
Bakalářská práce

Comparison of supervisedmachine learning
methods used for classification

Studijní program: B0541A170015 Matematika
Autor práce: Věnceslav Chumchal
Vedoucí práce: Mgr. Martin Schindler, Ph.D.

Katedra aplikované matematiky

Liberec 2023



Zadání bakalářské práce

Comparison of supervisedmachine learning
methods used for classification

Jméno a příjmení: Věnceslav Chumchal
Osobní číslo: P20000724
Studijní program: B0541A170015 Matematika
Zadávající katedra: Katedra aplikované matematiky
Akademický rok: 2020/2021

Zásady pro vypracování:

Student nastuduje a popíše základní metody strojového učení s učitelem
(supervised machine learning methods), zaměří se zejména na metody
používané pro klasifikaci jako např. logistická regrese, support vector machines,
rozhodovací stromy, náhodné lesy, k-means, k-nearest neighbors a umělé neuronové sítě.
Vybrané metody budou porovnány pomocí různých metrik jednak na vhodně zvolených
simulovaných datech příp. i na datech reálných. Výpočty budou provedeny pomocí Python a R
knihoven.



Rozsah grafických prací:
Rozsah pracovní zprávy:
Forma zpracování práce: tištěná/elektronická
Jazyk práce: Angličtina

Seznam odborné literatury:

SHALEV-SHWARTZ, Shai and Shai BEN-DAVID. Understanding Machine Learning: From Theory
to Algorithms [online]. Cambridge: Cambridge University Press, 2014. Retrieved z:
doi:10.1017/CBO9781107298019
BURGER, Scott. Introduction to Machine Learning with R. O’Reilly Media, 2018. ISBN
9781491976449.
GIUDICI, Paolo a Silvia FIGINI. Applied Data Mining for Business and Industry. 2nd Edition. Wiley,
2009. ISBN 978-0-470-74582-3.
ANDĚL, Jiří. Statistické metody. Páté vydání. Praha: Matfyzpress, 2019. ISBN
978-80-7378-381-5.

Vedoucí práce: Mgr. Martin Schindler, Ph.D.
Katedra aplikované matematiky

Datum zadání práce: 4. června 2021
Předpokládaný termín odevzdání: 30. července 2021

Mgr. Martin Schindler, Ph.D.
vedoucí bakalářské práce

L.S.
doc. RNDr. Miroslav Koucký, CSc.

vedoucí katedry

V Liberci dne 4. června 2021



Prohlášení

Prohlašuji, že svou bakalářskou práci jsem vypracoval samostat-
ně jako původní dílo s použitím uvedené literatury a na základě
konzultací s vedoucím mé bakalářské práce a konzultantem.

Jsem si vědom toho, že na mou bakalářskou práci se plně vzta-
huje zákon č. 121/2000 Sb., o právu autorském, zejména § 60 –
školní dílo.

Beru na vědomí, že Technická univerzita v Liberci nezasahuje do
mých autorských práv užitím mé bakalářské práce pro vnitřní po-
třebu Technické univerzity v Liberci.

Užiji-li bakalářskou práci nebo poskytnu-li licenci k jejímu využití,
jsem si vědom povinnosti informovat o této skutečnosti Technic-
kou univerzitu v Liberci; v tomto případě má Technická univerzita
v Liberci právo ode mne požadovat úhradu nákladů, které vyna-
ložila na vytvoření díla, až do jejich skutečné výše.

Současně čestně prohlašuji, že text elektronické podoby práce
vložený do IS/STAG se shoduje s textem tištěné podoby práce.

Beru na vědomí, že má bakalářská práce bude zveřejněna Tech-
nickou univerzitou v Liberci v souladu s § 47b zákona č. 111/1998
Sb., o vysokých školách a o změně a doplnění dalších zákonů (zá-
kon o vysokých školách), ve znění pozdějších předpisů.

Jsem si vědom následků, které podle zákona o vysokých školách
mohou vyplývat z porušení tohoto prohlášení.

25. dubna 2023 Věnceslav Chumchal



Srovnání klasifikačních
metod strojového učení
s učitelem

Abstrakt

Tato práce je stručný úvod do aplikovaného strojového učení,
včetně aplikace na reálná data. Nejprve zadefinujeme zák-
ladní pojmy strojového učení. Následně popíšeme obecnou
klasifikační úlohu, vybrané klasifikační algoritmy, a metriky.
V praktické části vyzkoušíme jeden z pracovních postupů
používaných při aplikaci strojového učení na konkrétní úlohu,
včetně podrobného popisu příslušné datové sady. Na závěr
uvedeme empirické srovnání použitých algoritmů.

Klíčová slova: strojové učení; empirické srovnání; klasi-
fikace; ML workflow;

Comparison of supervised
machine learning methods
used for classification

Abstract

This work briefly introduces appliedmachine learning, includ-
ing application to actual data. First, we define the basic con-
cepts ofmachine learning. We then describe a general classi-
fication task, selected classification algorithms, and metrics.
In the practical part, wewill test one of theworkflows that ap-
ply machine learning to a specific task, including a detailed
description of the corresponding dataset. Finally, we con-
clude with an empirical comparison of the algorithms used.

Keywords: machine learning; empirical comparison; classi-
fication; ML workflow;
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Introduction

Why bother with machine learning, even as a scientist from a distant field?
Is it some niche area only for enthusiasts? Is it more statistics, informatics,
or something else?
In the last decade we can see advances in many application areas of ma-

chine learning such as natural language processing - with an idea how to
represent words as vectors [1], how to process structure of text and mean-
ing of words in various context with transformer architecture [2] or develop-
ment of general languagemodel capable of generating text indistinguishable
from human one [3], image generation - with architecture using two or more
neural networks to create unseen images [4], improvements over this to gen-
erate image sets with high variation by controlling strength of each feature
[5], object detection - with models capable of doing inference in real time
on standard hardware [6], content recommendations - with successful ap-
plication on sophisticated large scale environment as YouTube is [7], games
- with reinforcement learning algorithm beating human in Go [8] or system
able to defeat e-sports professionals in fast paced online game Dota 2 [9],
bio-informatics - with program able to predict 3D structure of proteins with
atomic accuracy [10], knot theory - with usage of deep learning to find pat-
terns in data to give a direction where is fruitful to pursue with conventional
methods [11], linear algebra - with the first try to develop faster matrix multi-
plication algorithms using only machine learning [12], computational model-
ing - saving computational cost with deep learning meta-model [13], particle
physics - with relatively long usage of machine learning for analyzing LHC
data [14], and these are just examples.
All of this is possible due to the development of new algorithms or novel

usage of old ones and our increased computational resources and their ex-
ploitation with parallel computational frameworks like TensorFlow [15]. All
of this leads to possible answers to the given questions. Machine learning
is not only a research area; after decades of research, it applies to many ar-
eas of human interest. It is a mature toolkit with tools applicable to a wide
range of problems [16, p. 8]. Moreover, it is up to the experts in a field where
a particular problem resides to try this toolkit. This work aims to provide a ba-
sic understanding of machine learning and an example of the safe workflow
solving a classification task in one of those fields using a few classical and
a few more modern approaches so that others can start more quickly.
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1 Machine learning theory

What is machine learning? Onewaywe could see it is a field with an essential
goal of understanding and building methods that can ”learn” from given data
to make predictions on previously unseen data [17, p. 1].
This view leads to another point of view, where we can see machine

learning as a new programming paradigm, a new way of communicating with
computers when we do not just ”tell” a computer what to do by ”giving” it
a sequence of instructions to follow strictly, but rather program some frame-
work which can exploit and leverage given examples and respond based on
them [18].
It may be easily understandable, but it is a vague definition of machine

learning. So we will proceed with a more formal one, as anyone can find in
textbooks. Moreover, because the main focus of this work is classification
tasks, we will later restrict ourselves to this area. However, we first revisit
basic concepts to ensure the reader is familiar with them.

