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Abstract

Evolving in tandem with civilization and technology, our understanding of the water cycle has

spurred continuous refinement in quantification methods. However, the uncertainty revealed in the

first attempts to unify different data products has hindered this unique opportunity to obtain a robust

quantification of the water cycle. Consequently, it remains a challenge to constrain the variability

stemming from measurements by various sources, which will help us understand the effect of global

warming on water resources in general.

Therefore, this dissertation aimed to improve the understanding of the global water cycle and

advance multi-source quantification by: (a) providing an in-depth recapitulation of global water

cycle research advancements regarding data sources and quantification methods; (b) enhancing the

evaluation of climate reanalyses by proposing a comprehensive framework to study changes in the

water cycle; (c) developing a powerful tool that eases the download, exploration, processing, and vi-

sualization of an all-around global precipitation data collection; and (d) comprehensively integrating

the previous findings and tools to introduce a method for benchmarking multi-source hydroclimatic

data fusion based on water cycle budget closure.

The results demonstrated that: (a) the consistency of global water cycle quantification has im-

proved despite significant uncertainty challenges associated with spatiotemporal variability; (b) the

signal-to-noise ratio of traditional metrics versus the natural variability is low, and as a consequence,

the fluctuations in the water cycle are harder to detect; (c) there is significant heterogeneity among

data distribution and formats, deterring robust quantification of global water cycle climatology;

and (d) the proposed framework based on water cycle budget closure easily and quickly filters out

data combinations that provide implausible results. Therefore, this dissertation improved the un-

derstanding of multi-source quantification methods and advanced frameworks for evaluating global

and regional water cycle dynamics.
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Abstrakt

Evoluuj́ıc spolu s civilizaćı a technologíı, naše chápáńı vodńıho cyklu vyvolalo neustálé zdokonalováńı

kvantifikačńıch metod. Nejistota a nepřesnosti, které se projevily při prvńıch pokusech o sjednoceńı

r̊uzných datových produkt̊u, však bránily źıskáńı robustńı kvantifikace koloběhu vody. Omezeńı

variability vyplývaj́ıćı z r̊uzných zdroj̊u měřeńı tak z̊ustává výzvou, stoj́ıćı v cestě k pochopeńı vlivu

globálńıho oteplováńı na vodńı zdroje.

Tato disertačńı práce si kladla za ćıl zlepšit porozuměńı globálńımu koloběhu vody a pokročit v

kvantifikaci z v́ıce r̊uzných zdroj̊u prostřednictv́ım: (a) poskytnut́ı podrobné rekapitulace současného

stavu poznáńı ve výzkumu globálńıho koloběhu vody, pokud jde o zdroje dat a kvantifikačńı metody;

(b) zlepšeńı hodnoceńı druhotných analýz klimatu navržeńım komplexńıho rámce pro studium změn

v koloběhu vody; (c) vývoje účinného nástroje, který usnadńı stahováńı, pr̊uzkum, zpracováńı a

vizualizaci univerzálńıho globálńıho sběru údaj̊u o srážkách; (d) komplexńı integrace předchoźıch

zjǐstěńı a nástroj̊u pro zavedeńı metody pro srovnáváńı propojeńı hydroklimatických dat z v́ıce

zdroj̊u na základě uzavřeńı rozpočtu koloběhu vody.

Výsledky prokázaly, že: (a) navzdory nejistotě spojené s časoprostorovou variabilitou dat, konzis-

tentnost kvantifikace globálńıho koloběhu vody se zlepšila; (b) poměr signálu k šumu tradičńıch

metrik oproti přirozené variabilitě je ńızký, a proto je obt́ıžněǰśı detekovat koĺısáńı koloběhu vody;

(c) existuje značná heterogenita mezi distribućı a formáty dat, která odrazuje od d̊ukladné kvan-

tifikace klimatologie globálńıho koloběhu vody; a za (d) navrhovaný př́ıstup založený na uzavřeńı

rozpočtu vodńıho cyklu snadno a rychle odfiltruje kombinace údaj̊u, které poskytuj́ı nevěrohodné

výsledky. T́ımto tato disertačńı práce zlepšila porozuměńı v́ıcezdrojovým kvantifikačńım metodám

a pokročilým př́ıstup̊um pro hodnoceńı globálńı a regionálńı dynamiky koloběhu vody.
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GRIB General Regularly-distributed Information in Binary form

GRUN Global Runoff Reconstruction

GSFC Goddard Space Flight Center

GSMaP Global Satellite Mapping of Precipitation

GWAVA Global Water Availability Assessment

H08 Hanasaki 2008

HDF Hierarchical Data Format

xviii



H-TESSEL Land Surface Hydrology Tiled European Centre for Medium-

Range Weather Forecasts Scheme for Surface Exchanges Over

Land

IMERG Integrated Multi-Satellite Retrievals for Global Precipitation Mea-

surement

IPCC Intergovernmental Panel on Climate Change

ISIMIP The Inter-Sectoral Impact Model Intercomparison Project

JMA Japan Meteorological Agency

JPL Jet Propulsion Laboratories

JRA Japanese Global Atmospheric Reanalysis Project

JULES Joint UK Land Environment Simulator

LPJmL Lund-Potsdam-Jena Managed Land

KGE Kling-Gupta Efficiency

MacPDM Macro-Scale Probability-Distributed Moisture

MATSIRO Minimal Advanced Treatments of Surface Interaction and Runoff

MERRA Modern-Era Retrospective Analysis for Research and Applications

mHM Mesoscale Hydrologic Model

MPI-HM Max Planck Institute - Hydrology Model

MOD16 Moderate Resolution Imaging Spectroradiometer Global Evapo-

transpiration Project

MODIS Moderate Resolution Imaging Spectroradiometer

MSWEP Multi-Source Weighted-Ensemble Precipitation

MSWX Multi-Source Weather

NASA National Aeronautics and Space Administration

NCAR National Center for Atmospheric Research

NCEP National Centers for Environmental Prediction

NetCDF Network Common Data Form

NOAA National Oceanic and Atmospheric Administration

NOAH National Centers for Environmental Prediction; Oregon State Uni-

versity; Air Force; Hydrology Lab

NRCS Natural Resources Conservation Service

NRL Naval Research Laboratory

xix



NSE Nash–Sutcliffe Model Efficiency

NTSG Numerical Terradynamic Simulation Group

Orchidee Organising Carbon and Hydrology in Dynamic Ecosystems

PDSI Palmer Drought Severity Index

PERSIANN Precipitation Estimation from Remotely Sensed Information using

Artificial Neural Networks

PGF Princeton Global Forcing

POD Probability of Detection

PREC/L Precipitation Reconstruction Over Land

RMSE Root Mean Square Error

SDG Sustainable Development Goal

SPEI Standardized Precipitation Evapotranspiration Index

SPI Standard Precipitation Index

SRB-CFSR-SEBS Surface Radiation Budget - Climate Forecast System Reanalysis

- Surface Energy Balance System

SRB-CFSR-PM Surface Radiation Budget - Climate Forecast System Reanalysis

- Penman-Monteith

SRB-CFSR-PT Surface Radiation Budget - Climate Forecast System Reanalysis

- Priestly-Taylor

SRB-PGF-PM Surface Radiation Budget - Princeton Global Forcing - Penman-

Monteith

SSM/I Special Sensor Microwave Imager

SSMIS Special Sensor Microwave Imager Sounder

SWOT Surface Water and Ocean Topography

TIROS Television InfraRed Observation Satellite

TMPA Tropical Rainfall Measuring Mission Multi-satellite Precipitation

Analysis

TRMM Tropical Rainfall Measuring Mission

UDel University of Delaware

USGS United States Geological Survey

VIC Variable Infiltration Capacity

WaterGAP Water Global Assessment and Prognosis

xx



WCRP World Climate Research Program

WSAG Water Systems Analysis Group

WSL Windows Subsystem for Linux

xxi



Epigraph

El que lee mucho y anda mucho, ve mucho y sabe mucho.

- Miguel de Cervantes, Don Quixote

xxii



Chapter 1

Introduction

1.1 Research Background

1.1.1 An Overview of the Water Cycle

The water cycle is an intricate and dynamic system involving the perpetual movement of water

through various physical, chemical, and biological processes, where water transitions between dif-

ferent states and traverses diverse landscapes (Figure 1.1). These processes include, among others,

condensation, evaporation, groundwater flow, infiltration, percolation, plant uptake, precipitation,

runoff, sublimation, transpiration, and water vapor transport (Allan et al., 2020). The water cycle is

driven by energy from the sun, which causes water evaporation from surface-water bodies (e.g., lakes,

rivers, and oceans), soils, and plants (i.e., transpiration). Evaporation is one of the most significant

components of the water cycle, transporting water from the Earth’s surface to the atmosphere and

contributing to about 90% of atmospheric moisture. Condensation is the opposite physical process,

where water vapor cools and condenses back into the liquid phase, forming clouds. When the water

droplets in the clouds become large enough, under the appropriate cloud microphysics conditions,

they are released as precipitation in the form of rain, freezing rain, sleet, snow, or hail. Precipita-

tion is another critical component of the water cycle, complementary to evaporation, as it delivers

atmospheric water to the Earth’s surface. On land, precipitation can infiltrate the soil, replenish

groundwater reservoirs, or run off into streams, rivers, and lakes. The water that runs off can even-

tually return to the oceans, where the cycle begins anew. In addition to total water storage, the

above components represent the water cycle’s major inputs, outputs, and storage. To some extent,

the rest of the water cycle processes are encompassed in these four components (Bengtsson, 2010).
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Figure 1.1: Water cycle diagram created by the USGS VizLab, in collaboration with the USGS
Water Resources Mission Area Web Communications Branch, for the USGS Water Science School.
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The water cycle budget, which keeps track of the inflows and outflows in a given area, is formu-

lated as follows in its expanded form (Scanlon et al., 2002):

P + Qsw
in + Qgw

in = Esw + Egw + Euz + ∆Ssw + ∆Ssnow + ∆Suz + ∆Sgw + Qgw
out + RO + Qbf (1.1)

where P is precipitation, Qsw
in is surface water inflow, Qgw

in is groundwater inflow, Esw is evaporation

from surface water, Egw is evaporation from groundwater, Euz is evaporation from the unsaturated

zone, ∆Ssw is change in surface water storage, ∆Ssnow is change in snow water storage, ∆Suz is

change in unsaturated zone water storage, ∆Sgw is change in groundwater storage, Qgw
out is ground-

water outflow and withdrawal by pumping, RO is surface runoff, and Qbf is the base flow. However,

for most practical applications, even in small watersheds, it can be expressed in terms of its four

major components:

∆TWS = P − E −Q (1.2)

where ∆TWS is the change in total water storage, E is total evaporation (from soils, surface-water

bodies, and plants), and Q is runoff. Inadvertently, aggregating global water cycle components to

the most dominant ones, also aggregate their underlying uncertainties.

In addition to the intricate natural processes of the water cycle, anthropogenic processes affect

the availability and quality of water resources (Abbott et al., 2019). These processes fall under one

of the following categories: water use, land cover change, and climate change. Water use could be

divided into green (soil moisture use), blue (water withdrawals), and grey (pollution assimilation)

(Rockström et al., 2012; Hoekstra and Mekonnen, 2012). Land cover changes (e.g., agriculture, defor-

estation, and wetland destruction) alter evapotranspiration, groundwater recharge, river discharge,

and precipitation at continental scales (Ellis et al., 2010; Falkenmark et al., 2019). Lastly, climate

change disrupts water flow and storage patterns locally and globally (Durack et al., 2012; Haddeland

et al., 2014; Huang et al., 2016). This last alteration of the water cycle is the most submerged under

a mist of uncertainty as we have yet to fully decouple the natural and anthropogenic forced re-

sponses of the water cycle. Thermodynamics, Clausius–Clapeyron scaling, in particular, determines

the dependence of vapor pressure at a discontinuous phase transition between two phases of matter

of a single constituent (water), i.e., the relationship between atmospheric water vapor and tempera-

ture (Clapeyron, 1834). However, the Earth’s energy balance governs the water cycle’s atmospheric

fluxes and constrains the hydrological sensitivity, defined by the increase in mean precipitation (or

evaporation) for a given change in mean temperature (Allan et al., 2020).
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The lack of a comprehensive understanding of water cycle changes resulted in two main hy-

potheses: the “changing character of precipitation” (Trenberth et al., 2003) and the “dry gets drier,

wet gets wetter” (Held and Soden, 2006). The former addresses precipitation intensity, duration,

frequency, and phase instead of total amounts only. Extreme precipitation events, leading to floods

and droughts, exert significant environmental and societal impacts, necessitating an enhanced un-

derstanding of precipitation characteristics (Gimeno et al., 2022). The increase in moisture content

in the atmosphere regulated by the Clausius–Clapeyron equation is expected to rise much faster than

the total precipitation amount. In addition, the precipitation rate far surpasses the rate at which

moisture is replenished through surface evaporation, i.e., most precipitation originates from the mois-

ture preexisting in the atmosphere when the event initiates (Trenberth, 1998). Therefore, heavy or

extreme rainfall will become more frequent, while light or moderate precipitation will decline. In

other words, the increase in global mean precipitation will be unevenly distributed in precipita-

tion events. The latter presents a mathematical derivation that starts with the Clausius–Clapeyron

equation:

d ln es
dT

=
L

RT 2
= α (T ) (1.3)

where es is the saturation vapor pressure, T is temperature, L is the latent heat of vaporization, and

R is the gas constant. Through a series of boundary conditions, assumptions, and mathematical

approximations (for details, see Held and Soden, 2006), the equation ends in the following form:

δ (P − E) = αδT (P − E) (1.4)

where α ≈ 0.07[K−1]. The mathematical framework presented implies a reduction in the mass

exchange between the boundary layer and mid-troposphere. Given that a significant portion of this

exchange takes place during moist convection in the Tropics, there must be a decrease in convective

mass flux. Under the assumption that the lower tropospheric relative humidity and the flow remain

unchanged, the poleward vapor transport and the pattern of precipitation minus evaporation will

increase proportionally to the lower tropospheric water vapor. It is worth mentioning that this

hypothesis is probably the most known and the most commonly misunderstood because it is applied

or evaluated without consideration for all the assumptions and boundary conditions that constrain

its validity. Nevertheless, both hypotheses are presently under vigorous debate (Seager et al., 2010;

O’Gorman and Muller, 2010; Greve et al., 2014; Roderick et al., 2014; Byrne and O’Gorman, 2015;

Kumar et al., 2015; Salzmann, 2016; Skliris et al., 2016; Wang et al., 2017; Markonis et al., 2019).
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Undeniably, our understanding of the global water cycle has evolved over the years thanks to hu-

mankind’s relentless pursuit of technological advancements and innovative solutions. Needless to say,

throughout history, our methods for quantifying hydro-meteorological variables have transformed in

tandem with the exponential growth of technology from solely human observation to the integration

of cutting-edge machine learning techniques. Pursuing precise quantification of the global water

cycle led to the establishment of the Global Energy and Water Exchanges (GEWEX) project. Orig-

inally named the Global Energy and Water Cycle Experiment, this initiative commenced in 1990

with the primary focus of investigating Earth’s water and energy cycles (Chahine, 1992a). GEWEX

created a platform for global collaboration in research, facilitating engagement through various pan-

els, meetings, and projects. GEWEX oversees eight continental-scale experiments concerning the

enhancements of data sets and modeling: GEWEX Americas Prediction Project (GAPP; Lawford

1999), Baltic Sea Experiment (BALTEX; Raschke et al. 1998, 2001), GEWEX Asian Monsoon Exper-

iment (GAME; Yasunari 1994), Large Scale Biosphere Atmosphere Experiment in Amazonia (LBA;

Marengo 2005), Mackenzie GEWEX Study (MAGS; Stewart et al. 1998), La Plata Basin (LPB;

Cavalcanti et al. 2015), The African Monsoon Multidisciplinary Analysis (AMMA; Redelsperger

et al. 2006), and Murray-Darling Basin (MDB; Evans and McCabe 2010). Beyond logistical and po-

litical considerations, the selection of these sites aimed to gather data from diverse climate regimes,

providing a representative assessment of the global water cycle. The collaborative endeavors of in-

ternational teams contributed to an enhanced understanding of regional water balance and feedback

processes. The data generated from these continental-scale experiments are accessible to the public,

indirectly contributing to establishing a scientific framework for quantifying the global water cycle

and achieving a budget closure with a 10% non-closure tolerance. Notwithstanding these momentous

advancements, data sources’ diverse performance levels and associated uncertainties restrict their

suitability for global-scale analyses (Hegerl et al., 2015). Even though all data estimates, regardless

of their source, inherently possess a degree of uncertainty (Steen, 1990), the quest to minimize this

uncertainty to the greatest extent possible and acquire higher quality and more accurate data for

water cycle assessment has mutually driven technological advancements (e.g., satellite instruments;

Hildebrand et al., 2003; Levizzani and Cattani, 2019). At present, we could say that the available

data products fall under one of four main categories: ground station observations, satellite remote

sensing, hydrological model simulations, and reanalysis outputs. Note that while some products

could be categorized easily as they exclusively rely on a unique data source type, usually the cate-

gorization is based on the primary source or bulk input, as in reality, it is typical for a data product

to have multiple inputs from different source types.
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1.1.2 Four Data Source Types

As better and more accurate instruments became available, ground-based observations improved

their detection capabilities. The development of different instruments like rain gauges (standard,

tipping bucket, and weighing), lysimeters (percolation, weighing, and wick), atmometers, flumes,

and sounders led to different data products. Even nowadays, despite well-known spatial hetero-

geneity and variability, ground-based observations are regarded as the closest measurements to the

actual values and are operationally used for calibration, evaluation, and assimilation. Nevertheless,

the distribution of active stations is quite heterogeneous worldwide (Figure 1.2(a)), extremely geopo-

litically dependent (Kibler et al., 2014), and their number has been declining for the past decades

(Figure 1.2(b)). Deploying dense monitoring networks to observe hydroclimate spatial heterogeneity

accurately implies high operational and maintenance costs (Saltikoff et al., 2017). Consequently, it

is unsurprising that in many developing countries, ground observational records, if available, tend

to have multiple temporal discontinuities or non-standardized data quality check protocols (Walker

et al., 2016). In other words, we still lack a comprehensive global network.

For example, the Global Precipitation Climatology Centre (GPCC) offers data from 1891 to

the present based on quality-controlled data from 67 200 stations worldwide that feature record

durations of 10 years or longer on a regular grid with a spatial resolution of 0.25 degrees (Schneider

et al., 2011). GPCC is derived from the most extensive gauge network currently available, but

it represents only about 1% of the Earth’s surface (assuming a 5 km non-overlapping radius per

gauge; Kidd and Huffman, 2011). As evidenced above, the distribution of stations worldwide is

heterogeneous, which denotes that interpolation methods are relied on to generate regular global

grids. Moreover, a variable number of stations per grid over time can be a significant source of

inhomogeneity, inconsistency, and uncertainty (Herrera et al., 2019). While a kindred initiative

for evaporation exists (FLUXNET; Pastorello et al., 2020), the network’s instrumentation does

not directly measure evaporation, but rather, it employs the eddy covariance technique to measure

carbon, water, and energy cycling between the biosphere and atmosphere. As a result, evaporation is

more commonly derived from atmospheric moisture and precipitation measurements. Runoff has an

additional layer of complexity because the Global Runoff Data Centre (GRDC; Fekete et al., 2002),

provides ground-based data for river discharge only, which is only a fraction of total water outflow

from a catchment. To our knowledge, total water storage, the last major water cycle component,

has no comparable database. GPCC, FLUXNET, and GRDC constitute the three most extensive

collections of ground-based observations for water cycle components.
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(a)

(b)

Figure 1.2: (a) Location of active stations since as of 2020 with at least 20 year long records. (b)
Number of worldwide active stations during the years as per the Global Historical Climatology
Network (GHCN) records.
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Satellite remote sensing data complemented the traditional gauge-based measurements and of-

fered unprecedented coverage over previously inaccessible or ungauged regions. Notwithstanding,

ground observations remain crucial for satellite data calibration, evaluation, and, in some cases, post-

processing refinement. Several satellite missions have been launched into orbit since 1960, starting

with the Television Infrared Observation Satellite (TIROS-1 or TIROS-A). Among the most notable

are the National Aeronautics and Space Administration’s (NASA) Earth Observing System (EOS)

missions (Figure 1.3). Satellites are characterized by their sensor type and orbit. Satellite sensors

could be active or passive, and it is no longer uncommon for both types to be onboard simultane-

ously. Active sensors provide their energy source to illuminate the objects they observe. In contrast,

passive sensors detect energy emitted or reflected from the environment. Satellite orbits could either

be geosynchronous (GEO) or polar, yet many of the satellites in the EOS missions have a nearly

polar orbit. Polar-orbit satellites move around the Earth in a Sun-synchronous orbit, so the overpass

occurs at the same local time every day, taking around 100 minutes to complete an orbit. However, it

soon became apparent that satellite instruments have heterogeneous performances across the globe

(Maggioni et al., 2016), limiting their applicability. Moreover, satellite remote sensing data records

are, to date, too short to assess long-term water cycle changes.

Understanding that satellite design (orbit and sensor type) limits remote sensing observations is

fundamental. The satellite’s orbit delimits its spatiotemporal resolution and coverage. Generally, a

satellite with high spatial resolution comes with coarse temporal resolution and vice-versa, and high

spatiotemporal resolution comes with limited coverage. Satellite remote sensing estimates have been

shown to vary considerably depending on the sensor type (i.e., active or passive; Fekete et al., 2004).

Aware of such systematic limitations, recent missions rely on a constellation of multiple satellites

rather than a single satellite, even if it carries both passive and active sensors. Similarly to ground-

based station data, satellite-based flagship products exist for each water cycle component: the Global

Precipitation Measurement (GPM) for precipitation (Huffman et al., 2015), the Moderate Resolution

Imaging Spectroradiometer (MODIS) for evapotranspiration (Mu et al., 2011), the Surface Water

and Ocean Topography (SWOT) for runoff (Durand et al., 2010), and the Gravity Recovery and

Climate Experiment (GRACE) for total water storage (Tapley et al., 2004). Because the SWOT

mission was launched in 2022, its data record is currently too short for usage. However, runoff could

be derived from other satellite remote sensing data sets, for instance, Tropical Rainfall Measuring

Mission (TRMM) precipitation (Huffman et al., 2007), and MODIS land cover (Friedl et al., 2002)

using the Natural Resources Conservation Service (NRCS) runoff curve number method (Cronshey,

1986; Burges et al., 1998).
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Figure 1.3: NASA Earth Science Mission Profiles 1997 – 2021. Modified from https://eospso.

nasa.gov/.
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Almost contemporary to satellite remote sensing flourishment, general circulation models were

developed as powerful tools that comprehensively explore the intricate processes of the global water

cycle (Figure 1.4(a)). These models, rooted in fundamental principles of atmospheric physics, fluid

dynamics, and thermodynamics, opened the doors to simulate and study the complex interactions

between the atmospheric, oceanic, and terrestrial components that shape the global water cycle

(McGuffie and Henderson-Sellers, 2001). Models differ in the details of the description of processes,

parameter estimation approaches, time scales, and spatial resolution of input data and simulations

(Haddeland et al., 2011). The stand-alone models are usually applied at the basin or catchment scale

and tend to have many parameters that need to be calibrated or estimated regionally (e.g., Santhi

et al., 2006). On the other hand, global hydrological models usually have few parameters and are

calibrated at eco-region, climatic-region, or large river basin scales (Vörösmarty et al., 1989). Global

model simulations are becoming more complex and resolute as more functionality is added and the

availability of finer global spatial data sets increases (Sood and Smakhtin, 2015). A shared concern

for model simulations across different scales is that they are calibrated to existing observational data

sets and retain some residual error. In practice, said error is typically unknown and often ignored,

implicitly trusting simulated responses as deterministic quantities that might not even represent the

observed ones (Farmer and Vogel, 2016).

The importance of model simulations is not only in their ability to reproduce present climate

conditions but also in their capacity to project past and future scenarios, aiding in anticipating

potential shifts in water availability and distribution. As previously mentioned, even though the

water cycle’s response to global warming is under vigorous debate, it is non-debatable that the

intensification theory draws its foundations from model experiments involving the doubling of carbon

dioxide (CO2) concentrations (Manabe and Wetherald, 1975). While the Earth’s energy balance

influences alterations in global mean precipitation, variations at regional to local scales arise from

the complex interactions among factors such as CO2 levels, aerosols, land use changes, and human

water consumption (Allan et al., 2020). Despite the exponential growth in computing power efficiency

and growing complexity of models to try to capture local dynamical processes (Figure 1.4(b)),

many of them, like radiative transfer, convection initiation, hydrometeor phase change, and cloud

microphysics that occur between the sub-kilometer scale and the microscale (i.e., nine orders of

magnitude less than current model resolutions) are parameterized, as they cannot be resolved at

the model resolution. As a result, we observe artifacts like a correlation between an increase in

precipitation extremes and an increase in model resolution and anti-correlation between precipitation

extremes and changes in light-moderate precipitation (Thackeray et al., 2018).
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(a)

(b)

Figure 1.4: (a) Climate model conceptualization. Each grid cell can be represented by mathematical
equations that describe the materials in it and the way energy moves through it. Credit: National
Oceanic and Atmospheric Administration. (b) Development of the complexity of the computer
models used to simulate Earth’s climate. Credit: National Aeronautics and Space Administration.
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In a two-fold endeavor to handle the water cycle’s spatial heterogeneity and further improve the

spatiotemporal resolution of the measurements, reanalysis data products rose to the avant-garde

(Parker, 2016). Reanalysis products preponderantly assimilate data from observations and model

simulations (e.g., general circulation or earth system models). These models undergo continuous

updates and enhancements, leading to significant alterations in the fundamental climatological char-

acteristics of the model over time. As a result, relying on a long time series of operational analyses

becomes impractical for studying extended trends or variations in climate. Reanalyses generate a

dynamically consistent global analysis of the atmospheric state over an extended duration, spanning

many years or decades, without spatial or temporal gaps. This process entails utilizing a “frozen”

iteration of the analysis model and conducting a retrospective analysis using historical observation

records (Betts et al., 2006). The benefit of this approach lies in utilizing a broader range of ob-

servational data, tapping into high-quality observations that might not be accessible to operational

models in real-time (Figure 1.5(a)). Assimilation algorithms recursively combine observational and

model simulation data within a Bayesian statistical framework (Figure 1.5(b)), which usually falls

under one of four types of algorithms:

• Sequential, intermittent assimilation. This method involves intermittent assimilation, where

available observations over a range of time are introduced at regular intervals into the model,

e.g., the Arctic System Reanalysis (ASR; Bromwich et al., 2018).

• Sequential, continuous assimilation. In this method every observation is introduced into the

model at the time it was registered, allowing for a continuous update of the model state, e.g.,

the Modern-Era Retrospective analysis for Research and Applications (MERRA; Rienecker

et al., 2011).

• Non-sequential, intermittent assimilation. This method incorporates various observations into

a numeric weather prediction model at regular intervals, e.g., the European Centre for Medium

Range Weather Forecasts (ECMWF) Reanalysis product v5 (ERA5; Hersbach et al., 2020).

• Non-sequential, continuous assimilation. This method allows for the assimilation of a broader

range of observations in a more continuous and real-time manner, e.g., MERRA version 2

(MERRA-2; Gelaro et al., 2017)

Regretfully, since assimilation algorithms are statistically grounded, physical conservation principles

might be overstepped, reflected in substantial variability compared to other data sources (Prein and

Pendergrass, 2019).
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(a)

(b)

Figure 1.5: (a) The principle of data assimilation in climate reanalysis. (b) Representation of four
basic strategies for data assimilation, as a function of time.
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Successive generations of reanalyses showcase continuous enhancements regarding better obser-

vational data availability, newer models used for simulations, different assimilation algorithms, fixing

previous errors, or extending the record length. These improvements aim to refine the accuracy and

reliability of the generated data sets over time. Examples include:

a.i National Centers for Environmental Prediction – National Center for Atmospheric Research

Reanalysis 1 (NCEP/NCAR R1), an ongoing product with records starting in 1948, used

the T62/28-level NCEP global spectral model and a three-dimensional variational (3DVAR)

assimilation scheme (Kalnay et al., 1996).

a.ii NCEP – Department of Energy Reanalysis 2 (NCEP/DOE R2), an ongoing product with

records starting in 1979, used the T62/28-level NCEP global spectral model with updated pa-

rameterizations and a four-dimensional variational (4D-Var) assimilation scheme (Kanamitsu

et al., 2002).

b.i MERRA, a discontinued product with 1979 to 2016 records, used the Goddard Earth Observing

System Model Version 5 (GEOS-5) and an incremental analysis update (IAU) assimilation

scheme (Rienecker et al., 2011).

b.ii MERRA-2, an ongoing product with records starting in 1980, used the Goddard Earth Observ-

ing System Model Version 5.12.4 (GEOS-5.12.4) and a 3DVAR assimilation scheme (Gelaro

et al., 2017).

c.i Japanese 25-year Reanalysis project (JRA-25), a discontinued produc with 1979 to 2004

records, used the Japan Meteorological Agency (JMA) Global Spectrum Model and a 3DVAR

assimilation scheme (Onogi et al., 2007).

c.ii Japanese 55-year Reanalysis (JRA-55), an ongoing product with records starting in 1958, used

the JMA Global Spectrum Model and a 4D-Var assimilation scheme (Kobayashi et al., 2015).

d.i ERA5, an ongoing product with records starting in 1940, used the Integrated Forecasting

System (IFS) Cycle 41r2 model and a 4D-Var assimilation scheme (Hersbach et al., 2020).

d.ii ERA5-Land is produced using the tiled ECMWF Scheme for Surface Exchanges over Land

incorporating land surface hydrology (H-TESSEL) IFS Cycle 45r1 model forced by meteoro-

logical fields from ERA5 without any further assimilation scheme, delivering hourly estimates

from 1950 with a spatial resolution of 0.1 degrees (Muñoz-Sabater et al., 2021).
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Unfortunately, reanalysis data has yet to overcome several issues already identified in their first

generation of products. Trenberth and Guillemot (1995, 1998) evaluated the water cycle and the

global atmospheric moisture budget in NCEP/NCAR R1 data between 1987 and 1993. They found

that the reanalysis data sets could represent evaporation, precipitation, and moisture transport rea-

sonably well. However, limitations in reanalysis data were identified, including marked biases in

precipitable water as well as discrepancies in tropics’ moisture structures and precipitation patterns,

including a misrepresented intertropical convergence zone in the central Pacific. They noted that the

reanalysis data quality depends on the input observations’ availability and quality, the model’s ver-

tical resolution, computation methods, and analysis initialization. A decade later, Bosilovich et al.

(2008) evaluated global precipitation across JRA-25, ERA-40 (Uppala et al., 2005), NCEP/NCAR

R1, and NCEP/DOE R2 between 1979 and 2005. While there was a general sense that the precipi-

tation reanalysis data are improving in recent systems, the study highlighted that this is not always

the case, particularly in certain ocean regions. The authors emphasized the importance of using cli-

mate records of observed precipitation through a merged satellite and gauge data set as a reference

for comparison, underscoring the ongoing need for careful assessment and evaluation when utilizing

reanalysis precipitation data for various applications. Trenberth et al. (2011) assessed the global

energy and water cycles, focusing on atmospheric moisture transports from the ocean to land, using

eight current atmospheric reanalyses. These were the NCEP/NCAR R1, NCEP/DOE R2, Climate

Forecast System Reanalysis (CFSR; Saha et al., 2010), Twentieth Century Reanalysis (20CR; Compo

et al., 2011), ERA-40, ERA-Interim (Dee et al., 2011), JRA-55, and MERRA. The authors reported

three main issues: first, moisture transport from ocean to land is not similar in most reanalyses;

second, land discharge into the ocean differs significantly from observational estimates; and third,

moisture recycling is too large and its lifetime too short. Once again, discrepancies among water

cycle components are identified to arise with the changes in the observing system, model treatment,

and analysis increments.

In short, the nature of atmospheric reanalyses, geared toward generating time series of the best

available analyses considering the observing system through a statistical rather than a physical

framework, introduces challenges. These reanalyses do not consistently conserve quantities dictated

by conservation laws, leading to spurious changes with evolving observing systems over time. While

natural variations in shorter time frames often overshadow these factors, their impact becomes more

pronounced in decadal climate change or trends. Notably, the reanalyses tend to yield satisfac-

tory results for land-based precipitation, but atmospheric fluxes over the oceans exhibit instability,

disagreement, unreliability, and violations of fundamental physical constraints.
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1.1.3 Multi-Source Quantification

While advancements in technology and research have provided various data sources for quantifying

the global water cycle, it becomes evident that no single data source is without its flaws. Although

valuable, climate model simulations and reanalysis have limitations (Valmassoi et al., 2023), and the

often short and heterogeneous observational data records propagate uncertainties into our under-

standing (Schneider et al., 2017). However, one data source’s strengths can compensate for another’s

weaknesses, emphasizing the importance of a comprehensive and integrated strategy. As we stand on

the brink of a new era in water cycle research, the paradigm has shifted from the quest for the single

best data source for each component to a focus on developing optimal methods for integrating infor-

mation from diverse sources. Various integration methodologies have emerged, the most widely used

ones being Bayesian Model Averaging (BMA; Hoeting et al., 1999), Constrained Linear Regression

(CLR; Clemen, 1986), Modified Triple Collocation (MTC; Pan et al., 2015), Neural Networks (NN;

Bishop, 1996), Optimal Interpolation (OI; Daley, 1999), and Simple Weighting (Rodgers, 2000). Ad-

ditionally, post-processing closure methodologies, which distributed the budget residual among the

components based on each component’s uncertainties, explored Closure Correction Models (Munier

and Aires, 2018) and Kalman Filter variations (Pan and Wood, 2006).

BMA is a statistical method that addresses model uncertainty by integrating information from

multiple models to improve predictive performance. In BMA, the plausibility of each model is

described by the posterior model probability, which is determined using Bayesian principles. This

method provides a principled way to define model weights as posterior model probabilities, which is

universal to all data-generating processes. BMA can account for model uncertainty when estimating

model parameters and is particularly useful in applications with several plausible models where

there is no definitive reason to choose a particular model over the others. CLR is a statistical

method used when there is prior information available about a linear relation that the coefficients

of the linear model should satisfy. This method is beneficial when there is a need to enforce specific

constraints on the model parameters, such as ensuring that specific coefficients have a predefined

relationship or that the model satisfies known physical laws or theoretical expectations. MTC is

a mathematical technique to evaluate product error statistics without requiring the ground truth.

MTC was introduced to model the error associated with wind speed measurements but can be applied

to measuring any geophysical variable using three or more collocated target variables measured at

the same time and place. The method simultaneously calculates linear calibration coefficients and

measurement error variances. However, implementing TC is tedious and requires at least three
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independent measurement systems, which are often hard to establish. NN is a computational model

inspired by the structure and function of the human brain. It consists of interconnected nodes,

or neurons, organized in layers. Each connection between nodes has an associated weight, and

the network uses training data to learn and improve its accuracy over time. NN integrates and

processes complex, multidimensional data to identify patterns, make predictions, or classify and

cluster data. OI is a statistical method based on multidimensional analysis equations that combine

observations with model simulations to produce more accurate output than the individual input data

sets. The method involves merging background data, such as model outputs, with observation data,

such as point measurements, to perform interpolation. OI assigns weights to the background and

observation data sets based on their relative accuracy, which are determined from the background

error variance, observation error variance, and background error correlation. Simple Weighting

refers to the adjustment of integrating data sets to represent the target population accurately. This

process involves assigning weights to individual data sets, calculated by dividing a given data set

by the sample mean. This adjustment ensures that the integrated data set reflects the target mean

and corrects any bias in the sample.

Aires (2014)compared the performance of the aforementioned integration methods and reported

that Simple Weighting is the most suitable. Simple Weighting offers a straightforward formulation,

and more elaborate methods do not offer enough improvement in results to justify the increased

complexity they carry along. The Simple Weighting method assumes that the errors associated with

the different products are Gaussian (zero-mean) and independent. However, there might be cases

where this assumption may not hold, especially for gauge-based data products, and the dependence

among products will cause an underestimation of the error associated with the integrated data set.

The combined data set for a given component of the water cycle (P , ET, Q, or ∆ TWS) is equal to:

x =

n∑
i=1

wixi (1.5)

where x is the combined data set for the single component of the water cycle being integrated,

x1, x2, x3, ..., xn are the different products considered, wi is the associated weight of product xi

and is defined as:

wi =
(x̄− xi)

−2∑n
j=1 (x̄− xj)

−2 (1.6)

where x̄ is the arithmetic mean of the n data products considered, and (x̄− xi)
2

is defined as the
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error variance. That is to say, the weight associated to each product is proportional to the inverse

of its error variance. Finally, the error associated to the combined data set x is:

ex =
1∑n

i=1 (x̄− xi)
−2 (1.7)

This perspective shift with multi-source data integration as a new north is crucial for achieving

a more holistic and accurate understanding of the global water cycle. Therefore, the twenty-first

century demands advancements in data collection because the ensemble is as strong as the weakest

link and refinement of the analytical tools used in water cycle research.

Robust statistical methods for uncertainty quantification, sophisticated downscaling and disag-

gregation techniques, and the ability to analyze data across multiple scales are essential to this

evolving paradigm. However, amidst this progress and a “clear” path to follow, a formidable chal-

lenge emerges—the lack of a unified standard for data distribution (Table 1.1). The various data

sources often come in different grid reference systems, spatial resolutions, temporal resolutions, and

file formats like the Hierarchical Data Format (HDF), General Regularly-distributed Information

in Binary form (GRIB), and network Common Data Form (NetCDF) among the most common.

This lack of uniformity poses a significant obstacle to gathering them prior to homogenizing data

from different sources. The latter, data homogenization, feels like dealing with an irreversible pro-

cess because spatiotemporal aggregation is easily achievable, but disaggregation is not. Regarding

precipitation, for example, to aggregate in time, averaging precipitation rates or summing total

precipitation will do the trick, and in space, the spatially weighted average will suffice.

There are different types of temporal rainfall disaggregation methods available. These methods

can be broadly categorized into two broad methods, i.e., stochastic simulation and random cascade

models. When it comes to sub-daily precipitation, however, stochastic simulations become the one

reliable option because zeros, a frequent precipitation measurement at such scales, are fundamen-

tally incompatible with the notion of self-similarity and multiplicative random cascades (Gupta and

Waymire, 1993), yet they can be introduced artificially (e.g., Pathirana et al., 2003; Gires et al.,

2013; Lombardo et al., 2017). Regarding stochastic simulations, it would be amiss not to discuss the

framework proposed by Papalexiou (2018). The framework aims to preserve the processes’ marginal

distributions, correlation structures, and intermittency grounded on the assumption that any process

can emerge by transforming a parent Gaussian process with a specific correlation structure. This

approach unifies, extends, and improves a general-purpose modeling strategy, providing a consistent

and fully general description that supersedes previous specific parameterizations and is applicable
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for simulating a variety of hydroclimatic variables, such as precipitation, river discharge, wind speed,

and humidity, as well as for multivariate applications.

Spatial disaggregation, or downscaling, techniques are also grouped under two primary umbrellas:

statistical and dynamical downscaling. Statistical methods rely on empirical statistical relationships

to associate local-scale variables with large-scale variables (e.g., univariate or multivariate regres-

sion), while dynamical downscaling is based on mathematical representations of complex physical

processes (e.g., high-resolution regional climate models). Even though dynamical methods do not

always produce significantly better results and are often considered too computationally demanding

(Hellström et al., 2001), they are less demanding regarding data ingestion than statistical methods.

In addition to downscaling, there is regridding, also known as remapping or interpolation, in

the spatial domain. Multiple grids, such as regular, rectilinear, curvilinear, and unstructured, are

used in climate research. Therefore, even if two data sets have similar spatial resolution, regridding

might be necessary if the data are on different or shifted grids. Among the most used regridding

methods we have first-order conservative, distance-weighted approaches (e.g., nearest neighbour or

bilinear interpolation) (Figure 1.6). First-order conservative remapping is primarily employed when

working with latitude-longitude rectangular grids and ensures the preservation of the integral of the

source field during the regridding process. This method calculates weights based on the ratio of

the source cell area overlapping with the corresponding target cell (Jones, 1999). Distance-weighted

regridding approaches assume that the variation of the interpolated quantity is linear between the

grid points and assign weights to the source grid points based on their distance from the target grid

point. For example, bilinear regridding considers the four nearest cells in a 2D grid to determine

the value of the new cell (e.g., Accadia et al., 2003). Rajulapati et al. (2021) assessed the effects

of regridding, and reported a substantial impact on the statistical properties of precipitation, with

marked differences between the original and regridded datasets. These differences were most notable

at high and low quantiles, particularly in tropical land regions and polar regions, respectively. The

authors emphasized that the impacts of regridding vary spatially and at different quantiles, indicating

that regridding should be approached with caution.

The data homogenization challenge not only demands technical solutions but also necessitates

a broader conversation within the scientific community about establishing standards and protocols

for data sharing in hydrology. Without a concerted effort to address this issue, the full potential

of multi-source quantification may remain unrealized, hindering our comprehensive understanding

of the complexities within the global water cycle. In the context of this technical need, special-

ized software is available to efficiently deal with processing and analyzing large amounts of data,
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Figure 1.6: Schematics of bilinear and conservative regridding. Original cell are in dashed lines and
target cell in solid lines. The bilinear interpolation weight corresponding to the node on the lower
left is the ratio of the shaded area over the source cell area. The conservative interpolation weight
associated with the target cell is the ratio of the shaded area over the source cell area. Modified
from Pletzer and Hayek (2019)

namely the Climate Data Operators (CDO; Schulzweida, 2022) and Climate Data Analysis Tools

(CDAT; Williams et al., 2009). These software provide data cleaning, merging, and analysis tools.

While working with big data can be challenging and time-consuming, these or similar alternative

software allow researchers to automate and streamline the data analysis process for reproducibility.

However, while tools like CDO and CDAT provide valuable capabilities, they encounter a notable

limitation—compatibility issues with Windows, the predominant desktop operating system globally.

Although installing CDO and CDAT on Windows is technically feasible, the process involves utiliz-

ing the Windows Subsystem for Linux (WSL), essentially introducing a GNU/Linux environment

to Windows (Singh, 2020). Moreover, it is crucial to note that CDAT is anticipated to undergo

deprecation and cease support around the conclusion of the 2023 calendar year, adding a layer of

consideration for researchers seeking sustained tools for their work.

More multipurpose software available include Fortran (Backus et al., 1957), MATLAB (Moler

et al., 1982), Python (Van Rossum and Drake Jr, 1995), and R (Ihaka and Gentleman, 1996), which

are the most used hydrology programming languages. Fortran continues to be a prevalent choice

in hydrological modeling, leveraging the performance advantages inherent in low-level programming

languages, particularly for computationally intensive tasks. While low-level languages offer com-

putational efficiency, they are often criticized for being less readable and requiring more intricate

programming compared to high-level languages such as MATLAB, Python, and R. MATLAB of-
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fers comprehensive toolboxes for data analysis, statistical modeling, and visualization. Regrettably,

these toolboxes are not widely adopted as they are, for many users, out of reach behind a paywall.

Python and R have gained traction due to their flexibility, open-source nature, and ease of learn-

ing. Python, in particular, is valued for its extensive machine-learning libraries and general-purpose

programming. Nonetheless, because of Python’s Global Interpreter Lock (GIL), the threads within

each process cannot truly run in parallel. Unlike Python, R is not limited to serial programming

or convoluted workarounds because it supports Open Multi-Processing (OpenMP). Therefore, R is

better suited for a broad spectrum of functions that range from data acquisition and manipulation

to analysis, modeling, statistics, and visualization in High-Performance Computing (HPC) setups.

Furthermore, R has well-developed capabilities in geospatial and geographic information sys-

tems (GIS) applications (Gokceoglu and Pourghasemi, 2019), a particularly noteworthy facet of

hydrological research. One of the remarkable strengths of particular interest lies in the thriving

and actively engaged computational hydrology community that has flourished over the past five to

ten years and the availability of documentation, tutorials, and online discussion platforms (Slater

et al., 2019). The R hydrological community has significantly grown until it acquired a pivotal role

in hydrological research and the operational practice of hydrology. This evolution is marked by

the development of packages designed for various hydrological tasks, encompassing data retrieval

and pre-processing from hydrological and meteorological sources, hydrograph and spatial analysis

functions, and a spectrum of process-based and stochastic modeling tools.

The community-driven development of packages has led to a substantial expansion in function-

ality, catering to diverse needs within the hydrological domain. Nevertheless, more often than not,

these packages are still developed around specific data sets or providers. For instance, packages like

easyclimate facilitate access to high-resolution daily climate data for Europe (Cruz-Alonso et al.,

2023), while dataRetrieval is tailored for the US Geological Survey (USGS) National Water Infor-

mation System (DeCicco et al., 2022). Tools-centered packages offer comprehensive functionalities

and often require more generic inputs. Examples include envoutliers adept at identifying outliers in

environmental time series data (Čampulová et al., 2022), and CoSMoS a tool for generating univari-

ate/multivariate non-Gaussian time series and random fields for environmental and hydroclimatic

processes (Papalexiou et al., 2021). These latter kinds of packages give the users more flexibility on

the account they are to deal with data gathering and pre-processing on their own.

These advancements position the R language seamlessly within production-ready ecosystems,

leveraging cutting-edge technologies and tools to enhance reproducibility, testing, and continuous

integration. These tools are imperative for addressing the inherent challenges when relying on diverse
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data sources, particularly in the absence of ground observations. These tools are better exploited

at regional scales, where ground observations for one or more water cycle components are available

because these measurements constitute clear benchmarking or evaluation targets. Furthermore, lo-

calized studies at regional scales are essential in understanding the intricate interactions between

climate, geography, and human activities within a specific area. By focusing on specific geographical

areas, these studies provide insights into the unique characteristics, challenges, and variations within

the water cycle of a particular region, such as Local Resource Management, Climate Change Im-

pact, Extreme Events, Ecosystem Preservation, Water Quality, Infrastructure Planning, and Policy

Development.

1.1.4 Narrowing the Focus

One region of particular interest is Czechia, a small Central European country with diverse land-

scapes and a growing population (United Nations, 2022). Czechia is a landlocked country (sur-

rounded by Germany, Austria, Slovakia, and Poland) that covers an area of 78 864 km2. The country

experiences a temperate climate in the transition zone between the oceanic and continental climate

types, with warm summers and cold, cloudy, and snowy winters (Tolasz et al., 2007). Czechia, an

essential headwaters region of the European continent, is marked by various topographical features,

including mountain ranges, plateaus, and lowlands, influencing its hydrological landscape. The coun-

try is home to several large rivers, including the Vltava, the Labe, the Morava, and the Oder, all of

which have their sources within it (Figure 1.7). The Vltava River, in particular, originates in the

Šumava Mountains and flows through Prague, the capital, shaping the central part of the country.

Czechia is situated at the intersection of three sea drainage basins: the North Sea, the Baltic Sea,

and the Black Sea, which, in return, divide Czechia into three main hydrological catchment areas:

the Elbe, Oder, and Danube basins. All of these major watercourses drain water into neighbor-

ing states. The water sources of Czechia are thus almost exclusively dependent on precipitation.

Sporadic rainfall is throughout the year, but concentrated rainfall is more frequent in the summer

(Řehoř et al., 2021). Snowfall in the winter, especially in the mountainous regions, adds to the water

storage and gradually feeds into rivers during the melting period (Jenicek and Ledvinka, 2020).

In recent times, Czechia has undergone notable transformations in its water cycle, impacting

diverse facets of the water balance within the region. These alterations encompass shifts in river flow

regimes, modifications in water quality, the decline of wetlands, and variations in the occurrence and

intensity of extreme events. Since Czechia experiences a temperate climate with sufficient rainfall,
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Figure 1.7: Map of the 50 longest rivers of the Czech Republic. Credit: Pavel Hrdlička

the water cycle is more likely to be limited by energy availability, such as solar radiation, rather

than water availability. Case in point: an 18% increase in mean evaporation between 2001 and 2008

compared to the 1971–2000 average associated with rising global radiation and vapor pressure deficit.

In addition, regional climate models estimate significant increases between 27–54%, with potential

implications for water resources and ecosystems in the Czech Republic (Mozny et al., 2020).

Along the same lines, Nedelcev and Jenicek (2021) investigated trends in snowpack for 1965–

2014 in 40 catchments in five mountain regions in Czechia. Therein, the snowpack was reported

to be more sensitive to changes in air temperature at elevations below 900 meters above mean sea

level (MAMSL), while precipitation had a more significant effect at elevations above 1200 MAMSL.

However, snowpack sensitivity to air temperature increased at all elevations in the last few decades,

resulting in changes in the rainfall-snowfall partition, which have decreased snow cover and premature

snowmelt. Besides, snow water equivalent projections showed a decrease in annual maximum by

30–70%, occurring on average 3–4 weeks prematurely until the end of the 21st century (Jenicek

et al., 2021). Regarding precipitation, an ensemble of regional climate models predicts that heavy

precipitation events are likely to increase in severity, particularly in winter, with less agreement

among models for the summer season (Kyselý and Beranová, 2009; Kyselý et al., 2011). At the

same time, there is a projected decrease in the number of heavy rainfall events (Svoboda et al.,
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2016), i.e., future projections estimate less yet more intense heavy precipitation events. In addition,

increased human activities, such as urbanization and agriculture, have led to changes in land use and

land cover, which in turn has contributed to the occurrence of floods and droughts. Consequently,

the water cycle in Czechia and human activity find themselves on a causal feedback loop of sorts.

Droughts, have had disastrous consequences for agriculture, forestry, water management, and other

human activities (Brázdil et al., 2009). The abovementioned observed changes and future projections

of the water cycle forecast the overall drying conditions over Czechia to extend well into the end of the

century. Despite the identified trends in Czechia’s water cycle changes, it is binding to acknowledge

the substantial uncertainty inherent in climate projections. Complex climate systems, coupled with

the limitations of current models, make it challenging to assert definitive outcomes. While there are

observed shifts in precipitation patterns, snowpack dynamics, and evaporation rates, the range of

potential future scenarios is wide (N–2N%) and necessitates caution in drawing absolute conclusions.

Understanding the regional scale water cycle’s intricate dynamics prompts consideration of its

broader implications for the global water cycle. On scales circa 4000 km and less, alterations in the

water cycle are primarily influenced by the transport of moisture, contingent upon a combination

of thermodynamic and dynamical processes (Dagan and Stier, 2020). The constraints imposed

by energy budgets on a global scale and moisture budgets on a regional scale lead to changes

in fundamental water cycle features, including changes in precipitation intensity, duration, and

frequency, as the climate undergoes warming (Döll et al., 2018). Future water availability is driven by

changes in evaporation, a process shaped by the overall rise in atmospheric evaporative demand and

subject to modulation through vegetation’s regulatory role in controlling evaporative losses (Vicente-

Serrano et al., 2020). Regional water cycle changes result from the interplay between multiple

potential drivers, including CO2, aerosols, land use change, and human water use (IPCC, 2023).

These changes can contribute to alterations in larger-scale water circulation patterns, potentially

influencing the global water cycle. Recognizing the interconnectedness of regional and global water

systems is essential in addressing the uncertainties and variability inherent in climate change impacts

on water resources. Research efforts and collaborative initiatives on both regional and global scales

are crucial for advancing the understanding of these complex interactions and refining data estimates

to anticipate future water cycle dynamics better and address multiple Sustainable Development

Goals (SDGs).
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1.1.5 Nexus Repercussions

SDGs are a set of 17 global goals established by the United Nations in 2015 as part of the 2030

Agenda for Sustainable Development. These goals encompass a broad range of social, economic,

and environmental objectives, aiming to address the world’s various challenges. There are intricate

connections between water dynamics and broader societal and environmental objectives (Figure 1.8),

and the quantification of changes in the water cycle holds significant relevance to several of these

goals:

• SDG 1 (No Poverty): While the direct connection might not be immediately apparent, under-

standing water availability, access, and management is crucial for communities that can harness

water for various purposes, such as irrigation, aquaculture, or small-scale industries, have a

better chance of breaking the cycle of dependency on a single source of income (Borgomeo

et al., 2018).

• SDG 2 (Zero Hunger): Changes in the water cycle can impact agriculture, a sector highly de-

pendent on water availability. Accurate quantification helps understand and address potential

shifts in atmospheric water flux patterns and freshwater availability, ensuring food security

(Alcamo, 2019).

• SDG 3 (Good Health and Well-being): Reliable water cycle data is vital for assessing and

managing water-related health risks. Changes in precipitation patterns and consequent floods

can influence the proliferation of waterborne diseases, and accurate quantification supports

efforts to safeguard public health (Ternes et al., 2015).

• SDG 6 (Clean Water and Sanitation): Quantifying changes in the water cycle directly aligns

with this goal, ensuring sustainable water management and sanitation practices. It aids in

developing strategies for efficient water use and pollution prevention (Ho et al., 2020a).

• SDG 9 (Industry, Innovation, and Infrastructure): Understanding the evolving water cycle and

the shifting characteristics of extreme events is crucial for sustainable infrastructure develop-

ment. Accurate data helps design resilient infrastructure, especially in regions susceptible to

changing water availability (Di Baldassarre et al., 2013).

• SDG 11 (Sustainable Cities and Communities): Cities are vulnerable to water-related chal-

lenges, from flooding to water scarcity. Quantifying water cycle changes supports urban
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planning, helping communities build resilience and sustainable water management systems

(Bhaduri et al., 2016).

• SDG 13 (Climate Action): The water cycle and its characteristics fundamentally define climate

patterns. Accurate quantification contributes to climate models and predictions, supporting

effective climate action and mitigation strategies (Mortimer et al., 2023).

• SDG 14 (Life Below Water): Changes in the water cycle impact aquatic ecosystems (e.g.,

salinity increases). Accurate quantification is crucial for monitoring and conserving marine

environments, preserving biodiversity, and ensuring sustainable fisheries (Singh et al., 2019).

• SDG 15 (Life on Land): Terrestrial ecosystems are sensitive to water availability. Quantifying

changes in the water cycle aids in understanding and mitigating the impact on land ecosystems

and abnormal migration of species, promoting biodiversity conservation (Salleh, 2016).

