the switch block in fig 3.23 changes
the rotation angle around the glotbal X axis to 90o.
The sub-chart generates Cartesian coordinates that correspond to the following
steps :

– Lowering the end effecter while turned by 90o around the X axis in order
for the sponge to contact the board.

– Moving the end effecter along the Y axis back and forth with an offset of
3 cm between two consecutive passes.

– When the whole board is erased, it sets the playing field flag and the
manipulator’s symbols counter back to zero, which Along side the number
of symbols detected by the camera turns off the erasing flag.

– The end effecter is turned back to its writing angle (rotation around axis
X equals zero) and returns to the wait 1 block in the start stop sub-
chart.
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3.6.2 Tic-tac-toe algorithm

This algorithm is the brains of the Tic-tac-toe application. It receives the coordi-
nates of the opponents moves , and the previous moves made by the manipulator as
an input, whereas it outputs the coordinates of the manipulator’s next move. It is
designed for a 5 by 5 field, where player wins when having four consecutive symbols.
It uses the minimax method with a static evaluation function. To reduce calcula-
tion time the algorithm only looks three steps ahead and through using the static
evaluation function, it chooses the best move to play. When it is the manipulator’s
turn, the algorithm is activated, and the following expansions take place

� Expanding the current state to all the possible states, which the manipulator
can choose from.

� Expanding each previous state into all the possible options, which the oppo-
nent has.

� Again expanding each state into all the possibilities available for the manipu-
lator.

Using the static evaluation function, each state obtained after three expansions is
given a score that represents the probability of winning :

� −∞ for definite loss (Manipulator’s perspective)

� +∞ for definite win

� The state is not a definite win or loss: then the evaluation function equals
number of possibilities for winning minus number of possibilities for loosing
from the manipulator’s perspective

When it is the opponent’s turn the state with the lowest score is chosen, whereas
when it is the Manipulator’s turn the state with the highest score is chosen14. The
figure below shows an example of the backpropagation of the minimax method in
the Tic-tac-toe algorithm:

Fig. 3.28: Backpropagation in the Tic-tac-toe algorithm based on minimax

14the minimax method is based on maximizing wining probability of the player and minimizing
wining probability of the opponent [4]
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Previous algorithm is implemented into the Simulink model as shown below:

Fig. 3.29: Implementation of the Tic-tac-toe algorithm into Simulink

Blocks showed in fig 3.29 are implemented into an enabled sub-system.
Therefore They are activated only when the sub-system is turned on.
The Matlab function block in fig 3.29 has two inputs:

� o pos: the coordinates of the opponents moves sent by the real time camera .

� x pos: The coordinates of the manipulator’s moves that have been already
calculated and remembered by theMemory block from the previous time step

Also it has two outputs:

� play ps: A two element vector representing the coordinates of the manipula-
tor’s next move.

� x pos out: The coordinates of all the calculated moves by the algorithm.

The hold input resets the memory block elements to zero, when a game is over and
the board is being erased, in order to enable the block to start a new game.
The code of the Matlab function in fig 3.29 15 consitis of the following steps:

1. Combining both coordinate vectors (the opponent’s and the manipulator’s)
into one matrix.

2. Checking if the entered vectors make the opponent win, if so abort the following
steps, and output a coordinate that is out of range to refer to the opponent’s
win.

15Documented code used for the Tic-tac-toe algorithm is within the attachments
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3. Check for an empty field and fill in with the manipulator’s symbol. If there is
not an empty field or, all of them have been used by this step, go to step 12.

4. Check if the move makes the manipulator win, and then:

� If the move does make the manipulator win, score it as +∞, and move
back to step 3.

� If the move does not make the manipulator win, move to next step.

5. For every new state generated by step number 3, check for an empty field and
fill in with the opponent’s symbol. If there is not an empty field or, all of them
have been used by this step, go to step 11.

6. Check if the move makes the opponent win, and then:

� If the move does make the opponent win, score it as −∞, and move back
to step 5.

� If the move does not make the opponent win, move to next step.

7. For every new state generated by step number 5, Check for an empty field and
fill in with the manipulator’s symbol. If there is not an empty field or, all of
them have been used by this step, go to step 10.

8. Check if the move makes the manipulator win, and then:

� If the move does make the manipulator win, score it as +∞, and move
back to step 7.