1.1 Fundamental terminology
We use the following terms in this thesis, and it is crucial to understand them.

1.1.1 Prediction vs. inference
Supposing there is a relationship between variable Y andX = (X1, X2, . . . , XM)
that can be expressed with a function f as Y = f(X) + ϵ, where ϵ is a noise.
When our goal is to find an estimate of f (let us mark it f̂) to predict Y based
on X, we see this as a prediction task where we are typically not concerned
about the exact form of f̂ . In another way, if we are concerned about it,
we can see it as an inference task where our goal could be to find which Xs

affects Y most to filter out the rest. [16, p. 18] ML task is a prediction or
inference task or both of them.

1.1.2 Supervised vs. unsupervised learning
Supervised learning is used where we have both independent and depen-
dent variables in the data. We want to learn the relationship between these
two to predict the dependent one for a new, previously unseen observation
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of independent variable(s). Unsupervised learning is for datawith the absent
dependent variable(s), so the main goal is finding patterns and structures in
data. Examples of supervised learning are regression and classification. An
example of unsupervised learning is clustering, which we can see as unsu-
pervised relative to classification [16, p. 26].

1.1.3 Regression vs. classification
When we deal with structured data, we characterize them as quantitative or
qualitative (categorical). When a task is to predict a variable from a set of
continuous values, we call it regression. When a set is discrete (in practice,
have hundreds of elements at most), we call it classification [16, p. 28].

1.1.4 Binary vs. multi-class classification
Binary classification is a task to categorize observation into two distinct
classes. Multi-class is not limited in the number of classes and could be
reduced to multiple binary classifiers. The classification model usually pro-
duces how confident it is about the observation belonging to a particular
class, i.e., gives a number between 0 and 1 that can be treated similarly to
a predicted probability of belonging to the category [19, p. 556].

1.1.5 Algorithm vs. model
In this work, we work with an algorithm as a procedure described as a se-
quence of tasks or with a pseudo-code that can have multiple implemen-
tations in specific programming languages. The model is already trained
(executed) implementation of the algorithm. It means the model is tight to
specific implementation and inputted data, and we see it as an output of an
algorithm.

1.1.6 Parameter vs. hyperparameter
Model parameters are set in the learning process. They are defined by the
algorithm, given data, and sometimes by some (pseudo)random process,
and the practitioner has no direct way to set them. Model hyperparame-
ters are the opposite because they are set by the practitioner (or by another
algorithm, we use specifically for this purpose) and can be viewed as param-
eters of the optimization algorithm we use in the learning process. We will
give examples of hyperparameters when discussing selected ML methods
in 2.1.

12



1.2 Statistical learning
Statistical learning is the basis of what we call machine learning nowadays.
We briefly describe this field by defining a few terms and notations we will
use in this and the following chapter. The primary source of this section (if
not stated otherwise) is the Shalev textbook - Chapters 2, 3, and 5 [20].

1.2.1 Basic terminology
Domain set X - set of objects we want to label (i.e., categorize).
Feature vector - representation of an element from X . It is a real vector in
practical applications.
Label setY - set of all possible categories or values we may predict. We dis-
cuss binary classification when the set contains two elements. Also called
the response variable.
Training data S - finite sequence of unordered pairs from X × Y of size N .
We also use validation and testing data in applications with the same form.
Prediction rule h - mapping h : X 7→ Y, also called hypothesis or classifier.
It is the outcome of our algorithm.
Hypothesis classH - set of hypotheses restricted from the search space of
all possible hypotheses as there are reasons for doing this explained later.
Probability distribution D - arbitrary probability distribution over X
Simple data-generation model - mapping f : X 7→ Y, our labeling function
for creating S by sampling a point from X according to D and then labeling it
with f . We assume one such exists and can also have various assumptions
about its ”correctness.” We are trying to figure out this function with our al-
gorithm.
True error LD,f - the probability to draw a random instance X ∈ X according
to D, such that h(X) 6= f(X) called error of classifier. A more formal descrip-
tion is

LD,f (h) := PX∼D[h(X) 6= f(X)] := D({X : h(X) 6= f(X)}) (1.1)

0-1 loss - loss function, an example of a true error for binary classification

l0−1(h, (X, Y )) :=

{
0 if h(X) = Y

1 if h(X) 6= Y
(1.2)

Training errorLS - the error the classifier gives rise to over the training sam-
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ple. Also called empirical error or empirical risk.

LS(h) :=
|{k ∈ {1, .., N} : h(Xk) 6= Yk}|

N
(1.3)

Empirical Risk Minimization (ERM) - learning paradigm (or rule) with the
goal to find prediction rule h that minimizes Ls(h).
ERMH learner - learner applying ERM rule over H. Also called a predictor.

Why do we need to restrict our search space? One of the reasons is ex-
plained in the next section, but at least the same importance is this one - we
need to avoid overfitting. Overfitting is when our ERM rule finds an excellent
or perfect hypothesis with zero training error LS(h) but with a high true error.
An example of such a case is whenwe have a probability distribution that can
be drawn like in figure 1.1 with uniformly distributed instances labeled by f
as 1 or 0.

Figure 1.1: Uniform distribution of two classes [20, p. 36].

1 belongs to the first class and can be found inside the dashed square,
and 0 belongs to the second class and can be found between the edges of
dashed and thick squares. Then when we consider a hypothesis

hS(X) =
{
Yk if ∃k ∈ [N ]s.t.Xk = X
0 otherwise.

(1.4)

we achieve LS(hS) = 0 no matter what sample we take, and that means this
hypothesis could be chosen by an ERM algorithm. However, the true er-
ror is 1/2, as this is the classifier that predicts 1 only on a finite number of
instances [20, p. 36].

1.2.2 PAC learnability
After defining basic terms and explaining overfitting, we can continue with
the fundamental definition in statistical learning - Probably Approximately
Correct (PAC) learnability.
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Definition 1 (PAC learnability). A hypothesis classH is PAC learnable if there
exists a function NH : (0, 1)2 7→ N and a learning algorithm with the following
property: For every ϵ, δ ∈ (0, 1), for every D over X , for every f : X 7→ {0, 1},
if ∃h∗ ∈ H such that L(D,f)(h

∗) = 0, then when running an algorithm on
N ≥ NH(ϵ, δ) i.i.d. examples generated by D and labeled by f , the algorithm
returns a hypothesis h such that, with the probability of at least 1− δ,

L(D,f)(h) ≤ ϵ (1.5)

Parameter ϵ tells how far our hypothesis h is from optimal one h∗ or how
approximately correct it is. Parameter δ tells how likely the hypothesis will
meet the accuracy requirement or how probable it is. We allow this lack
of ”precision” or ”optimality” as our training set is finite, and even if it does
faithfully represent distribution D, it cannot reflect all fine details of D [20,
p. 43].
An implicit assumption of the PAC learnability is the realizability assump-

tion that there exists h∗ ∈ H such that L(D,f)(h
∗) = 0 [20, p. 38]. That is only

sometimes the case in practice, and a way how to deal with it is agnostic
PAC learnability [20, p. 44].
Its definition is identical with the difference that we release the realiz-

ability assumption, as it is more natural to assume that there is a noise or
some form of contradiction in our data. However, we must leave the previ-
ous definition of the distribution D and labeling function f . Let us redefine
D as a joint distribution over X × Y , where X is still our domain set, and Y
is still our set of labels. This definition allows us to have differently labeled
equal elements from X . First, we change the definition of the true error to

LD(h) := P(X,Y )∼D[h(X) 6= Y ] := D({(X, Y ) : h(X) 6= Y }) (1.6)

Training error remains the same. We can follow the precise definition of ag-
nostic PAC learnability.