In summary, quantifying water cycle changes is fundamental for achieving various SDGs, ensuring

sustainable development, resilience, and the well-being of both human and natural systems.

1.2 Research Objectives

Considering the aforementioned research challenges and hindrances for water cycle quantification,

this dissertation’s overarching objective was to better understand the effects of different data sources,

their integration, and the metrics/methods used to characterize water cycle changes on both global

and regional scales. In addition, through a multidimensional approach, advance the implementation

of open-source publicly available tools for data acquisition and processing, uncertainty quantification,

and evaluation frameworks. In particular, the specific objectives of this dissertation were:

1. To chronologically trace the evolution of global water cycle quantification methods, empha-

sizing the challenges posed by spatiotemporal variability. Chapter 2 aims to comprehensively

review historical attempts, data sources, and methods while critically assessing their contribu-

tion to improving spatiotemporal monitoring.

Embarking on a chronological review was a foundational choice driven by the need to compre-

hensively understand the existing state of the art in water cycle quantification. If the power

of the first computers, which occupied 167 square meters, now fits in our pockets, why has the

uncertainty of our estimates not been reduced as drastically?
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Figure 1.8: Sankey diagram depicting the links between impacts of water cycle changes and Sus-
tainable Development Goals
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2. To enhance the applicability of climate reanalyses in quantifying the global water cycle by

proposing a framework that considers precipitation, evaporation, their difference, and their

sum. Chapter 3 addresses the poor representation of the water cycle in reanalysis products

despite being the most recent and advanced data sets available.

The decision to delve into reanalyses emerged organically from their identified inconsistencies.

If reanalyses, in theory, have the best of both worlds by exploiting observational data and model

simulations in conjunction, why do their estimates describe a water cycle so different to the

observed one?

3. To improve the robust quantification of climatologic properties of global precipitation by in-

tegrating multiple data sources addressing the heterogeneity among existing data products.

Chapter 4 tackles data inaccessibility due to different spatiotemporal scales and distribution

formats limiting the available assets to understand water cycle changes.

The growing volume of data, both in terms of quantity and diversity, became increasingly

apparent. This realization underscored the urgent need to develop an open-access, innovative,

and user-friendly tool to confront the challenges posed by this burgeoning data landscape.

4. To investigate and understand recent regional water cycle changes via a novel method for

benchmarking hydroclimatic data fusion based on water cycle budget closure. Chapter 5

demonstrates a case study to exploit the gained knowledge and developed tools to depict a

multi-source water cycle budget perspective.

Recognizing that regional changes in the water cycle pose unique challenges that demand tailored

solutions, creating a robust and flexible framework that makes use of the attained outcomes for

studying these intricate processes was the natural next step.

1.3 Dissertation Layout

This dissertation is composed of 6 chapters. The present Chapter 1 provides the overview and back-

ground of the conducted research and specifies the research objectives. The proceeding four chapters

(Chapters 2 to 5) are structured as journal articles but without Abstract and Keywords. As each

of these five chapters contains an Introduction section, which provides the state-of-the-art literature

review on its topic, this dissertation does not include an individual chapter entitled “Literature
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Review”. In particular, Chapter 2 delves into the historical evolution of global water cycle quantifi-

cation, highlighting the challenges posed by spatiotemporal variability (Vargas Godoy et al., 2021).

Chapter 3 introduces the role of climate reanalyses in complementing traditional measurements,

emphasizing the need for a comprehensive framework to address uncertainties (Vargas Godoy and

Markonis, 2023b). Chapter 4 focuses on the integration of remote sensing data and model simula-

tions to enhance precipitation quantification, presenting the pRecipe package as a tool for analysis

(Vargas Godoy and Markonis, 2023a). Chapter 5 narrows the focus to the water cycle in Czechia,

addressing recent changes in precipitation and evapotranspiration rates (Vargas Godoy et al., 2024).
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Chapter 2

The global water cycle budget: A

chronological review

2.1 Introduction

Water and the continuous circulation through its global cycle have played a fundamental role in sus-

taining life on Earth since its formation. The global water cycle is a complex phenomenon composed

of several physiochemical processes such as condensation, evaporation, groundwater flow, infiltra-

tion, percolation, plant uptake, precipitation, runoff, sublimation, transpiration, and water vapor

transport (Allan et al., 2020), coupled with anthropogenic interactions like water withdrawals and

soil moisture use for livestock, crop irrigation, and forestry (Abbott et al., 2019). The longstand-

ing representation of the global water cycle’s conceptual model has been limited to three variables,

namely precipitation, evaporation and runoff. Recently, this coarse representation has been parti-

tioned to include the aforementioned sub-processes and their feedbacks. Our understanding of the

global water cycle has been evolving over the years, and the methods we use to quantify hydro-

meteorological variables have adapted to exploit new technologies. Furthermore, the need to better

estimate the components of the global water cycle has driven tailor-made technological developments

as well (e.g., satellite instruments; Hildebrand et al. 2003; Levizzani and Cattani 2019).

Remote sensing data and model simulations complemented the traditional surface-based mea-

surements and offered unprecedented coverage over previously inaccessible or unmonitored regions.

Even though these advances provided vast data sources, and aided to quantify water cycle com-

ponents at multiple scales, their varying performances and uncertainties limit their applicability
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to global scale analyses (Brocca et al., 2019). Thus, the number of primary components used to

quantify the global water cycle has not changed much. The most substantial differences that arose

with the inclusion of satellite data are the decomposition of total evaporation into evaporation over

oceans and evapotranspiration over land (Dickinson, 1984), and the addition of total water storage

(Lvovitch, 1973). The above components represent the major inputs, outputs, and storage of the

global water cycle. Hence, if we apply the mass conservation principle, we may write the water

budget equation, which relates to these four components as follows.

∆TWS = P − ET −Q (2.1)

where ∆ TWS is the change in total water storage (as the sum of groundwater, soil moisture, and

surface water such as river water, snow water, and water in lakes), P is precipitation, ET is evapo-

transpiration, and Q is the net water transport. The rest of the global water cycle processes are, to

some extent, encompassed in these four components (Bengtsson, 2010). Inadvertently, aggregating

global water cycle components to the most dominant ones also aggregates the underlying uncertain-

ties of the minor components, which are overshadowed by the uncertainties of the major components

with the available accuracy at the moment. Global water cycle quantification accuracy is further

hindered by the inherent biases revealed in the first attempts to unify multiple data sources for a

single component due to the vast heterogeneity of algorithms and data used (Hegerl et al., 2015).

Uncertainties in the quantification of global water cycle components are indispensable when

attempting to close the water budget. We can express equation 2.1 as:

P − ET −Q− ∆TWS = ξ (2.2)

where ξ is the budget residual, which in a closed budget equals to zero. Through the years, there have

been various attempts to close the budget (Starr and Peixoto, 1958; Willmott et al., 1985; Sheffield

et al., 2009; Sahoo et al., 2011). They have used different data sources and methods to minimize the

residual, but non-closure of the water budget still prevails. Alternatively, rather than using budget

closure as the performance metric, some researchers prefer to look at runoff as a diagnostic flux

to assess their results (Sheffield et al., 2009). Closing the water budget not only will improve our

understanding of the global water cycle, but will necessarily lead to improvement of the accuracy of

the data involved. Enhancing data accuracy is of critical importance for applications in climatology,

hydrology, meteorology, and water resource management, to name a few.

To keep moving forward towards closure of the global water cycle, ergo more accurate data, it
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would be beneficial to assess previous achievements. Herein, we present a review of the chronolog-

ical evolution of the paradigms regarding the global water cycle budget. We provide an in-depth

recapitulation of the advancements in global water cycle quantification. In addition, we present a

comparison between budgets reported in the literature, with highlights on the methods and data

sources used. Using significant technological improvements as timeline reference milestones, we con-

sidered four epochs, namely Early Days of Hydrology, Model Simulations Period, Satellite Era, and

Age of Big Data. Each epoch is characterized by its own accomplishments and challenges. Some of

the latter were overcome in succeeding epochs and some prevailed up to the present. Despite data

reaching unprecedented availability, detail, and coverage, the quest for robust quantification of the

global water cycle remains.

2.2 Chronicle

2.2.1 Early Days of Hydrology

Studies of the global water cycle are as old as hydrology. In classical Greece, Plato and Aristotle

philosophized that groundwater might be the component responsible for circulating water resources

by connecting rivers and lakes. However, Marcus Vitruvius is most commonly credited to be the first

one to conceptualize the water cycle. In the first century BCE, Vitruvius proposed a philosophical

description of the water cycle that placed precipitation instead of groundwater as a critical com-

ponent of water transport (Pollio, 1648). Vitruvius planted a seed that would later lead both, yet

independently, during the sixteenth century, Leonardo da Vinci and Bernard Palissy into describing

a water cycle with three principal components: precipitation, evaporation, and runoff (Palissy, 1580;

Pfister et al., 2009). Therefore, equation 2.1 was originally formulated as:

P − E = Q (2.3)

where P is precipitation, E is evaporation, and Q is the runoff or exceeding precipitation. With this

theoretical formulation, the scientific community ventured into quantifying the above components

during the seventeenth century. Pierre Perrault and Edmund Halley were among the pioneers that

supplemented experimental science to hydrology with their research on catchment precipitation and

evaporation, respectively (Brutsaert, 2023). John Dalton was the first to quantify all three above-

listed components for England and Wales, providing a comprehensive quantification of a water cycle

and not just a single component of it (Dalton, 1799).
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With catchment scale quantification achieved, the next step was to aim for global-scale quan-

tification. During the next years and up to the end of the 1960s, numerous studies, mainly coming

from Germany and Russia, attempted to quantify the global water cycle. Baumgartner and Re-

ichel (1972) surveyed the literature on the global water cycle quantification during the 1900s and

added their findings to the previous compilation by Reichel (1952), accounting for over 40 studies

(Table 2.1). Over land, precipitation, range between (99 to 122) × 103 km3/year, evapotranspi-

ration range between (52 to 97) × 103 km3/year, and and runoff range between (25 to 48) × 103

km3/year. Over oceans, precipitation and evaporation range between (242 to 412) × 103 km3/year

and (273 to 458) × 103 km3/year, respectively. Note that evaporation and evapotranspiration have

the most extensive ranges, presumably, because these values were derived from other measurements

since, at the time, it was not possible to obtain direct observations. Even so, several reported fluxes

are similar, if not identical, which may be caused by the fact that despite using different approxima-

tions or formulations, the initial data set used was the same. Over land precipitation estimates were

derived from gauge and chart data, runoff estimates were derived from the river measurements by

Marcinek (1964), and evaporation estimates were computed as the difference between precipitation

and runoff. Over oceans, heat balance maps, and climatological data for fixed locations consti-

tuted evaporation estimates, runoff is the same as overland because of atmospheric water balance

(Rasmussen, 1970), and precipitation estimates were the difference between evaporation and runoff.

Due to the high variability in time and space of global water cycle components, ground station

reports were not representative of the surrounding areas. Besides, it has been typical for developing

countries not to possess a ground station network dense enough to monitor global water cycle

components in those regions (Willmott et al., 1994). Aware of the above, Baumgartner and Reichel

(1972) introduced very strong yet somewhat arbitrary correction assumptions, and estimated the

errors based on the biggest difference between the values compiled on their survey. Considering that

the precipitation measured by rain gauges is smaller than the amount reaching the surface and there

are different zonal climatic conditions overland, the authors suggest three different options to correct

precipitation underestimation. They pointed out that the scenario selected is the most probable,

yet no explanation is provided towards why that is. Correcting precipitation overland has a ripple

effect because it is used to compute runoff, which is then used to compute precipitation over the

oceans. Based on their assumptions, they report the quantification of the global water cycle had

been achieved within a margin of ten percent relative error.

A decade later, Willmott et al. (1985) presented the first study with sufficient spatial coverage.

Their study was based on temperature and precipitation observational data records from 13,332
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globally distributed stations, and estimated terrestrial snow-cover, soil moisture, and evapotranspi-

ration. Their work extended on previous regional studies over Africa (Mather, 1962), Asia excluding

U.S.S.R. (Mather, 1963a), U.S.S.R. (Mather, 1963b), Australia, New Zealand, and Oceania (Mather,

1963c), Europe (Mather, 1964a), North America excluding U.S.A. (Mather, 1964b), U.S.A. (Mather,

1964c), and South America (Mather, 1965). The above cumulatively used only 8,565 stations from

the same network Willmott et al. (1985) used on their study. Still, they had to use empirical equa-

tions and a revised version of the potential evapotranspiration method of Thornthwaite (1948) in

order to derive snow-cover, soil moisture, and evapotranspiration from the temperature and precip-

itation observational data available. Willmott et al. (1985) did not report single values as annual

averages, but presented their results in maps where it could be seen that annual mean evapotran-

spiration is approximately 173 × 103 km3/year over continental regions near the equator, 43 × 103

km3/year towards the poles, and below 43 × 103 km3/year across the Sahara, Arabia and Central

Asia. Nonetheless, we know now, technological limitations and the lack of data sources place the

findings of the above discussed studies in a best-guess scenario only.

Table 2.1: Modified from Baumgartner and Reichel (1972) to exclude incomplete rows. All the fluxes
are in 103 km3/year. PL is precipitation overland, ET is evapotranspiration overland, Q is runoff,
PO is precipitation over oceans, E is evaporation over oceans, PTOT is total global precipitation,
and ETOT is total global evaporation.

Author PL ET Q PO E PTOT ETOT

Brückner (1905) 122 97 25 359 384 481 481
Fritzsche (1906) 112 81 31 353 384 465 465
Schmidt (1915) 112 81 31 242 273 354 354
Wüst (1922) 112 75 37 267 304 379 379
Cherubim (1931) 112 75 37 334 371 446 446
Meinardus (1934) 99 62 37 412 449 511 511
Halbfaß (1934) 100 52 48 410 458 510 510
Wüst and Defant (1936) 99 62 37 297 334 396 396
Wundt (1938) 99 62 37 346 383 445 445
L’vovitch (1945) 107 71 36 412 448 519 519
Möller (1951) 99 62 37 ≤324 ≤361 ≤423 ≤423
Reichel (1952) 100 70 30 315 345 415 415
Wüst et al. (1954) 100 73 27 324 351 424 424
Budyko (1955) 100 66 34-38 370 408 470 474
Albrecht (1960) 100 67 33 378 411 478 478
Budyko (1963) 107 61 46-48 404 452 512 513
Mira (1964) 108 72 36 412 448 520 520
Nace (1968) 100 69 31 319 350 419 419
Kessler (1968) 100 60 40 410 450 510 510
Mather (1969) 106 69 37 382 419 488 488
L’vovitch (1970) 109 72 37 411 448 520 520
Budyko (1970) 107 64 43 412 455 519 519

35



2.2.2 Model Simulations Period

In simple terms, General Circulation Models (GCMs) are a set of theoretical and empirical mathe-

matical expressions that attempt to simulate climate’s physical processes. They could be an atmo-

spheric GCM, an oceanic GCM, or a coupled GCM. The first atmospheric GCM was introduced by

Norman Phillips (1956), and it opened the door to new opportunities for global water cycle quan-

tification (McGuffie and Henderson-Sellers, 2001). Not long after, towards the end of the 1960s, the

National Oceanic and Atmospheric Administration Geophysical Fluid Dynamics Laboratory devel-

oped the first coupled GCM (Manabe and Bryan, 1969). The basic structure of a GCM can be seen

in figure 2.1. The GCM spatial domain is composed of 3D cells, whose horizontal grid is typically

formed by latitude and longitude, and pressure levels determine the cell height. The number of

physical processes considered and the complexity to which they are represented have continuously

improved since the introduction of GCMs. Today’s models further account for terrestrial vegetation

and the carbon cycle with an explicit representation of biogeochemical processes - such models are

referred to as Earth System Models or ESMs (Flato, 2011; Collins et al., 2013; Hurrell et al., 2013;

Flato et al., 2013; Otto-Bliesner et al., 2016).

Figure 2.1: Schematic structure of a General Circulation Model modified from Bralower and Bice
(2012).
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Model simulations were initially driven exclusively by ground observations. Later on, satellite

remote sensing, model reanalysis data sets, or different combinations of them were assimilated.

Hydrological models revolutionized the quantification of the global water cycle by providing regular

gridded data with global coverage as well as constant time steps. On top of that, both statistical

and dynamical downscaling of GCMs and ESMs have evolved over the past decades to enable more

reliable estimates (Tapiador et al., 2020). For example, the most recent release of the European

Centre for Medium Range Weather Forecasts Reanalysis product (ERA-5), which is a reanalysis

based on the European Centre for Medium-Range Weather Forecasts’ Integrated Forecasting System

(ECMWF’s IFS) weather model, provides a 30 km global coverage with 137 atmospheric pressure

levels capped at 80 km with uncertainty ranges reported at each level (Hersbach et al., 2020).

Despite the exponential growth in computing power efficiency, many fundamental processes like

radiative transfer, convection initiation, hydrometeor phase change, and cloud microphysics that

occur between the sub-kilometer scale and the microscale (i.e., nine orders of magnitude less than

current model resolutions) are parameterized, as they cannot be resolved at the model resolution.

On that account, while GCMs and ESMs provide global coverage of water cycle components, their

spatial and temporal resolution are still relatively coarse, hindering validation attempts.

Model simulations further changed global water cycle quantification by providing more robust

formulations towards the estimation of evapotranspiration. The bucket model developed by Budyko

(1961) was implemented for the evapotranspiration scheme used in the first coupled GCM (Manabe

and Bryan, 1969). This scheme oversimplified the physical processes surrounding evapotranspira-

tion (figure 2.2); nevertheless, its results were not significantly different from much more complex

formulations attempted in contemporaneous GCMs (Carson, 1982). In the aforementioned scheme,

evapotranspiration depends on potential evaporation, soil water content, field capacity (defined as

the amount of soil moisture or water content held in the soil after excess water has drained away

and the rate of downward movement has decreased), and water holding capacity (Carson, 1982).

Federer et al. (1996) compared five surface-independent and four surface-dependent potential evapo-

transpiration approximation schemes in models, and their results suggest that, at that time, none of

the methods significantly differ from each other for most surface types. Still, the authors point out

that the Penman-Monteith (Monteith and Unsworth, 2013) and Shuttleworth & Wallace (Shuttle-

worth and Wallace, 1985) methods might pose as the most comprehensive for global-scale analysis,

a hypothesis that was later confirmed for Penman-Monteith (Wang and Dickinson, 2012).

The coupled GCM introduced by Manabe and Bryan (1969) simulated average values of 93.4×103

km3/year overland precipitation, 69.5×103 km3/year evapotranspiration, 23.9×103 km3/year runoff,

37



359.3 × 103 km3/year over ocean precipitation, and 429 × 103 km3/year evaporation. In recent

years, Haddeland et al. (2011) compared 11 model simulations for the period 1985-1999 (Table 2.2).

Observation-based data for global precipitation overland had an average value of 126×103 km3/year,

simulated evapotranspiration, and runoff mean values range between (60 to 85)× 103 km3/year and

(42 to 66)×103 km3/year, respectively. Note that Manabe’s evapotranspiration estimate is the only

flux within the values reported by Haddeland et al. (2011). Besides, the later estimates are within

the range for annual averages reported by Baumgartner and Reichel (1972), hinting that despite the

substantial uncertainties and approximations, the values reported in the previous period were not

that far from the current ones.

Figure 2.2: Schematic of the Budyko bucket model implemented by Manabe and Bryan (1969). The
model represents a single layer soil reservoir with a defined maximum field water capacity of 15 cm
from which soil water evaporates at a rate proportional to the remaining water content.
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Model simulations did represent a new data source with seeming advantages over observations

like the ability to generate global coverage data and perhaps more revolutionary to forecast, predict,

and project. Nevertheless, once again, the scientific community relied heavily on observational data

because it was crucial for model calibration and validation. Consequently, this novel opportunity to

research global water cycle variability and its response to global warming further stressed the need for

better observation-based measurements and more accurate quantification of the cycle components.

2.2.3 Satellite Era

Shortly after the introduction of climate models (Phillips, 1956), the Television Infrared Observation

Satellite (TIROS-1 or TIROS-A) became the first weather satellite successfully launched in 1960,

and so it began the satellite era (NOAA, 1987). Barnes and Bowley (1968) proved the effectiveness

of satellite observations in hydrology when they published their findings on snow cover mapping over

the Missouri and Upper Mississippi River basins. Thereafter, several satellite missions made it into

orbit, among the most notable, we may mention the National Aeronautics and Space Administration

(NASA) Earth Observing System (EOS) missions. Based on their orbits, satellites could be grouped

into two major groups, either geosynchronous orbit (GEO) or polar orbit. Many of the satellites

involved in the EOS missions have a nearly polar orbit. Polar-orbit satellites move around the Earth

in a Sun-synchronous orbit so that the overpass occurs at the same local time every day, taking

around 100 minutes to complete an orbit. These satellites overpass the equator at the same local

solar time each day. Satellite sensors could be active or passive, and it is not uncommon for both

to be onboard the same satellite. For example, the Tropical Rainfall Measuring Mission (TRMM)

Microwave Imager (TMI), a passive sensor, and the Precipitation Radar (PR), an active sensor,

were onboard the TRMM satellite. Regarding satellites and missions of particular interest for global

water cycle quantification, we have the TRMM (Huffman et al., 2007) and the Global Precipitation

Measurement (GPM) (Huffman et al., 2015) for precipitation, the Moderate Resolution Imaging

Spectroradiometer (MODIS) for evapotranspiration (Mu et al., 2011), and the Gravity Recovery

and Climate Experiment (GRACE) for total water storage (Tapley et al., 2004). There is no specific

instrument nor mission dedicated solely to runoff yet (Hong et al., 2007). However, runoff could

be derived from other satellite observations, for instance, TRMM precipitation (Huffman et al.,

2007), and MODIS landcover (Friedl et al., 2002) using the Natural Resources Conservation Service

(NRCS) runoff curve number method (Cronshey, 1986; Burges et al., 1998).

Satellite observations complemented the traditional surface measurements and offered unprece-
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ü
m

en
il

(1
9
9
7
);

H
a
g
em

a
n

n
a
n

d
G

a
te

s
(2

0
0
3
)

O
rc

h
id

ee
15

m
in

R
R

,
S

,
T

,
W

,
q,

S
W

,
L
W

,
S

P
B

u
lk

fo
rm

u
la

d
e

R
o
sn

ay
a
n

d
P

o
lc

h
er

(1
9
9
8
)

V
IC

D
ai

ly
/3

h
P

,
T
m
a
x
,
T
m
in

,
W

,
q,

L
W

,
S

W
,

S
P

P
en

m
a
n

-M
o
n
te

it
h

L
ia

n
g

et
a
l.

(1
9
9
4
)

W
at

er
G

A
P

D
ai

ly
P

,
T

,
L
W

n
e
t
,

S
W

P
ri

es
tl

ey
-T

ay
lo

r
A

L
C

A
M

O
et

a
l.

(2
0
0
3
)

40



dented observational coverage on a global scale (McCabe et al., 2017). The Defense Meteorological

Satellite Program (DMSP) near-polar orbiting satellites have been key providers of data over the

oceans since 1987 (Dubach and Ng, 1988). Onboard their satellites, the most notable instruments are

the Special Sensor Microwave Imager (SSM/I) (Hollinger, 1991) and its successor, the Special Sensor

Microwave Imager Sounder (SSMIS) (Kunkee et al., 2008). These passive microwave radiometers

provide measurements used to derive data on surface wind speed, atmospheric water vapor, cloud

liquid water, and rain rate, which are critical to quantifying the global water cycle (Robertson

et al., 2014). Furthermore, various present-day models and reanalysis products assimilate satellite

observations (van Dijk and Renzullo, 2011). Nonetheless, like for GCMs, ground observations are

crucial for satellite data validation. Notwithstanding, the number of ground stations worldwide has

been declining since the 1970s (Walker et al., 2016). It was not before Trenberth et al. (2007) that

the availability of observational and modeled data to quantify the global water cycle was exploited.

A year prior, Oki and Kanae (2006) presented a quantitative synthesis of the global water cycle.

Instead of estimating the budget, they made a compilation of individual studies to stress the impor-

tance of global water cycle quantification and further assessment to manage renewable freshwater

resources properly. This concern has been in the minds of the scientific community for quite some

time now (Falkenmark and Lindh, 1974). The budget assessments by Trenberth et al. and Oki &

Kanae are held in high regard and are often used as a sort of validation reference (Rodell et al.,

2015).

Oki and Kanae (2006) addressed the availability of renewable freshwater resources for human

consumption within the global water cycle. The authors stressed that freshwater availability would

be better assessed by fluxes than by storages because water is a circulating resource. Also, given

the high variability of the water cycle in time and space, water stress is not a problem of how

much water is available but a matter of when and where it is available (Postel et al., 1996). To

better represent their research, they synthesized previous estimates of global water cycle fluxes and

storages (Korzoun 1978; Shiklomanov 1998; Dirmeyer et al. 2006; Oki 2006). By doing so, they also

presented a much more comprehensive mean state of the global water cycle. Their results showed

overland precipitation of 111×103 km3/year, evapotranspiration of 65.5×103 km3/year, and runoff

of 45.5× 103 km3/year. Moreover, precipitation is divided into rainfall and snowfall, plus the fluxes

are allocated to different terrains or land uses. Over oceans, precipitation was 391 × 103 km3/year

and evaporation was 436.5 × 103 km3/year.

Trenberth et al. (2007) used different data sources to quantify the global water cycle and its

components. Three data sets were selected for precipitation, the Global Precipitation Climatology
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Project (GPCP v2; Adler et al. 2003), the University of East Anglia Climatic Research Unit time-

series (CRU TS 2.1; Mitchell and Jones 2005), and the PRECipitation REConstruction over Land

(PREC/L; Chen et al. 2002). Evapotranspiration was simulated using the Community Land Model

version 3 (CLM3; Bonan et al. 2002; Qian et al. 2006), which was forced using a combined PREC/L

and GPCP precipitation data set. Surface plus subsurface runoff was derived from two climatic water

balance estimates (evapotranspiration minus precipitation), the first from the European Centre for

Medium Range Weather Forecasts Reanalysis 45 year product (ERA40; Uppala et al. 2005) using

the methods described by Trenberth and Guillemot (1998), and the second using evapotranspiration

from CLM3 and GPCP precipitation. Additionally, the authors relied on previous work for some

components of the global water cycle like surface runoff (Dai and Trenberth, 2002), ice volumes

(Houghton et al., 2001), soil moisture (Webb et al., 1993), and groundwater (Schlesinger, 2005). It

was common for prior studies to cite values that, in return, cite another and so on. Unlike them,

the authors documented, and traced back as far as possible, the origins of the values used. They

reported 113×103 km3/year overland precipitation, 73×103 km3/year evapotranspiration, 40×103

km3/year runoff, 373×103 km3/year over ocean precipitation, and 413×103 km3/year evaporation.

It is important to note that satellite data records are recently of sufficient time frame lengths and

with methods “mature” enough to develop meaningful global water cycle climatology records that

can provide information on its components mean state and variability (Schlosser and Houser, 2007;

Robertson et al., 2014). Exploiting the increasing availability and maturity of satellite products,

Sheffield et al. (2009) addressed the feasibility of closing the water budget, relying solely on satellite-

based products. They combined the TRMM Multi-satellite Precipitation Analysis (TMPA; Huffman

et al. 2007) and the Climate Prediction Center morphing method (CMORPH; Joyce et al. 2004)

products for precipitation, the University of Colorado GRACE time series (CSR RL04; Wahr et al.

1998) for total water storage, and they derived evapotranspiration from Aqua satellite data using

the Penman-Monteith revised formulation proposed by Mu et al. (2007). Then they evaluated their

findings over the Mississippi River basin comparing their runoff estimates, computed as the budget

residual, with ground observations. Their results indicate that the data products selected do not close

the budget because the computed runoff is greatly overestimated compared to ground measurements.

The authors suggest that further improvement of satellite-based products may reduce the residual,

and suggest multi-source data merging as a complementary means to achieve budget closure.
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2.2.4 Age of Big Data

In this day and age, we have transitioned from minimal data coverage and sources into a widely

heterogeneous abundance. In contrast to the continuous decline in the number of ground stations,

satellite-based and model-derived data products have proliferated. However, while some components

of the global water cycle have multiple products to choose from (e.g., precipitation), others do not

(e.g., total water storage). Some products assimilate or calibrate against ground station data to

improve their performance (Rudolf and Schneider, 2005); others implemented machine learning

processing to do so (Hong et al., 2004). It is not uncommon to find performance comparisons

between products in the literature, evincing large differences in the magnitude and the variability of

the estimates (e.g., as much as 300 mm/year difference between precipitation data sets; Sun et al.

2018). In their global comparison of 30 data sets at multiple spatiotemporal scales, Sun et al. (2018)

found that, in general, variability from reanalysis data sets is more substantial than that from other

data sources. Conversely, we can see that no single data set performs the best in all regions and

at all scales. Aware of that fact, some studies did not look for the best individual data set, but

the best combination of data sets towards budget closure of the water cycle over one (Azarderakhsh

et al., 2011) or multiple basins (Lorenz et al., 2014). It should be pointed out that the above studies’

success metric was not budget closure itself, but validation versus in situ runoff instead.

The paradigm of quantifying the global water cycle is steadily shifting from identifying the best

data source per water cycle component into developing the best way to merge data from various

sources to complement each other. Various integration methodologies have emerged, among the

most widely used ones are: bayesian model averaging, constrained linear regression, neural networks,

optimal interpolation, and simple weighting (Bishop, 1996; Hoeting et al., 1999; Rodgers, 2000; Aires

et al., 2004). Also, post-processing closure methodologies, which distributed the budget residual R

among the components based on each component’s uncertainties, explored Monte Carlo applications

and Kalman filter variations (Pan and Wood, 2006; Munier and Aires, 2018). Specifics vary from

method to method, but, in general, combining different data sets consists of three steps. These steps

are an initial assessment of the products to be combined, followed by the integration of the products,

and finally, budget closure post-processing.

Data integration is not a new concept nor the methods mentioned above, but its implementation

altogether with closure constraints into the quantification of the water cycle is. Sahoo et al. (2011)

used 16 data sets (eight for precipitation, six for evapotranspiration, one for runoff, and one for total

water storage) applying simple weighting integration over ten basins across the globe, determining
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water cycle budget non-closure between 5−25%. Likewise, Pan et al. (2012) used eight data sets (four

for precipitation, two for evapotranspiration, one for runoff, and one for total water storage) in 32

different basins. The authors focused on describing the uncertainty contribution of each component

rather than focusing on budget closure, and found that, in general, most of the closure error comes

from evapotranspiration.

To date, only a few studies have adopted multi-source data integration at the global scale (Rodell

et al., 2015; Zhang et al., 2016; Munier and Aires, 2018). The differences between studies and their

results reside either on the data sets selected or in the post-processing. Rodell et al. (2015), using

six data sets (one for precipitation, three for evapotranspiration, one for runoff, and one for total

water storage; table 2.3), reported a non-closure residual of less than 10%. The authors adopted the

variational data assimilation algorithm of L’Ecuyer and Stephens (2002) and adjusted it to optimize

the global water cycle budget closure at the annual scale. They reported (116.5 ± 5.1)×103 km3/year

overland precipitation, (70.6 ± 5.0)×103 km3/year evapotranspiration, (45.9 ± 4.4)×103 km3/year

runoff, (403.5 ± 22.2)× 103 km3/year over ocean precipitation, and (449.5 ± 22.2)× 103 km3/year

evaporation. Note that the estimates reported by Oki and Kanae (2006) and Trenberth et al. (2011)

lie within the above findings with the only two exceptions of overland precipitation from Oki and

Kanae (2006) and runoff from Trenberth et al. (2011).

Table 2.3: Compiled from Rodell et al. (2015). P is precipitation, ET is evapotranspiration, Q is
runoff, and ∆ TWS is changes in total water storage.

Data source Variable Reference(s)
GPCP v2.2 P Adler et al. (2003)

Huffman et al. (2009)
Princeton ET ET Vinukollu et al. (2011b)
MERRA and MERRA-Land ET Rienecker et al. (2011)

Bosilovich et al. (2011)
Reichle (2012)

GLDAS ET Rodell et al. (2004)
University of Washington runoff Q Clark et al. (2015)
CSR RL05 ∆ TWS Chambers and Bonin (2012)

Johnson and Chambers (2013)
Tapley et al. (2004)

Zhang et al. (2016), using 14 data sets (five for precipitation, six for evapotranspiration, one for

runoff, and two for total water storage; table 2.4), assessed the effect of different data sources in the

estimation of the water cycle and its budget closure. By removing/replacing in situ observations,

reanalysis products, model simulations, or satellite products before data integration, the authors

observed that removing non-satellite sources worsens closure errors. Furthermore, as for satellite

data sets, they indicate that budget closure error depends on the use of satellite-only data sets or
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satellite-gauge combined data sets. Regardless of the combination of data sets, the budget could not

be closed and, thus, a constrained Kalman filter was used, as developed by Sahoo et al. (2011). They

reported a non-closure residual that ranges between 7.6 − 10.4% when using satellite products that

lack gauge-based corrections, which is reduced to 4.2 − 9.0% when using gauge-corrected satellite

products.

Table 2.4: Modified from Zhang et al. (2016). P is precipitation, ET is evapotranspiration, Q is
runoff, and TWS is total water storage.

Data source Variable Reference(s)
CSU P Bytheway and Kummerow (2013)
PGF P Sheffield et al. (2006)
CHIRPS P Funk et al. (2014)
GPCC(v6) P Schneider et al. (2014)
TMPA-RT P Huffman et al. (2007, 2010)
SRB-PGF-PM ET Vinukollu et al. (2011a)
VIC ET Sheffield and Wood (2007)
ERA-interim ET Simmons (2006)
MERRA ET Rienecker et al. (2011)
GLEAM ET Miralles et al. (2011)
SRB-CFSR-SEBS ET Vinukollu et al. (2011a)
SRB-CFSR-PM ET Vinukollu et al. (2011a)
SRB-CFSR-PT ET Vinukollu et al. (2011a)
VIC Q Sheffield and Wood (2007)
VIC TWS Sheffield and Wood (2007)
GRACE TWS Landerer and Swenson (2012)

Munier and Aires (2018) integrated 12 data sets (four for precipitation, three for evapotranspira-

tion, one for runoff, and four for total water storage; table 5) over 11 basins to test a budget closure

correction model. The authors define the Calibration Index for Closure (CIC), which depends on the

values of precipitation minus evapotranspiration (P − ET) and the Normalized Difference Vegeta-

tion Index (NDVI), and based on the CIC values, assigned the basins into one of four classes. Then

the closure correction model is calibrated to each basin using the corresponding CIC class, and it

optimizes budget closure for the fluxes one at the time. While no absolute values are reported, the

authors describe how this novel method reduced non-closure residuals by 26% of the value it would

have using constrained Kalman filter post-processing.

In the above-mentioned studies, there is a methodological consensus to use simple weighting when

integrating data from various sources. This is in good agreement with Aires (2014) who compared

the performance of different integration methods, and reported that simple weighting is the most

suitable one. Simple weighting offers a straightforward formulation, and more elaborate methods do

not offer enough improvement on results to justify the increased complexity they carry along. The

assumption for the simple weighting method is that the errors associated with the different products
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Table 2.5: Modified from Munier and Aires (2018). P is precipitation, ET is evapotranspiration, Q
is runoff, and ∆ TWS is total water storage change.

Data source Variable Reference(s)
TMPA P Huffman et al. (2007)
CMORPH P Joyce et al. (2004)
NRL P Turk et al. (2010)
GPCP P Adler et al. (2003)
GLEAM ET Miralles et al. (2011)
MOD16 ET Mu et al. (2007)
NTSG ET Zhang et al. (2010)
GRDC Q http://www.grdc.sr.unh.edu/

CSR ∆ TWS http://www2.csr.utexas.edu/grace/

GFZ ∆ TWS ftp://isdcftp.gfz-potsdam.de/grace/

JPL ∆ TWS https://grace.jpl.nasa.gov/data/get-data/

GRGS ∆ TWS https://grace.obs-mip.fr/

are Gaussian (zero-mean) and independent. However, there might be cases that this assumption

may not hold, especially for gauge-based data products, and the dependence among products will

cause an underestimation of the error associated with the integrated data set. The combined data

set for a given component of the global water cycle (P , ET, Q, or ∆ TWS) is equal to:

x =

n∑
i=1

wixi (2.4)

where x is the combined data set for the single component of the global water cycle being integrated,

x1, x2, x3, ..., xn are the different products considered, wi is the associated weight of product xi

and is defined as:

wi =
(x̄− xi)

−2∑n
j=1 (x̄− xj)

−2 (2.5)

where x̄ is the arithmetic mean of the n data products considered, and (x̄− xi)
2

is defined as the

error variance. That is to say, the weight associated to each product is proportional to the inverse

of its error variance. Finally, the error associated to the combined data set x is:

ex =
1∑n

i=1 (x̄− xi)
−2 (2.6)

2.3 Status Quo et Verisimile Futurum

It might have been noticed that the chronology of global water cycle quantification does not follow a

linear timeline. The epochs started at different points in time without replacing the one before. Each
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epoch did not only continue to develop, but just like global water cycle components, they interacted

with each other in a feedback loop. A convergence point is the fact that model simulations and

satellite-based measurements depend upon ground observations either for validation or calibration.

The latest epoch, the age of big data, does not intend to merge all the previous into one, but to exploit

the various data sources stemming from them to generate the most accurate estimates possible.

Therefore, we should keep working on the continuous improvement of ground measurements, model

simulations, and satellite observations, which will inherently improve their integration.

Abbott et al. (2019) provided one of the most recent descriptions of the global water cycle.

Analogously to Oki and Kanae (2006), the authors did not quantify the global water cycle com-

ponents themselves but synthesized data from the literature. The authors did not aim to quantify

the components of the global water cycle but to assess its correct representation. To do so, they

compiled over 464 diagrams (e.g., figure 2.3) and estimates from over 80 studies. Human interaction

was absent in approximately 85% of the diagrams, highlighting the omission of the non-negligible

anthropogenic component of the water cycle. In addition, the authors stress the necessity to repre-

sent seasonal and interannual variability of the global water cycle fluxes and storages in diagrams

because the general understanding of temporal variability of the global water cycle is absent in the

collective consciousness (Cardak, 2009). Within the studies, not all of them reported estimates for

all components of the global water cycle. The synthesis resulted in the following estimates: over-

land precipitation 110 × 103 km3/year, evapotranspiration 69 × 103 km3/year, and runoff 46 × 103

km3/year; over oceans, precipitation 380 × 103 km3/year and evaporation 420 × 103 km3/year.

Herein, building upon the previous compendium done by Baumgartner and Reichel (1972), we

surveyed the recent literature, and to the best of our knowledge, compiled all the different estimates

of global water cycle components available in peer review journals that at least report the aver-

age annual fluxes for the terrestrial or oceanic water cycle (Table 2.6). Since 2010 it has become

more common for studies to address only the terrestrial water cycle (e.g., van der Ent et al. 2010;

Haddeland et al. 2011; Jasechko et al. 2013; Zhang et al. 2018). On the other hand, ocean salinity

measurements are being exploited to study the oceanic branch of the water cycle (Durack, 2015),

yet there are very few studies focusing solely on the oceanic water cycle (e.g., Syed et al. 2010;

Robertson et al. 2014; Gutenstein et al. 2021). Inspecting the chronology of global water cycle flux

annual average estimates over land and over oceans, it is safe to state that uncertainty estimates as-

sociated with fluxes over oceans is higher than that over land (figures 2.4(a) and 2.4(b)). Comparing

the standard deviation and the interquartile range of the estimates from Oki (1999) onward with

the ones from all the estimates (1905-2019), we can affirm that variability has diminished in recent
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Figure 2.3: The Water Cycle. Credit: Howard Perlman, United States Geological Survey (USGS).

years (figures 2.4(c) and 2.4(d)). Moreover, the variability of ocean precipitation and evaporation

was reduced by more than 70%. These findings advocate that the consistency of the estimates has

been improved.

Despite our survey compiling estimates available in the literature rather than presenting a more

“traditional” estimates’ time series, we observe an increasing trend in the global water cycle fluxes

annual average as the year of publication progresses (figure 2.5). We should remark that the years

listed correspond to the publication date and do not necessarily reflect on the data sets’ reference

period used by the authors therein. Hence, our observations are of qualitative and not quantitative

character. An increasing trend in global water cycle fluxes, commonly referred to as intensification,

is often attributed to global warming; however, the processes that drive the global water cycle’s

response are yet to be fully understood (Allan et al., 2020). Take note that these estimates are global

and do not describe changes in the water cycle at different smaller scales. On top of that, we should

not assess these results conclusively because most studies used different data sources and different

methods at different development stages, as discussed in the previous section. For example, if we

were to look only at table 2.6 entries in figure 2.6 (from Baumgartner and Reichel (1972) onward),

we would not be able to clearly discriminate a trend from the variability present in those estimates.
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Table 2.6: All the fluxes are in 103 km3/year. PL is precipitation overland, ET is evapotranspiration
overland, Q is runoff, PO is precipitation over oceans, E is evaporation over oceans, PTOT is total
global precipitation, and ETOT is total global evaporation.

Author PL ET Q PO E PTOT ETOT

Manabe and Bryan (1969) 93.4 69.5 23.9 359.3 429 452.7 498.5
Baumgartner and Reichel (1972) 100 65 35 383 418 483 483
Falkenmark and Lindh (1974) 114 73 41 412 453 526 526
Speidel and Agnew (1982) 111 71 39.7 385 425 496 496
NRC (1986) 107 71 36 398 434 505 505
VanDerLeeden et al. (1991) 100 70 39.6 320 350 420 420
Gleick (1993) 119 72 47 458 505 577 577
Schmitt (1995) 110.4 69.4 41 384.7 425.7 495.1 495.1
Shiklomanov (1998) 119 74.2 42.7 458 502.8 577 577
Oki (1999) 115 75 40 391 431 506 506
Oki and Kanae (2006) 111 65.5 45.5 391 436.5 502 502
Schlosser and Houser (2007) 103.5 63 40.5 376 417 479.5 480
Trenberth et al. (2007) 113 73 40 373 413 486 486
Lim and Roderick (2009) 113 78.8 34.1 417.7 451.8 530.7 530.8
Syed et al. (2010) 36.1 374.2 409.2
van der Ent et al. (2010) 117 82 35
Chapin et al. (2011) 110 71 40 385 425 495 496
Haddeland et al. (2011) 126 72.5 54
Trenberth et al. (2011) 114 74 40 386 426 500 500
Jasechko et al. (2013) 110 72.7 37.3
Durack (2015) 110.4 85.1 39.4 384.7 410 495.1 495.1
Rodell et al. (2015) 116.5 70.6 45.9 403.5 449.5 520 520.1
Schneider et al. (2017) 117.6 71.8 45.8 386 431.8 503.6 503.6
Zhang et al. (2018) 114.7 68 46.6
Abbott et al. (2019) 110 69 46 380 420 490 489
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(a) (b)

(c) (d)

Figure 2.4: Probability density distribution of global water cycle fluxes from tables 2.1 and 2.6. The
dashed line represents the mean value of each flux. (a) Overland fluxes where P is precipitation,
ET is evapotranspiration, and Q is runoff. (b) Over ocean fluxes where P is precipitation and E is
evaporation. (c) Same as (a) but only for table 2.6. (d) same as (b) but only for table 2.6.

Figure 2.5: Chronological estimates of global water cycle fluxes over land in 103 km3/year. P
is precipitation, ET is evapotranspiration, and Q is runoff. The years listed correspond to the
publication date and do not necessarily reflect the data sets’ reference period used by the authors.
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Figure 2.6: Chronological estimates of global water cycle fluxes over oceans in 103 km3/year. P is
precipitation and E is evaporation. The years listed correspond to the publication date and do not
necessarily reflect the data sets’ reference period used by the authors.

Moreover, suppose we were to omit the estimates reported between VanDerLeeden et al. (1991) and

Shiklomanov (1998), there seem to be minor oscillations around an overall flat trend, attesting the

narrative is dependent on the data being observed. Latch onto the ratio between evapotranspiration

and precipitation over land, also known as the Evaporative Index (ET/P ; figure 2.7), and it is

interesting to see how, despite some clear multiannual oscillations, there seems to be no sharp trend.

The Evaporative Index is the fraction of available water consumed by evapotranspiration (Budyko,

1974), and assuming no significant change in total water storage, its residual (1− ET/P ) could be

inferred as the fraction that turns into available freshwater. This, at least on paper, would suggest

global freshwater availability has not diminished on average.

Through the previous sections, we have described how our understanding of the global water

cycle has been evolving over the years as we exploit novel technologies and methods to quantify the

components of the global water cycle more accurately. Accordingly, to assess future changes in the

global water cycle and its response to global warming, we should study both past shifts documented

in observational records and possible changes predicted by model simulations. While there are

inherent fluctuations in the global water cycle, some of them are driven by natural phenomena like

variations in the sun and volcanic eruptions (e.g., the year without a summer; Stommel and Stommel
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Figure 2.7: Chronological estimates of the evaporative index. Which is defined as the ratio between
evapotranspiration and precipitation overland (ET/P ). The years listed correspond to the publica-
tion date and do not necessarily reflect the data sets’ reference period used by the authors.

1979), and anthropogenic activities. The latter exerts a continuously increasing influence directly

via interference with land surface and water consumption, and indirectly via greenhouse gases and

aerosols emissions (Abbott et al., 2019). The nature of the driver and the spatial scale they exercise

domain over, alter key water cycle characteristics, e.g., precipitation frequency, intensity, or duration

(Pendergrass and Hartmann, 2014).

Concurrently, model simulations predicted that global mean precipitation would rise in response

to CO2 doubling (Mitchell et al., 1987). The relationship between climate and water cycle caught

the attention of both climatic and hydrological communities (Chahine, 1992b; Loaiciga et al., 1996).

Models and the relationship between climate and water cycle are continuously evaluated in the As-

sessment Reports of the Intergovernmental Panel on Climate Change (IPCC; Collins et al. 2013;

Flato et al. 2013). The Clausius-Clapeyron expression for the saturation vapor pressure establishes

that at temperatures typical of the lower troposphere, the water holding capacity increases by about

7% for each 1K increase in temperature. It is safe to assume that an increase in lower-tropospheric

water vapor will lead to a chain reaction affecting the entire global water cycle. The poorly under-

stood response of the global water cycle resulted in two main hypotheses: the “changing character

of precipitation” and the “dry gets drier, wet gets wetter”. The former shows that the increase
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in global mean precipitation will be unevenly distributed in precipitation events (Trenberth et al.,

2003). Heavy or extreme rainfall will become more frequent, while light or moderate precipitation

will decline. The latter suggests that the increased vertical gradient of atmospheric water vapor

would offset atmospheric wind convergence in the tropics making wet regions wetter and dry regions

drier (Roderick et al., 2014). Both hypotheses are today under vigorous debate (Held and Soden,

2006; Seager et al., 2010; O’Gorman and Muller, 2010; Greve et al., 2014; Roderick et al., 2014;

Byrne and O’Gorman, 2015; Kumar et al., 2015; Salzmann, 2016; Skliris et al., 2016; Wang et al.,

2017; Markonis et al., 2019; Allan et al., 2020).

Global precipitation and evapotranspiration, however, are further associated with Earth’s energy

budget rather than the Clausius-Clapeyron equation (O’Gorman et al., 2012; Roderick et al., 2014).

Model simulations report that in response to global warming, global precipitation and evapotran-

spiration, independently of climate forcing, would increase constrained by Earth’s energy budget to

an expected rate between 2-3%/K (Samset et al., 2018). Precipitation’s response to global warming,

also known as apparent hydrological sensitivity, comprises a fast reaction proportional to radiative

forcings and a slow temperature-dependent response to the radiative forcings (Bala et al., 2010).

Across multiple model simulations, precipitation increases with global warming are generally sup-

pressed over land compared to the global mean (0.8-2.4%/K vs. 2.3-2.7%/K), a behavior partly

expected due to limitations on moisture convergence product of the more significant warming over

land than oceans (Richardson et al., 2018). Considering that global precipitation’s response to

global warming is slower than the response of atmospheric water vapor, atmospheric water vapor

lifetime must increase to reconcile these different response rates (Hodnebrog et al., 2019). By doing

so, regional characteristics of precipitation such as seasonal duration, frequency, and intensity are

altered (Pendergrass, 2018).

As atmospheric water vapor content increases and its lifetime prolongs, the increased horizon-

tal moisture transport induces an intensification of precipitation minus evapotranspiration patterns.

Over the continents, precipitation minus evapotranspiration is positive and accounts for the freshwa-

ter flux from the atmosphere to the surface, whereas over the ocean, precipitation minus evaporation

is negative and represents the freshwater flux from the oceans to the atmosphere. In dry regions,

where evapotranspiration is constrained by water availability, changes in precipitation minus evapo-

transpiration will be mainly credited to precipitation changes (Roderick et al., 2014). Precipitation

minus evapotranspiration over land can be negative during dry seasons or extended drought periods

(Kumar et al., 2015). Given that evapotranspiration is a compound flux of evaporation and tran-

spiration, the response of vegetation to global warming and increased CO2 concentrations in the
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atmosphere will also determine the characteristics of regional precipitation minus evapotranspira-

tion patterns. Besides, over land, we cannot neglect anthropogenic activities like irrigation, land-use

change, deforestation, urbanization, and water withdrawals, among others that directly alter pre-

cipitation minus evapotranspiration regimes. On this account, we can expect several factors like

topography, atmospheric circulation, anthropogenic tampering, and vegetation response to generate

different and complex water cycle responses to global warming.

2.4 Discussion and Conclusions

Early attempts to quantify the global water cycle date back to the early 1900s (Brückner, 1905).

To date, despite tremendous advances in terms of data and technology, accuracy regarding the

components of the global water cycle has not increased accordingly. Ultimately, unquantified un-

certainties on remote sensing satellite products (Sheffield et al., 2009), limitations of climate model

simulations (Trenberth et al., 2011), short and heterogeneous observational data records (Schneider

et al., 2017), and the natural fluctuations of water cycle components Markonis et al. (2018) keep the

understanding of the global water cycle ambiguous and human contribution unattributed. Within

the twenty-first century, the paradigm of quantifying the global water cycle has been shifting from

identifying the best data source per water cycle component into developing the best way to integrate

data from various sources (Aires, 2014). Therefore, proper statistical tools for uncertainty quantifi-

cation (Papalexiou, 2018), robust downscaling/disaggregation (Papalexiou et al., 2018), along with

analysis over multiple scales (Hanel et al., 2017; Markonis et al., 2021b) are required.

The quest for accurate global water cycle quantification gave birth to the Global Energy and

Water Exchanges (GEWEX) project. The GEWEX project, formerly known as the Global Energy

and Water Cycle Experiment, started in 1990 and is dedicated to studying the Earth’s water and

energy cycles (Chahine, 1992a). GEWEX established a channel for international research collabora-

tion through different panels, meetings, and projects. Among the most renowned outcomes, we could

mention the work of Trenberth et al. (2007), which we further discussed in section 2.2.3. Speaking

of data sets and modeling improvements, GEWEX overlooks eight continental-scale experiments:

GEWEX Americas Prediction Project (GAPP; Lawford 1999), Baltic Sea Experiment (BALTEX;

Raschke et al. 1998, 2001), GEWEX Asian Monsoon Experiment (GAME; Yasunari 1994), Large

Scale Biosphere Atmosphere Experiment in Amazonia (LBA; Marengo 2005), Mackenzie GEWEX

Study (MAGS; Stewart et al. 1998), La Plata Basin (LPB; Cavalcanti et al. 2015), The African

Monsoon Multidisciplinary Analysis (AMMA; Redelsperger et al. 2006), and Murray-Darling Basin
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(MDB; Evans and McCabe 2010). Other than the logistic and political criteria, these sites were

selected in order to collect data from different climate regimes to assess the global water cycle in

a representative manner. The collaborative effort of the international teams involved improved

the understanding of regional water balance and feedback processes. The data resulting from the

continental-scale experiments are publicly available. Thus, they indirectly started to set up a sci-

entific framework to quantify the global water cycle and close its budget; the latter was obtained

within a 10% non-closure tolerance.

As a rule of thumb, ground observations are regarded as the closest measurements to the ac-

tual values. However, it is evident that ground observations suffer from systematic errors, mainly

because of different environmental and meteorological conditions. For example, the precipitation

phase, evaporation from the gauge, and wind drift induce precipitation undercatch on rain gauges

(Fuchs et al., 2001). The scientific community is aware that good quality ground observations data

represent a cornerstone to quantify the global water cycle, yet we are still unable to deploy a ho-

mogeneously distributed global network. Spatial coverage of the Global Precipitation Climatology

Centre (GPCC), currently the most comprehensive gauge network available, represents only about

1% of the Earth’s surface (assuming no overlap of a 5 km radius per gauge) (Kidd et al., 2017). One

of the main reasons behind the struggle to deploy a comprehensive network is that ground stations,

and ergo observational data records, are extremely geopolitically dependant (Kibler et al., 2014).

In addition, deploying dense monitoring networks unavoidably imply high operational and main-

tenance costs and spatial requirements (Saltikoff et al., 2017). Consequently, in many developing

countries, ground observational records, if available, tend to have multiple temporal discontinuities

or non-standardized data quality check protocols (Walker et al., 2016). Different techniques have

been used to fill spatiotemporal gaps in observational records. Reconstructing these time series

could be achieved using several tools that could be grouped in the following, self-contained infilling

(Kemp et al., 1983; Pappas et al., 2014), spatial interpolation (Shepard, 1968; Young, 1992; Eischeid

et al., 1995, 2000), quantile mapping (Simolo et al., 2010; Newman et al., 2015, 2019; Devi et al.,

2019), and machine learning methods (Dastorani et al., 2010; Wambua et al., 2016). On a different

front, there is an opportunity to use data from amateur networks and the internet of things (i.e.,

big data with large uncertainty) to enhance spatial coverage and spatiotemporal resolution of tradi-

tional ground stations via crowdsourcing and the internet. Needless to say, appropriate validation

and quality control procedures must be adopted and implemented to fully exploit the potential to

provide a valuable source of high spatiotemporal resolution real-time data (Muller et al., 2015). As

of now, however, the lack of adequate ground-based data and station networks still hampers our
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ability to monitor the water cycle robustly.

