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Abstract

Evolving in tandem with civilization and technology, our understanding of the water cycle has
spurred continuous refinement in quantification methods. However, the uncertainty revealed in the
first attempts to unify different data products has hindered this unique opportunity to obtain a robust
quantification of the water cycle. Consequently, it remains a challenge to constrain the variability
stemming from measurements by various sources, which will help us understand the effect of global
warming on water resources in general.

Therefore, this dissertation aimed to improve the understanding of the global water cycle and
advance multi-source quantification by: (a) providing an in-depth recapitulation of global water
cycle research advancements regarding data sources and quantification methods; (b) enhancing the
evaluation of climate reanalyses by proposing a comprehensive framework to study changes in the
water cycle; (¢) developing a powerful tool that eases the download, exploration, processing, and vi-
sualization of an all-around global precipitation data collection; and (d) comprehensively integrating
the previous findings and tools to introduce a method for benchmarking multi-source hydroclimatic
data fusion based on water cycle budget closure.

The results demonstrated that: (a) the consistency of global water cycle quantification has im-
proved despite significant uncertainty challenges associated with spatiotemporal variability; (b) the
signal-to-noise ratio of traditional metrics versus the natural variability is low, and as a consequence,
the fluctuations in the water cycle are harder to detect; (c) there is significant heterogeneity among
data distribution and formats, deterring robust quantification of global water cycle climatology;
and (d) the proposed framework based on water cycle budget closure easily and quickly filters out
data combinations that provide implausible results. Therefore, this dissertation improved the un-
derstanding of multi-source quantification methods and advanced frameworks for evaluating global

and regional water cycle dynamics.
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Abstrakt

Evoluujic spolu s civilizaci a technologii, nase chapani vodniho cyklu vyvolalo neustélé zdokonalovani
kvantifikaénich metod. Nejistota a nepresnosti, které se projevily pii prvnich pokusech o sjednoceni
ruznych datovych produktu, vsak branily ziskdani robustni kvantifikace kolobéhu vody. Omezeni
variability vyplyvajici z riznych zdroju méfeni tak zustava vyzvou, stojici v cesté k pochopeni vlivu
globalniho oteplovani na vodni zdroje.

Tato diserta¢ni préace si kladla za cil zlepsit porozuméni globalnimu kolobéhu vody a pokrocit v
kvantifikaci z vice ruznych zdroju prostfednictvim: (a) poskytnuti podrobné rekapitulace soucasného
stavu poznani ve vyzkumu globédlniho kolobéhu vody, pokud jde o zdroje dat a kvantifika¢ni metody;
(b) zlepseni hodnoceni druhotnych analyz klimatu navrzenim komplexniho réamce pro studium zmén
v kolobéhu vody; (c) vyvoje t¢inného néstroje, ktery usnadni stahovani, pruzkum, zpracovéni a
vizualizaci univerzalniho globalniho sbéru ddaju o srdzkdch; (d) komplexni integrace predchozich
zjisténi a néastroju pro zavedeni metody pro srovndvani propojeni hydroklimatickych dat z vice
zdroju na zékladé uzavieni rozpoctu kolobéhu vody.

Vysledky prokézaly, ze: (a) navzdory nejistoté spojené s Gasoprostorovou variabilitou dat, konzis-
tentnost kvantifikace globalniho kolobéhu vody se zlepsila; (b) pomér signdlu k Sumu tradiénich
metrik oproti pfirozené variabilité je nizky, a proto je obtiznéjsi detekovat kolisani kolobéhu vody;
(c) existuje znaénd heterogenita mezi distribuci a formaty dat, kterd odrazuje od dukladné kvan-
tifikace klimatologie globédlniho kolobéhu vody; a za (d) navrhovany piistup zalozeny na uzavienf
rozpoc¢tu vodniho cyklu snadno a rychle odfiltruje kombinace udaju, které poskytuji nevérohodné
vysledky. Timto tato diserta¢ni prace zlepsila porozumeéni vicezdrojovym kvantifika¢nim metodam

a pokrocilym pristupum pro hodnoceni globéalni a regionalni dynamiky kolobéhu vody.
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Chapter 1

Introduction

1.1 Research Background

1.1.1 An Overview of the Water Cycle

The water cycle is an intricate and dynamic system involving the perpetual movement of water
through various physical, chemical, and biological processes, where water transitions between dif-
ferent states and traverses diverse landscapes (Figure . These processes include, among others,
condensation, evaporation, groundwater flow, infiltration, percolation, plant uptake, precipitation,
runoff, sublimation, transpiration, and water vapor transport (Allan et al.,[2020). The water cycle is
driven by energy from the sun, which causes water evaporation from surface-water bodies (e.g., lakes,
rivers, and oceans), soils, and plants (i.e., transpiration). Evaporation is one of the most significant
components of the water cycle, transporting water from the Earth’s surface to the atmosphere and
contributing to about 90% of atmospheric moisture. Condensation is the opposite physical process,
where water vapor cools and condenses back into the liquid phase, forming clouds. When the water
droplets in the clouds become large enough, under the appropriate cloud microphysics conditions,
they are released as precipitation in the form of rain, freezing rain, sleet, snow, or hail. Precipita-
tion is another critical component of the water cycle, complementary to evaporation, as it delivers
atmospheric water to the Earth’s surface. On land, precipitation can infiltrate the soil, replenish
groundwater reservoirs, or run off into streams, rivers, and lakes. The water that runs off can even-
tually return to the oceans, where the cycle begins anew. In addition to total water storage, the
above components represent the water cycle’s major inputs, outputs, and storage. To some extent,

the rest of the water cycle processes are encompassed in these four components (Bengtsson) [2010)).
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for the USGS Water Science School.

Figure 1.1: Water cycle diagram created by the USGS VizLab, in collaboration with the USGS

Water Resources Mission Area Web Communications Branch,



The water cycle budget, which keeps track of the inflows and outflows in a given area, is formu-

lated as follows in its expanded form (Scanlon et al.| [2002)):

P4 QY + Q5 = BV + E®Y 4 E™ 4+ AS™ + AS™™" £ AS™ + ASEY + Q&Y + RO + Q" (L.1)

out

oW
in

where P is precipitation, Q5 is surface water inflow, is groundwater inflow, E% is evaporation
from surface water, E8% is evaporation from groundwater, E"” is evaporation from the unsaturated
zone, AS®V is change in surface water storage, AS**°V is change in snow water storage, AS"* is
change in unsaturated zone water storage, AS®" is change in groundwater storage, Q%; is ground-
water outflow and withdrawal by pumping, RO is surface runoff, and Q" is the base flow. However,
for most practical applications, even in small watersheds, it can be expressed in terms of its four

major components:

ATWS=P—E—Q (1.2)

where ATWS is the change in total water storage, E is total evaporation (from soils, surface-water
bodies, and plants), and @ is runoff. Inadvertently, aggregating global water cycle components to
the most dominant ones, also aggregate their underlying uncertainties.

In addition to the intricate natural processes of the water cycle, anthropogenic processes affect

the availability and quality of water resources (Abbott et al.| 2019)). These processes fall under one

of the following categories: water use, land cover change, and climate change. Water use could be

divided into green (soil moisture use), blue (water withdrawals), and grey (pollution assimilation)

(Rockstrom et al.l [2012;[Hoekstra and Mekonnen| [2012). Land cover changes (e.g., agriculture, defor-

estation, and wetland destruction) alter evapotranspiration, groundwater recharge, river discharge,

and precipitation at continental scales (Ellis et al., [2010; [Falkenmark et al., 2019). Lastly, climate

change disrupts water flow and storage patterns locally and globally (Durack et al.l 2012} [Haddeland|

let al. 2014; [Huang et al. |2016). This last alteration of the water cycle is the most submerged under

a mist of uncertainty as we have yet to fully decouple the natural and anthropogenic forced re-
sponses of the water cycle. Thermodynamics, Clausius—Clapeyron scaling, in particular, determines
the dependence of vapor pressure at a discontinuous phase transition between two phases of matter

of a single constituent (water), i.e., the relationship between atmospheric water vapor and tempera-

ture (Clapeyron| [1834]). However, the Earth’s energy balance governs the water cycle’s atmospheric

fluxes and constrains the hydrological sensitivity, defined by the increase in mean precipitation (or

evaporation) for a given change in mean temperature (Allan et al. [2020)).




The lack of a comprehensive understanding of water cycle changes resulted in two main hy-

potheses: the “changing character of precipitation” (Trenberth et al.l [2003) and the “dry gets drier,

wet gets wetter” (Held and Soden| 2006). The former addresses precipitation intensity, duration,

frequency, and phase instead of total amounts only. Extreme precipitation events, leading to floods

and droughts, exert significant environmental and societal impacts, necessitating an enhanced un-

derstanding of precipitation characteristics (Gimeno et al., 2022). The increase in moisture content

in the atmosphere regulated by the Clausius—Clapeyron equation is expected to rise much faster than
the total precipitation amount. In addition, the precipitation rate far surpasses the rate at which
moisture is replenished through surface evaporation, i.e., most precipitation originates from the mois-
ture preexisting in the atmosphere when the event initiates . Therefore, heavy or
extreme rainfall will become more frequent, while light or moderate precipitation will decline. In
other words, the increase in global mean precipitation will be unevenly distributed in precipita-
tion events. The latter presents a mathematical derivation that starts with the Clausius—Clapeyron
equation:
dlnes; L

= s = (D) (1.3)

where e, is the saturation vapor pressure, 7' is temperature, L is the latent heat of vaporization, and

R is the gas constant. Through a series of boundary conditions, assumptions, and mathematical

approximations (for details, see |[Held and Soden| 2000)), the equation ends in the following form:

§(P—E)=adT (P —E) (1.4)

where a ~ 0.07[K~']. The mathematical framework presented implies a reduction in the mass
exchange between the boundary layer and mid-troposphere. Given that a significant portion of this
exchange takes place during moist convection in the Tropics, there must be a decrease in convective
mass flux. Under the assumption that the lower tropospheric relative humidity and the flow remain
unchanged, the poleward vapor transport and the pattern of precipitation minus evaporation will
increase proportionally to the lower tropospheric water vapor. It is worth mentioning that this
hypothesis is probably the most known and the most commonly misunderstood because it is applied

or evaluated without consideration for all the assumptions and boundary conditions that constrain

its validity. Nevertheless, both hypotheses are presently under vigorous debate (Seager et al. |2010}

[0’Gorman and Muller], 2010; [Greve et al.l [2014; [Roderick et al. [2014; Byrne and O’Gorman), 2015

[Kumar et al., 2015; Salzmann), [2016; [Skliris et al. |2016; [Wang et al., 2017; Markonis et al., 2019).




Undeniably, our understanding of the global water cycle has evolved over the years thanks to hu-
mankind’s relentless pursuit of technological advancements and innovative solutions. Needless to say,
throughout history, our methods for quantifying hydro-meteorological variables have transformed in
tandem with the exponential growth of technology from solely human observation to the integration
of cutting-edge machine learning techniques. Pursuing precise quantification of the global water
cycle led to the establishment of the Global Energy and Water Exchanges (GEWEX) project. Orig-
inally named the Global Energy and Water Cycle Experiment, this initiative commenced in 1990
with the primary focus of investigating Earth’s water and energy cycles (Chahine, [1992a). GEWEX
created a platform for global collaboration in research, facilitating engagement through various pan-
els, meetings, and projects. GEWEX oversees eight continental-scale experiments concerning the
enhancements of data sets and modeling: GEWEX Americas Prediction Project (GAPP; Lawford
1999), Baltic Sea Experiment (BALTEX; Raschke et al.[1998,|2001), GEWEX Asian Monsoon Exper-
iment (GAME; [Yasunari||1994)), Large Scale Biosphere Atmosphere Experiment in Amazonia (LBA;
Marengo| [2005), Mackenzie GEWEX Study (MAGS; |Stewart et al.||1998), La Plata Basin (LPB;
Cavalcanti et al.||2015), The African Monsoon Multidisciplinary Analysis (AMMA; Redelsperger
et al.[[2006)), and Murray-Darling Basin (MDB; Evans and McCabe||2010). Beyond logistical and po-
litical considerations, the selection of these sites aimed to gather data from diverse climate regimes,
providing a representative assessment of the global water cycle. The collaborative endeavors of in-
ternational teams contributed to an enhanced understanding of regional water balance and feedback
processes. The data generated from these continental-scale experiments are accessible to the public,
indirectly contributing to establishing a scientific framework for quantifying the global water cycle
and achieving a budget closure with a 10% non-closure tolerance. Notwithstanding these momentous
advancements, data sources’ diverse performance levels and associated uncertainties restrict their
suitability for global-scale analyses (Hegerl et al., [2015). Even though all data estimates, regardless
of their source, inherently possess a degree of uncertainty (Steenl [1990)), the quest to minimize this
uncertainty to the greatest extent possible and acquire higher quality and more accurate data for
water cycle assessment has mutually driven technological advancements (e.g., satellite instruments;
Hildebrand et al., |2003; [Levizzani and Cattani, |2019). At present, we could say that the available
data products fall under one of four main categories: ground station observations, satellite remote
sensing, hydrological model simulations, and reanalysis outputs. Note that while some products
could be categorized easily as they exclusively rely on a unique data source type, usually the cate-
gorization is based on the primary source or bulk input, as in reality, it is typical for a data product

to have multiple inputs from different source types.



1.1.2 Four Data Source Types

As better and more accurate instruments became available, ground-based observations improved
their detection capabilities. The development of different instruments like rain gauges (standard,
tipping bucket, and weighing), lysimeters (percolation, weighing, and wick), atmometers, flumes,
and sounders led to different data products. Even nowadays, despite well-known spatial hetero-
geneity and variability, ground-based observations are regarded as the closest measurements to the
actual values and are operationally used for calibration, evaluation, and assimilation. Nevertheless,
the distribution of active stations is quite heterogeneous worldwide (Figure, extremely geopo-
litically dependent (Kibler et al., |2014)), and their number has been declining for the past decades
(Figure . Deploying dense monitoring networks to observe hydroclimate spatial heterogeneity
accurately implies high operational and maintenance costs (Saltikoff et al.l 2017). Consequently, it
is unsurprising that in many developing countries, ground observational records, if available, tend
to have multiple temporal discontinuities or non-standardized data quality check protocols (Walker
et al., 2016)). In other words, we still lack a comprehensive global network.

For example, the Global Precipitation Climatology Centre (GPCC) offers data from 1891 to
the present based on quality-controlled data from 67200 stations worldwide that feature record
durations of 10 years or longer on a regular grid with a spatial resolution of 0.25 degrees (Schneider
et al., [2011). GPCC is derived from the most extensive gauge network currently available, but
it represents only about 1% of the Earth’s surface (assuming a 5 km non-overlapping radius per
gauge; |[Kidd and Huffman| [2011). As evidenced above, the distribution of stations worldwide is
heterogeneous, which denotes that interpolation methods are relied on to generate regular global
grids. Moreover, a variable number of stations per grid over time can be a significant source of
inhomogeneity, inconsistency, and uncertainty (Herrera et all |2019). While a kindred initiative
for evaporation exists (FLUXNET; [Pastorello et al., 2020), the network’s instrumentation does
not directly measure evaporation, but rather, it employs the eddy covariance technique to measure
carbon, water, and energy cycling between the biosphere and atmosphere. As a result, evaporation is
more commonly derived from atmospheric moisture and precipitation measurements. Runoff has an
additional layer of complexity because the Global Runoff Data Centre (GRDC; |Fekete et al.l [2002),
provides ground-based data for river discharge only, which is only a fraction of total water outflow
from a catchment. To our knowledge, total water storage, the last major water cycle component,
has no comparable database. GPCC, FLUXNET, and GRDC constitute the three most extensive

collections of ground-based observations for water cycle components.
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Figure 1.2: @ Location of active stations since as of 2020 with at least 20 year long records. @
Number of worldwide active stations during the years as per the Global Historical Climatology
Network (GHCN) records.



Satellite remote sensing data complemented the traditional gauge-based measurements and of-
fered unprecedented coverage over previously inaccessible or ungauged regions. Notwithstanding,
ground observations remain crucial for satellite data calibration, evaluation, and, in some cases, post-
processing refinement. Several satellite missions have been launched into orbit since 1960, starting
with the Television Infrared Observation Satellite (TIROS-1 or TIROS-A). Among the most notable
are the National Aeronautics and Space Administration’s (NASA) Earth Observing System (EOS)
missions (Figure . Satellites are characterized by their sensor type and orbit. Satellite sensors
could be active or passive, and it is no longer uncommon for both types to be onboard simultane-
ously. Active sensors provide their energy source to illuminate the objects they observe. In contrast,
passive sensors detect energy emitted or reflected from the environment. Satellite orbits could either
be geosynchronous (GEO) or polar, yet many of the satellites in the EOS missions have a nearly
polar orbit. Polar-orbit satellites move around the Earth in a Sun-synchronous orbit, so the overpass
occurs at the same local time every day, taking around 100 minutes to complete an orbit. However, it
soon became apparent that satellite instruments have heterogeneous performances across the globe
(Maggioni et al.l 2016), limiting their applicability. Moreover, satellite remote sensing data records
are, to date, too short to assess long-term water cycle changes.

Understanding that satellite design (orbit and sensor type) limits remote sensing observations is
fundamental. The satellite’s orbit delimits its spatiotemporal resolution and coverage. Generally, a
satellite with high spatial resolution comes with coarse temporal resolution and vice-versa, and high
spatiotemporal resolution comes with limited coverage. Satellite remote sensing estimates have been
shown to vary considerably depending on the sensor type (i.e., active or passive; |Fekete et al., |[2004]).
Aware of such systematic limitations, recent missions rely on a constellation of multiple satellites
rather than a single satellite, even if it carries both passive and active sensors. Similarly to ground-
based station data, satellite-based flagship products exist for each water cycle component: the Global
Precipitation Measurement (GPM) for precipitation (Huffman et al.l|2015), the Moderate Resolution
Imaging Spectroradiometer (MODIS) for evapotranspiration (Mu et al., [2011), the Surface Water
and Ocean Topography (SWOT) for runoff (Durand et all [2010), and the Gravity Recovery and
Climate Experiment (GRACE) for total water storage (Tapley et al., 2004)). Because the SWOT
mission was launched in 2022, its data record is currently too short for usage. However, runoff could
be derived from other satellite remote sensing data sets, for instance, Tropical Rainfall Measuring
Mission (TRMM) precipitation (Huffman et al.l |2007)), and MODIS land cover (Friedl et al., |2002)
using the Natural Resources Conservation Service (NRCS) runoff curve number method (Cronshey,

1986} Burges et al., |1998)).
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Almost contemporary to satellite remote sensing flourishment, general circulation models were
developed as powerful tools that comprehensively explore the intricate processes of the global water
cycle (Figure . These models, rooted in fundamental principles of atmospheric physics, fluid
dynamics, and thermodynamics, opened the doors to simulate and study the complex interactions

between the atmospheric, oceanic, and terrestrial components that shape the global water cycle

(McGuffie and Henderson-Sellers, [2001)). Models differ in the details of the description of processes,

parameter estimation approaches, time scales, and spatial resolution of input data and simulations

(Haddeland et al.| [2011)). The stand-alone models are usually applied at the basin or catchment scale

and tend to have many parameters that need to be calibrated or estimated regionally (e.g.,
2006). On the other hand, global hydrological models usually have few parameters and are

calibrated at eco-region, climatic-region, or large river basin scales (Vorosmarty et al., [1989). Global

model simulations are becoming more complex and resolute as more functionality is added and the

availability of finer global spatial data sets increases (Sood and Smakhtin| 2015). A shared concern

for model simulations across different scales is that they are calibrated to existing observational data
sets and retain some residual error. In practice, said error is typically unknown and often ignored,

implicitly trusting simulated responses as deterministic quantities that might not even represent the

observed ones (Farmer and Vogel| 2016).

The importance of model simulations is not only in their ability to reproduce present climate
conditions but also in their capacity to project past and future scenarios, aiding in anticipating
potential shifts in water availability and distribution. As previously mentioned, even though the
water cycle’s response to global warming is under vigorous debate, it is non-debatable that the

intensification theory draws its foundations from model experiments involving the doubling of carbon

dioxide (CO3) concentrations (Manabe and Wetherald, [1975). While the Earth’s energy balance

influences alterations in global mean precipitation, variations at regional to local scales arise from

the complex interactions among factors such as COs levels, aerosols, land use changes, and human

water consumption (Allan et al,2020)). Despite the exponential growth in computing power efficiency

and growing complexity of models to try to capture local dynamical processes (Figure ,
many of them, like radiative transfer, convection initiation, hydrometeor phase change, and cloud
microphysics that occur between the sub-kilometer scale and the microscale (i.e., nine orders of
magnitude less than current model resolutions) are parameterized, as they cannot be resolved at
the model resolution. As a result, we observe artifacts like a correlation between an increase in

precipitation extremes and an increase in model resolution and anti-correlation between precipitation

extremes and changes in light-moderate precipitation (Thackeray et al., 2018]).
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Figure 1.4: Climate model conceptualization. Each grid cell can be represented by mathematical
equations that describe the materials in it and the way energy moves through it. Credit: National
Oceanic and Atmospheric Administration. @ Development of the complexity of the computer
models used to simulate Earth’s climate. Credit: National Aeronautics and Space Administration.
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In a two-fold endeavor to handle the water cycle’s spatial heterogeneity and further improve the
spatiotemporal resolution of the measurements, reanalysis data products rose to the avant-garde
(Parker} |2016). Reanalysis products preponderantly assimilate data from observations and model
simulations (e.g., general circulation or earth system models). These models undergo continuous
updates and enhancements, leading to significant alterations in the fundamental climatological char-
acteristics of the model over time. As a result, relying on a long time series of operational analyses
becomes impractical for studying extended trends or variations in climate. Reanalyses generate a
dynamically consistent global analysis of the atmospheric state over an extended duration, spanning
many years or decades, without spatial or temporal gaps. This process entails utilizing a “frozen”
iteration of the analysis model and conducting a retrospective analysis using historical observation
records (Betts et all |2006). The benefit of this approach lies in utilizing a broader range of ob-
servational data, tapping into high-quality observations that might not be accessible to operational
models in real-time (Figure . Assimilation algorithms recursively combine observational and
model simulation data within a Bayesian statistical framework (Figure , which usually falls

under one of four types of algorithms:

e Sequential, intermittent assimilation. This method involves intermittent assimilation, where
available observations over a range of time are introduced at regular intervals into the model,

e.g., the Arctic System Reanalysis (ASR; [Bromwich et al., 2018]).

e Sequential, continuous assimilation. In this method every observation is introduced into the
model at the time it was registered, allowing for a continuous update of the model state, e.g.,
the Modern-Era Retrospective analysis for Research and Applications (MERRA; Rienecker

et al.; 2011)).

e Non-sequential, intermittent assimilation. This method incorporates various observations into
a numeric weather prediction model at regular intervals, e.g., the European Centre for Medium

Range Weather Forecasts (ECMWTF) Reanalysis product v5 (ERAS5; Hersbach et al.l [2020).

e Non-sequential, continuous assimilation. This method allows for the assimilation of a broader
range of observations in a more continuous and real-time manner, e.g., MERRA version 2

(MERRA-2; |Gelaro et al. [2017)

Regretfully, since assimilation algorithms are statistically grounded, physical conservation principles
might be overstepped, reflected in substantial variability compared to other data sources (Prein and

Pendergrass, 2019)).
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Figure 1.5: @ The principle of data assimilation in climate reanalysis. Representation of four
basic strategies for data assimilation, as a function of time.
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Successive generations of reanalyses showcase continuous enhancements regarding better obser-

vational data availability, newer models used for simulations, different assimilation algorithms, fixing

previous errors, or extending the record length. These improvements aim to refine the accuracy and

reliability of the generated data sets over time. Examples include:

a.i

b.i

c.ii

d.i

National Centers for Environmental Prediction — National Center for Atmospheric Research
Reanalysis 1 (NCEP/NCAR R1), an ongoing product with records starting in 1948, used
the T62/28-level NCEP global spectral model and a three-dimensional variational (3DVAR)

assimilation scheme (Kalnay et al.| [1996]).

i NCEP — Department of Energy Reanalysis 2 (NCEP/DOE R2), an ongoing product with

records starting in 1979, used the T62/28-level NCEP global spectral model with updated pa-
rameterizations and a four-dimensional variational (4D-Var) assimilation scheme (Kanamitsu

et al., 2002).

MERRA, a discontinued product with 1979 to 2016 records, used the Goddard Earth Observing
System Model Version 5 (GEOS-5) and an incremental analysis update (IAU) assimilation

scheme (Rienecker et al., [2011)).

i MERRA-2, an ongoing product with records starting in 1980, used the Goddard Earth Observ-

ing System Model Version 5.12.4 (GEOS-5.12.4) and a 3DVAR assimilation scheme (Gelaro
et al., 2017).

i Japanese 25-year Reanalysis project (JRA-25), a discontinued produc with 1979 to 2004

records, used the Japan Meteorological Agency (JMA) Global Spectrum Model and a 3DVAR

assimilation scheme (Onogi et al., 2007).

Japanese 55-year Reanalysis (JRA-55), an ongoing product with records starting in 1958, used
the JMA Global Spectrum Model and a 4D-Var assimilation scheme (Kobayashi et al., [2015)).

ERAS5, an ongoing product with records starting in 1940, used the Integrated Forecasting
System (IFS) Cycle 41r2 model and a 4D-Var assimilation scheme (Hersbach et al., [2020).

i ERAb5-Land is produced using the tiled ECMWEF Scheme for Surface Exchanges over Land

incorporating land surface hydrology (H-TESSEL) IFS Cycle 45r1 model forced by meteoro-
logical fields from ERA5 without any further assimilation scheme, delivering hourly estimates

from 1950 with a spatial resolution of 0.1 degrees (Munoz-Sabater et al., [2021)).
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Unfortunately, reanalysis data has yet to overcome several issues already identified in their first
generation of products. [Trenberth and Guillemot| (1995] [1998)) evaluated the water cycle and the
global atmospheric moisture budget in NCEP/NCAR R1 data between 1987 and 1993. They found
that the reanalysis data sets could represent evaporation, precipitation, and moisture transport rea-
sonably well. However, limitations in reanalysis data were identified, including marked biases in
precipitable water as well as discrepancies in tropics’ moisture structures and precipitation patterns,
including a misrepresented intertropical convergence zone in the central Pacific. They noted that the
reanalysis data quality depends on the input observations’ availability and quality, the model’s ver-
tical resolution, computation methods, and analysis initialization. A decade later, |Bosilovich et al.
(2008) evaluated global precipitation across JRA-25, ERA-40 (Uppala et al., |2005), NCEP/NCAR
R1, and NCEP/DOE R2 between 1979 and 2005. While there was a general sense that the precipi-
tation reanalysis data are improving in recent systems, the study highlighted that this is not always
the case, particularly in certain ocean regions. The authors emphasized the importance of using cli-
mate records of observed precipitation through a merged satellite and gauge data set as a reference
for comparison, underscoring the ongoing need for careful assessment and evaluation when utilizing
reanalysis precipitation data for various applications. Trenberth et al. (2011) assessed the global
energy and water cycles, focusing on atmospheric moisture transports from the ocean to land, using
eight current atmospheric reanalyses. These were the NCEP/NCAR R1, NCEP/DOE R2, Climate
Forecast System Reanalysis (CFSR;|Saha et al.[2010]), Twentieth Century Reanalysis (20CR;/Compo
et al., 2011)), ERA-40, ERA-Interim (Dee et al., |2011)), JRA-55, and MERRA. The authors reported
three main issues: first, moisture transport from ocean to land is not similar in most reanalyses;
second, land discharge into the ocean differs significantly from observational estimates; and third,
moisture recycling is too large and its lifetime too short. Once again, discrepancies among water
cycle components are identified to arise with the changes in the observing system, model treatment,
and analysis increments.