Definition 2 (agnostic PAC learnability). A hypothesis class H is PAC learn-
able if there exists a function NH : (0, 1)2 7→ N and a learning algorithm with
the following property: For every ϵ, δ ∈ (0, 1), for every distribution D over
X × Y , when running an algorithm on N ≥ NH(ϵ, δ) i.i.d. examples generated
by D, the algorithm returns a hypothesis h such that, with the probability of
at least 1− δ,

L(D)(h) ≤ min
h′∈H

L(D)(h
′) + ϵ

The definition was taken from [20, p. 46] but can be also found in [21,
p. 276] or [22, p. 24]

1.2.3 No-free-launch theorem
There are a few essential theorems in statistical learning and, therefore, in
ML, which tell us the theoretical limits of learning algorithms, so we know
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what we can expect when applying ML in concrete scenarios. We have cho-
sen the following one as it underpins the importance of the work provided in
the practical part of the thesis.

Theorem 1 (No-free-lunch). Let A be any learning algorithm for the task of
binary classification with respect to the 0-1 loss over a domain X . Let N be
any number smaller than |X |/2, representing a training set size. Then there
exists a distribution D over X × {0, 1} such that:

1. There exists a function f : X 7→ {0, 1} with LD(f) = 0
2. With probability of at least 1

7
over the choice of S ∼ DN we have that

LD(A(S)) ≥ 1/8.

We stated the theorem as in [20, p. 61], where you can also read the proof.
An alternative formulation is available in [23, p. 76]. The critical fact is that
for every algorithm, data and a related problem exist for which the algorithm
is not sufficient or suitable. It is the reason why we must make a compari-
son of multiple algorithms. To select these algorithms, we need some prior
knowledge about probability distribution D because when we deal with X of
infinite size (as is usually the case) and try to beat it by the number of tested
hypothesis, we will not succeed as states following corollary.

Corollary 1.1. Let X be an infinite domain set, and let H be the set of all
functions from X to {0, 1}. Then, H is not PAC learnable.

Proof can be found in [20, p. 64].

1.2.4 Bias-complexity tradeoff
The previous corollary leads to the need to restrict our hypothesis class H
so that we avoid failing when learning our task but still include a hypothesis
that has no error at all or at least the smallest error achievable (depending
on the PAC setting).
This tradeoff is called bias-complexity tradeoff and can be described by

the decomposition of the error of an ERMH predictor into two components

LD(hS) = ϵapp + eest (1.7)

where ϵapp is theapproximationerror - theminimum risk achievable by ERMH
predictor. This error follows from restricting our class H and is also called
inductive bias. The second term eest is the estimation error - the difference
between the approximation error and the error achieved by the ERMH pre-
dictor. This error is the result of the minimization of the training error instead
of the true error, which means our predictor is only an estimate of the pre-
dictor minimizing the true error. As was already said, a rich H might lead
to overfitting, represented by a high value of estimation error. On the other
hand, choosing smallHmight lead to a high value of the approximation error,
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which is called underfitting [20, p. 65]. An underfitting can be immediately
recognized by poor performance on the training sample, overfitting is more
tricky than underfitting, and we have to apply some approaches to mitigate
this issue, as we will see in the last chapter.
Here our journey into statistical learning ends, although there are other

core concepts in the field as uniform convergence or VC-Dimension, which
can be found in [20] or [24].

1.3 Roots in statistics and
informatics

In the last section of this chapter, we want to discuss what distinguishes ma-
chine learning from fields like statistics and informatics and where its place
is relative to these fields.
The previous sneak-peak into statistical learning shows thatmachine learn-

ing is based on a rigorous statistical framework. Also, in the following chap-
ters, wewill see that many classical statistical algorithms are used nowadays
and are called ML methods. Moreover, as said in [25, p. 2], part of machine
learning is proving algorithms’ guarantees, which is an informatics task.
Historical perspective is given in [26, p. 2], when they identify three main

branches of research, particularly in classification, as statistical, machine
learning, and neural networks. Although all of them emphasize different is-
sues, they have three common objectives:

• to surpass a human decision maker, at least in consistency and explic-
itness

• develop approaches general as much as possible with the ability to
solve a wide variety of problems

• deploy solutions to a real environment

On the other hand, when we talk about applied machine learning, we get
to the field focused on programming, the most efficient implementation of
algorithms, and overall usability in a business domain. We can use Burger’s
[27] and Witten’s [28] books as examples of such focus. This area is more
software engineering than any other.

Summary
We presented the basic terminology of statistical learning with one of the
goals to state the no-free-launch theorem that showed that it is impossible
to have one algorithm rule them all. We need to find the best one based
on our prior knowledge of distribution D for every different problem. In this
process, we should vary between estimation and approximation error.
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2 Binary classification

We have defined a few terms related to classification in the previous chap-
ter. This chapter summarizes it and defines what a binary classification task
means. Then we describe the algorithms we will apply to solve our problem
and the metrics we will use to evaluate and compare trained models.
Our task is a binary classification, a supervised ML task. The goal is to

establish a rule which we can use to classify a previously unseen observation
into two distinct classes. In other words, find a hypothesis h∗ that can rea-
sonably approximate labeling function f . We have multiple variables as input
and want one output variable. The intermediate result of an algorithm should
be a value of confidence in the interval [0, 1] that given observation can be
classified as one of the classes (we usually choose the ”positive” class to be
this one) and then based on the threshold we do final categorization.

2.1 Selected algorithms
There are many classification algorithms in the world. Wikipedia lists 86
pages in the category Classification algorithms. Multipurpose R package
caret contains 236 available models. We describe only selection often used
in papers or real use cases for a mutual comparison. At least one of these al-
gorithms often has enough ”performance,” as we can see in papers focused
on comparison by Uddin et al. [29] or Yuvali et al. [30]. Our description
is high-level, so rather be seen as a description of methods than concrete
algorithms.

2.1.1 Binary logistic regression
We assume a reader knows linear regression as a way to fit a line (hyperplane
in general) through data points to model the relationship between explana-
tory variable Xk ∈ X , k = 1, ..., N , N is the number of observations, and
response Yk ∈ Y . To remind, with one-dimensional Xk, response function is

linear(x,w, b) = wx+ b = E(Y |Xk = x) (2.1)
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When Xk is multidimensional (dim(Xk)=M), it is

linear(Xk,W) = W0 +
M∑
s=1

WsXk,s (2.2)

Such hyperplane ”height” ranges from negative infinity to positive infinity. In
binary classification, the only sensible output is 1 or 0 (or two elements set
in general). We can use the sigmoid function with its definition in figure 2.1

Figure 2.1: Graph of the sigmoid function [31, p. 101].