Model simulations can generate past climate, current climate, and climate projections data.

Moreover, they are capable to switch anthropogenic forcing on precipitation on and off, while the

decoupling of natural and anthropogenic forcing remains a challenge on observational data (Allen

and Ingram, 2002). However, compared to observational data, various characteristics of global water

cycle fluxes, and precipitation, in particular, hold uncertainty (Prein and Pendergrass, 2019). The

simulated projections’ temporal length appears to influence precipitation trends, e.g., variability in

precipitation estimates are indistinguishable from the noise of internal variability in 20-year or longer

runs (Hawkins et al., 2016). Specifications differ from model to model, but in general, recycling of

moisture is too large, and the lifetime of moisture is too short across most models, inducing premature

precipitation (Trenberth et al., 2011). Also, inaccurate convective parameterizations evidenced that

models overestimate precipitation frequency and underestimate its intensity (Trenberth et al., 2017).

Analysis focusing on convective precipitation highlighted that its model representation is strongly

dependant on the model depiction of cloud microphysics and cloud spatiotemporal variability (Zhao

et al., 2016). There is a threefold spread in mean precipitation change with global temperature

(1 − 3% K−1), and model simulations showed that there is a correlation between an increase in

precipitation extremes and an increase in model resolution, precipitation extremes at the same time

showed an anticorrelation with changes in light-moderate precipitation (Thackeray et al., 2018).

Furthermore, both the spread and magnitude of change in extreme precipitation vastly exceed those

of mean precipitation (4−10% K−1) (Kharin et al., 2013). Last but not least, despite the known link

between the energy and water global cycles, solar dimming and brightening (the effect of aerosols)

are not well represented or sometimes not even considered at all in models; thus, model simulations

fail to reproduce variability in the global water cycle intensity (Wild and Liepert, 2010).

Satellite remote sensing observations, like models, are limited by their design. Both the orbit

they follow and the instrument type (i.e., active or passive) influence global water cycle components’

monitoring. The satellite’s orbit would delimit its spatiotemporal resolution or coverage. In general,

a satellite with high spatial resolution comes with coarse temporal resolution and vice-versa, and

high spatiotemporal resolution comes with limited coverage. It has been shown that estimates from

active sensors can considerably vary from passive sensor ones, yet they complement each other

(Petković and Kummerow, 2017). In addition, similarly to ground observations, satellite remote

sensing has to deal with different meteorological conditions. For instance, satellite-based global

water cycle estimates accuracy is affected by cloud-top reflectance and thermal radiance, making

uncertainty larger during the winter or in dry climates (Kummerow et al., 2004). While satellites
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can monitor the water cycle at the global scale and cover regions inaccessible by ground stations,

they still have to tackle the problems involved in complex topography regions. In some cases,

the relative biases reach as much as 300% for precipitation estimates (Fekete et al., 2004). Further

complications arise from the unique spatiotemporal characteristics of different remotely sensed global

water cycle components, making it impossible to assess the water budget without some sort of prior

downscaling or integration (Sheffield et al., 2018). E.g., TMPA’s precipitation at 25 km every three

hours (Huffman et al., 2007), MODIS’ evapotranspiration at 1 km daily (Mu et al., 2007), and

GRACE’s total water storage at ∼ 500 km every 30 days(Tapley et al., 2004). Despite all the issues

mentioned above, satellite products continue to be the most widely used sources to monitor global

water cycle components due to their comprehensive spatial coverage.

It is clear that no global water cycle data source is without fail, and in some cases, one data

source strengths cover for other weaknesses. It is typical for satellite-based measurements and model

simulations to use ground-based data for validation, calibration, and enhancement purposes. Along

the same line, model simulations additionally assimilate satellite-based observations for the above

plus for reanalysis. In contrast to the top-down estimation approach used in satellite remote sensing,

a bottom-up approach, referred to as reverse hydrology, has been recently proposed (Ciabatta et al.,

2020). A physically-based selection of surface explanatory variables, like soil moisture, vegetation

cover, and topography, is expected to preserve process dynamics and interlinkages within data

sets that remain unresolved in conventional statistical downscaling bias-correction methods (Wehbe

et al., 2020). It is of utmost importance that the research community strives to improve ground

observations, model simulations, and satellite remote sensing measurements individually because

more accurate and robust individual data sources will subsequently refine the outcome of multi-

source integration. Hence, a three-way integration of satellite remote sensing, model reanalysis, and

ground-based measurements, as discussed in section 2.2.4, is widely acknowledged as the current

best practice, particularly when leveraging machine learning tools to handle large data sets.

57



Chapter 3

Water Cycle Changes in

Reanalyses: A Complementary

Framework

3.1 Introduction

Understanding the global water cycle and its balance is crucial for Earth system science and climate

change studies. To assess the water cycle at multiple spatiotemporal scales, we observe and measure

the fluxes and storage that comprise its budget. The data sources we rely on for such research

have continuously evolved, even though they remain thwarted by uncertainty (Vargas Godoy et al.,

2021). Ground observations are regarded as the closest measurements to the actual values, but we

still lack a comprehensive global network. E.g., the Global Precipitation Climatology Centre (GPCC)

(Schneider et al., 2011), currently the most extensive gauge network available, represents only about

1% of the Earth’s surface (assuming a 5[km] non-overlapping radius per gauge) (Kidd and Huffman,

2011). While a kindred initiative for evaporation exists (FLUXNET) (Pastorello et al., 2020),

evaporation is more commonly derived from atmospheric moisture and precipitation measurements

than directly observed. Satellite remote sensing data complement ground measurements by offering

observational coverage on a global scale. Its record, nonetheless, is too short to assess long-term

changes of water cycle fluxes.

Reanalysis products assimilate observational data into general circulation models or, most re-
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cently, earth system models. Broadly speaking, assimilation algorithms recursively combine the

model outputs and observations within a Bayesian statistical framework. As a result, the physical

conservation principles are overstepped, which is reflected in substantial variability compared to

that of other data sources (Prein and Pendergrass, 2019). Since their early implementation, con-

cerns about the reliability of reanalyses to assess the global water cycle have been raised (Trenberth

and Guillemot, 1995). Despite individual advancements in model simulations as well as assimila-

tion algorithms, it has been reported that moisture recycling is too large and its lifetime too short

(Trenberth et al., 2011). Regardless, reanalyses remain one of the most comprehensive data sources

because of their high spatiotemporal resolution and capability to switch anthropogenic forcing on

and off (Allen and Ingram, 2002).

Therefore, it is no surprise that they have been used in the estimation of water cycle fluxes and

their changes. A prime example is the work of Trenberth et al. (2007), therein the authors describe

the global water budget and its annual cycle. While the authors have reservations about reanalysis-

based results, they acknowledge the potential for in-depth analysis using reanalyses. It is worth

mentioning that the work of Trenberth et al. (2007) is in high regard by the scientific community, and

their results are often used to benchmark more recent studies. During the last decade, global water

cycle research has explored multi-source data integration, exploiting observational and reanalysis

data availability. Specifics between methods vary, but, in general, data sets are merged in three

steps: initial assessment of the data, integration of the products, and budget closure post-processing.

Some examples at the global scale are the works of Rodell et al. (2015) and Zhang et al. (2016),

where the authors use multiple reanalysis evaporation/evapotranspiration products to assess the

water cycle and budget closure. Rodell et al. (2015) relied on reanalyses at various other stages

of their analysis, such as data sources for other variables (e.g., atmospheric convergence, wind,

and surface pressure), to downscale observations, and to fill data gaps. The authors convey that

independent reanalysis estimates enable assessing uncertainty with a higher degree of confidence.

Zhang et al. (2016) studied the influence of data sources on water budget closure experiments and

concluded that integrating reanalysis data reduces the non-closure errors significantly. Yet, further

efforts are needed to understand the discrepancies among different data sources.

In this study, the representation of global water cycle changes is assessed in four reanalysis

data sets for the first time. To achieve it, we physically define precipitation plus evaporation to

unveil hidden details that have been overlooked due to the lack of a more exhaustive framework. We

assessed the following data sets: 20CR v3 (Slivinski et al., 2019), ERA-20C (Poli et al., 2016), ERA5

(Hersbach et al., 2020), and NCEP1 (Kalnay et al., 1996). First, we compare the reanalyses using
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ground-based data as a reference GPCP v2.3(Adler et al., 2018) and HadCRU5T5 (Morice et al.,

2021) for precipitation and temperature, respectively. Then, we inspect P − E to check for budget

closure, and we evaluate the P +E behavior in terms of hydrological sensitivity. Next, we present the

application of P + E in a framework that describes the changes in the water cycle. We achieve this

by exploring the changes in atmospheric water fluxes and storage redistribution between land-ocean

and the atmosphere. Finally, we discuss the possible connotations of the findings regarding P + E

and its application as a performance metric for reanalysis data.

3.2 The Physical Basis

Over land, the net water flux into the surface, a vital aspect of the water cycle for human society, is

described by the difference between precipitation and evaporation (P−E). Thus, P−E characterizes

atmosphere-land surface interactions and represents the maximum available renewable freshwater

(Oki and Kanae, 2006). Analogously, evaporation minus precipitation (E − P ) determines the

surface salinity of the ocean, which helps determine the stability of the water column (Cheng et al.,

2020). There was a consensus that as precipitation increases overland, so does evaporation over

the oceans to balance the global water cycle (Held and Soden, 2006). Nonetheless, it has recently

become evident that there are contrasting responses between the terrestrial and oceanic water cycles

(Sherwood and Fu, 2014; Byrne and O’Gorman, 2015). Furthermore, at the regional scale moisture

convergence can increase precipitation (Espinoza et al., 2018). Assuming radiation is not limiting,

evapotranspiration will be equally enhanced. On the one hand, P − E would suggest no change

in the hydrological cycle, while, on the other hand, the increase in P + E would correctly indicate

that the water cycle is indeed changing, with more water being circulated in total through the

surface-atmosphere continuum.

Huntington et al. (2018) have already shown that the sum of precipitation and evapotranspira-

tion can be adequately applied to quantify the changes in the terrestrial portion of the water cycle.

We argue that this approach can be extended to the description of the whole water cycle because

P + E has a robust physical meaning; it describes the total flux of water exchanged between the

atmosphere and the surface. Furthermore, like the human heart, the Earth cycles far more water

through the atmosphere than its holding capacity. In this manner, it would make sense to also look

into the addition of fluxes rather than only their difference when assessing the global water cycle

intensification. The proposed framework is based on quantifying precipitation, evaporation, their

difference, and their sum. The latter, precipitation plus evaporation, is mathematically complemen-
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tary to the widely used P − E metric. Nonetheless, math alone does not suffice to improve our

understanding of the global water cycle. Thus, we will define P + E from a mass balance and a

kinematic perspective.

3.2.1 Water Cycle Budget

The global water cycle’s mass balance is expressed with the water budget equation:

P + Qin = E + Qout + ∆S (3.1)

where P is precipitation, Qin is water flow into the Earth, E is evaporation (since we are at the

global scale we will refer to it simply as evaporation for brevity, but we acknowledge it encompasses

evaporation from soils, surface-water bodies, and plants), ∆S is water storage change in the land-

ocean continuum (biological water, fresh lakes, ice, nonrenewable groundwater, oceans, permafrost,

reservoirs, renewable groundwater, rivers, saline lakes, seasonal snow, soil moisture, and wetlands),

and Qout is water flow out of the Earth. All terms are averaged globally over a fixed time period

(e.g., [mm/yr]). At the global scale, due to Earth’s gravity and temperature, water inflow or

outflow leaking between the atmosphere and outer space is negligible compared with precipitation

and evaporation and water storage change. Consequently, Qin → 0 and Qout → 0 leaving us with:

∆S = P − E (3.2)

where ∆S represents a storage redistribution from the atmosphere towards the land-ocean contin-

uum (positive), from the land-ocean continuum towards the atmosphere (negative), or steady state

equilibrium (zero). Now, we define global water cycle intensity as:

GWCI = P + E (3.3)

In this manner, intensity is defined as the total total flux of water exchanged between the atmosphere

and the land-ocean continuum. This definition is in line with previous formulations in the literature

(Huntington et al., 2018; Weiskel et al., 2007). Furthermore, different ways to integrate precipitation

and evaporation to describe the hydroclimatic regime have been in use for over half a century now

(e.g., Budyko curve; Budyko 1974).
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3.2.2 Water Cycle Kinematics

As established above, precipitation plus evaporation describes the water cycle intensity from a mass

balance perspective by quantifying the total flux of water exchanged between the atmosphere and the

land-ocean continuum. If we describe these atmospheric water fluxes from a kinematic perspective,

we have two velocity vectors:

P⃗lon,lat = P(x, y, z)

E⃗lon,lat = E(x, y, z)

(3.4)

where, at any location on Earth’s surface, P⃗lon,lat is the precipitation vector with magnitude P and

E⃗lon,lat is the evaporation vector with magnitude E. These velocities are parallel to each other but

are oriented in opposite directions. We define the direction from the atmosphere to the surface as

positive and the opposite (from the surface to the atmosphere) as negative, then:

P⃗lon,lat = P(0̂i, 0ĵ, 1k̂)

E⃗lon,lat = E(0̂i, 0ĵ,−1k̂)

(3.5)

Precipitation and evaporation are heavily intertwined through moisture recycling. Therefore, we

could characterize their interdependence relationship by defining the velocity of the global water

cycle as the Newtonian relative velocity of precipitation with respect to evaporation:

−−−→
GWClon,lat = P⃗lon,lat − E⃗lon,lat

= P(0̂i, 0ĵ, 1k̂) −E(0̂i, 0ĵ,−1k̂)

= (0 − 0)̂i + (0 − 0)ĵ + (P− (−E))k̂

= 0̂i + 0ĵ + (P + E)k̂

= (P + E)(0̂i, 0ĵ, 1k̂)

(3.6)

where (P + E) is the magnitude of global water cycle velocity. Hence, we can safely ascertain that

assessing changes in P + E refers to acceleration or deceleration of the global water cycle.

3.3 The Precipitation-Evaporation Space

Including precipitation, evaporation, their difference, and their sum provides a synthesized visual

of the overall response of the water cycle to global warming. The global water cycle regimes in

62



this framework would be described in the precipitation-evaporation space by their precipitation

and evaporation coordinates, and vectors represent changes between two periods (Figure 3.1). By

transforming the changes in the relationship of P and E to changes in P − E and P + E, we can

describe the water cycle dynamics in terms of atmospheric water storage and fluxes correspondingly.

Precipitation and evaporation may increase, decrease, or remain constant. From equation (3.2),

changes in atmospheric water storage (P −E) shown as blue contours are planes that increase from

the bottom right (wetter) to the top left corner (drier). It is important to note that Huntington et al.

(2018) focused on terrestrial water storage, as such, the directions for drier and wetter are reversed

therein. From equation (3.3), water cycle acceleration (P + E) is a plane shown as green contours

that increases from the bottom left (cooler) to the top right (warmer). P −E is negative to the right

of the identity diagonal, zero along this line, and positive to the left of the line. At the global scale,

negative values describe an increase in atmospheric water storage (wetter), positive values describe

an increase in land-ocean water storage (drier), and zero describes steady-state equilibrium. P + E

increases describe shifts from cooler regimes into warmer ones.

3.4 Results

3.4.1 Climate Reanalyses

Our analyses, taken together, show the potential of precipitation plus evaporation to assess reanalysis

data and complement water cycle changes research. We start by exploring precipitation and temper-

ature as portrayed in reanalyses with GPCP v2.3 and HadCRUT5 as the existing references. The

variability from reanalysis precipitation becomes readily visible by the wide spread of values (Fig-

ure 3.2a). We observe an abrupt reduction in reanalysis precipitation variance after the mid-1960s

(narrowing of the gray area; Figure 3.2a), coinciding with the satellite era’s beginning. To a greater

or lesser extent, all reanalyses products overestimate precipitation, with NCEP1 having its 30-year

average closest to GPCP v2.3 (Figure 3.2b). Nevertheless, ECMWF reanalyses perform better than

the 20CR v3 and NCEP1 (0.4 vs. 0.1 R-squared; Figure 3.2c). Regarding temperature, there is con-

siderably less variability among reanalyses and no visible abrupt changes in said behavior (Figure

3.3a). Concurrently, temperature in reanalyses is centered around the 14[◦C] average (Figure 3.3b).

Furthermore, all reanalysis products exhibit a strong and statistically significant correlation to Had-

CRUT5 (R-squared ≳ 0.9; Figure 3.3c). Overall, ERA5, with the highest R-squared values, most

comprehensively captures both precipitation (R-squared 0.43) and temperature (R-squared 0.97)
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Figure 3.1: The global water cycle regime in the precipitation-evaporation space. Vectors represent
water cycle changes, where P is precipitation, and E is evaporation. Contours of equal P − E (no
change in water cycle storage) are shown as blue dashed lines, and movement across these lines (blue
vector) describe changes in water cycle storage. Contours of equal P + E (no change in water cycle
intensity) are shown as green dashed lines, and movement across these lines (green vector) describe
changes in water cycle intensity.
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changes among the four reanalyses. While no direct assessment of reanalysis evaporation is possible

due to the lack of observation-based reference data, and despite the general biases reported above,

it is feasible to rely on reanalyses to assess global water cycle changes based on their performance

versus precipitation and temperature observations.
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Figure 3.2: Benchmarking global spatial weighted average values of reanalysis precipitation compared
to GPCP v2.3 as the observation-based reference. (A) Precipitation anomalies annual time series
between 1950-2010 (common period between all reanalyses), spread of reanalysis estimates is shown
in gray and their mean in white, GPCP v2.3 is shown in turquoise. (B) The 30-year average for
the data sets compared, reanalysis estimates are shown in violet and GPCP v2.3 in turquoise. (C)
Summary statistics of linear correlation between reanalysis products and GPCP v2.3 annual time
series.

Atmospheric water residence time is circa nine days, and as previously stated, this lifetime is

underestimated in reanalyses. Thus at annual or longer time steps, what goes into the atmosphere

as evaporation has to equal what comes out as precipitation. Due to the assimilation algorithms

and systematic uncertainty in reanalyses, we expected budget non-closure to some extent. However,

it was surprising that even the 30-year moving average of P −E in reanalyses is not steady (Figure

3.4). A gripping behavior in both ongoing reanalyses, i.e., ERA5 (Figure 3.4c) and NCEP1 (Figure

3.4d), is that the P − E trend appears to be directed towards 0[mm/year] (P = E). In the case of

the long-term reanalyses, we found opposing conducts. ERA-20C has the “flattest” P −E mean at

approximately −5.5[mm/year] (Figure 3.4b). On the other hand, the 20CR v3 has considerably more

variability and the highest P −E absolute values (Figure 3.4a). A particular characteristic of 20CR

v3 P − E is that it seems to exhibit two regimes, one before 1900 centered around −54[mm/year]

and the second from 1900 onwards centered around −69[mm/year].
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Figure 3.3: Benchmarking global spatial weighted average values of reanalysis temperature compared
to HadCRUT5 as the observation-based reference. (A) Temperature anomalies annual time series
between 1950-2010 (common period between all reanalyses), spread of reanalysis estimates is shown
in gray and their mean in white, HadCRUT5 is shown in red. (B) The 30-year average for the data
sets compared, reanalysis estimates are shown in violet (HadCRUT5 is not available). (C) Summary
statistics of linear correlation between reanalysis products and HadCRUT5 annual time series.
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Figure 3.4: Global spatial weighted average of annual total precipitation minus evaporation in [mm]
as depicted in four reanalysis data sets for their respective available record. Annual values are shown
in gray. 30-year moving average values are shown in blue.
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3.4.2 Water Cycle Changes

The physical soundness of the P + E metric becomes readily visible by the superimposition of the

annual mean global temperature and the annual total global P + E of the four reanalysis data sets

(Figure 3.5). Their coupling is statistically supported by quantifying the linear relationship between

these variables (Table 3.1). The dominant behavior in the long-term relationships reports two

common markers: a strong P +E correlation (R-squared ≈ 0.8; Figures 3.5a, 3.5b, and 3.5c), and an

apparent decoupling between P +E and temperature around the 1960s. We observe particular traits

for ERA5 and NCEP1. ERA5 shows a moderate P − E correlation (R-squared = 0.39). NCEP1,

not resembling the other three data sets, has a higher correlation for the difference than the sum of

precipitation and evaporation(0.18 vs 0.12 R-squared). Moreover, the coupling between P + E and

temperature occurs only after the mid-1970s (Figure 3.5d). The robust performance of P + E as a

metric to substantiate the relationship between atmospheric water fluxes and temperature carries

from the long-term onto the year-to-year variability (Table 3.1). Estimating the annual differences,

we now observe a homogeneous behavior in all the reanalyses data sets with moderate δ(P + E)

correlation (R-squared between 0.2-0.4) and no δ(P − E) correlation (R-squared ≤ 0.02). This

independence in δ(P −E) imply that the correlation observed between P −E and temperature was

due to the long-term trends, while P + E correlates both to short-term and long-term temperature

variability.

Table 3.1: Linear relationship between global spatial weighted average of total atmospheric water
fluxes and mean temperature, where P is precipitation, E is evaporation, and T is temperature.
Long-term columns report the correlation between the annual values (i.e., (P ±E) vs. T ). Year-to-
year columns report the correlation between the annual consecutive differences (i.e., δ(P ± E) vs.
δT ).

Long-term Year-to-year
P + E P − E δ(P + E) δ(P − E)

Reanalysis R2 p-value R2 p-value R2 p-value R2 p-value
20CR v3 0.82 < 2 × 10−16 0.01 0.1 0.19 1 × 10−9 2 × 10−4 0.9
ERA-20C 0.80 < 2 × 10−16 0.06 1 × 10−2 0.37 2 × 10−12 0.02 0.2
ERA5 0.75 < 2 × 10−16 0.39 3 × 10−9 0.35 3 × 10−8 0.02 0.2
NCEP1 0.12 2 × 10−3 0.18 2 × 10−4 0.22 2 × 10−5 4 × 10−3 0.6

Thermodynamics, Clausius–Clapeyron scaling in particular, determine the relationship between

atmospheric water vapor and temperature. However, it is the Earth’s energy balance that governs

global precipitation and evaporation, and constraining the hydrological sensitivity (Allan et al.,

2020). The hydrological sensitivity, defined by the increase in global mean precipitation (or evap-

oration) for a given change in global mean temperature, has been estimated at 2.1–3.1 [%/◦C]

(Fläschner et al., 2016). Consequently, P + E should also increase at approximately 2-3 [%/◦C].
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Figure 3.5: Global spatial weighted average of annual total precipitation plus evaporation and annual
mean temperature in four reanalysis data sets for their respective available record. Precipitation
plus evaporation in [mm] is shown in green. Temperature in [◦C] is shown in red.

To validate our hypothesis, we looked into the slopes of linear regression fits between P + E, P , E,

and temperature (Table 3.2). We validated the anticipated increases for P + E except for ERA5,

which had a rate of 5.0±0.3 [%/◦C], but also a rather high evaporation increase of 6.2±0.4 [%/◦C].

R-squared offers some insight about the proportion of variance in P + E, P , and E that can be ex-

plained by temperature. Interestingly, evaporation has the lowest correlation to temperature across

all reanalyses. 20CR v3 and ERA5 have higher R-squared values for P + E than for P , with differ-

ences of 0.12 and 0.09, respectively. In contrast, ERA-20C and NCEP1 have higher R-squared values

for precipitation (differences of 0.01 and 0.05). Note that while precipitation has a higher R-squared

for ERA-20C and NCEP1, the difference is one order of magnitude smaller than those whose P +E

has a higher R-squared (20CR v3 and ERA5). These results demonstrate a good coupling between

P + E and hydrological sensitivity.

The above analysis establishes the usability of reanalysis data to assess changes in atmospheric

water fluxes and temperature. It also highlights the different insight gained from P −E and P +E.

We will now unveil further details through a graphical framework that integrates precipitation,

evaporation, their difference, and their sum (Huntington et al., 2018). By transforming the changes

in the relationship of P and E to changes in P − E and P + E, we can describe the water cycle
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Table 3.2: Linear relationship between global spatial weighted average of total atmospheric water
fluxes and mean temperature, where P is precipitation, E is evaporation, and T is temperature.
P + E columns report the correlation ((P + E) vs. T ). P columns report the correlation (P vs.
T ). E columns report the correlation (E vs. T ). Slopes are in [%/◦C], where the reference for
atmospheric flux percentage change and temperature anomaly is their 1981-2010 average. RSE is
Residual Standard Error.

P + E P E
Reanalysis slope RSE R2 slope RSE R2 slope RSE R2

[%/◦C] [%/◦C] [%/◦C]
20CR v3 3.2 ± 0.1 0.42 0.82 3.1 ± 0.2 0.58 0.7 3.3 ± 0.2 0.69 0.65
ERA-20C 3.3 ± 0.2 0.5 0.8 3.3 ± 0.2 0.49 0.81 3.2 ± 0.2 0.52 0.78
ERA5 5.0 ± 0.3 1.05 0.75 3.8 ± 0.3 1 0.66 6.2 ± 0.4 1.32 0.74
NCEP1 2.8 ± 0.9 2.01 0.12 4 ± 1 2.18 0.17 1.9 ± 0.9 1.95 0.06

dynamics in terms of atmospheric water storage and fluxes correspondingly. We apply this procedure

to the four reanalyses to explore their representation of water cycle between two 30-year periods

(1951-1980 and 1981-2010; Figure 3.6). It is easy to pinpoint some distinguishable features for each

data set. The 20CR v3 appears to have substantially higher atmospheric water flux estimates than

any other reanalysis. However, if we decompose it in P −E and P +E terms, we can see that in the

two periods examined, the difference between precipitation and evaporation increased (blue vector),

implying atmospheric water loss (Figure 3.6B). In ERA5, the exact opposite behavior emerges. The

atmospheric water content has been increasing, but overall the average conditions suggest that the

atmosphere has been getting drier since 1950 (Figure 3.6D). The remaining two reanalyses manifest

a stationary relationship in the water storage with no changes in the P − E component (Figures

3.6C and 3.6E). Surprisingly, the flux of atmospheric water is decreasing in NCEP1, suggesting a

weakening of the water cycle (green arrow; Figure 3.6C).

It is evident that no two reanalyses are alike when it comes to the exchange of water between the

land-ocean continuum and the atmosphere at the global scale. In terms of magnitude, ERA5 reports

changes in P + E accelerating almost twice as fast as in the 20CR v3 and ERA-20C (41.5 [mm/yr]

versus 23.69 [mm/yr] and 25.3 [mm/yr], respectively). The P + E change in NCEP1 is similar

to that observed in the 20CR v3 and ERA-20C. Although as already mentioned, in the opposite

direction. Looking beyond 1950, in the reanalyses with longer records (20CR v3 and ERA-20C), we

can see an agreement in the direction of change since 1921. Additionally, both reanalyses show a

higher increase in P +E between 1951-1980 and 1981-2010 than between 1921-1950 and 1951-1980.

What is different, though, is the behavior of P −E, especially if analyzed over their 30-year average

trajectory (Figures 3.6B and 3.6C light gray points). In ERA-20C, P−E changes remain consistently

stationary and very close to zero (0.15 [mm/yr]), while in the 20CR v3 oscillates substantially
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following both increasing and decreasing patterns over the last 120 years. The trajectories of the

other two reanalyses show behaviors somewhere in between, with more flexibility in P −E compared

to ERA-20C but not as much freedom as in the 20CR v3. Overall, the combination of P − E and

P + E revealed a wealth of additional information about the reanalyses performance that is easily

communicable and reproducible through the precipitation-evaporation space graphical framework,

shaping the path for further investigations into the reasons behind these differences.
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Figure 3.6: The precipitation-evaporation space graphical framework for the assessment of global
water cycle changes. P and E are global total precipitation and evaporation in [mm/year]. Contour
of P = E is shown as a blue dashed line (stable atmosphere). Contours of equal P + E are shown
as green dashed lines (equal water cycle intensity). Changes in P −E and P +E are shown as blue
and green vectors correspondingly. Light gray points show the 30-year moving average trajectory,
black points mark the labeled 30-year period of interest, and stars mark the position of the average
for the full record of each reanalyses. I.e., 1836-2015 average for 20CR v3, 1900-2010 average for
ERA-20C, 1950-2020 average for ERA5, and 1948-2020 average for NCEP1. (A) Relative position
of reanalyses with respect to each other in the precipitation-evaporation space. (B) Zoomed in panel
on the 20CRv3. (C) Zoomed in panel on ERA20C. (D) Zoomed in panel on ERA5. (E) Zoomed in
panel on NCEP1.

3.5 Discussion

Due to the lack of robust observational-based data for crucial water cycle components such as

evaporation, reanalyses data is still one of our best tools for researching changes in the global water

cycle. The results fall within persistent criticism toward reanalyses (e.g., substantial variability
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Prein and Pendergrass (2019) and overestimations Trenberth et al. (2011)) but advocate for the

framework proposed to acquire new insight and improve climate reanalysis. We displayed how while

P − E, a key diagnostic, is not directly observable at the global scale, P + E is not held back by

scale limitations and complements global water cycle research. Most significantly, including P + E

revealed additional information about the water cycle changes characteristics in four reanalyses.

Information that could be implemented to address non-physical trends and inhomogeneities due

to changes in the observing system (e.g., Ho et al. (2020b)) and water budget non-closure (e.g.,

Trenberth and Fasullo (2013a,b)). The latter is an ongoing challenge in global water cycle research

(Hegerl et al., 2015), and non-closure is present in all reanalyses. Unexpectedly, although, we found

a spurious long-term correlation between P −E and temperature, suggesting such an artifact might

be rooted in model processes and not only due to assimilation schemes. Along that line, we were

surprised to find that the correlation between evaporation and temperature is smaller than that

between precipitation and temperature in reanalyses, except for ERA5.

Needless to say, a persistent challenge is the unconstrained uncertainty in quantifying water cycle

fluxes. Of particular relevance herein is that global P −E is small, and its uncertainty might easily

be much larger than its value. Thus, the signal-to-noise ratio of changes in P −E versus the natural

variability will be low and as a consequence the fluctuations in water cycle harder to detect. This

limitation can be overcome when using P + E, which is less prone to the reanalyses uncertainties.

These uncertainties could be encapsulated by their assimilation scheme, considering the assimilation

scheme includes, among others: the forecast model, boundary conditions, observations, observation

operators, and covariance models (Dee, 2005). Put simply, differences in reanalysis assimilation

schemes can significantly impact precipitation and evaporation inherent uncertainties. NCEP1 re-

analysis uses a 3D-Var data assimilation system, which minimizes the difference between the model

and observations by adjusting the atmospheric state variables (Kalnay et al., 1996). On the other

hand, ERA-20C and ERA5 use a 4D-Var data assimilation system, which adjusts the atmospheric

state variables over a series of time steps to minimize the difference between the model and obser-

vations (Poli et al., 2016; Hersbach et al., 2020). The 20CR v3 uses a hybrid 4D-Var/Ensemble

Kalman Filter data assimilation system, which combines the strengths of both 3D-Var and 4D-Var

to improve the accuracy of the precipitation and evaporation estimates (Slivinski et al., 2019). Al-

though it is not the scope of this study to address the underlying uncertainties or the effects of

different assimilation schemes, looking into discrepancies among reanalyses estimates offers a handy

demonstration of what can be learned by utilizing the precipitation-evaporation space to assess water

cycle changes.
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Whilst some features were common for all or most reanalyses, like changes in P −E being much

smaller than in P + E and an increase in P + E between the two most recent 30-year periods, we

observed various individual distinctions. Out of the four reanalyses, ERA5 had the most compre-

hensive representation of precipitation and temperature variability compared to observational-based

references, and was found to represent better the acceleration dynamics between 1951-1980 and

1981-2010. At the same time, ERA5 has the most pronounced changes for P − E, showcasing im-

provements in its terrestrial water storage computations (Eicker et al., 2020). However, ERA5 has

the steepest acceleration of P + E and is the only reanalysis above the P = E isoline for the en-

tirety of its record, which could be an artifact attributed to precipitation overestimations identified

across different regions (Hassler and Lauer, 2021). To the opposite end, NCEP1 shows a decline

in atmospheric water fluxes over time with a slight decrease in atmospheric water storage. Forbye,

the 30-year average trajectory exhibits an acute u-turn between the mid-1960s and the late 1970s.

Around this trajectory inversion, the behavior is similar to ERA-20C with little to no variability

along a P − E isoline. A possible explanation for this abnormal behavior could be traced back to

remote sensing data assimilation. Inconsistencies in its atmospheric data pre-1979 have previously

been reported and associated with the lack of satellite observations before 1979, e.g., in the Southern

Hemisphere (Tennant, 2004).

Using solely P + E comes with its own limitations and could mask the true dynamics of global

water cycle change. The reciprocal complementarity of P +E and P −E is better perceived on the

long-record reanalyses. The overview clearly shows that the 20CR v3 portrays a warmer and wetter

Earth relative to the rest of the reanalyses. This is consistent with a systematic bias in tropical

precipitation (Slivinski et al., 2019), and biases in the vertical structure of mass and circulation

determined throughout the atmosphere (Slivinski et al., 2021). Having said that, the magnitude of

changes in P +E are consistent with those of ERA-20C. The most recent increase is higher than the

preceding ones and suggests that the global water cycle acceleration signal has further strengthened

in the last three decades (Greve et al., 2014). The above would suggest that changes in the global

water cycle are similarly represented on both data sets. In sooth, P − E changes in the 20CR v3

oscillate substantially following both increasing and decreasing patterns, whereas ERA-20C shows

little to no variability (no spurious jumps or trends) and steadily moves along a P −E isoline. Said

stability lies around water cycle budget non-closure because evaporation is higher than precipitation

despite known systematic precipitation overestimation (Rustemeier et al., 2019). Reportedly, there

are only subtle differences in the data assimilated and the data assimilation schemes between these

two reanalyses (Poli et al., 2016), yet we can see contrasting behaviors exposed within the framework
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proposed herein.

Our findings, including the good agreement with the range of hydrological sensitivity, advocate

for the definitions of P +E to be physically sound. It is important, nonetheless, to note that such an

agreement is not a two-way relationship. As seen in our examination, the fact that all the reanalyses

have similar hydrological sensitivities does not necessarily mean that they express a similar rate of

water cycle changes. Assuming so could be misleading, whereas we can get more insight and avoid

these pitfalls by decomposing the change into P −E and P +E (i.e., into water storage and fluxes).

It could be argued that introducing a new metric for acceleration into the current broad spectrum

of metrics may lead to inconsistent hydroclimatology analysis terminology, such as that recently

reported for wetter and drier (Roth et al., 2021). Nevertheless, P + E is not just an index because

it is physically grounded and, as such, is better suited to describe climate models and reanalyses

(McColl et al., 2022).

Along the same line, it could be argued that assessing changes in precipitation or evaporation

alone can directly indicate changes in the water cycle. It is easy to imagine that altering the state

of one component in the water cycle would affect the others. However, the global water cycle is

a complex phenomenon composed of several processes that we are yet to understand fully. Hence,

changes in one component might not be instantly observed in the others. The compound behavior of

precipitation and evaporation provides a more comprehensive picture of the water balance because it

considers both the supply and demand of water or, within the precipitation-evaporation space, both

atmospheric water storage (P − E) and water cycle intensity (P + E). As evinced by our results,

precipitation increases are evident in all reanalyses. Regardless, until we inspect these reanalyses in

the precipitation-evaporation space, we cannot observe that, in reality, no reanalysis is alike as they

all describe different water cycle dynamics.

The above applications highlight the potential of P + E to complement water cycle research at

the global scale. The proposed framework could advance our understanding of water cycle changes

and improve climate modeling. We have already revealed some discrepancies between the reanalysis

data sets. Still to properly address them, the observational limitations at global scale, especially

in evaporation, need to be overcome (McCabe et al., 2016). Additionally, it is intriguing to see

how the total water transfer between the land-ocean continuum and atmosphere appears in Earth

System Models and whether it can be also applied as a metric for the model performance. Future

research into global spatial patterns of P + E could also shed more light on how they relate to

regional changes and hydroclimatic extremes such as droughts. To this extent, quantifying the

surface-atmosphere water exchange in the form of P +E can enhance our insight into past, present,
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and future hydroclimatic variability.

3.6 Methods

3.6.1 Data

We selected four reanalysis data products (Table 3.3). These are the Twentieth Century Reanalysis

(20CR) v3 (Slivinski et al., 2019), European Centre for Medium-Range Weather Forecasts (ECMWF)

Reanalyses ERA-20C (Poli et al., 2016) and ERA5 (Hersbach et al., 2020), and the National Cen-

ters for Environmental Prediction & the National Center for Atmospheric Research NCEP/NCAR

Reanalysis 1 (Kalnay et al., 1996). The 20CRv3 and the ERA-20C have two of the longest record

among reanalyses, with 180 and 100 years, respectively. ERA5 and NCEP1 are two distinctive

ongoing projects. ERA5 is a fifth-generation reanalysis (the most recent to date), and NCEP1 is a

first-generation reanalysis. NCEP1 it is the longest-running reanalysis that uses rawindsonde data,

but the model and data assimilation scheme are antiquated (Trenberth et al., 2011). Notwithstand-

ing, the Climate Prediction Center (CPC) Merged Analysis of Precipitation (CMAP) data set (Xie

and Arkin, 1997), which is highly regarded as an observational-based reference (Yin et al., 2004),

blends NCEP1 to fill missing data.

Additionally, we used two observation-based products. For precipitation, the Global Precipitation

Climatology Project (GPCP) v2.3 (Adler et al., 2018), which merges data from rain gauge stations,

satellites, and sounding observations. For temperature, the HadCRUT5 (Morice et al., 2021) from

the Met Office Hadley Centre and the Climatic Research Unit at the University of East Anglia, which

blends data from meteorological stations, ships, and buoys. All of the above data sets are available for

download on the dedicated websites of their providers. Through the pRecipe R package (https://

cran.r-project.org/package=pRecipe), we computed the area-weighted average of gridded data

and generated annual time series for total atmospheric water fluxes and global mean temperature.

3.6.2 Benchmarking Reanalyses

We examined some commonly used statistical metrics to benchmark the reanalysis data products.

Their aptness to capture the temporal variability of the water cycle was quantified via:

• The square of the Pearson correlation coefficient (R-squared or R2)

R2 = 1 −
∑n

i (yi − ŷi)
2∑n

i (yi − y)
2
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where i starts on the first year of the available record, n is the last year of the available record,

yi is the observational estimate on year i, ŷi is the reanalysis estimate on year i, and y is the

mean observational estimate for the full available record.

• Root Mean Square Error (RMSE)

RMSE =

√∑n
i (yi − ŷi)

2

N

where i starts on the first year of the available record, n is the last year of the available record,

yi is the observational estimate on year i, ŷi is the reanalysis estimate on year i, and N is the

total number of years in the full available record.

Only precipitation and temperature records were evaluated because there is no robust observation-

based evaporation data set. Note that precipitation and temperature were compared using two

different reference periods because GPCP v2.3 record starts in 1979, and HadCRU5T5 provides only

temperature anomalies using the 1961-1990 average as a reference. Thus, we could not homogenize

the reference period for both variables and selected 1981-2010 for precipitation and 1961-1990 for

temperature. Subsequently, we inspected global water budget closure via the 30-year moving average

of P − E.

3.6.3 Thermodynamics of Atmospheric Fluxes

For superimposing the temperature to the precipitation plus evaporation time series, without incur-

ring in any kind of data tampering, we simply rescaled temperature to precipitation plus evaporation

in the same way one would rescale degrees Fahrenheit to degrees Celsius. I.e.:

y′i =

(
(Ti −min(T )) ∗ max(P + E) −min(P + E)

max(T ) −min(T )

)
+ min(P + E)

where y′i denotes the value used to plot Temperature in the same scale of precipitation plus evapora-

tion for any given year, Ti is the temperature reanalysis estimate on year i, min(T ) is the minimum

temperature reanalysis estimate in the full available record, max(P + E) is the maximum precipi-

tation plus evaporation reanalysis estimate in the full available record, min(P +E) is the minimum

reanalysis estimate in the full available record, and max(T ) is the maximum temperature reanalysis

estimate in the full available record.

As thermodynamics dictates, we expect a linear relationship between atmospheric water fluxes
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and temperature. This correspondence was quantified via the square of the Pearson correlation

coefficient (R-squared or R2)

R2 = 1 −
∑n

i=1 (yi − f(Ti))
2∑n

i=1 (yi − y)
2

where n is the total number of years in the full available record, yi is the i-th reanalysis estimate

for atmospheric water flux, f(Ti) is the i-th predicted estimate by temperature, and y is the mean

reanalysis estimate for the full available record. The same metrics were computed again for the

annual differences of each time series (i.e., δ(yi) = yi − yi−1). To this extent, we can characterize

the long-term and the year-to-year association between atmospheric water fluxes and temperature.

While the correlation coefficient describes the presence or absence of a linear relationship, it does not

quantify the rate of change of one variable relative to the other. Henceforth, we used linear regression

to estimate the corresponding slopes and describe the rate of change at which atmospheric water

fluxes respond to changes in temperature. To compare the slopes between data sets on a one-to-one

basis, we estimated atmospheric water fluxes and temperature in terms of global anomalies with

respect to the 1981-2010 period.

slope =
n (

∑n
i=1 Tiyi) − (

∑n
i=1 Ti) (

∑n
i=1 yi)

n (
∑n

i=1 T
2
i ) − (

∑n
i=1 Ti)

2

where n is the total number of years in the full available record, yi is the i-th reanalysis estimate

for atmospheric water flux anomaly, and Ti is the i-th reanalysis estimate for temperature anomaly.

Lastly, we relied on the Residual Standard Error (RSE) to assess the goodness-of-fit of the slopes,

i.e., how well these slopes represent the linear relationship between our variables.

RSE =

√∑n
i=1 (yi − f(Ti))

2

n− 1

where n is the total number of years in the full available record, yi is the i-th reanalysis estimate for

atmospheric water flux anomaly, and f(Ti) is the i-th predicted estimate by temperature anomaly.
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Chapter 4

pRecipe: A global precipitation

climatology toolbox and database

4.1 Introduction

It is common practice to describe and quantify the water cycle focusing on its four major com-

ponents evaporation, precipitation, runoff, and total water storage (Harding et al., 2011). Out

of these four components, precipitation has been extensively researched because it is the primary

factor determining water availability across several spatiotemporal scales (Trenberth and Zhang,

2018). Accurate estimates of precipitation climatologies are crucial for water resource management

(Marques et al., 2022), water-related engineering design, and long-term agricultural policy making

(Bezner Kerr et al., 2022). Notwithstanding, to date, a comprehensive network of ground stations

remains elusive due to practical, economical, or political reasons (Vargas Godoy et al., 2021). When

ground observations are unavailable, we may rely on data from different sources, such as satellite

remote sensing, model simulations, and reanalyses. Regardless of the source, having a good grasp of

the uncertainty of the estimates becomes imperative. Consequently, using different data products

from various, ideally independent, sources is the most appropriate direction for current research and

operational needs.

Although precipitation understanding has improved dramatically due to the vast amount of

different data sources nowadays, their information has not been comprehensive enough due to sub-

stantial uncertainty between sources, with biases reaching as much as 300% (Fekete et al., 2004).

Such uncertainty could be partially attributed to the intrinsic heterogeneity of multiple aspects,
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from data distribution to end-product specifications, e.g., spatial resolution, time step, measur-

ing units, file format, etc. Therefore, we find ourselves with a broad spectrum of data renditions,

a research matter on its own (Sun et al., 2018), and a homogenization pre-processing hindrance.

The latter, i.e., data preparation, is acknowledged to be an often unavoidable and rather time-

consuming step of the analysis (Young et al., 2017). Some data distributors mitigate the above

challenges by facilitating different tools for extraction (e.g., https://www.earthdata.nasa.gov/),

exploration (e.g., https://climexp.knmi.nl/), and, in some cases, visualization (e.g., https:

//giovanni.gsfc.nasa.gov/). However, being online services, they are heavily oriented toward

graphic user interfaces, are limited to elementary operations for exploratory data analysis, and allow

for simultaneous analysis of at most two data sets at a time. Undeniably, a broader, more inclusive

framework integrating multiple data sets is still missing.

Tailored software is available to deal with the processing and analyze large amounts of data

efficiently, namely the Climate Data Operators (CDO; Schulzweida, 2022) and Climate Data Anal-

ysis Tools (CDAT; Williams et al., 2009). These packages provide data cleaning, analysis, and

visualization tools. While working with precipitation data can be challenging and time-consuming,

these or similar alternative software allow researchers to automate and streamline the data analysis

process for reproducibility. Nevertheless, a significant limitation of tools like CDO and CDAT is

their incompatibility with Windows, the dominant desktop operating system globally. It could be

argued that installing both CDO and CDAT in Windows is possible. However, the installation is

done through the Windows Subsystem for Linux (WSL), which provides a GNU/Linux environment,

including command-line tools and utilities, on Windows (Singh, 2020). Moreover, CDAT is staged

for deprecation and cease of support around the end of the calendar year 2023.

Over the last decade, R, an open-source programming language (R Core Team, 2023), has con-

tinuously increased its presence until it acquired a central role in hydrological research and the

operational practice of hydrology (Slater et al., 2019). The R hydrological community has grown

significantly in the last decade with applications, or packages, that involve data retrieval and pre-

processing from hydrological and meteorological sources, hydrograph and spatial analysis functions,

and tools for process-based and stochastic modeling. Nevertheless, more often than not, these

packages are still developed around one data set or one data provider. E.g., easyclimate to access

high-resolution daily climate data for Europe (Cruz-Alonso et al., 2023) or dataRetrieval for the

US Geological Survey (USGS) National Water Information System (DeCicco et al., 2022). Tools-

centered packages tend to be more comprehensive and require more generic inputs. E.g., envoutliers

identifies outliers in environmental time series data (Čampulová et al., 2022), and CoSMoS gen-
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erates univariate/multivariate non-Gaussian time series and random fields for environmental and

hydroclimatic processes (Papalexiou et al., 2021). These latter kinds of packages give the users more

flexibility on the account they are to deal with data gathering and pre-processing on their own.

Despite R flourishing in hydrology, the previously mentioned support supplied by data providers

focuses more on different programming languages like MATLAB or Python. On that account,

addressing both data preparation time consumption and the lack of a comprehensive R-based alter-

native, we introduce pRecipe. We acknowledge that various yet exclusive data retrieval packages are

already available (see Albers et al. (2022)). Moreover, while claiming to provide all available data

sets would be fraudulent, we can ascertain that pRecipe provides a ready-for-analysis homogenized

database with products from various sources. The pRecipe package database consists of 24 data sets

at monthly time step and 0.25◦ resolution. These are derived from gauge, satellite, reanalysis, and

hydrological model forcing precipitation products. Furthermore, pRecipe offers additional processing

tools to subset the record length and spatial coverage, crop data based using shapefiles, and various

graphical aesthetics for visualization and exploratory data analysis. The package can be downloaded

from the CRAN repository or from https://github.com/MiRoVaGo/pRecipe.

4.2 Methods

4.2.1 Data

The pRecipe package offers a database of 24 precipitation data sets homogenized to common a spatial

(0.25◦) and temporal (monthly) resolution. These include:

• Seven gauge-based products: CPC-Global (Xie et al., 2010a), CRU TS v4.06 (Harris et al.,

2020), EM-EARTH (Tang et al., 2022), GHCN v2 (Peterson and Vose, 1997), GPCC v2020

(Schneider et al., 2011), PREC/L (Chen et al., 2002), and UDel v5.01 (Willmott and Matsuura,

2001).

• Eight satellite-based products: CHIRPS v2.0 (Funk et al., 2015), CMAP (Xie and Arkin,

1997), CMORPH (Joyce et al., 2004), GPCP v2.3 (Adler et al., 2018), GPM IMERGM v06

(Huffman et al., 2020), MSWEP v2.8 (Beck et al., 2019), PERSIANN-CDR (Ashouri et al.,

2015), and TRMM 3B43 v7 (Huffman et al., 2010).

• Five reanalysis products: 20CR v3 (Slivinski et al., 2019), ERA-20C (Poli et al., 2016), ERA5

(Hersbach et al., 2020), NCEP/NCAR R1 (Kalnay et al., 1996), and NCEP/DOE R2 (Kana-
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mitsu et al., 2002).

• Four hydrological model forcing products: GLDAS-CLSM v2.0 (Rodell et al., 2004), GLDAS-

NOAH v2.0 (Rodell et al., 2004), GLDAS-VIC v2.0 (Rodell et al., 2004), and TerraClimate

(Abatzoglou et al., 2018).

Their native specifications, as well as download links to their original providers, and their respec-

tive references, are detailed in Tables 4.1, 4.2, 4.3, and 4.4, respectively. If multiple distributions

were available, the one closest to the target spatiotemporal resolution was chosen to minimize the

pre-processing uncertainty. Remapping data from one spatial or temporal resolution to another can

result in information loss when processing data from higher to lower resolution. Hence, these uncer-

tainties’ magnitudes depend on source data quality and are proportional to the times we manipulate

data. Consequently, the less pre-processing we have to perform on the data, the less uncertainty we

introduce.

Overall, the package focuses on three fronts: formatting, homogenization, and storage. To begin

with, most providers either natively have data in the Network Common Data Form (NetCDF) format

or offer the option to download in that format. In the same fashion, we chose the NetCDF format

for our database. The GPM (Huffman et al., 2020) and TRMM (Huffman et al., 2010) data sets use

the Hierarchical Data Format (HDF) instead. TRMM data is in HDF4 format and was reformatted

into NetCDF using the conversion toolkit from the HDF group (https://hdfeos.org/). GPM is

in HDF5 format, and no direct conversion tool was available. Thus, we extracted the values and

stored them in NetCDF files using R. Note that no reprojection or manipulation of any kind took

place at this stage. Once all data sets were in NetCDF files, if there were multiple files per data

set (i.e., one file per day, month, or year), we merged them in time into a single NetCDF file using

Climate Data Operators (CDO; Schulzweida (2022)).

Then, data homogenization addressed the variable type (total precipitation; tp), the measuring

units (millimeters; mm), the temporal resolution (monthly), and the spatial resolution (0.25◦). If

the providers offered both precipitation rate and total precipitation, total precipitation files were

downloaded to minimize data tampering. We converted the precipitation rate from [mm/day] or

[kg/m2/s] into total precipitation [mm]. Else, we just converted the units of total precipitation where

needed (e.g., [m] into [mm]). Subsequently, daily data was aggregated into monthly. Thereafter,

spatial remapping was performed using CDO. When regridding coarser than 0.25◦ resolution data,

the ‘remapnn’ operator was used for nearest-neighbor interpolation. Otherwise, the ‘gridboxmean’

operator would be used for regridding via area-weighted averaging (accounting for the area of each
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grid cell in proportion to the total area being averaged) plus ‘remapnn’ when 0.25◦ is not divisible by

the original resolution. Arguably, nearest-neighbor interpolation potentially leads to abrupt changes

in the values of the remapped data when used to fill in missing data. However, if used simply

for regridding, we do not introduce any significant artifacts as evinced by differences of less than

0.01% in total precipitation volume between raw and remapped data. Finally, the database has been

deposited in a public Zenodo repository under the following naming convention:

<data set> <variable> <units> <coverage> <start date> <end date> <resolution> <time step>.nc

E.g., GPCP v2.3 (Adler et al., 2018) would be: gpcp tp mm global 197901 202205 025 monthly.nc

4.2.2 Package Design

Designed with reproducible science in mind, the pRecipe package facilitates the download, explo-

ration, visualization, and analysis of multiple precipitation data products across various spatiotem-

poral scales. The general workflow is as follows:

1. Direct download of a single, multiple, or all data sets available in the pRecipe database is done

via the download data() function, which has two arguments data name and destination. The

data name argument is set to “all” by default, but the users can specify the name(s) of their

interest: 20cr, chirps, cmap, cmorph, cpc, cru-ts, em-earth, era20c, era5, ghcn, gldas-clsm,

gldas-noah, gldas-vic, gpcc, gpcp, gpm-imerg, mswep, ncep-doe, ncep-ncar, persiann, precl,

terraclimate, trmm-3b43, and/or udel. The destination argument is set to “.” by default. I.e.,

the current working directory. By replacing it for “your project folder”, the downloaded files

will be stored in “your project folder” instead.

2. Data processing functions are built upon the raster package (Hijmans et al., 2022), with the

additional advantage that saving data will do so in a NetCDF format compatible with CDO.

Currently, pRecipe offers spatial subsetting by either a bounding box or an irregular polygon

via shapefile. Besides, temporal upscaling from monthly to yearly scale offers basic statistical

options, such as maximum, minimum, median, average, and sum. Last but not least, the

make ts() function computes the area-weighted average of each time step, be it monthly or

annual, to transform the raster into a time series comma-separated values (CSV) file.

3. Prompt and aesthetic visualization is available at any stage of analysis. The pRecipe graphical

framework allows the user to explore and present analysis results of its data via maps, time

series curves, boxplots, histograms, and heat maps. It is important to note that the above-

82



T
a
b

le
4
.1

:
G

a
u

g
e-

b
a
se

d
P

ro
d

u
ct

s
D

at
a

S
et

S
p

at
ia

l
R

es
ol

u
ti

on
S

p
at

ia
l

C
ov

er
a
g
e

T
em

p
o
ra

l
R

es
o
lu

ti
o
n

R
ec

o
rd

L
en

g
h
t

G
et

D
a
ta

R
ef

er
en

ce
C

P
C

-G
lo

b
al

0.
5
◦

L
a
n

d
D

a
il

y
1
9
7
9
-0

1
to

2
0
2
2
-0

8
D

ow
n

lo
a
d

X
ie

et
a
l.

(2
0
1
0
a
)

C
R

U
T

S
v
4.

06
0.

5◦
L

a
n

d
M

o
n
th

ly
1
9
0
1
-0

1
to

2
0
2
1
-1

2
D

ow
n

lo
a
d

H
a
rr

is
et

a
l.

(2
0
2
0
)

E
M

-E
A

R
T

H
0.

1
◦

L
a
n

d
D

a
il

y
1
9
5
0
-0

1
to

2
0
1
9
-1

2
D

ow
n

lo
a
d

T
a
n

g
et

a
l.

