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Abstract 
This work proposes a new compression method and its application in the framework of time-
domain ultrasound simulations, specializing in high-intensity focused ultrasound (HIFU). 
Large-scale numerical simulations of H I F U , important for model-based treatment planning, 
generate large amounts of data. A simulation typically requires hundreds of gigabytes of 
storage. The goal of using this method is to significantly save computing resources while 
maintaining sufficient quality of the simulation outputs. At the core of this work, experi­
mental simulations are presented, which show that the proposed compression method and 
its use for on-the-fly calculation of the average acoustic intensity during the simulation bring 
significant improvements. The main advantage is to a large extent (up to 99%) reduced 
consumption of precious disk space and approximately the same requirement for opera­
tional memory during simulation, which can significantly reduce the price of the computing 
platform. Compression does not adversely affect the overall simulation time. The accuracy 
of the new method was evaluated using thermal simulations. Using the new method, the 
same results are achieved in ablated tissue determination as in other approaches. 

Abstrakt 
Tato práce navrhuje novou kompresní metodu a její aplikaci v rámci ultrazvukových simu­
lací v časové oblasti se specializací na cílený ultrazvuk o vysoké intenzitě (HIFU). Rozsáhlé 
numerické simulace H I F U , důležité pro plánování léčby založené na modelu, generují velké 
množství dat. Při simulaci je obvykle nutné ukládat stovky gigabajtů. Cílem použití této 
metody je významná úspora výpočetních prostředků při zachování dostatečné kvality sim­
ulačních výstupů. V jádru této práce jsou prezentovány experimentální simulace, které 
ukazují, že navržená kompresní metoda a její využití pro on-the-fly výpočet průměrné aku­
stické intenzity během simulace přináší významné vylepšení. Hlavní výhodou je do značné 
míry (až 99 %) snížená spotřeba vzácného místa na disku a přibližně stejný nárok na oper­
ační paměť během simulace, což může výrazně snížit cenu výpočetní platformy. Komprese 
neovlivňuje nepříznivě celkovou dobu simulace. Přesnost nové metody byla vyhodnocena 
prostřednictvím tepelných simulací. Pomocí nové metody je dosaženo v podstatě stejných 
výsledků při stanovení ablatované tkáně jako u jiných přístupů. 
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Chapter 1 

Introduction 

Simulations of ultrasound wave propagation have a wide range of applications. Especially 
simulations of ultrasound propagation through biological tissues are very useful for planning 
ultrasound treatments. High-intensity focused ultrasound (HIFU) presents a typical early 
stage technology that most probably will be widely used in the future for cancer treatment. 
It is a non-invasive therapy, during which a narrowly focused beam of ultrasound is used 
to rapidly heat the tissue in the selected area and the cells are destroyed by this. The most 
important effect of ultrasound is a precisely localized, well-timed thermal effect. H I F U 
simulations can significantly help surgeons and researchers advance this technology and 
make treatments more precise and successful. 

At this time, to perform accurate ultrasound simulations, extensive computational 
power and a large amount of storage space are required. Typically, it is necessary to 
save hundreds of gigabytes or tens of terabytes during and after the simulation running on 
several thousands of processor cores. 

The topic of this thesis falls mainly into two categories of computer technology. The 
first category covers large-scale ultrasound simulations and the second is data compression. 

This work is focused on the compression of such large specific ultrasound simulations 
data. The work proposes a new on-the-fly compression method and its application within 
time-domain ultrasound simulations with a specialization in H I F U . The goal of the new 
compression method is to significantly save computing resources while maintaining sufficient 
quality of simulation outputs. 

In the core of this work, experimental simulations are presented, showing that the 
proposed compression method and its use for the on-the-fly calculation of the average 
acoustic intensity during the simulation (which uses a staggered-grid pseudospectral time 
domain (PSTD) method) bring significant improvements. The main advantage is to a large 
extent (up to 99%) reduced consumption of precious disk space and approximately the 
same requirement for operational memory during simulation, which can significantly reduce 
the price of the computing platform. Compression does not adversely affect the overall 
simulation time. The accuracy of the new method was evaluated using thermal simulations. 
Using the new method, the same results are achieved in ablated tissue determination as 
with other approaches. 

The use of a new method could also lead to, for example, more efficient treatment plan­
ning, fast four-dimensional (4-D) volume data visualizations, and parallel data processing 
on-the-fly during simulations. Saving computing resources increases the chances of making 
effective use of acoustic simulations in practice. The method can be applied to signals of 
similar character, for example, electromagnetic radio waves. 
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The consequent Chapter 2 provides information on state-of-the-art ultrasound simula­
tions - tasks, outputs, applications, and technologies. Chapter 3 is focused on methods for 
data compression. Basic information on general data compression is presented. The known 
and powerful state-of-the-art image, video, and audio compression methods are presented 
in more detail. In addition, some methods or techniques that are more relevant to charac­
teristic ultrasound simulation data and high-performance computing (HPC) are discussed. 
The evaluation measures for compression efficiency are mentioned in Chapter 4. First, the 
typical and known general measures for compression are presented, and then some possible 
approaches related to the main topic of this thesis are discussed. The core of this work 
is contained in Chapter 5. Section 5.1 contains the formulation of the hypothesis and the 
specification of the verification of this hypothesis. Sections 5.3 and 5.4 present core publica­
tions with experiments and work results. These are followed by Section 5.5, which validates 
the results and the scientific contribution. Section 5.6 is focused on applications and future 
work and Chapter 6 concludes the thesis. 
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Chapter 2 