Sigmoid maps the explanatory variable (real feature vector) to interval
[0, 1] and relatively quickly converges to 0 when Xk goes to negative ”infinity”
or 1whenXk goes to positive ”infinity”. Ourmodel becomes sig(linear(Xk,W))
in binary logistic regression. Best-fit parameters produce a model with a lin-
ear separation between the two classes [31, p. 101].
The sigmoid function is derived based on the assumption that the loga-

rithm of odds of the event of the occurrence of 1 class in k-th observation
can be modeled linearly [32, p. 439], i.e.,

log(
πk

1− πk

) = W0 +
M∑
s=1

WsXk,s (2.3)

where πk = P (Yk = 1) and is called fitted probability. We call this log function
logit [33, p. 68]. After some algebraic manipulation, we can get the sigmoid
function and see

πk = sig(linear(Xk,W)) (2.4)
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The loss function (in condensed form and with penalization), which we
use in binary logistic regression, is following

l(X ,Y ,W) =
N∑
k=1

−Yk log(h(Xk))− (1− Yk) log(1− h(Xk)) + λ ∗ r(W) (2.5)

Function h is our hypothesis from the hypothesis class [20, p. 127]

H = {h : Xk 7→ sig(linear(Xk,W)) = πk,W ∈ RN} (2.6)

Function r is the Ridge penalization (also called ℓ2) with the purpose of re-
ducing the size of coefficients

r(W) =
M∑
s=1

W 2
s (2.7)

Constant λ specifies regularization strength and is one of the logistic regres-
sion hyperparameters. More details about regularization in logistic regres-
sion are in [34].
In other words, l = - log-likelihood + λ * regularization term. Function

l is convex, so pleasant for various optimization algorithms, as we want to
minimize it [31, p. 101]. The type of such algorithm (solver) is our choice,
so it is another logistic regression hyperparameter. Comparison of solvers
for logistic regression are in [35].

2.1.2 Decision tree
The decision tree technique is one of the most intuitive methods. The ulti-
mate goal of the method (for binary classification) is to divide the dataset
into two classes based on simple rules in each node, as you can see in fig-
ure 2.2. A tree is, in many algorithms, constructed by a top-down approach
where the algorithm selects a feature and a separation condition in each
node using a greedy approach when the algorithm tries to find the most
”pure” division. This condition can be a comparison against a selected value
(in case of continuous feature) or equality with a mode (most frequent value)
of feature values (in case of categorical feature) [32, p. 313]. Other division
criteria can be found in [33, p. 71].
Ultimately, we get g leaves, each representing a group of observations.

We can label this group as belonging to one of our classeswith fitted success
probability (for 1 class)

πk =

∑Mg

s=1 Ŷg,s

Mg

(2.8)

whereMg is the size of a particular group [33, p. 71] and k is an observation.
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Figure 2.2: Illustration of decision tree model with its conditions [32, p. 314].

We should specify stopping criteria for g; preferably, we want it to be
much less than the number of observations. It can otherwise lead to a com-
plex tree, leading to higher odds of overfitting, as we have seen in the first
chapter with rich hypothesis classes. Examples of stopping criteria are the
maximal depth of the tree or the minimal proportion of samples that must
be present in the node; otherwise, we set it as leave. These criteria are hy-
perparameters of the decision tree, as their values are up to us. The basic
algorithm for inducing a decision tree can be found in [36, p. 333]

2.1.3 Random forest
Before explaining the Random Forest (RF) method, we have to introduce
bootstrapping as a model training and selection method and the idea of bag-
ging a decision tree, which is the RF method built on.
Bootstrapping is a resamplingmethod often usedwhere the dataset is small

or we want to reduce the variance of error estimates or even obtain it. Be-
cause it is not always easily feasible with other sampling methods used for
training and validation such as train-and-test or cross-validation [26, p. 108].
The idea is to sample with replacement from the training set to get set with
the same size. We will obtain about 2/3 of the observations, some repeated
multiple times. We use these for training and the rest for validation (estimat-
ing error). We do this B times and then calculate the mean and variance of
obtained errors [26, p. 109].
More important right now is this idea applied to decision trees. Decision

trees suffer from high variance. It means that when we split the training
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set into two parts at random and train a separate model (decision tree) with
each, we get results that could be quite different. However, by averaging
a set of independent observations, we reduce variance. The idea is to train
B models on separate training sets and then average results.

havg(Xk) =
1

B

B∑
b=1

h(Xk) k ∈ {1, .., N}, N = number of observations (2.9)

Because obtaining separate and still large enough B training sets is imprac-
tical, we use bootstrapping on a single training set to get and train trees with
them. This approach is called bagging [16, p. 317].
The RF method is built on bagging with one important tweak. Instead

of using all M predictors in splitting a node in a tree, a random sample of
m predictors is chosen. We typically choose m ≈

√
M . The rationale is to

decorrelate the trees because if there is a strong predictor, it will often be
chosen for split at the top node. Furthermore, we get similar trees because
the top split influences all other splits down a tree, resulting in highly cor-
related predictions. However, as was already said, we reduce variance by
averaging these predictions assuming they are independent. Bagging ru-
ins this assumption, and this is a way how to deal with it. RF method could
also reduce test error [16, p. 320]. When training RF model, we have several
hyperparameters to choose from. Except for the ones that apply to one de-
cision tree as maximal depth or minimal portion of samples in node, we have
to choose the number of estimators, i.e., trees used.

2.1.4 Support vector machines
Support Vector Machines (SVM) method is built on separating the feature
space by hyperplane and then classifying based on the sign of such separa-
tion (a point is below or above the hyperplane), so we label classes either -1
or 1. It means SVM is a natural binary classifier, although it could be extended
multi-class as you can find in [16, p. 355].
When classes are linearly separable, there is an infinite number of such

hyperplanes. So the idea of margin is added to choose the ”best” hyper-
plane. This approach with linear separability assumption is called maximal
margin classifier (MMC) [16, p. 342].
When classes are not linearly separable, we lessen the requirements by

allowing some points to be inside the margin or on the other side of the hy-
perplane. We quantify such violations and add a limit to them. We call this
method soft margin classifier or support vector classifier (SVC). An example
of SVC is in figure 2.3. The term support vector comes from the realiza-
tion that only points violating the rules of MMC affect the output of SVC,
as points on the correct side of the hyperplane outside of the margins are
not penalized, and it is not important how far away they are. A more detailed
description of SVC constraints can be found in [16, p. 346].
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Figure 2.3: Illustration of support vector classifier or Support Vector Ma-
chines with linear kernel in another point of view [32, p. 503].

A natural extension of SVC is to add non-linear interactions of features
such as products. The separation task is still linear in this extended feature
space, although generally not in the original space. Nevertheless, this ap-
proach is only sometimes computationally feasible as there could be many
interactions to try. The trick how to more easily generalize to the non-
linear case is called kernel trick. As we deal with inner products when com-
puting the distance between point and boundary [16, p. 351], by tweaking
it, we can bring non-linearity. We construct a function of the inner prod-
uct called kernel, and the following is an example called polynomial ker-
nel of degree d ( whereM = dim(Xk) = dim(Xl) and k, l ∈ {1, .., N}, N =
number of observations)

K(Xk,Xl) = (1 +
M∑
s=1

Xk,sXl,s)
d (2.10)

Such non-linear kernels are the essence of SVM, and it is what distinguishes
SVM from SVC [16, p. 352]. Other examples of kernels are in [32, p. 505].
The practitioner selects kernel, which means it is one of SVM hyperparame-
ters.