(2
0
2
2
)

G
H

C
N

v
2

5◦
L

a
n

d
M

o
n
th

ly
1
9
0
0
-0

1
to

2
0
1
5
-0

5
D

ow
n

lo
a
d

P
et

er
so

n
a
n

d
V

o
se

(1
9
9
7
)

G
P

C
C

v
20

20
0.

25
◦

L
a
n

d
M

o
n
th

ly
1
8
9
1
-0

1
to

2
0
2
2
-0

8
D

ow
n

lo
a
d

S
ch

n
ei

d
er

et
a
l.

(2
0
1
1
)

P
R

E
C

/L
0.

5
◦

L
a
n

d
M

o
n
th

ly
1
9
4
8
-0

1
to

2
0
2
2
-0

8
D

ow
n

lo
a
d

C
h

en
et

a
l.

(2
0
0
2
)

U
D

el
v
5.

01
0.

5◦
L

a
n

d
M

o
n
th

ly
1
9
0
1
-0

1
to

2
0
1
7
-1

2
D

ow
n

lo
a
d

W
il

lm
o
tt

a
n

d
M

a
ts

u
u

ra
(2

0
0
1
)

83

https://psl.noaa.gov/data/gridded/data.cpc.globalprecip.html
https://crudata.uea.ac.uk/cru/data/hrg/
https://www.frdr-dfdr.ca/repo/dataset/8d30ab02-f2bd-4d05-ae43-11f4a387e5ad
https://psl.noaa.gov/data/gridded/data.ghcngridded.html
https://psl.noaa.gov/data/gridded/data.gpcc.html
https://psl.noaa.gov/data/gridded/data.precl.html
https://psl.noaa.gov/data/gridded/data.UDel_AirT_Precip.html


T
a
b

le
4
.2

:
S

a
te

ll
it

e-
b

a
se

d
P

ro
d

u
ct

s
D

at
a

S
et

S
p

at
ia

l
R

es
ol

u
ti

on
S

p
a
ti

a
l

C
ov

er
a
g
e

T
em

p
o
ra

l
R

es
o
lu

ti
o
n

R
ec

o
rd

L
en

g
h
t

G
et

D
a
ta

R
ef

er
en

ce
C

H
IR

P
S

v
2.

0
0.

05
◦

5
0
◦ S

-N
L

a
n

d
M

o
n
th

ly
1
9
8
1
-0

1
to

2
0
2
2
-0

7
D

ow
n

lo
a
d

F
u

n
k

et
a
l.

(2
0
1
5
)

C
M

A
P

2.
5◦

G
lo

b
a
l

M
o
n
th

ly
1
9
7
9
-0

1
to

2
0
2
2
-0

7
D

ow
n

lo
a
d

X
ie

a
n

d
A

rk
in

(1
9
9
7
)

C
M

O
R

P
H

0.
25

◦
6
0◦

S
-N

G
lo

b
a
l

D
a
il

y
1
9
9
8
-0

1
to

2
0
2
1
-1

2
D

ow
n

lo
a
d

J
oy

ce
et

a
l.

(2
0
0
4
)

G
P

C
P

v
2.

3
0.

5◦
G

lo
b

a
l

M
o
n
th

ly
1
9
7
9
-0

1
to

2
0
2
2
-0

5
D

ow
n

lo
a
d

A
d

le
r

et
a
l.

(2
0
1
8
)

G
P

M
IM

E
R

G
M

v
06

0.
1◦

G
lo

b
a
l

M
o
n
th

ly
2
0
0
0
-0

6
to

2
0
2
0
-1

2
D

ow
n

lo
a
d

H
u

ff
m

a
n

et
a
l.

(2
0
2
0
)

M
S

W
E

P
v
2.

8
0.

1◦
G

lo
b

a
l

M
o
n
th

ly
1
9
7
9
-0

2
to

2
0
2
2
-0

6
D

ow
n

lo
a
d

B
ec

k
et

a
l.

(2
0
1
9
)

P
E

R
S

IA
N

N
-C

D
R

0.
25

◦
6
0◦

S
-N

G
lo

b
a
l

M
o
n
th

ly
1
9
8
3
-0

1
to

2
0
2
2
-0

6
D

ow
n

lo
a
d

A
sh

o
u

ri
et

a
l.

(2
0
1
5
)

T
R

M
M

3B
43

v
7

0.
25

◦
5
0◦

S
-N

G
lo

b
a
l

M
o
n
th

ly
1
9
9
8
-0

1
to

2
0
1
9
-1

2
D

ow
n

lo
a
d

H
u

ff
m

a
n

et
a
l.

(2
0
1
0
)

84

https://www.chc.ucsb.edu/data/chirps
https://psl.noaa.gov/data/gridded/data.cmap.html
https://www.ncei.noaa.gov/data/cmorph-high-resolution-global-precipitation-estimates/
https://psl.noaa.gov/data/gridded/data.gpcp.html
https://doi.org/10.5067/GPM/IMERG/3B-MONTH/06
http://www.gloh2o.org/mswep/
https://chrsdata.eng.uci.edu/
https://doi.org/10.5067/TRMM/TMPA/MONTH/7


T
a
b

le
4
.3

:
R

ea
n

a
ly

si
s

P
ro

d
u

ct
s

D
at

a
S

et
S

p
at

ia
l

R
es

ol
u

ti
on

S
p

at
ia

l
C

ov
er

a
g
e

T
em

p
o
ra

l
R

es
o
lu

ti
o
n

R
ec

o
rd

L
en

g
h
t

G
et

D
a
ta

R
ef

er
en

ce
20

C
R

v
3

1◦
G

lo
b

a
l

M
o
n
th

ly
1
8
3
6
-0

1
to

2
0
1
5
-1

2
D

ow
n

lo
a
d

S
li

v
in

sk
i

et
a
l.

(2
0
1
9
)

E
R

A
-2

0C
1.

12
5◦

G
lo

b
a
l

M
o
n
th

ly
1
9
0
0
-0

1
to

2
0
1
0
-1

2
D

ow
n

lo
a
d

P
o
li

et
a
l.

(2
0
1
6
)

E
R

A
5

0.
25

◦
G

lo
b

a
l

M
o
n
th

ly
1
9
5
9
-0

1
to

2
0
2
1
-1

2
D

ow
n

lo
a
d

H
er

sb
a
ch

et
a
l.

(2
0
2
0
)

N
C

E
P

/N
C

A
R

R
1

1.
87

5
◦

G
lo

b
a
l

M
o
n
th

ly
1
9
4
8
-0

1
to

2
0
2
2
-0

8
D

ow
n

lo
a
d

K
a
ln

ay
et

a
l.

(1
9
9
6
)

N
C

E
P

/D
O

E
R

2
1.

87
5
◦

G
lo

b
a
l

M
o
n
th

ly
1
9
7
9
-0

1
to

2
0
2
2
-0

8
D

ow
n

lo
a
d

K
a
n

a
m

it
su

et
a
l.

(2
0
0
2
)

85

https://psl.noaa.gov/data/gridded/data.20thC_ReanV3.html
https://www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/era-20c
https://www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/era5
https://psl.noaa.gov/data/gridded/data.ncep.reanalysis.derived.html
https://psl.noaa.gov/data/gridded/data.ncep.reanalysis2.html


T
a
b

le
4
.4

:
H

y
d

ro
lo

g
ic

a
l

M
o
d

el
F

o
rc

in
g

D
at

a
S

et
S

p
at

ia
l

R
es

ol
u

ti
on

S
p

a
ti

a
l

C
ov

er
a
g
e

T
em

p
o
ra

l
R

es
o
lu

ti
o
n

R
ec

o
rd

L
en

g
h
t

G
et

D
a
ta

R
ef

er
en

ce
G

L
D

A
S

C
L

S
M

v
2.

0
0.

25
◦

L
a
n

d
D

a
il

y
1
9
4
8
-0

1
to

2
0
1
4
-1

2
D

ow
n

lo
a
d

R
o
d

el
l

et
a
l.

(2
0
0
4
)

G
L

D
A

S
N

O
A

H
v
2.

0
0.

25
◦

L
a
n

d
M

o
n
th

ly
1
9
4
8
-0

1
to

2
0
1
4
-1

2
D

ow
n

lo
a
d

R
o
d

el
l

et
a
l.

(2
0
0
4
)

G
L

D
A

S
V

IC
v
2.

0
1
◦

L
a
n

d
M

o
n
th

ly
1
9
4
8
-0

1
to

2
0
1
4
-1

2
D

ow
n

lo
a
d

R
o
d

el
l

et
a
l.

(2
0
0
4
)

T
er

ra
C

li
m

at
e

4k
m

L
a
n

d
M

o
n
th

ly
1
9
5
8
-0

1
to

2
0
2
1
-1

2
D

ow
n

lo
a
d

A
b

a
tz

o
g
lo

u
et

a
l.

(2
0
1
8
)

86

https://ldas.gsfc.nasa.gov/gldas/gldas-get-data
https://ldas.gsfc.nasa.gov/gldas/gldas-get-data
https://ldas.gsfc.nasa.gov/gldas/gldas-get-data
https://www.climatologylab.org/terraclimate.html


mentioned graphical framework is based on the ggplot2 package (Wickham et al., 2022). As

such, the outputs are easily adjusted to suit the user’s needs using the grammar of graphics.

The pRecipe package is publicly available in the Comprehensive R Archive Network (CRAN) at

https://CRAN.R-project.org/package=pRecipe. More experienced users may find all the func-

tions’ source code at https://github.com/MiRoVaGo/pRecipe and can easily modify them to fit

the user specific needs if needed.

4.3 Case Study

The user-friendly accessibility that pRecipe provides makes analysis reproducibility as simple as

following a recipe. In this introductory recipe, we downloaded the entire pRecipe database (Section

4.2.1) using the download data() function. We then subsetted the downloaded data to the 1981-

2020 period using the subset time() function, and cropped it within the administrative borders of

Czechia via the crop data() in conjunction with a shapefile provided by the Database of Global

Administrative Areas (GADM). We then generated time series using the make ts() function. The

time series were generated by computing the area-weighted average of all the grid cells of interest,

and the values were stored in data.table objects with four columns: date, value, and name, type.

The last two are mainly used for graphical aesthetics. Note that storing the time series in data.table

objects enables further calculations with ease. Herein we calculated the sum, min, max, median,

and mean of our monthly data by year in order to visually assess the similarities and discrepancies

between data sources using the plot line() function (Figure 4.1). It is evident at first glance that

even limiting the data record to just 40 years, a line plot is not the best graphical aesthetic to

represent our data due to the high clustering and overlapping of lines (Figure 4.1a). Upscaling

into annual time steps, it is easier to observe that while there is considerable variability between

different products (Figures 4.1b, 4.1c, 4.1e, and 4.1f), there is higher agreement in measuring high

precipitation (Figure 4.1d).

To validate data using local observations or one of the downloaded data sets as the reference, we

can assess their correlation and variance through Taylor diagrams using the plot taylor() function

(Figure 4.2). We used data from the Czech Hydrometeorological Institute (CHMI) to validate the

database in this case study. As expected, observational data from gauge-based and satellite-based

products are highly correlated with the CHMI reference, with most of their correlation coefficients

above 0.95 and 0.9, respectively (Figure 4.2). In terms of variance, we observe that the hydrological

model forcing data exhibits almost identical locations on the diagram. In contrast, reanalysis data
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are the most scattered of all four data sources. From this quick inspection, we can say GPCC v2020

data estimates are the closest to our validation reference, while NCEP/NCAR R1 and NCEP/DOE

R2 are the most inconsistent (lowest correlation and highest variance). The former is presumably due

to GPCC v2020 likely drawing data by the same network of stations CHMI oversees (Becker et al.,

2013). The latter might be an artifact produced by the coarse native resolution of NCEP reanalyses

compared to the area of Czechia. I.e., the area of two grid cells (approximately 86 632 [km2]) fully

covers Czechia (78 867 [km2]). Moreover, NCEP/NCAR R1 is a first-generation reanalysis that uses

antiquated data assimilation and model (Kalnay et al., 1996). NCEP/DOE R2 is a direct update

that fixed some errors and updated the parameterizations of NCEP/NCAR R1 (Kanamitsu et al.,

2002). Nonetheless, it did not address other limitations like higher horizontal and vertical resolution,

direct assimilation of radiances, proper use of Special Sensor Microwave Imager (SSM/I) data, and

assimilation of rainfall data.

Further insight into the validation of our data sets can be reckoned with by looking into their

correlation and variance across different seasons (Figure 4.3). This time we looked only into eight

data sets: CAMP, CPC-Global, ERA-20C, ERA5, GLDAS CLSM v2.0, GLDAS NOAH v2.0, GPCC

v2020, and TRMM 3B43 v7. Using high correlation to CHMI as a preliminary filter, we selected the

two best data sets from each source. Visualizing the data sets’ correlation by season, we discover

that the best agreement with the CHMI reference occurs during Fall, where most data sets have

a correlation above 0.95, normalized standard deviation around 1, and centered root mean square

error 0.5. Out of the selected data sets, ERA-20C has the lowest correlation regardless of the

season, with its correlation further away from the rest, dropping to 0.8 in Summer. Observations

assimilated by ERA-20C include surface pressure from the International Surface Pressure Databank

(Compo et al., 2015) as well as from ICOADS (Woodruff et al., 2011) and surface winds over the

oceans from ICOADS. Upper-air and satellite data are omitted (Poli et al., 2016). Due to the

limited observations used, ERA-20C does not provide the best estimate since 1979, when major

advancements in the observing system occurred with the dawn of the satellite era. Another point

of interest is that TRMM 3B43 v7 correlation is consistent across seasons, but its variance visibly

increases in Winter. TRMM precipitation radar algorithm has been reported to underestimate

precipitation at higher latitudes (40◦N; Chen and Li, 2016) in conjunction with winter precipitation

characteristics (i.e., lighter rain events, snow, and mixed-phase precipitation) would explain larger

biases in the Winter season (Maggioni et al., 2016).

The toolbox that pRecipe offers can also be applied to assess changes in precipitation regimes. We

selected four data sets (GPCC v2020, ERA5, GLDAS NOAH v2.0, and MSWEP v2.8), we divided
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Gauge−based
CPC−Global
CRU TS v4.06
EM−EARTH
GHCN v2
GPCC v2020
PREC/L
UDel v5.01

Model forcing
GLDAS CLSM v2.0
GLDAS NOAH v2.0
GLDAS VIC v2.0
TerraClimate

Reanalysis
20CR v3
ERA−20C
ERA5
NCEP/DOE R2
NCEP/NCAR R1

Satellite−based
CHIRPS v2.0
CMAP
CMORPH
GPCP v2.3
GPM IMERGM v06
MSWEP v2.8
PERSIANN−CDR
TRMM 3B43 v7

Figure 4.2: Illustration of the plot taylor() function comparing the entire pRecipe database to the
observational reference of the CHMI. Upper left, gauge-based data sets as listed in Table 4.1. Upper
right, hydrological model forcing data sets as listed in Table 4.4. Bottom left, reanalysis data sets
as listed in Table 4.3. Bottom right, satellite-based data sets as listed in Table 4.2.
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Gauge−based
CPC−Global
GPCC v2020

Model forcing
GLDAS CLSM v2.0
GLDAS NOAH v2.0

Reanalysis
ERA−20C
ERA5

Satellite−based
CMAP
TRMM 3B43 v7

Figure 4.3: Illustration of the plot taylor() function comparing selected data sets by season.
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the time series in two 20-year periods (1981-2000 and 2001-2020), and examined their empirical

distribution; to do so, we used the plot density() function (Figure 4.4). We identify two common

traits: a density peak around 50[mm] for the first 20-year period and a general widening of the density

curve towards higher precipitation across the selected data sets in the last 20 years. A particular

distinction in the distribution of ERA5 compared with the other data sets is that the density peak

is shorter for both periods. A shorter density peak and a bigger area under the density curve to

the right of said peak indicate that ERA5 precipitation estimates are higher than those of the other

data sets. In line with our findings through the empirical distribution of ERA5, overestimation of

precipitation has previously been identified across different regions (Hassler and Lauer, 2021).

A different approach to analyzing changes in precipitation regimes is to explore their spatial

patterns. We computed the median monthly precipitation at each grid cell for two 20-year periods,

and then portrayed them using the plot map() function (Figure 4.5). The maps show that no drastic

changes in spatial patterns took place between 1981-2000 and 2001-2020, except for a slight increase

in precipitation in relatively uniform manner. Intercomparing data sets, we observe a common high

precipitation center located around the Šumava Mountains on the southwestern border of Czechia.

While the empirical distribution of precipitation estimates already pointed at ERA5 overestimating

precipitation, it is now observable, and perhaps more easily conveyed, on the maps that ERA5

estimates are overall higher than the rest. Contrarily, we can see the lack of spatial contrast between

high and low precipitation in GLDAS NOAH v2.0 estimates appearing as more homogeneous color

maps. Conversely, this artifact is due to precipitation underestimation compared to the other data

sets (e.g., Xue et al., 2013). We found explicitly higher estimates around the Sudetic, Šumava, and

Ore Mountains, supporting previous reports that in ERA5, too much precipitation can occur on the

leeward side of an orographic barrier (Lavers et al., 2022).

More details about further functions, including a simpler and fully reproducible example, can be

found at https://cran.r-project.org/web/packages/pRecipe/vignettes/pRecipe.html.

4.4 Conclusions

The pRecipe package provides a common starting point for the hydrology scientific community

through its homogenized database. By encompassing widely used products from multiple sources and

establishing a common ground from which to start analysis, pRecipe guarantees a fully reproducible

framework for precipitation research. Its versatility to export data at any processing stage in NetCDF

(raster) or CSV (data.table) facilitates a seamless transition for the user into different R packages
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like CoSMoS (Papalexiou, 2018), csa (Markonis et al., 2021b), and somspace (Markonis and Strnad,

2020) for further analysis.

The pRecipe package constitutes a valuable resource for academics, government agencies, and

private sector professionals because it provides a consistent and transparent approach to precipitation

research. Through pRecipe, these users can easily access and analyze precipitation data from multiple

sources, visualize various characteristics of precipitation climatology, and seamlessly transition into

different R packages for further analysis. Overall, the pRecipe package is a powerful tool that can

benefit anyone involved in precipitation research, from novice researchers to seasoned experts.

Herein, we have exemplified some of its key capabilities and showcased the ease of accessibility for

the user to visualize various characteristics of precipitation climatology. We aim to provide, through

pRecipe, an open-access database and toolbox that the hydrology community could adopt for a more

consistent and reproducible science. The latter aspect will be strengthened in coming years under

the following roadmap: implementation of probabilistic significance estimation for slopes/changes

in 2023 and uncertainty quantification functions in 2024. At the same time, we plan to develop

an evaporation twin package of pRecipe, with similar functionalities and integrate them together

into a holistic framework for the study of terrestrial water cycle as suggested by Vargas Godoy and

Markonis (2023b). To this end, we invite all scientists involved in precipitation hydroclimatology

research to actively contribute with their suggestions, additions, and requests for future versions of

pRecipe.
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Chapter 5

Water Cycle Changes in Czechia:

A Multi-Source Water Budget

Perspective

5.1 Introduction

During the last decades, there have been significant advances in analyzing the water cycle and its

response to global warming. While we expect alterations in the water cycle to respond to climate

change and global warming, the actual extent and characteristics of this reaction are poorly under-

stood (Zaitchik et al., 2023). It was hypothesized that an increased vertical gradient of atmospheric

water vapor would offset atmospheric wind convergence in the tropics making wet regions wetter

and dry regions drier (Held and Soden, 2006). Nevertheless, such claims lack conclusive support of

observed measurements and have lit the fire of controversy in the field (Vecchi et al., 2006; Allan,

2012; Skliris et al., 2016).

Undoubtedly, the advances in remote sensing observations and process-based modeling have

shaped current research the most. However, as the data sources increased, it soon became appar-

ent that large discrepancies between the data sets still exist due to biases and uncertainties (Var-

gas Godoy et al., 2021). Observational data is hampered by short and heterogeneous ground-based

records (Schneider et al., 2017), and unquantified uncertainties on satellite-based products (e.g., the

impact of cloud filtering; Povey and Grainger, 2015). Therefore, reanalysis data providing global
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coverage through models while assimilating observation-based data has attained an essential role

in assessing water cycle changes (Lorenz and Kunstmann, 2012). Each data source has limitations

and uncertainties; when multiple sources are combined, these can compound and result in conflict-

ing or unclear results. Hence, in addition to uncertainty due to the complex water cycle system,

which involves multiple feedback mechanisms and interactions between different components, we

must account for data merge uncertainty. Accordingly, various methodologies for multi-source data

integration have emerged. Among the most widely used ones are: Bayesian model averaging, con-

strained linear regression, neural networks, optimal interpolation, and simple weighting (Rodgers,

2000; Aires, 2014; Moazamnia et al., 2019; Pellet et al., 2019; Xiao et al., 2020). Subsequently, once

merged data is generated, it is subject to post-processing for water cycle budget closure via Monte

Carlo applications and Kalman filter variations (Pan and Wood, 2006).

Several studies have quantified the water cycle by implementing data integration methods and

budget closure constraints, e.g.,: Sahoo et al. (2011) integrated 16 data sets over 10 globally dis-

tributed river basins (eight for precipitation, six for evapotranspiration, one for runoff, and one

for total water storage; Table 5.1). Pan et al. (2012) integrated eight data sets over 32 globally

distributed river basins (four for precipitation, two for evapotranspiration, one for runoff, and one

for total water storage; Table 5.2). Rodell et al. (2015), integrated six data sets over continents

and ocean basins (one for precipitation, three for evapotranspiration, one for runoff, and one for

total water storage; Table 5.3). Zhang et al. (2016), integrated 14 data sets globally (five for pre-

cipitation, six for evapotranspiration, one for runoff, and two for total water storage; Table 5.4).

Munier and Aires (2018) integrated 12 data sets at the global scale (four for precipitation, three for

evapotranspiration, one for runoff, and four for total water storage; Table 5.5).

The studies mentioned above focus on merging multiple data sets to end up with a single data set

per water cycle component at different spatial scales. It is evident that unconstrained uncertainty

remains despite the plethora of data products derived from satellites, ground-based measurements,

and climate models. This is true even for localized studies at regional scales where “ground-truth”

measurements for one or more components of the water cycle are available. One region of particular

interest is Czechia, a small country in Central Europe with diverse landscapes and a growing popula-

tion (United Nations, 2022). The water cycle over Czechia has been experiencing significant changes

in recent times, affecting various aspects of the water balance in the region, including changes in

river flow regimes and water quality, loss of wetlands, and changes in the frequency and severity of

extreme events (Mozny et al., 2020). Besides, changes in the rainfall-snowfall partition have given

rise to a decrease in snow cover and premature snowmelt (Nedelcev and Jenicek, 2021). These
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changes in the water cycle are expected to continue in the near-future (Kyselý and Beranová, 2009;

Jenicek et al., 2021). Precipitation, in particular, is expected to increase its mean mainly in winter

and extreme rates throughout the year (Kyselý et al., 2011). In addition, increased human activities,

such as urbanization and agriculture, have led to changes in land use and land cover, which in turn

has contributed to the occurrence of floods and droughts (Svoboda et al., 2016). Droughts, have

had disastrous consequences for agriculture, forestry, water management, and other human activities

(Brázdil et al., 2009). Consequently, the water cycle in Czechia and human activity find themselves

on a causal feedback loop.

In this study, we aim to estimate the water cycle changes over Czechia between the 1961-1990

and 1991-2020 periods, and determine the current trends and patterns in water cycle components.

Our analysis includes various data sets at different spatiotemporal scales allowing us to assess 96

data combinations for budget closure. Rather than enforcing budget closure on a multi-source

integrated data set or assessing different integration methods, we explored an empirical method to

rank how multiple data set combinations close the water cycle budget while correlating to referential

data estimates of individual water cycle components. In this manner, we are not generating yet

another new data set but are identifying the best combination among the data sets available for

our study domain. Only the data sets with the best rankings as determined by our proposed

benchmarking were used in all subsequent computations. We found that hydroclimatic models, as

expected, have better water budget closure. However, ERA5-Land is not far off despite known non-

closure limitations associated with reanalyses. We identified an overall acceleration of atmospheric

water fluxes. Simultaneously, we report a heterogeneous distribution of freshwater availability.

5.2 Data and Methods

5.2.1 Study Area

Czechia is a landlocked (surrounded by Germany, Austria, Slovakia, and Poland) European country

that covers an area of 78 864 km2. Czechia is an essential headwaters region of the European

continent. The country is home to several large rivers, including the Vltava, the Elbe, the Morava,

and the Oder, all of which have their sources within it. Czechia is situated at the intersection of

three sea drainage basins: the North Sea, the Baltic Sea, and the Black Sea, which, in return, divide

Czechia into three main hydrological catchment areas: the Elbe, Oder, and Danube basins (Figure

5.1). All of these major watercourses drain water into neighboring states. The water sources of
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Czechia are thus almost exclusively dependent on precipitation.
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Figure 5.1: The three drainage basins within Czechia’s administrative boundaries (red line). Elbe
(light gray shade), Danube (black stripes), and Oder (dark gray points).

5.2.2 Data

To assess water cycle acceleration we gathered data sets with at least 60 years of record. This first

filter reduced the plethora of publicly available data sets to nine data sets from multiple sources

(observation-based, reanalysis, and hydrological model products) plus three evaluation references

(Table 5.6). The evaluation data sets for precipitation and runoff are the Czech Hydrometeorological

Institute (CHMI)and the Global Runoff Data Centre (GRDC), respectively. Six precipitation data

sets: Climatic Research Unit at the University of East Anglia (CRU TS v4.06; Harris et al. (2020)),

European Centre for Medium-Range Weather Forecasts (ECMWF) Reanalysis (ERA5-Land; Muñoz-

Sabater et al. (2021)), the E-OBS data set from the Copernicus Climate Change Service (Cornes

et al., 2018), National Centers for Environmental Prediction & the National Center for Atmospheric

Research Reanalysis One (NCEP/NCAR R1; Kalnay et al. (1996)), Precipitation Reconstruction

Over Land (PREC/L; Chen et al. (2002)), and TerraClimate (Abatzoglou et al., 2018). Note that,

E-OBS (hereinafter mHM(E-OBS)) was used as meteorologic input for the mesoscale Hydrologic

Model (mHM; Samaniego et al. (2010); Kumar et al. (2013)). Four evapotranspiration data sets:
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ERA5-Land, mHM, NCEP/NCAR R1, and TerraClimate. Four runoff data sets: ERA5-Land,

mHM, NCEP/NCAR R1, and TerraClimate. Using the above listed data sets we assessed a total of

96 different combinations.

5.2.2.1 Evaluation References

As evaluation references, we relied solely on ground station data sets. A distinct advantage of station

data over hydrological models or reanalyses is their capability to capture detailed and localized

information. These in-situ measurements directly reflect the local climatic conditions, offering a

more accurate representation of the water cycle.

The Czech Hydrometeorological Institute (CHMI) provides station derived precipitation data.

The CHMI station network consists of approximately 700 stations distributed with a mean density of

one station per each 100 km2, adequately representing the distinct geographical features of Czechia

(Kašpar et al., 2021). Although the data collection and related services for a specific station are

generally managed by the regional branches of CHMI, the entire territory station data can be

accessed from the Department of Climatology of CHMI at once. All the data sets are undergone

robust quality control checks by CHMI before being added to the database. Herein, we gathered

the country level estimates calculated by CHMI (one value per month) for a period of 60 years

(1961-2020).

The Global Runoff Data Centre (GRDC) is a collection of river discharge data from more than

8000 stations in 157 countries. The GRDC operates under the the World Meteorological Organi-

zation (WMO) since 1988 to collect, manage, and distribute data related to river discharge and

runoff from around the world. The data collected at GRDC undergoes quality control to check for

errors, inconsistencies, and outliers in the data before its dissemination. While data is available at

daily and monthly time step, the record length varies by location. We selected three stations from

GRDC, namely the Bohumin (Oder), Decin (Elbe), and Moravsky Jan (Danube) stations, which are

placed near the borders of the country and country level estimates were calculated by their wieighted

average based the catchment area as registered by GRDC.

5.2.2.2 Observational-based Products

CRU TS is a popularly used gridded data set generated by the University of East Anglia’s Climate

Research Unit (Harris et al., 2020). It is known for its historical long-term coverage, which is available

from 1901 to the near present. The data set comes with a 0.5◦ spatial resolution at the monthly scale.

It compiles station data from multiple sources such as the Food and Agricultural Organisation (FAO),
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the World Meteorological Organisation (WMO), and the National Meteorological Agencies (NMA’s)

(Sun et al., 2018). CRU TS v4, its latest version, implemented angular distance based interpolation

to facilitate tracing back the stations upon which the gridded data set has been constructed.

PREC/L, created by the US Climate Prediction Center (CPC), is a gridded product entirely

based on the station data set (Chen et al., 2002) with global coverage and monthly time step.

PREC/L draws data from over 17 000 stations from the Global Historical Climatology Network

version2 (GHCN v2; Peterson and Vose, 1997) and the Climate Anomaly Monitoring System (CAMS;

Janowiak and Xie, 1999). Subsequently, the data is interpolated to construct the gridded product

at three different resolutions (0.5◦, 1◦, and 2.5◦). Herein, we used the 0.5◦ monthly precipitation,

whose record extends from 1948 to the present.

5.2.2.3 Hydrological Models

The mesoscale Hydrologic Model (mHM; Samaniego et al., 2010; Kumar et al., 2013) is a conceptual

grid-based model representing dominant hydrological fluxes and storage at the Earth’s surface and

subsurface through a system of ordinary differential equations. mHM represents processes such as

interception, snow, soil moisture, evapotranspiration, and various runoff components like fast/slow

interflow and baseflow. The model was established, parameterized and evaluated over the European

continent (Rakovec et al., 2016b; Samaniego et al., 2019; Rakovec et al., 2022). The meteorological

inputs were based on daily E-OBS data (Cornes et al., 2018) of precipitation in addition to minimum,

maximum and average temperature. The potential evapotranspiration was derived using the method

of (Hargreaves and Samani, 1982). The spatial resolution of the model grid corresponds to 0.125◦.

Terraclimate is a high-resolution gridded global climate data set that provides the mean climate

and mean water balance data covering a time span of 1958 to the present (Abatzoglou et al., 2018).

The data set is commonly known for its high spatial resolution (4 km). It uses various global

gridded climate data sets such as WorldClim v2 (Fick and Hijmans, 2017) and v1.4 (Hijmans et al.,

2005), CRU TS v4 (Harris et al., 2020), Japanese 55-year Reanalysis (JRA55) (Kobayashi et al.,

2015), and Root zone storage capacity (Wang-Erlandsson et al., 2016) in order to generate the high-

resolution monthly climate variables time series at the global level. An additional advantage of the

Terraclimate is that it produces monthly surface water balance based on a water balance model

along with primary climatic variables such as temperature, precipitation, solar radiation, etc.
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5.2.2.4 Reanalyses

ERA5-Land is the latest fifth-generation global atmospheric reanalysis product developed by the

European Center for Medium-Range Weather Forecast (ECMWF) (Muñoz-Sabater et al., 2021).

ERA5-Land, as the name implies, builds upon the terrestrial component of ERA5 and downscales

the model spatial grid resolution from 31 km into 9 km. As a result, ERA5-Land delivers either hourly

or monthly estimates with a spatial resolution of 0.1◦. Given its high spatiotemporal resolution and

long record, ERA5-Land provides valuable data for comprehensive analysis and diverse hydrological

applications at the global scale.

The NCEP/NCAR Reanalysis project one is produced by the collaboration between the National

Centers for Environmental Prediction (NCEP) and the National Center for Atmospheric Research

(NCAR) (Kalnay et al., 1996). It is the longest-running reanalysis that uses rawindsonde data, at

the expense that the model and data assimilation scheme are antiquated Trenberth et al. (2011).

The data set is distributed on a T62 Gaussian grid (approximately 1.875◦ at the equator) and its

record start dates back to 1948.

5.2.3 Data Evaluation

We validated the gathered data sets to capture the temporal variability of water cycle components

as described by the three observational references via the coefficient of determination (R-squared

or R2) and the Root Mean Square Error (RMSE). All data sets were spatial weighted averaged

over Czechia and temporally aggregated to an annual scale over the calendar year. Note that only

precipitation data sets could be evaluated over the entire 60-year period of 1961-2020. In contrast,

runoff was evaluated over 1961-2017. In order to compare a 30-year mean among all water cycle

components, the common period of 1981-2010 was selected.

5.2.4 Data Set Ranking

A success metric widely used among several studies is getting the budget closure residual (ξ) as close

to zero as possible. Herein, we define the budget closure residual as follows:

ξn = Pn − En −Qn (5.1)

where Pn is precipitation, En is evapotranspiration, and Qn is runoff for a given year n. Thus,

we have 60 annual values for each of the 96 possible combinations. Note that, the water flux time
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series used to compute the residuals are the spatial weighted average values. Under steady state

conditions the mean of these residuals should tend to zero:

ξi =

∑N
n=1 ξn
N

→ 0 (5.2)

where ξi is the mean of the N = 60 annual residuals for the i-th combination. The score to be

used in the ranking of a given data set combination was determined via:

score =
|ξi|σξi

(cor(Pi − Ei, Qi)cor(Pi, Po)cor(Ei, Eo)cor(Qi, Qo))
2 (5.3)

where |ξi| is the absolute value of the mean of the 60 annual residuals for the i-th combination,

σξi is the standard deviation of the 60 annual residuals for the i-th combination, cor(Pi −Ei, Qi) is

the correlation between P −E and Q for the i-th combination, cor(Pi, Po) is the correlation between

P of the i-th combination and the precipitation evaluation reference, cor(Ei, Eo) is the correlation

between E of the i-th combination and the evapotranspiration evaluation reference, and cor(Qi, Qo)

is the correlation between Q of the i-th combination and the runoff evaluation reference. The ranking

method proposed herein can easily be applied to any other referential data set for evaluation. In

data-limited areas or those with a poor observational network, the ranking method may still be

applied using external data as an evaluation reference, or the corresponding term in the equation

can be simply left out. E.g., if evapotranspiration data for evaluation is not available, Equation 5.3

becomes:

score =
|ξi|σξi

(cor(Pi − Ei, Qi)cor(Pi, Po)cor(Qi, Qo))
2

In the case of Czechia, we used this modified version due to the absence of access to observational

evapotranspiration data.

5.2.5 Water Cycle Changes

We assessed the empirical distribution of spatial weighted average values (accounting for the area of

each grid cell in proportion to the total area being averaged) of annual water cycle fluxes between

1961-1990 and 1991-2020 for three of the best data set combinations. To account for the influence

of extreme value in the latter period due to the 100-year drought of 2003 (Brázdil et al., 2013), we

compared the median values rather than their means (see Figure 5.5). To deepen our assessment

of changes in the distribution of water cycle fluxes, we compared their monthly values between
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1961-1990 and 1991-2020. To determine the statistical significance of the above-mentioned changes,

we employed non-parametric bootstrapping of 10 000 iterations. Subsequently, we performed an

analogous analysis in space. We computed the change in the median values between 1961-1990 and

1991-2020 over each grid cell. Note that each data set was assessed at its native resolution for this

part of the analysis. Finally, we examined the change patterns of water cycles through the seasons.

Herein, we considered: winter as December, January, and February; spring as March, April, and

May; summer as June, July, and August; autumn as September, October, and November.

5.3 Results

5.3.1 Benchmarking water cycle components

Our analysis describes the most recent spatiotemporal changes on the water cycle in Czechia. For

starters, we examined precipitation, evapotranspiration, and runoff estimates from the gathered data

sets. Further, precipitation and runoff were compared to CHMI (Figure 5.2a) and GRDC (Figure

5.2c) as the respective evaluation references. The variability of estimates from precipitaion and

runoff data sets (Figure 5.2a and c) visibly have a broader spread than those of evapotranspiration

(Figure 5.2b). While one may suspect the spread in precipitation is due to the higher number of

data sets available, they correlate better to their evaluation reference than runoff. The data set with

the highest correlation values for precipitation is mHM(E-OBS) with R-squared of approximately

0.99 (Figure 5.2a). mHM has the highest correlation for runoff, with R-squared circa 0.93 (Figure

5.2c). In contrast, NCEP/NCAR R1 consistently reports the lowest correlation values regardless of

the water flux of interest. Additionally it has substantially higher RMSE values than the rest of

the data sets for precipitation. To some degree, ERA5-Land is the in-betweener data set because

it has high correlation values and simultaneously has high RMSE for precipitation, yet for runoff,

ERA5-Land exhibits moderate correlation and small RMSE.

The water cycle budget is meant to close over hydrological units. Accordingly, we examined

the water fluxes of the data sets with the best evaluation over the subbasins enclosed by the Czech

administrative borders (Figure 5.3). For simplicity, we will refer to them by their river names inside

Czechia. I.e., Morava for the Danube basin, Labe for the Elbe basin, and the Odra for the Oder basin.

It can be seen that within each data set, no extremely deviant behavior is exhibited between basins

or at the country level. In other words, the precipitation time series depicted by TerraClimate for

Czechia is similar to the one depicted for the Morava, Labe, and Odra Rivers. Comparing data sets,
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Figure 5.2: Benchmarking spatial weighted average annual water fluxes over Czechia between 1961
and 2020. For consistency and comparability between different water fluxes, annual anomalies were
computed using the 1981-2010 average as a reference, the common period among all data sets.
The 1981-2010 average and standard deviation are listed at the bottom left of each panel. Linear
correlation summary statistics are displayed at the bottom right of each panel. The spread of the
estimates being evaluated is shown in gray, and their mean is in white. (a) Precipitation evaluation.
CHMI data is shown in blue. (b) Evapotranspiration evaluation. (c) Runoff evaluation. GRDC
data is shown in purple.
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however, it is evident that ERA5-Land is different. At first glance, we evince higher magnitudes for

ERA5-Land precipitation and evapotranspiration, yet the residuals do not appear to be that far off

from those of mHM or TerraClimate. It is not until we look at the cumulative sum of the residuals

that we can distinguish ERA5-Land water budget residuals are nonstationary with a decreasing

trend.
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Figure 5.3: Spatial weighted average annual water fluxes over Czechia (first row), Labe River (Elbe
basin inside Czechia; second row), Morava River (Danube basin inside Czechia; third row), and
Odra River (Oder basin inside Czechia; fourth row). Where P is precipitation in blue, E is evapo-
transpiration in green, Q is runoff in purple, ξ is the residual (P − E −Q) in black, and c(ξ) is the
cumulative sum of the residual in orange. Left column: TerraClimate (P ), TerraClimate (E), and
TerraClimate (Q). Middle column: mHM(E-OBS) (P ), mHM (E), and mHM (Q). Right column:
ERA5-Land (P ), ERA5-Land (E), and ERA5-Land (Q).

It would be sensible to use the best data set for each water flux to proceed with further analysis.

However, we first verified if the best data sets individually would depict the best water cycle budget

in conjunction. Conventional metrics like R-squared and RMSE cannot be directly applied to a
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combination of data sets. We defined an empirical scoring metric, as described by Equation 5.3,

where the smallest the value, the better the data set combination. While our ranking approach is

empirical and simple, Equation 5.3 correctly identifies narrow distribution centered mean zero with

higher ranked positions compared to wider distributions centered around positive or negative values

(Figure 5.4). Upon ranking all 96 possible combinations (Table 5.7), we observe that even though

mHM outperformed TerraClimate for individual water flux estimates, the TerraClimate exclusive

combination offers the best water budget closure. We expected combinations with hydrological model

data to be highly ranked and reanalyses to be poorly ranked due to the above-reported considerable

biases of the latter. Notwithstanding, we were surprised to see the ERA5-Land exclusive combination

(i.e., all flux estimates from the same data set) among the top six ranks despite non steady water

budget residuals (Figure 5.3) as well as biases 1.7-3.3 and 3.8-4.2 times larger than those of models

for runoff (Figure 2.4c) and precipitation (Figure 2.4a), respectively. The first combination that

includes at least one estimate from NCEP/NCAR R1 is at the 38th rank, and the NCEP/NCAR

R1 exclusive combination is at the 87th rank.
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Figure 5.4: Empirical distribution of the data set combinations listed on Table 5.7 colored based on
their ranking as determined by Equation 5.3. The color gradient goes from higher ranked combina-
tions colored in shades green to lower ranked combinations colored in shades of brown.
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5.3.2 Temporal changes in the water cycle

Moving forward, we computed the change in water fluxes’ annual distribution via shifts on their 30-

year median (Figure 5.5). Also, we assessed the statistical significance of the observed change in the

medians by non-parametric bootstrapping (10 000 iterations). Hereupon, we will report results only

for the first- (TerraClimate exclusive), second- (mHM exclusive), and sixth-ranked (ERA5-Land ex-

clusive) data combinations. Because the third- (CRU TS v4.06, TerraClimate, Terraclimate), fourth-

(TerraClimate, TerraClimate, mHM), and fifth-ranked (CRU TS v4.06, TerraClimate, mHM) data

combinations have a single data set different from the first- and second-ranked ones, as such, we

would be showing the same plots and statistics multiple times. TerraClimate and mHM show similar

increases in precipitation and evapotranspiration circa 20 mm, but only evapotranspiration mani-

fests a statistically significant change (p ¡ 0.01). Evapotranspiration changes underwhelming those

of precipitation stand further accentuated in ERA5-Land, whose magnitude of the change in evap-

otranspiration is almost 60 mm and in precipitation is less than -1 mm. Another peculiarity of

ERA5-Land is that runoff, with a change of -56 mm at p = 0.01 statistical significance. Regarding

the estimates for precipitation minus evapotranspiration, we observe three different behaviors: Ter-

raClimate has a change in P-E in the opposite direction of runoff (1 mm vs. -5 mm); mHM has a

change in P-E of smaller magnitude than runoff (-2 mm vs. -9 mm); ERA5-Land has similar changes

for both P-E and runoff (-55 mm vs. -56 mm), but with values one order of magnitude higher than

those of TerraClimate and mHM.

The above results, seemingly disagreeing with the expected increases reported in previous lit-

erature (Kyselý and Beranová, 2009; Svoboda et al., 2016; Kašpárek and Kož́ın, 2022), indicate

that there have not been any statistically significant changes in median annual precipitation over

Czechia between the last two 30-year periods. Thereafter, we proceeded to look into changes between

1961-1990 and 1991-2020 monthly water fluxes (Figure 5.6). Note that hereinafter we mention only

months with statistically significant changes (p ¡ 0.01). Regarding precipitation, we observe a consis-

tent increase of around 14 mm during October and circa 11 mm during July present in TerraClimate,

mHM(E-OBS), and ERA5-Land. Besides, mHM(E-OBS) and ERA5-Land had decreasing changes

in April of -6 mm and -9 mm, respectively. We also found a -5 mm decrease during November,

present only in mHM(E-OBS). In terms of evapotranspiration, as expected from the statistically

significant changes described for annual values, we report increases between 1-10 mm depending on

the month. TerraClimate has the shortest period of continuous changes with gradually increasing

magnitude from January (1 mm) to March(9 mm). mHM on top of said evapotranspiration behavior
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Figure 5.5: Box plots of spatial weighted average annual water fluxes over Czechia, where P is
precipitation, E is evapotranspiration, Q is runoff, and P − E is precipitation minus evapotranspi-
ration. Data are divided into two 30-year periods: 1961-1990 (blue) and 1991-2020 (yellow). Note
that outliers are present only in the latter period (i.e., 1991-2020) as expected from the recorded
severe drought of 2003.

from January (1 mm) to April (4 mm) also shows the subsequent oscillating behavior: May (2 mm),

June (2 mm), July(4 mm), and August (3 mm). ERA5-Land changes in evapotranspiration have a

behavior similar to mHM but with overall higher magnitudes and two months longer. I.e., a consec-

utive increase from December (1 mm) to April (8 mm) and subsequent swings back and forth: May

(7 mm), June (7 mm), July(10 mm), August (8 mm), and September (3 mm). Concerning runoff,

there is a striking unique visual for TerraClimate, whose range of values from February to April is

considerably larger than those of mHM or ERA5-Land. A runoff decrease is present in all data sets

for April and May, with an added magnitude of -18 mm, -8 mm, and -12 mm for TerraClimate,

mHM, and ERA5-Land, respectively. Interestingly, these runoff decreases are translated only into

mHM and ERA5-Land through precipitation minus evapotranspiration decrease in April (-6 mm

and -15 mm).

5.3.3 Spatial patterns of water cycle changes

The results shown so far provide insight into the temporal changes water cycle components have

undergone in the past 60 years, considering spatial weighted averaged values across Czechia. To

expand our analysis from the temporal into the spatial domain and provide insight into the spa-
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Figure 5.6: Box plot of spatial weighted average monthly water fluxes over Czechia, where P is pre-
cipitation, E is evapotranspiration, Q is runoff, and P−E is precipitation minus evapotranspiration.
Data are divided into two 30-year periods: 1961-1990 (blue) and 1991-2020 (yellow). Left column:
TerraClimate (P ), TerraClimate (E), and TerraClimate (Q). Middle column: mHM(E-OBS) (P ),
mHM (E), and mHM (Q). Right column: ERA5-Land (P ), ERA5-Land (E), and ERA5-Land (Q).
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tiotemporal features of the selected data sets, we mapped the difference between the 1991-2020 and

the 1961-1990 medians for P , E, Q, and P − E (Figure 5.7). Note that maps for each product

were generated at their native resolutions, i.e., TerraClimate at 4 km, mHM at 0.125◦, and ERA5-

Land at 0.1◦. At first glance, we observe overall agreement in spatial patterns between data sets

for evapotranspiration and runoff, with slight discrepancies around the Sudetic (northeast), Šumava

(southwest), and Ore (northwest) Mountains. In particular, ERA5-Land exhibits changes of higher

magnitude in evapotranspiration (increase) and runoff (decrease) than TerraClimate and mHM.

Contrary to the above-described agreement, there is no consensus on spatial precipitation pat-

terns among data sets. We discern three different patterns: TerraClimate shows a homogeneous

increase across the country with a particular contour of higher increase that starts at the Šumava

Mountains and diminishes toward the Ore Mountains and a slight decrease around the Sudetes;

ERA5-Land portrays a somewhat zonal pattern with increasing bands north of 50.5◦N and south

of 49.5◦N of the country and a decreasing band in the middle; mHM pattern is in between those of

TerraClimate and ERA5-Land, with the band of precipitation decrease being smaller than that of

ERA5-Land confined west of 15◦E. While some of these heterogeneities are echoed in P −E spatial

patterns, there is a general decrease across data sets over Czechia. Therefore, evapotranspiration

changes appear to dominate the spatial distribution of water availability.

Based on the results observed in Figure 5.6, we have previously identified that monthly patterns

of increase or decrease in water fluxes are, to some extent, aligned with their seasonal variability.

Thus this time around, we aggregated the data seasonally rather than looking at the monthly

spatial distribution of changes in the median between the two 30-year periods. While individual

characteristics for each data set are further emphasized by looking into seasonal spatial patterns,

we identify some common traits. A dominant pattern of precipitation decrease is localized to the

Westernmost part of Czechia during winter and expands to the rest of the country during spring.

Evapotranspiration increases of the highest magnitude take place during spring and summer. As

a result of this opposing direction, during spring, we see the most substantial decrease in runoff

and P − E therein. Furthermore, it is safe to state that if evapotranspiration generally increases

despite decreasing patches of precipitation (present to a greater or lesser extent across all seasons),

the water cycle in Czechia is dominated by changes in energy rather than water availability.

TerraClimate, with a resolution of 4 km, offers far more detail on spatial patterns than other

data sets (Figure 5.8). It has a semester split for precipitation, with a decreasing pattern dominating

winter and spring and an increasing pattern dominating summer and autumn. Evapotranspiration

decreases during spring and summer but does not cover nearly as much area of Czechia as precip-
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Figure 5.7: Spatial pattern of changes in median water fluxes over Czechia between two 30-year
periods: 1961-1990 and 1991-2020. I.e., the value of each grid cell is equal to the median value of
1991-2020 minus the median value of 1961-1990. P is precipitation, E is evapotranspiration, Q is
runoff, P − E is precipitation minus evapotranspiration, and ξ is the residual (P − E − Q). Left
column: TerraClimate (P ), TerraClimate (E), and TerraClimate (Q). Middle column: mHM(E-
OBS) (P ), mHM (E), and mHM (Q). Right column: ERA5-Land (P ), ERA5-Land (E), and
ERA5-Land (Q).
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itation when decreasing. Runoff changes circumscribe winter (increase) and spring (decrease) and

are relatively mute during summer and autumn. Regarding water availability, the patterns of P −E

reflect those of precipitation. However, the increases in summer and autumn are not as notable.

Autumn is a season of spatial homogeneity in TerraClimate because precipitation, evapotranspira-

tion, runoff, and P − E all depict countrywide increases, albeit of smaller magnitude than in other

seasons. On the other hand, a distinctive contrast takes place in winter, in which we have a decrease

in runoff in spite of an increase in water availability.
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Figure 5.8: TerraClimate spatial pattern of changes in seasonal median water fluxes over Czechia
between two 30-year periods: 1961-1990 and 1991-2020. I.e., the value of each grid cell is equal
to the seasonal median value of 1991-2020 minus the seasonal median value of 1961-1990. P is
precipitation, E is evapotranspiration, and Q is runoff. The seasons are defined as follows: winter
as December, January, and February; spring as March, April, and May; summer as June, July, and
August; autumn as September, October, and November.

Seasonal spatial patterns of mHM have the least substantial changes, with magnitudes mainly
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Figure 5.9: mHM spatial pattern of changes in seasonal median water fluxes over Czechia between
two 30-year periods: 1961-1990 and 1991-2020. I.e., the value of each grid cell is equal to the seasonal
median value of 1991-2020 minus the seasonal median value of 1961-1990. P is precipitation, E
is evapotranspiration, and Q is runoff. The seasons are defined as follows: winter as December,
January, and February; spring as March, April, and May; summer as June, July, and August;
autumn as September, October, and November.
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Figure 5.10: ERA5-Land spatial pattern of changes in seasonal median water fluxes over Czechia
between two 30-year periods: 1961-1990 and 1991-2020. I.e., the value of each grid cell is equal
to the seasonal median value of 1991-2020 minus the seasonal median value of 1961-1990. P is
precipitation, E is evapotranspiration, and Q is runoff. The seasons are defined as follows: winter
as December, January, and February; spring as March, April, and May; summer as June, July, and
August; autumn as September, October, and November.
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in the -25 mm to 25 mm range compared to the -40 mm to 40 mm range of TerraClimate and

ERA5-Land (Figure 5.9). Precipitation patterns mimic those of TerraClimate except for autumn,

where mHM(E-OBS) holds more heterogeneity. Contemporaneously, we observe slightly decreased

evapotranspiration. For the rest of the seasons, evapotranspiration presents a widespread pattern of

positive changes, with the highest magnitudes in summer. There is a dominant decreasing pattern

for runoff across all seasons. In winter, there are pinpoint increases around the Czech borders near

the Sudetic, Šumava, and Ore Mountains. P − E has the highest magnitude for decreasing change

in spring. There is a mixed pattern of increase and decrease for P − E in winter and summer, yet

the extent of decreasing changes is more prominent. Once again, analogous to TerraClimate, we find

a season of contrasting runoff (decreasing) and P − E (increasing) changes, but for mHM, it takes

place in autumn.

ERA5-Land spatial pattern of changes in seasonal median water fluxes closely resembles those

of mHM (Figure 5.10). The previously observed zonal pattern for precipitation change between the

two 30-year medians seems to be driven by summer changes. Evapotranspiration changes, unlike

TerraClimate or mHM, are increasing across all seasons. With specifically large evapotranspiration

increases in summer followed by spring. In opposition, runoff has decreased regardless of the season.

The sporadic patches of increased runoff observed in mHM near the Czech borders are nonexistent

in ERA5-Land. Similarly, the mixed patterns for P − E for mHM present in winter and summer

are missing in ERA5-Land, which only reports decreasing changes. Lastly, we evince contrast in the

direction of change between runoff (predominantly decreasing) and P−E (predominantly increasing)

in autumn, parallel to that of mHM. While this contrast is present in all data sets, the season differs

for mHM and ERA5-Land (autumn) vs. TerraClimate (winter). Moreover, it is also inversed, i.e.,

TerraClimate has increasing runoff and decreasing P−E, but mHM and ERA5-Land have decreasing

runoff and increasing P − E.

5.4 Discussion

Overall long-term changes in the annual water cycle in Czechia are primarily evident in evapotran-

spiration. Interestingly, the general agreement among different data sets at low-frequency time scales

dissolves as we deepen into seasonal and monthly scales. Higher frequency temporal analysis revealed

that while its seasonality modulates changes in precipitation, these changes are overwhelmed by a

consistent evapotranspiration increase. This compound behavior results in depleted water availabil-

ity, as reflected by decreasing runoff and P −E. Furthermore, different data combinations estimate

123



different spatiotemporal patterns of water cycle changes. The observed redistribution of water avail-

ability can seriously impact water resources in the region, including the quality and quantity of

drinking water, the accessibility of water for irrigation and energy generation, and the health of

aquatic ecosystems. Our results herein provide an updated overview of the water cycle in Czechia

and map changes in the past 60 years, are essential to assess and ensure the sustainable use and

management of water resources in Czechia. Additionally, we have defined and demonstrated the

ability of a purely empirical ranking method to benchmark hydroclimatic data fusion and deter-

mine the best combination to represent water cycle budget closure that can be applied to any other

regional study.