In short, the nature of atmospheric reanalyses, geared toward generating time series of the best
available analyses considering the observing system through a statistical rather than a physical
framework, introduces challenges. These reanalyses do not consistently conserve quantities dictated
by conservation laws, leading to spurious changes with evolving observing systems over time. While
natural variations in shorter time frames often overshadow these factors, their impact becomes more
pronounced in decadal climate change or trends. Notably, the reanalyses tend to yield satisfac-
tory results for land-based precipitation, but atmospheric fluxes over the oceans exhibit instability,

disagreement, unreliability, and violations of fundamental physical constraints.
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1.1.3 Multi-Source Quantification

While advancements in technology and research have provided various data sources for quantifying
the global water cycle, it becomes evident that no single data source is without its flaws. Although
valuable, climate model simulations and reanalysis have limitations (Valmassoi et al., |[2023), and the
often short and heterogeneous observational data records propagate uncertainties into our under-
standing (Schneider et al.l 2017). However, one data source’s strengths can compensate for another’s
weaknesses, emphasizing the importance of a comprehensive and integrated strategy. As we stand on
the brink of a new era in water cycle research, the paradigm has shifted from the quest for the single
best data source for each component to a focus on developing optimal methods for integrating infor-
mation from diverse sources. Various integration methodologies have emerged, the most widely used
ones being Bayesian Model Averaging (BMA; Hoeting et al., [1999)), Constrained Linear Regression
(CLR; |Clemen), (1986]), Modified Triple Collocation (MTC;|Pan et al., 2015)), Neural Networks (NN;
Bishopl, [1996), Optimal Interpolation (OI; Daleyl [1999), and Simple Weighting (Rodgers, |2000). Ad-
ditionally, post-processing closure methodologies, which distributed the budget residual among the
components based on each component’s uncertainties, explored Closure Correction Models (Munier,
and Aires, 2018) and Kalman Filter variations (Pan and Wood} [2006)).

BMA is a statistical method that addresses model uncertainty by integrating information from
multiple models to improve predictive performance. In BMA, the plausibility of each model is
described by the posterior model probability, which is determined using Bayesian principles. This
method provides a principled way to define model weights as posterior model probabilities, which is
universal to all data-generating processes. BMA can account for model uncertainty when estimating
model parameters and is particularly useful in applications with several plausible models where
there is no definitive reason to choose a particular model over the others. CLR is a statistical
method used when there is prior information available about a linear relation that the coefficients
of the linear model should satisfy. This method is beneficial when there is a need to enforce specific
constraints on the model parameters, such as ensuring that specific coefficients have a predefined
relationship or that the model satisfies known physical laws or theoretical expectations. MTC is
a mathematical technique to evaluate product error statistics without requiring the ground truth.
MTC was introduced to model the error associated with wind speed measurements but can be applied
to measuring any geophysical variable using three or more collocated target variables measured at
the same time and place. The method simultaneously calculates linear calibration coefficients and

measurement error variances. However, implementing TC is tedious and requires at least three
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independent measurement systems, which are often hard to establish. NN is a computational model
inspired by the structure and function of the human brain. It consists of interconnected nodes,
or neurons, organized in layers. Each connection between nodes has an associated weight, and
the network uses training data to learn and improve its accuracy over time. NN integrates and
processes complex, multidimensional data to identify patterns, make predictions, or classify and
cluster data. Ol is a statistical method based on multidimensional analysis equations that combine
observations with model simulations to produce more accurate output than the individual input data
sets. The method involves merging background data, such as model outputs, with observation data,
such as point measurements, to perform interpolation. OI assigns weights to the background and
observation data sets based on their relative accuracy, which are determined from the background
error variance, observation error variance, and background error correlation. Simple Weighting
refers to the adjustment of integrating data sets to represent the target population accurately. This
process involves assigning weights to individual data sets, calculated by dividing a given data set
by the sample mean. This adjustment ensures that the integrated data set reflects the target mean
and corrects any bias in the sample.

Aires| (2014))compared the performance of the aforementioned integration methods and reported
that Simple Weighting is the most suitable. Simple Weighting offers a straightforward formulation,
and more elaborate methods do not offer enough improvement in results to justify the increased
complexity they carry along. The Simple Weighting method assumes that the errors associated with
the different products are Gaussian (zero-mean) and independent. However, there might be cases
where this assumption may not hold, especially for gauge-based data products, and the dependence
among products will cause an underestimation of the error associated with the integrated data set.

The combined data set for a given component of the water cycle (P, ET, @, or A TWS) is equal to:

x = iwixi (1.5)
i=1

where x is the combined data set for the single component of the water cycle being integrated,
T1, Ta, T3, ..., Ty are the different products considered, w; is the associated weight of product x;

and is defined as:

(T —a;) 2

Z?:l (z - xj)_Z

(1.6)

w; =

where Z is the arithmetic mean of the n data products considered, and (Z — xi)z is defined as the
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error variance. That is to say, the weight associated to each product is proportional to the inverse
of its error variance. Finally, the error associated to the combined data set x is:
1

ey =—5 1.7
Z?:l (- xi)iz 1)

This perspective shift with multi-source data integration as a new north is crucial for achieving
a more holistic and accurate understanding of the global water cycle. Therefore, the twenty-first
century demands advancements in data collection because the ensemble is as strong as the weakest
link and refinement of the analytical tools used in water cycle research.

Robust statistical methods for uncertainty quantification, sophisticated downscaling and disag-
gregation techniques, and the ability to analyze data across multiple scales are essential to this
evolving paradigm. However, amidst this progress and a “clear” path to follow, a formidable chal-
lenge emerges—the lack of a unified standard for data distribution (Table . The various data
sources often come in different grid reference systems, spatial resolutions, temporal resolutions, and
file formats like the Hierarchical Data Format (HDF), General Regularly-distributed Information
in Binary form (GRIB), and network Common Data Form (NetCDF) among the most common.
This lack of uniformity poses a significant obstacle to gathering them prior to homogenizing data
from different sources. The latter, data homogenization, feels like dealing with an irreversible pro-
cess because spatiotemporal aggregation is easily achievable, but disaggregation is not. Regarding
precipitation, for example, to aggregate in time, averaging precipitation rates or summing total
precipitation will do the trick, and in space, the spatially weighted average will suffice.

There are different types of temporal rainfall disaggregation methods available. These methods
can be broadly categorized into two broad methods, i.e., stochastic simulation and random cascade
models. When it comes to sub-daily precipitation, however, stochastic simulations become the one
reliable option because zeros, a frequent precipitation measurement at such scales, are fundamen-
tally incompatible with the notion of self-similarity and multiplicative random cascades (Gupta and
Waymire, 1993), yet they can be introduced artificially (e.g., Pathirana et al., 2003; |Gires et al.,
2013; [Lombardo et al., |2017)). Regarding stochastic simulations, it would be amiss not to discuss the
framework proposed by [Papalexiouf (2018]). The framework aims to preserve the processes’ marginal
distributions, correlation structures, and intermittency grounded on the assumption that any process
can emerge by transforming a parent Gaussian process with a specific correlation structure. This
approach unifies, extends, and improves a general-purpose modeling strategy, providing a consistent

and fully general description that supersedes previous specific parameterizations and is applicable
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for simulating a variety of hydroclimatic variables, such as precipitation, river discharge, wind speed,
and humidity, as well as for multivariate applications.

Spatial disaggregation, or downscaling, techniques are also grouped under two primary umbrellas:
statistical and dynamical downscaling. Statistical methods rely on empirical statistical relationships
to associate local-scale variables with large-scale variables (e.g., univariate or multivariate regres-
sion), while dynamical downscaling is based on mathematical representations of complex physical
processes (e.g., high-resolution regional climate models). Even though dynamical methods do not
always produce significantly better results and are often considered too computationally demanding
(Hellstrom et al. [2001)), they are less demanding regarding data ingestion than statistical methods.

In addition to downscaling, there is regridding, also known as remapping or interpolation, in
the spatial domain. Multiple grids, such as regular, rectilinear, curvilinear, and unstructured, are
used in climate research. Therefore, even if two data sets have similar spatial resolution, regridding
might be necessary if the data are on different or shifted grids. Among the most used regridding
methods we have first-order conservative, distance-weighted approaches (e.g., nearest neighbour or
bilinear interpolation) (Figure|l.6]). First-order conservative remapping is primarily employed when
working with latitude-longitude rectangular grids and ensures the preservation of the integral of the
source field during the regridding process. This method calculates weights based on the ratio of
the source cell area overlapping with the corresponding target cell (Jones, [1999)). Distance-weighted
regridding approaches assume that the variation of the interpolated quantity is linear between the
grid points and assign weights to the source grid points based on their distance from the target grid
point. For example, bilinear regridding considers the four nearest cells in a 2D grid to determine
the value of the new cell (e.g., |/Accadia et al 2003). Rajulapati et al.| (2021)) assessed the effects
of regridding, and reported a substantial impact on the statistical properties of precipitation, with
marked differences between the original and regridded datasets. These differences were most notable
at high and low quantiles, particularly in tropical land regions and polar regions, respectively. The
authors emphasized that the impacts of regridding vary spatially and at different quantiles, indicating
that regridding should be approached with caution.

The data homogenization challenge not only demands technical solutions but also necessitates
a broader conversation within the scientific community about establishing standards and protocols
for data sharing in hydrology. Without a concerted effort to address this issue, the full potential
of multi-source quantification may remain unrealized, hindering our comprehensive understanding
of the complexities within the global water cycle. In the context of this technical need, special-

ized software is available to efficiently deal with processing and analyzing large amounts of data,
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Figure 1.6: Schematics of bilinear and conservative regridding. Original cell are in dashed lines and
target cell in solid lines. The bilinear interpolation weight corresponding to the node on the lower
left is the ratio of the shaded area over the source cell area. The conservative interpolation weight
associated with the target cell is the ratio of the shaded area over the source cell area. Modified
from Pletzer and Hayek| (2019))

namely the Climate Data Operators (CDO; |[Schulzweida), 2022)) and Climate Data Analysis Tools
(CDAT; Williams et all 2009). These software provide data cleaning, merging, and analysis tools.
While working with big data can be challenging and time-consuming, these or similar alternative
software allow researchers to automate and streamline the data analysis process for reproducibility.
However, while tools like CDO and CDAT provide valuable capabilities, they encounter a notable
limitation—compatibility issues with Windows, the predominant desktop operating system globally.
Although installing CDO and CDAT on Windows is technically feasible, the process involves utiliz-
ing the Windows Subsystem for Linux (WSL), essentially introducing a GNU/Linux environment
to Windows (Singhl [2020)). Moreover, it is crucial to note that CDAT is anticipated to undergo
deprecation and cease support around the conclusion of the 2023 calendar year, adding a layer of
consideration for researchers seeking sustained tools for their work.

More multipurpose software available include Fortran (Backus et al., [1957), MATLAB (Moler
et al., [1982)), Python (Van Rossum and Drake Jr, [1995)), and R (Ihaka and Gentleman) [1996)), which
are the most used hydrology programming languages. Fortran continues to be a prevalent choice
in hydrological modeling, leveraging the performance advantages inherent in low-level programming
languages, particularly for computationally intensive tasks. While low-level languages offer com-
putational efficiency, they are often criticized for being less readable and requiring more intricate

programming compared to high-level languages such as MATLAB, Python, and R. MATLAB of-
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fers comprehensive toolboxes for data analysis, statistical modeling, and visualization. Regrettably,
these toolboxes are not widely adopted as they are, for many users, out of reach behind a paywall.
Python and R have gained traction due to their flexibility, open-source nature, and ease of learn-
ing. Python, in particular, is valued for its extensive machine-learning libraries and general-purpose
programming. Nonetheless, because of Python’s Global Interpreter Lock (GIL), the threads within
each process cannot truly run in parallel. Unlike Python, R is not limited to serial programming
or convoluted workarounds because it supports Open Multi-Processing (OpenMP). Therefore, R is
better suited for a broad spectrum of functions that range from data acquisition and manipulation
to analysis, modeling, statistics, and visualization in High-Performance Computing (HPC) setups.

Furthermore, R has well-developed capabilities in geospatial and geographic information sys-
tems (GIS) applications (Gokceoglu and Pourghasemi, 2019), a particularly noteworthy facet of
hydrological research. One of the remarkable strengths of particular interest lies in the thriving
and actively engaged computational hydrology community that has flourished over the past five to
ten years and the availability of documentation, tutorials, and online discussion platforms (Slater
et al.l |2019)). The R hydrological community has significantly grown until it acquired a pivotal role
in hydrological research and the operational practice of hydrology. This evolution is marked by
the development of packages designed for various hydrological tasks, encompassing data retrieval
and pre-processing from hydrological and meteorological sources, hydrograph and spatial analysis
functions, and a spectrum of process-based and stochastic modeling tools.

The community-driven development of packages has led to a substantial expansion in function-
ality, catering to diverse needs within the hydrological domain. Nevertheless, more often than not,
these packages are still developed around specific data sets or providers. For instance, packages like
easyclimate facilitate access to high-resolution daily climate data for Europe (Cruz-Alonso et al.|
2023), while dataRetrieval is tailored for the US Geological Survey (USGS) National Water Infor-
mation System (DeCicco et al., [2022)). Tools-centered packages offer comprehensive functionalities
and often require more generic inputs. Examples include envoutliers adept at identifying outliers in
environmental time series data (Campulové et al., 2022)), and CoSMoS a tool for generating univari-
ate/multivariate non-Gaussian time series and random fields for environmental and hydroclimatic
processes (Papalexiou et al. [2021). These latter kinds of packages give the users more flexibility on
the account they are to deal with data gathering and pre-processing on their own.

These advancements position the R language seamlessly within production-ready ecosystems,
leveraging cutting-edge technologies and tools to enhance reproducibility, testing, and continuous

integration. These tools are imperative for addressing the inherent challenges when relying on diverse
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data sources, particularly in the absence of ground observations. These tools are better exploited
at regional scales, where ground observations for one or more water cycle components are available
because these measurements constitute clear benchmarking or evaluation targets. Furthermore, lo-
calized studies at regional scales are essential in understanding the intricate interactions between
climate, geography, and human activities within a specific area. By focusing on specific geographical
areas, these studies provide insights into the unique characteristics, challenges, and variations within
the water cycle of a particular region, such as Local Resource Management, Climate Change Im-
pact, Extreme Events, Ecosystem Preservation, Water Quality, Infrastructure Planning, and Policy

Development.

1.1.4 Narrowing the Focus

One region of particular interest is Czechia, a small Central European country with diverse land-
scapes and a growing population (United Nations, [2022). Czechia is a landlocked country (sur-
rounded by Germany, Austria, Slovakia, and Poland) that covers an area of 78 864 km?2. The country
experiences a temperate climate in the transition zone between the oceanic and continental climate
types, with warm summers and cold, cloudy, and snowy winters (Tolasz et al., 2007). Czechia, an
essential headwaters region of the European continent, is marked by various topographical features,
including mountain ranges, plateaus, and lowlands, influencing its hydrological landscape. The coun-
try is home to several large rivers, including the Vltava, the Labe, the Morava, and the Oder, all of
which have their sources within it (Figure [1.7). The Vltava River, in particular, originates in the
Sumava Mountains and flows through Prague, the capital, shaping the central part of the country.
Czechia is situated at the intersection of three sea drainage basins: the North Sea, the Baltic Sea,
and the Black Sea, which, in return, divide Czechia into three main hydrological catchment areas:
the Elbe, Oder, and Danube basins. All of these major watercourses drain water into neighbor-
ing states. The water sources of Czechia are thus almost exclusively dependent on precipitation.
Sporadic rainfall is throughout the year, but concentrated rainfall is more frequent in the summer
(Rehof et al.,2021). Snowfall in the winter, especially in the mountainous regions, adds to the water
storage and gradually feeds into rivers during the melting period (Jenicek and Ledvinka; [2020)).

In recent times, Czechia has undergone notable transformations in its water cycle, impacting
diverse facets of the water balance within the region. These alterations encompass shifts in river flow
regimes, modifications in water quality, the decline of wetlands, and variations in the occurrence and

intensity of extreme events. Since Czechia experiences a temperate climate with sufficient rainfall,
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Figure 1.7: Map of the 50 longest rivers of the Czech Republic. Credit: Pavel Hrdlicka

the water cycle is more likely to be limited by energy availability, such as solar radiation, rather
than water availability. Case in point: an 18% increase in mean evaporation between 2001 and 2008
compared to the 1971-2000 average associated with rising global radiation and vapor pressure deficit.

In addition, regional climate models estimate significant increases between 27-54%, with potential

implications for water resources and ecosystems in the Czech Republic (Mozny et al., 2020)).

Along the same lines, [Nedelcev and Jenicek| (2021)) investigated trends in snowpack for 1965—

2014 in 40 catchments in five mountain regions in Czechia. Therein, the snowpack was reported
to be more sensitive to changes in air temperature at elevations below 900 meters above mean sea
level (MAMSL), while precipitation had a more significant effect at elevations above 1200 MAMSL.
However, snowpack sensitivity to air temperature increased at all elevations in the last few decades,
resulting in changes in the rainfall-snowfall partition, which have decreased snow cover and premature
snowmelt. Besides, snow water equivalent projections showed a decrease in annual maximum by
30-70%, occurring on average 3-4 weeks prematurely until the end of the 21st century
. Regarding precipitation, an ensemble of regional climate models predicts that heavy

precipitation events are likely to increase in severity, particularly in winter, with less agreement

among models for the summer season (Kysely and Beranova, |2009; |Kysely et al., 2011). At the

same time, there is a projected decrease in the number of heavy rainfall events (Svoboda et al.
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2016)), i.e., future projections estimate less yet more intense heavy precipitation events. In addition,
increased human activities, such as urbanization and agriculture, have led to changes in land use and
land cover, which in turn has contributed to the occurrence of floods and droughts. Consequently,
the water cycle in Czechia and human activity find themselves on a causal feedback loop of sorts.
Droughts, have had disastrous consequences for agriculture, forestry, water management, and other
human activities (Brazdil et al.l 2009)). The abovementioned observed changes and future projections
of the water cycle forecast the overall drying conditions over Czechia to extend well into the end of the
century. Despite the identified trends in Czechia’s water cycle changes, it is binding to acknowledge
the substantial uncertainty inherent in climate projections. Complex climate systems, coupled with
the limitations of current models, make it challenging to assert definitive outcomes. While there are
observed shifts in precipitation patterns, snowpack dynamics, and evaporation rates, the range of
potential future scenarios is wide (N-2N%) and necessitates caution in drawing absolute conclusions.

Understanding the regional scale water cycle’s intricate dynamics prompts consideration of its
broader implications for the global water cycle. On scales circa 4000 km and less, alterations in the
water cycle are primarily influenced by the transport of moisture, contingent upon a combination
of thermodynamic and dynamical processes (Dagan and Stier, |2020). The constraints imposed
by energy budgets on a global scale and moisture budgets on a regional scale lead to changes
in fundamental water cycle features, including changes in precipitation intensity, duration, and
frequency, as the climate undergoes warming (Dol et al.l2018]). Future water availability is driven by
changes in evaporation, a process shaped by the overall rise in atmospheric evaporative demand and
subject to modulation through vegetation’s regulatory role in controlling evaporative losses (Vicente-
Serrano et al., 2020). Regional water cycle changes result from the interplay between multiple
potential drivers, including COs, aerosols, land use change, and human water use ([PCC| [2023).
These changes can contribute to alterations in larger-scale water circulation patterns, potentially
influencing the global water cycle. Recognizing the interconnectedness of regional and global water
systems is essential in addressing the uncertainties and variability inherent in climate change impacts
on water resources. Research efforts and collaborative initiatives on both regional and global scales
are crucial for advancing the understanding of these complex interactions and refining data estimates
to anticipate future water cycle dynamics better and address multiple Sustainable Development

Goals (SDGs).
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1.1.5 Nexus Repercussions

SDGs are a set of 17 global goals established by the United Nations in 2015 as part of the 2030

Agenda for Sustainable Development. These goals encompass a broad range of social, economic,

and environmental objectives, aiming to address the world’s various challenges. There are intricate

connections between water dynamics and broader societal and environmental objectives (Figure7

and the quantification of changes in the water cycle holds significant relevance to several of these

goals:

SDG 1 (No Poverty): While the direct connection might not be immediately apparent, under-
standing water availability, access, and management is crucial for communities that can harness
water for various purposes, such as irrigation, aquaculture, or small-scale industries, have a
better chance of breaking the cycle of dependency on a single source of income (Borgomeo

et al.; 2018).

SDG 2 (Zero Hunger): Changes in the water cycle can impact agriculture, a sector highly de-
pendent on water availability. Accurate quantification helps understand and address potential
shifts in atmospheric water flux patterns and freshwater availability, ensuring food security

(Alcamo, 2019)).

SDG 3 (Good Health and Well-being): Reliable water cycle data is vital for assessing and
managing water-related health risks. Changes in precipitation patterns and consequent floods
can influence the proliferation of waterborne diseases, and accurate quantification supports

efforts to safeguard public health (Ternes et al., 2015).

SDG 6 (Clean Water and Sanitation): Quantifying changes in the water cycle directly aligns
with this goal, ensuring sustainable water management and sanitation practices. It aids in

developing strategies for efficient water use and pollution prevention (Ho et al.l [2020a).

SDG 9 (Industry, Innovation, and Infrastructure): Understanding the evolving water cycle and
the shifting characteristics of extreme events is crucial for sustainable infrastructure develop-
ment. Accurate data helps design resilient infrastructure, especially in regions susceptible to

changing water availability (Di Baldassarre et al., 2013)).

SDG 11 (Sustainable Cities and Communities): Cities are vulnerable to water-related chal-

lenges, from flooding to water scarcity. Quantifying water cycle changes supports urban
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planning, helping communities build resilience and sustainable water management systems

(Bhaduri et al.l [2016).

e SDG 13 (Climate Action): The water cycle and its characteristics fundamentally define climate
patterns. Accurate quantification contributes to climate models and predictions, supporting

effective climate action and mitigation strategies (Mortimer et al., 2023).

e SDG 14 (Life Below Water): Changes in the water cycle impact aquatic ecosystems (e.g.,
salinity increases). Accurate quantification is crucial for monitoring and conserving marine

environments, preserving biodiversity, and ensuring sustainable fisheries (Singh et al., [2019).

e SDG 15 (Life on Land): Terrestrial ecosystems are sensitive to water availability. Quantifying
changes in the water cycle aids in understanding and mitigating the impact on land ecosystems

and abnormal migration of species, promoting biodiversity conservation (Sallehl |2016]).

In summary, quantifying water cycle changes is fundamental for achieving various SDGs, ensuring

sustainable development, resilience, and the well-being of both human and natural systems.

1.2 Research Objectives

Considering the aforementioned research challenges and hindrances for water cycle quantification,
this dissertation’s overarching objective was to better understand the effects of different data sources,
their integration, and the metrics/methods used to characterize water cycle changes on both global
and regional scales. In addition, through a multidimensional approach, advance the implementation
of open-source publicly available tools for data acquisition and processing, uncertainty quantification,

and evaluation frameworks. In particular, the specific objectives of this dissertation were:

1. To chronologically trace the evolution of global water cycle quantification methods, empha-
sizing the challenges posed by spatiotemporal variability. Chapter 2 aims to comprehensively
review historical attempts, data sources, and methods while critically assessing their contribu-

tion to improving spatiotemporal monitoring.

Embarking on a chronological review was a foundational choice driven by the need to compre-
hensively understand the existing state of the art in water cycle quantification. If the power
of the first computers, which occupied 167 square meters, now fits in our pockets, why has the

uncertainty of our estimates not been reduced as drastically?
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2. To enhance the applicability of climate reanalyses in quantifying the global water cycle by
proposing a framework that considers precipitation, evaporation, their difference, and their
sum. Chapter 3 addresses the poor representation of the water cycle in reanalysis products

despite being the most recent and advanced data sets available.

The decision to delve into reanalyses emerged organically from their identified inconsistencies.
If reanalyses, in theory, have the best of both worlds by exploiting observational data and model
simulations in conjunction, why do their estimates describe a water cycle so different to the

observed one?

3. To improve the robust quantification of climatologic properties of global precipitation by in-
tegrating multiple data sources addressing the heterogeneity among existing data products.
Chapter 4 tackles data inaccessibility due to different spatiotemporal scales and distribution

formats limiting the available assets to understand water cycle changes.

The growing volume of data, both in terms of quantity and diversity, became increasingly
apparent. This realization underscored the urgent need to develop an open-access, innovative,

and user-friendly tool to confront the challenges posed by this burgeoning data landscape.

4. To investigate and understand recent regional water cycle changes via a novel method for
benchmarking hydroclimatic data fusion based on water cycle budget closure. Chapter 5
demonstrates a case study to exploit the gained knowledge and developed tools to depict a

multi-source water cycle budget perspective.

Recognizing that regional changes in the water cycle pose unique challenges that demand tailored
solutions, creating a robust and flexible framework that makes use of the attained outcomes for

studying these intricate processes was the natural next step.

1.3 Dissertation Layout

This dissertation is composed of 6 chapters. The present Chapter 1 provides the overview and back-
ground of the conducted research and specifies the research objectives. The proceeding four chapters
(Chapters 2 to 5) are structured as journal articles but without Abstract and Keywords. As each
of these five chapters contains an Introduction section, which provides the state-of-the-art literature

review on its topic, this dissertation does not include an individual chapter entitled “Literature
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Review”. In particular, Chapter 2 delves into the historical evolution of global water cycle quantifi-

cation, highlighting the challenges posed by spatiotemporal variability (Vargas Godoy et al., 2021]).

Chapter 3 introduces the role of climate reanalyses in complementing traditional measurements,

emphasizing the need for a comprehensive framework to address uncertainties (Vargas Godoy and|

[Markonis, 2023b)). Chapter 4 focuses on the integration of remote sensing data and model simula-

tions to enhance precipitation quantification, presenting the pRecipe package as a tool for analysis

(Vargas Godoy and Markonis, [2023a)). Chapter 5 narrows the focus to the water cycle in Czechia,

addressing recent changes in precipitation and evapotranspiration rates (Vargas Godoy et al., [2024)).
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Chapter 2

The global water cycle budget: A

chronological review

2.1 Introduction

Water and the continuous circulation through its global cycle have played a fundamental role in sus-
taining life on Earth since its formation. The global water cycle is a complex phenomenon composed
of several physiochemical processes such as condensation, evaporation, groundwater flow, infiltra-
tion, percolation, plant uptake, precipitation, runoff, sublimation, transpiration, and water vapor
transport (Allan et al.l 2020), coupled with anthropogenic interactions like water withdrawals and
soil moisture use for livestock, crop irrigation, and forestry (Abbott et al.l |2019). The longstand-
ing representation of the global water cycle’s conceptual model has been limited to three variables,
namely precipitation, evaporation and runoff. Recently, this coarse representation has been parti-
tioned to include the aforementioned sub-processes and their feedbacks. Our understanding of the
global water cycle has been evolving over the years, and the methods we use to quantify hydro-
meteorological variables have adapted to exploit new technologies. Furthermore, the need to better
estimate the components of the global water cycle has driven tailor-made technological developments
as well (e.g., satellite instruments; [Hildebrand et al2003; [Levizzani and Cattani|2019).

Remote sensing data and model simulations complemented the traditional surface-based mea-
surements and offered unprecedented coverage over previously inaccessible or unmonitored regions.
Even though these advances provided vast data sources, and aided to quantify water cycle com-

ponents at multiple scales, their varying performances and uncertainties limit their applicability
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to global scale analyses (Brocca et all, 2019). Thus, the number of primary components used to

quantify the global water cycle has not changed much. The most substantial differences that arose
with the inclusion of satellite data are the decomposition of total evaporation into evaporation over
oceans and evapotranspiration over land , and the addition of total water storage
. The above components represent the major inputs, outputs, and storage of the
global water cycle. Hence, if we apply the mass conservation principle, we may write the water

budget equation, which relates to these four components as follows.

ATWS =P —ET - Q (2.1)

where A TWS is the change in total water storage (as the sum of groundwater, soil moisture, and
surface water such as river water, snow water, and water in lakes), P is precipitation, ET is evapo-

transpiration, and @ is the net water transport. The rest of the global water cycle processes are, to

some extent, encompassed in these four components (Bengtsson, [2010). Inadvertently, aggregating

global water cycle components to the most dominant ones also aggregates the underlying uncertain-
ties of the minor components, which are overshadowed by the uncertainties of the major components
with the available accuracy at the moment. Global water cycle quantification accuracy is further

hindered by the inherent biases revealed in the first attempts to unify multiple data sources for a

single component due to the vast heterogeneity of algorithms and data used (Hegerl et al.l [2015)).