2.1.5 K-nearest neighbors
K-Nearest Neighbors (KNN) classification differs from the previously dis-
cussed methods because it is a member of transductive. These methods
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are ”memory-based” as they do classification based on previously classi-
fied individuals in opposite to methods that construct a model to do so [32,
p. 302]. This idea is illustrated in figure 2.4.

Figure 2.4: Transductive and inductive methods [32, p. 503].

The method’s name tells us we classify based on k nearest neighbors.
What do we mean by nearest? To define this, we have to choose a metric
to compare distance, usually induced by p-norm with p = {1, 2} ( whereM =
dim(Xk) = dim(Xl) and k, l ∈ {1, .., N}, N = number of observations).

ρp(Xk,Xl) = (
M∑
s=1

|Xk,s −Xl,s|p)
1
p (2.11)

When choosing a metric, it is good to ask and answer the question, ”What
does it mean when the distance between points double?” [28, p. 129]. We
then order all neighbors of point Xk based on the chosen metric and return
the mode among the K nearest [20, p. 259]. Because the practitioner must
choose p and K, these are examples of KNN hyperparameters.
This approach’s time complexity is proportional to the number of training

observations, and we are just about classifying one test observation. There
are ways to deal with this, like the kD-tree method storing a set of training
points in the binary tree. The details are in [28, p. 130].

2.1.6 Multilayer perceptron
Many types of neural networks are used nowadays, such as convolutional,
recurrent, or graph neural networks. In this work, we will describe and use
one called multilayer feed-forward network. Other names are dense, deep
neural network or Multi-Layer Perceptron (MLP). These are not exactly syn-
onyms, but the differences are slight and out of our scope.
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We describe a neural network by a directed acyclic graph G = (V,E) with
edges weighted by the function ω : E 7→ R. We call nodes the graph neurons
and model them with a function, σ : R 7→ R. This function is called activa-
tion and examples used in practice are sigmoid function sigma(z) = 1

1+exp(−z)

or ReLU function σ(z) = max(z, 0). It is an example of a hyperparameter for
a neural network. We link the output of one neuron to another as input, as il-
lustrated in figure 2.5.

Figure 2.5: Graphical representation of the graph of neural network with one
hidden layer V1 [20, p. 270].

Input for the neurons in the first layer V0 is an observation from the training
set; other neurons get their input as a weighted sum (according to ω) of
outputs of connected neurons, with a constant added in both cases. Each
input always goes through an activation function before outputting to the
next layer [20, p. 269].
We can compose our hypothesis class as

H = {hV,E,σ,ω : ω is a mapping from E to R} (2.12)

where hV,E,σ,ω : R|V0−1| 7→ R|VT | (where T is the number of layers) is a mapping
of ω with fixed tripled (V,E, σ) that is called architecture of the network [20,
p. 270].

Characteristics of neural networks that are seen as advantages are [32,
p. 499]:

• ability to allow non-linear relations and complex interactions between
variables
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• no assumptions about variables following particular probability distri-
bution

• applicability to a wide range of problems (most of the examples in the
introduction of this work)

Some of the disadvantages are [32, p. 500]:

• convergence towards the best global solution is not guaranteed

• risk of overfitting if the number of observations is too small concerning
the number of neurons

• requirement of an a posteriori analysis to discover the impact of differ-
ent input variables on the output

These characteristics with other advanced topics are also discussed in
Chapter 20 in [20].

2.2 Selected metrics
We use a loss function in the process of training a model. The loss func-
tion is chosen based on the algorithm and specific mathematical properties.
However, they are only sometimes best for comparison of different models,
mainly if, in addition, models are based on different algorithms. Then we
have to use different tools for comparison. General ones are described in
this section, but sometimes we even need to define our domain or problem-
specific metrics.
In supervised learning in the development stage, we always know the cor-

rect labels (or at least we have to trust what we have), so we only need to
compare the output of our model with the values from the dataset, whether
the model was correct or not. As models usually output fitted probability in
[0, 1] interval, we need to choose threshold value to map this interval to {0, 1}.
The threshold value is in most implementations of metric evaluation imple-
mented as 0.5, so when the fitted probability is at least 0.5, we classify the
observation as a positive class; if less, then as a negative class. Threshold
helps us represent our results as confusion matrix [31] [37, p. 209]. We use
1 for our positive class and 0 for our negative class.
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False
Negative

0 False
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The apparent goal is to have a model outputting only True Positive (TP) and
True Negative (TN). Nevertheless, as we have seen in the first chapter, we
usually assume something like this is not possible.

2.2.1 Accuracy
Whenwewant to summarize the confusionmatrix into one statistic, themost
straightforward way is to calculate a ratio of correctly predicted outcomes
to all outcomes. This ratio is called accuracy [31, p. 93].

accuracy =
TP + TN

TP + FP + TN + FN
(2.13)

The usefulness of this metric decreases with the increasing imbalance in
the ratio of the number of individual classes in the data. For example, when
the ratio of presence of 1 and 0 class in data would be 99:1, we can predict
1 all the time and achieve 0.99 accuracy. So we have to come up with more
sophisticated metrics.

2.2.2 Precision and recall
To answer how likely a positive prediction is correct compared to all positive
predictions, we use a metric called precision [31, p. 94] [37, p. 781]. Its
equation is

precision =
TP

TP + FP
(2.14)

To answer how likely a positive prediction is correct compared to all true
positives, we use a metric called recall [31, p. 94] [37, p. 781]. Synonym for
recall is True Positive Rate (TPR). Its equation is

recall =
TP

TP + FN
(2.15)
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Trying to achieve high precision is proper when we want our model to
output positive prediction only if it is sure. An example of doing such is if
we would like to have a model for books recommendation. Because we have
limited time, many books are on the market, and we want to avoid going
through something uninteresting or unusable. We want our model only to
give recommendations where is a high likelihood that we will like a book.
On the other hand, achieving high recall is useful whenwewant ourmodel

to output positive prediction anytime there is some likelihood of such a case.
An example can be a medical diagnosis, as it is better to diagnose a patient
falsely as ill, even if we have to double-check and sometimes unnecessarily
scare them, but still better than leaving someone untreated.
Another metric we use to compute a more complex one is False Positive

Rate (FPR). Its equation is

FPR =
FP

FP + TN
(2.16)

2.2.3 F1 score
A compromise between precision - P and recall - R is F-measure, theweighted
harmonic mean of these two metrics.

F =
1

α 1
P
+ (1− α) 1

R

where α ∈ [0, 1] (2.17)

With α = 1/2, we got the balanced F-measure, commonly denoted as F1 or
F1 score in the ML community.

F1 =
2PR

P +R
(2.18)

Because it is high only if both precision and recall are high, it is useful when
we want a balanced model [38, p. 1147].