We determined that the best data sets for long-term assessment of water cycle individual com-

ponents in Czechia based on the selected references are: mHM(E-OBS), ERA5-Land, and Terr-

aClimate for precipitation; ERA5-Land, mHM, and TerraClimate for evapotranspiration; mHM,

TerraClimate, and ERA5-Land for runoff. Similar standings for precipitation data were reported

by Fallah et al. (2020) and Bandhauer et al. (2022). Fallah et al. (2020) used runoff simulation vs.

streamflow observations using different data sets to benchmark precipitation data and found that

E-OBS yields a robust agreement, while ERA5, Global Precipitation Climatology Centre (GPCC

V.2018; Schneider et al., 2011), and Multi-Source Weighted-Ensemble Precipitation (MSWEP V2;

Beck et al., 2019) show good performances. Bandhauer et al. (2022) report that while E-OBS

and ERA5 agree qualitatively, ERA5 considerably overestimates mean precipitation over Europe

due to too many wet days. These prevalent wet bias in ERA5 has been reported along diverse

assessments (e.g., Beštáková et al., 2023; Lavers et al., 2022). NCEP/NCAR R1 had the worst pre-

cipitation performance. It was previously reported that, at least regarding extreme precipitation,

NCEP/NCAR R1 performed far better than ERA5’s predecessors, i.e., ERA40 (Uppala et al., 2005)

and ERA-Interim (Dee et al., 2011), (Sun et al., 2018). This disagreement could be attributed to

the improvements implemented in ERA5 over its predecessors in model parameterizations, spatial

resolution, and input data assimilation. Additionally, the poor performance of NCEP/NCAR R1

might be rooted in its coarse spatial resolution (two grid cells cover Czechia).

Regarding evapotranspiration estimates, ERA5-Land has been reported as an adequate data

source to overcome the unavailability of observed agrometeorological data in Europe (Vanella et al.,

2022), and its robustness supports its use for drought monitoring (Vicente-Serrano et al., 2023).

mHM has undergone extensive evaluation over Europe at multiple spatial scales and has repeatedly

shown its ability to capture the observed dynamics of actual evapotranspiration (Hanel et al., 2018;

Rakovec et al., 2016a) and its application to determine dominant drought types and their evolution
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(Markonis et al., 2021a). While, to our knowledge, there have not been studies focusing on the qual-

ity or applications of TerraClimate evapotranspiration to date, it has been calibrated and validated

using FLUXNET data (Abatzoglou et al., 2018), a conglomerate of networks gathering and stan-

dardizing quality control protocols for station-based evapotranspiration measurements (Pastorello

et al., 2020). Most of the abovementioned referenced studies also testify to the quality of runoff

data from mHM, TerraClimate, and ERA5-Land because the studies use runoff and streamflow data

derived, among other variables, from their evapotranspiration estimates and show that they can

capture the streamflow dynamics adequately across a wide range of climate and physiographical

characteristics.

Our evaluation of individual water cycle components is cohesive with previous literature. Al-

though the data products assessed herein have been previously analyzed at multiple spatial scales,

this is done under a univariate perspective, that does not consider the ability of the data sets to

reproduce the water cycle and its changes as a whole in a structurally plausible manner. This is

easily denoted by the fact that even though mHM’s performance was the best for all water cycle

components evaluated using high-quality observational references, the best data set combination

ranking is actually TerraClimate exclusive (i.e., all flux estimates from the same data set). Note

that the score metric and ranking framework proposed herein serve as a method that can easily and

quickly filter out the data set combinations providing implausible results. It should be remarked that

this ranking framework acts as an initial assessment to be complemented with additional analyses

because the score metric does not account for any biases in the products. Expressly because the

aim of our work is not to benchmark the different data sets analyzed herein but to demonstrate how

different can become the water cycles depicted by each of them.

It is clear that the story to be told in terms of water cycle changes is not only dependant on the

data set of choice but also on the time scale. This kind of differences tend to be overlook when annual

averages are being compared but when it comes to annual totals the small discrepancies add up. By

further digging into this we unveiled some substantial inconsistency in the ERA5-Land data. It ap-

pears that the cumulative sum of the water budget residual in ERA5-Land declines monotonically in

time, implying some systematic bias in the water budget closure. Notwithstanding, to our surprise,

we found that throughout our analysis, mHM and ERA5-Land (a hydrological model and reanalysis)

presented more compatible spatiotemporal patterns than the two hydrological models (mHM and

TerraClimate). Regarding hydrological models, their evapotranspiration response is strongly linked

to how they represent soil moisture and radiative energy at the surface (Boé and Terray, 2008; Zhao

et al., 2013), leading to the visible discrepancies among mHM and TerraClimate. In terms of water
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cycle fluxes’ magnitude, we report significant ERA5-Land overestimation of precipitation and evap-

otranspiration, which are in line with previously reported overestimations of summer precipitation

over Central Europe (Hassler and Lauer, 2021; Rivoire et al., 2022). These biases in conjunction

with the monotonic declining trend we found in the cumulative sum of water budget residual raise

further questions about the applicability of ERA5-Land in hydrological studies. Therefore extra

caution should be exercised when the widely-used reanalysis data product is employed.

There is agreement among the best-ranked data set combinations that most of the significant

changes in Czech water fluxes are localized in spring, particularly in April and May. Notwithstanding,

we observe that it is the summer season whose changes determine the spatiotemporal patterns

of change between the 1991-2020 and 1961-1990 medians. Declining precipitation and increasing

evapotranspiration in spring support reported drying trends over Czechia (Brázdil et al., 2015). In

addition to these general patterns, we identified localized increases in winter runoff coupled with

decreases and shifts in spring runoff around the Sudetic, Šumava, and Ore Mountains. These changes

in mountainous runoff have been previously identified and attributed to decreasing snow cover and

earlier snowmelt season (Nedelcev and Jenicek, 2021), which in some Czech catchments also derive in

summer low flows (Jenicek and Ledvinka, 2020). Similar seasonal developments of the snow effect on

runoff have been reported over multiple mountainous catchments across the world (Berghuijs et al.,

2014; Dierauer et al., 2018; Muelchi et al., 2021). Hänsel et al. (2019) remark that seasonal trends

are sensitive to shifts in the season definition by one month, which aligns with our monthly analysis

because we identified significant changes in months like May and November (peripheral months of

spring and autumn as defined herein). Additionally, it could be the reason behind summer, the

contiguous season, dominating the long-term precipitation pattern.

The drying regime we report in Czechia, due to the gradual increase in atmospheric evaporative

demand over the last 60 years (1961-2020) extends in time and space over central and eastern Europe

(Beštáková et al., 2023). Jaagus et al. (2022) reported long-term drying trends for the 1949-2018

period in Slovakia, Hungary, Romania, Moldova, southern Poland, and particularly significant in

Czechia. Trnka et al. (2016) described a strong tendency towards increased dryness in most Central

Europe. Brázdil et al. (2009) performed one of the longest-record analysis in the region (1881-2006)

and exposed an increasing tendency towards more prolonged and more intensive dry episodes. Still,

it remains unclear how this long-term shift is linked to the post-2000 seasonal (Potopová et al., 2015),

annual (Hanel et al., 2018), and multi-year droughts (Moravec et al., 2021) that have occurred in

Central Europe and Czechia in specific. It has been demonstrated, though, that these droughts

manifest more as soil moisture deficits than meteorological and hydrological droughts, as they are
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related to high evaporative demand during the warm season period (Markonis et al., 2021a). Our

results agreement shows that the long-term aridification could be the outcome of the same physical

mechanism, i.e., evaporation increase, to the one that dominates the short-term extreme events.

Our study comes with certain limitations that pave the way for future research. A certain

limitation is that our analyses do not attribute the observed changes to any potential physical

or anthropogenic drivers. It is likely that the evapotranspiration increase is linked to long-term

changes in atmospheric circulation patterns that have caused a decline in cloudiness (Lhotka et al.,

2020). As it has been shown that global warming is going to disrupt the terrestrial water cycle

mainly due to changes in precipitation (Roderick et al., 2014), it is more plausible to attribute

the observed intensification to the fluctuations of atmospheric circulation. Yet, this remains to be

confirmed by future studies that will determine the factors that contribute most to the hydroclimatic

shifts, although drought projections over Czechia (Dubrovsky et al., 2009), and central Europe

Hari et al. (2020) indicate an increased drought risk in the future prevalent under different climate

change scenarios. Additionally, our work does not investigate the role of water storage (snow and

groundwater), as well as land cover or vegetation changes. Lastly, while country-level assessments

are essential to improve water resources management and natural hazard policies, the water cycle

budget is closed over hydrological units, not administrative boundaries.

5.5 Conclusions

Herein, we have proposed and demonstrated the applicability of a novel benchmarking method based

on water cycle budget closure for hydroclimatic data fusion. The method does not enforce closure

nor merge multiple data sets into a new one, but instead identifies the best combination of data sets

in terms of water cycle budget residual distribution and correlation to referential data. Furthermore,

the ranking method presented could easily be applied to any other region and use different referential

data sets for evaluation. The ranking method may still be employed using gridded data like GPCC

or CRU TS as an evaluation reference in data-scarce areas or when ground-station data is not

publicly available. Most importantly, this metric is not constrained by data availability, as any of

the variables in the equation evaluation terms can be omitted. This modularity makes it a flexible

alternative to traditional approaches.

Using the best water budget data, we demonstrate that Czechia is undergoing water cycle accel-

eration, evinced by increased atmospheric water demand. Remarkably, the increase in precipitation

is not as pronounced as that one in evapotranspiration. While changes in the 30-year median of spa-
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tial weight average annual values show a minimum change in water availability, the spatial patterns

reveal a prevalent decreasing pattern of runoff across the country. Besides, we identified significant

spatial heterogeneity when assessing precipitation at a seasonal scale. Intriguingly, summer patterns

are reflected in the spatial difference between the 1991-2020 and the 1961-1990 medians despite most

of the significant changes in water cycle components being localized in spring. What is more, the

precipitation rain/snow partition effect of less snow and earlier snowmelt around the mountains is

reflected in a seasonal shift of runoff (increase in winter and subsequent decrease in spring). This

might reflect how sub-seasonal shifts could affect the long-term hydrologic changes.

Based on our results and previous literature, it is safe to state that the depletion of water

availability (runoff and P −E) over Czechia could prompt a surge in drought frequency. Considering

that shifts in evapotranspiration overwhelm those of precipitation, the water cycle in Czechia is

mainly driven by changes in energy rather than water availability. Further research is needed to

better understand the complex drivers of this drying trend and to develop targeted interventions to

address possible factors external to natural variability, like land-use changes and other anthropogenic

factors. Although it remains unknown if this drying trend will persist, it should be considered in the

planning of effective drought management strategies and water conservation measures to mitigate

its adverse impacts for agriculture, energy production, and natural ecosystems in Czechia.

Code Availability

The data compiled herein and the R code for the figures are publicly available at https://github.

com/MiRoVaGo/ugc_cwc.
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Chapter 6

Summary & Conclusions

This dissertation aimed to advance the understanding of multi-source water cycle quantification.

The research results improved the understanding and promoted the sensible integration of data

from multiple sources. More specifically, this dissertation made contributions in four main aspects,

namely:

(1) detailing the chronology of global water cycle quantification, highlighting improvements in

consistency over recent years;

(2) enhancing the evaluation of the global water cycle, with a focus on the response to global

warming;

(3) developing the pRecipe R package;

(4) demonstrating the practical application of a novel data fusion benchmarking to assess regional

water cycle changes.

Rise of the data (Chapter 2): The in-depth compilation of the water cycle quantification

chronicle highlights key milestones and challenges as we adapted our quantification methods to

exploit new technological resources better in each epoch, including the early days of hydrology,

model simulations period, satellite era, and age of big data. The current global precipitation and

evaporation climatic normal is estimated at circa 500 × 103[km3/year]. Overland precipitation is

estimated at 110 × 103[km3/year], evaporation at 70 × 103[km3/year], and over the ocean at 390 ×

103[km3/year] and 430 × 103[km3/year], respectively. However, despite unprecedented data avail-

ability, the quest for robust quantification of the global water cycle continues as uncertainty shrouds

the above-reported estimates. Remote sensing satellite products struggle with measurements over
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complex topography and cloud cover, climate model simulations are plagued with parametrizations

without physical meaning, and observational records are short and heterogeneous. It is clear that

no global water cycle data source is without fail, yet in some cases, one data source’s strengths cover

another’s weaknesses. Accordingly, it could be argued that from the early 1900s to the twenty-first

century, the paradigm of quantifying the global water cycle has shifted from identifying the best

data source per water cycle component to developing the best way to integrate data from various

sources. Multi-source quantification acknowledges the inherent unpredictability of the climate sys-

tem because, analogous to ensemble theory, it formalizes the notion that even under similar local

conditions, slight variations of the underlying microphysics may lead to observing a range of different

outcomes. Notwithstanding, it is of utmost importance that the research community continuously

strives to improve ground station observations, model simulations, reanalyses, and satellite remote

sensing measurements individually. More accurate and robust individual data sources will sub-

sequently refine the outcome of multi-source quantification, particularly when leveraging machine

learning tools to handle large data sets.

The precipitation-evaporation space (Chapter 3): Climate reanalyses complement obser-

vational measurements and offer unprecedented spatiotemporal resolution worldwide. Furthermore,

due to the lack of comprehensive observational-based data for crucial water cycle components such

as evaporation, reanalysis data is still one of our best tools for researching changes in the global

water cycle. Undeniably, these have improved the quantification of the global water cycle. However,

their varying performances and uncertainties limit their applicability to the point that diagnostic

variables such as precipitation and evaporation should be used with extreme caution. In this context,

a framework encompassing precipitation, evaporation, their difference, and their sum was proposed

and investigated to further constrain uncertainty by unveiling heretofore overlooked discrepancies in

four reanalysis data sets (20CR v3, ERA-20C, ERA5, and NCEP/NCAR R1). It could be argued

that introducing a new metric for water cycle acceleration into the current broad spectrum of metrics

may lead to inconsistent hydroclimatology analysis. Nevertheless, precipitation plus evaporation is

not just an index because it is physically grounded as evinced by good agreement with the range

of hydrological sensitivity and, as such, is better suited to describe climate models and reanalyses.

For example, a similar tendency of precipitation increases is evident in all reanalyses. In reality,

charting the reanalyses in the precipitation–evaporation space, we observe that no reanalysis is alike

as they all describe different water cycle dynamics. We displayed how, while precipitation minus

evaporation, a critical diagnostic, is not directly observable at the global scale, precipitation plus

evaporation is not held back by scale limitations and complements global water cycle research. The
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compound behavior of precipitation and evaporation provides a more comprehensive picture of the

water balance because it considers both the supply and demand of water or, within the precip-

itation–evaporation space, both atmospheric water storage (precipitation minus evaporation) and

water cycle intensity (precipitation plus evaporation).

A global precipitation climatology toolbox and database (Chapter 4): The pRecipe

package provides a common starting point for the hydrology scientific community through its ho-

mogenized database. By encompassing widely used products from multiple sources and establishing a

common ground to start analysis, pRecipe guarantees a fully reproducible framework for precipitation

research. Currently, the evergrowing pRecipe database includes: 20CR v3, CHIRPS v2.0, CMAP,

CMORPH, CPC-Global, CRU TS v4.06, EM-Earth, ERA-20C, ERA5, ERA5-Land, FLDAS, GHCN

v2, GLDAS CLSM v2.0, GLDAS NOAH v2.0, GLDAS VIC v2.0, GPCC v2020, GPCP v3.2, GPM

IMERGM v07, GSMaP v08, JRA-55, MERRA-2, MSWEP v2.8, MSWX-Past, NCEP/DOE R2,

NCEP/NCAR R1, PERSIANN-CDR, PREC/L, TerraClimate, TRMM 3B43 v7, and UDel v5.01.

In addition to these 30 datasets, which have been homogenized at monthly time steps and a 0.25

spatial resolution, the database also includes several masks such as individual countries, IPCC AR

reference regions, and major river basins, with a variety of geographical features such as land cover

types, elevation zones, biomes, and Köppen-Geiger climate classifications. Furthermore, pRecipe

offers a suite of analysis and visualization tools, which include spatial weighted averaging, spa-

tial trend calculation, spatiotemporal subsetting or aggregation, irregular polygon cropping (using

shapefiles), time series plots, empirical density histograms, boxplots, maps, and Taylor diagrams.

Its versatile methods to work with spatial (raster) and tabular (data.table) data enable the user to

export their results at any processing stage in NetCDF files compatible with climate and forecast

metadata conventions or CSV files, facilitating a seamless transition for the user into posterior pro-

cessing. Therefore, the pRecipe package constitutes a valuable resource for academics, government

agencies, and private-sector professionals because it provides a consistent and transparent approach

to precipitation research.

A Multi-Source Water Budget Perspective (Chapter 5): Using pRecipe and a novel

method for benchmarking hydroclimatic data fusion based on water cycle budget closure, 96 different

combinations of multi-source water cycle products (six for precipitation, four for evapotranspiration,

and four for runoff) were ranked using local observational data as evaluation references over Czechia.

Unfortunately, it is undeniable that spatially comprehensive and sufficiently long observational data

records are scarce. In such data-limited areas, the ranking method may still be applied, omitting the

corresponding term in the equation (e.g., we used only precipitation and runoff for evaluation). The
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empirical metric proposed ranks multi-source data combinations to quickly identify the best combi-

nation of data sets to gain insights into regional water cycle changes. Reanalysis and hydrological

modeling initially exhibited a general agreement at low-frequency time scales that dissolved as we

deepened into seasonal and monthly scales. Unexpectedly, mHM and ERA5-Land (a hydrological

model and reanalysis) presented more compatible spatiotemporal patterns than the two hydrologi-

cal models (mHM and TerraClimate) despite significant ERA5-Land overestimation of precipitation

and evapotranspiration. The results report that Czechia is undergoing water cycle changes mainly

driven by changes in energy rather than water availability, with notable spatial and temporal vari-

ations evinced by increased atmospheric water fluxes. Higher frequency temporal analysis revealed

that while its seasonality modulates changes in precipitation, these changes are overwhelmed by a

consistent evapotranspiration increase, resulting in depleted water availability.

6.1 Novel contributions

In summary, this dissertation enhanced the understanding of multi-source quantification of the water

cycle by proposing new methodologies and tools. The improved understanding and advancements in

multi-source data approaches ensure better implementation and more accurate assessment of water

cycle changes provided that we understand now results are susceptible to the data sets being used.

The novel contributions of this dissertation include:

1. A comprehensive review of the chronological development, data sources, and methods used to

quantify the global water cycle.

2. A framework that combines precipitation and evaporation to constrain uncertainties in data

sets.

3. A tool that standardizes the download, exploration, processing, and visualization of a compre-

hensive database of global precipitation data sets.

4. A novel method for benchmarking hydroclimatic data fusion based on water cycle budget

closure and observational references.

6.2 Recommendations for future research

Apart from the novel contributions summarized above, several future research lines were identified

and recommended based upon the obtained results. These include:
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1. The comprehensive review of the chronological development, data sources, and methods used

to quantify the global water cycle unveiled the significant heterogeneity of ground-based obser-

vations despite a century of continuous technological advancements. This persistent limitation,

juxtaposed with the high spatiotemporal variability in global water cycle quantification, calls

for a closer examination of methodologies to enhance the temporal and spatial resolution of the

available data. The existing limitations in resolution hinder a comprehensive understanding of

the intricate dynamics of the water cycle across different regions and timescales. Exploring and

implementing advanced technological solutions (e.g., more extensive networks or more sophis-

ticated instruments) and innovative downscaling approaches (e.g., physically informed machine

learning) is imperative to overcome this hurdle. By doing so, we can aspire to achieve a more

accurate and detailed portrayal of the fluctuations and interactions within the global water

cycle, thereby advancing our understanding of this complex system and its nexus implications.

2. Deploying a comprehensive “ground-based” network over oceans is an unrealistic expectation,

especially considering the challenges in achieving a similar network over land. However, rec-

ognizing that atmospheric water fluxes over the oceans constitute a significant portion of the

global water cycle fluxes, the imperative for enhanced precision in oceanic flux estimates be-

comes apparent. This limitation underscores a critical gap in our current understanding of the

global water cycle, emphasizing the necessity to address uncertainties in oceanic precipitation

and evaporation estimates. The call to action involves exploring advanced statistical methods

and alternative approaches, such as stochastic or machine learning-based methods, to elevate

the accuracy of these estimates. By doing so, we aim to overcome the challenges posed by

oceanic regions’ vast and dynamic nature, ultimately advancing our ability to comprehend and

predict the intricate dynamics of the global water cycle, where oceans play a pivotal role.

3. The precipitation-evaporation space emerges as a valuable graphical framework that sheds

light on previously unnoticed discrepancies in reanalyses. However, further research must dig

into the causes of the unveiled underlying uncertainties. A key aspect to be addressed is the

impact of different assimilation schemes, which can introduce variations and potential biases in

quantifying water cycle diagnostic fluxes such as precipitation and evaporation. Understanding

the intricacies of uncertainty propagation through assimilation schemes is vital for refining

data accuracy. Reanalysis data is invaluable due to its high spatiotemporal resolution; thus,

enhancing consistency across different reanalyses would propel a more robust understanding

of the complexities inherent in the global water cycle.
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4. A continuous optimization endeavor for the pRecipe package is imperative to ensure its ongoing

relevance and efficiency. This optimization process should be dynamic, responsive to emerging

technological advancements, and capable of further incorporating additional datasets to enrich

its functionality. A logical progression involves the development of a parallel package tailored

explicitly for evaporation data. By doing so, both principal water cycle fluxes( precipitation

and evaporation) would be encapsulated, providing a comprehensive toolkit for researchers.

This dual-package approach facilitates the seamless integration of evaporation data into the

precipitation-evaporation space, offering a well-rounded resource for investigating water cycle

changes. The concerted efforts toward refining and expanding these packages contribute to the

advancement of scientific tools and the accessibility of high-quality data, thereby fostering more

robust and fully reproducible research methodologies in the realm of water cycle dynamics.

5. Conducting a comprehensive uncertainty spatial analysis is imperative to pinpoint regions

where discrepancies in water cycle flux estimates persist at notable levels. This analysis should

delve into the intricacies of each region, considering factors such as local climate dynamics,

topographical variations, and the availability of relevant data. By examining these elements,

researchers can tailor targeted strategies to alleviate uncertainties in the identified regions.

Recognizing that the water cycle operates uniquely in different geographical contexts, address-

ing uncertainty necessitates a region-specific approach. This approach involves acknowledging

the influence of local climate dynamics and complex topography when evaluating the reliabil-

ity and adequacy of the available data. Through this detailed and context-sensitive approach,

researchers can contribute to characterizing the global water cycle more accurately, laying out

a more reliable foundation for water resource management and climate change assessments.

6. Expanding the analysis of water cycle changes to encompass socioeconomic factors represents

a pivotal step in comprehending the multifaceted dynamics at play. By exploring the intricate

interplay between anthropogenic activities, urbanization, and land-use changes, researchers

can gain insights into how human interventions influence temporal trends and spatial patterns

within the water cycle, contributing to a more holistic perspective on climate change impacts.

In tandem, further research should address how water cycle changes in response to global

warming drive anthropogenic activities such as urban expansion, population displacement,

and land-use change. This research has the potential to illuminate the broader implications

for water resource management and food security. As human societies evolve, understanding

the intricate connections between societal dynamics and the water cycle becomes crucial for
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devising sustainable strategies that effectively address the challenges posed by climate change.

In conclusion, this dissertation has advanced the multi-source water cycle quantification field,

making noteworthy contributions that enhance our comprehension and facilitate the integration

of data from diverse sources. Exploring the chronology of global water cycle quantification has

provided valuable insights into methodologies’ historical evolution, emphasizing recent consistency

improvements. Evaluating the global water cycle’s response to global warming has enriched our

understanding of climate change impacts on hydrological processes. The development of the pRecipe

R package offers a standardized and versatile tool for handling precipitation data. At the same time,

applying a novel data fusion benchmarking methodology has demonstrated its practical utility in

assessing regional water cycle changes. Collectively, these contributions underscore the importance of

a multidimensional approach to water cycle research, combining historical context, methodological

innovations, and practical tools. This dissertation serves as a testament to the ongoing pursuit

of knowledge in unraveling the complexities of the global water cycle, providing a foundation for

informed decision-making in water resource management and climate change mitigation.
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satellite data evaluate short-term hydro-meteorological fluxes from global atmospheric reanalyses.

Scientific Reports 10(1):4504, DOI 10.1038/s41598-020-61166-0, number: 1 Publisher: Nature

Publishing Group

Eischeid JK, Baker CB, Karl TR, Diaz HF (1995) The Quality Control of Long-Term Climato-

logical Data Using Objective Data Analysis. Journal of Applied Meteorology and Climatology

34(12):2787–2795, DOI 10.1175/1520-0450(1995)034⟨2787:TQCOLT⟩2.0.CO;2, publisher: Ameri-

can Meteorological Society Section: Journal of Applied Meteorology and Climatology

Eischeid JK, Pasteris PA, Diaz HF, Plantico MS, Lott NJ (2000) Creating a Serially Complete,

National Daily Time Series of Temperature and Precipitation for the Western United States.

Journal of Applied Meteorology and Climatology 39(9):1580–1591, DOI 10.1175/1520-0450(2000)

039⟨1580:CASCND⟩2.0.CO;2, publisher: American Meteorological Society Section: Journal of

Applied Meteorology and Climatology

Ellis EC, Klein Goldewijk K, Siebert S, Lightman D, Ramankutty N (2010) Anthropogenic trans-

formation of the biomes, 1700 to 2000. Global Ecology and Biogeography 19(5):589–606, DOI 10.

1111/j.1466-8238.2010.00540.x, eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1466-

8238.2010.00540.x

van der Ent RJ, Savenije HHG, Schaefli B, Steele-Dunne SC (2010) Origin and fate of atmospheric

moisture over continents. Water Resources Research 46(9), DOI 10.1029/2010WR009127, eprint:

https://onlinelibrary.wiley.com/doi/pdf/10.1029/2010WR009127

147



Espinoza V, Waliser DE, Guan B, Lavers DA, Ralph FM (2018) Global Analysis of Climate Change

Projection Effects on Atmospheric Rivers. Geophysical Research Letters 45(9):4299–4308, DOI

10.1029/2017GL076968, eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1029/2017GL076968

Essery RLH, Best MJ, Betts RA, Cox PM, Taylor CM (2003) Explicit Representation of Sub-

grid Heterogeneity in a GCM Land Surface Scheme. Journal of Hydrometeorology 4(3):530–543,

DOI 10.1175/1525-7541(2003)004⟨0530:EROSHI⟩2.0.CO;2, publisher: American Meteorological

Society Section: Journal of Hydrometeorology

Evans JP, McCabe MF (2010) Regional climate simulation over Australia’s Murray-Darling basin:

A multitemporal assessment. Journal of Geophysical Research: Atmospheres 115(D14), DOI

10.1029/2010JD013816, eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1029/2010JD013816

Falkenmark M, Lindh G (1974) How Can We Cope with the Water Resources Situation by the Year

2015? Ambio 3(3/4):114–122, publisher: [Springer, Royal Swedish Academy of Sciences]

Falkenmark M, Wang-Erlandsson L, Rockström J (2019) Understanding of water resilience in the

Anthropocene. Journal of Hydrology X 2:100009, DOI 10.1016/j.hydroa.2018.100009

Fallah A, O S, Orth R (2020) Climate-dependent propagation of precipitation uncertainty

into the water cycle. Hydrology and Earth System Sciences 24(7):3725–3735, DOI 10.5194/

hess-24-3725-2020, publisher: Copernicus GmbH

Farmer WH, Vogel RM (2016) On the deterministic and stochastic use of hydrologic

models. Water Resources Research 52(7):5619–5633, DOI 10.1002/2016WR019129, eprint:

https://onlinelibrary.wiley.com/doi/pdf/10.1002/2016WR019129
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G. Masaryka, veřejná výzkumná instituce

Kemp WP, Burnell DG, Everson DO, Thomson AJ (1983) Estimating Missing Daily Maximum

and Minimum Temperatures. Journal of Applied Meteorology and Climatology 22(9):1587–1593,

DOI 10.1175/1520-0450(1983)022⟨1587:EMDMAM⟩2.0.CO;2, publisher: American Meteorologi-

cal Society Section: Journal of Applied Meteorology and Climatology

Kessler A (1968) Globalbilanzen von Klimaelementen: ein Beitrag zur allgemeinen Klimatologie der

Erde. na

Kharin VV, Zwiers FW, Zhang X, Wehner M (2013) Changes in temperature and precipitation ex-

tremes in the CMIP5 ensemble. Climatic Change 119(2):345–357, DOI 10.1007/s10584-013-0705-8

Kibler KM, Biswas RK, Juarez Lucas AM (2014) Hydrologic data as a human right? Equitable access

to information as a resource for disaster risk reduction in transboundary river basins. Water Policy

16(S2):36–58, DOI 10.2166/wp.2014.307

Kidd C, Huffman G (2011) Global precipitation measurement. Mete-

orological Applications 18(3):334–353, DOI 10.1002/met.284, eprint:

https://onlinelibrary.wiley.com/doi/pdf/10.1002/met.284

Kidd C, Becker A, Huffman GJ, Muller CL, Joe P, Skofronick-Jackson G, Kirschbaum DB (2017)

So, How Much of the Earth’s Surface Is Covered by Rain Gauges? Bulletin of the American

Meteorological Society 98(1):69–78, DOI 10.1175/BAMS-D-14-00283.1, publisher: American Me-

teorological Society Section: Bulletin of the American Meteorological Society

158



Kobayashi S, Ota Y, Harada Y, Ebita A, Moriya M, Onoda H, Onogi K, Kamahori H, Kobayashi

C, Endo H, Miyaoka K, Takahashi K (2015) The JRA-55 Reanalysis: General Specifications and

Basic Characteristics. Journal of the Meteorological Society of Japan Ser II 93(1):5–48, DOI

10.2151/jmsj.2015-001

Koirala S (2010) Explicit representation of groundwater process in a global-scale land surface model

to improve hydrological predictions. PhD Thesis, University of Tokyo

Korzoun VI (1978) World water balance and water resources of the earth. Studies and Reports in

Hydrology 25, publisher: UNESCO

Kubota T, Shige S, Hashizume H, Aonashi K, Takahashi N, Seto S, Hirose M, Takayabu YN, Ushio T,

Nakagawa K, Iwanami K, Kachi M, Okamoto K (2007) Global Precipitation Map Using Satellite-

Borne Microwave Radiometers by the GSMaP Project: Production and Validation. IEEE Trans-

actions on Geoscience and Remote Sensing 45(7):2259–2275, DOI 10.1109/TGRS.2007.895337

Kumar R, Samaniego L, Attinger S (2013) Implications of distributed hydro-

logic model parameterization on water fluxes at multiple scales and locations.

Water Resources Research 49(1):360–379, DOI 10.1029/2012WR012195, eprint:

https://onlinelibrary.wiley.com/doi/pdf/10.1029/2012WR012195

Kumar S, Allan RP, Zwiers F, Lawrence DM, Dirmeyer PA (2015) Revisiting trends in wet-

ness and dryness in the presence of internal climate variability and water limitations over

land. Geophysical Research Letters 42(24):10,867–10,875, DOI 10.1002/2015GL066858, eprint:

https://onlinelibrary.wiley.com/doi/pdf/10.1002/2015GL066858

Kummerow C, Poyner P, Berg W, Thomas-Stahle J (2004) The Effects of Rainfall Inhomogeneity on

Climate Variability of Rainfall Estimated from Passive Microwave Sensors. Journal of Atmospheric

and Oceanic Technology 21(4):624–638, DOI 10.1175/1520-0426(2004)021⟨0624:TEORIO⟩2.0.CO;

2, publisher: American Meteorological Society Section: Journal of Atmospheric and Oceanic

Technology

Kunkee DB, Poe GA, Boucher DJ, Swadley SD, Hong Y, Wessel JE, Uliana EA (2008) Design and

Evaluation of the First Special Sensor Microwave Imager/Sounder. IEEE Transactions on Geo-

science and Remote Sensing 46(4):863–883, DOI 10.1109/TGRS.2008.917980, conference Name:

IEEE Transactions on Geoscience and Remote Sensing

159
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Marcinek J (1964) Der Abfluß von den Landflächen der Erde und seine Verteilung auf 5° Zonen.

Berliner geographische Arbeiten, Verlag für Bauwesen

Marengo JA (2005) Characteristics and spatio-temporal variability of the Amazon River Basin Water

Budget. Climate Dynamics 24(1):11–22, DOI 10.1007/s00382-004-0461-6

Markonis Y, Strnad F (2020) Representation of European hydroclimatic patterns with self-organizing

maps. The Holocene 30(8):1155–1162, DOI 10.1177/0959683620913924, publisher: SAGE Publi-

cations Ltd
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Möller F (1951) Quarterly charts of rainfall for the whole earth. Petermanns Geograph Mitt 95:1–7

Nace RL (1968) Water of the World Geological Survey. New Release, backup Publisher: U.S. Dept.

of Interior

Nedelcev O, Jenicek M (2021) Trends in seasonal snowpack and their relation to

climate variables in mountain catchments in Czechia. Hydrological Sciences Journal

66(16):2340–2356, DOI 10.1080/02626667.2021.1990298, publisher: Taylor & Francis eprint:

https://doi.org/10.1080/02626667.2021.1990298

Newman AJ, Clark MP, Craig J, Nijssen B, Wood A, Gutmann E, Mizukami N, Brekke L, Arnold

JR (2015) Gridded Ensemble Precipitation and Temperature Estimates for the Contiguous United

States. Journal of Hydrometeorology 16(6):2481–2500, DOI 10.1175/JHM-D-15-0026.1, publisher:

American Meteorological Society Section: Journal of Hydrometeorology

Newman AJ, Clark MP, Longman RJ, Gilleland E, Giambelluca TW, Arnold JR (2019) Use of

Daily Station Observations to Produce High-Resolution Gridded Probabilistic Precipitation and

Temperature Time Series for the Hawaiian Islands. Journal of Hydrometeorology 20(3):509–529,

DOI 10.1175/JHM-D-18-0113.1, publisher: American Meteorological Society Section: Journal of

Hydrometeorology

NOAA US (1987) Space-based remote sensing of the earth: a report to the Congress. NASA

NRC (1986) Global Change in the Geosphere-Biosphere. National Academy Press

Oki T (1999) 1.2 the Global Water Cycle. Global Energy and Water Cycles 134800000:10

Oki T (2006) The Hydrologic Cycles and Global Circulation. In: Encyclopedia of Hydrologi-

cal Sciences, John Wiley & Sons, Ltd, DOI 10.1002/0470848944.hsa001, section: 2 eprint:

https://onlinelibrary.wiley.com/doi/pdf/10.1002/0470848944.hsa001

Oki T, Kanae S (2006) Global Hydrological Cycles and World Water Resources. Science

313(5790):1068–1072, DOI 10.1126/science.1128845, publisher: American Association for the Ad-

vancement of Science

Onogi K, Tsutsui J, Koide H, Sakamoto M, Kobayashi S, Hatsushika H, Matsumoto T, Yamazaki

N, Kamahori H, Takahashi K, Kadokura S, Wada K, Kato K, Oyama R, Ose T, Mannoji N,

166



Taira R (2007) The JRA-25 Reanalysis. Journal of the Meteorological Society of Japan Ser II

85(3):369–432, DOI 10.2151/jmsj.85.369

Otto-Bliesner BL, Brady EC, Fasullo J, Jahn A, Landrum L, Stevenson S, Rosenbloom N, Mai A,

Strand G (2016) Climate Variability and Change since 850 CE: An Ensemble Approach with the

Community Earth System Model. Bulletin of the American Meteorological Society 97(5):735–754,

DOI 10.1175/BAMS-D-14-00233.1, publisher: American Meteorological Society Section: Bulletin

of the American Meteorological Society

O’Gorman PA, Muller CJ (2010) How closely do changes in surface and column water vapor fol-

low Clausius–Clapeyron scaling in climate change simulations? Environmental Research Letters

5(2):025207, DOI 10.1088/1748-9326/5/2/025207

O’Gorman PA, Allan RP, Byrne MP, Previdi M (2012) Energetic Constraints on Precipitation Under

Climate Change. Surveys in Geophysics 33(3):585–608, DOI 10.1007/s10712-011-9159-6

Palissy B (1580) Discours admirables. Martin Le Jeune, Paris

Pan M, Wood EF (2006) Data Assimilation for Estimating the Terrestrial Water Budget Using a

Constrained Ensemble Kalman Filter. Journal of Hydrometeorology 7(3):534–547, DOI 10.1175/

JHM495.1, publisher: American Meteorological Society Section: Journal of Hydrometeorology

Pan M, Sahoo AK, Troy TJ, Vinukollu RK, Sheffield J, Wood EF (2012) Multisource Estima-

tion of Long-Term Terrestrial Water Budget for Major Global River Basins. Journal of Climate

25(9):3191–3206, DOI 10.1175/JCLI-D-11-00300.1, publisher: American Meteorological Society

Section: Journal of Climate

Pan M, Fisher CK, Chaney NW, Zhan W, Crow WT, Aires F, Entekhabi D, Wood EF (2015) Triple

collocation: Beyond three estimates and separation of structural/non-structural errors. Remote

Sensing of Environment 171:299–310, DOI 10.1016/j.rse.2015.10.028

Papalexiou SM (2018) Unified theory for stochastic modelling of hydroclimatic processes: Preserving

marginal distributions, correlation structures, and intermittency. Advances in Water Resources

115:234–252, DOI 10.1016/j.advwatres.2018.02.013

Papalexiou SM, Markonis Y, Lombardo F, AghaKouchak A, Foufoula-Georgiou E (2018) Pre-

cise Temporal Disaggregation Preserving Marginals and Correlations (DiPMaC) for Station-

ary and Nonstationary Processes. Water Resources Research 54(10):7435–7458, DOI 10.1029/

2018WR022726, eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1029/2018WR022726

167



Papalexiou SM, Serinaldi F, Strnad F, Markonis Y, Shook K (2021) CoSMoS: Complete Stochastic

Modelling Solution

Pappas C, Papalexiou SM, Koutsoyiannis D (2014) A quick gap filling of missing hydrome-

teorological data. Journal of Geophysical Research: Atmospheres 119(15):9290–9300, DOI

10.1002/2014JD021633, eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1002/2014JD021633

Parker WS (2016) Reanalyses and Observations: What’s the Difference? Bulletin of the American

Meteorological Society 97(9):1565–1572, DOI 10.1175/BAMS-D-14-00226.1, publisher: American

Meteorological Society Section: Bulletin of the American Meteorological Society

Pastorello G, Trotta C, Canfora E, Chu H, Christianson D, Cheah YW, Poindexter C, Chen J,

Elbashandy A, Humphrey M, Isaac P, Polidori D, Reichstein M, Ribeca A, van Ingen C, Vuichard

N, Zhang L, Amiro B, Ammann C, Arain MA, Ardö J, Arkebauer T, Arndt SK, Arriga N, Aubinet
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historical reanalysis: Improvements for version 3 of the Twentieth Century Reanalysis system.

Quarterly Journal of the Royal Meteorological Society 145(724):2876–2908, DOI 10.1002/qj.3598,

eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1002/qj.3598

Slivinski LC, Compo GP, Sardeshmukh PD, Whitaker JS, McColl C, Allan RJ, Brohan P, Yin X,

Smith CA, Spencer LJ, Vose RS, Rohrer M, Conroy RP, Schuster DC, Kennedy JJ, Ashcroft
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Abstract
The aridity index, also known as the Budyko index, describes spatiotemporal changes in the hydroclimatic system in
the long-term perspective. Defined as the ratio between potential evapotranspiration and precipitation, it can be used to
determine wet (humid) and dry (arid) regions. In this study, we evaluated the aridity index estimated in different temporal
scales, investigated its spatial patterns, and highlighted the long-term changes in Europe using three gridded data sets (CRU,
E–OBS, and ERA5). A significant dry region expansion is evident in all data sets since the late 1980s. The extent of the dry
regions has increased in Western, Central, and Eastern Europe, especially at low and medium altitudes. The results show the
long-term development of the European hydroclimatic system and which areas have changed from wet to dry.

Keywords Aridity index · Budyko curve · Potential evapotranspiration · Precipitation · Drought · Europe

1 Introduction

Drought affects millions of people worldwide each year
(Dai 2011). In particular, it has become increasingly
widespread in Europe in the recent decades (Markonis
et al. 2021; Moravec et al. 2021) and has been causing
more and more problems in various socio-economic sectors
like agriculture, water resources, and industry (Naumann
et al. 2021). Droughts are expected to be more frequent,
severe, and prolonged in the future (Ault 2020; Rakovec
et al. 2022). Severe droughts significantly impact on the
hydroclimatic system (Wilhite 2000; Keyantash and Dracup
2004; Van Loon 2015), so it is crucial to investigate
droughts based on the long-term behavior of the hydro-
climatic system and seek solutions and mitigation strategies.

The aridity index describes the long-term functioning
of the atmosphere, more specifically, the process of
receiving and releasing water from the underlying surface
hydrological system. We study the potential flow of water
to the atmosphere, assuming that we have an unlimited
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bestakova@ufa.cas.cz; bestakova@fzp.czu.cz

1 Faculty of Environmental Sciences, Czech University of Life
Sciences, Prague, Czech Republic
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water supply (Budyko 1974; Wang and Alimohammadi
2012; Blöschl et al. 2013; Creed et al. 2014). In an arid/dry
environment (d), evapotranspiration prevails over pre-
cipitation, and vice versa in a humid/wet environment (w).

The aridity index is one of the primary inputs of the
Budyko modeling framework (Budyko 1974; Arora 2002;
Gerrits et al. 2009; Blöschl et al. 2013; Zhou et al. 2015;
Carmona et al. 2016). Budyko (1974) defined the aridity
index as the ratio of potential evapotranspiration (defined in
Section 2.1) to precipitation (PET /P ).

Many authors applied the aridity index to characterize
long-term runoff or actual evapotranspiration (Arora 2002;
Zheng et al. 2009; Wang and Alimohammadi 2012; Blöschl
et al. 2013; Creed et al. 2014). Among them, Arora
(2002) used the aridity index to obtain an analytic formula
to estimate the change in runoff under annual changes
in precipitation and available energy. Long-term actual
evapotranspiration can be calculated based on the aridity
index according to the Budyko hypothesis, which describes
actual evapotranspiration as a function of the aridity index
(Zheng et al. 2009). According to the United Nations
Environment Programme (Barrow 1992) and other authors
(Lioubimtseva et al. 2005; Diaz-Padilla et al. 2011; Spinoni
et al. 2015; Huang et al. 2016; Zhao et al. 2019; Myronidis
and Nikolaos 2021), the aridity index can also be defined as
the ratio P /PET . In this study, the aridity index is defined
as PET /P (Arora 2002; Gerrits et al. 2009; Nyman et al.
2014; Zhou et al. 2015; Carmona et al. 2016; Liu et al.
2019).
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Studies reporting aridity change on a global scale
observed an increase in aridity index (AI) in Europe (Gao
and Giorgi 2008; Spinoni et al. 2015; Huang et al. 2016).
However, these analyses are performed at a very coarse
scale, prohibiting the detection of any regional signal.
Regional-scale studies show similar results, but most of
them focus on small areas in southern or southeastern
Europe (Paltineanu et al. 2007; Gao and Giorgi 2008;
Salvati et al. 2013; Pravalie and Bandoc 2015; Spinoni et al.
2015; Huang et al. 2016; Cheval et al. 2017; Myronidis
and Nikolaos 2021). There is general agreement on the
development of dry areas among authors who study AI-
based climate change. However, no study has dealt with
the long-term development of AI in Central, Eastern and
Western Europe. Other studies focus on different areas
or global scales and do not provide regional details. We
did not find any study dealing with Central (defined here
as 45–55◦ latitude and 6–24◦ longitude), Eastern (east of
24◦ longitude), or Western Europe (west of 6◦ longitude)
specifically.

2 Data andmethods

2.1 Potential evapotranspiration

Potential evapotranspiration is defined as the amount of
water transpired by a short crop layer of uniform height
continuously shading the soil and having sufficient water
in the soil (Peng et al. 2017). In contrast, reference
evapotranspiration is crop-specific and used at the local
scale, especially by agronomists (Allan et al. 1998; Oudin
et al. 2005; Seiller and Anctil 2016; Peng et al. 2017; Kohli
et al. 2020; Xiang et al. 2020). Potential evapotranspiration
can be converted into reference evapotranspiration when
multiplying it by the appropriate crop coefficient, which
provides an estimate of crop water use. If land use
data are unavailable (or not considered), this coefficient
cannot be estimated (Seiller and Anctil 2016). Since
we do not have land-use data available and focus on
spatiotemporal changes in the hydroclimatic system in
the long-term perspective, potential evapotranspiration is
used to calculate the aridity index. The difference between
the potential evapotranspiration and the reference crop
evapotranspiration is discussed in detail by (Xiang et al.
2020).

In many studies, potential evapotranspiration and refer-
ence evapotranspiration are confused, and in such studies,
they are also compared to each other (Winter et al. 1995;
Xu and Singh 2000; Tabari 2010; Tegos et al. 2015; Poyen
et al. 2016; Seiller and Anctil 2016). The problem was
pointed out by Xiang et al. (2020). Xu and Singh (2000)
and Xiang et al. (2020) divided the methods for calculating

potential and reference evapotranspiration into four groups:
mass transfer type, temperature-based type, radiation type,
and combination type.

In general, the most often used equations are of the
temperature-based type. The most widely used method of
this type is the Thornthwaite equation, as it is simple and
requires only temperature for calculation (Pereira and Pruitt
2004; Bautista et al. 2009; Chang et al. 2019), but has
been found to underestimate reference evapotranspiration
(Pereira and Pruitt 2004; Sentelhas et al. 2010; Lakatos et al.
2020; Xiang et al. 2020).

The radiation type equations can be viewed as simplified
forms of the Penman equation (Gardelin and Lindstrom
1997; Xiang et al. 2020). Among the widely used radiation-
based methods is the Turc equation, which shows good
results in different studies, but its calculation requires a large
number of variables (Xu et al. 2013; Xiang et al. 2020) that
are often unavailable.

The combined type includes energy balance and aerody-
namic aspects, with the velocity term and vapor pressure
being its two basic terms. Penman and Monteith are the
basic equations for the combined type, which were then
linked (Penman-Monteith formula) and recommended by
FAO as a standardized method (Xiang et al. 2020). However,
it leads to better estimates only if the input variables are well
measured or estimated (they are sensitive to the imprecision
of the data (Weiland et al. 2012; Seiller and Anctil 2016)).
Another problem is that the Penman-Monteith formula is
an equation for calculating reference crop evapotranspira-
tion and should not be used for potential evapotranspiration
(Xiang et al. 2020). Also, Weiland et al. (2012) found bet-
ter model performance using the simplest formulas versus
the combination ones, thereby reducing the number of data-
intensive input variables. For these reasons, we decided to
use the Oudin formula to calculate potential evapotranspira-
tion, which is defined as:

PET = 0.408Re(TG + 5)

100
, if T G + 5 > 0

PET = 0 otherwise (1)

where PET [mm · day−1] is potential evapotranspiration,
Re [MJ · m−2 · day−1] is the solar radiation (this is top-
of-atmosphere radiation, calculated only based on the time
of year and geographical location—the influence of the
atmosphere is not considered), and T G [◦C] is mean daily
air temperature (Oudin et al. 2005).

We chose the calculation of potential evapotranspiration
according to the Oudin formula (which also belongs to
the radiation type equations) because it provides the most
adequate PET input to rainfall-runoff models. Oudin et al.
(2005) tried to identify the most relevant approach to
calculating PET and concluded that formulas based only
on temperature and radiation provide the best results. Lang
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et al. (2017) also pointed to better results of such methods
and Tegos et al. (2015) reported that the Oudin formula
shows relatively good results in Europe. Another advantage
is data simplicity, as the coverage of meteorological stations
is not always sufficient, so it is not possible to use
formulas with large data requirements. In addition unlike
the extended Thornthwaite formula, the Oudin formula
is applicable for average daily temperatures already from
−5◦C (Oudin et al. 2005).

2.2 Aridity index

In line with the original Budyko’s concept, we use the
following definition of the aridity index:

AIT = PETT

PT

, (2)

where AIT [−] is the dimensionless aridity index, PETT

[mm] is potential evapotranspiration, and PT [mm] is
precipitation aggregated over interval T (Gerrits et al. 2009;
Wang and Alimohammadi 2012; Creed et al. 2014; Zhou
et al. 2015; Carmona et al. 2016).

2.3 Transitions, states, patterns

We study transitions between wet (w) and dry (d) hydrocli-
matic systems. Transitions for different aggregations (T =
1, 10, 20, 30 years) are defined based on the magnitude of
the AIT (t − 1) value in the previous period t − 1 and the
AIT (t) value in the current period t .

If the value of AI in the previous period is less than one
and in the current period greater than one (transition wd),
a wet grid cell shifts into the dry state in the successive
periods. If the value of AI in the previous period is greater
than one and in the current period less than one (transition
dw), the dry state changes into the wet state. If the AI value
in the previous and current period is less than one (pattern
ww), a wet state is attributed to both periods for a given grid
cell. If the value of AI in the previous and current periods
is greater than one (pattern dd), a dry state is attributed to
the given grid cell in both periods. When determining the
relative frequencies of transitions, states, and patterns for a
larger area, we weighted them by the area of the grid cells
at a specific latitude.

2.4 Gridded data sets used for the analyses

This section presents the three gridded data sets applied
in this work: Climatic Research Unit (CRU) TS version
4.04, E–OBS version 22.0e, and the European Centre
for Medium-range Weather Forecasts (ECMWF) ERA5
reanalysis. The whole study deals with hydrological years
starting on November 1 and ending on October 31; this

definition is set so that there is no significant year-to-year
transfer of precipitation in the snow cover.

E–OBS has a resolution of 0.25◦ × 0.25◦ and is available
for 1920–2020. The daily precipitation and average daily
temperature values come from the E–OBS 22.0e data set
released in May 2020 (Cornes et al. 2018). The annual
precipitation totals were calculated based on monthly
values, and potential evapotranspiration was based on daily
temperature values according to the Oudin formula (Oudin
et al. 2005; Sarbu and Sebarchievici 2017; Wald 2018).
Studies analyzing E–OBS (Hofstra et al. 2009; Herrera
et al. 2012; Skok et al. 2016; Navarro et al. 2019) have
reservations about the density of the station network or their
inhomogeneous coverage. The highest density of stations is
in Northern Europe, England, Central Europe, and northern
Italy, while the network of stations is sparsest in Southern
and Eastern Europe (Cornes et al. 2018; Navarro et al.
2019). The accuracy of E–OBS strongly depends on the
density of the station network, and sparsely covered areas
have less accurate data. E–OBS was evaluated as better than
ERA5 in regions with dense data, while in areas with sparse
data both data sets are at the same level (Bandhauer et al.
2022).

CRU is a data set with a resolution of 0.5◦ × 0.5◦,
produced at the University of East Anglia and available for
1901–2019. It is a monthly gridded observational data set,
spatially interpolated. The interpolation is based on angular-
distance weighting. Available PET in this data set is
estimated using the Penman-Monteith formula (Harris et al.
2020), which includes the mean, maximum and minimum
temperature, vapor pressure, cloud cover, and wind speed
(Harris et al. 2014). The Penman-Monteith formula is in
fact a reference crop evapotranspiration (mass transfer type;
(Xiang et al. 2020)), so it was not used in our study; the
Oudin formula was used instead to calculate the potential
evapotranspiration.

ERA5 is the fifth generation of ECMWF reanalysis for
the global climate and weather. The ERA5 is a grid data
set with a resolution of 0.25◦ × 0.25◦, available for 1950–
2020. The data is obtained from the Climate Data Store
entries (Hersbach et al. 2018; Bell et al. 2020) and applies
the Hargreaves-Samani formula for potential evapotranspi-
ration (Hargreaves and Samani 1985). The formula uses the
average, maximum, and minimum temperature, evaporation
equivalent, and empirical coefficient for the calculation
(Rolle et al. 2021). The Hargreaves-Samani formula is also
a reference crop evapotranspiration (temperature-based
type; Xiang et al. (2020)), and its implementation in ERA5
contains a code error (transpiration is zero in areas without
vegetation—coastal and dry regions). The Oudin formula
was used in this study also for ERA5.

The primary parameters determined by the different grid
models were used to calculate Oudin-type PET and then

589Changes of the aridity index in Europe from 1950 to 2019

A.2

192



compared to the PET calculated by ERA5 and CRU teams
(Fig. 1). There is a significant underestimation of available
PET in coastal areas in ERA5 and a slight underestimation
in the UK and the Po Valley in CRU. On the contrary,
the overestimation in ERA5 and CRU is evident mainly in
Southern Europe (south of 45◦ latitude), especially in the
Iberian Peninsula.

The spatial resolution of 0.5◦ × 0.5◦ of all data sets
was used for computation and analysis (the raster package
(Hijmans 2021) in R environment was used for aggregation
in E–OBS and ERA5). Most of Europe (13◦ W – 30◦ E
longitude, 30◦–70◦ N latitude) is studied here. Furthermore,
the stats package in R environment (Wickham 2016; R
Core Team 2021) is used to create empirical quantile-based
distribution functions and construct the probability density.

3 Results

3.1 Basic properties

The increase in the mean AI over the whole period is shown
in Fig. 2. For two out of the three data sets, the mean value
decreased from 1960 to 1969 and considerably increased
thereafter. ERA5 increasing trend lags behind the other two
starting only at the end of the 1970s.

The mean and standard deviation of AI in Europe for
10-year aggregations for each transition and pattern are
shown in Table 1. A decrease in the mean of AI values was
found in the dd pattern during 1960–1979 and a subsequent
sharp increase in the 1980–1989 period in all three data
sets (Table 1). A decrease and subsequent gradual increase

Fig. 1 Differences between mean annual values of A) PET calculated
by ERA5 team (Hargreaves-Samani formula) and PET according to the
Oudin formula (� PET ERA5, left), B) PET calculated by CRU team

(Penman-Monteith formula) and PET according to the Oudin formula
(� PET CRU, right), for 1950–2019
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Fig. 2 20-year moving averages
of annual mean, the lower
quartile (Q1) and upper quartile
(Q3) of AI values (solid lines)
for all data sets for 1950–2019.
Points show values in individual
years; the lower and upper
quartiles are estimated from the
distribution across all grid boxes
in the analysed area (Europe)

were also partly found in the dw and wd transitions in all
data sets. Standard deviation increased during the 1990–
1999 period for the pattern dd in E–OBS and ERA5, and
the highest value for CRU was found in the 1980–1989
period. For the ww pattern, the changes in mean values
are negligible, and only in ERA5 there is a slight decrease
during the 1960–1989 period.

Empirical quantile-based distribution functions for all
three data sets are compared in Fig. 3A. There is
a considerable underestimation of AI values in ERA5
compared to the other two data sets. Figure 3B shows the
different shapes of the probability density functions for each
data set. If the AI is around 1, there is a transition from wet
to dry and vice versa. The density is plotted on the y-axis.