Ultrasound simulations 

The purpose of this chapter is to present the state-of-the-art in the field of ultrasound 
simulations. This chapter is focused on ultrasound simulation tasks, outputs, applications, 
and used technologies. The topic is very closely related to the k-Wave acoustic toolbox and 
the H I F U simulations [33, 78] which are state-of-the-art technologies. 

2.1 Tasks of ultrasound simulations 

Ultrasound is a compression-dilatation wave with high frequencies (1-20 MHz in medical 
ultrasound compared to 20Hz-20kHz for audible sound). The pressure wave is composed 
of phases with compression and dilatation which propagate in the medium. Thus, sound 
and ultrasound cannot propagate in a vacuum. The average value of the sound speed in 
the biological environment is 1,540 m s - 1 , the corresponding wavelengths for ultrasound are 
usually between 0.08 mm to 1.54 mm [82]. 

Ultrasound simulations have various uses. For example, simulations are needed to per­
form transcranial focused ultrasound safely [4] or have become a widely used technique to 
evaluate ultrasound interactions in bone [38]. Another use is, for example, pelvic ultrasound 
simulation training among residents, sonographers, and general practitioners [5]. Significant 
use of simulations is also made in the field of ultrasound tomography (UST) - here a full 
time-domain waveform inversion is performed as a UST image formation technique [52, 57]. 
This work focuses mainly on H I F U simulations. 

H I F U is one of the modern technologies for cancer treatment. It is an emerging non­
invasive therapeutic technique that uses ultrasound waves to destroy tissue, such as tumors 
inside the human body. A beam of ultrasound energy is sent into the tissue using a focused 
transducer. The focused region is rapidly heated, resulting in irreversible tissue damage, 
while surrounding tissue is not affected (illustrated in Figure 2.1) [12, 20, 33, 73, 89]. 

In recent years, many H I F U clinical trials have been conducted for the treatment of 
tumors in the prostate, kidney, liver, breast or brain, but the most important issue and 
challenge is the precise placement of the ultrasound focus. There are some tissue properties 
that can significantly distort ultrasound distribution, for example the skull. That is the 
main reason why precise simulations are needed [33]. 

However, there are two main challenges. First, it is necessary to create an acoustic and 
thermal model that is physically complex, due to a heterogeneous medium and nonlinear 
wave propagation. Second, the simulations are computationally very intensive and expen­
sive, as they must be executed on large domains with billions of grid points. A n important 
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Figure 2.1: Schematic illustration of the H I F U device1and therapy2. 

factor is the time required for realistic and useful simulations. Now, some sophisticated 
parallel implementations in distributed clusters have been developed using message passing 
interface (MPI) technology or graphic processing units (GPU). One problem is the time 
required for the simulations, but the next big issue is the storage space required to save the 
simulation outputs [33, 35, 72]. 

Due to the large distances traveled by the ultrasound waves relative to the wavelength 
of the highest frequency harmonic and for precise results and applications in medical treat­
ments, very large simulations have to be performed. Currently, the resolutions of the 
ultrasound simulation grid reach up to 4096 x 2048 x 2048 samples in three-dimensional 
(3-D) space. Usually, the limited number of time steps in a small area encompassing the 
focus (sensor mask) or a discontinuous field of point sensors have to be sampled and saved 
for further processing, for example, in thermal modeling. The typical size of the sampled 
data for a clinically applicable simulation reaches 0.5 T B . If the entire simulation datasets 
had to be stored, for example, for 3000 simulation steps, ca 68 T B of storage space would 
be needed. To obtain a clinically relevant simulation, the grid sizes of 40963 to 81923 must 
be defined at least for 50 thousand simulation time steps [33, 72]. 

Typically, a simulation of wave propagation in a heterogeneous material is nonlinear. 
Thus, some higher harmonic frequencies of the source frequency are generated. The source 
frequency is usually between 0.5 and 2 MHz. Differences between harmonic frequencies 
generated in water and tissue are shown in Figure 2.2. At low focused locations, it is 
possible to get up to 10 harmonic frequencies, but at highly focused locations. Up to 600 
harmonics would be useful for accurate modeling of heat propagation. For example, for 
histotripsy, up to 50 harmonics may be needed [33, 72]. 

In a real situation, for example, it is necessary to carry out a simulation of ultrasound 
propagation in the real domain with a size of 5 cm 3 (uniform Cartesian grid), the output 
data of the simulation must be saved using the maximum frequency 20 MHz and the speed 
of sound is assumed to be 1,500ms _ 1 (in water). So, with respect to the Nyquist theorem, 
a simulation grid size of 26673 is needed and this means 71 G B space for one matrix (one 
step in time) [33, 72]. 