2.2.4 ROC curve and AUC
In the introduction to this chapter, we talk about a binary classifier first
producing a number and then categorizing inputted observation based on
whether the number is greater than or less than a specified threshold.
All previous metrics measure performance of the classifier with a par-

ticular threshold set. We can continually adjust the threshold and plot TPR
against FPR. We get a curve called Receiver Operating Characteristic curve
(ROC). The baseline is given by an algorithm that would randomly guess
(making a 50/50 guess).
If there is no clear distinction between the performance of models like

in the right side of figure 2.6, we use Area Under the ROC Curve (AUC)
as a quantitative measure of comparison. It means AUC is a numerical inte-
gral of ROC curve. An excellent classifier has AUC value higher than 0.9 [31,
p. 95].
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Figure 2.6: Examples of comparison of two algorithms with ROC [31, p. 95].

Summary
We have gone through the selection of classification methods we will use in
the next chapter with an intuitive explanation of the idea behind it and the
definition of a loss function used for training a model with a given method.
We also explained the most used metrics used for the evaluation of outputs
of training.
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3 Machine learning workflow

In this chapter, the practical part of the thesis, we will roughly follow a model
selection workflow proposed and presented by Cassie Kozyrkov, head of de-
cision intelligence at Google Cloud, in her internal course to Google employ-
ees provided for free at her YouTube channel [39] [40]. An empirical com-
parison of algorithms on a given data is the main component of this work-
flow, just wrapped with preceding steps like the definition of requirements in
means of our metrics (how well we expect a model to behave), preprocess-
ing and splitting of a dataset, and following steps like presenting the results
and deploying a chosen model, i.e., using it in a real environment.

3.1 Preparation
The zeroth step is to think whether we need a ML for solving a given task
(or even if we can solve it with ML). Here we go from a different end as we
want to apply selected algorithms and compare resultingmodels, so we have
chosen a suitable task for our binary classificationmethods. That is opposite
to what is usual in practice.
The first step is to set objectives, which means choosing our goal, a per-

formance metric to quantify its model’s ability to fulfill our goal, and the tar-
get performance score. This process involves choosing our action if the best
model does not perform well enough. This step is crucial to make sound hy-
pothesis testing onmodel performance, and the hypothesis is not postulated
(bent over) based on the data but on the objective itself. When choosing
a metric, we should also consider what mistakes are worse (as explained in
examples in 2.2.2).
The second step is to get the data. The third is splitting data into train-

ing, validation, and testing parts. Then we can start with Exploratory Data
Analysis (EDA), as a process to visualize training data and select predictors
or engineer new ones (by combining original ones). We have done all these
steps and describe our actions in the following subsections.

3.1.1 Task description
Our task is to predict whether an applicant for studies at our faculty has
a chance to pass the first year successfully. Successfully means he/she will
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get at least 35 ECTS credits at the end of the academic year. This task can
be framed as a binary classification when the positive (1) class is getting at
least 35 credits, and the negative (0) class is getting less than 35 credits.

3.1.2 Goal definition
We define two metrics for our case. The business metric will be recall (2.2.2,
which we choose as we want to avoid false negatives, i.e., predicting an ap-
plicant as an unsuccessful student. We will leave a default threshold value
(= 0.5) on the test dataset to obtain the recall value, as it is not clear how
to optimize it without getting the classifier to predict only a positive class.
The training metric will be AUC (2.2.4) for the sake of comparison of trained
models when choosing optimal hyperparameters. The required performance
is to score 0.9. The default action is not to use a model (in case we would
have to decide) if the score is insufficient, so the null hypothesis is that the
model scores 0.9, and the alternative hypothesis is that the model scores
more than 0.9. We must postulate a null hypothesis before seeing the accu-
racy of models on train data or even exploring the training dataset.

3.1.3 Data description
We have obtained historical data about the admission process and the fol-
lowing study results of 3595 students who started their first year of studies
between 2017 and 2021. We get information like points achieved in admis-
sions, name of high school, year of high school graduation, number of credits
and grades average obtained in the first year, the form of study, and study
program name. We will inspect these features in more detail in our EDA in
3.1.6. These data were provided anonymized.

3.1.4 Tools selection
A critical step of every task is choosing (or building) the right tools to make it
easier to complete. We have chosen Python and its libraries like pandas for
data manipulation, preprocessing and descriptive statistics, matplotlib and
seaborn for data visualization, scipy for statistics calculation, and scikit-learn
for models training. Other libraries will be eventually mentioned along with
their usage. Code (hopefully self-commented) is available as an attachment
in the Jupyter Notebook format or HTML, which makes it easy to present
the code with its intermediate results (even with images embedded) and its
explanation. We will use this benefit and often skip less important details
referencing the source code for more interested readers.
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3.1.5 Data preprocessing
The dataset contains different names for the same or substitutive programs
through academic years and free text input for a high school name. There-
fore, we map high school names into eight categories based on the type of
school, like ”grammar school” or ”business academy.” We merged the same
university programs with different names and then mapped all programs to
eight categories like ”languages” or ”natural sciences.” The explainability and
richness of categories were compromised towards the smaller feature vec-
tor size, as each category adds one to it (when using one-hot encoding and
not applying any dimensionality reduction techniques). Fewer features mean
a less rich hypothesis class which generally means lower estimation error
(discussed in 1.2.4). It is even more important with a limited number of ob-
servations.
We significantly changed the column with points achieved in the admis-

sion process. We divided all values by themaximumpoints attained in a given
year and program (and multiplied by 100), respectively. This change makes
them more comparable in terms of values. However, it is the only thing
we can do about different admission conditions through the years and pro-
grams. It is necessary to mention that any other value normalization or stan-
dardization than the one mentioned was not done. This process’s parame-
ters should be obtained only from the training dataset to avoid test data
leakage to the training stage. We also feature-engineered the rest of the
variables to simplify our work as we simultaneously did this necessary pro-
cess for the whole dataset. Nevertheless, these were just ordinary things
like mapping binary features to {0, 1}.
In the end, we split the dataset to train and test parts. It is a different

order than Cassie Kozyrkov proposes, but we needed the whole dataset to
create practical and consistent classes of described features. The primary
reason for Kozyrkov’s order is that test data leakage can be introduced by
exploring the testing set, as a person can direct training based on the ob-
tained information. It means we could introduce bias by preprocessing data
to such an extent without splitting it first.
The last completed academic year, 2021/2022, was chosen as the test-

ing set (instead of random sampling). The main reason is that the task itself
is about predicting the study success of applicants. The model can only be
trained on the previous years. However, we are not interested in predicting
the past, so we want to test against new data as possible, hence choosing
the latest year available as the test set. This novelty is also the reason for
using only the five last years available in the whole dataset instead of all
available data (about twenty years of data are technically accessible). Con-
sequently, we have dedicated about 20 % of our data for testing purposes,
the usual amount to choose from. We did not create a validation set aswewill
applyK-fold cross-validation for hyper-parameters selection (more about in
3.2).
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More details of preprocessing are in the source file select_features_split
in the attachment.

3.1.6 Data exploration
As mentioned above, we will only explore the training dataset (academic
years started in 2017-2020) to avoid test data leakage to the training pro-
cess. Data are prepared in the format processible by our selected algo-
rithms. We will start with basic descriptive statistics in figure 3.1.

Figure 3.1: Summary of our numerical and binary variables.

Before jumping to model training, we must ensure that features are un-
correlated. High correlation can produce models with poor generalization
capacity because the model can learn that specific changes in the response
variable are due to the first correlated variable when they are due to the
second. We do not have this issue with our numerical variables, as shown in
figure 3.2.
For quantifying an association between categorical (nominal) variables in

our dataset, we used Cramér’s V , which is based on Pearson’s Ξ2 statistic.