3.2 Transitions between wet and dry regions

The average AI values (Fig. 4) classified similar proportions
of wet and dry regions for the whole period investigated here
in CRU and E–OBS, while ERA5 shows wet environments
over most of the study area instead. In the CRU and E–

OBS data wet regions occur all over Northern Europe
(north of 55◦ latitude) and the UK, while dry regions in
Southern Europe, the Pannonian Basin, Moldova, Ukraine,
Poland, Czechia, the northeastern part of Germany, and the
French Lowlands. In contrast, ERA5 shows wet conditions
in the North-German Lowland, the Wielkopolska Lowland,
Belarus and northern Ukraine. These additional wet
conditions in ERA5 could be caused by the overestimation
of precipitation (see Section 4).

Western, Central, and Eastern Europe form a transition
strip (white color). The term “transition strip” is defined
here as the central latitude strip of Europe (between 45◦–
55◦ latitude, and 5◦–30◦ longitude). The most significant
changes in the development of dry areas take place within
this region.

We identified regions with the largest differences
between consecutive mean AI values for 20-year periods
(Fig. 5). During 1980–1999, there was a substantial increase
in AI in Southern Europe, while in 2000–2019, drying took
place mainly in the transition strip. Although the data sets
share an overall similar signal for dry region development,
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Table 1 Mean and standard deviation of mean values of AI for each transition (dd, ww) and pattern (dw, wd) in individual grid boxes for 10-year
periods

10-year Period Mean dd sd dd Mean dw sd dw Mean wd sd wd Mean ww sd ww

CRU 1950–1959 1.42 0.36 1.03 0.14 0.98 0.14 0.61 0.22

1960–1969 1.36 0.33 0.94 0.13 0.95 0.12 0.60 0.23
1970–1979 1.35 0.32 0.96 0.12 0.97 0.13 0.61 0.23
1980–1989 1.48 0.43 1.01 0.11 0.98 0.15 0.61 0.23
1990–1999 1.42 0.41 0.97 0.14 0.98 0.14 0.61 0.24
2000–2009 1.44 0.40 0.98 0.13 0.97 0.12 0.61 0.23
2010–2019 1.43 0.40 1.01 0.14 1.01 0.15 0.61 0.24

E-OBS 1950–1959 1.59 0.52 1.00 0.16 1.00 0.15 0.63 0.21
1960–1969 1.48 0.49 0.95 0.15 0.96 0.13 0.61 0.22
1970–1979 1.49 0.45 0.95 0.14 0.97 0.15 0.62 0.22
1980–1989 1.64 0.57 1.01 0.12 0.99 0.16 0.61 0.22
1990–1999 1.60 0.60 0.98 0.16 0.99 0.16 0.61 0.22
2000–2009 1.60 0.58 0.98 0.17 0.97 0.16 0.61 0.22
2010–2019 1.54 0.54 1.01 0.16 1.01 0.16 0.62 0.23

ERA5 1950–1959 1.51 0.46 0.98 0.17 0.98 0.16 0.60 0.22
1960–1969 1.40 0.44 0.91 0.16 0.94 0.14 0.57 0.20
1970–1979 1.37 0.33 0.95 0.17 0.97 0.17 0.57 0.20
1980–1989 1.54 0.44 0.99 0.13 0.95 0.18 0.56 0.20
1990–1999 1.51 0.47 0.96 0.16 0.98 0.16 0.58 0.21
2000–2009 1.55 0.44 1.00 0.17 0.99 0.16 0.59 0.21
2010–2019 1.49 0.47 0.97 0.15 0.97 0.15 0.58 0.21

Fig. 3 A Quantile-quantile plots of annual AI values for 1950–2019: (a) CRU and E–OBS, (b) E–OBS and ERA5, (c) CRU and ERA5.
B Probability density of annual AI values for 1950–2019. The x-axis shows the AI values and the y-axis the density
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Fig. 4 Average AI values for the
whole period (1950–2019) for
each grid cell

the location of the hotspots differs; CRU in Western Europe,
E–OBS in Central and Western Europe, and ERA5 in
Eastern Europe (Figs. 5 and 7).

The 10-year moving average of annual AI values were
compared with those of the previous 10-year periods. States
(d , w), transitions (wd , dw), and patterns (ww, dd) were
assigned to these AI values (Fig. 6). According to the three
data sets’ median, the probability of occurrence of dry
regions has increased by approximately 7% over the last 50
years (Fig. 6). The most intense increase has been observed
since the late 1980s (approximately 8%). The above is also
reflected in the behavior of the dd and ww patterns. Over
the last 50 years, there has been an increase in the dd

pattern by approximately 3% and a decrease in ww by
approximately 1%. The ww pattern was most frequent in
the mid-1980s, followed by a considerable decrease, i.e., an
increase in dry regions. The dw transitions decreased from
1970s until mid-1980s, then increased considerably from
the mid to late 1980s. The incidence of the wd transition
increased considerably from the mid-1980s to the beginning
of the twenty-first century and then grew slightly. The dw

transition has a declining trend throughout the whole period,
and the wd transition has an increasing trend. The three data
sets found similar trends in transitions, patterns, and states
throughout the period. The median trend (black) almost
overlaps with CRU.

After plotting the transitions and patterns (wd, dw, ww,
dd) for 20-year periods, we found only negligible changes
towards drying in Northern Europe and the southeast UK
(Fig. 7).

In Southern Europe, there is a gradual expansion of the
dry region. In all data sets, the east coast of the Adriatic
Sea is included within a wet region, although it is a dry

area in fact due to unique geomorphologic features of the
Dinaric Mountains with subterranean rivers and streams.
The relatively high precipitation amounts may be related to
windward effects on the slopes of the Dinaric Mountains
when Mediterranean cyclones influence the region.

A large area of Eastern Europe belongs to the dry area
in the CRU and E–OBS, while in ERA5 a significant part
of Eastern Europe belongs to the wet area. The spread of
drought in Eastern Europe has taken place over the last
two decades in CRU and E–OBS, especially in western
Ukraine.

Western Europe has been drying up mainly in the
French Lowlands; Eastern Europe mainly in northern
Ukraine and southern Belarus; and Central Europe from the
east, especially in the Pannonian Basin, the Wielkopolska
Lowlands, eastern part of the North-German Lowlands, and
Czechia (according to CRU and E–OBS).

Southern Europe, the Pannonian Basin, Moldova,
Ukraine, Poland, Czechia, the northeastern part of Germany,
and the French Lowlands are evaluated as dry areas of
Europe according to CRU and E–OBS data sets.

No development of dry regions has taken place at high
altitudes. The high mountains remain entirely in the wet
region (Figs. 4 and 7), even though drying occurs in these
parts of Europe (Fig. 5).

4 Discussion

Our study supports previous results concerning develop-
ment of aridity in Europe and detects these changes, espe-
cially in the central latitude strip of Europe (between 45◦
and 55◦ latitude).
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Fig. 5 Differences in mean AI values for the three data sets for consecutive 20-year periods from 1960 to 2019

4.1 Comparison of data sets

The study has identified specific differences between the
three data sets related to the different methods for creating
them.

Most studies that evaluated precipitation in E–OBS
report underestimations in the data (Hofstra et al. 2009;
Fibbi et al. 2016; Nechita et al. 2019; Bandhauer et al.
2022). Despite this Nechita et al. (2019) recommend E–
OBS for the needs of the current climate data set. According
to Laiti et al. (2018), E–OBS shows lower performance in

the Alps compared to ADIGE (regional precipitation and
temperature data set (Laiti et al. 2018)) and APGD (the
Alpine Precipitation Grid Data set (Isotta et al. 2015)),
especially in small river catchments.

Our results are consistent with van der Schrier et al.
(2013), who compared CRU and E–OBS and concluded that
CRU generally has higher temperature values than E–OBS,
which is reflected in our study as higher AI values.

Quite few studies compared observational based data
set (E–OBS) and reanalysis data set (ERA5) (Bandhauer
et al. 2022; Hassler and Lauer 2021; Velikou et al. 2022).
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Fig. 6 10-year moving relative frequencies of states (d, w), patterns (dd , ww) and transitions (dw, wd) for 10-year moving periods per unit area
for CRU, E–OBS and ERA5. The black line shows the median of all three data sets

Velikou et al. (2022) found underestimated temperatures in
ERA5 compared to E–OBS mainly in areas with complex
topography, especially in the Alps and the Mediterranean.
Bandhauer et al. (2022) and Hassler and Lauer (2021)
compared precipitation in E–OBS and ERA5 and concluded
that ERA5 overestimated it in Europe (mainly in summer)
due to far too many wet days. This is further supported by
our results which show considerably wetter conditions in
ERA5. We found a substantial difference focused in the area
stretching from Central to Eastern Europe.

Bandhauer et al. (2022) emphasized that the underesti-
mation of precipitation in E–OBS is substantially smaller
than the overestimation in ERA5. Nevertheless they deemed

both E–OBS and ERA5 as useful data sets for Central and
Northern Europe.

Some authors use CRU as a reference (Tapiador and
Sanchez 2008; Sanchez et al. 2009) and highlight its
advantages: higher spatial resolution than other data sets
of similar temporal extent, longer temporal coverage than
other products of similar spatial resolution, encompassing
a more extensive suite of surface climate variables than
available elsewhere, and the construction method ensuring
that strict temporal fidelity is maintained (Zveryaev 2004).
On the contrary, some studies express reservations—
especially about the density of the network of stations or
their inhomogeneous coverage (Samani 2000; Zveryaev and
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Fig. 7 Transitions (dw, wd), and patterns (dd, ww) for 20-year periods from 1960 to 2019 for the three data sets

Gulev 2009; Tegos et al. 2015; Duan et al. 2019). We do
not consider the density of the network of stations to be
a problem since the greatest development of drought has
taken place in the central latitude strip, and the density of
the network is sufficient in this area.

4.2 Temporal development of AI

According to our study, the aridity intensified mainly in
the 1950s and from the mid-1980s onward. Unlike existing
aridity studies, the results presented herein include the
long-term perspective of assessing AI over Europe.

Our results are aligned with those reported by Huang
et al. (2016) and Hanel et al. (2018) who identified extreme
drought throughout Europe in the early 1950s, the ensuing
decline or stagnation, and the renewed considerable increase
in dry areas since the 1980s. Nechita et al. (2019) used
the CRU, E–OBS, and ROCADA (Birsan and Dumitrescu
2014) data sets to study the Southern Carpathians over
1961–2013. They found wetter climate in the mid-1980s and
an increase in extreme temperatures since 1986, manifested
as an increase in wd and dd transitions and a decrease in dw

and ww transitions in our results. Pan et al. (2021) examined
the effect of increasing potential evapotranspiration and
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decreasing precipitation on dry regions on the global
scale over 1901–2017, and found a global increase in dry
areas. Potential evapotranspiration has an increasing trend
and weakens the role of precipitation. According to their
study, the turning point when potential evapotranspiration
exceeded precipitation on a global scale occurred in 1966.

The aridity developed fastest, especially in the period
2000–2019, in the central latitude strip of Europe,
namely in northern Ukraine and southern Belarus area,
Hungary, Wielkopolska Lowlands, Czechia, North-German
Lowlands, and French Lowlands.

Most AI-based drought studies mainly focus on Southern
Europe (Gao and Giorgi 2008; Salvati et al. 2013; Spinoni
et al. 2015; Huang et al. 2016; Cheval et al. 2017; Myronidis
and Nikolaos 2021), in which they report an increase
in AI similarly to our study—dry areas are expanding,
especially in the Balkan Peninsula and Italy, while drought
is deepening in the Iberian Peninsula. Paltineanu et al.
(2007) and Pravalie and Bandoc (2015) noticed drought
development in Romania and similar results are manifested
in our study; most of Romania belongs to the dry area
and only the Carpathian region is included in the wet area.
Moreover, we observe a more pronounced drought in the
Pannonian Basin compared to Romania; a sharp increase
in potential evapotranspiration in the Pannonian Basin,
especially in its western part at low altitudes, was reported
by Lakatos et al. (2020).

Pan et al. (2021) analyzed some areas of Romania as wet
catchments, in contrast to our results. This discrepancy may
be related to different type of averaging (across catchments
vs. grids), a different range of borders between wet and dry
catchments in inversely defined AI or a different version of
CRU.

AI-based drought studies do not directly address other
parts of Europe. We, on the other hand, examined the
whole of Europe. No significant changes towards drying
were found in Northern Europe. In Southern Europe, there
is a gradual variable expansion of the dry region; the
largest increase in AI was found during 1980–1999. The
most significant changes in the development of dry areas
occurred in the transition strip around 50◦ latitude, and the
largest increase in AI was observed there during the period
2000–2019.

Over the past 50 years, the probability of occurrence of
dry areas has increased by approximately 7% for the study
area. The most intensive increase was observed from the end
of the 1980s. The following areas in Europe are classified
as dry: Southern Europe, the Pannonian Basin, Moldova,
Ukraine, Poland, Czechia, the northeastern part of Germany,
and the French Lowlands.

Concerning future scenarios, Gao and Giorgi (2008)
estimated further development and an increase in the
severity of drought to the north in the dry regions, especially
in the central and southern parts of the Iberian, Balkan and
Apennine Peninsulas, and on the main islands (Corsica,
Sardinia, and Sicily), and then in the Pannonian Basin and
Romania. Cheval et al. (2017) reported that the significant
relocations to the dry area would occur in southeastern
Italy, near the Black Sea, in the eastern part of the Balkan
Peninsula, and in the Pannonian Basin. In all of these areas,
we find an increase in AI. Furthermore, we observed a
significant increase in drought especially in Central Europe,
which has not been highlighted as a hot spot in the above-
cited studies.

4.3 Drought linked with atmospheric circulation

Physical mechanisms affecting long-term changes in the
hydro-climatic system and drought development include
atmospheric circulation (e.g. Lhotka et al. (2020)). The
dominant mode of climate variability in Europe, especially
in the cold half-year, is the North Atlantic Oscillation
(NAO). Changes in the intensity of the NAO and the location
of its centers of action were reported by many authors (e.g.
Kucerova et al. (2017)) and influenced temperature and
precipitation trends in Europe over the past decades. They
are also related to the shift of storm tracks to the north
(Sfica et al. 2021) or northwest (Kucerova et al. 2017) which
results in positive atmospheric pressure anomalies over
Central Europe (Tomczyk et al. 2019), decrease of cloud
cover and development of inland drought (Sfica et al. 2021).
Kucerova et al. (2017), Lhotka et al. (2020), and Rehor et al.
(2021) reported an increase in anticyclonic circulation types
in Central and Eastern Europe, which supports the increase
in AI taking place in the central latitude strip. The frequency
changes between cyclonic/anticyclonic circulation types as
well as between types associated with warm/cold advection
and deficit/excess of precipitation are particularly important
for droughts and heatwaves in warm half-year, and Lhotka
et al. (2020) showed that circulation changes contributed to
an increase in drought characteristics over Central Europe
since the 1950s. It remains open and subject to follow-up
investigation on whether similar changes also played a role
in drying trends in other parts of Europe.

Huguenin et al. (2020) linked the record-breaking
heatwaves and water shortages in recent years in Central
Europe to anthropogenic warming and a weaker jet stream,
which allowed the quasi-stationary and high-pressure
system to persist for many days. As heatwaves are coupled
to soil moisture conditions, these changes (including the

597Changes of the aridity index in Europe from 1950 to 2019

A.2

200



persistence of circulation patterns) will likely influence
drought characteristics.

5 Conclusion

Our study examined dry and wet regions in Europe based
on the aridity index in space and time over 1950–2019. The
main goal was to identify regions where a shift from wet to
dry conditions occurred, the period of increased transitions
to dry regions, and to compare three widely used continental
data sets (CRU, E–OBS, ERA5).

We chose the Oudin formula to calculate potential
evapotranspiration for all data sets, because it is the
most adequate PET input to rainfall-runoff models. The
pronounced change from wet to dry regions since the late
1980s is clearly manifested in all data sets. The main results
can be summarized as follows:

1. Significant development of dry regions has been
observed in Western, Central, and Eastern Europe since
the late 1980s.

2. From the late 1980s to the present, the extent of the dry
regions has increased by approximately 7%.

3. There was a slight decrease in the dry-wet transition and
a slight increase in the wet-dry transition from 1950 to
2019.

4. Throughout the study period, Northern Europe and the
UK were classified as wet regions, while the Iberian
Peninsula and the southern tip of the Balkan Peninsula
as dry regions.

5. The development of dry areas was mainly found
in France, Germany, Poland, Czechia, the Pannonian
Basin, and the region between Belarus and Ukraine.

The results demonstrate the long-term development of
dry regions since the late 1980s, mainly in Western and
Central Europe in all data sets, and in Eastern Europe in
CRU and E–OBS. Compared to CRU and E–OBS, ERA5
has low values of aridity index mainly in Eastern Europe,
due to the overestimation of precipitation, and should be
interpreted with caution.
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Abstract. Since the beginning of this century, Europe has been experiencing severe drought events (2003,
2007, 2010, 2018 and 2019) which have had adverse impacts on various sectors, such as agriculture, forestry,
water management, health and ecosystems. During the last few decades, projections of the impact of climate
change on hydroclimatic extremes have often been used for quantification of changes in the characteristics of
these extremes. Recently, the research interest has been extended to include reconstructions of hydroclimatic
conditions to provide historical context for present and future extremes. While there are available reconstructions
of temperature, precipitation, drought indicators, or the 20th century runoff for Europe, multi-century annual
runoff reconstructions are still lacking. In this study, we have used reconstructed precipitation and temperature
data, Palmer Drought Severity Index and available observed runoff across 14 European catchments in order
to develop annual runoff reconstructions for the period 1500–2000 using two data-driven and one conceptual
lumped hydrological model. The comparison to observed runoff data has shown a good match between the
reconstructed and observed runoff and their characteristics, particularly deficit volumes. On the other hand,
the validation of input precipitation fields revealed an underestimation of the variance across most of Europe,
which is propagated into the reconstructed runoff series. The reconstructed runoff is available via Figshare,
an open-source scientific data repository, under the DOI https://doi.org/10.6084/m9.figshare.15178107, (Sadaf
et al., 2021).

1 Introduction

Global warming has impacted numerous land surface pro-
cesses (Reinecke et al., 2021) over the last few decades,
resulting in more severe droughts, heatwaves, floods and
other extreme events. Droughts, in particular, pose a seri-
ous threat to Europe’s water resources. The flow of many
rivers is greatly hampered by prolonged droughts, which re-
strain the availability of fresh water for agriculture and do-
mestic use. For example, the 2003 drought significantly re-
duced European river flows by approximately 60 % to 80 %
relative to the average (Zappa and Kan, 2007). Likewise, the
annual flow levels at several river gauges have decreased by

9 % to 22 % over the last decade (Middelkoop et al., 2001;
Krysanova et al., 2008; Uehlinger et al., 2009; Su et al., 2020)
due to a lack of rainfall and a warmer climate.

While runoff is a key element related to water secu-
rity, it is challenging to interpret recent hydroclimate fluc-
tuations (multi-year droughts in particular) considering ob-
served runoff records (Markonis and Koutsoyiannis, 2016;
Hanel et al., 2018), which are in general seldom available
for years prior to 1900. In this way, the community does
not have runoff information on various severe multi-year
droughts and pluvial periods, which can be assessed only
indirectly using (typically seasonal or annual) reconstruc-
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tions based on various proxy data, such as past tree rings
(Nicault et al., 2008; Kress et al., 2010; Cook et al., 2015;
Tejedor et al., 2016; Casas-Gómez et al., 2020), speleothem
(Vansteenberge et al., 2016), ice cores, sediments (Luoto and
Nevalainen, 2017), and documentary and instrumental evi-
dence (Pfister et al., 1999; Brázdil and Dobrovolný, 2009;
Dobrovolný et al., 2010; Wetter et al., 2011).

The majority of existing reconstructions focus on temper-
ature (Luterbacher et al., 2004; Xoplaki et al., 2005; Casty
et al., 2005; Büntgen et al., 2006; Moberg et al., 2008; Do-
brovolný et al., 2010; Trouet et al., 2013; Emile-Geay et al.,
2017), precipitation (Wilson et al., 2005; Boch and Spötl,
2011; Wilhelm et al., 2012; Murphy et al., 2018) or droughts
(Büntgen et al., 2010; Kress et al., 2014; Cook et al., 2015;
Tejedor et al., 2016; Ionita et al., 2017; Brázdil et al., 2018;
Hanel et al., 2018) and floods (Wetter et al., 2011; Swier-
czynski et al., 2012). A few studies have been conducted for
the reconstruction of runoff–drought deficit series (Hansson
et al., 2011; Kress et al., 2014; Hanel et al., 2018; Moravec
et al., 2019; Martínez-Sifuentes et al., 2020). However, these
studies are either local or regional or cover a relatively short
period. As an example, Hansson et al. (2011) introduced a
runoff series for the Baltic Sea from the years 1550 to 1995
using temperature and atmospheric circulation indices. Sim-
ilarly, Sun et al. (2013) used tree-ring proxies to reconstruct
runoff in the Fenhe River basin in China’s Shanxi region
over the last 211 years. As another example, Caillouet et al.
(2017) provide a 140-year dataset of reconstructed stream-
flow over 662 natural catchments in France since 1871 us-
ing the GR6J hydrological model, highlighting several well-
known extreme low-flow events. A multi-ensemble mod-
elling approach using GR4J has been applied by Smith et al.
(2019) to develop UK-based historical river flows and exam-
ine the potential of reconstruction for capturing peak- and
low-flow events from 1891 to 2015.

The available reconstructed precipitation and temperature
series (or fields) can be used to reconstruct runoff with hy-
drological (process-based) models (Tshimanga et al., 2011;
Armstrong et al., 2020) respecting general physical laws,
such as preserving mass balance (e.g. MIKE SHE; Im et al.,
2009 or VELMA; Laaha et al., 2017) or data-driven methods
which are able to capture complex non-linear relationships
(for instance support vector machines, Zuo et al., 2020; Ji
et al., 2021; artificial neural networks (ANNs), Senthil Ku-
mar et al., 2005; Hu et al., 2018; Kwak et al., 2020; random
forests, Ghiggi et al., 2019; Li et al., 2021; Contreras et al.,
2021). While the lack of physical constraints in the data-
driven models limits their application under changing bound-
ary conditions (in comparison with those of the model train-
ing period), their advantage is that they can often directly use
biased reconstructed data as an input series.

The objective of the present study is to provide a multi-
century annual runoff reconstruction for 14 European catch-
ments, utilizing the available precipitation (P ; Pauling et al.,
2006) and temperature (T ; Luterbacher et al., 2004) recon-

structions and the Old World Drought Atlas self-calibrated
Palmer Drought Severity Index (scPDSI) reconstruction
(Cook et al., 2015). Specifically, we assessed a conceptual
lumped hydrological model (GR1A; Mouelhi et al., 2006)
and two data-driven models, long short-term memory neural
network (LSTM; Chen et al., 2020) and Bayesian regular-
ized neural network (BRNN; Okut, 2016), for annual runoff
simulation over the period 1500–2000.

Section 2 introduces P and T hydroclimatic reconstruc-
tions and the scPDSI drought indicator as well as precipi-
tation, temperature and runoff observations. In Sect. 3, we
describe the data preprocessing, models, the drought iden-
tification methodology and goodness-of-fit assessment. The
accuracy of the employed P and T reconstructions, as well
as the derived runoff simulations, is evaluated in Sect. 4. Fi-
nally, we summarize the advantages and limitations of recon-
structed datasets in the Conclusions in Sect. 6.

2 Data

This section presents the data used in this study. To force
the models, we investigated the use of precipitation (Paul-
ing et al., 2006) and temperature (Luterbacher et al., 2004)
reconstructions for the past half-millennium and scPDSI
drought indicator data from the Old World Drought Atlas
(Cook et al., 2015). For validating the runoff reconstructions,
we used runoff from the Global Runoff Data Center (GRDC;
Fekete et al., 1999). The accuracy of atmospheric forcing re-
construction used as model input was assessed using the ob-
servational data records of P and T from the Global Histor-
ical Climatology Network (GHCN; Menne et al., 2018). The
datasets are summarized in Table 1 and are described in more
detail below.

2.1 Precipitation

We used reconstructed seasonal precipitation (0.5◦× 0.5◦)
over Europe (30.25–70.75◦ N, 29.75◦W–39.75◦ E) from
1500 to 2000. Reconstructed precipitation (P ) was derived
by Pauling et al. (2006) through principal component regres-
sion based on documented evidence (i.e. memoirs, annals and
newspapers), speleothem proxy records (Proctor et al., 2000)
and tree-ring chronologies from the International Tree-Ring
Data Bank (ITRDB; Jeong et al., 2021) .

2.2 Temperature

Reconstructed temperature (T ) was obtained from Luter-
bacher et al. (2004), which relies on historical records and
seasonal natural proxies (i.e. ice cores from Greenland and
tree rings from Scandinavia and Siberia). Reconstructed tem-
perature data are available at the same spatial and temporal
resolution as precipitation (see Table 1). We refer to both of
these datasets as reconstructed forcings or reconstructed pre-
cipitation/temperature fields.
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Table 1. Summary of considered datasets.

Reference Domain Temporal coverage (CE)∗ Spatial resolution Variables

Pauling et al. (2006) Europe 1500–2000 0.5◦× 0.5◦ seasonal precipitation
Luterbacher et al. (2004) Europe 1500–2000 0.5◦× 0.5◦ seasonal temperature
Menne et al. (2018) Global 1760–2010 26 000 point stations monthly mean temperature
Menne et al. (2018) Global 1760–2010 20 590 point stations monthly mean precipitation
Cook et al. (2015) Europe 0–2012 0.5◦× 0.5◦ summer Palmer Drought Severity Index

∗ CE: Common Era.

Figure 1. Spatial distribution of the observed GHCN precipitation and temperature stations and GRDC runoff gauges.

2.3 Self-calibrating Palmer Drought Severity Index
(scPDSI)

In addition, we used data from the Old World Drought At-
las (OWDA; Cook et al., 2015) which contains information
regarding moisture conditions across Europe, specifically
the self-calibrated Palmer Drought Severity Index (scPDSI)
using summer-related tree-ring proxies over the period 0
to 2012 CE.

2.4 The Global Historical Climatology Network (GHCN)

The GHCN dataset (GHCN; Peterson and Vose, 1997) is
one of the largest observational databases, collated by the
National Oceanic and Atmospheric Administration (NOAA;
Quayle et al., 1999). The GHCN-m dataset contains observed
temperature, rainfall and pressure data from 1701 to 2010.
Data for the majority of stations are, however, available after
1900. GHCN-m precipitation and temperature from GHCN
V2, as well as from the GHCN V4 version (Menne et al.,
2012), were used to assess the reconstruction accuracy of the
P and T fields as an input into the considered models. We se-
lected 113 precipitation and 144 temperature stations within
the European domain (see Fig. 1) with records dating back
earlier than 1875. Most stations are geographically concen-
trated in central Europe, and few stations are located in the
eastern and northern areas of Europe (see Table 2). These
data, hereafter, are referred to as the GHCN data.

2.5 Observed runoff

The Global Runoff Data Center (GRDC; http://www.
bafg.de/GRDC/EN/Home/homepage_node.html, last access:
24 November 2016) provides data for more than 2780 gaug-
ing stations in Europe, with the oldest records starting from
1806. Only the GRDC runoff time series with at least
25 years of data prior to 1900 were selected. In total, there
were 21 such stations predominantly available in central Eu-
rope: 11 in Germany, 2 in France, 2 in Switzerland, 1 in the
Czech Republic, 1 in Sweden, 1 in Finland, 1 in Lithuania
and 1 in Romania (see Fig. 1). These stations cover 12 Eu-
ropean river basins (Rhine, Loire, Elbe, Danube, Wesser,
Main, Glama, Slazach, Nemunas, Gota Alv, Inn and Koke-
maenjoke), with areas ranging from nearly 6100 km2 (Koke-
maenjoki, Muroleenkoski, Finland) to 576 000 km2 (Danube,
Orsova, Romania). The mean annual discharge (Qmean)
varies from 50 to 5 600 m3 s−1 and spans different time peri-
ods for each catchment.

The most extensive records were available in Sweden (Var-
goens KRV) and Germany (Dresden), containing the longest
discharge series of 212 and 208 years, respectively. The
gauging station in Köln also provided 195 years of data for
the Rhine River. Note that some of the gauging stations are
located nearby and therefore have a greater degree of simi-
larity in their runoff time series (e.g. two stations in Basel,
Rhine). Detailed information relating to all selected stations
is provided in Table 2.
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Table 2. Selected study catchments.

Station River GRDC no. Latitude Longitude Drainage area Mean annual Start year Length
[◦ N] [◦ E] [km2] discharge [m3 s−1] [year]

Orsova, RO Danube 6742200 44.7 22.42 576 232 5602 1840 151
Decin, CZ Elbe 6140400 50.79 14.23 51 123 309 1851 150
Dresden, DE Elbe 6340120 51.05 13.73 53 096 332 1806 208
Elverum, NO Gloma 6731401 60.88 11.56 15 426 251 1871 44
Vargoens KRV, SW Gota Alv 6229500 58.35 12.37 46 885.5 531 1807 212
Wasserburg, DE Inn 6343100 48.05 12.23 11 983 354 1827 177
Muroleenkoski, FI Kokemaenjoki 6854104 61.85 23.910 6102 53.1 1863 155
Blois, FR Loire 6123300 47.58 −0.86 38 240 362 1863 117
Montjean, FR Loire 6123100 47.58 1.33 110 000 911 1863 117
Schweinfurt Neuer Hafen, DE Main 6335301 50.03 10.22 12 715 103 1845 156
Würzburg, DE Main 6335500 49.79 9.92 14 031 108 1824 177
Smalininkai, LT Nemunas 6574150 55.07 22.57 81 200 531 1812 185
Basel Rheinhalle, CH Rhine 6935051 47.55 7.61 35 897 1043 1869 140
Basel Schifflaende, CH Rhine 6935052 47.55 7.58 35 905 1042 1869 127
Köln, DE Rhine 6335060 50.93 6.96 144 232 2085 1817 195
Rees, DE Rhine 6335020 51.75 6.39 159 300 2251 1815 183
Burgausen, DE Salzach 6343500 48.15 12.83 6649 258 1827 174
Hann. Münden, DE Wesser 6337400 51.42 9.64 12 442 109 1831 182
Bodenwerder, DE Wesser 6337514 51.97 9.51 15 924 145 1839 175
Vlotho, DE Wesser 6337100 52.17 8.86 17 618 170 1820 194
Intschede, DE Wesser 6337200 52.96 9.12 37 720 320 1857 154

2.6 Study area

In the first part of the study, the grid-based reconstruction
of precipitation and temperature was verified against the
available GHCN data across the European region bounded
by (30.25–70.75◦ N, 29.75◦W–39.75◦ E). The second part
focused on 21 specific central European catchments, cor-
responding to the available long-term GRDC discharge
records. The study area and the observational data of the hy-
droclimatic variables are shown in Fig. 2.

3 Methods

This section is divided into three parts. The first part de-
scribes the preprocessing of the reconstructed forcings (i.e.
precipitation and temperature) for validation across Europe
and the preparation of data for runoff simulation in 21 catch-
ments (Sect. 3.1). The hydrologic and data-driven models
used to generate the runoff reconstructions are presented in
Sect. 3.2 and 3.3, respectively. Finally, Sect. 3.4 describes
the methods for the evaluation of simulated runoff and re-
constructed forcings, and Sect. 3.5 presents the methods to
identify annual runoff droughts.

3.1 Data preprocessing

Two databases were considered for the analysis and develop-
ment of the annual runoff reconstruction. The first one was
used for evaluating the accuracy of meteorological forcing
reconstructions used for hydrological simulations and con-
sists of observed GHCN data for all available European sta-

tions with long records (see Sect. 2.4) and values of corre-
sponding grid cells from the reconstructed forcings dataset.

The second database was created as the basis for runoff
reconstruction containing the observed runoff data for 21 se-
lected catchments (Table 2) and the corresponding input
variables of the models used to generate the multi-century
runoff reconstructions. Several input variables were con-
sidered for inclusion in models such as reconstructed pre-
cipitation and temperature and Old World Drought Atlas
scPDSI. The catchment average precipitation, temperature
and scPDSI were estimated from the corresponding (grid-
ded) datasets by averaging the relevant grid cells over the
catchments. This database was further divided into two parts,
calibration (1900–2000) and validation (before 1900), to as-
sess the model’s accuracy and to select an appropriate model.
The data preprocessing, model selection, and evaluation of
the models are depicted in Fig. 2.

3.2 Hydrologic model (GR1A)

We applied the annual timescale hydrologic model, GR1A
(Mouelhi et al., 2006), to simulate annual runoff in each
catchment. GR1A is a conceptual lumped hydrologic model
(Manabe, 1969), considering dynamic storage and an-
tecedent precipitation conditions. The model consists of a
simple mathematical equation with a single (optimized) pa-
rameter:

Qi = Pi

1−
1[

1+
(

0.8Pi+0.2Pi−1
XEi

)2
]0.5

 , (1)
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Figure 2. A schematic representation of workflow carried out in the study.

where Q, E and P represent annual runoff, basin average
potential evapotranspiration and basin average precipitation,
respectively, and i denotes the year. The parameter X is op-
timized individually for each catchment by maximizing the
Nash–Sutcliffe efficiency (NSE) between observed and sim-
ulated runoff. Default gradient-based optimization from the
R package airGR (Coron et al., 2017) was used. The poten-
tial evapotranspiration was calculated using the temperature-
based formula (Oudin et al., 2005). Compared to other con-
ceptual models from the GR family (GR4J, GR5J), GR1A
is simple to use, and it allows for analysing many variants,
particularly defining the best antecedent rainfall, and is po-
tentially useful to predict wet and dry hydrologic conditions
(Mouelhi et al., 2006).

3.3 Data-driven models

Artificial neural networks (ANNs; Senthil Kumar et al.,
2005; Kwak et al., 2020) can describe non-linear relation-
ships and are widely used for rainfall–runoff prediction. The
ANNs consist of artificial neurons organized in layers and
connections that route the signal through the network. Each
connection has an associated weight that is optimized within
the calibration (in the context of ANNs, known as training).
There are many types of ANNs which differ in terms of
structure and type of connections, as well as direction and
functional forms used for neuron activation or training. In
the present study, we considered two approaches: long short-
term memory (LSTM) neural networks and Bayesian reg-

ularized neural networks (BRNNs). These approaches have
been commonly used in past rainfall–runoff modelling stud-
ies (Hu et al., 2018; Kratzert et al., 2018; Xiang et al.,
2020; Ye et al., 2021). We considered combinations of recon-
structed forcing, OWDA-based scPDSI and lagged forcing
as an input into the network for both model types. Specif-
ically, the network using only reconstructed precipitation
and temperature fields is referred to as [P,T ], the network
with reconstructed forcing and OWDA scPDSI is termed as
[P,T ,PDSI]; and finally the network which includes 1-year
lagged P and T forcing in addition to actual P and T is
referred to as [P,T , lag]. We also considered and explored
lag times longer than 1 year. However the correlation be-
tween precipitation and runoff drops significantly at lag times
longer than 1 year and therefore was not included in pre-
sented analysis.

Figure A1 shows the architecture of LSTM, which is a
modified version of the recurrent neural network (Hochre-
iter and Schmidhuber, 1997), using backpropagation in time
(Werbos, 1990). LSTM is known for efficient simulation of
time series with long-term memory (Van Houdt et al., 2020).
It generally consists of two unit states (hidden and cell states)
and three distinct gates (hidden, input and output). In this
process, the cell state saves the long-term memory at the pre-
vious unit, while hidden states act as a working memory to
process information inside the gates. These gates can deter-
mine which information needs to be processed, remembered
and transferred in the next state. With LSTM, different ac-
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tivation functions, such as hyperbolic tangent and sigmoid,
can be used to update unit states. The implementation of the
LSTM is carried out by applying the R packages “keras”
(Arnold, 2017) and “tensorflow” (Abadi et al., 2016).

The training process of the LSTM is time-consuming due
to its inherent complexity. Therefore we also considered the
BRNN models that provide fast learning and convergence
and were already used to tackle the complex relationship be-
tween rainfall and runoff (Ye et al., 2021). BRNNs are based
on recurrent neural networks, which are often used to model
time-series data (Wang et al., 2007), and the methods are ex-
tended with Bayesian regularization (Okut, 2016) to account
for uncertainty related to network parameters and input data
(Zhang et al., 2011). We trained this model in R using the
“brnn” function of the “caret” package (Kuhn, 2015). More
details are available in Appendix A3.

To set the optimal hyperparameters of the models (such
as the number of neurons and activation functions) and to re-
duce the likelihood of overfitting during the calibration/train-
ing, the model performance was cross-checked considering
an independent (or so-called “testing”) set. The testing set
was for each learning exercise extracted from the calibration
data (1900–2000) as a random fraction (25 %). This process
of the model development was repeated several times, min-
imizing the root mean square error (for BRNN) and mean
square error (for LSTM) for each catchment individually.
The model with the best performance was then chosen for
further evaluation.

3.4 Goodness-of-fit assessment

We used a set of seven statistical metrics to assess the per-
formance of simulated runoff, namely Nash–Sutcliffe effi-
ciency (NSE), Pearson correlation (R), standard deviation ra-
tio (rSD), Kling–Gupta efficiency (KGE), root mean square
error (RMSE), mean absolute error (MAE), bias (BIAS) and
relative bias (relBIAS). The mathematical formulations of
these metrics are provided in Appendix A1.

3.5 Runoff drought identification

To check the utility of our reconstruction, we finally ex-
plore how well the annual runoff droughts are represented
in the simulations. Our study considers annual hydrologi-
cal droughts, defined as the streamflow/runoff deficit, fol-
lowing the threshold level approach (Yevjevich, 1967; Sung
and Chung, 2014; Rivera et al., 2017). This approach is
typically used for daily or monthly timescales, considering
0.1 or 0.2 quantile threshold levels. To accommodate the an-
nual scale used here, we defined the start of the drought,
when the annual runoff anomaly falls below the 0.33 quantile
(regular drought) and the 0.05 quantile (extreme drought).
The drought persists until the runoff rises above the thresh-
old again. After that, the difference between runoff and the
threshold was determined for each identified drought year,

called the runoff deficit. Hydrological drought series can be
further assessed to understand the critical aspects of runoff
(temporal) dynamics and to classify past droughts in Europe
(Wetter and Pfister, 2013; Cook et al., 2015).

4 Results and discussion

In this section, we analyse the 500-year annual reconstruc-
tion over space and time across Europe. Firstly, we provide a
comparison between the GHCN-observed precipitation and
temperature and the corresponding grid cells from Pauling
et al. (2006) and Luterbacher et al. (2004) reconstructions.
Next, the reconstructed annual runoff series for the selected
catchments are evaluated against the corresponding observed
GRDC runoff data.

Two distinct model types were investigated, i.e. a process-
based conceptual lumped hydrological model (GR1A) and
two data-driven models (BRNN and LSTM). While the for-
mer takes reconstructed forcing of precipitation and temper-
ature as an input, in the case of the latter, we also considered
PDSI and lagged reconstructed precipitation and temperature
fields, as shown in Table 3. Statistical metrics, such as NSE,
KGE, RMSE, MAE, R, BIAS and relBIAS (Appendix A1),
are used to quantify the predictive skills of the models exam-
ined.

4.1 Evaluation of reconstructed precipitation and
temperature fields

The 500-year annual paleoclimate reconstructions of precip-
itation (P ) and temperature (T ) were validated against the
GHCN observation data. The map showing the comparison
is given in Figs. 3 and 4. The reconstructed data are eval-
uated against observational P and T across 99 and 94 Eu-
ropean sites, respectively. Figure 3 shows that for most of
the sites the correlation coefficient (R) of P reconstruction
at most of the sites is above 0.5; the relative bias (relBIAS) is
between−0.1 and 0.1; KGE and NSE are showing values be-
low 0.5 and 0.6, respectively; the rSD is between 0.7 and 0.9;
and RMSE varies between 0 and 150.

The performance of the temperature reconstruction was
relatively better, as depicted in Fig. 4. In this case, RMSE
between reconstructed and observational T is around 0.2 ◦C,
and rSD fluctuates between 0.95 and 1.05, while R is higher
than 0.84, and BIAS is less than 0.5 ◦C, except for sta-
tions located in the Alps. The NSE and KGE values were
above 0.5 at the majority of the stations. Low skill observed
at some locations can be explained by the unresolved vari-
ability of grid-cell average temperature, especially in regions
with complex terrain.

It is worth noting that the large spread of goodness-of-fit
(GOF) statistics is mainly due to the outlying values at the
grid cells located along the boundary of the domain (i.e. the
interface between land and sea/ocean) and high elevations
(see also Figs. 3 and 4). In general, reconstructed precipita-
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Figure 3. Validation of reconstructed precipitation (Pauling et al., 2006) against GHCN observations.

Figure 4. Validation of reconstructed temperature (Luterbacher et al., 2004) against GHCN observations.
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tion exhibits greater differences from observations than tem-
perature. This may be because the proxies considered in the
reconstruction rely on different seasons and climate condi-
tions. Additionally, the shortest available instrumental data
before the 20th century could encounter certain technical er-
rors, such as problems with instrumental tools, station relo-
cation and dating issues (Dobrovolný et al., 2010). Moreover,
other studies (e.g. Ljungqvist et al., 2020) stated that the
precipitation series employed for the reconstructions were
relatively shorter and more erroneous than the temperature
series before the 20th century (Pauling et al., 2006; Harris
et al., 2014). Finally, the chosen statistical technique (prin-
cipal component regression) could also possibly contribute
to variance inflation with larger timescales (Pauling et al.,
2006).

4.2 Assessment of the reconstructed runoff simulations

The GR1A conceptual hydrological model was driven by
catchment average P and T and calibrated using observed
annual runoff for each catchment separately. The simulated
annual runoff series were then compared to the correspond-
ing GRDC observations (for calibration and validation pe-
riods), and the results were summarized by means of GOF
statistics. As can be seen in Fig. 5, the correlation and NSE
statistics for calibration achieve reasonable results at most
of the catchments, with a few exceptions (i.e. Kokemenjoki,
Goeta, Nemunas and Inn). The catchments with relatively
poor skills are located in northern Europe, which is in line
with the previous findings by Seiller et al. (2012), who noted
that the lumped hydrological models often exhibit larger un-
certainties and fail to capture the extreme catchment values
(both high and low) in those regions. The low skill for some
of the catchments cannot be easily attributed only to bias
in reconstructed precipitation and temperature (described in
Sect. 4.1) but rather to low station and proxy coverage in
some (especially northern) parts of Europe, leading to bi-
ased basin-average precipitation and temperature estimate.
Another study of Fathi et al. (2019) suggested that the per-
formance of the GR1A model is less efficient than the new
Budyko-framework-based SARIMA model in simulating the
annual runoff across the Blue Nile and the Danube catch-
ment. This may be due to the simplified nature of the model
that does not easily capture the complex relationship between
rainfall and runoff variability.

In general, statistical values presented in heat maps (Fig. 5)
indicate that the neural network algorithms are more skilled
for runoff prediction than the GR1A model. The NSE and
R statistics for the BRNN and LSTM models indicate a
significant improvement in runoff prediction, as compared
to the results obtained through the GR1A model. For in-
stance, for Basel Rheinhalle the NSE increases from 0.27
to 0.73 (BRNN) and 0.75 (LSTM) for calibration and 0.2
to 0.54 (BRNN) and 0.52 (LSTM) for validation. More-
over, including scPDSI from OWDA with reconstructed forc-

ing [P,T ,PDSI] increases the performance slightly more
(NSE 0.76 for calibration and 0.57/0.59 for validation, for
BRNN/LSTM, respectively), and considering the lagged
forcing results in the best performance (NSE 0.75/0.8 for cal-
ibration and 0.6/0.54 for validation, for BRNN/LSTM).

Similarly for all sites, the data-driven methods exhibited a
strong correlation with the observed runoff, with the GR1A
simulations resulting most frequently in lower correlation
values. Other metrics (RMSE, MAE, KGE, rSD and rel-
BIAS) are shown in Figs. S1–S5 in the Supplement. Across
many study locations, the combination of reconstructed forc-
ings and their 1-year lag performed the best in terms of rapid
convergence (the number of iterations needed) and high ac-
curacy from all input combinations for both data-driven mod-
els (BRNN, LSTM). For the validation period, the mean NSE
(across all catchments) for the GR1A model is 0.16, for the
BRNN [P,T , lag] it is 0.68 and it improves to 0.73 for the
LSTM [P,T , lag]. In the case of the mean KGE, GR1A
yields 0.62, BRNN [P,T , lag] is 0.73 and LSTM [P,T , lag]
is 0.78.

To further demonstrate the differences between the indi-
vidual models, we show the simulated runoff series for all
models for those catchments with the highest (Blois–Loire)
and lowest (Smalininkai–Nemunas) performance in Fig. 6.
The performance of the models is comparable during the cal-
ibration period for the Loire River. Clearly, all data-driven
models are capable of mimicking the observed runoff, while
the GR1A model exhibited certain minor deviations, primar-
ily until 1930. In the validation period, the differences be-
tween the models are more visible, in particular, for above-
average flows. This can be attributed to different generaliza-
tion skill of individual models. At the beginning of the vali-
dation period (1870–1880), all models failed to simulate the
high annual flows.

In the case of Nemunas catchment, the GR1A simulation
deviates extremely from the observed data and cannot cap-
ture the mean flow level. However, the calibration is poor,
even for the data-driven models, and does not simulate the
year-to-year variability appropriately. Interestingly, for the
validation period, the error in the GR1A model decreases.
The performance of the data-driven models is similar in val-
idation and calibration periods. Looking at the GOF statis-
tics, the models considering OWDA-based scPDSI or lagged
forcings (e.g. Pt−1) perform slightly better in terms of KGE
than the other model configurations.

4.3 The annual runoff reconstruction datasets

As a first step, we excluded the catchments that exhibited
poor performance in validation (see Fig. 5). As a threshold,
we considered validation NSE greater than 0.5 for at least one
model, following the approach used by Ayzel et al. (2020).
In this step, we excluded 7 catchments (Vlotho–Wesser,
Decin–Elbe, Burghausen–Salzach, Smalininkai–Nemunas,
Vargoens KRV–Goeta, Elverum–Glama and Muroleekoski–
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Figure 5. The correlation coefficient (top) and NSE (bottom) for calibration (left) and validation (right) of the considered models for
21 study catchments. The vertical axis represents the catchments (station name and river) and the horizontal axis the considered models. The
rectangular black frames represent the catchments with NSE > 0.5 over the validation period.

Kokemenjoki) out of 21, ending up with a set of simula-
tions for 14 catchments (highlighted by the rectangular box
in Fig. 5).

Secondly, we identified the best candidate models for each
of the 14 selected catchments, considering the GOFs based
on the validation NSE and R greater than 0.5 and 0.7, re-
spectively. The best model for each catchment was finally

selected from those models considering the remaining val-
idation measures (relBIAS, rSD, KGE, RMSE and MAE)
as well. Specifically, we picked the models with consistent
good validation measures. This choice is partly subjective,
and more formal selection should be explored further. On the
other hand, the candidate models all performed comparably
in most cases.
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Figure 6. Comparison between the models for the station with the best (Blois–Loire River, top) and the worst (Smalininkai–Nemunas River,
bottom) model fit.

Figure 7. Distribution functions for BRNN [P,T , lag], LSTM [P,T ,PDSI], i.e. the best two models, GR1A [P,T ]- and GRDC-observed
data for the periods 1500–1800, 1800–1900 and 1900–2000 over the Basel Rheinhalle–Rhine catchment. The values on the horizontal axis
are transformed using the “probit” function. The coloured labels indicate the most extreme drought years according to each model.
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The resulting selected models are shown in Table 3. The
combination of reconstructed forcing with 1-year time lags
results in the best performance over nine catchments, of
which seven employed the BRNN and the remainder the
LSTM model. The LSTM with reconstructed forcing and
OWDA-scPDSI was the best in just one case, and the re-
maining time-series reconstructions were most appropriately
simulated with the BRNN [P,T ] and BRNN [P,T ,PDSI].
It should be noted that the differences between the models
performing well are small, as noted in Fig. 6 and further
demonstrated in Fig. 7. The latter figure compares the cu-
mulative distribution functions of annual runoff for the pe-
riods 1500–1800, 1800–1900 and 1900–2000, as simulated
by the BRNN [P,T , lag] and LSTM [P,T ,PDSI] – the two
best-performing models – and the GR1A (the most deviat-
ing simulation from the best model) with the distribution of
the observed annual runoff for the Basel Rheinhalle–Rhine
catchment. For the calibration period (1900–2000) in Fig. 7,
the models perform well except the GR1A, which gener-
ally overestimated the observed maxima. The cumulative dis-
tribution of BRNN- and LSTM-simulated runoff values is
very similar for the validation period (1800–1900), except
for the top and bottom 5 % in 1500–1800. The GR1A simu-
lation showed significant differences for the entire distribu-
tion, thus overestimating/underestimating the maxima/min-
ima. Our finding shows that GR1A simulates a Rhine min-
imum of 279 mmyr−1 in Basel, whereas the observed min-
imum in the past century is greater than 532.6 mmyr−1, in-
ferring that the cumulative distribution function (CDF) has
significantly lower/higher runoff values between 1500 and
1800 for BRNN and GR1A, whereas LSTM appears to ex-
trapolate less. The difference from the best model can be
expressed in terms of KGE – even here, it was evident
that the GR1A model deviated considerably (KGE 0.6–0.7),
while the LSTM is very similar to the BRNN (KGE 0.92–
0.96). The most severe drought year identified by the models
in the period 1500–1800 appears to be 1669 and the year
1921 in the past century (1900–2000) (Fig. 7 left and right
panels), while for 1800–1900 the models identified either
1865 (GR1A, LSTM) or 1858 (BRNN). Please note that the
1858 low-water mark is available at Laufenburg Pfister et al.
(2006) near Basel and was regarded as one of the worst win-
ter droughts in the last 200 years.

The resulting 14 annual runoff reconstructions are avail-
able at https://doi.org/10.6084/m9.figshare.15178107 and are
shown in Figs. S6–S8 in the Supplement. As an example,
we present only two runoff reconstructions here (Fig. 8).
As an additional validation for the reconstructed series,
we inspected the scatter plots of the observed and recon-
structed runoff (Fig. 9). The simulated series are gener-
ally consistent with the observed runoff, especially for the
Montjean–Loire, Köln–Rhine and Basel Schifflaende–Rhine
catchments, which exhibit the best relationship between the
observed and the simulated runoff.

Finally, to check the consistency of our reconstructed
dataset, we compared the skill of our simulation with respect
to the GRDC runoff observation and the GSWP3-forced
GRUN monthly runoff (Ghiggi et al., 2019) datasets. The
gridded GRUN datasets were averaged over the respective
catchments to enable comparison (Figs. S9 and S10 in the
Supplement). Our reconstruction outperforms GRUN data in
terms of RMSE, MAE, relBIAS and NSE across the ma-
jority of the catchments, while the correlation (reproduction
of interannual dynamics) to GRDC runoff is slightly higher
for GRUN compared to our reconstruction. The variability,
which our data-driven models underestimate (on average by
16.5 %), is overestimated by GRUN (on average by 17.2 %).
Since the correlation compensates for the relBIAS, the KGE
for our reconstruction and GRUN is comparable. This sug-
gests that GRUN could be used for data-driven model train-
ing, provided at least some information on flow characteris-
tics is available in the catchment.

4.4 Identification of low flows, significant hydrological
drought events and trends

In the final step of the analysis, we compared the droughts
identified in the reconstructions with the GRDC-observed se-
ries (Fig. 10). The agreement between the simulated and ob-
served runoff deficit is lower compared to the annual runoff
time series. For most of the stations, the simulated deficit
is lower than the corresponding observed estimates. This
suggests that the reconstructed precipitation and tempera-
ture fields do not represent the inter-annual variability cor-
rectly. Despite a widespread issue with the representation of
inter-annual persistence, Fig. 10 shows that the runoff deficits
are simulated reasonably well for the Rees–Rhine and Köln–
Rhine catchments.

Furthermore, we contrasted reconstructed drought patterns
over the last 500 years with data available from documentary
evidence and other sources. In the case of extreme droughts,
we considered the q0.05 threshold before 2000 CE. Low-flow
analysis since 1500 and the large deficit values for catch-
ments (below 5th percentile) are shown in Table 4. In the
16th century, the years 1536, 1540 and 1590 are associated
with significant runoff deficits. The event of 1540 has al-
ready been reported (Brázdil et al., 2013; Cook et al., 2015;
Brázdil et al., 2019) as the worst event of the 16th cen-
tury and more severe in terms of changing hydrologic con-
ditions. In 1540, almost 90 % of the Rhine and Elbe River
catchments (Basel and Cologne) experienced low yearly dis-
charge, which ranked as the greatest low flows in the last 5
centuries (Leggewie and Mauelshagen, 2018). The seasonal
precipitation was also deficient and was evident primarily in
central Europe and England (Dobrovolný et al., 2010). Wet-
ter and Pfister (2013) stated that the spring and summer of
1540 were likely to have been warmer than the comparable
period during the 2003 drought. The simulation shows that
the drought during 1540 was evident in most study catch-
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Figure 8. Reconstruction of runoff series for Köln–Main and Hann. Münden Wesser rivers. The blue line corresponds to the reconstructed
series, and the black and red lines represent the observed runoff for the calibration and validation period, respectively.

ments, such as the Rhine, Main, Wesser, Loire and Danube,
except Wasserburg–Inn.