Uncertainties in the quantification of global water cycle components are indispensable when

attempting to close the water budget. We can express equation [2.1] as:

P-ET—Q—ATWS =¢ (2.2)

where £ is the budget residual, which in a closed budget equals to zero. Through the years, there have

been various attempts to close the budget (Starr and Peixoto}, |1958; Willmott et al.l [1985} [Sheffield|

let al., [2009; [Sahoo et al.| [2011). They have used different data sources and methods to minimize the

residual, but non-closure of the water budget still prevails. Alternatively, rather than using budget

closure as the performance metric, some researchers prefer to look at runoff as a diagnostic flux

to assess their results (Sheffield et al., 2009). Closing the water budget not only will improve our

understanding of the global water cycle, but will necessarily lead to improvement of the accuracy of
the data involved. Enhancing data accuracy is of critical importance for applications in climatology,
hydrology, meteorology, and water resource management, to name a few.

To keep moving forward towards closure of the global water cycle, ergo more accurate data, it
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would be beneficial to assess previous achievements. Herein, we present a review of the chronolog-
ical evolution of the paradigms regarding the global water cycle budget. We provide an in-depth
recapitulation of the advancements in global water cycle quantification. In addition, we present a
comparison between budgets reported in the literature, with highlights on the methods and data
sources used. Using significant technological improvements as timeline reference milestones, we con-
sidered four epochs, namely Early Days of Hydrology, Model Simulations Period, Satellite Era, and
Age of Big Data. Each epoch is characterized by its own accomplishments and challenges. Some of
the latter were overcome in succeeding epochs and some prevailed up to the present. Despite data
reaching unprecedented availability, detail, and coverage, the quest for robust quantification of the

global water cycle remains.

2.2 Chronicle

2.2.1 Early Days of Hydrology

Studies of the global water cycle are as old as hydrology. In classical Greece, Plato and Aristotle
philosophized that groundwater might be the component responsible for circulating water resources
by connecting rivers and lakes. However, Marcus Vitruvius is most commonly credited to be the first
one to conceptualize the water cycle. In the first century BCE, Vitruvius proposed a philosophical
description of the water cycle that placed precipitation instead of groundwater as a critical com-
ponent of water transport (Pollio, [1648). Vitruvius planted a seed that would later lead both, yet
independently, during the sixteenth century, Leonardo da Vinci and Bernard Palissy into describing
a water cycle with three principal components: precipitation, evaporation, and runoff (Palissy}, [1580;

Pfister et all,[2009). Therefore, equation [2.1] was originally formulated as:

P-E=Q (2.3)

where P is precipitation, E is evaporation, and @ is the runoff or exceeding precipitation. With this
theoretical formulation, the scientific community ventured into quantifying the above components
during the seventeenth century. Pierre Perrault and Edmund Halley were among the pioneers that
supplemented experimental science to hydrology with their research on catchment precipitation and
evaporation, respectively (Brutsaert), [2023]). John Dalton was the first to quantify all three above-
listed components for England and Wales, providing a comprehensive quantification of a water cycle

and not just a single component of it (Dalton, {1799).
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With catchment scale quantification achieved, the next step was to aim for global-scale quan-
tification. During the next years and up to the end of the 1960s, numerous studies, mainly coming
from Germany and Russia, attempted to quantify the global water cycle. |Baumgartner and Re-
ichel (1972)) surveyed the literature on the global water cycle quantification during the 1900s and
added their findings to the previous compilation by [Reichell (1952), accounting for over 40 studies
(Table . Over land, precipitation, range between (99 to 122) x 10% km?/year, evapotranspi-
ration range between (52 to 97) x 103 km?/year, and and runoff range between (25 to 48) x 10°
km? /year. Over oceans, precipitation and evaporation range between (242 to 412) x 103 km? /year
and (273 to 458) x 103 km? /year, respectively. Note that evaporation and evapotranspiration have
the most extensive ranges, presumably, because these values were derived from other measurements
since, at the time, it was not possible to obtain direct observations. Even so, several reported fluxes
are similar, if not identical, which may be caused by the fact that despite using different approxima-
tions or formulations, the initial data set used was the same. Over land precipitation estimates were
derived from gauge and chart data, runoff estimates were derived from the river measurements by
Marcinek] (1964]), and evaporation estimates were computed as the difference between precipitation
and runoff. Over oceans, heat balance maps, and climatological data for fixed locations consti-
tuted evaporation estimates, runoff is the same as overland because of atmospheric water balance
(Rasmussen, [1970), and precipitation estimates were the difference between evaporation and runoff.

Due to the high variability in time and space of global water cycle components, ground station
reports were not representative of the surrounding areas. Besides, it has been typical for developing
countries not to possess a ground station network dense enough to monitor global water cycle
components in those regions (Willmott et al., [1994)). Aware of the above, [Baumgartner and Reichel
(1972)) introduced very strong yet somewhat arbitrary correction assumptions, and estimated the
errors based on the biggest difference between the values compiled on their survey. Considering that
the precipitation measured by rain gauges is smaller than the amount reaching the surface and there
are different zonal climatic conditions overland, the authors suggest three different options to correct
precipitation underestimation. They pointed out that the scenario selected is the most probable,
yet no explanation is provided towards why that is. Correcting precipitation overland has a ripple
effect because it is used to compute runoff, which is then used to compute precipitation over the
oceans. Based on their assumptions, they report the quantification of the global water cycle had
been achieved within a margin of ten percent relative error.

A decade later, Willmott et al. (1985|) presented the first study with sufficient spatial coverage.

Their study was based on temperature and precipitation observational data records from 13,332
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globally distributed stations, and estimated terrestrial snow-cover, soil moisture, and evapotranspi-

ration. Their work extended on previous regional studies over Africa (Mather} [1962)), Asia excluding

U.S.S.R. (Mather} |1963al)), U.S.S.R. (Mather, 1963b)), Australia, New Zealand, and Oceania (Mather|
1963c), Europe (Mather, [1964a)), North America excluding U.S.A. (Mather}, 1964b)), U.S.A. (Mather
1964c), and South America (Mather} |1965). The above cumulatively used only 8,565 stations from

the same network [Willmott et al.| (1985) used on their study. Still, they had to use empirical equa-

tions and a revised version of the potential evapotranspiration method of |Thornthwaite| (1948) in

order to derive snow-cover, soil moisture, and evapotranspiration from the temperature and precip-

itation observational data available. [Willmott et al.| (1985)) did not report single values as annual

averages, but presented their results in maps where it could be seen that annual mean evapotran-
spiration is approximately 173 x 10 km? /year over continental regions near the equator, 43 x 10°
km3 /year towards the poles, and below 43 x 103 km?/year across the Sahara, Arabia and Central
Asia. Nonetheless, we know now, technological limitations and the lack of data sources place the

findings of the above discussed studies in a best-guess scenario only.

Table 2.1: Modified from Baumgartner and Reichel| (1972)) to exclude incomplete rows. All the fluxes
are in 10® km3 /year. Py, is precipitation overland, ET is evapotranspiration overland, @ is runoff,
Po is precipitation over oceans, E is evaporation over oceans, Pror is total global precipitation,
and Eror is total global evaporation.
Author P, ET Q Po FE Pror Eror

122 97 25 359 384 481 481

112 81 31 353 384 465 465

112 81 31 242 273 354 354

112 75 37 267 304 379 379

Cherubim)| (1931 112 75 37 334 371 446 446
Meinardus 1934]) 99 62 37 412 449 511 511

Halbfaf] (1934) 100 52 48 410 458 510 510
Wiist and Defant| (1936) 99 62 37 297 334 396 396
Wundt] (1938) 99 62 37 346 383 445 445

107 71 36 412 448 519 519
99 62 37 <324 <361 <423 <423
100 70 30 315 345 415 415
100 73 27 324 351 424 424
100 66 34-38 370 408 470 474
100 67 33 378 411 478 478
107 61 46-48 404 452 512 513
108 72 36 412 448 520 520
100 69 31 319 350 419 419
100 60 40 410 450 510 510
106 69 37 382 419 488 488
109 72 37 411 448 520 520
107 64 43 412 455 519 519

L’vovitc

35



2.2.2 Model Simulations Period

In simple terms, General Circulation Models (GCMs) are a set of theoretical and empirical mathe-
matical expressions that attempt to simulate climate’s physical processes. They could be an atmo-
spheric GCM, an oceanic GCM, or a coupled GCM. The first atmospheric GCM was introduced by
Norman , and it opened the door to new opportunities for global water cycle quan-

tification (McGuffie and Henderson-Sellers, [2001). Not long after, towards the end of the 1960s, the

National Oceanic and Atmospheric Administration Geophysical Fluid Dynamics Laboratory devel-

oped the first coupled GCM (Manabe and Bryan, |1969)). The basic structure of a GCM can be seen

in figure The GCM spatial domain is composed of 3D cells, whose horizontal grid is typically
formed by latitude and longitude, and pressure levels determine the cell height. The number of
physical processes considered and the complexity to which they are represented have continuously
improved since the introduction of GCMs. Today’s models further account for terrestrial vegetation

and the carbon cycle with an explicit representation of biogeochemical processes - such models are

referred to as Earth System Models or ESMs (Flatol [2011; |Collins et al., |2013; Hurrell et al., 2013;

[Flato et al., 2013; |Otto-Bliesner et al.l [2016]).

Short-wavelength (SW) solar radiation;
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Figure 2.1: Schematic structure of a General Circulation Model modified from |Bralower and Bice)

2012).
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Model simulations were initially driven exclusively by ground observations. Later on, satellite
remote sensing, model reanalysis data sets, or different combinations of them were assimilated.
Hydrological models revolutionized the quantification of the global water cycle by providing regular
gridded data with global coverage as well as constant time steps. On top of that, both statistical

and dynamical downscaling of GCMs and ESMs have evolved over the past decades to enable more

reliable estimates (Tapiador et al., |2020). For example, the most recent release of the European

Centre for Medium Range Weather Forecasts Reanalysis product (ERA-5), which is a reanalysis
based on the European Centre for Medium-Range Weather Forecasts’ Integrated Forecasting System

(ECMWFEF’s IFS) weather model, provides a 30 km global coverage with 137 atmospheric pressure

levels capped at 80 km with uncertainty ranges reported at each level (Hersbach et al. [2020).

Despite the exponential growth in computing power efficiency, many fundamental processes like
radiative transfer, convection initiation, hydrometeor phase change, and cloud microphysics that
occur between the sub-kilometer scale and the microscale (i.e., nine orders of magnitude less than
current model resolutions) are parameterized, as they cannot be resolved at the model resolution.
On that account, while GCMs and ESMs provide global coverage of water cycle components, their
spatial and temporal resolution are still relatively coarse, hindering validation attempts.

Model simulations further changed global water cycle quantification by providing more robust
formulations towards the estimation of evapotranspiration. The bucket model developed by
(1961)) was implemented for the evapotranspiration scheme used in the first coupled GCM

[and Bryan| |1969)). This scheme oversimplified the physical processes surrounding evapotranspira-

tion (figure ; nevertheless, its results were not significantly different from much more complex
formulations attempted in contemporaneous GCMs . In the aforementioned scheme,
evapotranspiration depends on potential evaporation, soil water content, field capacity (defined as
the amount of soil moisture or water content held in the soil after excess water has drained away

and the rate of downward movement has decreased), and water holding capacity 1982)).

[Federer et al.| (1996]) compared five surface-independent and four surface-dependent potential evapo-

transpiration approximation schemes in models, and their results suggest that, at that time, none of

the methods significantly differ from each other for most surface types. Still, the authors point out

that the Penman-Monteith (Monteith and Unsworth, [2013)) and Shuttleworth & Wallace (Shuttle-

(worth and Wallacel [1985) methods might pose as the most comprehensive for global-scale analysis,

a hypothesis that was later confirmed for Penman-Monteith (Wang and Dickinsonl, [2012)).

The coupled GCM introduced by [Manabe and Bryan| (1969) simulated average values of 93.4x 103

km? /year overland precipitation, 69.5x 10% km? /year evapotranspiration, 23.9x 10 km? /year runoff,
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359.3 x 10% km?/year over ocean precipitation, and 429 x 10® km?/year evaporation. In recent

years, [Haddeland et al (2011) compared 11 model simulations for the period 1985-1999 (Table [2.2)).

Observation-based data for global precipitation overland had an average value of 126 x 10® km? /year,
simulated evapotranspiration, and runoff mean values range between (60 to 85) x 10% km?/year and

(42 to 66) x 10® km? /year, respectively. Note that Manabe’s evapotranspiration estimate is the only

flux within the values reported by Haddeland et al.| (2011). Besides, the later estimates are within

the range for annual averages reported by [Baumgartner and Reichel (1972), hinting that despite the

substantial uncertainties and approximations, the values reported in the previous period were not

that far from the current ones.

RUNOFF
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Figure 2.2: Schematic of the Budyko bucket model implemented by [Manabe and Bryan| (1969). The
model represents a single layer soil reservoir with a defined maximum field water capacity of 15 cm
from which soil water evaporates at a rate proportional to the remaining water content.

38



Model simulations did represent a new data source with seeming advantages over observations
like the ability to generate global coverage data and perhaps more revolutionary to forecast, predict,
and project. Nevertheless, once again, the scientific community relied heavily on observational data
because it was crucial for model calibration and validation. Consequently, this novel opportunity to
research global water cycle variability and its response to global warming further stressed the need for

better observation-based measurements and more accurate quantification of the cycle components.

2.2.3 Satellite Era

Shortly after the introduction of climate models (Phillips, |1956), the Television Infrared Observation
Satellite (TIROS-1 or TIROS-A) became the first weather satellite successfully launched in 1960,
and so it began the satellite era (NOAA| |1987). Barnes and Bowley| (1968) proved the effectiveness
of satellite observations in hydrology when they published their findings on snow cover mapping over
the Missouri and Upper Mississippi River basins. Thereafter, several satellite missions made it into
orbit, among the most notable, we may mention the National Aeronautics and Space Administration
(NASA) Earth Observing System (EOS) missions. Based on their orbits, satellites could be grouped
into two major groups, either geosynchronous orbit (GEQO) or polar orbit. Many of the satellites
involved in the EOS missions have a nearly polar orbit. Polar-orbit satellites move around the Earth
in a Sun-synchronous orbit so that the overpass occurs at the same local time every day, taking
around 100 minutes to complete an orbit. These satellites overpass the equator at the same local
solar time each day. Satellite sensors could be active or passive, and it is not uncommon for both
to be onboard the same satellite. For example, the Tropical Rainfall Measuring Mission (TRMM)
Microwave Imager (TMI), a passive sensor, and the Precipitation Radar (PR), an active sensor,
were onboard the TRMM satellite. Regarding satellites and missions of particular interest for global
water cycle quantification, we have the TRMM (Huffman et al., |2007) and the Global Precipitation
Measurement (GPM) (Huffman et al.| |2015) for precipitation, the Moderate Resolution Imaging
Spectroradiometer (MODIS) for evapotranspiration (Mu et al., 2011), and the Gravity Recovery
and Climate Experiment (GRACE) for total water storage (Tapley et al.l|2004). There is no specific
instrument nor mission dedicated solely to runoff yet (Hong et al., [2007). However, runoff could
be derived from other satellite observations, for instance, TRMM precipitation (Huffman et al.|
2007), and MODIS landcover (Friedl et al., [2002]) using the Natural Resources Conservation Service
(NRCS) runoff curve number method (Cronshey}, 1986} [Burges et al., [1998).

Satellite observations complemented the traditional surface measurements and offered unprece-
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dented observational coverage on a global scale (McCabe et al.| [2017). The Defense Meteorological

Satellite Program (DMSP) near-polar orbiting satellites have been key providers of data over the

oceans since 1987 (Dubach and Ng;, [1988). Onboard their satellites, the most notable instruments are
the Special Sensor Microwave Imager (SSM/I) (Hollinger, [1991)) and its successor, the Special Sensor

Microwave Imager Sounder (SSMIS) (Kunkee et al.| 2008). These passive microwave radiometers

provide measurements used to derive data on surface wind speed, atmospheric water vapor, cloud
liquid water, and rain rate, which are critical to quantifying the global water cycle (Robertson|
2014)). Furthermore, various present-day models and reanalysis products assimilate satellite

observations (van Dijk and Renzullo, 2011). Nonetheless, like for GCMs, ground observations are

crucial for satellite data validation. Notwithstanding, the number of ground stations worldwide has

been declining since the 1970s (Walker et al. [2016]). It was not before [Trenberth et al.| (2007) that

the availability of observational and modeled data to quantify the global water cycle was exploited.

A year prior, Oki and Kanae| (2006]) presented a quantitative synthesis of the global water cycle.

Instead of estimating the budget, they made a compilation of individual studies to stress the impor-
tance of global water cycle quantification and further assessment to manage renewable freshwater

resources properly. This concern has been in the minds of the scientific community for quite some

time now (Falkenmark and Lindh| [1974). The budget assessments by Trenberth et al. and Oki &

Kanae are held in high regard and are often used as a sort of validation reference (Rodell et al.
2015)).

|Oki and Kanae| (2006) addressed the availability of renewable freshwater resources for human

consumption within the global water cycle. The authors stressed that freshwater availability would
be better assessed by fluxes than by storages because water is a circulating resource. Also, given

the high variability of the water cycle in time and space, water stress is not a problem of how

much water is available but a matter of when and where it is available (Postel et al., [1996). To

better represent their research, they synthesized previous estimates of global water cycle fluxes and

storages (Korzoun|[1978; [Shiklomanov][1998}; Dirmeyer et al.[2006} |Oki|[2006). By doing so, they also

presented a much more comprehensive mean state of the global water cycle. Their results showed
overland precipitation of 111 x 10® km? /year, evapotranspiration of 65.5 x 103 km? /year, and runoff
of 45.5 x 10® km? /year. Moreover, precipitation is divided into rainfall and snowfall, plus the fluxes
are allocated to different terrains or land uses. Over oceans, precipitation was 391 x 10% km3 /year

and evaporation was 436.5 x 10% km? /year.

Trenberth et al| (2007) used different data sources to quantify the global water cycle and its

components. Three data sets were selected for precipitation, the Global Precipitation Climatology
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Project (GPCP v2; |Adler et al.|[2003)), the University of East Anglia Climatic Research Unit time-

series (CRU TS 2.1; Mitchell and Jones|2005), and the PRECipitation REConstruction over Land

(PREC/L; |Chen et al[2002). Evapotranspiration was simulated using the Community Land Model

version 3 (CLM3; Bonan et al.|2002} |Qian et al.|2006]), which was forced using a combined PREC/L

and GPCP precipitation data set. Surface plus subsurface runoff was derived from two climatic water

balance estimates (evapotranspiration minus precipitation), the first from the European Centre for

Medium Range Weather Forecasts Reanalysis 45 year product (ERA40; [Uppala et al.|2005)) using

the methods described by [Trenberth and Guillemot| (1998)), and the second using evapotranspiration

from CLM3 and GPCP precipitation. Additionally, the authors relied on previous work for some

components of the global water cycle like surface runoff (Dai and Trenberth| [2002)), ice volumes

(Houghton et al., 2001), soil moisture (Webb et al. |1993)), and groundwater (Schlesinger} 2005). It

was common for prior studies to cite values that, in return, cite another and so on. Unlike them,
the authors documented, and traced back as far as possible, the origins of the values used. They
reported 113 x 10% km? /year overland precipitation, 73 x 10® km? /year evapotranspiration, 40 x 103
km3 /year runoff, 373 x 10 km3 /year over ocean precipitation, and 413 x 103 km? /year evaporation.

It is important to note that satellite data records are recently of sufficient time frame lengths and

with methods “mature” enough to develop meaningful global water cycle climatology records that

can provide information on its components mean state and variability (Schlosser and Houserl, [2007}

[Robertson et al. 2014). Exploiting the increasing availability and maturity of satellite products,

[Sheffield et al.| (2009) addressed the feasibility of closing the water budget, relying solely on satellite-

based products. They combined the TRMM Multi-satellite Precipitation Analysis (TMPA;

2007) and the Climate Prediction Center morphing method (CMORPH; |Joyce et al.|[2004)

products for precipitation, the University of Colorado GRACE time series (CSR RL04;
for total water storage, and they derived evapotranspiration from Aqua satellite data using
the Penman-Monteith revised formulation proposed by . Then they evaluated their
findings over the Mississippi River basin comparing their runoff estimates, computed as the budget
residual, with ground observations. Their results indicate that the data products selected do not close
the budget because the computed runoff is greatly overestimated compared to ground measurements.
The authors suggest that further improvement of satellite-based products may reduce the residual,

and suggest multi-source data merging as a complementary means to achieve budget closure.

42



2.2.4 Age of Big Data

In this day and age, we have transitioned from minimal data coverage and sources into a widely
heterogeneous abundance. In contrast to the continuous decline in the number of ground stations,
satellite-based and model-derived data products have proliferated. However, while some components
of the global water cycle have multiple products to choose from (e.g., precipitation), others do not
(e.g., total water storage). Some products assimilate or calibrate against ground station data to
improve their performance (Rudolf and Schneider| 2005); others implemented machine learning
processing to do so (Hong et all [2004). It is not uncommon to find performance comparisons
between products in the literature, evincing large differences in the magnitude and the variability of
the estimates (e.g., as much as 300 mm/year difference between precipitation data sets; |[Sun et al.
2018). In their global comparison of 30 data sets at multiple spatiotemporal scales, |Sun et al.| (2018)
found that, in general, variability from reanalysis data sets is more substantial than that from other
data sources. Conversely, we can see that no single data set performs the best in all regions and
at all scales. Aware of that fact, some studies did not look for the best individual data set, but
the best combination of data sets towards budget closure of the water cycle over one (Azarderakhsh
et al.,2011) or multiple basins (Lorenz et al.,|2014). It should be pointed out that the above studies’
success metric was not budget closure itself, but validation versus in situ runoff instead.

The paradigm of quantifying the global water cycle is steadily shifting from identifying the best
data source per water cycle component into developing the best way to merge data from various
sources to complement each other. Various integration methodologies have emerged, among the
most widely used ones are: bayesian model averaging, constrained linear regression, neural networks,
optimal interpolation, and simple weighting (Bishopl, [1996; Hoeting et al., [1999; |Rodgers, 2000; |Aires
et al.l 2004). Also, post-processing closure methodologies, which distributed the budget residual R
among the components based on each component’s uncertainties, explored Monte Carlo applications
and Kalman filter variations (Pan and Wood, 2006 [Munier and Aires, 2018). Specifics vary from
method to method, but, in general, combining different data sets consists of three steps. These steps
are an initial assessment of the products to be combined, followed by the integration of the products,
and finally, budget closure post-processing.

Data integration is not a new concept nor the methods mentioned above, but its implementation
altogether with closure constraints into the quantification of the water cycle is. [Sahoo et al.| (2011))
used 16 data sets (eight for precipitation, six for evapotranspiration, one for runoff, and one for total

water storage) applying simple weighting integration over ten basins across the globe, determining
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water cycle budget non-closure between 5—25%. Likewise, used eight data sets (four
for precipitation, two for evapotranspiration, one for runoff, and one for total water storage) in 32
different basins. The authors focused on describing the uncertainty contribution of each component
rather than focusing on budget closure, and found that, in general, most of the closure error comes
from evapotranspiration.

To date, only a few studies have adopted multi-source data integration at the global scale (Rodell

let all [2015} |Zhang et al. [2016; [Munier and Aires| |2018)). The differences between studies and their

results reside either on the data sets selected or in the post-processing. [Rodell et al| (2015), using

six data sets (one for precipitation, three for evapotranspiration, one for runoff, and one for total

water storage; table [2.3]), reported a non-closure residual of less than 10%. The authors adopted the

variational data assimilation algorithm of L’Ecuyer and Stephens| (2002)) and adjusted it to optimize

the global water cycle budget closure at the annual scale. They reported (116.5 4= 5.1) x 103 km? /year
overland precipitation, (70.6 & 5.0) x 103 km? /year evapotranspiration, (45.9 + 4.4) x 103 km? /year
runoff, (403.5 £ 22.2) x 10% km? /year over ocean precipitation, and (449.5 + 22.2) x 10® km? /year

evaporation. Note that the estimates reported by |Oki and Kanae| (2006) and Trenberth et al.| (2011])

lie within the above findings with the only two exceptions of overland precipitation from

(2006)) and runoff from Trenberth et al. (2011).

Table 2.3: Compiled from [Rodell et al.| (2015)). P is precipitation, ET is evapotranspiration, @ is
runoff, and A TWS is changes in total water storage.

Data source Variable Reference(s
GPCP v2.2 P |Adler et al.| (2003

Huffman et al.| (2009
Princeton ET ET Vinukollu et al. (2011b
MERRA and MERRA-Land ET Rienecker et al.| (2011

|Bosilovich et al.| (2011
[Reichle (2012

GLDAS ET |R0dell et al.| (2004
University of Washington runoff Q [Clark et al.| (2015
CSR RL05 A TWS \Chambers and Bonin] (2012

|J0hnson and Chambers (2013
Tapley et al.| (2004

|Zhang et al| (2016), using 14 data sets (five for precipitation, six for evapotranspiration, one for

runoff, and two for total water storage; table , assessed the effect of different data sources in the
estimation of the water cycle and its budget closure. By removing/replacing in situ observations,
reanalysis products, model simulations, or satellite products before data integration, the authors
observed that removing non-satellite sources worsens closure errors. Furthermore, as for satellite

data sets, they indicate that budget closure error depends on the use of satellite-only data sets or
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satellite-gauge combined data sets. Regardless of the combination of data sets, the budget could not

be closed and, thus, a constrained Kalman filter was used, as developed by |Sahoo et al.| (2011). They

reported a non-closure residual that ranges between 7.6 — 10.4% when using satellite products that
lack gauge-based corrections, which is reduced to 4.2 — 9.0% when using gauge-corrected satellite

products.

Table 2.4: Modified from [Zhang et al.| (2016). P is precipitation, ET is evapotranspiration, @ is
runoff, and TWS is total water storage.
Data source Variable Reference(s

CSU P |Bytheway and Kummerow| (2013
PGF P ‘Sheffield et al. (2006
CHIRPS P [Funk et al.| (2014
GPCC(v6) P 'Schneider et al.| (2014
TMPA-RT P Huffman et al[ (2007, 2010
SRB-PGF-PM ET [Vinukollu et al.| (2011a
VIC ET |Shefﬁeld and Wood (2007
ERA-interim ET [Simmons| (2006
MERRA ET |Rienecker et al.| (2011
GLEAM ET [Miralles et al.| (2011
SRB-CFSR-SEBS ET Vinukollu et al.| (2011a,
SRB-CFSR-PM ET Vinukollu et al.| (2011a,
SRB-CFSR-PT ET Vinukollu et al.| (2011a;
VIC Q Sheffield and Wood| (2007
VIC TWS Shetlield and Wood| (2007
GRACE TWS |Landerer and Swenson| (2012

[Munier and Aires| (2018)) integrated 12 data sets (four for precipitation, three for evapotranspira-

tion, one for runoff, and four for total water storage; table 5) over 11 basins to test a budget closure
correction model. The authors define the Calibration Index for Closure (CIC), which depends on the
values of precipitation minus evapotranspiration (P — ET) and the Normalized Difference Vegeta-
tion Index (NDVI), and based on the CIC values, assigned the basins into one of four classes. Then
the closure correction model is calibrated to each basin using the corresponding CIC class, and it
optimizes budget closure for the fluxes one at the time. While no absolute values are reported, the
authors describe how this novel method reduced non-closure residuals by 26% of the value it would
have using constrained Kalman filter post-processing.

In the above-mentioned studies, there is a methodological consensus to use simple weighting when
integrating data from various sources. This is in good agreement with who compared
the performance of different integration methods, and reported that simple weighting is the most
suitable one. Simple weighting offers a straightforward formulation, and more elaborate methods do
not offer enough improvement on results to justify the increased complexity they carry along. The

assumption for the simple weighting method is that the errors associated with the different products
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Table 2.5: Modified from [Munier and Aires| (2018). P is precipitation, ET is evapotranspiration, Q
is runoff, and A TWS is total water storage change.