� If the move does not make the manipulator win, move to next step.

9. Calculate evaluation function for each state,

f = n1 − n2 (3.52)

n1: number of possibilities to win. n2: number of possibilities to lose.
then move back to step 7.

10. Preform backpropagation from opponent’s turn 2 to manipulator’s turn
2 based on minimax method, and move to step 5, see fig 3.28 .

11. Preform backpropagation from manipulator’s turn 2 to opponents turn
1 based on minimax method, and move back to step 3, see fig 3.28.

12. Preform backpropagation from opponent’s turn 1 to manipulator’s turn
1 based on minimax method. Then move to step 13, see fig 3.28.

13. output the calculated coordinate for the manipulator’s next move.
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Previous Tic-tac-toe algorithm is activated by another Matalb function called
algorithm activator. It has two inputs:

� o pos: coordinates of the opponent’s moves.

� trigger: a manual swith controlled by the user.

It has only one output connected to the enabling input of the Tic-tac-toe algorithm
sub-system.

Fig. 3.30: Activision of the Tic-tac-toe algorithm

The algorithm acitivator compares the coordinates of the moves made by the
opponent in the current time step to the same coordinates in the previous time step,
and allows the user to activate the Tic-tac-toe algorithm using the manual switch
only once as long as the coordinates are the same. Every time the coordinates
change the user is allowoed to activate the algorithm one more time.
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3.6.3 Real-time smart camera

Detecting the opponent’s moves drawn on the board is an essential part of the
Tic-tac-toe application. This is accomplished by using a real-time smart camera 16

manufactured by National Instruments. It helps to figure out the opponent’s moves
by sending data about the captured playing field to the Simulink model through
the serial port of the Pc, see figures 3.22 3.21. The camera is equipped with its
own processor, it can be programmed using Labview or Vision Builder, and the
implemented program runs on the camera seperately from the Pc.
Figure below shows The used camera, attached to a stand that holds it above the
drawing board.

Fig. 3.31: Real-time smart camera

Programming the real-time camera

The Vision Builder environment was used to realize the detection algorithm, and
implement it into the camera. Two detection algorithms were considered:

� Symbol detection algorithm: Vision Builder provides blocks that allow
comparing the drawn symbols on the board to an already defined template that

16Describing a camera by being real-time smart refers to the fact that it has its own real time
processor and can be programmed and operated independently [6] [7]
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has the shape of an X or O according to the chosen symbol by the opponent
to play with. Besides detection, these blocks output the coordinates of the
detected symbols, which are sent to the Tic-tac-toe Simulink model, and then
used to figure out the fields, where the symbols were played.
Although This method has the advantage of recognizing only X and O symbols
among the drawn ones, and realizing where each of these symbols has been
drawn, it has one disadvantage that can not be ignored, which is lack of
robustness due to:

– Probable differene between drawn shapes by the opponent and the tem-
plate. Although previous blocks have parameters that set invariance to
rotation and size of the detected object, setting these parameters to a
very low value makes the camera detect undesired shapes such as shapes
drawn by the manipulator or even parts of the playing field, which would
cause bad operation of the Tic-tac-toe application.

– Dependence of the detection quality on lighting circumstances. Difference
in lighting while running the application form lighting used for captur-
ing the template might cause missing symbols that should have been
detected.

� Color detection algorithm: What was mentioned before confirmed the
necessity of implementing a more robust algorithm, in order for the Tic-tac-
toe application to run properly. By obtaining the percentage of pixels in one
field that have a value bigger than a defined threshold(value of detecting a
gray color by a pixel), the program can know for sure whether the field is
clear, or filled with a symbol.
The figure below shows the histogram of the pixels of one field, when filled
with a symbol:

Fig. 3.32: Pixels’ histogram of a field filled with a symbol.
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If the threshold is set to 80, figure 3.32 is split into two parts:

– Above 80: has a peak that refers to the pixels capturing the clear area of
the field.

– Below 80: has a peak that refers to the pixels capturing the drawn symbol.
This peak indicates whether a symbol is drawn or not.

The color detection algorithm counts the number of pixels with a value less
than the defined threshold. If they exceed a certain precentage of the field’s
pixels, then the field is designated as filled with a symbol.