In the 17th century, the years 1603, 1616, 1631, 1666,
1669, 1676, 1681, 1684 and 1686 were simulated as excep-
tionally low-flow years. Furthermore, two events (1669 and
1686) were associated with the largest water deficit across
several study catchments. Basel Schifflaende–Rhine catch-
ment is a good example of this, which appears to have expe-
rienced an extreme runoff deficit during 1669. In the Köln–
Rhine catchment, 26 remarkable droughts have been cap-
tured over the past 500 years, and the year 1686 reached
the largest runoff deficit (156 mmyr−1). The 1616 is con-
sidered the driest year of the 17th century, the so-called
“drought of the century” (Brázdil et al., 2013), which sig-
nificantly impacted the major rivers in Europe (e.g. Rhine,
Main and Wesser). Brázdil et al. (2018) identified three un-
usual drought periods (1540, 1616 and 1718–19) over the
Czech lands, highlighting the 1616 drought, which caused
widespread famine, dried up the Elbe river watershed and al-
tered the climate of neighbouring nations (Switzerland and
Germany). The hunger stone of the Elbe River also revealed
the exceptionally dry year of 1616 (Brázdil et al., 2013). Dur-
ing the 18th century, a similar level of runoff deficit was sim-
ulated in the years 1706 and 1719.

During the 19th century, the years 1863, 1864, 1874, 1893
and 1899 were recognized as drought years in all catchments,
while in the 20th century, the driest periods occurred in
1921, 1934, 1949 and 1976. The 1921 drought in the Blois–
Loire, Rees–Rhine, Köln–Rhine, Orsova–Danube, Basel
Rheinhalle–Rhine and Basel Schifflaende–Rhine catchments
was ranked as the most exceptional drought in the 20th cen-
tury. Three catchments (Basel Rheinhalle–Rhine, Basel
Schifflaende–Rhine and Blois–Loire) exhibited a large runoff
deficit during the year 1921. A noticeable increase in tem-
perature was experienced across Europe, and certain areas
were notably affected by a heatwave in July of that year.
The majority of central Europe, southern England and Italy
were affected by this drought, where the rainfall was found
to have decreased around 50 % to 60 % relative to the av-
erage (Bonacina, 1923; Cook et al., 2015). The precipita-
tion totals were recorded as the lowest since 1774, and the
year was also ranked top (in terms of deficit rainfall) in the
Great Alpine region (Haslinger and Blöschl, 2017), where
the rainfall deficit began in winter 1920/21 and lasted until
autumn 1921. Also reported in newspapers, the Rhine River
(Switzerland), Molesey Weir on the Thames River (United
Kingdom) and Loire River (France) all had low river flows in
1921 (Van der Schrier et al., 2021). Monthly runoff anoma-
lies analysed from the GRUN dataset (Ghiggi et al., 2019)
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Figure 9. Observed and simulated runoff for 14 selected catchments in the calibration and validation periods. The solid line represents the
1 : 1 relation, and the dashed line corresponds to fitted regression between observed and simulated runoff.

show that August 1976 was the fifth driest month between
1900 and 2014, in agreement with some of our catchment
reconstructions signalling the 1976 as a yearly drought in
the Köln–Rhine, Hann. Münden–Wesser and Bodenwerder–
Wesser.

In summary, the reconstructed annual runoff corresponded
well to the majority of extreme drought years (e.g. 1540,
1616, 1669, 1710, 1724 and 1921, as highlighted in Table 4)
and previously demonstrated in the OWDA-based PDSI tree-
ring reconstructions and previous works (Dobrovolný et al.,
2010; Brázdil et al., 2013; Wetter and Pfister, 2013; Cook
et al., 2015; Markonis et al., 2018). It is important to note
that the presented runoff reconstructions might have missed
notably documented dry events, e.g. 1894 (Brodie, 1894),
which was associated with unprecedented low levels of rain-
fall and excessive temperature rises in the south of England,

the British Isles and other European regions (Brodie, 1894;
Cook et al., 2015; Hanel et al., 2018).

Finally, we assessed the linear trends in the decadal runoff
series for several time periods. The reconstructed annual
runoff for 1500–2000 for each catchment was first aggre-
gated to 10-year averages and divided by the mean annual
runoff. The resulting series are shown in Fig. A2. Although
significant negative trends were found for all catchments ex-
cept for one considering the whole 1500–2000 period, the
signal is not clearly linear. Instead, for a number of catch-
ments, there is a period of sustained above-average (Orsova–
Danube and Dresden–Elbe) or below-average (Blois and
Montjean Loire) annual runoff during approx. 1600–1800,
while for the rest, the persistence is weaker, although a low
runoff signal is still visible (Basel Rheinhalle, Basel Schif-
flaende and Köln Rhine). When only the last 50 years is
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Figure 10. The observed and simulated runoff deficit based on the 33rd percentile threshold for 14 selected catchments during the calibration
and validation period. The solid line represents the 1 : 1 relation, and the dashed line corresponds to fitted regression between observed and
simulated runoff.

Table 3. Selection of best model for runoff in individual catchments.

Models Catchments

BRNN [P,T ] Blois–Loire, Rees–Rhine
BRNN [P,T ,PDSI] Würzburg–Main and Orsova–Danube
BRNN [P,T , lag] Montjean–Loire, Köln–Rhine, Hann. Münden–Wesser, Dresden–Elbe, Basel Rheinhalle–Rhine, Bodenwerder–

Wesser, Wasserburg–Inn
LSTM [P,T , lag] Neuer Hafen–Main, Intschede–Wesser
LSTM [P,T ,PDSI] Basel Schifflaende–Rhine

Earth Syst. Sci. Data, 14, 4035–4056, 2022 https://doi.org/10.5194/essd-14-4035-2022

A.3

218



S. Nasreen et al.: A 500-year annual runoff reconstruction for 14 selected European catchments 4049

Table 4. Simulated runoff droughts since 1500. Years in bold indicate extreme droughts below 5 % quantile.

Station name No of events Simulated low-flow years Largest deficit
(year)

Orsova–Danube 12 1536, 1540, 1669, 1686, 1704, 1706, 1710, 1746, 1834, 1943, 1947,
1990

30.33 (1686)

Dresden–Elbe 1 1669 2.76 (1669)
Wasserburg–Inn 3 1669, 1686, 1754 27.8 (1669)
Blois–Loire 17 1540, 1603, 1631, 1634, 1669, 1676, 1686, 1706, 1710, 1724,1736,

1754, 1766, 1884, 1921, 1945, 1949
85.7 (1669)

Montjean–Loire 48 1540, 1603, 1607, 1616, 1630, 1631, 1632, 1633, 1634, 1635, 1661,
1669, 1670, 1676, 1680, 1681, 1684, 1685, 1686, 1702, 1704, 1705,
1706, 1710, 1715, 1717, 1718, 1723, 1724, 1731, 1736, 1742, 1743,
1744, 1745, 1746, 1753, 1754, 1757, 1785, 1815, 1826, 1834, 1874,
1884, 1921, 1945, 1949

105.2 (1686)

Neuer Hafen–Main 18 1590, 1616, 1669, 1681, 1682, 1686, 1704, 1706, 1710, 1724, 1746,
1754, 1755, 1814, 1865, 1934, 1943, 1964

100.89 (1669)

Würzburg–Main 2 1540, 1669 17.0 (1669)
Basel Rheinhalle–Rhine 21 1536, 1540, 1590, 1603, 1616, 1631, 1666, 1669, 1676, 1681, 1686,

1704, 1706, 1710, 1724, 1736, 1746, 1753, 1754, 1921, 1949
133.9 (1669)

Basel Schifflaende–Rhine 19 1536, 1540, 1590, 1603, 1616, 1666, 1669, 1676, 1681, 1684, 1686,
1706, 1710, 1724, 1736, 1746, 1754, 1921, 1949

563 (1669)

Köln–Rhine 28 1536, 1540, 1590, 1603, 1616, 1631, 1634, 1669, 1676, 1681, 1684,
1686, 1704, 1706, 1710, 1724, 1736, 1744, 1745, 1746, 1753, 1754,
1858, 1865, 1874, 1921, 1949, 1976

157.6 (1686)

Rees–Rhine 18 1536, 1540, 1603, 1631, 1666, 1669, 1676, 1681, 1686, 1704, 1706,
1710, 1724, 1736, 1746, 1754, 1921, 1949

96.0 (1669)

Hann. Münden–Wesser 11 1540, 1669, 1681, 1686, 1706, 1710, 1724, 1911, 1934, 1976, 1991 46.6 (1669)
Bodenwerder–Wesser 15 1540, 1616, 1631, 1669, 1681, 1686, 1706, 1710, 1724, 1754, 1858,

1874, 1911, 1934, 1976
56.3 (1669)

Intschede–Wesser 18 1540, 1616, 1631, 1669, 1670, 1676, 1681, 1685, 1686, 1706, 1710,
1754, 1814, 1857, 1858, 1865, 1934, 1959

134.4 (1669)

considered, the trends are significantly negative (positive) for
seven (two) catchments, with the rest being insignificant.

5 Data availability

The annual runoff reconstructions were prepared using the
defined dataset and can be accessed on the public repository
Figshare (https://doi.org/10.6084/m9.figshare.15178107,
Sadaf et al., 2021). The reconstructed data of precip-
itation and temperature can be downloaded at https:
//www.ncdc.noaa.gov/data-access/paleoclimatology-data
(last access: 20 Feburary 2020). The monthly global histor-
ical climatological network (GHCN) data can be accessed
via the link https://www1.ncdc.noaa.gov/pub/data/ghcn/
(last access: 12 May 2019). The data repositories of
GRDC runoff are accessible to the public at https:
//www.bafg.de/GRDC/EN/Home/homepage_node.html
(last access: 24 November 2016). All analyses and visual-
izations were done using R.

6 Conclusions

In this study, hydrological (GR1A) and two data-driven
(BRNN and LSTM) models were used to reconstruct the an-
nual runoff during the period 1500–2000, considering vari-
ous input fields. After comprehensive validation of the simu-
lated series, this work provides annual runoff time series for
14 catchments across Europe. The presented dataset can be
used to investigate annual drought duration and severity. The
main findings can be summarized as follows:

1. Data-driven methods have proven to be helpful for an-
nual runoff simulations, even when there is high uncer-
tainty in the forcing meteorological data. This contrasts
with a conceptual lumped hydrological model, which
would require bias correction before hydrological sim-
ulation.

2. There is no significant difference between the BRNN-
and LSTM-simulated annual runoff, neither in terms of
the individual values, nor in relation to the validation
metrics.
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3. Validation skill metrics suggest that for annual runoff
prediction, it is beneficial to consider data-driven mod-
els that explicitly account for serial dependence, either
through input data (e.g. time-lagged input fields) or di-
rectly in the model structure (e.g. LSTM networks).

4. The droughts identified in the reconstructed series cor-
relate well with significant documented events (such as
1540, 1616, 1669, 1710, 1724 and 1921).

The reconstructed annual runoff relies heavily on the con-
sistency of underlying reconstructed precipitation (Pauling
et al., 2006) and temperature (Luterbacher et al., 2004)
forcing fields. Unfortunately, those cannot be fully verified
directly, due to the lack of sufficient long-term observa-
tional datasets. With the limited information provided by the
GHCN station, we identified several notable deficiencies in
the reconstructed forcings, in particular, underestimation of
the variance in precipitation reconstruction. Moreover, proxy
records that were used for the derivation of precipitation and
temperature input fields are spatially heterogeneous, with
some regions being better represented than others. This in-
evitably leads to poor performance over the latter. The skill of
precipitation and temperature reconstructions across the se-
lected catchments to derive annual runoff is still fairly good.
In addition, the data-driven methods that were used in the
paper were capable of removing systematic bias. We can-
not be sure, though, that the link between reconstructed forc-
ing and annual runoff is stationary when going back in time.
Moreover, when the number of natural proxies included in
the derivation of the forcing dataset decreases, the uncer-
tainty increases. The reconstructed data should, therefore, al-
ways be considered with caution. Finally, since the runoff
reconstruction is annual, dry summers can be compensated
for by wet winters masking years with sub-annual dry peri-
ods. However, this should be regarded as a resolution- not
methodology-related problem. Future research could con-
sider further improvements of the simulations, e.g. by train-
ing a meta-model combining the runoff simulations from
several fitted models. In addition, since interest is not often
focused on the runoff series but on some other indicator (such
as PDSI or deficit volume in the case of drought), it is also
possible to simulate the drought indices directly, considering
either the precipitation and temperature input fields or the
simulated runoff. Finally, discrete classifiers (Kolachian and
Saghafian, 2021) could also be used to simulate the drought
(or water level) classes directly.

Appendix A

A1 Goodness-of-fit assessment

We used several statistical indicators to assess the skill of
annual runoff reconstruction. In following definitions, p and
o refer to the predicted and observed series, respectively, and
i to year.

The standard deviation (SD) ratio (rSD; Ghiggi et al.,
2021) is defined as

rSD=
SDp

SDo
. (A1)

The variability is underestimated when the value is less
than 1 and overestimated when the value is greater than 1.

The root mean square error (RMSE; see, for example,
Legates and McCabe, 1999)

RMSE=

√√√√ n∑
i=1

(pi − oi)2

n
(A2)

and mean absolute error (MAE; see e.g. Legates and Mc-
Cabe, 1999)

MAE=
1
n

n∑
i=1
|(pi − oi)| (A3)

measure how well predictions fit the observations. MAE and
RMSE values can range from zero to infinity, with the former
value indicating a perfect fit.

Pearson’s correlation coefficient (R) is defined as

R =

∑n
i=1(pi −p)(oi − o)√∑n

i=1(pi −p)2
√∑n

i=1(oi − o)2
. (A4)

The Nash–Sutcliffe efficiency (NSE; Nash and Sutcliffe,
1970),

NSE= 1−
∑n

i=1(pi − oi)2∑n
i=1(oi − o)2 , (A5)

is alternatively referred to as model efficiency. NSE= 1 cor-
responds to a perfect match between predicted and observed
data, while a value less than 0 indicates that model predic-
tions are on average less accurate than using the long-term
mean of the observed time series o.

Systematic errors can be detected using the absolute bias
(BIAS)

BIAS= p− o (A6)

or relative bias (relBIAS)

relBIAS=
p− o

o
, (A7)

which has an ideal value of 0. Positive bias values indi-
cate that the model prediction overestimates observations,
whereas negative values indicate underestimated model pre-
dictions.

The Kling–Gupta efficiency index (KGE; Gupta et al.,
2009)

KGE= 1−
√

(R− 1)2+ (rSD− 1)2+ (relBIAS)2 (A8)

is calculated using three primary components, R, rSD and
relBIAS, as defined above. relBIAS has a zero ideal value,
while rSD and R have an ideal value of 1.
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Figure A1. Structure of LSTM neural network model in a Keras environment for runoff predictions.

Table A1. Structure and hyperparameters of two data-driven models (BRNN and LSTM) for runoff predictions.

Training algorithms Layer types Activation functions Hyperparameters

BRNN input, hidden, output gk(x) =
exp(2x)−1
exp(2x)+1 Tunelength 20, neurons (1–20)

LSTM input, hidden, output rectified linear activation (ReLU)

f (x)=

{
0 when x < 0

x when x ≥ 0

Learning rate: 0.0001, epochs (30–200),
units (5–150), batch input shapes: (1,1,2)
for LSTM, (1,1,3) for LSTM [P,T ,PDSI],
(1,2,2) for LSTM [P,T , lag].

A2 Long short-term memory (LSTM)

To build the LSTM model, we use the Keras environment
(Arnold, 2017) with its high-level application programming
interface (API) for neural networks and Tensorflow (Abadi
et al., 2016). Fig. A1 represents the structure of the LSTM
neural model for the rainfall runoff relationship in several
catchments. We design our network by stacking one LSTM
and two dense layers on top of one other. As shown in
Fig. A1, the model configured four distinct input combina-
tions, each of which was normalized to [0,1] in the training
and testing phases. The model parameters choose different
batch shapes, units (similar as neurons) and epochs as de-
scribed in Table A1. The model considers the rectified linear
unit (ReLU), using component wise multiplication and defin-
ing the dropout parameter as 0.1. According to Kingma and
Ba (2014), the optimization algorithm plays a significant role
in the algorithm’s convergence and optimization. For this rea-
son, Adam’s optimizer is considered, as it performs stochas-
tic gradient descent (SGD) more efficiently using the back-
propagation algorithm. During compilation, the learning rate
is set to 0.001 or 0.002, and the mean square error (MSE) is
used to measure model accuracy. In addition, the mean abso-

lute error (MAE) is used as an objective to minimize residues
and achieve optimum value. Model checkpoints are used to
save the model having minimum loss during the training with
minimum loss and better accuracy.

A3 Bayesian regularized neural network (BRNN)

BRNN is a probabilistic technique for handling non-linear
problems. Using the caret package, the model “brnn” was
designed to work with a two-layer network as described by
MacKay (1992) and Foresee and Hagan (1997). BRNN uses
the Nguyen and Widrow algorithm to assign initial weights
and the Gauss–Newton algorithm to optimize. Model is
first trained on the training dataset, and its performance is
checked by making a prediction on the testing dataset.

While selecting a model for train control, a simple boot re-
sampling strategy was applied to evaluate performance. We
tested the proposed model’s predictive ability using a ran-
dom bootstrap generator, with 75 % of the observations in the
training set and 25 % in the testing set. RMSE was utilized
as a loss function to compile and verify the model’s accu-
racy. The model was fitted with 20 neurons, one hidden layer
and implemented activation function gk(x)= exp(2x)−1

exp(2x)+1 . Af-
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Figure A2. Decadal fluctuation of runoff anomalies in selected catchments over the past 500 years.

ter compilation, the train function automatically selected the
best model with the smallest RMSE as the final model.
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M., Macková, J., Riemann, D., Luterbacher, J., and Böhm, R.:
Monthly, seasonal and annual temperature reconstructions for
Central Europe derived from documentary evidence and instru-
mental records since AD 1500, Climatic Change, 101, 69–107,
2010.

Emile-Geay, J., McKay, N. P., Kaufman, D. S., Von Gunten, L.,
Wang, J., Anchukaitis, K. J., Abram, N. J., Addison, J. A., Cur-
ran, M. A., Evans, M. N., Henley, B. J., Hao, Z., Martrat, B.,
McGregor, H. V., Neukom, R., Pederson, G. T., Stenni, B., Thiru-
malai, K., Werner, J. P., Xu, C., Divine, D. V., Dixon, B. C., Ger-
gis, J., Mundo, I. A., Nakatsuka, T., Phipps, S. J., Routson, C.
C., Steig, E. J., Tierney, J. E., Tyler, J. J., Allen, K. J., Bertler,
N. A. N., Björklund, J., Chase, B. M., Chen, M.-T., Cook, E., de
Jong, R., DeLong, K. L., Dixon, D. A., Ekaykin, A. A., Ersek,
V., Filipsson, H. L., Francus, P., Freund, M. B., Frezzotti, M.,
Gaire, N. P., Gajewski, K., Ge, Q., Goosse, H., Gornostaeva, A.,
Grosjean, M., Horiuchi, K., Hormes, A., Husum, K., Isaksson,
E., Kandasamy, S., Kawamura, K., Kilbourne, K. H., Koç, N.,
Leduc, G., Linderholm, H. W., Lorrey, A. M., Mikhalenko, V.,
Mortyn, P. G., Motoyama, H., Moy, A. D., Mulvaney, R., Munz,
P. M., Nash, D. J., Oerter, H., Opel, T., Orsi, A. J., Ovchin-
nikov, D. V., Porter, T. J., Roop, H. A., Saenger, C., Sano, M.,
Sauchyn, D., Saunders, K. M., Seidenkrantz, M.-S., Severi, M.,
Shao, X., Sicre, M.-A., Sigl, M., Sinclair, K., St. George, S.,
St. Jacques, J.-M., Thamban, M., Kuwar Thapa, U., Thomas, E.

https://doi.org/10.5194/essd-14-4035-2022 Earth Syst. Sci. Data, 14, 4035–4056, 2022

A.3

223



4054 S. Nasreen et al.: A 500-year annual runoff reconstruction for 14 selected European catchments

R., Turney, C., Uemura, R., Viau, A. E., Vladimirova, D. O.,
Wahl, E. R., White, J. W. C., Yu, Z., Zinke, J., and PAGES2k
Consortium: A global multiproxy database for temperature re-
constructions of the Common Era, Scientific Data, 4, 170088,
https://doi.org/10.1038/sdata.2017.88, 2017.

Fathi, M. M., Awadallah, A. G., Abdelbaki, A. M., and Haggag,
M.: A new Budyko framework extension using time series SARI-
MAX model, J. Hydrol., 570, 827–838, 2019.

Fekete, B. M., Vörösmarty, C. J., and Grabs, W.: Global, composite
runoff fields based on observed river discharge and simulated wa-
ter balances, Tech. Rep. 22, Global Runoff Data Centre, Koblenz,
Germany, 1999.

Foresee, F. D. and Hagan, M. T.: Gauss-Newton approximation to
Bayesian learning, in: Proceedings of international conference on
neural networks (ICNN’97), vol. 3, pp. 1930–1935, IEEE, Hous-
ton, TX, USA, 1997.

Ghiggi, G., Humphrey, V., Seneviratne, S. I., and Gudmundsson,
L.: GRUN: an observation-based global gridded runoff dataset
from 1902 to 2014, Earth Syst. Sci. Data, 11, 1655–1674,
https://doi.org/10.5194/essd-11-1655-2019, 2019.

Ghiggi, G., Humphrey, V., Seneviratne, S., and Gudmundsson,
L.: G-RUN ENSEMBLE: A Multi-Forcing Observation-
Based Global Runoff Reanalysis, Water Resour. Res., 57,
e2020WR028787, https://doi.org/10.1029/2020WR028787,
2021.

Gupta, H. V., Kling, H., Yilmaz, K. K., and Martinez, G. F.: Decom-
position of the mean squared error and NSE performance criteria:
Implications for improving hydrological modelling, J. Hydrol.,
377, 80–91, https://doi.org/10.1016/j.jhydrol.2009.08.003, 2009.

Hanel, M., Rakovec, O., Markonis, Y., Máca, P., Samaniego, L., Ky-
sel, J., and Kumar, R.: Revisiting the recent European droughts
from a long-term perspective, Scientific Reports, 8, 1–11, 2018.

Hansson, D., Eriksson, C., Omstedt, A., and Chen, D.: Reconstruc-
tion of river runoff to the Baltic Sea, AD 1500–1995, Int. J. Cli-
matol., 31, 696–703, 2011.

Harris, I., Jones, P. D., Osborn, T. J., and Lister, D. H.: Updated
high-resolution grids of monthly climatic observations–the CRU
TS3.10 Dataset, Int. J. Climatol., 34, 623–642, 2014.

Haslinger, K. and Blöschl, G.: Space-time patterns of meteorolog-
ical drought events in the European Greater Alpine Region over
the past 210 years, Water Resour. Res., 53, 9807–9823, 2017.

Hochreiter, S. and Schmidhuber, J.: Long short-term memory, Neu-
ral Comput., 9, 1735–1780, 1997.

Hu, C., Wu, Q., Li, H., Jian, S., Li, N., and Lou, Z.:
Deep learning with a long short-term memory networks
approach for rainfall-runoff simulation, Water, 10, 1543,
https://doi.org/10.3390/w10111543, 2018.

Im, S., Kim, H., Kim, C., and Jang, C.: Assessing the impacts of
land use changes on watershed hydrology using MIKE SHE, En-
viron. Geol., 57, 231, https://doi.org/10.1007/s00254-008-1303-
3, 2009.

Ionita, M., Tallaksen, L. M., Kingston, D. G., Stagge, J. H.,
Laaha, G., Van Lanen, H. A. J., Scholz, P., Chelcea, S. M.,
and Haslinger, K.: The European 2015 drought from a clima-
tological perspective, Hydrol. Earth Syst. Sci., 21, 1397–1419,
https://doi.org/10.5194/hess-21-1397-2017, 2017.

Jeong, J., Barichivich, J., Peylin, P., Haverd, V., McGrath,
M. J., Vuichard, N., Evans, M. N., Babst, F., and Luys-
saert, S.: Using the International Tree-Ring Data Bank

(ITRDB) records as century-long benchmarks for global
land-surface models, Geosci. Model Dev., 14, 5891–5913,
https://doi.org/10.5194/gmd-14-5891-2021, 2021.

Ji, Y., Dong, H.-T., Xing, Z.-X., Sun, M.-X., Fu, Q., and Liu,
D.: Application of the decomposition-prediction-reconstruction
framework to medium-and long-term runoff forecasting, Water
Supply, 21, 696–709, 2021.

Kingma, D. P. and Ba, J.: Adam: A method for stochastic optimiza-
tion, arXiv [preprint], arXiv:1412.6980, 2014.

Kolachian, R. and Saghafian, B.: Hydrological drought class early
warning using support vector machines and rough sets, Environ.
Earth Sci., 80, 1–15, 2021.

Kratzert, F., Klotz, D., Brenner, C., Schulz, K., and Herrnegger,
M.: Rainfall–runoff modelling using Long Short-Term Mem-
ory (LSTM) networks, Hydrol. Earth Syst. Sci., 22, 6005–6022,
https://doi.org/10.5194/hess-22-6005-2018, 2018.

Kress, A., Saurer, M., Siegwolf, R. T., Frank, D. C., Esper, J., and
Bugmann, H.: A 350 year drought reconstruction from Alpine
tree ring stable isotopes, Global Biogeochem. Cy., 24, 1–16,
https://doi.org/10.1029/2009GB003613, 2010.

Kress, A., Hangartner, S., Bugmann, H., Büntgen, U., Frank, D. C.,
Leuenberger, M., Siegwolf, R. T., and Saurer, M.: Swiss tree
rings reveal warm and wet summers during medieval times, Geo-
phys. Res. Lett., 41, 1732–1737, 2014.

Krysanova, V., Vetter, T., and Hattermann, F.: Detection of change
in drought frequency in the Elbe basin: comparison of three
methods, Hydrol. Sci. J., 53, 519–537, 2008.

Kuhn, M.: Caret: classification and regression training, Astro-
physics Source Code Library, https://ui.adsabs.harvard.edu/abs/
2015ascl.soft05003K (last access: 21 December 2021), pp. ascl–
1505, 2015.

Kwak, J., Lee, J., Jung, J., and Kim, H. S.: Case Study:
Reconstruction of Runoff Series of Hydrological Sta-
tions in the Nakdong River, Korea, Water, 12, 3461,
https://doi.org/10.3390/w12123461, 2020.

Laaha, G., Gauster, T., Tallaksen, L. M., Vidal, J.-P., Stahl, K., Prud-
homme, C., Heudorfer, B., Vlnas, R., Ionita, M., Van Lanen,
H. A. J., Adler, M.-J., Caillouet, L., Delus, C., Fendekova, M.,
Gailliez, S., Hannaford, J., Kingston, D., Van Loon, A. F., Me-
diero, L., Osuch, M., Romanowicz, R., Sauquet, E., Stagge, J.
H., and Wong, W. K.: The European 2015 drought from a hy-
drological perspective, Hydrol. Earth Syst. Sci., 21, 3001–3024,
https://doi.org/10.5194/hess-21-3001-2017, 2017.

Legates, D. R. and McCabe Jr., G. J.: Evaluating the use of
“goodness-of-fit” measures in hydrologic and hydroclimatic
model validation, Water Resour. Res., 35, 233–241, 1999.

Leggewie, C. and Mauelshagen, F.: Climate change and cultural
transition in Europe, Brill, Leiden, the Netherlands, 2018.

Li, Y., Wei, J., Wang, D., Li, B., Huang, H., Xu, B., and Xu, Y.: A
Medium and Long-Term Runoff Forecast Method Based on Mas-
sive Meteorological Data and Machine Learning Algorithms,
Water, 13, 1308, https://doi.org/10.3390/w13091308, 2021.

Ljungqvist, F. C., Piermattei, A., Seim, A., Krusic, P. J., Bünt-
gen, U., He, M., Kirdyanov, A. V., Luterbacher, J., Schnei-
der, L., Seftigen, K., Stahle, D. W., Villalba, R., Yang, B., and
Esper, J.: Ranking of tree-ring based hydroclimate reconstruc-
tions of the past millennium, Quaternary Sci. Rev., 230, 106074,
https://doi.org/10.1016/j.quascirev.2019.106074, 2020.

Earth Syst. Sci. Data, 14, 4035–4056, 2022 https://doi.org/10.5194/essd-14-4035-2022

A.3

224



S. Nasreen et al.: A 500-year annual runoff reconstruction for 14 selected European catchments 4055

Luoto, T. P. and Nevalainen, L.: Quantifying climate changes of the
Common Era for Finland, Clim. Dynam., 49, 2557–2567, 2017.

Luterbacher, J., Dietrich, D., Xoplaki, E., Grosjean, M., and Wan-
ner, H.: European seasonal and annual temperature variability,
trends, and extremes since 1500, Science, 303, 1499–1503, 2004.

MacKay, D. J.: A practical Bayesian framework for backpropaga-
tion networks, Neural Comput., 4, 448–472, 1992.

Manabe, S.: Climate and the ocean circulation: I. The atmo-
spheric circulation and the hydrology of the earth’s surface, Mon.
Weather Rev., 97, 739–774, 1969.

Markonis, Y. and Koutsoyiannis, D.: Scale-dependence of persis-
tence in precipitation records, Nat. Clim. Change, 6, 399–401,
2016.

Markonis, Y., Hanel, M., Máca, P., Kysel, J., and Cook, E.: Persis-
tent multi-scale fluctuations shift European hydroclimate to its
millennial boundaries, Nat. Commun., 9, 1–12, 2018.

Martínez-Sifuentes, A. R., Villanueva-Díaz, J., and Estrada-Ávalos,
J.: Runoff reconstruction and climatic influence with tree rings,
in the Mayo river basin, Sonora, Mexico, iForest, 13, 98,
https://doi.org/10.3832/ifor3190-013, 2020.

Menne, M. J., Durre, I., Vose, R. S., Gleason, B. E., and Houston,
T. G.: An overview of the global historical climatology network-
daily database, J. Atmos. Ocean. Tech., 29, 897–910, 2012.

Menne, M. J., Williams, C. N., Gleason, B. E., Rennie, J. J., and
Lawrimore, J. H.: The global historical climatology network
monthly temperature dataset, version 4, J. Climate, 31, 9835–
9854, 2018.

Middelkoop, H., Daamen, K., Gellens, D., Grabs, W., Kwadijk,
J. C., Lang, H., Parmet, B. W., Schädler, B., Schulla, J., and
Wilke, K.: Impact of climate change on hydrological regimes
and water resources management in the Rhine basin, Climatic
Change, 49, 105–128, 2001.

Moberg, A., Mohammad, R., and Mauritsen, T.: Analysis of the
Moberg et al. (2005) hemispheric temperature reconstruction,
Clim. Dynam., 31, 957–971, 2008.

Moravec, V., Markonis, Y., Rakovec, O., Kumar, R., and Hanel, M.:
A 250-year European drought inventory derived from ensemble
hydrologic modeling, Geophys. Res. Lett., 46, 5909–5917, 2019.

Mouelhi, S., Michel, C., Perrin, C., and Andréassian, V.: Linking
stream flow to rainfall at the annual time step: the Manabe bucket
model revisited, J. Hydrol., 328, 283–296, 2006.

Murphy, C., Broderick, C., Burt, T. P., Curley, M., Duffy, C.,
Hall, J., Harrigan, S., Matthews, T. K. R., Macdonald, N., Mc-
Carthy, G., McCarthy, M. P., Mullan, D., Noone, S., Osborn,
T. J., Ryan, C., Sweeney, J., Thorne, P. W., Walsh, S., and
Wilby, R. L.: A 305-year continuous monthly rainfall series
for the island of Ireland (1711–2016), Clim. Past, 14, 413–440,
https://doi.org/10.5194/cp-14-413-2018, 2018.

Nash, J. E. and Sutcliffe, J. V.: River flow forecasting through con-
ceptual models part I–A discussion of principles, J. Hydrol., 10,
282–290, 1970.

Nicault, A., Alleaume, S., Brewer, S., Carrer, M., Nola, P., and
Guiot, J.: Mediterranean drought fluctuation during the last
500 years based on tree-ring data, Clim. Dynam., 31, 227–245,
2008.

Okut, H.: Bayesian regularized neural networks for small n big
p data, in: Artificial neural networks-models and applications,
in: Artificial Neural Networks, edited by: Rosa, J. L. G., Inte-
chOpen, 21–23, https://doi.org/10.5772/63256, 2016.

Oudin, L., Hervieu, F., Michel, C., Perrin, C., Andréassian, V., An-
ctil, F., and Loumagne, C.: Which potential evapotranspiration
input for a lumped rainfall–runoff model?: Part 2–Towards a sim-
ple and efficient potential evapotranspiration model for rainfall–
runoff modelling, J. Hydrol., 303, 290–306, 2005.

Pauling, A., Luterbacher, J., Casty, C., and Wanner, H.: Five hun-
dred years of gridded high-resolution precipitation reconstruc-
tions over Europe and the connection to large-scale circulation,
Clim. Dynam., 26, 387–405, 2006.

Peterson, T. C. and Vose, R. S.: An overview of the Global Histor-
ical Climatology Network temperature database, B. Am. Meteo-
rol. Soc., 78, 2837–2850, 1997.

Pfister, C., Brázdil, R., Glaser, R., Barriendos, M., Camuffo, D.,
Deutsch, M., Dobrovolný, P., Enzi, S., Guidoboni, E., Kotyza,
O., Militzer, S., Rácz, L., and Rodrigo, F. S.: Documentary evi-
dence on climate in sixteenth-century Europe, Climatic Change,
43, 55–110, 1999.

Pfister, C., Weingartner, R., and Luterbacher, J.: Hydrological win-
ter droughts over the last 450 years in the Upper Rhine basin: a
methodological approach, Hydrol. Sci. J., 51, 966–985, 2006.

Proctor, C., Baker, A., Barnes, W., and Gilmour, M.: A thou-
sand year speleothem proxy record of North Atlantic climate
from Scotland, Clim. Dynam., 16, 815–820, 2000.

Quayle, R. G., Peterson, T. C., Basist, A. N., and Godfrey, C. S.: An
operational near-real-time global temperature index, Geophys.
Res. Lett., 26, 333–335, 1999.

Reinecke, R., Müller Schmied, H., Trautmann, T., Andersen,
L. S., Burek, P., Flörke, M., Gosling, S. N., Grillakis, M.,
Hanasaki, N., Koutroulis, A., Pokhrel, Y., Thiery, W., Wada, Y.,
Yusuke, S., and Döll, P.: Uncertainty of simulated groundwater
recharge at different global warming levels: a global-scale multi-
model ensemble study, Hydrol. Earth Syst. Sci., 25, 787–810,
https://doi.org/10.5194/hess-25-787-2021, 2021.

Rivera, J. A., Araneo, D. C., and Penalba, O. C.: Threshold level
approach for streamflow drought analysis in the Central Andes
of Argentina: a climatological assessment, Hydrol. Sci. J., 62,
1949–1964, 2017.
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A B S T R A C T   

Accurate, reliable, and high spatio-temporal resolution precipitation data are vital for many applications, 
including the study of extreme events, hydrological modeling, water resource management, and hydroclimatic 
research in general. In this study, we performed a systematic review of the available literature to assess the 
performance of the Integrated Multi-Satellite Retrievals for GPM (IMERG) products across different geographical 
locations and climatic conditions around the globe. Asia, and in particular China, are the subject of the largest 
number of IMERG evaluation studies on the continental and country level. When compared to ground obser-
vational records, IMERG is found to vary with seasons, as well as precipitation type, structure, and intensity. It is 
shown to appropriately estimate and detect regional precipitation patterns, and their spatial mean, while its 
performance can be improved over mountainous regions characterized by orographic precipitation, complex 
terrains, and for winter precipitation. Furthermore, despite IMERG’s better performance compared to other 
satellite products in reproducing spatio-temporal patterns and variability of extreme precipitation, some limi-
tations were found regarding the precipitation intensity. At the temporal scales, IMERG performs better at 
monthly and annual time steps than the daily and sub-daily ones. Finally, in terms of hydrological application, 
the use of IMERG has resulted in significant discrepancies in streamflow simulation. However, and most 
importantly, we find that each new version that replaces the previous one, shows substantial improvement in 
almost every spatiotemporal scale and climatic condition. Thus, despite its limitations, IMERG evolution reveals 
a promising path for current and future applications.   

1. Introduction 

During the last three decades, satellite data have become a promising 
source of precipitation observations at the global scale (Levizzani and 
Cattani, 2019). They provide continuous measurement of precipitation 
in both space and time with quasi-global coverage (Derin and Yilmaz, 
2014), making them especially important over data-scarce regions (Kidd 
and Levizzani, 2011). Satellite-based precipitation estimation tech-
niques can be grouped into three main methods; (i) the visible (VIS) and 
infrared (IR), (ii) the passive microwave (PMW), and (iii) the merged 
VIS/IR and PMW (Kidd and Levizzani, 2011). As its name implies, the 

first uses VIS/IR images from geostationary satellites and estimates 
precipitation based on cloud top temperature. Even though the VIS/IR 
method provides high spatiotemporal resolution, uncertainties in the 
indirect relationship between the cloud top temperature and rainfall rate 
impedes its precipitation estimates (Maggioni et al., 2016; Tapiador 
et al., 2017). On the other hand, the PMW-based method uses the direct 
link between microwave scattering and rain/ice particles, and thus 
provides more direct precipitation estimates (Sun et al., 2018). How-
ever, a major drawback is that low orbit PMW satellites present poor 
sampling in time, which yields significant gaps in the precipitation 
estimation (Hong et al., 2019). The complementary properties of the 
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PMW and VIS/IR technologies led to the development of the VIS/IR and 
PMW merged data products. Even though IR estimates are less skillful, 
the sparse PMW estimates cannot adequately cover all times, so IR es-
timates are used to help cover the periods which are not 
well-represented by the PMW (directly or by morphing). Some of these 
merged data products include the Precipitation Estimation from 
Remotely Sensed Information using Artificial Neural Network (PER-
SIANN) (Sorooshian et al., 2000; Hsu et al., 1997), Climate Prediction 
Center Morphing Technique (CMORPH) (Joyce et al., 2004), Tropical 
Rainfall Measuring Mission (TRMM) (Huffman et al., 2007), and Global 
Satellite Mapping of Precipitation (GSMap) (Kubota et al., 2020). 
Among them, the TRMM mission, which was designed to estimate pre-
cipitation over the tropics and subtropics, provided significant infor-
mation on rainfall and its associated properties (Huffman et al., 2007). 
The Multi-Satellite Precipitation Analysis (TMPA), the most important 
data product of TRMM has been one of the widely used precipitation 
data set for a range of applications (Hamada et al., 2014; Li et al., 2009; 
Siddique-E-Akbor et al., 2014; Rozante and Cavalcanti, 2008). 

Following the success of TRMM, on February 27 2014, NASA (Na-
tional Aeronautics and Space Administration) and JAXA (Japan Aero-
space Exploration Agency) jointly launched the Global Precipitation 
Measurement (GPM) core observatory satellite (Hou et al., 2013; Liu, 
2016). The GPM mission is a constellation of satellites from partner 
nations and is one of the most accurate and finest spatiotemporal reso-
lution providers of global precipitation measurements (Huffman et al., 
2015). GPM not only extended TRMM’s coverage from 35◦ N-S to 65◦

N-S, but it also carries advanced sensors such as the Dual-Frequency 
Precipitation Radar (DPR) and GPM Microwave Imager (GMI), which 
quantify precipitation more accurately and particularly light and solid 
precipitation (Hou et al., 2014). On the processing side, the Integrated 
Multi-Satellite Retrievals for GPM (IMERG) algorithm incorporates, 
merges, and inter-calibrates various IR, microwave (MW), and gauge 
observations to provide precipitation estimates at relatively high spatial 
(0.1◦×0.1◦) and temporal resolution (30 min) (Huffman et al., 2015). 
Furthermore, IMERG provides three types of data sets: the IMERG-Early 
run (IMERG-E), IMERG-Late run (IMERG-L), and IMERG-Final run 
(IMERG-F). IMERG-E and IMERG-L, being near-real-time products, are 
available with a latency of 4 hours and 14 hours respectively, and can 
serve as a potential data source for flood forecasting and real-time 
disaster management (Huffman et al., 2020). IMERG-F is available 3.5 
months after observation, and it is mainly aimed for research purposes. 
Unlike IMERG-E and IMERG-L, IMERG-F incorporates the Global Pre-
cipitation Climatology Centre (GPCC) monthly gauge analysis. More 
detailed information about IMERG precipitation products can be found 
in Tan et al. (2019). Since IMERG’s release in early 2015, a substantial 
number of studies have used and recommended it for various applica-
tions, such as streamflow simulation (Tang et al., 2016b), flood fore-
casting (Wang et al., 2017b), and analysis of extreme events (Huang 
et al., 2019). Recently, IMERG version 6 (V06) extended its temporal 
coverage to the TRMM era and now provides 20-year long data sets from 
2000 to present (Huffman, 2020). The high-quality precipitation esti-
mates and long-term coverage of IMERG is expected to provide insights 
on various hydro-meteorological processes and climatological studies in 
the future. 

A considerable number of studies have evaluated the performance of 
IMERG precipitation products at various temporal and spatial scales (e. 
g., Navarro et al., 2019; Shawky et al., 2019; Watters and Battaglia, 
2019; Palomino-, ńgel et al., 2019; Prakash et al., 2018b; Tan et al., 
2016; Manz et al., 2017). Nonetheless, most of them focus on local/re-
gional domains (e.g., bounded by national boundaries) addressing spe-
cific climatic or topographic conditions across the globe. The few studies 
that investigate the global performance of IMERG present contradictory 
results (Wang et al., 2018; Liu, 2016; Derin et al., 2019). In this context, 
the main objective of this study is to review the state-of-the-art of the 
IMERG precipitation products and summarize the results of the recent 
efforts to evaluate the IMERG products in a quantitative manner across 

the globe. We aim to identify the strengths and weaknesses of IMERG 
products, providing information to the user community and product 
developers to further improve IMERG algorithms in future versions. The 
paper is organized as follows: the second section describes the meth-
odology employed herein, briefly discusses data collection, database 
preparation, and its analysis. The third section presents the results in 
terms of validation design and geographical distribution of the publi-
cations. The fourth section discusses the post-2019 developments, 
strengths and weaknesses of IMERG products across the globe, identifies 
limitations, and provides recommendations for future studies. Finally, 
the last section summarizes the findings, and reports the conclusions. 

2. Methodology 

To analyze the global performance of GPM IMERG products, we 
performed an exhaustive literature review using the Google Scholar and 
Scopus databases. We used the keywords “GPM” and “IMERG”, focusing 
on the period between 2016 and 2019. We limited the used articles to 
ones that had the evaluation of the performance of IMERG products 
within their scope. To assure the quality of the scientific articles used in 
this study, we focused only on articles published in Q1 and Q2 journals 
according to Scopus (first and second quantile of journals according to 
their ranking in the hydrology, climate or remote sensing fields). These 
selection criteria resulted in a 101 articles database with information 
regarding the performance of IMERG precipitation products across the 
globe. This information includes a unique identification (id) code, study 
area, country, continent, surface category, precipitation type, IMERG 
product, record length, temporal and spatial resolution, validation 
method, validation data, and statistical metrics (The database is avail-
able as a Supplementary File). 

The id code was generated as the first three letters of the first author 
name followed by a two-digit number representing the year of publi-
cation. The study area varies widely from small river basins to global- 
scale analyses; therefore, the country and continent were also reported 
whenever the study area was not global. The surface category consid-
ered two major groups, namely land and ocean. Precipitation type was 
registered as rainfall or snowfall. IMERG products, as described in the 
previous section, could be IMERG-E, IMERG-L, or IMERG-F, and their 
version ranged between IMERG V03 and IMERG V06. The record length 
or length of the evaluation period was reported in months. The temporal 
resolution ranged from sub-hourly to yearly, and the spatial resolution 
was expressed in degrees. Validation methods considered the charac-
teristics of the IMERG product (gridded) and the validation data (grid-
ded or point) being compared, i.e., grid vs. grid or grid vs. point. 
Validation data reports the source of reference data used (gauge-, radar-, 
satellite-, or model-based). Statistical metrics were classified into volu-
metric and categorical indices. The volumetric indices mainly include 
the correlation coefficient (COR), root mean square error (RMSE), and 
bias. The key metrics in the categorical indices include the probability of 
detection (POD), false alarm ratio (FAR), and critical success index 
(CSI). POD, also known as hit rate, represents the detection capability of 
the satellite; measures the proportion of the events detected by the 
satellite to the total number of precipitation events. FAR denotes the 
fraction of events detected by satellite that is not real or not detected by 
gauge, while CSI, a function of POD and FAR, represents a balanced 
score. Furthermore, where available, the database recorded additional 
metadata like best/worst performances, limitations, year of publication, 
and the journal of publication. 

We followed a two-step evaluation approach: Firstly, the experi-
mental design of the studies was evaluated based on the generated 
database. Information such as latitude, longitude, and the study area 
(both country and continents) were used to analyze the geographical 
distribution of the studies. Then, the publication years and their corre-
sponding counts were employed for the investigation of the chrono-
logical evolution. In addition, the information regarding the 
spatiotemporal resolutions, validation period length, reference data 
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types, statistical metrics, etc., were used for the analysis of additional 
aspects of the validation design. Secondly, the performance of IMERG 
was summarised and categorized in terms of the continents, hydrolog-
ical applications (i.e., streamflow simulation), and extreme events. The 
statistical metrics such as bias, COR, RMSE, Nash-Sutcliffe coefficient of 
efficiency (NSE), POD, and FAR were employed to support the results. 

Herein we must note that the analysis is not complete. The search 
criteria were restricted to the “IMERG or GPM” keywords on Google 
Scholar search engine, and studies that do not have those keywords in 
their title or abstract were excluded from the database. Only studies 
whose scope was solely IMERG validation were gathered. In addition, 
data collection is limited to studies published in Q1 and Q2 journals. 
There may be more studies in Q3 and Q4 category’s journals that were 
excluded from this study. Another limitation of the study is that we did 
not consider studies published outside journals, such as conferences, 
book chapters, and reports. Finally, the study focuses on articles pub-
lished between 2016 and 2019 (there may be more evaluation studies 
published in the later 2020). It is worth noting that this study is aimed 
explicitly at GPM’s IMERG products only, so it does not imply to the 
entire GPM mission (IMERG is one of the products of GPM and GPM 
provides other data sets as well). 

3. Results 

3.1. Characteristics of IMERG studies 

From the geographical distribution of the 101 studies (Fig. 1) Asia 
not only has the majority of studies (66) but is also the continent with 

most studies covering different countries. The Americas hold a total of 
21 studies, 12 in North America and 9 in South America, while there 
were 7 studies in Europe and 2 in Africa. Note that until 2019 no 
available studies had assessed IMERG performance over Australia. 
Additionally, 5 studies validated IMERG products at the global level (not 
shown in Fig. 1). On a per-country basis, IMERG performance was 
evaluated over a total of 34 different countries. There is an unequal 
distribution where China, the United States, and India represent around 
55% of the studies. Yet, China alone accounts for 40% of the total. 
Countries like Brazil, Iran, Pakistan, Japan, Myanmar, Malaysia, and the 
Netherlands have at least two validation studies associated with each, 
whereas the rest of the countries are featured with a single study. Given 
the number of studies, IMERG validation is spatially well-distributed 
over the Asian continent. 

The chronology of the studies indicates a growing research interest in 
the topic (Fig. 2). A total of 14 studies were published in 2016, 21 in 
2017, 30 in 2018, and 36 in 2019. Africa has the lowest number of 
studies, it showed no increment with time, and no studies were pub-
lished in 2018 and 2019. All other continents show an increase in the 
number of publications per year. Asia exhibited the highest growth in 
the number of publications per year. Starting with less than 10 studies in 
2016, it has reached 28 in 2019, representing approximately three- 
quarters of all studies published that year. In Europe, the number of 
studies remains similar each year, except for 2018, in which the number 
of studies doubled. North America reported an increasing trend of 
studies from 2016 to 2018, while a decrease in 2019. Finally, in South 
America, there is fluctuation in the number of studies with the years 
without any trend. For the global studies, 2016 and 2018 have the same 

Fig. 1. Geographical distribution of IMERG validation studies across the globe. The points do not represent the extent of the study domain but rather the mean 
latitude and longitude of the domain. 
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number of publications, but there is a significant increase in 2019. 
The temporal resolution at which the validation is performed can 

significantly affect the results. Therefore, we identified the different 
temporal resolutions of IMERG products used in the aforementioned 
studies (Fig. 3). Those using products at daily resolution account for 
35%, followed by monthly (22%), sub-daily (21%), annual (13%), and 
seasonal (9%) resolutions. When combined, the daily, monthly, annual 
and seasonal scales account for 80% of the total studies, whereas the rest 
(20%) are sub-daily scales. One possible explanation for this may be the 
availability of observational data sets. For example, this may be that the 
availability of observational data with high temporal resolution (sub- 
daily scale) at a regional scale is scarce. Another possible explanation 
could be that two precipitation data sets typically have a better agree-
ment when they are upscaled to a coarser resolution in space and time. 
Therefore, evaluating IMERG at higher temporal scales (i.e., sub-daily) 
is a bit challenging (Tan et al., 2016). Continent-wise, Asia dominates 
in most temporal resolutions beyond the sub-daily scale. Studies over 
Europe are evenly distributed across the different temporal resolutions. 
In general, the least number of studies were at sub-daily resolutions 
(attributed to the lack of corresponding reference data), indicating that 
IMERG’s raw resolution (30 min) has still not been adequately 
evaluated. 

In terms of spatial scale, validation of IMERG data has been per-
formed at 0.1◦×0.1◦, 0.25◦×0.25◦, 0.5◦×0.5◦, 1◦×1◦, 2.5◦×2.5◦, or 
3◦×3◦ resolutions (Fig. 3). The majority of validation studies were at 
0.1◦×0.1◦ and 0.25◦×0.25◦ resolution. This could be a consequence of 
IMERG products’ nominal resolution of 0.1◦×0.1◦, and the fact that 
most gridded reference data sets used are typically available at 
0.25◦×0.25◦ (e.g., TRMM TMPA). We note that studies that evaluated 
IMERG products using gauges (point vs. pixel-based method) were also 
considered as evaluated at 0.1◦×0.1◦ resolutions; this also contributes to 
the higher number of studies on this resolution. Despite Asia being the 
subject of most of the studies, none of them evaluated IMERG products 
at resolutions coarser than 0.25◦×0.25◦; the same holds for Africa, 
Europe, and South America. In contrast, North America (Tan et al., 

2017) and at the global scale (Khan and Maggioni, 2019); despite a 
smaller number of studies, conducted IMERG evaluation studies at 
different spatial resolutions. Therefore, more validation studies at mul-
tiple spatiotemporal resolutions are needed to better understand and 
achieve a more in-depth analysis of the IMERG data set properties over 
different scales. 

Generally, the validation period length of the studies is increasing 
with recent IMERG versions (Fig. 4a). As expected, IMERG V03 has the 
shortest validation period (median around 12 months), whereas IMERG 
V05 has the most extended (median around 33 months). In terms of 
IMERG runs, IMERG-E and IMERG-L have similar validation lengths 
within the corresponding IMERG versions, unlike the IMERG-F, which 
has a relatively shorter period length. The main reason for this is that 
IMERG-F is available at 3.5 months of latency. Although IMERG V06 is 
available contemporary to the TRMM era (June 2000–present), up to 
2019, no study has evaluated this period. Furthermore, the length of the 
validation period was also reported on a monthly scale and classified 
into five ranges, each a multiple of 12-month duration (Fig. 4b). 
Considering the short record of IMERG up through V05 (i.e., available 
from early 2014 onward), most of the studies’ record length falls under 
the shortest range (0–12 months). Based on the database created, it is 
evident that the number of studies is inversely related to the validation 
period. Around 35% of the studies have a validation period length be-
tween 0 and 12 months, 31% between 13 and 24 months, 22% between 
25 and 36 months, 11% between 37 and 48 months, and 1% between 49 
and 60 months. It is interesting that studies using longer validation 
periods were often associated with coarser temporal resolution (daily 
and longer), whereas studies with shorter validation periods were 
associated with sub-daily temporal resolution. In terms of reference 
data, radar- and model-based data sets are mainly used for short eval-
uation periods, whereas gauge- and satellite-based data sets are used for 
long evaluation periods. 

The types of reference data sets, and thus their accuracy, play a 
significant role in the evaluation results. Generally, ground (gauge- and/ 
or radar-based) data sets are preferred as the source of reference data to 

Fig. 2. Number of IMERG validation studies published between 2016 and 2019.  
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assess the accuracy of GPM precipitation. However, the low density of 
ground stations globally forces the scientific community to rely on 
different sources for evaluation, namely satellite, model, reanalysis, and 
merged products (Fig. 4b). The most common satellite-based products 
for IMERG comparison are TMPA, GSMaP, and CMORPH. As GPM is the 
immediate successor mission of TRMM, most studies compare IMERG 
using TMPA (i.e., IMERG vs. TMPA) and compare their individual per-
formance versus gauge precipitation (i.e., IMERG vs. TMPA vs. gauge). 
Only a couple of reference data sets came from different sources other 
than satellites, namely ERA-Interim (reanalysis) and Weather Research 
and Forecasting (WRF) (model) when ground observations were un-
available. In addition, radar precipitation data as a reference to evaluate 
the IMERG is very limited in number as well. The expensive installation 
and maintenance cost of radars could be the main reason for such fewer 
studies. Radar evaluation of IMERG is mainly dominated by developed 
countries/continents like the United States of America (USA) and 
Europe. The Multi-Radar/Multi-Sensor (MRMS) is the dominant radar 
product in the USA. Furthermore, all the IMERG evaluation studies 
against radar assessed the IMERG products on a sub-daily scale. 

Generally, various statistical metrics were often used to validate 
satellite precipitation with the reference data sets. The statistical mea-
sures used for the IMERG validation can be categorized into two main 
types; i) Volumetric and ii) Categorical metrics. 

The UpSet plot (Fig. 5) shows the number of studies that employed 
different statistical metrics combinations. The UpSet plot is a standard 
format to depict the intersection of sets when the number sets are more 
than three or four, and it was developed by Lex and Gehlenborg (2014). 
Each bar represents a unique combination of the metrics, and under-
neath the table shows their combination types. The empty cells (light 
grey)(For interpretation of the references to color in this figure legend, 

the reader is referred to the web version of this article.) indicate the 
particular metric is not part of the intersection, whereas the filled cells 
(black) indicate it participates in the intersection. From the left to right 
direction, the number of studies is decreasing. POD, COR, FAR, RMSE, 
CSI, and RBias are the most frequently used metrics combination (n =
22), followed by POD, COR, FAR, RMSE, CSI (n = 14), and POD, COR, 
FAR, RMSE (n = 7). Other combinations appear in a very low number of 
studies, mostly fewer than 3. In addition, the small barplot on the left 
side represents the unconditional (without combination) metrics used 
for the studies. From the top, POD is the most reported metrics used in 
82 studies, followed by COR (78), FAR (74), and RMSE (72). On the 
other hand, CSI and RBias fall between 40 and 60. 