Data source Variable Reference(s)
TMPA P Huffman et al[(2007)
CMORPH P Joyce et al.|(2004)
NRL P Turk et al. (2010)
GPCP P Adler et al.| (2003)
GLEAM ET Miralles et al.| (2011)
MOD16 ET Mu et al.| (2007)
NTSG ET Zhang et al.|(2010)
GRDC Q http://www.grdc.sr.unh.edu/
CSR A TWS http://www2.csr.utexas.edu/grace/
GFZ A TWS ftp://isdcftp.gfz-potsdam.de/grace/
JPL A TWS https://grace. jpl.nasa.gov/data/get-data/
GRGS A TWS https://grace.obs-mip.fr/

are Gaussian (zero-mean) and independent. However, there might be cases that this assumption
may not hold, especially for gauge-based data products, and the dependence among products will
cause an underestimation of the error associated with the integrated data set. The combined data

set for a given component of the global water cycle (P, ET, @, or A TWS) is equal to:

x = zn:w,:cl (2.4)
i=1

where x is the combined data set for the single component of the global water cycle being integrated,
T1, Ty, T3, ..., Ty are the different products considered, w; is the associated weight of product x;
and is defined as:

wi = 2= @) (2.5)

Z;’L:l (- mj)i2

where T is the arithmetic mean of the n data products considered, and (Z — xi)z is defined as the
error variance. That is to say, the weight associated to each product is proportional to the inverse

of its error variance. Finally, the error associated to the combined data set x is:

P S— (2.6)

Z?:l (T — xi)_Q

2.3 Status Quo et Verisimile Futurum

It might have been noticed that the chronology of global water cycle quantification does not follow a

linear timeline. The epochs started at different points in time without replacing the one before. Each
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epoch did not only continue to develop, but just like global water cycle components, they interacted
with each other in a feedback loop. A convergence point is the fact that model simulations and
satellite-based measurements depend upon ground observations either for validation or calibration.
The latest epoch, the age of big data, does not intend to merge all the previous into one, but to exploit
the various data sources stemming from them to generate the most accurate estimates possible.
Therefore, we should keep working on the continuous improvement of ground measurements, model

simulations, and satellite observations, which will inherently improve their integration.

Abbott et al| (2019) provided one of the most recent descriptions of the global water cycle.

Analogously to [Oki and Kanae| (2006), the authors did not quantify the global water cycle com-

ponents themselves but synthesized data from the literature. The authors did not aim to quantify
the components of the global water cycle but to assess its correct representation. To do so, they
compiled over 464 diagrams (e.g., ﬁgure and estimates from over 80 studies. Human interaction
was absent in approximately 85% of the diagrams, highlighting the omission of the non-negligible
anthropogenic component of the water cycle. In addition, the authors stress the necessity to repre-
sent seasonal and interannual variability of the global water cycle fluxes and storages in diagrams
because the general understanding of temporal variability of the global water cycle is absent in the
collective consciousness 2009). Within the studies, not all of them reported estimates for
all components of the global water cycle. The synthesis resulted in the following estimates: over-
land precipitation 110 x 103 km? /year, evapotranspiration 69 x 10% km?/year, and runoff 46 x 103

km? /year; over oceans, precipitation 380 x 103 km? /year and evaporation 420 x 10% km? /year.

Herein, building upon the previous compendium done by [Baumgartner and Reichel (1972), we

surveyed the recent literature, and to the best of our knowledge, compiled all the different estimates
of global water cycle components available in peer review journals that at least report the aver-

age annual fluxes for the terrestrial or oceanic water cycle (Table [2.6). Since 2010 it has become

more common for studies to address only the terrestrial water cycle (e.g., [van der Ent et al.||2010}

[Haddeland et al.||2011} Jasechko et al|[2013; [Zhang et al.[2018). On the other hand, ocean salinity

measurements are being exploited to study the oceanic branch of the water cycle (Durack, 2015]),

yet there are very few studies focusing solely on the oceanic water cycle (e.g., [Syed et al.[2010}

[Robertson et al.|2014; Gutenstein et al|2021). Inspecting the chronology of global water cycle flux

annual average estimates over land and over oceans, it is safe to state that uncertainty estimates as-

sociated with fluxes over oceans is higher than that over land (figures|2.4(a){and |2.4(b)). Comparing

the standard deviation and the interquartile range of the estimates from (1999) onward with

the ones from all the estimates (1905-2019), we can affirm that variability has diminished in recent
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Figure 2.3: The Water Cycle. Credit: Howard Perlman, United States Geological Survey (USGS).

years (figures [2.4(c)| and [2.4(d))). Moreover, the variability of ocean precipitation and evaporation

was reduced by more than 70%. These findings advocate that the consistency of the estimates has
been improved.

Despite our survey compiling estimates available in the literature rather than presenting a more
“traditional” estimates’ time series, we observe an increasing trend in the global water cycle fluxes
annual average as the year of publication progresses (figure . We should remark that the years
listed correspond to the publication date and do not necessarily reflect on the data sets’ reference
period used by the authors therein. Hence, our observations are of qualitative and not quantitative
character. An increasing trend in global water cycle fluxes, commonly referred to as intensification,

is often attributed to global warming; however, the processes that drive the global water cycle’s

response are yet to be fully understood (Allan et al.,2020). Take note that these estimates are global

and do not describe changes in the water cycle at different smaller scales. On top of that, we should
not assess these results conclusively because most studies used different data sources and different

methods at different development stages, as discussed in the previous section. For example, if we

were to look only at table [2.6] entries in figure (from [Baumgartner and Reichel (1972)) onward),

we would not be able to clearly discriminate a trend from the variability present in those estimates.
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Table 2.6: All the fluxes are in 10% km? /year. P, is precipitation overland, ET is evapotranspiration
overland, @ is runoff, Py is precipitation over oceans, F is evaporation over oceans, Pror is total
global precipitation, and Eror is total global evaporation.

Author PL ET Q Po FE PTOT ETOT
Manabe and Bryan| (1969 93.4 695 239 359.3 429 4527 4985
Baumgartner and Reichel (1972) 100 65 35 383 418 483 483
Falkenmark and Lindh| (]1974]) 114 73 41 412 453 526 526
Speidel and Agnew| (]1982]) 111 71 39.7 385 425 496 496
NRC| (1986) 107 71 36 398 434 505 505
VanDerLeeden et al.l q1991D 100 70  39.6 320 350 420 420
Gleick! (1993) 119 72 47 458 505 577 577
Schmitt| (1995 110.4 69.4 41  384.7 4257 495.1 495.1
Shiklomanov| (]1998[) 119 742 427 458  502.8 577 577
Oki| (1999) 115 75 40 391 431 506 506
Oki and Kanae| (2006) 111 655 455 391  436.5 502 502
Schlosser and Houser| (2007) 103.5 63 405 376 417  479.5 480
Trenberth et al.| (]2007]) 113 73 40 373 413 486 486
Lim and Roderick| (]2009[) 113 788 34.1 417.7 451.8 530.7 530.8
Syed et al. (2010 36.1 374.2 409.2

van der Ent et al. <[2010D 117 32 35

Chapin et al| (2011]) 110 71 40 385 425 495 496
Haddeland et al.| (2011 126 725 54

Trenberth et al| (2011 114 74 40 386 426 500 500
Jasechko et al.| (2013) 110 727 37.3

Durack] (2015]) 110.4 85.1 394 384.7 410 495.1 495.1
Rodell et al.| (2015) 116.5 70.6 45.9 403.5 449.5 520 520.1
Schneider et al.| (]2017[) 1176 71.8 458 386 431.8 503.6 503.6
Zhang et al. (]2018]) 114.7 68  46.6

Abbott et a | (]2019[) 110 69 46 380 420 490 489
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Figure 2.5: Chronological estimates of global water cycle fluxes over land in 10% km?/year. P
is precipitation, ET is evapotranspiration, and @ is runoff. The years listed correspond to the
publication date and do not necessarily reflect the data sets’ reference period used by the authors.
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Figure 2.6: Chronological estimates of global water cycle fluxes over oceans in 10% km? /year. P is
precipitation and F is evaporation. The years listed correspond to the publication date and do not
necessarily reflect the data sets’ reference period used by the authors.

Moreover, suppose we were to omit the estimates reported between |VanDerLeeden et al(1991) and

[Shiklomanov| (1998), there seem to be minor oscillations around an overall flat trend, attesting the

narrative is dependent on the data being observed. Latch onto the ratio between evapotranspiration
and precipitation over land, also known as the Evaporative Index (ET/P; figure , and it is
interesting to see how, despite some clear multiannual oscillations, there seems to be no sharp trend.
The Evaporative Index is the fraction of available water consumed by evapotranspiration
[1974), and assuming no significant change in total water storage, its residual (1— ET/P) could be
inferred as the fraction that turns into available freshwater. This, at least on paper, would suggest
global freshwater availability has not diminished on average.

Through the previous sections, we have described how our understanding of the global water
cycle has been evolving over the years as we exploit novel technologies and methods to quantify the
components of the global water cycle more accurately. Accordingly, to assess future changes in the
global water cycle and its response to global warming, we should study both past shifts documented
in observational records and possible changes predicted by model simulations. While there are

inherent fluctuations in the global water cycle, some of them are driven by natural phenomena like

variations in the sun and volcanic eruptions (e.g., the year without a summer; |Stommel and Stommel|
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Figure 2.7: Chronological estimates of the evaporative index. Which is defined as the ratio between
evapotranspiration and precipitation overland (ET/P). The years listed correspond to the publica-
tion date and do not necessarily reflect the data sets’ reference period used by the authors.

1979), and anthropogenic activities. The latter exerts a continuously increasing influence directly

via interference with land surface and water consumption, and indirectly via greenhouse gases and

aerosols emissions (Abbott et al.| 2019). The nature of the driver and the spatial scale they exercise

domain over, alter key water cycle characteristics, e.g., precipitation frequency, intensity, or duration

(Pendergrass and Hartmann| 2014)).

Concurrently, model simulations predicted that global mean precipitation would rise in response

to CO4 doubling (Mitchell et al., [1987). The relationship between climate and water cycle caught

the attention of both climatic and hydrological communities (Chahine, [1992b; Loaiciga et al. [1996).

Models and the relationship between climate and water cycle are continuously evaluated in the As-

sessment Reports of the Intergovernmental Panel on Climate Change (IPCC; |Collins et al.|[2013;

[Flato et al]2013)). The Clausius-Clapeyron expression for the saturation vapor pressure establishes
that at temperatures typical of the lower troposphere, the water holding capacity increases by about
7% for each 1K increase in temperature. It is safe to assume that an increase in lower-tropospheric
water vapor will lead to a chain reaction affecting the entire global water cycle. The poorly under-
stood response of the global water cycle resulted in two main hypotheses: the “changing character

of precipitation” and the “dry gets drier, wet gets wetter”. The former shows that the increase
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in global mean precipitation will be unevenly distributed in precipitation events (Trenberth et al.

2003). Heavy or extreme rainfall will become more frequent, while light or moderate precipitation
will decline. The latter suggests that the increased vertical gradient of atmospheric water vapor

would offset atmospheric wind convergence in the tropics making wet regions wetter and dry regions

drier (Roderick et al., 2014). Both hypotheses are today under vigorous debate (Held and Soden

2006}, [Seager et all [2010} [O’Gorman and Muller}, 2010} [Greve et al.l 2014} [Roderick et al.| [2014;
[Byrne and O’Gorman), [2015; [Kumar et all 2015} [Salzmann| [2016; [Skliris et all, 2016} [Wang et al.
[2017; Markonis et al. [2019; |Allan et al., [2020).

Global precipitation and evapotranspiration, however, are further associated with Earth’s energy

budget rather than the Clausius-Clapeyron equation (O’Gorman et al., 2012; [Roderick et al., 2014).

Model simulations report that in response to global warming, global precipitation and evapotran-

spiration, independently of climate forcing, would increase constrained by Earth’s energy budget to

an expected rate between 2-3% /K (Samset et al., 2018). Precipitation’s response to global warming,

also known as apparent hydrological sensitivity, comprises a fast reaction proportional to radiative

forcings and a slow temperature-dependent response to the radiative forcings (Bala et al. 2010).

Across multiple model simulations, precipitation increases with global warming are generally sup-
pressed over land compared to the global mean (0.8-2.4%/K vs. 2.3-2.7%/K), a behavior partly

expected due to limitations on moisture convergence product of the more significant warming over

land than oceans (Richardson et all [2018)). Considering that global precipitation’s response to

global warming is slower than the response of atmospheric water vapor, atmospheric water vapor

lifetime must increase to reconcile these different response rates (Hodnebrog et al., 2019). By doing

so, regional characteristics of precipitation such as seasonal duration, frequency, and intensity are

altered (Pendergrass| [2018)).

As atmospheric water vapor content increases and its lifetime prolongs, the increased horizon-
tal moisture transport induces an intensification of precipitation minus evapotranspiration patterns.
Over the continents, precipitation minus evapotranspiration is positive and accounts for the freshwa-
ter flux from the atmosphere to the surface, whereas over the ocean, precipitation minus evaporation
is negative and represents the freshwater flux from the oceans to the atmosphere. In dry regions,

where evapotranspiration is constrained by water availability, changes in precipitation minus evapo-

transpiration will be mainly credited to precipitation changes (Roderick et al., [2014)). Precipitation

minus evapotranspiration over land can be negative during dry seasons or extended drought periods

(Kumar et al., 2015). Given that evapotranspiration is a compound flux of evaporation and tran-

spiration, the response of vegetation to global warming and increased COy concentrations in the
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atmosphere will also determine the characteristics of regional precipitation minus evapotranspira-
tion patterns. Besides, over land, we cannot neglect anthropogenic activities like irrigation, land-use
change, deforestation, urbanization, and water withdrawals, among others that directly alter pre-
cipitation minus evapotranspiration regimes. On this account, we can expect several factors like
topography, atmospheric circulation, anthropogenic tampering, and vegetation response to generate

different and complex water cycle responses to global warming.

2.4 Discussion and Conclusions

Early attempts to quantify the global water cycle date back to the early 1900s (Briickner} 1905).

To date, despite tremendous advances in terms of data and technology, accuracy regarding the

components of the global water cycle has not increased accordingly. Ultimately, unquantified un-

certainties on remote sensing satellite products (Sheffield et all [2009), limitations of climate model

simulations (Trenberth et all [2011]), short and heterogeneous observational data records (Schneider]

2017), and the natural fluctuations of water cycle components Markonis et al.| (2018) keep the

understanding of the global water cycle ambiguous and human contribution unattributed. Within
the twenty-first century, the paradigm of quantifying the global water cycle has been shifting from
identifying the best data source per water cycle component into developing the best way to integrate

data from various sources 2014)). Therefore, proper statistical tools for uncertainty quantifi-

cation (Papalexiou) 2018)), robust downscaling/disaggregation (Papalexiou et al., 2018), along with

analysis over multiple scales (Hanel et al., |2017; Markonis et all, 2021b)) are required.

The quest for accurate global water cycle quantification gave birth to the Global Energy and
Water Exchanges (GEWEX) project. The GEWEX project, formerly known as the Global Energy
and Water Cycle Experiment, started in 1990 and is dedicated to studying the Earth’s water and
energy cycles . GEWEX established a channel for international research collabora-

tion through different panels, meetings, and projects. Among the most renowned outcomes, we could

mention the work of [Trenberth et al.| (2007), which we further discussed in section Speaking

of data sets and modeling improvements, GEWEX overlooks eight continental-scale experiments:
GEWEX Americas Prediction Project (GAPP; , Baltic Sea Experiment (BALTEX;
Raschke et al|[1998| [2001)), GEWEX Asian Monsoon Experiment (GAME; [Yasunari [1994), Large
Scale Biosphere Atmosphere Experiment in Amazonia (LBA; , Mackenzie GEWEX

Study (MAGS; |Stewart et al|[1998), La Plata Basin (LPB; |Cavalcanti et al.2015), The African

Monsoon Multidisciplinary Analysis (AMMA; Redelsperger et al|2006), and Murray-Darling Basin
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(MDB; [Evans and McCabe|[2010)). Other than the logistic and political criteria, these sites were

selected in order to collect data from different climate regimes to assess the global water cycle in
a representative manner. The collaborative effort of the international teams involved improved
the understanding of regional water balance and feedback processes. The data resulting from the
continental-scale experiments are publicly available. Thus, they indirectly started to set up a sci-
entific framework to quantify the global water cycle and close its budget; the latter was obtained
within a 10% non-closure tolerance.

As a rule of thumb, ground observations are regarded as the closest measurements to the ac-
tual values. However, it is evident that ground observations suffer from systematic errors, mainly
because of different environmental and meteorological conditions. For example, the precipitation

phase, evaporation from the gauge, and wind drift induce precipitation undercatch on rain gauges

(Fuchs et all |2001)). The scientific community is aware that good quality ground observations data

represent a cornerstone to quantify the global water cycle, yet we are still unable to deploy a ho-
mogeneously distributed global network. Spatial coverage of the Global Precipitation Climatology

Centre (GPCC), currently the most comprehensive gauge network available, represents only about

1% of the Earth’s surface (assuming no overlap of a 5 km radius per gauge) (Kidd et al.,[2017). One

of the main reasons behind the struggle to deploy a comprehensive network is that ground stations,

and ergo observational data records, are extremely geopolitically dependant (Kibler et al. 2014).

In addition, deploying dense monitoring networks unavoidably imply high operational and main-

tenance costs and spatial requirements (Saltikoff et al., [2017)). Consequently, in many developing

countries, ground observational records, if available, tend to have multiple temporal discontinuities

or non-standardized data quality check protocols (Walker et all 2016). Different techniques have

been used to fill spatiotemporal gaps in observational records. Reconstructing these time series

could be achieved using several tools that could be grouped in the following, self-contained infilling

(Kemp et al.,[1983; Pappas et al.,[2014]), spatial interpolation (Shepard}, [1968; [Young], [1992; Eischeid|

let al., {1995l 2000), quantile mapping (Simolo et al.| 2010; Newman et all 2015 |2019; Devi et al.

2019), and machine learning methods (Dastorani et al., [2010; [Wambua et al.| [2016). On a different

front, there is an opportunity to use data from amateur networks and the internet of things (i.e.,
big data with large uncertainty) to enhance spatial coverage and spatiotemporal resolution of tradi-
tional ground stations via crowdsourcing and the internet. Needless to say, appropriate validation

and quality control procedures must be adopted and implemented to fully exploit the potential to

provide a valuable source of high spatiotemporal resolution real-time data (Muller et al., 2015). As

of now, however, the lack of adequate ground-based data and station networks still hampers our
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ability to monitor the water cycle robustly.
Model simulations can generate past climate, current climate, and climate projections data.
Moreover, they are capable to switch anthropogenic forcing on precipitation on and off, while the

decoupling of natural and anthropogenic forcing remains a challenge on observational data (Allen|

land Ingram) 2002). However, compared to observational data, various characteristics of global water

cycle fluxes, and precipitation, in particular, hold uncertainty (Prein and Pendergrass| 2019). The

simulated projections’ temporal length appears to influence precipitation trends, e.g., variability in

precipitation estimates are indistinguishable from the noise of internal variability in 20-year or longer

runs (Hawkins et all 2016). Specifications differ from model to model, but in general, recycling of

moisture is too large, and the lifetime of moisture is too short across most models, inducing premature

precipitation (Trenberth et al.,[2011)). Also, inaccurate convective parameterizations evidenced that

models overestimate precipitation frequency and underestimate its intensity (Trenberth et all [2017).

Analysis focusing on convective precipitation highlighted that its model representation is strongly
dependant on the model depiction of cloud microphysics and cloud spatiotemporal variability
2016). There is a threefold spread in mean precipitation change with global temperature
(1 — 3% K1), and model simulations showed that there is a correlation between an increase in

precipitation extremes and an increase in model resolution, precipitation extremes at the same time

showed an anticorrelation with changes in light-moderate precipitation (Thackeray et al., 2018).

Furthermore, both the spread and magnitude of change in extreme precipitation vastly exceed those

of mean precipitation (4—10% K1) (Kharin et al., 2013)). Last but not least, despite the known link

between the energy and water global cycles, solar dimming and brightening (the effect of aerosols)

are not well represented or sometimes not even considered at all in models; thus, model simulations

fail to reproduce variability in the global water cycle intensity (Wild and Liepert], 2010)).

Satellite remote sensing observations, like models, are limited by their design. Both the orbit
they follow and the instrument type (i.e., active or passive) influence global water cycle components’
monitoring. The satellite’s orbit would delimit its spatiotemporal resolution or coverage. In general,
a satellite with high spatial resolution comes with coarse temporal resolution and vice-versa, and
high spatiotemporal resolution comes with limited coverage. It has been shown that estimates from

active sensors can considerably vary from passive sensor ones, yet they complement each other

(Petkovi¢ and Kummerow), [2017)). In addition, similarly to ground observations, satellite remote

sensing has to deal with different meteorological conditions. For instance, satellite-based global

water cycle estimates accuracy is affected by cloud-top reflectance and thermal radiance, making

uncertainty larger during the winter or in dry climates (Kummerow et al., |2004). While satellites
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can monitor the water cycle at the global scale and cover regions inaccessible by ground stations,
they still have to tackle the problems involved in complex topography regions. In some cases,
the relative biases reach as much as 300% for precipitation estimates (Fekete et all, 2004). Further
complications arise from the unique spatiotemporal characteristics of different remotely sensed global
water cycle components, making it impossible to assess the water budget without some sort of prior
downscaling or integration (Sheffield et al., |2018]). E.g., TMPA’s precipitation at 25 km every three
hours (Huffman et al.l 2007), MODIS’ evapotranspiration at 1 km daily (Mu et al.| 2007), and
GRACE’s total water storage at ~ 500 km every 30 days(Tapley et al., 2004). Despite all the issues
mentioned above, satellite products continue to be the most widely used sources to monitor global
water cycle components due to their comprehensive spatial coverage.

It is clear that no global water cycle data source is without fail, and in some cases, one data
source strengths cover for other weaknesses. It is typical for satellite-based measurements and model
simulations to use ground-based data for validation, calibration, and enhancement purposes. Along
the same line, model simulations additionally assimilate satellite-based observations for the above
plus for reanalysis. In contrast to the top-down estimation approach used in satellite remote sensing,
a bottom-up approach, referred to as reverse hydrology, has been recently proposed (Ciabatta et al.
2020). A physically-based selection of surface explanatory variables, like soil moisture, vegetation
cover, and topography, is expected to preserve process dynamics and interlinkages within data
sets that remain unresolved in conventional statistical downscaling bias-correction methods (Wehbe
et al., [2020). It is of utmost importance that the research community strives to improve ground
observations, model simulations, and satellite remote sensing measurements individually because
more accurate and robust individual data sources will subsequently refine the outcome of multi-
source integration. Hence, a three-way integration of satellite remote sensing, model reanalysis, and
ground-based measurements, as discussed in section is widely acknowledged as the current

best practice, particularly when leveraging machine learning tools to handle large data sets.
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Chapter 3

Water Cycle Changes in
Reanalyses: A Complementary

Framework

3.1 Introduction

Understanding the global water cycle and its balance is crucial for Earth system science and climate
change studies. To assess the water cycle at multiple spatiotemporal scales, we observe and measure
the fluxes and storage that comprise its budget. The data sources we rely on for such research
have continuously evolved, even though they remain thwarted by uncertainty (Vargas Godoy et al.,
2021). Ground observations are regarded as the closest measurements to the actual values, but we
still lack a comprehensive global network. E.g., the Global Precipitation Climatology Centre (GPCC)
(Schneider et al., 2011)), currently the most extensive gauge network available, represents only about
1% of the Earth’s surface (assuming a 5[km| non-overlapping radius per gauge) (Kidd and Huffman)
2011). While a kindred initiative for evaporation exists (FLUXNET) (Pastorello et al., 2020),
evaporation is more commonly derived from atmospheric moisture and precipitation measurements
than directly observed. Satellite remote sensing data complement ground measurements by offering
observational coverage on a global scale. Its record, nonetheless, is too short to assess long-term
changes of water cycle fluxes.

Reanalysis products assimilate observational data into general circulation models or, most re-
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cently, earth system models. Broadly speaking, assimilation algorithms recursively combine the
model outputs and observations within a Bayesian statistical framework. As a result, the physical

conservation principles are overstepped, which is reflected in substantial variability compared to

that of other data sources (Prein and Pendergrassl 2019). Since their early implementation, con-

cerns about the reliability of reanalyses to assess the global water cycle have been raised (Trenberth

land Guillemot, 1995). Despite individual advancements in model simulations as well as assimila-

tion algorithms, it has been reported that moisture recycling is too large and its lifetime too short

(Trenberth et al., 2011). Regardless, reanalyses remain one of the most comprehensive data sources

because of their high spatiotemporal resolution and capability to switch anthropogenic forcing on

and off (Allen and Ingram, 2002).

Therefore, it is no surprise that they have been used in the estimation of water cycle fluxes and

their changes. A prime example is the work of Trenberth et al.| (2007), therein the authors describe

the global water budget and its annual cycle. While the authors have reservations about reanalysis-

based results, they acknowledge the potential for in-depth analysis using reanalyses. It is worth

mentioning that the work of|Trenberth et al.|(2007) is in high regard by the scientific community, and

their results are often used to benchmark more recent studies. During the last decade, global water
cycle research has explored multi-source data integration, exploiting observational and reanalysis
data availability. Specifics between methods vary, but, in general, data sets are merged in three

steps: initial assessment of the data, integration of the products, and budget closure post-processing.

Some examples at the global scale are the works of [Rodell et al.| (2015) and |Zhang et al.| (2016]),

where the authors use multiple reanalysis evaporation/evapotranspiration products to assess the

water cycle and budget closure. [Rodell et al. (2015)) relied on reanalyses at various other stages

of their analysis, such as data sources for other variables (e.g., atmospheric convergence, wind,
and surface pressure), to downscale observations, and to fill data gaps. The authors convey that

independent reanalysis estimates enable assessing uncertainty with a higher degree of confidence.

[Zhang et al| (2016 studied the influence of data sources on water budget closure experiments and

concluded that integrating reanalysis data reduces the non-closure errors significantly. Yet, further
efforts are needed to understand the discrepancies among different data sources.

In this study, the representation of global water cycle changes is assessed in four reanalysis
data sets for the first time. To achieve it, we physically define precipitation plus evaporation to
unveil hidden details that have been overlooked due to the lack of a more exhaustive framework. We

assessed the following data sets: 20CR v3 (Slivinski et al.,|2019), ERA-20C (Poli et al.| [2016), ERA5

(Hersbach et all 2020), and NCEP1 (Kalnay et al. |1996). First, we compare the reanalyses using
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ground-based data as a reference GPCP v2.3(Adler et al., 2018) and HadCRUS5T5 (Morice et al.
2021)) for precipitation and temperature, respectively. Then, we inspect P — E to check for budget
closure, and we evaluate the P+ E behavior in terms of hydrological sensitivity. Next, we present the
application of P 4+ F in a framework that describes the changes in the water cycle. We achieve this
by exploring the changes in atmospheric water fluxes and storage redistribution between land-ocean
and the atmosphere. Finally, we discuss the possible connotations of the findings regarding P + E

and its application as a performance metric for reanalysis data.

3.2 The Physical Basis

Over land, the net water flux into the surface, a vital aspect of the water cycle for human society, is
described by the difference between precipitation and evaporation (P—FE). Thus, P— F characterizes
atmosphere-land surface interactions and represents the maximum available renewable freshwater
(Oki and Kanae, 2006). Analogously, evaporation minus precipitation (E — P) determines the
surface salinity of the ocean, which helps determine the stability of the water column (Cheng et al.|
2020). There was a consensus that as precipitation increases overland, so does evaporation over
the oceans to balance the global water cycle (Held and Sodenl 2006). Nonetheless, it has recently
become evident that there are contrasting responses between the terrestrial and oceanic water cycles
(Sherwood and Fuj, 2014 Byrne and O’Gormanl, 2015)). Furthermore, at the regional scale moisture
convergence can increase precipitation (Espinoza et al., [2018]). Assuming radiation is not limiting,
evapotranspiration will be equally enhanced. On the one hand, P — F would suggest no change
in the hydrological cycle, while, on the other hand, the increase in P 4+ E would correctly indicate
that the water cycle is indeed changing, with more water being circulated in total through the
surface-atmosphere continuum.