For this algorithm to work propely the player should use a dark marker on the
white board, to have the desired difference in pixels’ values.
This algorithm has the following advantages:

– It is really robust when it comes to lighting circumstances. It depends
on the difference in pixels values when exposed to a dark color form their
values when exposed to a light color, without taking into consideration
the change in lighting.

– It does not use any comparison to defined templates, which caused prob-
lems in the first algorithm.

– Its computational complexity comparing to the previous symbol detection
algorithm is very low.

But still it has a few disadvantages :

– Not knowing anything about the shape drawn by the player. The player
can draw any shape and still be detected as an X or O.

– Every checking area should be set to one field without intersecting with
the field’s borders. Therefore both fields and checking areas should be
fixed. This is accomplished by using the manipulator to draw the playing
field and attaching the camera firmly to the stand.

Previous disadvantages does not really affect the Tic-tac-toe application.
Therfore the color detection algorithm was chosen, and implemented using
Vision builder, which provides a block that can obtain the percentage of pix-
els, which have a value over a defined threshold in a certain area.
The implementation was done by using 25 of these blocks, and setting each
block’s detection zone to the area of a different field, and then sending the
obtained percentages through serial port to the Pc.
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Fig. 3.33: Analyzed areas by the detection algorithm

Fig. 3.34: Detection algorithm implementation using Vision Builder.

Obtaining coordinates of the opponent’s moves

Previous percentages are received by the Simulink model of the Tic-tac-toe applica-
tion using the Stream input real time block. A Matlab function called Precent-
process that has two inputs:

� Precentages sent by the camera.

� Coordinates of the moves made by the manipulator.

Outputs the coordinates of the opponent’s moves. It checks which of the
precentages exceeds a certain value, and then excludes the coordinates of the
manipulator’s moves to get the coordinates of the opponent’s17.

17The simulink-model of the Tic-tac-toe application is in the attachments
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3.7 Designing user interfaces

To make Tic-tac-toe application, and interacting with the manipulator more user
friendly two control panels have been designed using the Graphical User Interface
(GUI) environment, which Matlab provides.

Tic-tac-toe GUI

This GUI enables the user to play Tic-tac-toe agianst the manipulator, while dis-
playing the game’s progress taking place on the board. It enables the user to choose
the playing symbol for the manipulator, and command it to play, when it is its turn.

Fig. 3.35: Tic-tac-toe GUI

The figure above shows the desigend GUI, which consits of the following com-
ponents:
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� Run sim button: Enables the user to compile the Simulink model of the Tic
Tac Toe game, connect to the Mf624 card and run the real time process.

� Symbol button: Enables the user to choose the manipulator’s playing symbol
(whether it is X or O).

� Play button: Clicking this button commands the manipulator to carry out its
next move.

� Stop sim button: Enables the user to stop the Tic-tac-toe Simulink model.
The manipulator is returned to its starting position avoiding the drawing
board, and then the model is stopped.

� Text box1: Displays a massage that explains whether the user can change
the playing symbol of the manipulator to an (X) or to an (O).

� Text box2: It displays the following massages:

– Wait for the model to be compiled.
– The compilation is done wait for the manipulator to be initial-

ized.
– If it is your turn to play draw your next move, otherwise click

for the manipulator to play
– The manipulator is drawing.
– The manipulator is erasing.
– The manipulator is being turned off.

This GUI is based on using functions set and get to exchange data with the
Simulink model. The visualization of the Tic-tac-toe game is done by getting
the coordinates of the manipulator’s moves and the moves of the player form
the Simulink model, and using the Plot Command within a while loop18.

18The source code of the Tic-tac-toe GUI is in the attachments.
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Operational GUI

This GUI enbales generating a few defined movements by the manipulator such as
drawing certain shapes ...... , and displays data acquired by the sensors to give the
user an idea about the quality and safety of the operation. The user can change the
shapes’ sizes, in addition to controlling the speed of drawing.

Fig. 3.36: Operational GUI

The figure3.36 shows the designed GUI, which consists of the following parts:

� Run simulation button: Enables the user to compile the Simulink model of
the manipulator, connect to the Mf624 card, and run the real time process.

� Symbol list Box: Enables choosing the symbol desired to be drawn. The user
can choose an X, O or a sine wave for the manipulator to draw.