3.2. IMERG’s performance by continents 

3.2.1. Asia 
Asia is characterized by diverse climate patterns and a variety of 

regional topography. Based on the studies assessing IMERG in China, 
IMERG captures the overall spatiotemporal behavior of precipitation 
over the country. However, there are substantial differences in local 
climatic conditions, which can affect IMERG-F V05 performance (Chen 
et al., 2018). Geographically, IMERG-F tends to be more accurate in the 
lower latitudes than mid/high latitudes of China (Chen and Li, 2016). 
IMERG-E, -L V05 showed more accurate estimates of high-intensity 
precipitation over wet/humid regions compared to low-intensity pre-
cipitation over dry regions (Wu et al., 2018). This is also supported by 
other studies as well (e.g., Fang et al., 2019; Jiang and Bauer-Gottwein, 
2019; Wei et al., 2018; Asong et al., 2017). With regards to the diurnal 
variation, IMERG-F V06 performs poorly between 06:00 and 10:00 UTC 
(Xu et al., 2019b). Furthermore, on average, IMERG-F products at daily 

Fig. 3. Spatial and temporal scales of IMERG validation studies per continent. The numbers inside the circles do not represent the actual number of studies, because a 
single study can have evaluated in multiple temporal scale, and has the possibility of counted more than once. 
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Fig. 4. (a) Validation length by IMERG versions and runs, (b) Temporal scale versus validation length per reference type of IMERG validation studies. The numbers 
inside the circles do not represent the actual number of studies, because a single study can have evaluated in multiple references, and has the possibility of counted 
more than once. 

R.K. Pradhan et al.                                                                                                                                                                                                                             

A.4

232



Remote Sensing of Environment 268 (2022) 112754

7

and sub-daily time steps did not perform as well as in the monthly time 
scale (Xu et al., 2019b,a; Chen et al., 2018; Wang et al., 2019b). When 
assessing IMERG-F at the seasonal scale, its performance is worse during 
winter (Chen and Li, 2016). However, it is clear that IMERG-F V03 
performance improved compared to TMPA, still leaving substantial 
room for further improvement over China (Tang et al., 2016a). 

3.2.1.1. Eastern China. In eastern China (humid/semi-humid climate), 
although IMERG-F V04 has good agreement when measuring light 
precipitation (<8 mm/day), it tends to overestimate high precipitation 
rates (>64 mm/day), and underestimate precipitation rates between 8 
and 64 mm/day. Furthermore, IMERG-F V04 showed an overestimation 
of up to 17.9% for the 99th percentile of precipitation on wet days 
(RR99P) and 11.5% relative bias for the R20TOT index (total precipi-
tation sum of daily precipitation that is more than 20 mm) (Ning et al., 
2017). The intensity of precipitation at which IMERG over-/-
underestimates varies in space according to the topography. For 
instance, over the Huang-Huai-Hai Plain (eastern coastal region of 
China), the range of IMERG-F V05 overestimation of precipitation rates 
lies between 2 and 50 mm/day, and there is an underestimation of 
heavier precipitation rates (>50 mm/day) (Xu et al., 2019a). On the 
other hand, over the Huaihe river basin, IMERG-F V05 overestimates 
precipitation between 0.5 and 25 mm/day and underestimates it above 
and below that range (Chen et al., 2018). 

3.2.1.2. Southern China. In southern China, IMERG-F tends to over-
estimate the light rainfall, and underestimate the high rainfall. 
Compared to TMPA, however, the underestimation of light rainfall is 
lower, and IMERG better captures the probability density function (PDF) 
and the inter-annual precipitation variability, especially over the lower 
Mekong river basin (Wang et al., 2017a). In addition, IMERG-F V03, V04 
and V05 consistently overestimate precipitation over mountains and 
underestimates it in coastal regions of Guangdong Province. The posi-
tive hit bias and false detection of moderate to heavy precipitation 
events are attributed to the above-described overestimation (Wang 
et al., 2019b). IMERG’s performance over high elevation (mountains) 
areas during dry seasons need further improvement. Nonetheless, 
IMERG estimates denote an improvement over TMPA estimates in terms 
of light/heavy precipitation detection and hit bias (Wang et al., 2019b). 

3.2.1.3. Northwestern China. In the northwest region (arid climate), 
IMERG-F V05 did not show significant improvement compared to 
TMPA. IMERG underestimated precipitation at low altitudes and over-
estimated it at high elevations. On the seasonal scale, IMERG performs 

better in summer than in winter. Additionally, IMERG seems to suffer 
from poor detection capability of light rainfall, i.e., 0–2 mm/day. 
However, it better performs in moderate (>5–10 mm/day) and heavy 
precipitation events (>25 mm/day) (Wang et al., 2019c). Over the 
Tianshan mountain, IMERG-F V06 did not show significant improve-
ments compared to the IMERG-F V05 (Anjum et al., 2018). IMERG 
products perform better in the eastern region compared to the western 
(e.g., Boertala Valley, Yili Valley, and West Tianshan). Overall, IMERG 
products are reliable enough to be used in precipitation trend analysis 
over the Tianshan mountain, but caution should be taken for the western 
regions (Anjum et al., 2018). Compared to TMPA, IMERG-E, -F V05 
products have significant discrepancies over high latitudes and thus can 
be considered less reliable for the Tianshan mountain (Yang et al., 
2019). Overall, IMERG has almost similar performance as TMPA and is 
significantly affected by the northwestern region’s topography and 
aridity. 

3.2.1.4. Tibetan Plateau. IMERG-F V03 and V06 validation studies over 
the Tibetan Plateau (Ma et al., 2018; Xu et al., 2017; Lu and Yong, 2018) 
show an overestimation of total precipitation in the southwest regions 
and an underestimation in the northeast regions. Moreover, a high 
correlation was observed in the northeast and southeast regions, while a 
low correlation was reported in the southern regions of the Tibetan 
Plateau (COR <0.40). Most likely, the complex topography of the Hi-
malayan mountains can be the reason for the low correlation (Ma et al., 
2018). Additional findings confirm that the accuracy of IMERG-F V05 
decreases as elevation increases, which indicates the direct effect of 
elevation on IMERG products (Wang et al., 2019b). Furthermore, the 
detection of light precipitation is particularly affected at elevations 
above 4500 m (Xu et al., 2017). IMERG-F V05 tends to overestimate 
trace or light precipitation (0–1 mm/day) and underestimates highly 
intense precipitation (>50 mm/day) (Wang et al., 2019b). Over-
estimation could be attributed to the evaporation of light precipitation 
in the atmosphere before reaching the surface (Wang et al., 2019b). In 
terms of IMERG versions, IMERG-F V04 did not show significant im-
provements to its predecessors (i.e., IMERG-F V03). Compared to the 
IMERG-F V03, IMERG-F V04 showed significant underestimation of 
daily precipitation’s annual average with a relative bias of − 60.91% 
over the Tibetan plateau, which becomes more profound in the winter 
(− 72.33%) (Zhao et al., 2018). Although IMERG-F V03 outperformed 
IMERG-F V04 over the Tibetan Plateau, yet both products underestimate 
winter precipitation with relative bias of − 6.47% and − 70.62% 
respectively (Wei et al., 2018). Despite the fact that IMERG-F V06 
captures the average distribution of total precipitation in space, 

Fig. 5. Statistical metrics used for evaluation of IMERG products (POD = Probability of Detection, COR = Coefficient of Correlation, FAR = False Alarm Ratio, RMSE 
= Root Mean Square Error, CSI = Critical Success Index, RBias = Relative Bias). 
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detection of light rainfall, winter snowfall, and detection of precipitation 
at high elevations remain major challenges over the Tibetan Plateau (Lu 
and Yong, 2018). 

3.2.1.5. India and Pakistan. Over India, IMERG-F V03 showed a 
noticeable improvement over GSMaP and TMPA, capturing southwest 
monsoon mean rainfall and its variability (Prakash et al., 2015). 
Nevertheless, there was a higher total negative bias and hit bias in 
IMERG-F V03 and V04 in mountainous regions such as the Himalaya 
foothills and Western Ghats and underestimation of northeastern 
orographic precipitation (Prakash et al., 2018b, 2015, 2018a). A large 
fraction of the FAR and hit bias over the south peninsula can be attrib-
uted to the Western Ghats (leeward side or rain shadow region). In 
contrast, IMERG-E performs better over plains and coastal regions 
(Singh et al., 2019), significantly improving TMPA systematic error 
dependency with topography. In addition, there were improvements in 
rainfall estimates of varying intensities across different topographies 
over most river basins, except northwest semi-arid basins (Beria et al., 
2017). IMERG-F V03 showed reasonable improvement over TMPA 
capturing heavy precipitation events during the summer monsoon sea-
son, especially over Himalaya and northwest India (Prakash et al., 
2015). IMERG-F appears to overestimate precipitation in high elevation 
zones in Pakistan and slightly underestimate it in semi-arid regions. 
Additionally, it tended to overestimate pre-monsoon and monsoon 
precipitation but underestimated post-monsoon and winter precipita-
tion (Rahman et al., 2018). Despite overestimation of light precipitation 
(0–1 mm/day) and underestimation of moderate (1–20 mm/day) to 
heavy rainfall (>20 mm/day) over the north hill highlands of Pakistan, 
IMERG-F V04 represents the spatial variation of precipitation better 
than TMPA (Anjum et al., 2018). Overall, in southeast Asia, the un-
certainties about orographic precipitation remain a considerable 
challenge. 

3.2.1.6. Eastern Asia. In Eastern Asian countries, the performance of 
IMERG varies with space. For instance, in Japan and Korea, IMERG-F’s 
V03 average POD (0.69) for convective rainfall over mountains and 
coastal regions during pre-monsoon and monsoon season is 8% better 
than TMPA (POD = 0.61) (Kim et al., 2017). In addition, it outperforms 
TMPA in both pre- and post-monsoon precipitation, as well as in terms of 
spatial precipitation patterns. However, contrary to the expectations, 
TMPA outperformed IMERG-F V04 precipitation estimates at daily and 
monthly scales both for total and heavy precipitation over Myanmar 
(Yuan et al., 2017). A poor detection and estimation skill of IMERG-F 
V04 is found both in light and heavy precipitation with a significant 
underestimation of total precipitation in the Chindwin river basin of 
Myanmar (Yuan et al., 2017). Similarly, over the same region, 3B42RT 
shown the best estimates followed by IMERG-F V05, whereas the 
near-real-time products (IMERG-E V05 and IMERG-L V05) have the 
lowest quality (Yuan et al., 2019). Furthermore, despite IMERG-F’s V04 
better detection of daily precipitation, overall, it did not show signifi-
cant improvement compared to TMPA over Singapore (Tan and Duan, 
2017). In Taiwan, IMERG-F V05 can reproduce different precipitation 
characteristics like the seasonal variation and temporal bimodal peak of 
annual precipitation. By validating IMERG with gauge data, it appears 
again that spatial discrepancies and underestimation bias are higher 
over mountain regions than plains. Furthermore, in terms of seasonality, 
IMERG shows poor performance in winter (Huang et al., 2018). Despite 
underestimating heavy precipitation, IMERG-F V05 agrees with the 
APHRODITE data product in Japan, the Philippines, and Nepal (Sunil-
kumar et al., 2019). 

3.2.1.7. Western Asia. In western Asia, IMERG-F V03 had acceptable 
performance compared to TMPA and European Centre for Medium 
Range Weather Forecasts (ECMWF). Accordingly, it was shown that it 
could be used as a substitute for ground observations in regions lacking 

observational precipitation over Iran (Sharifi et al., 2016; Khodadoust 
Siuki et al., 2017; Maghsood et al., 2020). In the study by Mahmoud 
et al. (2019), IMERG-F V03 showed good agreement with ground data in 
the southern, middle, and northern parts of the UAE. However, in the 
eastern and northeastern parts of the UAE, characterized by moun-
tainous topography and coastal areas, there were errors in detection and 
estimation. IMERG-F outperformed IMERG-E and IMERG-L in terms of 
POD, bias, Mean Absolute Error (MAE), and RMSE. However, against 
expectations, IMERG-E outperformed IMERG-F in terms of correlation. 
In Oman, it was observed that as precipitation intensity increases, so 
does IMERG-E, -L, -F V04 underestimation. The Mean Difference (MD) 
was − 3.11 for 2.5–10 mm/day, − 12.30 for 10–50 mm/day, and − 50.74 
for > 50 mm/day intensity classes (Shawky et al., 2019). In Saudi Ara-
bia, IMERG-F V05 also outperformed IMERG-E and IMERG-L, and its 
uncertainty was higher in the southern and northern parts of the country 
(Mahmoud et al., 2018). 

3.2.2. North America 
North America has the second-highest number of IMERG validation 

studies. It was shown that compared to the Multi-Radar/Multi-Sensor 
(MRMS) precipitation data set, IMERG-F V03 overestimates drizzle 
(light rainfall) and underestimates heavy rainfall over CONUS (Contig-
uous United States) (Tan et al., 2016). Furthermore, compared to TMPA, 
IMERG-L V03 improved the missed rain bias, and false hits over the 
same region (Gebregiorgis et al., 2018). Tan et al. (2017) evaluated the 
IMERG-F V03 product against the MRMS as a function of 
spatial-temporal scale over the southern United States. They found an 
enhancement of performance with the increase in the spatial-temporal 
scale, both capturing the rain occurrence and its estimation. Over the 
central United States, IMERG-E and -L V05 hourly products show close 
agreement and higher correlation with NCEP products when the tem-
perature (i.e., hourly) exceeds 280 K (Zhang et al., 2018). IMERG-F V05 
performs noticeably well in representing the spatial variability of 
storms, despite some errors in high-intensity precipitation regions 
(storm core) (Omranian et al., 2018). In terms of the diurnal and 
semi-diurnal cycle, IMERG-F V04 agrees with the reference precipita-
tion. However, it overestimates the normalized amplitude over the 
central US and underestimates it in the western and eastern US moun-
tainous regions (Kirstetter et al., 2018). It also shows substantial dif-
ferences in the peak of diurnal precipitation for convective and 
stratiform precipitation of mesoscale convective systems over the Great 
Plains (Kirstetter et al., 2018). Despite the overestimation of heavy rain 
events and low performance in mountainous regions, IMERG-F V03 is 
satisfactory reproducing the spatial distribution and precipitation 
amount over Canada. In addition, its performance is relatively better in 
the continental semiarid region than in the humid regions (Asong et al., 
2017). In Mexico, IMERG-F V03 underestimates heavy precipitation at 
daily and hourly scales, but it reduces the error over high-elevation 
terrains (Mayor et al., 2017). In terms of snowfall, IMERG-F V04 un-
derestimates precipitation compared to SNOTEL with a relative bias 
between − 71% and − 82% over the western mountain regions. 
Furthermore, the discrepancy between IMERG-F V04 and SNOTEL ob-
servations increases as daily temperature increases from − 14◦C and 
approaches 0◦C. Concerning precipitation intensity, the IMERG products 
have better performance between 0 and 5 mm/day but show significant 
underestimation at >10 mm/day (Wen et al., 2016). Similarly, Sadeghi 
et al. (2019) reported the IMERG-F’s V04 underestimation of snow 
accumulation, although it detects the snowfall events comparatively 
better than the MRMS. It may be concluded that IMERG’s current 
snowfall estimation performance is unreliable for hydrological and 
climatological applications. 

3.2.3. Europe 
Europe is the second to last continent with the least published IMERG 

validation studies (6%). The first study validated IMERG-F V03 over the 
Netherlands using one year of the data set developed by Gaona et al. 
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(2016). It concluded that IMERG could reproduce the spatiotemporal 
distribution of precipitation over the nation despite a very small (2%) 
underestimation across all resolutions (i.e., 0.5h, daily, monthly, and 
annually). Furthermore, IMERG-F V03 has a small relative bias on the 
30 min (− 1.51%) and daily (− 1.49%) scale, highlighting IMERG’s po-
tential in hydrological applications (Gaona et al., 2017). When 
comparing IMERG-F V05 to radar-based precipitation data, IMERG 
showed a significant overestimation of precipitation, especially during 
winter over Germany with low correlation (<0.4), POD (0.38), CSI 
(0.28), and high FAR (0.48). Furthermore, it showed difficulties in 
reproducing spatial variability across Germany’s diverse topography 
(Ramsauer et al., 2018). The performance of IMERG-E V04, IMERG-F 
V05, and IMERG-F V06 was influenced by complex terrain and had 
problems capturing precipitation over mountainous regions 

(Chiaravalloti et al., 2018; Ramsauer et al., 2018; Navarro et al., 2019). 
Additionally, IMERG-F V06 performed better during summer than in the 
winter (Navarro et al., 2019) and on the monthly scale than in the daily 
and sub-daily ones (Gaona et al., 2016; Ramsauer et al., 2018). 

3.2.4. South America 
In South America, IMERG-F V06 effectively represents the spatial 

pattern of precipitation and shows reasonably better performance than 
TMPA throughout Brazil (Rozante et al., 2018). In the northeast coast of 
Brazil, which is characterized by warm rain events, IMERG-F V05 
showed significant errors and underestimated daily precipitation. The 
above could be attributed to the inability of GPM sensors to detect 
orographically forced warm-rain processes (Gadelha et al., 2019). Large 
biases appear in the North and Central-west regions, associated with the 

Fig. 6. Spatial distribution of POD, FAR, and correlation values of IMERG evaluation studies across the countries at daily scale. The matrices were calculated based 
on the daily scale, and median values were considered in case of more than one study available for the same country (e.g., China, Iran, India, USA etc.). 
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sparse density of gauges. In the Central Plateau of Brazil, IMERG-F V05 
reproduced annual and monthly precipitation better than daily precip-
itation. Furthermore, IMERG-F V05 exhibited strong seasonal variability 
as numerous errors, and estimation difficulties occur with low and 
sparse dry season precipitation (Salles et al., 2019). For diurnal pre-
cipitation, IMERG-F V03 overestimated the frequency of heavy precip-
itation over the Negro, Solimões, and Amazon rivers and underestimated 
dry season precipitation compared to S-band weather radar measure-
ments. The above was attributed to IMERG’s difficulties in detecting 
isolated convective cells and the poor calibration over water surfaces 
(Oliveira et al., 2016). In the high Andes, IMERG-F V03 efficiently 
captured rainfall intensity but showed substantial discrepancies with 
gauge-based observations along the dry Peruvian coastline (Manz et al., 
2017). 

3.2.5. Africa 
Africa has the least IMERG validation studies, with only two works so 

far (2019). The lack of access to reliable observational data sets could be 
the reason for such a small number of validation studies. These analyses 
agree that the performance of IMERG-F V03 and V04 varies with the 
season, climate, and topography (Dezfuli et al., 2017; Sahlu et al., 2016). 
For instance, IMERG performs better over Eastern and humid regions of 
Africa than Southern Sahel, and the discrepancies between IMERG-F 
V04 and TMPA were higher over mountainous regions (Dezfuli et al., 
2017). In addition, despite a slightly superior performance of IMERG-F 
V03 over the Blue Nile basin, its overall performance was similar to 
CMORPH (Sahlu et al., 2016). Another finding suggests that IMERG-F 
V03 detection capability decreases with increasing precipitation, 
emphasizing the need to improve IMERG’s detection capability of heavy 
precipitation (Sahlu et al., 2016). 

3.2.6. Spatial distribution of POD, FAR and COR 
The spatial distribution of POD, FAR, and correlation values reported 

among the reviewed studies are shown in Fig. 6. These values are based 
on a comparison of IMERG daily precipitation with the corresponding 
gauge observation on a daily scale. Only the correlation, FAR, and POD 
values of the most recent version and IMERG final run (IMERG-F) were 
considered when a single study evaluated successive versions (IMERG 
V03, IMERG V04, etc.) and various IMERG runs (IMERG-E, -L, and -F) in 
the same study. More or less, the majority of the studies reported good 
detection skills (POD > 0.6), fewer false alarms (FAR < 0.5), and 
reasonable agreement with reference data sets (COR > 0.5). Myanmar is 
the only country that reported very poor values for both detection (POD 
= 0.17, FAR = 0.45) and estimation (COR = 0.29) of precipitation. The 
above is attributed to IMERG’s poor performance in n detecting and 
estimating light and heavy precipitation along the Chindwin river basin 
of Myanmar (Yuan et al., 2017). However, the study region is charac-
terized by very sparse observation stations, and the evaluation results 
are based on only four gauge stations. 

In terms of continents, IMERG has good detection skills over Africa 
with POD ranging from 0.73 to 0.84, and FAR up to 0.35, but moderate 
correlation ranging from 0.42 to 0.54. Similarly, North America (POD =
0.73–0.8, FAR = 0.17) and South America (POD = 0.51–0.89, FAR =
0.12–0.37) revealed a good detection skill, except Bolivia which reports 
the highest FAR of 0.56. In addition, both the continents reported a 
reasonable correlation (0.54–0.65) of IMERG with the reference data 
sets. High spatial variation in both POD and correlation is observed in 
Asia, varying from the poor results over Myanmar to high values over 
India. In addition, the East Asian countries such as Thailand, the 
Philippines, Nepal, and Malaysia have correlation values ranging from 
0.5 to 0.69, whereas Japan, India, and China have COR > 0.7. In western 
Asian countries, Iran and Pakistan present a medium correlation (0.47 
and 0.67, respectively). On the other hand, Pakistan and Malaysia report 
slightly better detection skills (> 0.8) than India (0.78) and China 
(0.74). Detection skills over Japan, Iran, and Nepal vary from 0.59 to 
0.69. In terms of false detection, Iran reported a FAR of 0.51, which 

could be attributed to the prevailing arid condition, and evaporation of 
light precipitation before reaching the ground’s surface. Moreover, 
based on the POD, FAR, and COR values among the studies, it can be 
concluded that IMERG shows its good detection skills throughout 
various climatic and topographic conditions and has better agreement 
with the reference observations in overall precipitation estimation. 

3.3. IMERG performance by run (IMERG-E, -L, and -F) types 

Generally, it is believed that the IMERG-F, which has gauge correc-
tion at the monthly scale, has superior performance compared to both -E 
and -L run products as shown in China (Guo et al., 2016; Tang et al., 
2016a), East Asia (Kim et al., 2017), Austria (temperate climate) 
(Sungmin et al., 2017), Saudi Arabia (Mahmoud et al., 2018), Pakistan 
(Anjum et al., 2018), and Italy (Chiaravalloti et al., 2018). However, few 
studies contradicted this and reported either no significant improvement 
of IMERG-F run or even outperformance by IMERG early run at least in 
some aspect (i.e., POD, correlation, extreme events). For instance, 
Maghsood et al. (2020) reported no significant IMERG-F improvement 
in POD and FAR over Iran at the daily scale, but it does at the monthly 
scale. In the same study, they report that IMERG-E and -L products are 
more suitable for extreme precipitation. Moreover, Shawky et al. (2019) 
found no significant improvements of IMERG-F over IMERG-E in the arid 
environment of Oman. Mahmoud et al. (2019) reported that IMERG-E 
outperformed the IMERG-F products in terms of correlation over the 
UAE. However, in terms of error and bias, IMERG-F outperformed both 
the early and late products (on average MAE and RMSE decreased by 
10% and 11%, and bias from 1.1% to 0.4%). Tan and Santo (2018) 
observed similar results over Malaysia. This counter-intuitive behavior 
could be attributed to the sparse gauge availability and consequently the 
GPCC calibration of IMERG-F over those regions. Moreover, it should be 
noted that the IMERG-E and IMERG-L runs serve for near-real-time ap-
plications (e.g., flood, drought, and crop forecasting), whereas the 
IMERG-F is best intended for research purposes. 

3.4. IMERG performance by versions (IMERG V03, IMERG V04, IMERG 
V05, and IMERG V06) 

The IMERG algorithm and its version are episodically updated, yet 
only a few studies compared successive IMERG versions (Fig. 7). Xu 
et al. (2019c) compared the IMERG V04 and IMERG V05 over mainland 
China and found that IMERG V05 estimates precipitation better except 
for false precipitation. Wang et al. (2019a) found that IMERG V05 
possesses significant enhancements in precipitation estimation 
compared to the IMERG V03 and V04 over the Guangdong Province, 
China. Similarly, Satg é et al. (2018) reported IMERG V05’s expected 
improvement compared to its predecessors (i.e., IMERG V03 and V04) 
throughout Pakistan except for the extreme arid region where the 
IMERG V04 had the best performance. In addition, Wang et al. (2018) 
compared the IMERG V03, V04, and V05 at the global level. They found 
that IMERG V05 significantly improved over the previous IMERG V03 
and V04, and the improvements are mainly observed in the estimation of 
mean oceanic precipitation. 

On the other hand, Anjum et al. (2019) revealed no significant 
improvement of IMERG V06 over IMERG V05 in the Tianshan Moun-
tains, China. Likewise, Derin et al. (2019) reported that when capturing 
light or heavy precipitation IMERG V06 failed to outperform IMERG 
V05 over the mountain regions. In addition, IMERG V04 did not shown 
paramount enhancement compared to its predecessor IMERG V03 (Satg 
é et al., 2018). The above claim is supported by studies in China (Zhao 
et al., 2018), and the Tibetean Plateau and Weihe River Basin (Wei et al., 
2018). Despite successive IMERG versions aiming towards more accu-
rate estimation of precipitation, its performance varies with the pre-
cipitation type and topographical features. 
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3.5. IMERG’s performance over ocean 

Out of the 101 peer review articles in our database, only three studies 
evaluated the performance of IMERG over the ocean, making it difficult 
to draw any definitive conclusions. The lack of standard observational 
data sets could be the possible reason for such a low number of studies 
over the ocean. Khan and Maggioni (2019) assessed the performance of 
IMERG-E, -L, -F V05 daily products over the ocean using Ocean-Rain and 
satellite-based radar products as validation targets. IMERG was found to 
underestimate Ocean-Rain measurements significantly. However, 80% 
of the time, IMERG products detect rain. Prakash et al. (2018a) assessed 
the performance of IMERG-F V04 over the north Indian ocean using 
hourly moored buoy observations. The authors reported that IMERG 
performed better over the Arabian sea than over the Bay of Bengal. 

Despite low errors and good detection capability, IMERG suffered from a 
high FAR and overestimated rainfall (especially for light and extreme 
precipitation). Considering IMERG’s resolution (0.1◦ x 0.1◦), it is more 
probable that small-scale showers can occur at any part of the IMERG 
grid, but not over the exact buoys locations, which are sparser than the 
gauges over land. Thus, leading to the apparent overestimation of pre-
cipitation. Besides, the evaporation of light precipitation in the atmo-
sphere could be another possible reason. Wang et al. (2018) reported 
that mean oceanic precipitation of IMERG-F V04 and IMERG-F V05 
shows significant improvement over IMERG-F V03, and their estimates 
are close to the ones by Multi-Source Weighted-Ensemble Precipitation 
(MSWEP) (Beck et al., 2017) and Global Precipitation Climatology 
Project (GPCP) (Adler et al., 1979-). Even though observational data sets 
are scarce over the ocean, other global products such as GPCP and 

Fig. 7. Performance of IMERG successive versions (IMERG V03, V04, V05 and V06) in term of COR, RMSE, POD, and FAR values across the countries at daily scale.  
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MSWEP could be used as a reference for validation, as shown above. 

3.6. IMERG’s performance in representing extremes 

The high spatiotemporal resolution, homogeneous global coverage, 
and near-real-time availability of satellite-based precipitation data are 
essential to understand extreme events better. Various recent studies are 
evaluating IMERG’s performance for multiple extreme event applica-
tions (Table 1). Omranian et al. (2018) evaluated the capability of 
IMERG-F V05 to reproduce the precipitation of hurricane Harvey in 
Texas. They found that IMERG captured the storm with POD >0.82 and 
FAR <0.2, and precipitation spatial variability with 62% accuracy. 
Nevertheless, several aspects appear to need improvements, such as 
underestimation over the coastal region, overestimation in the 
high-intensity region, and discrepancies between observational data and 
IMERG precipitation, especially near the storm’s center. Huang et al. 
(2019) analyzed the performance of IMERG-E and -F V05 products to 
capture six major typhoons over southern China during 2016 and 2017. 
They found that IMERG captured precipitation spatial variability and 
areal hourly precipitation. Furl et al. (2018) also revealed a significant 
underestimation in capturing extreme storms. Interestingly, they 
observed that the IMERG-E and -L V03 products have lesser underesti-
mation than the IMERG-F V03 products, which can be attributed to the 
-F run’s gauge correction. Wen et al. (2018) evaluated the performance 
of IMERG-L V04 in terms of Atmospheric Rivers over the western USA. 
Despite good detection of heavy precipitation events, IMERG signifi-
cantly underestimates (− 40%) the total precipitation volume. Addi-
tionally, Fang et al. (2019) found good agreement between IMERG-F 
V05 and gauge observations regarding extreme precipitation spatial 
patterns throughout China. IMERG’s performance was more consistent 
over the southeast (humid) than over the northwest (arid) regions. In the 
same study, an underestimation of extreme precipitation events was 
reported, implying that although IMERG reproduces the spatial precip-
itation pattern and volume better than TMPA, limitations in detecting 
extreme events remain. Zhang et al. (2019) evaluated the performance 
of IMERG-F V05 products in capturing a 60-year return period extreme 
precipitation storm over southern China. The authors reported that 
IMERG products significantly underestimated the event. However, 
IMERG’s performance was reported to vary at different intensities; i.e., 
IMERG performs poorly when rainfall intensity is above 17 mm/hr and 
best when the intensity is below 5 mm/hr. 

3.7. IMERG’s performance in hydrological applications 

A large number of studies have evaluated the performance of IMERG 
products in terms of simulating streamflow (Table 2). However, as the 
studies used different hydrological models, calibration and validation 
methods, basin locations, and climatic conditions, the direct comparison 
of the results cannot be conclusive. Nevertheless, we compiled the Nash- 
Sutcliffe coefficient of efficiency (NSE) and statistical bias indices from 
these studies (Fig. 8) to summarise their results. Our main objective here 
is to highlight the IMERG performance and its different runs (IMERG-E, 
-L, and -F) in each study separately, rather than inter-comparing 
different studies results with each other. 

Li et al. (2017) found more promising results when the hydrological 

model parameters were calibrated by gauge and RQPE (Radar-corrected 
Quantitative Precipitation Estimation) compared to the IMERG-F V04 
data set. Furthermore, when the model was calibrated using raw IMERG 
data, the results were quite problematic over the Ganjiang river basin. In 
another study, Wang et al. (2017b) evaluated both near real-time and 
post real-time V03 products using the VIC (Variable Infiltration Capac-
ity) model over the Beijiang River Basin. They found promising results 
for IMERG-F, while near real-time products showed poor performance 
(NSE < 0.35). Nonetheless, both products showed reliable flood fore-
casting results and thus could be considered useful for such applications. 
The promising performance of IMERG-F V03 products was reported over 
the Mekong River Basin, suggesting its use for similar mountainous 
basins (He et al., 2017). Yuan et al. (2017) observed the propagation of 
IMERG-F V04 error through the Xinanjiang model, which led to signif-
icant underestimation of streamflow over the Chindwin river basin in 
Myanmar; in this context, TMPA showed better results. The evaluation 
of IMERG-E V05 and IMERG-F V05 products over the Nanliu River Basin 
in Tropical Humid Southern China showed that IMERG had poor per-
formance estimating streamflow at a daily scale with NSE of <0.4 (Liang 
et al., 2019). In the Upper Huaihe River Basin, IMERG-F V06 had better 
performance in flood simulations than IMERG-E V06 and IMERG-L V06 
(Su et al., 2019). Nevertheless, due to the significant underestimation of 
runoff (− 16.51%), the authors noted that IMERG-F V05 products should 
be used cautiously. Yuan et al. (2019) reported significant improve-
ments of IMERG-F V05 performance after model specific input calibra-
tion with NSE increasing from 0.66 to 0.84, and the relative bias 
decreasing from − 32.3 to − 18.5, enabling the replacement of TMPA in 
hydrological applications. Tan et al. (2018) found that IMERG-F V05 
(NSE = 0.71 and relative bias of − 5.3%) outperformed IMERG-E V05 
(NSE = 0.70 and relative bias of − 27.6%) and IMERG-L (NSE = 0.66 and 
relative bias of − 36.3%) over the Kelantan river basin in Malaysia. Lu 
and Yong (2018) also reported IMERG-F V06’s potential to estimate 
streamflow on a daily scale over the Yellow river basin of the Tibetan 
Plateau. 

The number of studies validating only IMERG-F products was 
significantly higher than those including IMERG-E and IMERG-L. In 
general, IMERG-F outperformed both IMERG-E and IMERG-L products 
across different basins and hydrological models in terms of NSE, with 
values ranging between 0.60 and 0.78. This is considered highly 
acceptable for hydrological simulation (Moriasi et al., 2007). On the 
other hand, the IMERG-E and IMERG-L products show significant un-
certainties between different basins and hydrological models. For 
example, most studies report NSE values below 0.35 in China, with only 
a few exceeding 0.65. Relative bias metrics follow a similar behavior to 
NSE, where IMERG-F outperforms the other products. IMERG-E’s 
streamflow relative bias ranges between − 59.4% and 28.4%, while 
IMERG-L is between − 43.9% and 28%, and IMERG-F is between 
− 23.5% and 41.4% (Fig. 8). Succeeding IMERG versions should address 
these issues since the near-real-time application needs such as flood, 
landslide, and crop forecasting is only possible for -E and -L runs, 
whereas the -F runs are mainly for research purposes. 

Table 1 
List of the studies evaluated the IMERG products in extreme events.  

Location Events Data Period COR Bias RMSE Reference  

USA Hurricane IMERG-F Aug-2017 0.61 – – – – (Omranian et al., 2018)  
China Typhoon IMERG-E 2016-2017 0.61 8.38 44.97 (Huang et al., 2019)    

IMERG-F  0.57 13.50 47.50   
China >90th percentile IMERG-F 2014-2017 0.63 − 22.82 23.52 (Fang et al., 2019)  
China Storm IMERG-F May-2017 0.70 − 58.77 9.70 (Zhang et al., 2019)  
Global >90th percentile IMERG-E 2014-2017 – – − 3.18 – – (Mazzoglio et al., 2019)    

IMERG-L  – – − 3.1 – –    
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4. Discussion 

4.1. Recent developments 

Many studies continue to assess the IMERG products and push the 
boundaries (e.g., spatial coverage and validation length) observed up to 
2019. For instance, Islam et al. (2020) assessed the IMERG-F V06 
products over Australia (no study had evaluated IMERG over Australia 
before 2019) on daily, monthly, and annual scales. They found IMERG 
performed well, despite some discrepancies over regions with high 
precipitation. It was also revealed that IMERG’s best performance takes 

place during winter in terms of seasonal scale. Similarly, Tang et al. 
(2020) evaluated the IMERG-F V06 products between 2000 and 2018 
(the first study assessing the IMERG for the TRMM period) over China 
and revealed that IMERG had improved its quality over time, attributed 
to the increase in the number of passive microwave samples. They also 
reported that the performance of IMERG deteriorates when it comes to 
snowfall, and thus further improvement in cold climates is needed. 

Most of the studies showed that IMERG robustly represents the 
spatio-temporal patterns of precipitation (Sharma et al., 2020; Yu et al., 
2020, 2020; Zhang et al., 2020b; Peng et al., 2020; Hamza et al., 2020). 
In addition, studies have given insights into the influence of rainfall type 

Table 2 
List of the studies evaluated the hydrological applications of IMERG products. (CREST = Coupled Routing and Excess Storage, VIC = Variable Infiltration Capacity, XAJ 
= Xinanjiang, MGB-IPH = Large Basins Model and Institute of Hydraulic Research, SWAT = Soil and Water Assessment Tool, GXAJ = Grid-based Xinanjiang hy-
drological model.)  

Basin Location Model Data Period NSE Bias Reference 

Ganjiang China CREST IMERG-F May2014-Sep2014 0.77 − 14.09 (Tang et al., 2016b) 
Beijiang China VIC IMERG-E Apr2015-Dec2015 0.34 28.48 (Wang et al., 2017b)    

IMERG-L  0.28 28.5     
IMERG-F  0.74 10  

Chindwin Myanmar XAJ IMERG-F Apr2014-Dec2014 0.65 to − 23.5 to (Yuan et al., 2017)      
0.72 − 28.7  

Mahanadi India VIC IMERG-F Apr2014-Dec2014 0.64 41.4 (Beria et al., 2017) 
Amazon Peru-Ecurdor MGB-IPH IMERG-F Mar2014-June2015 − 24.21 to – – (Zubieta et al., 2017)      

− 0.9   
Mekong China XAJ IMERG-F May-Oct2015-May-Oct2016 0.53 – – (He et al., 2017) 
Ganjiang China CREST IMERG-F June2014-Sep2014 0.7 − 12.6 (Li et al., 2017) 
Yellow China VIC IMERG-F Jan2015-Dec2015 0.62 − 7.2 (Lu and Yong, 2018) 
Mishui China XAJ IMERG-E Apr2014-Dec2015 0.73 − 19.52 (Jiang et al., 2018)    

IMERG-L  0.71 − 25.23     
IMERG-F  0.81 − 6.53  

Kelantan Malaysia SWAT IMERG-E Mar2014-Dec2016 0.7 − 27.6 (Tan et al., 2018)    
IMERG-L  0.66 − 36.3     
IMERG-F  0.71 − 5.3  

Chindwin Myanmar GXAJ IMERG-F Mar2014-Dec2016 0.84 − 18.5 (Yuan et al., 2019) 
Huaihe China VIC IMERG-E Apr2014-Dec2015 0.18 − 39.91 (Su et al., 2019)    

IMERG-L  0.16 − 43.95     
IMERG-F  0.64 − 16.51  

Nanliu China XAJ IMERG-F Mar2014-Dec2016 0.28 − 7.83 (Liang et al., 2019)    
IMERG-E  0.29 − 59.49  

Mun-chi Thailand VIC IMERG-F Apr2014-Mar2017 − 0.98 – – (Li et al., 2019)  

Fig. 8. IMERG performance in hydrological performances (NSE and relative bias). CREST = Coupled Routing and Excess Storage, VIC = Variable Infiltration Ca-
pacity, XAJ = Xinanjiang, SWAT = Soil and Water Assessment Tool, GXAJ = Grid-based Xinanjiang hydrological model. 
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and topography on IMERG’s performance (Yang et al., 2020a; Navarro 
et al., 2020). For instance, Zhang et al. (2020b) revealed that IMERG-F 
V06 has a high correlation with gauge observations at low elevations 
and low at high elevations over the Tianshan Mountains, China. Yu et al. 
(2020) reported a decrease in correlation and increase in RMSE with the 
elevation over China. In contrast, Zhang et al. (2020a) reported 
IMERG-E V06 performance decrease from the high-altitude regions to 
the low-altitude regions in terms of correlation and CSI at the daily scale 
over the Huang plain. Liu et al. (2020) evaluated the IMERG-F V05 
product over the Bali island and concluded that IMERG best detects 
precipitation events at different altitudes, despite some overestimation 
in the high altitude. Zhou et al. (2020) evaluated the IMERG-E, -L, and -F 
V05 products over mainland China and found more consistent perfor-
mance over southern China than northern China, and more accurate at 
lower latitude and elevation compared to higher latitudes and elevation. 
The sparse number of rain gauges and light precipitation observed at the 
higher latitude could be the possible reason and is in line with Navarro 
et al. (2020), Retalis et al. (2020), Cui et al. (2020). Besides, the process 
and mechanism of precipitation formation over the high elevation re-
gion could be another possible reason. Moreover, the monthly gauge 
adjustment to final data sets reduces the elevation and other surface 
sensitivity uncertainties (Sui et al., 2020). 

The difficulties of IMERG-F V06 estimating light rainfall were 
observed over UAE (Alsumaiti et al., 2020), western Pakistan (Hamza 
et al., 2020), and Huang plain, China (Peng et al., 2020). In addition, 
Abebe et al. (2020) observed a significant decline in the detection skill of 
IMERG-F V06 as the intensity of precipitation increases. Furthermore, 
Shi et al. (2020) reported that IMERG-E and -L V06 products underes-
timate light rain events, whereas they overestimate the moderate to 
heavy precipitation events concerning precipitation detection. Freitas 
et al. (2020) evaluated the IMERG-F V06 product for sub-daily scale and 
concluded that IMERG-F has to improve its rainfall intensity and dura-
tion estimates over Brazil. Yang et al. (2020b) and Li et al. (2020a) 
further stress that IMERG-F V06 and V05 have to improve their sub-daily 
scale performances. Moreover, Afonso et al. (2020) reported IMERG-F 
V06 better represent the diurnal cycle over the region characterized 
by deep convective cloud (warm rain process over land) compared to the 
shallow convection or low-level circulation and recommended further 
investigation in these perspectives. 

In terms of hydrological evaluation, IMERG performance varies with 
the regions. For instance, Song et al. (2020) evaluated the IMERG-F V06 
product over the Quing river basin China and concluded that IMERG has 
a satisfactory performance simulating the daily streamflow over the 
humid tropical climate. Similar results were reported for IMERG-F V06 
over the Chenab River, Pakistan (Ahmed et al., 2020). Saouabe et al. 
(2020) evaluated the IMERG-E V06 product in terms of flood modeling 
in a semi-arid region of Morocco and concluded that IMERG-E has 
satisfactory performance in the simulation of flood events and can be 
applied for flood modeling in this climate in the absence of ground ob-
servations. In contrast, Mo et al. (2020) reported the unsatisfactory 
performance of IMERG-E V06 in both estimating precipitation and 
simulating the runoff over the Xiajia River basin, China, unless the 
Geographic Difference Analysis (GDA) method is used to correct IMERG 
data sets. Le et al. (2020) revealed that IMERG-E and -F V06 products 
outperformed other satellite products, and comparatively, IMERG-F 
showed better performance than the early product (IMERG-E). 

For extreme events, IMERG-F V06 has the potential to capture the 
storm track and its spatial variation. However, IMERG has difficulties 
capturing the storm core and underestimates both high precipitation 
(>90 mm/hr) and accumulated precipitation (Li et al., 2020b). Getirana 
et al. (2020) evaluated IMERG-E and -F V06 products in terms of 
monitoring natural disaster/extreme precipitation events over Brazil 
and revealed the superior performance of IMERG-F compared to 
IMERG-E. Furthermore, they reported that both products have consid-
erable skills in detecting extreme events (despite a slight underestima-
tion of rain rate) and have the potential application in disaster detection. 

Li et al. (2020a) and Chen et al. (2020) also recommended the IMERG 
V05 and V06 near-real-time products for flood forecasting and early 
warning system. 

4.2. Weaknesses and strengths 

The latest versions of IMERG products show significant improvement 
over the TRMM data set. However, some discrepancies remain when 
compared to ground measurements. Most studies revealed that estima-
tion of light precipitation should be improved (Lu and Yong, 2018; 
Anjum et al., 2018; Huang et al., 2019). Another common issue is the 
substantial overestimation or underestimation of precipitation over 
mountainous regions and its poor performance over complex topogra-
phies (Sharifi et al., 2016; Dezfuli et al., 2017; Asong et al., 2017; Kim 
et al., 2017; Sungmin and Kirstetter, 2018; Huang et al., 2018; Anjum 
et al., 2018). In addition, IMERG products show substantial bias in dry 
climates (Tang et al., 2016a; Su et al., 2018; Fang et al., 2019) and over 
ocean (Liu, 2016; Prakash et al., 2018a). Finally, when it comes to the 
seasonality, there are discrepancies in winter precipitation (Chen and Li, 
2016; Chen et al., 2019; Lee et al., 2019). There is a general agreement 
that the IMERG algorithm needs further improvements in the afore-
mentioned areas (Tang et al., 2016a; Su et al., 2018; Wang et al., 2018; 
Prakash et al., 2018a). 

On the other hand, IMERG products perform robustly in various 
cases. For instance, their performance is equally good with the ground 
observations in the estimation and detection of regional precipitation 
patterns and their spatial averages (Gaona et al., 2016; Rozante et al., 
2018; Palomino-, ńgel et al., 2019). In addition, IMERG has a higher 
detection capability of snowfall (Sadeghi et al., 2019) and light pre-
cipitation (Wang et al., 2017a, 2019a; Yang et al., 2019), compared to 
other satellite products (e.g., TMPA, CMORPH). Furthermore, IMERG 
has the potential to detect and estimate hurricane precipitation, in-
dicates its significant applicability for estimation of precipitation during 
the extremes, and thus can be used for impact modeling studies 
(Omranian et al., 2018). All these factors reveal promising potential and 
a wide range of future applications. 

4.3. Limitations and future perspectives 

It is important to stress that all considered studies suffer from a 
common limitation: the very short validation period due to the lack of 
long-term IMERG records when the analyses were performed. Even 
though the evaluation methods used in most studies are reliable, there 
are often issues with their underlying assumptions. For instance, there 
are different approaches to comparing gauge measurements regarding 
their number, distribution, and density over the validation sites. Addi-
tionally, there is significant uncertainty associated with the point-to- 
area representation for gauge measurements (Dezfuli et al., 2017). The 
type of interpolation techniques applied to the point measurements 
might severely affect the evaluation outcome. It is worth mentioning 
that all the studies reviewed herein have employed a pixel-based 
approach which may result in problems like “double-penalty error” 
when comparing two data sets with high spatiotemporal resolution. This 
is one of the reasons limited studies are evaluating IMERG on sub-daily 
scales. Therefore, an object-based approach could be a solution to 
mitigate this effect. In addition, this approach could provide us with 
more information from the storm’s characteristics like size, shape, 
translation speed, and direction, which cannot be accessed using a 
pixel-based approach. Some efforts have been made recently like Ayat 
et al. (2021b), and Cui et al. (2020), but more studies are needed on this 
topic. 

Another limitation associated with the studies examined appears 
when they use radar observations, reanalysis results, or other satellite 
products in the absence of rain gauges. In such cases, the reference used 
may not represent the actual precipitation of the region (assumption of 
ground truth), and is often associated with significant uncertainties. 
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Even if the studies use gauge-based data as a reference for IMERG 
validation, gauges also present systematic and random errors. Therefore, 
we should keep in mind that it is hard to assess the “ground truth” in 
nature, and thus, we always make some assumptions. In addition, most 
often, the gauge-based data are not completely independent. For 
instance, IMERG-F products are adjusted with the GPCC monthly 
product, which itself uses gauge observations. Thus, the validation re-
sults would be biased if there are overlapping stations when compared 
with IMERG products. Furthermore, most studies seem to be restricted 
to local/regional climate; thus, the applicability of the results is limited 
to those particular climate conditions. Finally, most studies did not 
assess the performance at sub-daily resolutions but instead focused on 
daily, monthly, and/or annual resolutions. 

Considering the identified limitations, gaps, and suggestions in the 
studies reviewed in this paper, we can provide some recommendations 
that could potentially improve the performance of IMERG products 
across the globe:  

• Since IMERG recently extended its temporal coverage back to the 
TRMM era, providing precipitation observations from early 
2000–present, it now offers possibilities for longer evaluation of 
precipitation characteristics across the globe. For instance, the long- 
term data will help better understand the capacity of IMERG to 
represent changes in the annual, inter-annual, and seasonal precip-
itation at the regional scale.  

• To fully exploit the advantages of IMERG products’ spatiotemporal 
resolution (30 min and 0.1◦ x 0.1◦) compared to TMPA (3 hourly and 
0.25◦ x 0.25◦), future studies should consider sub-daily scales and 
assess the diurnal and semi-diurnal precipitation in different regions.  

• More studies over oceans and mountainous regions could help better 
understand the effectiveness of IMERG in such conditions. Addi-
tionally, as very few studies have evaluated solid precipitation, 
future studies should focus on the detailed evaluation of snowfall. 
Since many studies revealed the poor performance of IMERG during 
the winter, these biases could be related.  

• A more detailed evaluation of the hydrological performance of 
IMERG will be another area of future research. For instance, un-
derstanding how the error propagation occurs from precipitation to 
runoff (Mei et al., 2017; Ehsan Bhuiyan et al., 2019) and their 
quantitative analysis will help the hydrological community better 
understand the performance of IMERG products in hydrological 
applications.  

• Evaluating IMERG products at multiple scales simultaneously rather 
than constraining the analysis to a single spatial and temporal res-
olution could help us understand how the accuracy and errors vary 
with spatiotemporal aggregation. Additionally, it will help identify 
the effective resolution to be used for various hydro-meteorological 
purposes.  

• Even though few studies have evaluated IMERG versions V03, V04, 
and V05, the results varied with the type of study. Thus, future 
studies could comprehensively evaluate and answer questions on the 
effectiveness of the current versions compared to previous ones.  

• Along with orographic precipitation and coastal areas evaluation, 
future studies could also consider evaluating the effect of rainfall 
intensity and gauge density (Maggioni et al., 2017) on the perfor-
mance of IMERG products across the climatic regimes and 
geographical conditions across the globe.  

• Even though the gauge-calibrated IMERG final run has advantages 
over the uncalibrated one, there is still room for improvement. For 
example, the scarce distribution of gauges over some regions could 
be solved by exploring the adjustment with other denser observa-
tional networks such as E-OBS (Ensembles-OBServation) over Europe 
in the future (Navarro et al., 2019). It will be beneficial to have more 
studies over Europe since many dense, well-maintained, observation 
networks exist.  

• As the observational data sets are not free from uncertainty, many 
authors recommended considering more than one reference type to 
evaluate IMERG products. For example, the newly available blended 
data sets such as MSWEP (overland), OceanRain (over Ocean), other 
radar data sets, and reanalysis model data sets will help for better 
evaluation. 

• Uncertainties from different interpolation methods used when eval-
uating IMERG (grid) with gauge (point) date are not well repre-
sented. Thus, comparing different interpolation techniques and their 
effect on the IMERG evaluation could provide a more detailed error 
estimation.  

• An additional consideration for future research is the evaluation of 
IMERG for different types of storms/environmental conditions (e.g., 
temperature profiles) and microphysical structures (derived from 
polarimetric radar and NWP) (Bartsotas et al., 2018).  

• Another important topic for future research is the effect of different 
sensors in the final merged products. Although a couple of studies 
like Tan et al. (2016), and Ayat et al. (2021a) have evaluated this 
effect in the IMERG final precipitation product, the need for further 
investigation remains. 

5. Conclusions 

This study compiled the reported performance of IMERG products 
across different climatic conditions and geographic locations throughout 
the globe. Along with IMERG performance representing precipitation, 
we also investigated the performance of IMERG regarding extreme 
precipitation events and hydrological application. 

In terms of the spatial and temporal distribution of IMERG evalua-
tion, Asia, and China in specific, are dominant in number of studies 
followed by North and South America, while Africa and Europe recorded 
the least number. Regarding the spatial and temporal resolutions, 
0.1◦×0.1◦, 0.25◦×0.25◦ with daily, monthly and annual scales are the 
most evaluated resolutions of IMERG products. In addition, 12–24 
months is the validation period length used in most studies. Studies with 
longer validation periods were often associated with coarser temporal 
resolution (daily and longer), whereas studies with shorter validation 
periods were associated with sub-daily temporal resolution. As ex-
pected, the studies at coarser time scales surpass the finer ones, high-
lighting the need for more research in sub-daily resolutions. 
Surprisingly, also very few studies exist that investigate how IMERG 
products perform as they move from daily to monthly scale. Under-
standing how biases propagate across the time scale-continuum is 
crucial for the proper validation and application of any data set (Mar-
konis et al., 2021). 

IMERG showed better performance compared to the TMPA estimates 
in the representation of spatio-temporal variability of precipitation 
across the climatic and geographic conditions. However, IMERG showed 
significant over/underestimation in different precipitation intensities 
that varies with region and climatic conditions. When it comes to 
climate regimes, IMERG tends to more consistent precipitation estimates 
over humid regions (wet and high intensity precipitation) compared to 
semi-arid and arid regions (dry and low intensity precipitation), which is 
especially true for China. Also, IMERG still has difficulties in estimating 
precipitation over complex terrains and mountainous regions. 
Orographic precipitation associated with high mountains is the major 
cause of the poor performance over such conditions. Most of the studies 
found that the accuracy of IMERG increased significantly with temporal 
aggregation, i.e., monthly results were reasonably better than daily 
ones, and annual results were better than monthly ones. IMERG per-
formance is also affected by seasonal variation. Usually, IMERG per-
forms poorly in winter compared to the summer season, which is 
attributed to the inability to detect light rainfall (more common in 
winter). Another reason could be that during winter the solid phase of 
precipitation (snowfall) is more common. 

IMERG captures well the spatiotemporal patterns and variability of 
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extreme precipitation. Nonetheless, IMERG has issues when measuring 
over the center of the typhoon or hurricanes. In addition, it has some 
limitations estimating high-intensity precipitation and shows significant 
underestimation across various geographical locations and climatic 
conditions. From the perspective of the hydrological application, 
although most of the studies conclude that there is potential for the 
application of IMERG products in simulating the streamflow their per-
formances differ depending on the hydrological model used, calibration 
methods, and basin types. Despite IMERG showing better detection ca-
pacity, its performance over the ocean shows substantial over/under-
estimation of total precipitation. However, the reliability of 
observational data over the ocean is questionable, and it is too early to 
draw any conclusions. 

Overall, the performance of IMERG varies with climatic conditions, 
geographical locations, seasons, precipitation types, and intensities. 
More studies throughout the globe, especially in the regions that are 
under-represented, are needed for a better evaluation of IMERG’s per-
formance. It remains to be seen how the extension of the dataset back to 
2000 has influenced the regional and overall performance of IMERG. 
This will allow also for an investigation of the climatic properties of 
precipitation, which will be valuable for a better quantification of the 
global water cycle (Vargas Godoy et al., 2021). What is most promising, 
though, is that each new version improves the previous one, in almost 
every validation metric examined in this study. Thus, despite its limi-
tations, IMERG remains one of the most robust alternatives to ground 
observational records. 
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