Huntington et al.[(2018]) have already shown that the sum of precipitation and evapotranspira-
tion can be adequately applied to quantify the changes in the terrestrial portion of the water cycle.
We argue that this approach can be extended to the description of the whole water cycle because
P + FE has a robust physical meaning; it describes the total flux of water exchanged between the
atmosphere and the surface. Furthermore, like the human heart, the Earth cycles far more water
through the atmosphere than its holding capacity. In this manner, it would make sense to also look
into the addition of fluxes rather than only their difference when assessing the global water cycle
intensification. The proposed framework is based on quantifying precipitation, evaporation, their

difference, and their sum. The latter, precipitation plus evaporation, is mathematically complemen-
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tary to the widely used P — F metric. Nonetheless, math alone does not suffice to improve our
understanding of the global water cycle. Thus, we will define P + E from a mass balance and a

kinematic perspective.

3.2.1 Water Cycle Budget

The global water cycle’s mass balance is expressed with the water budget equation:

P+ Qin =FE+ Qout +AS (31)

where P is precipitation, Q;, is water flow into the Earth, F is evaporation (since we are at the
global scale we will refer to it simply as evaporation for brevity, but we acknowledge it encompasses
evaporation from soils, surface-water bodies, and plants), AS is water storage change in the land-
ocean continuum (biological water, fresh lakes, ice, nonrenewable groundwater, oceans, permafrost,
reservoirs, renewable groundwater, rivers, saline lakes, seasonal snow, soil moisture, and wetlands),
and @,y is water flow out of the Earth. All terms are averaged globally over a fixed time period
(e.g., [mm/yr]). At the global scale, due to Earth’s gravity and temperature, water inflow or
outflow leaking between the atmosphere and outer space is negligible compared with precipitation

and evaporation and water storage change. Consequently, Q;, — 0 and Q.+ — 0 leaving us with:

AS=P—E (3.2)

where AS represents a storage redistribution from the atmosphere towards the land-ocean contin-
uum (positive), from the land-ocean continuum towards the atmosphere (negative), or steady state

equilibrium (zero). Now, we define global water cycle intensity as:

GWCI=P+E (3.3)

In this manner, intensity is defined as the total total flux of water exchanged between the atmosphere
and the land-ocean continuum. This definition is in line with previous formulations in the literature
(Huntington et al. |2018; |Weiskel et al.,|2007)). Furthermore, different ways to integrate precipitation
and evaporation to describe the hydroclimatic regime have been in use for over half a century now

(e.g., Budyko curve; [Budyko||1974).
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3.2.2 Water Cycle Kinematics

As established above, precipitation plus evaporation describes the water cycle intensity from a mass
balance perspective by quantifying the total flux of water exchanged between the atmosphere and the
land-ocean continuum. If we describe these atmospheric water fluxes from a kinematic perspective,

we have two velocity vectors:

]3lon,lat = P(Ivya Z) (3 4)

Elon,lat = E($7 Y, Z)

where, at any location on Earth’s surface, Ijlon,lat is the precipitation vector with magnitude P and
E’lomlat is the evaporation vector with magnitude E. These velocities are parallel to each other but
are oriented in opposite directions. We define the direction from the atmosphere to the surface as

positive and the opposite (from the surface to the atmosphere) as negative, then:

ﬁlon,lat = P(O’AL, 055 1];')
(3.5)
Elon,lat = E(0i,05, —1k)

Precipitation and evaporation are heavily intertwined through moisture recycling. Therefore, we
could characterize their interdependence relationship by defining the velocity of the global water

cycle as the Newtonian relative velocity of precipitation with respect to evaporation:

mlon,lut = f’lon,zat — Elon,lat
= P(0s,05,1k) — E(0s,05, —1k)
=0-0)i+(0-0)j+(P—(—E)k (3.6)
=0i+ 05+ (P +E)k

= (P 4 E)(0z,05, 1k)

where (P 4 E) is the magnitude of global water cycle velocity. Hence, we can safely ascertain that

assessing changes in P + E refers to acceleration or deceleration of the global water cycle.

3.3 The Precipitation-Evaporation Space

Including precipitation, evaporation, their difference, and their sum provides a synthesized visual

of the overall response of the water cycle to global warming. The global water cycle regimes in
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this framework would be described in the precipitation-evaporation space by their precipitation
and evaporation coordinates, and vectors represent changes between two periods (Figure . By
transforming the changes in the relationship of P and E to changes in P — E and P + E, we can
describe the water cycle dynamics in terms of atmospheric water storage and fluxes correspondingly.
Precipitation and evaporation may increase, decrease, or remain constant. From equation ,
changes in atmospheric water storage (P — E) shown as blue contours are planes that increase from
the bottom right (wetter) to the top left corner (drier). It is important to note that Huntington et al.
(2018) focused on terrestrial water storage, as such, the directions for drier and wetter are reversed
therein. From equation , water cycle acceleration (P + E) is a plane shown as green contours
that increases from the bottom left (cooler) to the top right (warmer). P — E is negative to the right
of the identity diagonal, zero along this line, and positive to the left of the line. At the global scale,
negative values describe an increase in atmospheric water storage (wetter), positive values describe
an increase in land-ocean water storage (drier), and zero describes steady-state equilibrium. P + F

increases describe shifts from cooler regimes into warmer ones.

3.4 Results

3.4.1 Climate Reanalyses

Our analyses, taken together, show the potential of precipitation plus evaporation to assess reanalysis
data and complement water cycle changes research. We start by exploring precipitation and temper-
ature as portrayed in reanalyses with GPCP v2.3 and HadCRUTS5 as the existing references. The
variability from reanalysis precipitation becomes readily visible by the wide spread of values (Fig-
ure ) We observe an abrupt reduction in reanalysis precipitation variance after the mid-1960s
(narrowing of the gray area; Figure [3.2h), coinciding with the satellite era’s beginning. To a greater
or lesser extent, all reanalyses products overestimate precipitation, with NCEP1 having its 30-year
average closest to GPCP v2.3 (Figure ) Nevertheless, ECMWF reanalyses perform better than
the 20CR v3 and NCEP1 (0.4 vs. 0.1 R-squared; Figure ) Regarding temperature, there is con-
siderably less variability among reanalyses and no visible abrupt changes in said behavior (Figure
[3-3p). Concurrently, temperature in reanalyses is centered around the 14[°C] average (Figure [3.3p).
Furthermore, all reanalysis products exhibit a strong and statistically significant correlation to Had-
CRUT5 (R-squared 2 0.9; Figure ) Overall, ERA5, with the highest R-squared values, most

comprehensively captures both precipitation (R-squared 0.43) and temperature (R-squared 0.97)
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Figure 3.1: The global water cycle regime in the precipitation-evaporation space. Vectors represent
water cycle changes, where P is precipitation, and E is evaporation. Contours of equal P — E (no
change in water cycle storage) are shown as blue dashed lines, and movement across these lines (blue
vector) describe changes in water cycle storage. Contours of equal P+ E (no change in water cycle
intensity) are shown as green dashed lines, and movement across these lines (green vector) describe
changes in water cycle intensity.
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changes among the four reanalyses. While no direct assessment of reanalysis evaporation is possible
due to the lack of observation-based reference data, and despite the general biases reported above,
it is feasible to rely on reanalyses to assess global water cycle changes based on their performance

versus precipitation and temperature observations.
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Figure 3.2: Benchmarking global spatial weighted average values of reanalysis precipitation compared
to GPCP v2.3 as the observation-based reference. (A) Precipitation anomalies annual time series
between 1950-2010 (common period between all reanalyses), spread of reanalysis estimates is shown
in gray and their mean in white, GPCP v2.3 is shown in turquoise. (B) The 30-year average for
the data sets compared, reanalysis estimates are shown in violet and GPCP v2.3 in turquoise. (C)
Summary statistics of linear correlation between reanalysis products and GPCP v2.3 annual time
series.

Atmospheric water residence time is circa nine days, and as previously stated, this lifetime is
underestimated in reanalyses. Thus at annual or longer time steps, what goes into the atmosphere
as evaporation has to equal what comes out as precipitation. Due to the assimilation algorithms
and systematic uncertainty in reanalyses, we expected budget non-closure to some extent. However,
it was surprising that even the 30-year moving average of P — E in reanalyses is not steady (Figure
[3.4). A gripping behavior in both ongoing reanalyses, i.e., ERA5 (Figure [3.4k) and NCEP1 (Figure
3.4(), is that the P — F trend appears to be directed towards 0[mm/year] (P = E). In the case of
the long-term reanalyses, we found opposing conducts. ERA-20C has the “flattest” P — E mean at
approximately —5.5[mm/year] (Figure[3.4p). On the other hand, the 20CR v3 has considerably more
variability and the highest P — E absolute values (Figure ) A particular characteristic of 20CR

v3 P — E is that it seems to exhibit two regimes, one before 1900 centered around —54[mm/year]

and the second from 1900 onwards centered around —69[mm/year].
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Figure 3.3: Benchmarking global spatial weighted average values of reanalysis temperature compared
to HadCRUT5 as the observation-based reference. (A) Temperature anomalies annual time series
between 1950-2010 (common period between all reanalyses), spread of reanalysis estimates is shown
in gray and their mean in white, HadCRUTS5 is shown in red. (B) The 30-year average for the data
sets compared, reanalysis estimates are shown in violet (HadCRUTS5 is not available). (C) Summary
statistics of linear correlation between reanalysis products and HadCRUT5 annual time series.
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Figure 3.4: Global spatial weighted average of annual total precipitation minus evaporation in [mm)]
as depicted in four reanalysis data sets for their respective available record. Annual values are shown
in gray. 30-year moving average values are shown in blue.
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3.4.2 Water Cycle Changes

The physical soundness of the P 4+ E metric becomes readily visible by the superimposition of the
annual mean global temperature and the annual total global P + F of the four reanalysis data sets
(Figure . Their coupling is statistically supported by quantifying the linear relationship between
these variables (Table . The dominant behavior in the long-term relationships reports two
common markers: a strong P+ E correlation (R-squared =~ 0.8; Figures , 7 and ), and an
apparent decoupling between P+ E and temperature around the 1960s. We observe particular traits
for ERA5 and NCEP1. ERA5 shows a moderate P — E correlation (R-squared = 0.39). NCEP1,
not resembling the other three data sets, has a higher correlation for the difference than the sum of
precipitation and evaporation(0.18 vs 0.12 R-squared). Moreover, the coupling between P + E and
temperature occurs only after the mid-1970s (Figure ) The robust performance of P+ E as a
metric to substantiate the relationship between atmospheric water fluxes and temperature carries
from the long-term onto the year-to-year variability (Table . Estimating the annual differences,
we now observe a homogeneous behavior in all the reanalyses data sets with moderate §(P + E)
correlation (R-squared between 0.2-0.4) and no §(P — E) correlation (R-squared < 0.02). This
independence in §(P — E) imply that the correlation observed between P — E and temperature was
due to the long-term trends, while P 4+ E correlates both to short-term and long-term temperature
variability.

Table 3.1: Linear relationship between global spatial weighted average of total atmospheric water
fluxes and mean temperature, where P is precipitation, F is evaporation, and T is temperature.
Long-term columns report the correlation between the annual values (i.e., (P + E) vs. T). Year-to-

year columns report the correlation between the annual consecutive differences (i.e., 6(P + E) vs.
orT).

Long-term Year-to-year
P+FE P—-F 5(P+E) 5(P-E)
Reanalysis ~ R? p-value R? p-value R? p-value R? p-value
20CR v3 0.82 <2x107 0.01 0.1 019 1x1079 2x107* 0.9
ERA-20C 080 <2x1071% 0.06 1x10"2 037 2x10712 0.02 0.2
ERA5 0.75 <2x107% 039 3x107° 035 3x10°8 0.02 0.2
NCEP1 0.12 2x 1073 018 2x107% 022 2x107° 4x1073 0.6

Thermodynamics, Clausius—Clapeyron scaling in particular, determine the relationship between
atmospheric water vapor and temperature. However, it is the Earth’s energy balance that governs
global precipitation and evaporation, and constraining the hydrological sensitivity (Allan et al.,
2020). The hydrological sensitivity, defined by the increase in global mean precipitation (or evap-
oration) for a given change in global mean temperature, has been estimated at 2.1-3.1 [%/°C]|

(Flaschner et al., 2016). Consequently, P + F should also increase at approximately 2-3 [%/°C].
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Figure 3.5: Global spatial weighted average of annual total precipitation plus evaporation and annual
mean temperature in four reanalysis data sets for their respective available record. Precipitation
plus evaporation in [mm] is shown in green. Temperature in [°C] is shown in red.

To validate our hypothesis, we looked into the slopes of linear regression fits between P+ E, P, E,
and temperature (Table . We validated the anticipated increases for P + E except for ERA5,
which had a rate of 5.0£0.3 [%/°C], but also a rather high evaporation increase of 6.2+0.4 [%/°C].
R-squared offers some insight about the proportion of variance in P 4+ E, P, and E that can be ex-
plained by temperature. Interestingly, evaporation has the lowest correlation to temperature across
all reanalyses. 20CR v3 and ERA5 have higher R-squared values for P + F than for P, with differ-
ences of 0.12 and 0.09, respectively. In contrast, ERA-20C and NCEP1 have higher R-squared values
for precipitation (differences of 0.01 and 0.05). Note that while precipitation has a higher R-squared
for ERA-20C and NCEP1, the difference is one order of magnitude smaller than those whose P + F
has a higher R-squared (20CR v3 and ERAS5). These results demonstrate a good coupling between
P + FE and hydrological sensitivity.

The above analysis establishes the usability of reanalysis data to assess changes in atmospheric
water fluxes and temperature. It also highlights the different insight gained from P — E and P+ E.

We will now unveil further details through a graphical framework that integrates precipitation,

evaporation, their difference, and their sum (Huntington et al.| 2018)). By transforming the changes

in the relationship of P and F to changes in P — F and P + E, we can describe the water cycle
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Table 3.2: Linear relationship between global spatial weighted average of total atmospheric water
fluxes and mean temperature, where P is precipitation, F is evaporation, and T is temperature.
P + E columns report the correlation ((P + E) vs. T). P columns report the correlation (P vs.
T). E columns report the correlation (E vs. T). Slopes are in [%/°C], where the reference for
atmospheric flux percentage change and temperature anomaly is their 1981-2010 average. RSE is

Residual Standard Error.
P+ FE P E

Reanalysis slope RSE R? slope RSE R? slope RSE R?
[%/°C] [%/°C] [%/°C]

20CR v3 3.2+0.1 0.42 0.82 3.1+£0.2 0.58 0.7 3.3+0.2 0.69 0.65

ERA-20C 3.3+£0.2 0.5 0.8 3.3+0.2 0.49 0.81 3.2+0.2 0.52 0.78

ERA5 5.0+ 0.3 1.05 0.75 3.8+£0.3 1 0.66 6.2+04 1.32 0.74

NCEP1 2.84+09 2.01 0.12 4+1 2.18 0.17 1.9£0.9 1.95 0.06

dynamics in terms of atmospheric water storage and fluxes correspondingly. We apply this procedure
to the four reanalyses to explore their representation of water cycle between two 30-year periods
(1951-1980 and 1981-2010; Figure . It is easy to pinpoint some distinguishable features for each
data set. The 20CR v3 appears to have substantially higher atmospheric water flux estimates than
any other reanalysis. However, if we decompose it in P — F and P + E terms, we can see that in the
two periods examined, the difference between precipitation and evaporation increased (blue vector),
implying atmospheric water loss (Figure ) In ERAS5, the exact opposite behavior emerges. The
atmospheric water content has been increasing, but overall the average conditions suggest that the
atmosphere has been getting drier since 1950 (Figure ) The remaining two reanalyses manifest
a stationary relationship in the water storage with no changes in the P — E component (Figures
and ) Surprisingly, the flux of atmospheric water is decreasing in NCEP1, suggesting a
weakening of the water cycle (green arrow; Figure )

It is evident that no two reanalyses are alike when it comes to the exchange of water between the
land-ocean continuum and the atmosphere at the global scale. In terms of magnitude, ERA5 reports
changes in P 4+ E accelerating almost twice as fast as in the 20CR v3 and ERA-20C (41.5 [mm/yr]
versus 23.69 [mm/yr] and 25.3 [mm/yr], respectively). The P + E change in NCEP1 is similar
to that observed in the 20CR v3 and ERA-20C. Although as already mentioned, in the opposite
direction. Looking beyond 1950, in the reanalyses with longer records (20CR v3 and ERA-20C), we
can see an agreement in the direction of change since 1921. Additionally, both reanalyses show a
higher increase in P 4+ E between 1951-1980 and 1981-2010 than between 1921-1950 and 1951-1980.
What is different, though, is the behavior of P — F, especially if analyzed over their 30-year average
trajectory (Figures and light gray points). In ERA-20C, P—FE changes remain consistently

stationary and very close to zero (0.15 [mm/yr]), while in the 20CR v3 oscillates substantially
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following both increasing and decreasing patterns over the last 120 years. The trajectories of the
other two reanalyses show behaviors somewhere in between, with more flexibility in P — E compared
to ERA-20C but not as much freedom as in the 20CR v3. Overall, the combination of P — E and
P + FE revealed a wealth of additional information about the reanalyses performance that is easily
communicable and reproducible through the precipitation-evaporation space graphical framework,

shaping the path for further investigations into the reasons behind these differences.
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Figure 3.6: The precipitation-evaporation space graphical framework for the assessment of global
water cycle changes. P and E are global total precipitation and evaporation in [mm/year]. Contour
of P = F is shown as a blue dashed line (stable atmosphere). Contours of equal P + E are shown
as green dashed lines (equal water cycle intensity). Changes in P — F and P 4 E are shown as blue
and green vectors correspondingly. Light gray points show the 30-year moving average trajectory,
black points mark the labeled 30-year period of interest, and stars mark the position of the average
for the full record of each reanalyses. I.e., 1836-2015 average for 20CR v3, 1900-2010 average for
ERA-20C, 1950-2020 average for ERA5, and 1948-2020 average for NCEP1. (A) Relative position
of reanalyses with respect to each other in the precipitation-evaporation space. (B) Zoomed in panel
on the 20CRv3. (C) Zoomed in panel on ERA20C. (D) Zoomed in panel on ERA5. (E) Zoomed in
panel on NCEP1.

3.5 Discussion

Due to the lack of robust observational-based data for crucial water cycle components such as
evaporation, reanalyses data is still one of our best tools for researching changes in the global water

cycle. The results fall within persistent criticism toward reanalyses (e.g., substantial variability

70



Prein and Pendergrass| (2019)) and overestimations [Trenberth et al. (2011)) but advocate for the
framework proposed to acquire new insight and improve climate reanalysis. We displayed how while
P — E, a key diagnostic, is not directly observable at the global scale, P + E is not held back by
scale limitations and complements global water cycle research. Most significantly, including P + E
revealed additional information about the water cycle changes characteristics in four reanalyses.
Information that could be implemented to address non-physical trends and inhomogeneities due
to changes in the observing system (e.g., Ho et al| (2020b)) and water budget non-closure (e.g.,
Trenberth and Fasullo (2013ayb))). The latter is an ongoing challenge in global water cycle research
(Hegerl et all |2015), and non-closure is present in all reanalyses. Unexpectedly, although, we found
a spurious long-term correlation between P — F and temperature, suggesting such an artifact might
be rooted in model processes and not only due to assimilation schemes. Along that line, we were
surprised to find that the correlation between evaporation and temperature is smaller than that
between precipitation and temperature in reanalyses, except for ERAS5.

Needless to say, a persistent challenge is the unconstrained uncertainty in quantifying water cycle
fluxes. Of particular relevance herein is that global P — E is small, and its uncertainty might easily
be much larger than its value. Thus, the signal-to-noise ratio of changes in P — F versus the natural
variability will be low and as a consequence the fluctuations in water cycle harder to detect. This
limitation can be overcome when using P + E, which is less prone to the reanalyses uncertainties.
These uncertainties could be encapsulated by their assimilation scheme, considering the assimilation
scheme includes, among others: the forecast model, boundary conditions, observations, observation
operators, and covariance models (Dee, [2005). Put simply, differences in reanalysis assimilation
schemes can significantly impact precipitation and evaporation inherent uncertainties. NCEP1 re-
analysis uses a 3D-Var data assimilation system, which minimizes the difference between the model
and observations by adjusting the atmospheric state variables (Kalnay et al.l [1996). On the other
hand, ERA-20C and ERAS5 use a 4D-Var data assimilation system, which adjusts the atmospheric
state variables over a series of time steps to minimize the difference between the model and obser-
vations (Poli et al. [2016; Hersbach et al., 2020). The 20CR v3 uses a hybrid 4D-Var/Ensemble
Kalman Filter data assimilation system, which combines the strengths of both 3D-Var and 4D-Var
to improve the accuracy of the precipitation and evaporation estimates (Slivinski et al., [2019). Al-
though it is not the scope of this study to address the underlying uncertainties or the effects of
different assimilation schemes, looking into discrepancies among reanalyses estimates offers a handy
demonstration of what can be learned by utilizing the precipitation-evaporation space to assess water

cycle changes.
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Whilst some features were common for all or most reanalyses, like changes in P — FE being much
smaller than in P + E and an increase in P 4+ E between the two most recent 30-year periods, we
observed various individual distinctions. Out of the four reanalyses, ERA5 had the most compre-
hensive representation of precipitation and temperature variability compared to observational-based
references, and was found to represent better the acceleration dynamics between 1951-1980 and
1981-2010. At the same time, ERA5 has the most pronounced changes for P — E, showcasing im-
provements in its terrestrial water storage computations (Eicker et al., [2020)). However, ERA5 has
the steepest acceleration of P + E and is the only reanalysis above the P = FE isoline for the en-
tirety of its record, which could be an artifact attributed to precipitation overestimations identified
across different regions (Hassler and Lauer] [2021). To the opposite end, NCEP1 shows a decline
in atmospheric water fluxes over time with a slight decrease in atmospheric water storage. Forbye,
the 30-year average trajectory exhibits an acute u-turn between the mid-1960s and the late 1970s.
Around this trajectory inversion, the behavior is similar to ERA-20C with little to no variability
along a P — F isoline. A possible explanation for this abnormal behavior could be traced back to
remote sensing data assimilation. Inconsistencies in its atmospheric data pre-1979 have previously
been reported and associated with the lack of satellite observations before 1979, e.g., in the Southern
Hemisphere (Tennant, 2004]).

Using solely P 4+ E comes with its own limitations and could mask the true dynamics of global
water cycle change. The reciprocal complementarity of P+ E and P — E is better perceived on the
long-record reanalyses. The overview clearly shows that the 20CR v3 portrays a warmer and wetter
Earth relative to the rest of the reanalyses. This is consistent with a systematic bias in tropical
precipitation (Slivinski et al.l 2019)), and biases in the vertical structure of mass and circulation
determined throughout the atmosphere (Slivinski et al., [2021)). Having said that, the magnitude of
changes in P+ F are consistent with those of ERA-20C. The most recent increase is higher than the
preceding ones and suggests that the global water cycle acceleration signal has further strengthened
in the last three decades (Greve et al.l 2014). The above would suggest that changes in the global
water cycle are similarly represented on both data sets. In sooth, P — E changes in the 20CR v3
oscillate substantially following both increasing and decreasing patterns, whereas ERA-20C shows
little to no variability (no spurious jumps or trends) and steadily moves along a P — F isoline. Said
stability lies around water cycle budget non-closure because evaporation is higher than precipitation
despite known systematic precipitation overestimation (Rustemeier et all 2019). Reportedly, there
are only subtle differences in the data assimilated and the data assimilation schemes between these

two reanalyses (Poli et al,[2016)), yet we can see contrasting behaviors exposed within the framework
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proposed herein.

Our findings, including the good agreement with the range of hydrological sensitivity, advocate
for the definitions of P+ F to be physically sound. It is important, nonetheless, to note that such an
agreement is not a two-way relationship. As seen in our examination, the fact that all the reanalyses
have similar hydrological sensitivities does not necessarily mean that they express a similar rate of
water cycle changes. Assuming so could be misleading, whereas we can get more insight and avoid
these pitfalls by decomposing the change into P — E and P+ E (i.e., into water storage and fluxes).
It could be argued that introducing a new metric for acceleration into the current broad spectrum
of metrics may lead to inconsistent hydroclimatology analysis terminology, such as that recently
reported for wetter and drier (Roth et al., |2021)). Nevertheless, P + E is not just an index because
it is physically grounded and, as such, is better suited to describe climate models and reanalyses
(McColl et al., |2022).

Along the same line, it could be argued that assessing changes in precipitation or evaporation
alone can directly indicate changes in the water cycle. It is easy to imagine that altering the state
of one component in the water cycle would affect the others. However, the global water cycle is
a complex phenomenon composed of several processes that we are yet to understand fully. Hence,
changes in one component might not be instantly observed in the others. The compound behavior of
precipitation and evaporation provides a more comprehensive picture of the water balance because it
considers both the supply and demand of water or, within the precipitation-evaporation space, both
atmospheric water storage (P — E) and water cycle intensity (P + E). As evinced by our results,
precipitation increases are evident in all reanalyses. Regardless, until we inspect these reanalyses in
the precipitation-evaporation space, we cannot observe that, in reality, no reanalysis is alike as they
all describe different water cycle dynamics.

The above applications highlight the potential of P + E to complement water cycle research at
the global scale. The proposed framework could advance our understanding of water cycle changes
and improve climate modeling. We have already revealed some discrepancies between the reanalysis
data sets. Still to properly address them, the observational limitations at global scale, especially
in evaporation, need to be overcome (McCabe et al., 2016|). Additionally, it is intriguing to see
how the total water transfer between the land-ocean continuum and atmosphere appears in Earth
System Models and whether it can be also applied as a metric for the model performance. Future
research into global spatial patterns of P 4+ E could also shed more light on how they relate to
regional changes and hydroclimatic extremes such as droughts. To this extent, quantifying the

surface-atmosphere water exchange in the form of P+ E can enhance our insight into past, present,
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and future hydroclimatic variability.

3.6 Methods

3.6.1 Data

We selected four reanalysis data products (Table . These are the Twentieth Century Reanalysis
(20CR) v3 (Slivinski et al.t|2019), European Centre for Medium-Range Weather Forecasts (ECMWF)
Reanalyses ERA-20C (Poli et al., |2016) and ERA5 (Hersbach et al, |2020), and the National Cen-
ters for Environmental Prediction & the National Center for Atmospheric Research NCEP/NCAR
Reanalysis 1 (Kalnay et al., [1996]). The 20CRv3 and the ERA-20C have two of the longest record
among reanalyses, with 180 and 100 years, respectively. ERA5 and NCEP1 are two distinctive
ongoing projects. ERA5 is a fifth-generation reanalysis (the most recent to date), and NCEP1 is a
first-generation reanalysis. NCEP1 it is the longest-running reanalysis that uses rawindsonde data,
but the model and data assimilation scheme are antiquated (Trenberth et al., 2011)). Notwithstand-
ing, the Climate Prediction Center (CPC) Merged Analysis of Precipitation (CMAP) data set (Xie
and Arkin| {1997), which is highly regarded as an observational-based reference (Yin et al., 2004),
blends NCEP1 to fill missing data.

Additionally, we used two observation-based products. For precipitation, the Global Precipitation
Climatology Project (GPCP) v2.3 (Adler et al 2018), which merges data from rain gauge stations,
satellites, and sounding observations. For temperature, the HadCRUTS (Morice et al., 2021)) from
the Met Office Hadley Centre and the Climatic Research Unit at the University of East Anglia, which
blends data from meteorological stations, ships, and buoys. All of the above data sets are available for
download on the dedicated websites of their providers. Through the pRecipe R package (https://
cran.r-project.org/package=pRecipe)), we computed the area-weighted average of gridded data

and generated annual time series for total atmospheric water fluxes and global mean temperature.

3.6.2 Benchmarking Reanalyses

We examined some commonly used statistical metrics to benchmark the reanalysis data products.

Their aptness to capture the temporal variability of the water cycle was quantified via:

e The square of the Pearson correlation coefficient (R-squared or R?)

S (yi — 9i)°
i (v —?)2
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where ¢ starts on the first year of the available record, n is the last year of the available record,
y; is the observational estimate on year i, ¢; is the reanalysis estimate on year ¢, and % is the

mean observational estimate for the full available record.

e Root Mean Square Error (RMSE)

L \2
i (i — 9i)
RMSE = {/ =+———~—
N
where ¢ starts on the first year of the available record, n is the last year of the available record,
y; is the observational estimate on year i, ¥; is the reanalysis estimate on year ¢, and N is the

total number of years in the full available record.