� Trigger button: Enables the user to command the manipulator to draw, when
it is in the waiting position near the board.
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� Magnitude slider gain: Enables the user to choose the amplitude of the sine
wave, the diameter of the circle, or how big the X symbol is.It is connected to
a box that displays its value. The slider Gain’s value could be changed either
by typing the desired value into the previous box or by manual sliding.

� Speed slider gain: Enables the user to set the speed of drawing. It is connected
to a similar box that also displays its value. The slider gain’s value can be
changed either by typing the desired value into the previous box or by manual
sliding.
Note: The range of the Magnitude slider gain is from 0 to 10 cm. In case of
a sine wave, the value of the magnitude is the peak to peak distance of the sine
wave. The value of the Speed slider gain ranges from 0 to 5. 0 is minimum
speed, and 5 is maximum.

� Static text that displays a massage, which corresponds to the manipulator
status. The following massages are displayed:

– The manipulator is being initialized: This massage is displayed,
while the manipulator is performing the initialization process for the en-
coders.

– The manipulator is ready for your command: This massage is dis-
played while the manipulator is in the waiting position near the drawing
board.

– The manipulator is drawing: It is displayed while the manipulator is
drawing the chosen symbol.

– The manipulator is being turned off : It is displayed while the ma-
nipulator is being moved to its starting position and stopped.

� Graphs:

– X axis, Y axis, Z axis: Each graph is a comparison of the desired
value in the given axis, and the real value calculated by using the Block
of forward kinematics on the rotation angles of the encoders.

– First drive, Second drive, Third drive: Each graph shows the drawn
current by the corresponding motor.

Note: This GUI is mainly based on using functions set and get19 to transfer data
back and forth between the Simulink model and the Matlab Script. A while loop
that runs with a frequency of (10Hz) enables drawing the previous graphs while the
real time process is running20.

19 See Matlab help for more information about functions set and get
20 the Documented source code of the Operational GUI is in the attachments
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4 Conclusions

This thesis aimed to develop the 3dof manipulator created last year in order to per-
form more complex applications such as playing Tic-tac-toe against a human being.
First part of the thesis deals with enhancing previous software developed for the
manipulator by my colleagues. In addition to improving the initialization process
of the manipulator to be more robust by using State Flow, which is necessary for
the relative encoders, the simple PID controllers have been replaced with a better
cascade controllers which has increased the precision and efficiency of operation.
The Second part focused on expanding the manipulator by one more degree of free-
dom to become a 4dof manipulator. This allows controlling the rotation of the end
effecter, which is essential in writing applications. A servo motor is used as a fourth
drive, and the end effector attached to it was designed in Solid works, and realized
using a 3D printer.
In order to control the expanded manipulator, the third part of the thesis analyzes
its kinematics and chooses the least damped squares algorithm to solve the inverse
kinematics problem. The solution is implemented into a matlab function used in
the Simulink environment.
Previous parts are necessary foundations for the Tic-tac-toe application, which is
explained in the fourth part of this thesis. The designed solution for the application
includes a Control block responsible for generating Cartesian coordinates that cor-
respond to the desired shape or movement. This block recieves the coordinates of
the manipulator’s moves from the Tic-tac-toe algorithm that uses basics of arti-
ficial intelligence to calculate and output the most proper move. The algorithm is
implemented into a Matlab function that receives the coordinates of the opponents
moves form a real-time smart camera. A proper and a simple detection algorithm
was chosen and implemented into the camera using Vision Builder environment.
Fifth part is about making previous application and the operation of the manipu-
lator more user friendly, which was done by the GUI environment, which Matlab
provides for designing user interfaces.
This thesis managed to enhance the previously built 3dof educational platform and
realize an interesting application( playing Tic tac toe against a human being ) that
could be a real inspiration for potential students of mechatronics.
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6 Appendix

1. Tic-tac-toe Game - Simulink model for playing Tic-tac-toe (manipulator vs
humna being).

2. Camera program- detection program for the Tic-tac-toe application built in
Vision Builder.

3. Operational GUI - Simulink model, M-file and GUI panel for the operational
interface.

4. Tic-tac-toe GUI - Simulink model, M-file and GUI panel for the user interface
of the Tic-tac-toe application.
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