V =

√
χ2/N

min(C − 1, R− 1)
(3.1)

We computed χ2 statistic from a contingency table whereN is the total num-
ber of observations, C is the number of columns, and R is the number of
rows. Figure 3.3 shows an overview of values for every categorical variable
in the dataset (except the response variable). All contingency tables are in
source file visualize_explore with other computation details like p-values.
Another problem could be a relatively low number of specific values in

a categorical feature. We can conclude something about the effect of such
a value on the response variable only with enough observation concerning
other predictors. Moreover, a model is probably useless in this part of the
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Figure 3.2: Pair plot of numerical features in our dataset. On the main diago-
nal are histograms, and on the anti-diagonal are scatter plots with linear re-
gression lines. These lines’ slope hints that the correlation of displayed vari-
ables is close to zero. Indeed, Pearson’s correlation coefficient of years from
high school (ROKY_OD_MATURITY) and weighted points (BODY_VAZENE)
is about -0.0186.

feature space if the number of features is higher than the number of obser-
vations with this value. The lowest count through all categorical features
has the high school of type gastronomy, hotel industry, and tourism (gas-
tronomie, hotelnictví, ruch) with 52 occurrences. We solved the problem in
advance in the preprocessing phase.
These were the main concerns, but we can continue. Exploring relation-

ships between numerical variables in the context of a categorical variable
or between numerical and categorical can also be valuable. In the following
figures 3.4, 3.5, 3.6, 3.7, we present selected plots focused on categorical
variables college field of study (VS_OBOR) and high school type (SS_OBOR).
In the legend of these figures are the actual values of these categories. Fur-
thermore, there is shown difficulty when one observation can acquire more

34



Figure 3.3: The plot shows a heatmap of Cramér’s V values for our categori-
cal features. We can see that college field of study (VS_OBOR) is correlated
with a form of study (FORMA). This collinearity is not an issue as we are do-
ing a predictive task (see 1.1).

than one value of a category variable (VS_OBOR). We dealt with it so that
when a pedagogy student has two appropriations different in its field, it
is something like a new category value. We even modified one-hot encod-
ing so that it is not ”one” anymore but ”two” (same with approbations from
the same field). Variable (SS_OBOR) poses another difficulty as there were
604 unique text values in the source dataset, many of which are not easily
classifiable or represent a minor type of school, so there is a rest category
(ostatní) which has about 19 % occurrence.
The last two categorical variables mean whether a student is from the re-

gion (MISTNI) and their form of study (FORMA).Wedefine the region as Liberecký
kraj except for most of the former okres Česká Lípa (as it is close to the uni-
versity in Ústí nad Labem as well) with the addition of Mnichovo Hradiště
and Mladá Boleslav with nearby villages. Types of study are two, full-time
(P) or part-time (K). We visualize these two categorical variables as context
for our numerical variables in figures 3.8 and 3.9.
We end our exploration here as it is not the main topic of our work. More

details and visualizations are in the source file visualize_explore.
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Figure 3.4: Strip plot of college field of study vs. years from high school.
With the help of transparency, we can see that most students in the first
year have less than five years from high school. Also, certain college fields
have (almost) no older students, probably because of only full-time form.

Figure 3.5: This strip plot shows that older students can have any school.
The dominance of certain high school types is primarily given by their fre-
quency, like grammar school (gymnázium) with 33 % occurrence.
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Figure 3.6: This empirical Cumulative Distribution Function (eCDF) shows
that 80 % of applicants to field/program social work (sociální práce) has
less than 80 admission points or that about 35 % of applicants to language
(jazyky) programs have maximum points.

Figure 3.7: With the help of this eCDF, it is most visible that the best appli-
cants in terms of distribution of admission points are from grammar school
(gymnázium).
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Figure 3.8: Pair plot shows that years from high school and admission points
do not depend on student’s region by both stacked histograms on diagonal
that visualize univariate distributions and KDE plots on anti-diagonal that
visualize bivariate distributions.

Figure 3.9: This pair plot shows that full-time students (FORMA=P) generally
have fewer years from high school than part-time students (FORMA=K), but
the distribution of admission points looks similar.
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3.2 Model creation
We selected logistic regression, decision tree, Random Forest, K-Nearest
Neighbors, Support Vector Machines, and Multi-Layer Perceptron methods
to choose from as the final model. We described these in 2.1. We followed
the usual workflow when obtaining the best model. It means splitting the
dataset into training and testing and then splitting further into training and
validation. To avoid bias towards particular samples in the validation dataset,
we split with the help of the cross-validation technique (briefly explained in
the following subsection). For several methods (K-Nearest Neighbors, Sup-
port Vector Machines, and Multi-Layer Perceptron), we applied standardiza-
tion. After the training process, we picked the best model of each method
and compared them together with the help of chosen statistical test.

3.2.1 Model training and validation
Model training is the process of finding (sub)optimal parameters (coeffi-
cients, weights) of the given model by optimizing the loss function (we de-
scribed the idea behind it in 1.2). Model validation is the process of testing
on the unseen data, usually done while doing hyperparameters tuning, i.e.,
the process of selecting the best values for (inverse of) regularization coef-
ficient and solver in logistic regression, the minimal proportion of samples in
a leaf or maximumdepth of the tree in the decision tree, number of neighbors
and type of metric in KNN, number of trees and the maximum depth of a tree
in the RF, (inverse of) regularization coefficient and type of kernel in SVM,
the learning rate and type of activation function in MLP and others we did
not use. These hyperparameters’ specific intervals and categories are in the
source file train_test, and we selected them somewhat broader but still tried
to make them sensible. In some cases, the optimization algorithm hits the
limit of the interval. The reasons could be that the minimum exists outside
the interval or there is no absolute minimum with only the saddle present.
The figures like 3.12 show that second is probably the case. Moreover, even
when the first would be the case, there is a question if increasing (or de-
creasing) interval limits are sensible, i.e., if we get hyperparameters values
that make sense for the given method.
We usemodel validation results only for comparisonmodels with different

hyperparameters settings, not for the final evaluation of model performance
because the model is undoubtedly biased toward the validation dataset.
We did the training on academic years started in 2017-2020 of our dataset

(described in 3.1.3). We did 10-fold cross-validation for hyperparameters
tuning. TheK-fold cross-validation is a simple process of splitting the dataset
intoK distinct (not overlapping) sets (folds), which union is the entire dataset.
The current fold is chosen for validation, and the rest is used for training. K
validation results are averaged and then used to compare the different hy-
perparameters settings more robustly.
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Figure 3.10: This convergence plot shows value of negated AUC metric de-
pending on the iteration of Bayesian optimization.

Figure 3.11: This pair plot shows our search space for our RF classifier. Hy-
perparameter n_estimators means the number of trees. The star denotes
the location of the minimum found in the process.
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Figure 3.12: On the diagonal are graphs showing how values of given hyper-
parameter influence the function we minimize.