Only precipitation and temperature records were evaluated because there is no robust observation-
based evaporation data set. Note that precipitation and temperature were compared using two
different reference periods because GPCP v2.3 record starts in 1979, and HadCRU5T5 provides only
temperature anomalies using the 1961-1990 average as a reference. Thus, we could not homogenize
the reference period for both variables and selected 1981-2010 for precipitation and 1961-1990 for
temperature. Subsequently, we inspected global water budget closure via the 30-year moving average

of P—-FE.

3.6.3 Thermodynamics of Atmospheric Fluxes

For superimposing the temperature to the precipitation plus evaporation time series, without incur-
ring in any kind of data tampering, we simply rescaled temperature to precipitation plus evaporation

in the same way one would rescale degrees Fahrenheit to degrees Celsius. L.e.:

maz(P + E) —min(P + E)
maz(T) — min(T)

yi = ((T; —min(T)) * > +min(P + E)

where y, denotes the value used to plot Temperature in the same scale of precipitation plus evapora-
tion for any given year, T; is the temperature reanalysis estimate on year i, min(7') is the minimum
temperature reanalysis estimate in the full available record, maxz(P + E) is the maximum precipi-
tation plus evaporation reanalysis estimate in the full available record, min(P + E) is the minimum
reanalysis estimate in the full available record, and maz(T) is the maximum temperature reanalysis
estimate in the full available record.

As thermodynamics dictates, we expect a linear relationship between atmospheric water fluxes
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and temperature. This correspondence was quantified via the square of the Pearson correlation

coefficient (R-squared or R?)

S (i — (1)
S (yi— ?)2

where n is the total number of years in the full available record, y; is the i-th reanalysis estimate

R*=1-

for atmospheric water flux, f(7;) is the i-th predicted estimate by temperature, and 7 is the mean
reanalysis estimate for the full available record. The same metrics were computed again for the
annual differences of each time series (i.e., 0(y;) = y; — yi—1). To this extent, we can characterize
the long-term and the year-to-year association between atmospheric water fluxes and temperature.
While the correlation coefficient describes the presence or absence of a linear relationship, it does not
quantify the rate of change of one variable relative to the other. Henceforth, we used linear regression
to estimate the corresponding slopes and describe the rate of change at which atmospheric water
fluxes respond to changes in temperature. To compare the slopes between data sets on a one-to-one
basis, we estimated atmospheric water fluxes and temperature in terms of global anomalies with

respect to the 1981-2010 period.

n (Z?:l Tiy:) — (Z:‘L:I T;) (ZZ’L:I Yi)
n (X0, T2) — (2, 1)’

where n is the total number of years in the full available record, y; is the i-th reanalysis estimate

slope =

for atmospheric water flux anomaly, and T; is the i-th reanalysis estimate for temperature anomaly.
Lastly, we relied on the Residual Standard Error (RSE) to assess the goodness-of-fit of the slopes,

i.e., how well these slopes represent the linear relationship between our variables.

I$E2¢Zldwﬂﬂﬁ

n—1
where n is the total number of years in the full available record, y; is the i-th reanalysis estimate for

atmospheric water flux anomaly, and f(7;) is the i-th predicted estimate by temperature anomaly.
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Chapter 4

pRecipe: A global precipitation

climatology toolbox and database

4.1 Introduction

It is common practice to describe and quantify the water cycle focusing on its four major com-
ponents evaporation, precipitation, runoff, and total water storage (Harding et al., [2011). Out
of these four components, precipitation has been extensively researched because it is the primary
factor determining water availability across several spatiotemporal scales (Trenberth and Zhang]
2018)). Accurate estimates of precipitation climatologies are crucial for water resource management
(Marques et al.| 2022), water-related engineering design, and long-term agricultural policy making
(Bezner Kerr et al.l 2022). Notwithstanding, to date, a comprehensive network of ground stations
remains elusive due to practical, economical, or political reasons (Vargas Godoy et al.l [2021). When
ground observations are unavailable, we may rely on data from different sources, such as satellite
remote sensing, model simulations, and reanalyses. Regardless of the source, having a good grasp of
the uncertainty of the estimates becomes imperative. Consequently, using different data products
from various, ideally independent, sources is the most appropriate direction for current research and
operational needs.

Although precipitation understanding has improved dramatically due to the vast amount of
different data sources nowadays, their information has not been comprehensive enough due to sub-
stantial uncertainty between sources, with biases reaching as much as 300% (Fekete et al., [2004)).

Such uncertainty could be partially attributed to the intrinsic heterogeneity of multiple aspects,
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from data distribution to end-product specifications, e.g., spatial resolution, time step, measur-
ing units, file format, etc. Therefore, we find ourselves with a broad spectrum of data renditions,
a research matter on its own (Sun et all |2018]), and a homogenization pre-processing hindrance.
The latter, i.e., data preparation, is acknowledged to be an often unavoidable and rather time-
consuming step of the analysis (Young et all 2017). Some data distributors mitigate the above
challenges by facilitating different tools for extraction (e.g., https://www.earthdata.nasa.gov/),
exploration (e.g., https://climexp.knmi.nl/), and, in some cases, visualization (e.g., https:
//giovanni.gsfc.nasa.gov/). However, being online services, they are heavily oriented toward
graphic user interfaces, are limited to elementary operations for exploratory data analysis, and allow
for simultaneous analysis of at most two data sets at a time. Undeniably, a broader, more inclusive
framework integrating multiple data sets is still missing.

Tailored software is available to deal with the processing and analyze large amounts of data
efficiently, namely the Climate Data Operators (CDO; |Schulzweida), [2022)) and Climate Data Anal-
ysis Tools (CDAT; Williams et al., 2009). These packages provide data cleaning, analysis, and
visualization tools. While working with precipitation data can be challenging and time-consuming,
these or similar alternative software allow researchers to automate and streamline the data analysis
process for reproducibility. Nevertheless, a significant limitation of tools like CDO and CDAT is
their incompatibility with Windows, the dominant desktop operating system globally. It could be
argued that installing both CDO and CDAT in Windows is possible. However, the installation is
done through the Windows Subsystem for Linux (WSL), which provides a GNU/Linux environment,
including command-line tools and utilities, on Windows (Singh, [2020). Moreover, CDAT is staged
for deprecation and cease of support around the end of the calendar year 2023.

Over the last decade, R, an open-source programming language (R Core Team) [2023), has con-
tinuously increased its presence until it acquired a central role in hydrological research and the
operational practice of hydrology (Slater et al.. |2019). The R hydrological community has grown
significantly in the last decade with applications, or packages, that involve data retrieval and pre-
processing from hydrological and meteorological sources, hydrograph and spatial analysis functions,
and tools for process-based and stochastic modeling. Nevertheless, more often than not, these
packages are still developed around one data set or one data provider. E.g., easyclimate to access
high-resolution daily climate data for Europe (Cruz-Alonso et al., 2023) or dataRetrieval for the
US Geological Survey (USGS) National Water Information System (DeCicco et al., 2022)). Tools-
centered packages tend to be more comprehensive and require more generic inputs. E.g., envoutliers

identifies outliers in environmental time series data (Campulové et al, [2022), and CoSMoS gen-
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erates univariate/multivariate non-Gaussian time series and random fields for environmental and

hydroclimatic processes (Papalexiou et al.,|2021]). These latter kinds of packages give the users more

flexibility on the account they are to deal with data gathering and pre-processing on their own.
Despite R flourishing in hydrology, the previously mentioned support supplied by data providers

focuses more on different programming languages like MATLAB or Python. On that account,

addressing both data preparation time consumption and the lack of a comprehensive R-based alter-

native, we introduce pRecipe. We acknowledge that various yet exclusive data retrieval packages are

already available (see |Albers et al.| (2022)). Moreover, while claiming to provide all available data

sets would be fraudulent, we can ascertain that pRecipe provides a ready-for-analysis homogenized
database with products from various sources. The pRecipe package database consists of 24 data sets
at monthly time step and 0.25° resolution. These are derived from gauge, satellite, reanalysis, and
hydrological model forcing precipitation products. Furthermore, pRecipe offers additional processing
tools to subset the record length and spatial coverage, crop data based using shapefiles, and various
graphical aesthetics for visualization and exploratory data analysis. The package can be downloaded

from the CRAN repository or from https://github.com/MiRoVaGo/pRecipe.

4.2 Methods

4.2.1 Data

The pRecipe package offers a database of 24 precipitation data sets homogenized to common a spatial

(0.25°) and temporal (monthly) resolution. These include:

e Seven gauge-based products: CPC-Global (Xie et al., [2010a), CRU TS v4.06 (Harris et al.

2020), EM-EARTH (Tang et al., 2022), GHCN v2 (Peterson and Vose, 1997), GPCC v2020

(Schneider et al.,2011), PREC/L (Chen et al.,[2002), and UDel v5.01 (Willmott and Matsuura,
2001)).

e Eight satellite-based products: CHIRPS v2.0 (Funk et al., 2015), CMAP (Xie and Arkin

1997), CMORPH (Joyce et al} [2004), GPCP v2.3 (Adler et al), [2018), GPM IMERGM v06

(Huffman et al., [2020), MSWEP v2.8 (Beck et al., 2019), PERSIANN-CDR (Ashouri et al.

2015), and TRMM 3B43 v7 (Huffman et al, [2010).

e Five reanalysis products: 20CR v3 (Slivinski et al.l [2019), ERA-20C (Poli et al., 2016, ERA5
(Hersbach et all, [2020), NCEP/NCAR R1 (Kalnay et all [1996), and NCEP/DOE R2
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[mitsu et al., [2002).

e Four hydrological model forcing products: GLDAS-CLSM v2.0 (Rodell et al., 2004), GLDAS-

NOAH v2.0 (Rodell et al., [2004), GLDAS-VIC v2.0 (Rodell et al., 2004), and TerraClimate

(Abatzoglou et al., 2018).

Their native specifications, as well as download links to their original providers, and their respec-
tive references, are detailed in Tables and [44] respectively. If multiple distributions
were available, the one closest to the target spatiotemporal resolution was chosen to minimize the
pre-processing uncertainty. Remapping data from one spatial or temporal resolution to another can
result in information loss when processing data from higher to lower resolution. Hence, these uncer-
tainties’ magnitudes depend on source data quality and are proportional to the times we manipulate
data. Consequently, the less pre-processing we have to perform on the data, the less uncertainty we
introduce.

Overall, the package focuses on three fronts: formatting, homogenization, and storage. To begin
with, most providers either natively have data in the Network Common Data Form (NetCDF') format

or offer the option to download in that format. In the same fashion, we chose the NetCDF format

for our database. The GPM (Huffman et al.l 2020) and TRMM (Huffman et al., [2010)) data sets use

the Hierarchical Data Format (HDF') instead. TRMM data is in HDF4 format and was reformatted
into NetCDF using the conversion toolkit from the HDF group (https://hdfeos.org/). GPM is
in HDF5 format, and no direct conversion tool was available. Thus, we extracted the values and
stored them in NetCDF files using R. Note that no reprojection or manipulation of any kind took
place at this stage. Once all data sets were in NetCDF files, if there were multiple files per data

set (i.e., one file per day, month, or year), we merged them in time into a single NetCDF file using

Climate Data Operators (CDO; [Schulzweidal (2022])).

Then, data homogenization addressed the variable type (total precipitation; tp), the measuring
units (millimeters; mm), the temporal resolution (monthly), and the spatial resolution (0.25°). If
the providers offered both precipitation rate and total precipitation, total precipitation files were
downloaded to minimize data tampering. We converted the precipitation rate from [mm/day| or
[kg/m2/s] into total precipitation [mm]. Else, we just converted the units of total precipitation where
needed (e.g., [m] into [mm]). Subsequently, daily data was aggregated into monthly. Thereafter,
spatial remapping was performed using CDO. When regridding coarser than 0.25° resolution data,
the ‘remapnn’ operator was used for nearest-neighbor interpolation. Otherwise, the ‘gridboxmean’

operator would be used for regridding via area-weighted averaging (accounting for the area of each
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grid cell in proportion to the total area being averaged) plus ‘remapnn’ when 0.25° is not divisible by
the original resolution. Arguably, nearest-neighbor interpolation potentially leads to abrupt changes
in the values of the remapped data when used to fill in missing data. However, if used simply
for regridding, we do not introduce any significant artifacts as evinced by differences of less than
0.01% in total precipitation volume between raw and remapped data. Finally, the database has been
deposited in a public Zenodo repository under the following naming convention:

<data set>_<wvariable>_<units>_< coverage>_<start date>_<end date>_<resolution>_<time step>.nc

E.g., GPCP v2.3 (Adler et al., 2018|) would be: gpcp_tp-mm_global-197901-202205_025_monthly.nc

4.2.2 Package Design

Designed with reproducible science in mind, the pRecipe package facilitates the download, explo-
ration, visualization, and analysis of multiple precipitation data products across various spatiotem-

poral scales. The general workflow is as follows:

1. Direct download of a single, multiple, or all data sets available in the pRecipe database is done
via the download_data() function, which has two arguments data_name and destination. The
data_name argument is set to “all” by default, but the users can specify the name(s) of their
interest: 20cr, chirps, cmap, cmorph, cpc, cru-ts, em-earth, era20c, erad, ghcn, gldas-clsm,
gldas-noah, gldas-vic, gpcc, gpcp, gpm-imerg, mswep, ncep-doe, ncep-ncar, persiann, precl,
terraclimate, trmm-3b43, and/or udel. The destination argument is set to “.” by default. Le.,

<

the current working directory. By replacing it for “your_project_folder”, the downloaded files

will be stored in “your_project_folder” instead.

2. Data processing functions are built upon the raster package (Hijmans et al., [2022), with the
additional advantage that saving data will do so in a NetCDF format compatible with CDO.
Currently, pRecipe offers spatial subsetting by either a bounding box or an irregular polygon
via shapefile. Besides, temporal upscaling from monthly to yearly scale offers basic statistical
options, such as maximum, minimum, median, average, and sum. Last but not least, the
make_ts() function computes the area-weighted average of each time step, be it monthly or

annual, to transform the raster into a time series comma-separated values (CSV) file.

3. Prompt and aesthetic visualization is available at any stage of analysis. The pRecipe graphical
framework allows the user to explore and present analysis results of its data via maps, time

series curves, boxplots, histograms, and heat maps. It is important to note that the above-
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mentioned graphical framework is based on the ggplot2 package (Wickham et al., 2022)). As

such, the outputs are easily adjusted to suit the user’s needs using the grammar of graphics.

The pRecipe package is publicly available in the Comprehensive R Archive Network (CRAN) at
https://CRAN.R-project.org/package=pRecipe. More experienced users may find all the func-
tions’ source code at https://github.com/MiRoVaGo/pRecipe| and can easily modify them to fit

the user specific needs if needed.

4.3 Case Study

The user-friendly accessibility that pRecipe provides makes analysis reproducibility as simple as
following a recipe. In this introductory recipe, we downloaded the entire pRecipe database (Section
using the download_data() function. We then subsetted the downloaded data to the 1981-
2020 period using the subset_time() function, and cropped it within the administrative borders of
Czechia via the crop_data() in conjunction with a shapefile provided by the Database of Global
Administrative Areas (GADM). We then generated time series using the make_ts() function. The
time series were generated by computing the area-weighted average of all the grid cells of interest,
and the values were stored in data.table objects with four columns: date, value, and name, type.
The last two are mainly used for graphical aesthetics. Note that storing the time series in data.table
objects enables further calculations with ease. Herein we calculated the sum, min, max, median,
and mean of our monthly data by year in order to visually assess the similarities and discrepancies
between data sources using the plot_line() function (Figure . It is evident at first glance that
even limiting the data record to just 40 years, a line plot is not the best graphical aesthetic to
represent our data due to the high clustering and overlapping of lines (Figure ) Upscaling
into annual time steps, it is easier to observe that while there is considerable variability between
different products (Figures , , , and ), there is higher agreement in measuring high
precipitation (Figure )

To validate data using local observations or one of the downloaded data sets as the reference, we
can assess their correlation and variance through Taylor diagrams using the plot_taylor() function
(Figure [£.2). We used data from the Czech Hydrometeorological Institute (CHMI) to validate the
database in this case study. As expected, observational data from gauge-based and satellite-based
products are highly correlated with the CHMI reference, with most of their correlation coefficients
above 0.95 and 0.9, respectively (Figure . In terms of variance, we observe that the hydrological

model forcing data exhibits almost identical locations on the diagram. In contrast, reanalysis data
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are the most scattered of all four data sources. From this quick inspection, we can say GPCC v2020
data estimates are the closest to our validation reference, while NCEP/NCAR R1 and NCEP/DOE
R2 are the most inconsistent (lowest correlation and highest variance). The former is presumably due
to GPCC v2020 likely drawing data by the same network of stations CHMI oversees (Becker et al.
2013). The latter might be an artifact produced by the coarse native resolution of NCEP reanalyses
compared to the area of Czechia. Le., the area of two grid cells (approximately 86 632 [km?]) fully
covers Czechia (78867 [km?]). Moreover, NCEP/NCAR R1 is a first-generation reanalysis that uses
antiquated data assimilation and model (Kalnay et al., [1996). NCEP/DOE R2 is a direct update
that fixed some errors and updated the parameterizations of NCEP/NCAR R1 (Kanamitsu et al.,
2002). Nonetheless, it did not address other limitations like higher horizontal and vertical resolution,
direct assimilation of radiances, proper use of Special Sensor Microwave Imager (SSM/I) data, and
assimilation of rainfall data.

Further insight into the validation of our data sets can be reckoned with by looking into their
correlation and variance across different seasons (Figure . This time we looked only into eight
data sets: CAMP, CPC-Global, ERA-20C, ERA5, GLDAS CLSM v2.0, GLDAS NOAH v2.0, GPCC
v2020, and TRMM 3B43 v7. Using high correlation to CHMI as a preliminary filter, we selected the
two best data sets from each source. Visualizing the data sets’ correlation by season, we discover
that the best agreement with the CHMI reference occurs during Fall, where most data sets have
a correlation above 0.95, normalized standard deviation around 1, and centered root mean square
error 0.5. Out of the selected data sets, ERA-20C has the lowest correlation regardless of the
season, with its correlation further away from the rest, dropping to 0.8 in Summer. Observations
assimilated by ERA-20C include surface pressure from the International Surface Pressure Databank
(Compo et all [2015) as well as from ICOADS (Woodruff et all [2011) and surface winds over the
oceans from ICOADS. Upper-air and satellite data are omitted (Poli et al. 2016). Due to the
limited observations used, ERA-20C does not provide the best estimate since 1979, when major
advancements in the observing system occurred with the dawn of the satellite era. Another point
of interest is that TRMM 3B43 v7 correlation is consistent across seasons, but its variance visibly
increases in Winter. TRMM precipitation radar algorithm has been reported to underestimate
precipitation at higher latitudes (40°N;|Chen and Li, |2016|) in conjunction with winter precipitation
characteristics (i.e., lighter rain events, snow, and mixed-phase precipitation) would explain larger
biases in the Winter season (Maggioni et al.| [2016).

The toolbox that pRecipe offers can also be applied to assess changes in precipitation regimes. We

selected four data sets (GPCC v2020, ERA5, GLDAS NOAH v2.0, and MSWEP v2.8), we divided
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Figure 4.2: Tlustration of the plot_taylor() function comparing the entire pRecipe database to the
observational reference of the CHMI. Upper left, gauge-based data sets as listed in Table .1} Upper
right, hydrological model forcing data sets as listed in Table Bottom left, reanalysis data sets
as listed in Table Bottom right, satellite-based data sets as listed in Table
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the time series in two 20-year periods (1981-2000 and 2001-2020), and examined their empirical
distribution; to do so, we used the plot_density() function (Figure . We identify two common
traits: a density peak around 50[mm)] for the first 20-year period and a general widening of the density
curve towards higher precipitation across the selected data sets in the last 20 years. A particular
distinction in the distribution of ERA5 compared with the other data sets is that the density peak
is shorter for both periods. A shorter density peak and a bigger area under the density curve to
the right of said peak indicate that ERAS precipitation estimates are higher than those of the other
data sets. In line with our findings through the empirical distribution of ERA5, overestimation of
precipitation has previously been identified across different regions (Hassler and Lauer} 2021)).

A different approach to analyzing changes in precipitation regimes is to explore their spatial
patterns. We computed the median monthly precipitation at each grid cell for two 20-year periods,
and then portrayed them using the plot_map() function (Figure. The maps show that no drastic
changes in spatial patterns took place between 1981-2000 and 2001-2020, except for a slight increase
in precipitation in relatively uniform manner. Intercomparing data sets, we observe a common high
precipitation center located around the Sumava Mountains on the southwestern border of Czechia.
While the empirical distribution of precipitation estimates already pointed at ERA5 overestimating
precipitation, it is now observable, and perhaps more easily conveyed, on the maps that ERA5
estimates are overall higher than the rest. Contrarily, we can see the lack of spatial contrast between
high and low precipitation in GLDAS NOAH v2.0 estimates appearing as more homogeneous color
maps. Conversely, this artifact is due to precipitation underestimation compared to the other data
sets (e.g., [Xue et al.l 2013). We found explicitly higher estimates around the Sudetic, Sumava, and
Ore Mountains, supporting previous reports that in ERA5, too much precipitation can occur on the
leeward side of an orographic barrier (Lavers et al., 2022)).

More details about further functions, including a simpler and fully reproducible example, can be

found at https://cran.r-project.org/web/packages/pRecipe/vignettes/pRecipe.html.

4.4 Conclusions

The pRecipe package provides a common starting point for the hydrology scientific community
through its homogenized database. By encompassing widely used products from multiple sources and
establishing a common ground from which to start analysis, pRecipe guarantees a fully reproducible
framework for precipitation research. Its versatility to export data at any processing stage in NetCDF

(raster) or CSV (data.table) facilitates a seamless transition for the user into different R packages
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like CoSMoS (Papalexioul [2018), csa (Markonis et al.l |2021b), and somspace (Markonis and Strnad)
2020) for further analysis.

The pRecipe package constitutes a valuable resource for academics, government agencies, and
private sector professionals because it provides a consistent and transparent approach to precipitation
research. Through pRecipe, these users can easily access and analyze precipitation data from multiple
sources, visualize various characteristics of precipitation climatology, and seamlessly transition into
different R packages for further analysis. Overall, the pRecipe package is a powerful tool that can
benefit anyone involved in precipitation research, from novice researchers to seasoned experts.

Herein, we have exemplified some of its key capabilities and showcased the ease of accessibility for
the user to visualize various characteristics of precipitation climatology. We aim to provide, through
pRecipe, an open-access database and toolbox that the hydrology community could adopt for a more
consistent and reproducible science. The latter aspect will be strengthened in coming years under
the following roadmap: implementation of probabilistic significance estimation for slopes/changes
in 2023 and uncertainty quantification functions in 2024. At the same time, we plan to develop
an evaporation twin package of pRecipe, with similar functionalities and integrate them together
into a holistic framework for the study of terrestrial water cycle as suggested by [Vargas Godoy and
Markonis| (2023b). To this end, we invite all scientists involved in precipitation hydroclimatology
research to actively contribute with their suggestions, additions, and requests for future versions of

pRecipe.
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Chapter 5

Water Cycle Changes in Czechia:
A Multi-Source Water Budget

Perspective

5.1 Introduction

During the last decades, there have been significant advances in analyzing the water cycle and its
response to global warming. While we expect alterations in the water cycle to respond to climate
change and global warming, the actual extent and characteristics of this reaction are poorly under-
stood (Zaitchik et al.,|2023)). It was hypothesized that an increased vertical gradient of atmospheric
water vapor would offset atmospheric wind convergence in the tropics making wet regions wetter
and dry regions drier (Held and Sodenl, 2006). Nevertheless, such claims lack conclusive support of
observed measurements and have lit the fire of controversy in the field (Vecchi et all 2006} |Allan,
2012; |Skliris et al. [2016)).

Undoubtedly, the advances in remote sensing observations and process-based modeling have
shaped current research the most. However, as the data sources increased, it soon became appar-
ent that large discrepancies between the data sets still exist due to biases and uncertainties (Var-
gas Godoy et al., [2021). Observational data is hampered by short and heterogeneous ground-based
records (Schneider et al., 2017, and unquantified uncertainties on satellite-based products (e.g., the

impact of cloud filtering; [Povey and Grainger, [2015). Therefore, reanalysis data providing global
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coverage through models while assimilating observation-based data has attained an essential role

in assessing water cycle changes (Lorenz and Kunstmann| [2012). Each data source has limitations

and uncertainties; when multiple sources are combined, these can compound and result in conflict-
ing or unclear results. Hence, in addition to uncertainty due to the complex water cycle system,
which involves multiple feedback mechanisms and interactions between different components, we
must account for data merge uncertainty. Accordingly, various methodologies for multi-source data
integration have emerged. Among the most widely used ones are: Bayesian model averaging, con-

strained linear regression, neural networks, optimal interpolation, and simple weighting (Rodgers

[2000; Aires, [2014; Moazamnia et al.l 2019; Pellet et al., [2019; Xiao et all [2020)). Subsequently, once

merged data is generated, it is subject to post-processing for water cycle budget closure via Monte

Carlo applications and Kalman filter variations (Pan and Wood), [2006]).

Several studies have quantified the water cycle by implementing data integration methods and

budget closure constraints, e.g.,: [Sahoo et al| (2011) integrated 16 data sets over 10 globally dis-

tributed river basins (eight for precipitation, six for evapotranspiration, one for runoff, and one

for total water storage; Table [5.1]). [Pan et al| (2012)) integrated eight data sets over 32 globally

distributed river basins (four for precipitation, two for evapotranspiration, one for runoff, and one

for total water storage; Table [5.2)). [Rodell et al| (2015), integrated six data sets over continents

and ocean basins (one for precipitation, three for evapotranspiration, one for runoff, and one for

total water storage; Table [5.3). [Zhang et al| (2016), integrated 14 data sets globally (five for pre-

cipitation, six for evapotranspiration, one for runoff, and two for total water storage; Table [5.4)).

[Munier and Aires (2018) integrated 12 data sets at the global scale (four for precipitation, three for

evapotranspiration, one for runoff, and four for total water storage; Table .

The studies mentioned above focus on merging multiple data sets to end up with a single data set
per water cycle component at different spatial scales. It is evident that unconstrained uncertainty
remains despite the plethora of data products derived from satellites, ground-based measurements,
and climate models. This is true even for localized studies at regional scales where “ground-truth”
measurements for one or more components of the water cycle are available. One region of particular

interest is Czechia, a small country in Central Europe with diverse landscapes and a growing popula-

tion (United Nations| 2022). The water cycle over Czechia has been experiencing significant changes

in recent times, affecting various aspects of the water balance in the region, including changes in

river flow regimes and water quality, loss of wetlands, and changes in the frequency and severity of

extreme events (Mozny et all) 2020). Besides, changes in the rainfall-snowfall partition have given

rise to a decrease in snow cover and premature snowmelt (Nedelcev and Jenicekl [2021)). These
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changes in the water cycle are expected to continue in the near-future (Kysely and Beranoval [2009;
Jenicek et al., |2021)). Precipitation, in particular, is expected to increase its mean mainly in winter
and extreme rates throughout the year (Kysely et al., 2011)). In addition, increased human activities,
such as urbanization and agriculture, have led to changes in land use and land cover, which in turn
has contributed to the occurrence of floods and droughts (Svoboda et al., [2016). Droughts, have
had disastrous consequences for agriculture, forestry, water management, and other human activities
(Brazdil et al., |2009)). Consequently, the water cycle in Czechia and human activity find themselves
on a causal feedback loop.

In this study, we aim to estimate the water cycle changes over Czechia between the 1961-1990
and 1991-2020 periods, and determine the current trends and patterns in water cycle components.
Our analysis includes various data sets at different spatiotemporal scales allowing us to assess 96
data combinations for budget closure. Rather than enforcing budget closure on a multi-source
integrated data set or assessing different integration methods, we explored an empirical method to
rank how multiple data set combinations close the water cycle budget while correlating to referential
data estimates of individual water cycle components. In this manner, we are not generating yet
another new data set but are identifying the best combination among the data sets available for
our study domain. Only the data sets with the best rankings as determined by our proposed
benchmarking were used in all subsequent computations. We found that hydroclimatic models, as
expected, have better water budget closure. However, ERA5-Land is not far off despite known non-
closure limitations associated with reanalyses. We identified an overall acceleration of atmospheric

water fluxes. Simultaneously, we report a heterogeneous distribution of freshwater availability.