Figure 3.13: This graph shows ROC with AUC score of our classifier on train-
ing samples. The reason why The recall score is 0.866.
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To semi-automatize the hyperparameters tuning, we used Bayesian op-
timization, also called sequential search, explained in this paper by [41]. We
used implementation in the scikit-optimize library. Roughly speaking, this
algorithm randomly selects values of chosen hyperparameters in a given
search space, evaluates model performance on objective function (AUC in
our case), and selects the values of the following hyperparameters based
on it. It treats our objective function as random and places prior over our
function, and after each evaluation, updates posterior distribution over it.
After a few iterations (we used 100), it should converge to the suboptimum
without computing any gradient.
The figures 3.10, 3.11, 3.12 and 3.13 are examples from the hyperparam-

eters tuning process and show results on Random Forest classifier. More
information about the first three figures can be found in scikit-optimize doc-
umentation. The AUCmetric in the last one is explained in 2.2.4). Figures for
the rest of the trainedmodels and sub-models are in the source file train_test
in the attachment.

3.2.2 Model testing
After achieving enough performance in the training stage, we can proceed to
test to ensure our model generalizes well enough. Model testing is, in prac-
tice tricky thing if only limited data is available. We can do a point estimate
of our business metric by giving all test data to the model and obtaining one
number to compare with our goal or other models. However, to do a sta-
tistical test, we need more points. We can bootstrap our dataset to obtain
several datasets of the same size, but we will break the assumed indepen-
dence of individual observations. Without this assumption, we should not
use Student’s t-test and ANOVA (or their non-parametric alternatives). We
chose as our approach to evaluate our classifiers and use Cochran’s test
[42], a generalization of McNemar’s test. It tests if they give similar predic-
tions because it compares the proportions of situations when models give
the same or different output. We applied it with the help of the mlxtend
library.
Here are the results running our best models on the test dataset.

Model AUC Recall
Logistic regression 0.63 0.787
Decision tree 0.57 0.691
Random forest 0.63 0.825
K-nearest neighbors 0.64 0.748
Support vector machines 0.61 0.760
Multi-layer perceptron 0.64 0.803
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Figure 3.14: This graph shows ROCwith AUC score of our classifier on testing
samples. When comparing with 3.13, we can see that our classifier poorly
generalize. The recall score is 0.825.

Here is the confusion matrix of our best (RF) classifier.

pred 1 pred 0
true 1 419 89
true 0 130 72

We did three Cochran tests in total. We rejected the null hypothesis (p <
2e− 6) that the best models of each method are the same. We did not reject
the null hypothesis (p = 0.374) that tree best models - RF, MLP, and logistic
regression are the same. We rejected the null hypothesis (p < 1e−15) that the
bestmodel based on RandomForest is the same as an artificial classifier with
a 0.9 recall score (as we specified in the Goal definition 3.1.2). Because the
RF classifier’s score is lower than the artificial one, we can conclude that the
RF classifier is not good enough. We show Receiver Operating Characteristic
curve for the final best model in figure 3.14. The attachment shows the test’s
details at the end of the source file train_test.

3.2.3 Model interpretation
Model interpretation is not the main task of predictive modeling. Implica-
tions are that we are not limiting ourselves to highly interpretable models,
and we are only sometimes conscientiously checking all assumptions as we
are motivated by generalization on unseen data, not relationships. How-
ever, looking at what parameters the model learns is beneficial to check if
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it makes sense and if we did everything correctly. Alternatively, we want to
be inspired for our next try.
We looked at our logistic regression coefficients, which are easily inter-

pretable as the slope of lines in subspace given by selected independent
and dependent variables. We also printed out feature importances in our
RF model, which proportionally measures how often a feature was used in
trees. Because the algorithm chooses split in a tree based on criteria like
entropy, we can roughly conclude that features with higher importance also
have higher predictive power. We present these findings at the very end of
the source file train_test, as we think it is in a more readable format.

3.3 Further steps
Based on the results, there are two possible steps to take. If we have not
achieved enough performance, we can return to the training model, data
preprocessing, or data collection.
Suppose we have achieved enough performance on our business metric.

Then we can present the model to a stakeholder or deploy it to a production
environment depending on our project objectives.

3.3.1 Another iteration of training process
Another iteration is our next possible step, as we have yet to achieve the tar-
geted performance. We need a new test dataset, as the current was already
used. We are increasing the chance of Type I error otherwise by reusing it
and introducing bias towards samples in the test dataset in our model. On
our try, we trained submodels (mainly RF models) or used a more complex
dataset with more granular variables SS_OBOR and VS_OBOR, but nothing
led to better results. It hints that our data might not be of sufficient quality
(we have to, for example, vaguely categorize an applicant’s high school), or
we may not have used some significant predictor that influences the appli-
cant’s success.

3.3.2 Deployment and continuous evaluation
We would like to use our model for our project objectives if we would have
achieved enough performance. In the case of our task to predict if an appli-
cant can finish the first year of college studies successfully, this usage could
involve predicting the applicants’ success and then deciding on a threshold
in the admission process. However, a question is whether the variables we
would use for such prediction can be part of the decision process.
Part of deployment to the real world is continuously evaluating our model

and retraining if needed. Because the world constantly changes, and our
data should go with it.
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Conclusions

Wehave empirically compared sixmethods often used inML on a real dataset.
Before that, we have explained these methods (2.1) alongside metrics (2.2)
used for comparison. Furthermore, even before that, we started this work
with a brief introduction about why is such empirical comparison needed
for every specific task and why we cannot do better (1.2.3). In comparison,
we have not rejected that our three best models (based on Random For-
est, Multi-Layer Perceptron, and logistic regression methods) are the same.
We can be sure about such a conclusion because we fed our dataset into
the algorithms in an identical format and used the same optimization for hy-
perparameter tuning. Of course, methods like logistic regression could be
improved by adding interactions, but it is an extra process that makes com-
parison with, for example, neural networks less straightforward. One can
argue that such a thing makes comparison fairer because neural networks
and (other used algorithms to some extent) can implicitly exploit a non-linear
relationship between dependent and independent variables.
To conclude our classification task to predict the applicant’s success in

the first year of study, we failed to provide a good classifier compared to
our target performance. We did our best as we applied optimization tech-
niques to tune hyperparameters, did cross-validation in the training process
to be more certain about selecting a model with good generalization capa-
bility, and even tried submodels or a slightly modified training dataset. This
result leads to the question if the task is solvable with targeted performance
because, as we can see in theory (we specifically mean agnostic PAC dis-
cussed in 1.2.2), we usually assume that minimal possible error is non-zero
and theoretically comes from noise in our data or the absence of important
predictors.
Talking about noise, having clear, recognizable categories of high schools

(or even better, high school programs of an applicant, as one high school can
have multiple different study programs) could improve the performance of
ourmodels. When talking about other potential predictors in our task, we can
take a look at case study Early Prediction of student’s Performance in Higher
Education by Martins et al. [43] and specifically at dataset they used. There
are 37 variables included in this dataset about Portuguese higher education
students, such as marital status, qualification and occupation of parents, if
a student is a holder of a scholarship, or what is current inflation or unem-
ployment rate in the country is. It gives more power, as we could use infor-

45

https://archive-beta.ics.uci.edu/dataset/697/predict+students+dropout+and+academic+success


mation about student’s financial and family background or current economic
situation in a country that could motivate them to obtain higher education
degrees.
Another way how results could be improved is to try different algorithms.

We have yet to try every promising method available, as it was out of our
resources. Nevertheless, different neural network architectures may lead to
a better result. Using meta-models, when we average or mode output of
different models to get the final prediction, is also a possible way to achieve
improved performance. However, the data-centric approach (when we im-
prove our models by improving our dataset) is emerging trend in academia,
and it is the first thing to try to get the better model.
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