5.2 Data and Methods

5.2.1 Study Area

Czechia is a landlocked (surrounded by Germany, Austria, Slovakia, and Poland) European country
that covers an area of 78864 km?2. Czechia is an essential headwaters region of the European
continent. The country is home to several large rivers, including the Vltava, the Elbe, the Morava,
and the Oder, all of which have their sources within it. Czechia is situated at the intersection of
three sea drainage basins: the North Sea, the Baltic Sea, and the Black Sea, which, in return, divide
Czechia into three main hydrological catchment areas: the Elbe, Oder, and Danube basins (Figure

5.1). All of these major watercourses drain water into neighboring states. The water sources of
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Czechia are thus almost exclusively dependent on precipitation.

Elevation
in [m]

1500
1000

500
|

Figure 5.1: The three drainage basins within Czechia’s administrative boundaries (red line). Elbe
(light gray shade), Danube (black stripes), and Oder (dark gray points).

5.2.2 Data

To assess water cycle acceleration we gathered data sets with at least 60 years of record. This first
filter reduced the plethora of publicly available data sets to nine data sets from multiple sources
(observation-based, reanalysis, and hydrological model products) plus three evaluation references
(Table. The evaluation data sets for precipitation and runoff are the Czech Hydrometeorological

Institute (CHMI)and the Global Runoff Data Centre (GRDC), respectively. Six precipitation data

sets: Climatic Research Unit at the University of East Anglia (CRU TS v4.06; Harris et al.| (2020)),

European Centre for Medium-Range Weather Forecasts (ECMWEF') Reanalysis (ERA5-Land,;

[Sabater et al. (2021))), the E-OBS data set from the Copernicus Climate Change Service

2018)), National Centers for Environmental Prediction & the National Center for Atmospheric

Research Reanalysis One (NCEP/NCAR R1; Kalnay et al.| (1996)), Precipitation Reconstruction

Over Land (PREC/L; |Chen et al| (2002)), and TerraClimate (Abatzoglou et al.l [2018). Note that,

E-OBS (hereinafter mHM(E-OBS)) was used as meteorologic input for the mesoscale Hydrologic

Model (mHM; [Samaniego et al| (2010); [Kumar et al| (2013)). Four evapotranspiration data sets:
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ERA5-Land, mHM, NCEP/NCAR R1, and TerraClimate. Four runoff data sets: ERA5-Land,
mHM, NCEP/NCAR R1, and TerraClimate. Using the above listed data sets we assessed a total of

96 different combinations.

5.2.2.1 Evaluation References

As evaluation references, we relied solely on ground station data sets. A distinct advantage of station
data over hydrological models or reanalyses is their capability to capture detailed and localized
information. These in-situ measurements directly reflect the local climatic conditions, offering a
more accurate representation of the water cycle.

The Czech Hydrometeorological Institute (CHMI) provides station derived precipitation data.
The CHMI station network consists of approximately 700 stations distributed with a mean density of
one station per each 100 km?, adequately representing the distinct geographical features of Czechia
(Kaspar et all) [2021). Although the data collection and related services for a specific station are
generally managed by the regional branches of CHMI, the entire territory station data can be
accessed from the Department of Climatology of CHMI at once. All the data sets are undergone
robust quality control checks by CHMI before being added to the database. Herein, we gathered
the country level estimates calculated by CHMI (one value per month) for a period of 60 years
(1961-2020).

The Global Runoff Data Centre (GRDC) is a collection of river discharge data from more than
8000 stations in 157 countries. The GRDC operates under the the World Meteorological Organi-
zation (WMO) since 1988 to collect, manage, and distribute data related to river discharge and
runoff from around the world. The data collected at GRDC undergoes quality control to check for
errors, inconsistencies, and outliers in the data before its dissemination. While data is available at
daily and monthly time step, the record length varies by location. We selected three stations from
GRDC, namely the Bohumin (Oder), Decin (Elbe), and Moravsky Jan (Danube) stations, which are
placed near the borders of the country and country level estimates were calculated by their wieighted

average based the catchment area as registered by GRDC.

5.2.2.2 Observational-based Products

CRU TS is a popularly used gridded data set generated by the University of East Anglia’s Climate
Research Unit (Harris et al.,2020). It is known for its historical long-term coverage, which is available
from 1901 to the near present. The data set comes with a 0.5° spatial resolution at the monthly scale.

It compiles station data from multiple sources such as the Food and Agricultural Organisation (FAO),
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the World Meteorological Organisation (WMO), and the National Meteorological Agencies (NMA’s)
(Sun et al.l 2018)). CRU TS v4, its latest version, implemented angular distance based interpolation
to facilitate tracing back the stations upon which the gridded data set has been constructed.

PREC/L, created by the US Climate Prediction Center (CPC), is a gridded product entirely

based on the station data set (Chen et al, [2002)) with global coverage and monthly time step.

PREC/L draws data from over 17000 stations from the Global Historical Climatology Network

version2 (GHCN v2; Peterson and Vosel [1997) and the Climate Anomaly Monitoring System (CAMS;

[Janowiak and Xiel [1999). Subsequently, the data is interpolated to construct the gridded product

at three different resolutions (0.5°, 1°, and 2.5°). Herein, we used the 0.5° monthly precipitation,

whose record extends from 1948 to the present.

5.2.2.3 Hydrological Models

The mesoscale Hydrologic Model (mHM; [Samaniego et al. 2010; [Kumar et al.,|2013)) is a conceptual

grid-based model representing dominant hydrological fluxes and storage at the Earth’s surface and
subsurface through a system of ordinary differential equations. mHM represents processes such as
interception, snow, soil moisture, evapotranspiration, and various runoff components like fast/slow

interflow and baseflow. The model was established, parameterized and evaluated over the European

continent (Rakovec et al., 2016b; [Samaniego et al.l [2019; [Rakovec et al., 2022)). The meteorological

inputs were based on daily E-OBS data (Cornes et al. [2018) of precipitation in addition to minimum,

maximum and average temperature. The potential evapotranspiration was derived using the method

of (Hargreaves and Samani, [1982). The spatial resolution of the model grid corresponds to 0.125°.

Terraclimate is a high-resolution gridded global climate data set that provides the mean climate

and mean water balance data covering a time span of 1958 to the present (Abatzoglou et all [2018).

The data set is commonly known for its high spatial resolution (4 km). It uses various global
gridded climate data sets such as WorldClim v2 (Fick and Hijmans| [2017) and v1.4 (Hijmans et al.
2005), CRU TS v4 (Harris et al [2020), Japanese 55-year Reanalysis (JRA55) (Kobayashi et al.|

2015)), and Root zone storage capacity (Wang-Erlandsson et al., [2016) in order to generate the high-

resolution monthly climate variables time series at the global level. An additional advantage of the
Terraclimate is that it produces monthly surface water balance based on a water balance model

along with primary climatic variables such as temperature, precipitation, solar radiation, etc.
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5.2.2.4 Reanalyses

ERAb5-Land is the latest fifth-generation global atmospheric reanalysis product developed by the
European Center for Medium-Range Weather Forecast (ECMWF) (Munoz-Sabater et al.l [2021]).
ERAb5-Land, as the name implies, builds upon the terrestrial component of ERA5 and downscales
the model spatial grid resolution from 31 km into 9 km. As a result, ERA5-Land delivers either hourly
or monthly estimates with a spatial resolution of 0.1°. Given its high spatiotemporal resolution and
long record, ERA5-Land provides valuable data for comprehensive analysis and diverse hydrological
applications at the global scale.

The NCEP/NCAR Reanalysis project one is produced by the collaboration between the National
Centers for Environmental Prediction (NCEP) and the National Center for Atmospheric Research
(NCAR) (Kalnay et al.l [1996). It is the longest-running reanalysis that uses rawindsonde data, at
the expense that the model and data assimilation scheme are antiquated [Trenberth et al. (2011)).
The data set is distributed on a T62 Gaussian grid (approximately 1.875° at the equator) and its

record start dates back to 1948.

5.2.3 Data Evaluation

We validated the gathered data sets to capture the temporal variability of water cycle components
as described by the three observational references via the coefficient of determination (R-squared
or R?) and the Root Mean Square Error (RMSE). All data sets were spatial weighted averaged
over Czechia and temporally aggregated to an annual scale over the calendar year. Note that only
precipitation data sets could be evaluated over the entire 60-year period of 1961-2020. In contrast,
runoff was evaluated over 1961-2017. In order to compare a 30-year mean among all water cycle

components, the common period of 1981-2010 was selected.

5.2.4 Data Set Ranking

A success metric widely used among several studies is getting the budget closure residual () as close

to zero as possible. Herein, we define the budget closure residual as follows:

gn:PnfEn*Qn (51)

where P, is precipitation, FE,, is evapotranspiration, and @,, is runoff for a given year n. Thus,

we have 60 annual values for each of the 96 possible combinations. Note that, the water flux time
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series used to compute the residuals are the spatial weighted average values. Under steady state
conditions the mean of these residuals should tend to zero:
N
= _ 2n=16n

where &; is the mean of the N = 60 annual residuals for the i-th combination. The score to be

used in the ranking of a given data set combination was determined via:

|g|0.51'
(cor(P; — E;, Q;)cor(P;, P,)cor(E;, Ey)cor(Q, Qo))2

(5.3)

score =

where || is the absolute value of the mean of the 60 annual residuals for the i-th combination,
¢, is the standard deviation of the 60 annual residuals for the i-th combination, cor(P; — E;, Q;) is
the correlation between P — F and @ for the i-th combination, cor(P;, P,) is the correlation between
P of the i-th combination and the precipitation evaluation reference, cor(E;, E,) is the correlation
between E of the i-th combination and the evapotranspiration evaluation reference, and cor(Q;, Qo)
is the correlation between @ of the i-th combination and the runoff evaluation reference. The ranking
method proposed herein can easily be applied to any other referential data set for evaluation. In
data-limited areas or those with a poor observational network, the ranking method may still be
applied using external data as an evaluation reference, or the corresponding term in the equation
can be simply left out. E.g., if evapotranspiration data for evaluation is not available, Equation [5.3

becomes:

|g|0.£i
(cor(P; — E;, Q;)cor(P;, Py)cor(Q;, QO))2

In the case of Czechia, we used this modified version due to the absence of access to observational

score =

evapotranspiration data.

5.2.5 Water Cycle Changes

We assessed the empirical distribution of spatial weighted average values (accounting for the area of
each grid cell in proportion to the total area being averaged) of annual water cycle fluxes between
1961-1990 and 1991-2020 for three of the best data set combinations. To account for the influence
of extreme value in the latter period due to the 100-year drought of 2003 (Brézdil et all 2013), we
compared the median values rather than their means (see Figure . To deepen our assessment

of changes in the distribution of water cycle fluxes, we compared their monthly values between
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1961-1990 and 1991-2020. To determine the statistical significance of the above-mentioned changes,
we employed non-parametric bootstrapping of 10 000 iterations. Subsequently, we performed an
analogous analysis in space. We computed the change in the median values between 1961-1990 and
1991-2020 over each grid cell. Note that each data set was assessed at its native resolution for this
part of the analysis. Finally, we examined the change patterns of water cycles through the seasons.
Herein, we considered: winter as December, January, and February; spring as March, April, and

May; summer as June, July, and August; autumn as September, October, and November.

5.3 Results

5.3.1 Benchmarking water cycle components

Our analysis describes the most recent spatiotemporal changes on the water cycle in Czechia. For
starters, we examined precipitation, evapotranspiration, and runoff estimates from the gathered data
sets. Further, precipitation and runoff were compared to CHMI (Figure ) and GRDC (Figure
) as the respective evaluation references. The variability of estimates from precipitaion and
runoff data sets (Figure and c) visibly have a broader spread than those of evapotranspiration
(Figure ) While one may suspect the spread in precipitation is due to the higher number of
data sets available, they correlate better to their evaluation reference than runoff. The data set with
the highest correlation values for precipitation is mHM(E-OBS) with R-squared of approximately
0.99 (Figure [5.2h). mHM has the highest correlation for runoff, with R-squared circa 0.93 (Figure
mc) In contrast, NCEP/NCAR R1 consistently reports the lowest correlation values regardless of
the water flux of interest. Additionally it has substantially higher RMSE values than the rest of
the data sets for precipitation. To some degree, ERA5-Land is the in-betweener data set because
it has high correlation values and simultaneously has high RMSE for precipitation, yet for runoff,
ERAS5-Land exhibits moderate correlation and small RMSE.

The water cycle budget is meant to close over hydrological units. Accordingly, we examined
the water fluxes of the data sets with the best evaluation over the subbasins enclosed by the Czech
administrative borders (Figure . For simplicity, we will refer to them by their river names inside
Czechia. I.e., Morava for the Danube basin, Labe for the Elbe basin, and the Odra for the Oder basin.
It can be seen that within each data set, no extremely deviant behavior is exhibited between basins
or at the country level. In other words, the precipitation time series depicted by TerraClimate for

Czechia is similar to the one depicted for the Morava, Labe, and Odra Rivers. Comparing data sets,
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Figure 5.2: Benchmarking spatial weighted average annual water fluxes over Czechia between 1961
and 2020. For consistency and comparability between different water fluxes, annual anomalies were
computed using the 1981-2010 average as a reference, the common period among all data sets.
The 1981-2010 average and standard deviation are listed at the bottom left of each panel. Linear
correlation summary statistics are displayed at the bottom right of each panel. The spread of the
estimates being evaluated is shown in gray, and their mean is in white. (a) Precipitation evaluation.
CHMI data is shown in blue. (b) Evapotranspiration evaluation. (¢) Runoff evaluation. GRDC
data is shown in purple.
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however, it is evident that ERA5-Land is different. At first glance, we evince higher magnitudes for
ERAS5-Land precipitation and evapotranspiration, yet the residuals do not appear to be that far off
from those of mHM or TerraClimate. It is not until we look at the cumulative sum of the residuals
that we can distinguish ERA5-Land water budget residuals are nonstationary with a decreasing

trend.
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Figure 5.3: Spatial weighted average annual water fluxes over Czechia (first row), Labe River (Elbe
basin inside Czechia; second row), Morava River (Danube basin inside Czechia; third row), and
Odra River (Oder basin inside Czechia; fourth row). Where P is precipitation in blue, E is evapo-
transpiration in green, ) is runoff in purple, £ is the residual (P — E — @) in black, and c(€) is the
cumulative sum of the residual in orange. Left column: TerraClimate (P), TerraClimate (F), and
TerraClimate (Q). Middle column: mHM(E-OBS) (P), mHM (E), and mHM (Q). Right column:
ERA5-Land (P), ERA5-Land (F), and ERA5-Land (Q).
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It would be sensible to use the best data set for each water flux to proceed with further analysis.
However, we first verified if the best data sets individually would depict the best water cycle budget

in conjunction. Conventional metrics like R-squared and RMSE cannot be directly applied to a
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combination of data sets. We defined an empirical scoring metric, as described by Equation [5.3]
where the smallest the value, the better the data set combination. While our ranking approach is
empirical and simple, Equation [5.3| correctly identifies narrow distribution centered mean zero with
higher ranked positions compared to wider distributions centered around positive or negative values
(Figure . Upon ranking all 96 possible combinations (Table , we observe that even though
mHM outperformed TerraClimate for individual water flux estimates, the TerraClimate exclusive
combination offers the best water budget closure. We expected combinations with hydrological model
data to be highly ranked and reanalyses to be poorly ranked due to the above-reported considerable
biases of the latter. Notwithstanding, we were surprised to see the ERA5-Land exclusive combination
(i.e., all flux estimates from the same data set) among the top six ranks despite non steady water
budget residuals (Figure as well as biases 1.7-3.3 and 3.8-4.2 times larger than those of models
for runoff (Figure ) and precipitation (Figure ), respectively. The first combination that
includes at least one estimate from NCEP/NCAR R1 is at the 38th rank, and the NCEP/NCAR

R1 exclusive combination is at the 87th rank.
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2 »
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0] 50
0.006
= 25
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0.002

~400 0 400
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Figure 5.4: Empirical distribution of the data set combinations listed on Table colored based on
their ranking as determined by Equation [5.3] The color gradient goes from higher ranked combina-
tions colored in shades green to lower ranked combinations colored in shades of brown.
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5.3.2 Temporal changes in the water cycle

Moving forward, we computed the change in water fluxes’ annual distribution via shifts on their 30-
year median (Figure . Also, we assessed the statistical significance of the observed change in the
medians by non-parametric bootstrapping (10 000 iterations). Hereupon, we will report results only
for the first- (TerraClimate exclusive), second- (mHM exclusive), and sixth-ranked (ERA5-Land ex-
clusive) data combinations. Because the third- (CRU TS v4.06, TerraClimate, Terraclimate), fourth-
(TerraClimate, TerraClimate, mHM), and fifth-ranked (CRU TS v4.06, TerraClimate, mHM) data
combinations have a single data set different from the first- and second-ranked ones, as such, we
would be showing the same plots and statistics multiple times. TerraClimate and mHM show similar
increases in precipitation and evapotranspiration circa 20 mm, but only evapotranspiration mani-
fests a statistically significant change (p j 0.01). Evapotranspiration changes underwhelming those
of precipitation stand further accentuated in ERA5-Land, whose magnitude of the change in evap-
otranspiration is almost 60 mm and in precipitation is less than -1 mm. Another peculiarity of
ERAS5-Land is that runoff, with a change of -56 mm at p = 0.01 statistical significance. Regarding
the estimates for precipitation minus evapotranspiration, we observe three different behaviors: Ter-
raClimate has a change in P-E in the opposite direction of runoff (1 mm vs. -5 mm); mHM has a
change in P-E of smaller magnitude than runoff (-2 mm vs. -9 mm); ERA5-Land has similar changes
for both P-E and runoff (-55 mm vs. -56 mm), but with values one order of magnitude higher than
those of TerraClimate and mHM.

The above results, seemingly disagreeing with the expected increases reported in previous lit-
erature (Kysely and Beranoval 2009; Svoboda et al., [2016; [Kasparek and Kozinl 2022), indicate
that there have not been any statistically significant changes in median annual precipitation over
Czechia between the last two 30-year periods. Thereafter, we proceeded to look into changes between
1961-1990 and 1991-2020 monthly water fluxes (Figure . Note that hereinafter we mention only
months with statistically significant changes (p j 0.01). Regarding precipitation, we observe a consis-
tent increase of around 14 mm during October and circa 11 mm during July present in TerraClimate,
mHM(E-OBS), and ERA5-Land. Besides, mHM(E-OBS) and ERA5-Land had decreasing changes
in April of -6 mm and -9 mm, respectively. We also found a -5 mm decrease during November,
present only in mHM(E-OBS). In terms of evapotranspiration, as expected from the statistically
significant changes described for annual values, we report increases between 1-10 mm depending on
the month. TerraClimate has the shortest period of continuous changes with gradually increasing

magnitude from January (1 mm) to March(9 mm). mHM on top of said evapotranspiration behavior
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Figure 5.5: Box plots of spatial weighted average annual water fluxes over Czechia, where P is
precipitation, F is evapotranspiration, ) is runoff, and P — F is precipitation minus evapotranspi-
ration. Data are divided into two 30-year periods: 1961-1990 (blue) and 1991-2020 (yellow). Note
that outliers are present only in the latter period (i.e., 1991-2020) as expected from the recorded
severe drought of 2003.

from January (1 mm) to April (4 mm) also shows the subsequent oscillating behavior: May (2 mm),
June (2 mm), July(4 mm), and August (3 mm). ERA5-Land changes in evapotranspiration have a
behavior similar to mHM but with overall higher magnitudes and two months longer. I.e., a consec-
utive increase from December (1 mm) to April (8 mm) and subsequent swings back and forth: May
(7 mm), June (7 mm), July(10 mm), August (8 mm), and September (3 mm). Concerning runoff,
there is a striking unique visual for TerraClimate, whose range of values from February to April is
considerably larger than those of mHM or ERA5-Land. A runoff decrease is present in all data sets
for April and May, with an added magnitude of -18 mm, -8 mm, and -12 mm for TerraClimate,
mHM, and ERA5-Land, respectively. Interestingly, these runoff decreases are translated only into
mHM and ERA5-Land through precipitation minus evapotranspiration decrease in April (-6 mm

and -15 mm).

5.3.3 Spatial patterns of water cycle changes

The results shown so far provide insight into the temporal changes water cycle components have
undergone in the past 60 years, considering spatial weighted averaged values across Czechia. To

expand our analysis from the temporal into the spatial domain and provide insight into the spa-
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Figure 5.6: Box plot of spatial weighted average monthly water fluxes over Czechia, where P is pre-
cipitation, F is evapotranspiration, @ is runoff, and P — F is precipitation minus evapotranspiration.
Data are divided into two 30-year periods: 1961-1990 (blue) and 1991-2020 (yellow). Left column:
TerraClimate (P), TerraClimate (E), and TerraClimate (@Q). Middle column: mHM(E-OBS) (P),
mHM (F), and mHM (Q). Right column: ERA5-Land (P), ERA5-Land (E), and ERA5-Land (Q).
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tiotemporal features of the selected data sets, we mapped the difference between the 1991-2020 and
the 1961-1990 medians for P, E, @, and P — E (Figure . Note that maps for each product
were generated at their native resolutions, i.e., TerraClimate at 4 km, mHM at 0.125°, and ERA5-
Land at 0.1°. At first glance, we observe overall agreement in spatial patterns between data sets
for evapotranspiration and runoff, with slight discrepancies around the Sudetic (northeast), Sumava
(southwest), and Ore (northwest) Mountains. In particular, ERA5-Land exhibits changes of higher
magnitude in evapotranspiration (increase) and runoff (decrease) than TerraClimate and mHM.

Contrary to the above-described agreement, there is no consensus on spatial precipitation pat-
terns among data sets. We discern three different patterns: TerraClimate shows a homogeneous
increase across the country with a particular contour of higher increase that starts at the Sumava
Mountains and diminishes toward the Ore Mountains and a slight decrease around the Sudetes;
ERAS5-Land portrays a somewhat zonal pattern with increasing bands north of 50.5°N and south
of 49.5°N of the country and a decreasing band in the middle; mHM pattern is in between those of
TerraClimate and ERA5-Land, with the band of precipitation decrease being smaller than that of
ERAS5-Land confined west of 15°E. While some of these heterogeneities are echoed in P — FE spatial
patterns, there is a general decrease across data sets over Czechia. Therefore, evapotranspiration
changes appear to dominate the spatial distribution of water availability.

Based on the results observed in Figure we have previously identified that monthly patterns
of increase or decrease in water fluxes are, to some extent, aligned with their seasonal variability.
Thus this time around, we aggregated the data seasonally rather than looking at the monthly
spatial distribution of changes in the median between the two 30-year periods. While individual
characteristics for each data set are further emphasized by looking into seasonal spatial patterns,
we identify some common traits. A dominant pattern of precipitation decrease is localized to the
Westernmost part of Czechia during winter and expands to the rest of the country during spring.
Evapotranspiration increases of the highest magnitude take place during spring and summer. As
a result of this opposing direction, during spring, we see the most substantial decrease in runoff
and P — FE therein. Furthermore, it is safe to state that if evapotranspiration generally increases
despite decreasing patches of precipitation (present to a greater or lesser extent across all seasons),
the water cycle in Czechia is dominated by changes in energy rather than water availability.

TerraClimate, with a resolution of 4 km, offers far more detail on spatial patterns than other
data sets (Figure . It has a semester split for precipitation, with a decreasing pattern dominating
winter and spring and an increasing pattern dominating summer and autumn. Evapotranspiration

decreases during spring and summer but does not cover nearly as much area of Czechia as precip-
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Figure 5.7: Spatial pattern of changes in median water fluxes over Czechia between two 30-year
periods: 1961-1990 and 1991-2020. IL.e., the value of each grid cell is equal to the median value of
1991-2020 minus the median value of 1961-1990. P is precipitation, F is evapotranspiration, @ is
runoff, P — F is precipitation minus evapotranspiration, and £ is the residual (P — F — Q). Left
column: TerraClimate (P), TerraClimate (E), and TerraClimate (Q). Middle column: mHM(E-
OBS) (P), mHM (FE), and mHM (Q). Right column: ERA5-Land (P), ERA5-Land (E), and
ERA5-Land (Q).
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itation when decreasing. Runoff changes circumscribe winter (increase) and spring (decrease) and
are relatively mute during summer and autumn. Regarding water availability, the patterns of P — F
reflect those of precipitation. However, the increases in summer and autumn are not as notable.
Autumn is a season of spatial homogeneity in TerraClimate because precipitation, evapotranspira-
tion, runoff, and P — F all depict countrywide increases, albeit of smaller magnitude than in other
seasons. On the other hand, a distinctive contrast takes place in winter, in which we have a decrease
in runoff in spite of an increase in water availability.

Changes in Seasonal P

o Winter Sprin: Summer Autumn
. L~ % L~ %] L~ %
. \«1,., ] | \\1,., ] "ﬁf\mﬂ ] \\M ]
e S 1l S A%
ol & YRS YRS VRS =
> \.\ \\\ N \\\
49.0° \ v\'\\’\‘ /"‘/ \ v\_\‘-,\‘ M — v\_\‘_,\‘ M \ v\,\\_,\‘ /“‘/
13°E 14°E 15°E 16°E  17°E 18°E 13°E 14°E 15°E 16°E 17°E 18°E 13°E 14°E  15°E 16°E 17°E 18°E 13°E 14°E  15°E 16°E 17°E 18°E
Changes in Seasonal E
o Winter Sprin: Summer Autumn
. L~ o |~ ] L~ % L~ %
5o \‘M) . | \"W-') . \‘1”) . \‘WW) .
e S GE [ S VT Sl A
vl & (RS \ (RS N
N i = . =
o N | N N
™~ e ~ v\"w\,/“"/ ™~ v\"\/\‘/“"/ ™~ v\"-/\‘/““/ (mm]
13°E 14°E  15°E 16°E  17°E 18°E 13°E 14°E  15°E 16°E 17°E 18°E 13°E 14°E  15°E 16°E 17°E 18°E 13°E 14°E  15°E 16°E 17°E 18°E I 40
Changes in Seasonal Q
o Winter Sprin: Summer Autumn »
[~ %] L~ & L~ % L~ %
e \w?\; FJ_;-’ \—h?\; \«1,?\; \»wg\;
LT S O R s
oI q p hu N
ool N N N N
N v\"%/"‘/ N, v\"\/\‘/“"/ ™~ v\"\/\‘/“‘/ ™~ v\"~./\‘/““/ -20
13°E 14°E  15°E 16°E 17°E 18°E 13°E 14°E  15°E 16°E 17°E 18°E 13°E 14°E  15°E 16°E 17°E 18°E 13°E 14°E  15°E 16°E 17°E 18°E
Changes in Seasonal (P - E)
o Winter Sprin Summer Autumn l -40
L~ % L~ e L~ % L~ %
. \«1,., ] f-""‘ MW, ] \\1,., ] \\M ]
e Nl IR Szl T = T =
LY B'Ey B'Lq LY ‘\
N N N N
13°E 14°E  15°E 16°E  17°E 18°E 13°E 14°E  15°E 16°E 17°E 18°E 13°E 14°E  15°E 16°E 17°E 18°E 13°E 14°E  15°E 16°E 17°E 18°E
Changes in Seasonal (P - E - Q)
o Winter Sprin: Summer Autumn
L~ L~ % L~ % L~ %
50.5° V\\\'w} 3 Ff’—’ V\\"”) 3 V\\""') 5 \W) q
@ S T ST N1l a A% i
R (RS (RS (RS Y
™ ™ ™ ™
ool 1S N N N
13°E 14°E  15°E 16°E  17°E 18°E 13°E 14°E  15°E 16°E 17°E 18°E 13°E 14°E  15°E 16°E 17°E 18°E 13°E 14°E  15°E 16°E 17°E 18°E

Figure 5.8: TerraClimate spatial pattern of changes in seasonal median water fluxes over Czechia
between two 30-year periods: 1961-1990 and 1991-2020. I.e., the value of each grid cell is equal
to the seasonal median value of 1991-2020 minus the seasonal median value of 1961-1990. P is
precipitation, F is evapotranspiration, and @ is runoff. The seasons are defined as follows: winter
as December, January, and February; spring as March, April, and May; summer as June, July, and
August; autumn as September, October, and November.

Seasonal spatial patterns of mHM have the least substantial changes, with magnitudes mainly
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Figure 5.9: mHM spatial pattern of changes in seasonal median water fluxes over Czechia between
two 30-year periods: 1961-1990 and 1991-2020. IL.e., the value of each grid cell is equal to the seasonal
median value of 1991-2020 minus the seasonal median value of 1961-1990. P is precipitation, F
is evapotranspiration, and @ is runoff. The seasons are defined as follows: winter as December,
January, and February; spring as March, April, and May; summer as June, July, and August;
autumn as September, October, and November.
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Figure 5.10: ERA5-Land spatial pattern of changes in seasonal median water fluxes over Czechia
between two 30-year periods: 1961-1990 and 1991-2020. I.e., the value of each grid cell is equal
to the seasonal median value of 1991-2020 minus the seasonal median value of 1961-1990. P is
precipitation, F is evapotranspiration, and @ is runoff. The seasons are defined as follows: winter
as December, January, and February; spring as March, April, and May; summer as June, July, and
August; autumn as September, October, and November.
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in the -25 mm to 25 mm range compared to the -40 mm to 40 mm range of TerraClimate and
ERA5-Land (Figure . Precipitation patterns mimic those of TerraClimate except for autumn,
where mHM(E-OBS) holds more heterogeneity. Contemporaneously, we observe slightly decreased
evapotranspiration. For the rest of the seasons, evapotranspiration presents a widespread pattern of
positive changes, with the highest magnitudes in summer. There is a dominant decreasing pattern
for runoff across all seasons. In winter, there are pinpoint increases around the Czech borders near
the Sudetic, Sumava, and Ore Mountains. P — F has the highest magnitude for decreasing change
in spring. There is a mixed pattern of increase and decrease for P — E in winter and summer, yet
the extent of decreasing changes is more prominent. Once again, analogous to TerraClimate, we find
a season of contrasting runoff (decreasing) and P — E (increasing) changes, but for mHM, it takes
place in autumn.

ERAS5-Land spatial pattern of changes in seasonal median water fluxes closely resembles those
of mHM (Figure . The previously observed zonal pattern for precipitation change between the
two 30-year medians seems to be driven by summer changes. Evapotranspiration changes, unlike
TerraClimate or mHM, are increasing across all seasons. With specifically large evapotranspiration
increases in summer followed by spring. In opposition, runoff has decreased regardless of the season.
The sporadic patches of increased runoff observed in mHM near the Czech borders are nonexistent
in ERA5-Land. Similarly, the mixed patterns for P — E for mHM present in winter and summer
are missing in ERA5-Land, which only reports decreasing changes. Lastly, we evince contrast in the
direction of change between runoff (predominantly decreasing) and P—E (predominantly increasing)
in autumn, parallel to that of mHM. While this contrast is present in all data sets, the season differs
for mHM and ERA5-Land (autumn) vs. TerraClimate (winter). Moreover, it is also inversed, i.e.,
TerraClimate has increasing runoff and decreasing P— F, but mHM and ERA5-Land have decreasing

runoff and increasing P — E.

5.4 Discussion

Overall long-term changes in the annual water cycle in Czechia are primarily evident in evapotran-
spiration. Interestingly, the general agreement among different data sets at low-frequency time scales
dissolves as we deepen into seasonal and monthly scales. Higher frequency temporal analysis revealed
that while its seasonality modulates changes in precipitation, these changes are overwhelmed by a
consistent evapotranspiration increase. This compound behavior results in depleted water availabil-

ity, as reflected by decreasing runoff and P — F. Furthermore, different data combinations estimate
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different spatiotemporal patterns of water cycle changes. The observed redistribution of water avail-
ability can seriously impact water resources in the region, including the quality and quantity of
drinking water, the accessibility of water for irrigation and energy generation, and the health of
aquatic ecosystems. Our results herein provide an updated overview of the water cycle in Czechia
and map changes in the past 60 years, are essential to assess and ensure the sustainable use and
management of water resources in Czechia. Additionally, we have defined and demonstrated the
ability of a purely empirical ranking method to benchmark hydroclimatic data fusion and deter-
mine the best combination to represent water cycle budget closure that can be applied to any other
regional study.

We determined that the best data sets for long-term assessment of water cycle individual com-
ponents in Czechia based on the selected references are: mHM(E-OBS), ERA5-Land, and Terr-
aClimate for precipitation; ERA5-Land, mHM, and TerraClimate for evapotranspiration; mHM,

TerraClimate, and ERA5-Land for runoff. Similar standings for precipitation data were reported

by [Fallah et al.| (2020) and Bandhauer et al. (2022). [Fallah et al| (2020) used runoff simulation vs.

streamflow observations using different data sets to benchmark precipitation data and found that

E-OBS yields a robust agreement, while ERA5, Global Precipitation Climatology Centre (GPCC

V.2018; [Schneider et all, [2011]), and Multi-Source Weighted-Ensemble Precipitation (MSWEP V2;

[Beck et all 2019) show good performances. [Bandhauer et al| (2022) report that while E-OBS

and ERA5 agree qualitatively, ERA5 considerably overestimates mean precipitation over Europe

due to too many wet days. These prevalent wet bias in ERA5 has been reported along diverse

assessments (e.g., [Bestakova et all|2023; Lavers et al.,|2022). NCEP/NCAR R1 had the worst pre-

cipitation performance. It was previously reported that, at least regarding extreme precipitation,

NCEP/NCAR R1 performed far better than ERA5’s predecessors, i.e., ERA40 (Uppala et al., [2005)

and ERA-Interim (Dee et al., [2011), (Sun et al| [2018). This disagreement could be attributed to

the improvements implemented in ERAS over its predecessors in model parameterizations, spatial
resolution, and input data assimilation. Additionally, the poor performance of NCEP/NCAR R1
might be rooted in its coarse spatial resolution (two grid cells cover Czechia).

Regarding evapotranspiration estimates, ERA5-Land has been reported as an adequate data

source to overcome the unavailability of observed agrometeorological data in Europe (Vanella et al.

2022), and its robustness supports its use for drought monitoring (Vicente-Serrano et al., 2023).

mHM has undergone extensive evaluation over Europe at multiple spatial scales and has repeatedly

shown its ability to capture the observed dynamics of actual evapotranspiration (Hanel et all [2018;

[Rakovec et al.| 2016a)) and its application to determine dominant drought types and their evolution
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(Markonis et al., 2021a). While, to our knowledge, there have not been studies focusing on the qual-
ity or applications of TerraClimate evapotranspiration to date, it has been calibrated and validated
using FLUXNET data (Abatzoglou et al., 2018), a conglomerate of networks gathering and stan-
dardizing quality control protocols for station-based evapotranspiration measurements (Pastorello
et al 2020). Most of the abovementioned referenced studies also testify to the quality of runoff
data from mHM, TerraClimate, and ERA5-Land because the studies use runoff and streamflow data
derived, among other variables, from their evapotranspiration estimates and show that they can
capture the streamflow dynamics adequately across a wide range of climate and physiographical
characteristics.

Our evaluation of individual water cycle components is cohesive with previous literature. Al-
though the data products assessed herein have been previously analyzed at multiple spatial scales,
this is done under a univariate perspective, that does not consider the ability of the data sets to
reproduce the water cycle and its changes as a whole in a structurally plausible manner. This is
easily denoted by the fact that even though mHM'’s performance was the best for all water cycle
components evaluated using high-quality observational references, the best data set combination
ranking is actually TerraClimate exclusive (i.e., all flux estimates from the same data set). Note
that the score metric and ranking framework proposed herein serve as a method that can easily and
quickly filter out the data set combinations providing implausible results. It should be remarked that
this ranking framework acts as an initial assessment to be complemented with additional analyses
because the score metric does not account for any biases in the products. Expressly because the
aim of our work is not to benchmark the different data sets analyzed herein but to demonstrate how
different can become the water cycles depicted by each of them.

It is clear that the story to be told in terms of water cycle changes is not only dependant on the
data set of choice but also on the time scale. This kind of differences tend to be overlook when annual
averages are being compared but when it comes to annual totals the small discrepancies add up. By
further digging into this we unveiled some substantial inconsistency in the ERA5-Land data. It ap-
pears that the cumulative sum of the water budget residual in ERA5-Land declines monotonically in
time, implying some systematic bias in the water budget closure. Notwithstanding, to our surprise,
we found that throughout our analysis, mHM and ERA5-Land (a hydrological model and reanalysis)
presented more compatible spatiotemporal patterns than the two hydrological models (mHM and
TerraClimate). Regarding hydrological models, their evapotranspiration response is strongly linked
to how they represent soil moisture and radiative energy at the surface (Boé and Terray|, |2008; |Zhao

et al., |2013)), leading to the visible discrepancies among mHM and TerraClimate. In terms of water
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cycle fluxes’ magnitude, we report significant ERA5-Land overestimation of precipitation and evap-

otranspiration, which are in line with previously reported overestimations of summer precipitation

over Central Europe (Hassler and Lauer} 2021; Rivoire et al) [2022). These biases in conjunction

with the monotonic declining trend we found in the cumulative sum of water budget residual raise
further questions about the applicability of ERA5-Land in hydrological studies. Therefore extra
caution should be exercised when the widely-used reanalysis data product is employed.

There is agreement among the best-ranked data set combinations that most of the significant
changes in Czech water fluxes are localized in spring, particularly in April and May. Notwithstanding,
we observe that it is the summer season whose changes determine the spatiotemporal patterns

of change between the 1991-2020 and 1961-1990 medians. Declining precipitation and increasing

evapotranspiration in spring support reported drying trends over Czechia (Brazdil et al., 2015)). In

addition to these general patterns, we identified localized increases in winter runoff coupled with
decreases and shifts in spring runoff around the Sudetic, Sumava, and Ore Mountains. These changes

in mountainous runoff have been previously identified and attributed to decreasing snow cover and

earlier snowmelt season (Nedelcev and Jenicekl [2021]), which in some Czech catchments also derive in

summer low flows (Jenicek and Ledvinka), [2020)). Similar seasonal developments of the snow effect on
runoff have been reported over multiple mountainous catchments across the world (Berghuijs et al.
[2014} Dierauer et al.l [2018; [Muelchi et all [2021)). Hénsel et al| (2019) remark that seasonal trends

are sensitive to shifts in the season definition by one month, which aligns with our monthly analysis
because we identified significant changes in months like May and November (peripheral months of
spring and autumn as defined herein). Additionally, it could be the reason behind summer, the
contiguous season, dominating the long-term precipitation pattern.

The drying regime we report in Czechia, due to the gradual increase in atmospheric evaporative

demand over the last 60 years (1961-2020) extends in time and space over central and eastern Europe

(Bestdkové et al. [2023)). |Jaagus et al.| (2022) reported long-term drying trends for the 1949-2018

period in Slovakia, Hungary, Romania, Moldova, southern Poland, and particularly significant in

Czechia. [Trnka et al.| (2016)) described a strong tendency towards increased dryness in most Central

Europe. Brazdil et al.| (2009)) performed one of the longest-record analysis in the region (1881-2006)

and exposed an increasing tendency towards more prolonged and more intensive dry episodes. Still,

it remains unclear how this long-term shift is linked to the post-2000 seasonal (Potopové et al. |2015)),

annual (Hanel et al., [2018)), and multi-year droughts (Moravec et al., [2021)) that have occurred in

Central Europe and Czechia in specific. It has been demonstrated, though, that these droughts

manifest more as soil moisture deficits than meteorological and hydrological droughts, as they are
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related to high evaporative demand during the warm season period (Markonis et al.; 2021a). Our
results agreement shows that the long-term aridification could be the outcome of the same physical
mechanism, i.e., evaporation increase, to the one that dominates the short-term extreme events.
Our study comes with certain limitations that pave the way for future research. A certain
limitation is that our analyses do not attribute the observed changes to any potential physical
or anthropogenic drivers. It is likely that the evapotranspiration increase is linked to long-term
changes in atmospheric circulation patterns that have caused a decline in cloudiness (Lhotka et al.|
2020). As it has been shown that global warming is going to disrupt the terrestrial water cycle
mainly due to changes in precipitation (Roderick et all |2014)), it is more plausible to attribute
the observed intensification to the fluctuations of atmospheric circulation. Yet, this remains to be
confirmed by future studies that will determine the factors that contribute most to the hydroclimatic
shifts, although drought projections over Czechia (Dubrovsky et al., 2009), and central Europe
Hari et al.| (2020) indicate an increased drought risk in the future prevalent under different climate
change scenarios. Additionally, our work does not investigate the role of water storage (snow and
groundwater), as well as land cover or vegetation changes. Lastly, while country-level assessments
are essential to improve water resources management and natural hazard policies, the water cycle

budget is closed over hydrological units, not administrative boundaries.

5.5 Conclusions

Herein, we have proposed and demonstrated the applicability of a novel benchmarking method based
on water cycle budget closure for hydroclimatic data fusion. The method does not enforce closure
nor merge multiple data sets into a new one, but instead identifies the best combination of data sets
in terms of water cycle budget residual distribution and correlation to referential data. Furthermore,
the ranking method presented could easily be applied to any other region and use different referential
data sets for evaluation. The ranking method may still be employed using gridded data like GPCC
or CRU TS as an evaluation reference in data-scarce areas or when ground-station data is not
publicly available. Most importantly, this metric is not constrained by data availability, as any of
the variables in the equation evaluation terms can be omitted. This modularity makes it a flexible
alternative to traditional approaches.

Using the best water budget data, we demonstrate that Czechia is undergoing water cycle accel-
eration, evinced by increased atmospheric water demand. Remarkably, the increase in precipitation

is not as pronounced as that one in evapotranspiration. While changes in the 30-year median of spa-
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tial weight average annual values show a minimum change in water availability, the spatial patterns
reveal a prevalent decreasing pattern of runoff across the country. Besides, we identified significant
spatial heterogeneity when assessing precipitation at a seasonal scale. Intriguingly, summer patterns
are reflected in the spatial difference between the 1991-2020 and the 1961-1990 medians despite most
of the significant changes in water cycle components being localized in spring. What is more, the
precipitation rain/snow partition effect of less snow and earlier snowmelt around the mountains is
reflected in a seasonal shift of runoff (increase in winter and subsequent decrease in spring). This
might reflect how sub-seasonal shifts could affect the long-term hydrologic changes.

Based on our results and previous literature, it is safe to state that the depletion of water
availability (runoff and P — FE) over Czechia could prompt a surge in drought frequency. Considering
that shifts in evapotranspiration overwhelm those of precipitation, the water cycle in Czechia is
mainly driven by changes in energy rather than water availability. Further research is needed to
better understand the complex drivers of this drying trend and to develop targeted interventions to
address possible factors external to natural variability, like land-use changes and other anthropogenic
factors. Although it remains unknown if this drying trend will persist, it should be considered in the
planning of effective drought management strategies and water conservation measures to mitigate

its adverse impacts for agriculture, energy production, and natural ecosystems in Czechia.

Code Availability
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Chapter 6

Summary & Conclusions

This dissertation aimed to advance the understanding of multi-source water cycle quantification.
The research results improved the understanding and promoted the sensible integration of data
from multiple sources. More specifically, this dissertation made contributions in four main aspects,

namely:

(1) detailing the chronology of global water cycle quantification, highlighting improvements in

consistency over recent years;

(2) enhancing the evaluation of the global water cycle, with a focus on the response to global

warming;
(3) developing the pRecipe R package;

(4) demonstrating the practical application of a novel data fusion benchmarking to assess regional

water cycle changes.

Rise of the data (Chapter 2): The in-depth compilation of the water cycle quantification
chronicle highlights key milestones and challenges as we adapted our quantification methods to
exploit new technological resources better in each epoch, including the early days of hydrology,
model simulations period, satellite era, and age of big data. The current global precipitation and
evaporation climatic normal is estimated at circa 500 x 103[km3 /year]. Overland precipitation is
estimated at 110 x 10%[km?/year], evaporation at 70 x 10%[km?/year], and over the ocean at 390 x
103[km? /year] and 430 x 103[km3 /year], respectively. However, despite unprecedented data avail-
ability, the quest for robust quantification of the global water cycle continues as uncertainty shrouds

the above-reported estimates. Remote sensing satellite products struggle with measurements over
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complex topography and cloud cover, climate model simulations are plagued with parametrizations
without physical meaning, and observational records are short and heterogeneous. It is clear that
no global water cycle data source is without fail, yet in some cases, one data source’s strengths cover
another’s weaknesses. Accordingly, it could be argued that from the early 1900s to the twenty-first
century, the paradigm of quantifying the global water cycle has shifted from identifying the best
data source per water cycle component to developing the best way to integrate data from various
sources. Multi-source quantification acknowledges the inherent unpredictability of the climate sys-
tem because, analogous to ensemble theory, it formalizes the notion that even under similar local
conditions, slight variations of the underlying microphysics may lead to observing a range of different
outcomes. Notwithstanding, it is of utmost importance that the research community continuously
strives to improve ground station observations, model simulations, reanalyses, and satellite remote
sensing measurements individually. More accurate and robust individual data sources will sub-
sequently refine the outcome of multi-source quantification, particularly when leveraging machine
learning tools to handle large data sets.

The precipitation-evaporation space (Chapter 3): Climate reanalyses complement obser-
vational measurements and offer unprecedented spatiotemporal resolution worldwide. Furthermore,
due to the lack of comprehensive observational-based data for crucial water cycle components such
as evaporation, reanalysis data is still one of our best tools for researching changes in the global
water cycle. Undeniably, these have improved the quantification of the global water cycle. However,
their varying performances and uncertainties limit their applicability to the point that diagnostic
variables such as precipitation and evaporation should be used with extreme caution. In this context,
a framework encompassing precipitation, evaporation, their difference, and their sum was proposed
and investigated to further constrain uncertainty by unveiling heretofore overlooked discrepancies in
four reanalysis data sets (20CR v3, ERA-20C, ERA5, and NCEP/NCAR R1). It could be argued
that introducing a new metric for water cycle acceleration into the current broad spectrum of metrics
may lead to inconsistent hydroclimatology analysis. Nevertheless, precipitation plus evaporation is
not just an index because it is physically grounded as evinced by good agreement with the range
of hydrological sensitivity and, as such, is better suited to describe climate models and reanalyses.
For example, a similar tendency of precipitation increases is evident in all reanalyses. In reality,
charting the reanalyses in the precipitation—evaporation space, we observe that no reanalysis is alike
as they all describe different water cycle dynamics. We displayed how, while precipitation minus
evaporation, a critical diagnostic, is not directly observable at the global scale, precipitation plus

evaporation is not held back by scale limitations and complements global water cycle research. The
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compound behavior of precipitation and evaporation provides a more comprehensive picture of the
water balance because it considers both the supply and demand of water or, within the precip-
itation—evaporation space, both atmospheric water storage (precipitation minus evaporation) and
water cycle intensity (precipitation plus evaporation).

A global precipitation climatology toolbox and database (Chapter 4): The pRecipe
package provides a common starting point for the hydrology scientific community through its ho-
mogenized database. By encompassing widely used products from multiple sources and establishing a
common ground to start analysis, pRecipe guarantees a fully reproducible framework for precipitation
research. Currently, the evergrowing pRecipe database includes: 20CR v3, CHIRPS v2.0, CMAP,
CMORPH, CPC-Global, CRU TS v4.06, EM-Earth, ERA-20C, ERA5, ERA5-Land, FLDAS, GHCN
v2, GLDAS CLSM v2.0, GLDAS NOAH v2.0, GLDAS VIC v2.0, GPCC v2020, GPCP v3.2, GPM
IMERGM v07, GSMaP v08, JRA-55, MERRA-2, MSWEP v2.8, MSWX-Past, NCEP/DOE R2,
NCEP/NCAR R1, PERSIANN-CDR, PREC/L, TerraClimate, TRMM 3B43 v7, and UDel v5.01.
In addition to these 30 datasets, which have been homogenized at monthly time steps and a 0.25
spatial resolution, the database also includes several masks such as individual countries, IPCC AR
reference regions, and major river basins, with a variety of geographical features such as land cover
types, elevation zones, biomes, and K&ppen-Geiger climate classifications. Furthermore, pRecipe
offers a suite of analysis and visualization tools, which include spatial weighted averaging, spa-
tial trend calculation, spatiotemporal subsetting or aggregation, irregular polygon cropping (using
shapefiles), time series plots, empirical density histograms, boxplots, maps, and Taylor diagrams.
Its versatile methods to work with spatial (raster) and tabular (data.table) data enable the user to
export their results at any processing stage in NetCDF files compatible with climate and forecast
metadata conventions or CSV files, facilitating a seamless transition for the user into posterior pro-
cessing. Therefore, the pRecipe package constitutes a valuable resource for academics, government
agencies, and private-sector professionals because it provides a consistent and transparent approach
to precipitation research.

A Multi-Source Water Budget Perspective (Chapter 5): Using pRecipe and a novel
method for benchmarking hydroclimatic data fusion based on water cycle budget closure, 96 different
combinations of multi-source water cycle products (six for precipitation, four for evapotranspiration,
and four for runoff) were ranked using local observational data as evaluation references over Czechia.
Unfortunately, it is undeniable that spatially comprehensive and sufficiently long observational data
records are scarce. In such data-limited areas, the ranking method may still be applied, omitting the

corresponding term in the equation (e.g., we used only precipitation and runoff for evaluation). The
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empirical metric proposed ranks multi-source data combinations to quickly identify the best combi-
nation of data sets to gain insights into regional water cycle changes. Reanalysis and hydrological
modeling initially exhibited a general agreement at low-frequency time scales that dissolved as we
deepened into seasonal and monthly scales. Unexpectedly, mHM and ERA5-Land (a hydrological
model and reanalysis) presented more compatible spatiotemporal patterns than the two hydrologi-
cal models (mHM and TerraClimate) despite significant ERA5-Land overestimation of precipitation
and evapotranspiration. The results report that Czechia is undergoing water cycle changes mainly
driven by changes in energy rather than water availability, with notable spatial and temporal vari-
ations evinced by increased atmospheric water fluxes. Higher frequency temporal analysis revealed
that while its seasonality modulates changes in precipitation, these changes are overwhelmed by a

consistent evapotranspiration increase, resulting in depleted water availability.

6.1 Novel contributions

In summary, this dissertation enhanced the understanding of multi-source quantification of the water
cycle by proposing new methodologies and tools. The improved understanding and advancements in
multi-source data approaches ensure better implementation and more accurate assessment of water
cycle changes provided that we understand now results are susceptible to the data sets being used.

The novel contributions of this dissertation include:

1. A comprehensive review of the chronological development, data sources, and methods used to

quantify the global water cycle.

2. A framework that combines precipitation and evaporation to constrain uncertainties in data

sets.

3. A tool that standardizes the download, exploration, processing, and visualization of a compre-

hensive database of global precipitation data sets.

4. A novel method for benchmarking hydroclimatic data fusion based on water cycle budget

closure and observational references.

6.2 Recommendations for future research

Apart from the novel contributions summarized above, several future research lines were identified

and recommended based upon the obtained results. These include:
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1. The comprehensive review of the chronological development, data sources, and methods used
to quantify the global water cycle unveiled the significant heterogeneity of ground-based obser-
vations despite a century of continuous technological advancements. This persistent limitation,
juxtaposed with the high spatiotemporal variability in global water cycle quantification, calls
for a closer examination of methodologies to enhance the temporal and spatial resolution of the
available data. The existing limitations in resolution hinder a comprehensive understanding of
the intricate dynamics of the water cycle across different regions and timescales. Exploring and
implementing advanced technological solutions (e.g., more extensive networks or more sophis-
ticated instruments) and innovative downscaling approaches (e.g., physically informed machine
learning) is imperative to overcome this hurdle. By doing so, we can aspire to achieve a more
accurate and detailed portrayal of the fluctuations and interactions within the global water

cycle, thereby advancing our understanding of this complex system and its nexus implications.

2. Deploying a comprehensive “ground-based” network over oceans is an unrealistic expectation,
especially considering the challenges in achieving a similar network over land. However, rec-
ognizing that atmospheric water fluxes over the oceans constitute a significant portion of the
global water cycle fluxes, the imperative for enhanced precision in oceanic flux estimates be-
comes apparent. This limitation underscores a critical gap in our current understanding of the
global water cycle, emphasizing the necessity to address uncertainties in oceanic precipitation
and evaporation estimates. The call to action involves exploring advanced statistical methods
and alternative approaches, such as stochastic or machine learning-based methods, to elevate
the accuracy of these estimates. By doing so, we aim to overcome the challenges posed by
oceanic regions’ vast and dynamic nature, ultimately advancing our ability to comprehend and

predict the intricate dynamics of the global water cycle, where oceans play a pivotal role.

3. The precipitation-evaporation space emerges as a valuable graphical framework that sheds
light on previously unnoticed discrepancies in reanalyses. However, further research must dig
into the causes of the unveiled underlying uncertainties. A key aspect to be addressed is the
impact of different assimilation schemes, which can introduce variations and potential biases in
quantifying water cycle diagnostic fluxes such as precipitation and evaporation. Understanding
the intricacies of uncertainty propagation through assimilation schemes is vital for refining
data accuracy. Reanalysis data is invaluable due to its high spatiotemporal resolution; thus,
enhancing consistency across different reanalyses would propel a more robust understanding

of the complexities inherent in the global water cycle.
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4. A continuous optimization endeavor for the pRecipe package is imperative to ensure its ongoing
relevance and efficiency. This optimization process should be dynamic, responsive to emerging
technological advancements, and capable of further incorporating additional datasets to enrich
its functionality. A logical progression involves the development of a parallel package tailored
explicitly for evaporation data. By doing so, both principal water cycle fluxes( precipitation
and evaporation) would be encapsulated, providing a comprehensive toolkit for researchers.
This dual-package approach facilitates the seamless integration of evaporation data into the
precipitation-evaporation space, offering a well-rounded resource for investigating water cycle
changes. The concerted efforts toward refining and expanding these packages contribute to the
advancement of scientific tools and the accessibility of high-quality data, thereby fostering more

robust and fully reproducible research methodologies in the realm of water cycle dynamics.

5. Conducting a comprehensive uncertainty spatial analysis is imperative to pinpoint regions
where discrepancies in water cycle flux estimates persist at notable levels. This analysis should
delve into the intricacies of each region, considering factors such as local climate dynamics,
topographical variations, and the availability of relevant data. By examining these elements,
researchers can tailor targeted strategies to alleviate uncertainties in the identified regions.
Recognizing that the water cycle operates uniquely in different geographical contexts, address-
ing uncertainty necessitates a region-specific approach. This approach involves acknowledging
the influence of local climate dynamics and complex topography when evaluating the reliabil-
ity and adequacy of the available data. Through this detailed and context-sensitive approach,
researchers can contribute to characterizing the global water cycle more accurately, laying out

a more reliable foundation for water resource management and climate change assessments.

6. Expanding the analysis of water cycle changes to encompass socioeconomic factors represents
a pivotal step in comprehending the multifaceted dynamics at play. By exploring the intricate
interplay between anthropogenic activities, urbanization, and land-use changes, researchers
can gain insights into how human interventions influence temporal trends and spatial patterns
within the water cycle, contributing to a more holistic perspective on climate change impacts.
In tandem, further research should address how water cycle changes in response to global
warming drive anthropogenic activities such as urban expansion, population displacement,
and land-use change. This research has the potential to illuminate the broader implications
for water resource management and food security. As human societies evolve, understanding

the intricate connections between societal dynamics and the water cycle becomes crucial for
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devising sustainable strategies that effectively address the challenges posed by climate change.

In conclusion, this dissertation has advanced the multi-source water cycle quantification field,
making noteworthy contributions that enhance our comprehension and facilitate the integration
of data from diverse sources. Exploring the chronology of global water cycle quantification has
provided valuable insights into methodologies’ historical evolution, emphasizing recent consistency
improvements. Evaluating the global water cycle’s response to global warming has enriched our
understanding of climate change impacts on hydrological processes. The development of the pRecipe
R package offers a standardized and versatile tool for handling precipitation data. At the same time,
applying a novel data fusion benchmarking methodology has demonstrated its practical utility in
assessing regional water cycle changes. Collectively, these contributions underscore the importance of
a multidimensional approach to water cycle research, combining historical context, methodological
innovations, and practical tools. This dissertation serves as a testament to the ongoing pursuit
of knowledge in unraveling the complexities of the global water cycle, providing a foundation for

informed decision-making in water resource management and climate change mitigation.
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