To avoid the computational complexity of solving nonlinear acoustic equations in 3-D, 
there are one-way models, which have been successfully solved and simulated in homoge-

x

http: //miamiur ologyconsultants.com/images/HIFU_lesions_labeled_C.jpg 

http: //www. st argen-eu.cz/ostatni/medicina-2/fokusovany-ultrazvuk 
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Time (|JS) Frequency (MHz) 

Figure 2.2: Time domain waveforms at the maximum peak pressure location in water and 
kidney and windowed harmonic frequency spectrum of the same wave forms3. 

neous media. However, for heterogeneous simulation of H I F U beams, the use of full-wave 
nonlinear models has been reported. These models are based on finite difference time do­
main (FDTD) methods (e.g. SimSonic 4 software). The computation has excellent weak 
scaling for properties for given grid sizes, but for large grids, there is big accumulation 
of numerical dispersion. The possible way to eliminate numerical dispersion is using the 
Fourier pseudospectral method and a more efficient &-space pseudospectral method that 
uses a time-staggered P S T D (e.g. software, such as k-Wave [78])[33]. 

Special methods for nonlinear ultrasound simulations in an axisymmetric coordinate 
system were also developed. The assumption of axisymmetry allows simulations with dense 
computational grids to model the propagation of nonlinear fields over large domains [81]. 

Typical H I F U treatment planning should consist of several steps: 

1. The first step is computed tomography (CT) or magnetic resonance imaging (MRI) 
scan of the patient. On the scanned data a segmentation of bones, fat, skin, etc. is 
performed and the medium properties are gained (density, the speed of sound). A 
model for an acoustic simulation is created from these parameters [78]. 

2. The next step is the acoustic simulation. During the simulation H I F U , the source 
ultrasound signal is emitted from a transducer into the tissue with which it interacts. 
Multiple intersecting ultrasound beams are concentrated on the target (focus point). 
Some phenomena, such as attenuation, time delay, scattering, or nonlinear distortion, 
may occur during ultrasound propagation [7, 24, 73]. 

3. The output of the simulation can be in various quantities. This is usually acoustic 
pressure, acoustic particle velocity, or time-averaged acoustic intensity. Based on 
these data, for example, parameters for thermal simulations (the volume rate of heat 
deposition) can then be calculated [78]. 

4. Finally, the thermal simulation is executed to calculate the heat deposition. The result 
of the thermal simulation is information about the temperature in the target region 

3The illustration taken from [72]. 
4

http: //www.simsonic.f r 
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after heating and cooling, the thermal dose, and the lesion size and an accurate focus 
position and aberration correction can be obtained. The final step is the application 
of ultrasound treatment [12, 33, 51, 55, 73]. 

2.2 Acoustic simulations 

To model the effects of nonlinearity, acoustic absorption, and heterogeneities in the material 
properties, the final equation can be composed of three-coupled first-order partial differ­
ential equations [33, 73, 78] derived from conservation laws and a Taylor series expansion 
for pressure about density and entropy - momentum conservation Equation (2.1), mass 
conservation Equation (2.2) and pressure-density relation Equation (2.3) 

^ = - - V p + F, (2.1) 
dt po 

-z- = - p o V • u - u • Vpo - 2pV • u + M , (2.2) 

p = c§ ( p + d - V p o + ; r j - - L p ) (2-3) 

where u is the acoustic particle velocity, p is the acoustic pressure, F is a force source 
term in N k g - 1 , M is a mass source term in units of k g m - 3 s _ 1 , d is the acoustic particle 
displacement, p is the acoustic density, po is the ambient density, CQ is the isentropic speed 
of sound, B/A is the nonlinearity parameter and L is a loss operator accounting for acoustic 
absorption and dispersion that follows a frequency power law. 

The equations can be discretized using A:-space pseudospectral method, where spatial 
gradients are calculated using the Fourier collocation spectral method, and time integration 
is performed using an explicit dispersion-corrected finite difference scheme [33, 73]. 

It is crucial and also somewhat disadvantageous that this method uses a staggered 
spatial and temporal grid for the calculation of the simulation step (the solution of the 
coupled first-order equations). In practice, this means that after one simulation step, the 
acoustic particle velocity is shifted relative to the acoustic pressure by half the time step 
and also by half the grid point spacing. Details are explained, for example, in [33]. 

It is important that the computation required 6 forward 3-D fast Fourier transforms 
(FFT) , 8 inverse 3-D (FFTs) and overall it is about 100 element wise matrix operations. 
The development of an efficient numerical implementation that partitions the computational 
cost and memory usage across a large-scale parallel computer is desired. 

The execution of the &-space pseudospectral method can be divided into three phases: 
preprocessing, simulation, and postprocessing [33, 78]. During the preprocessing, the input 
data for the simulation is generated - defining the domain discretization based on the size of 
the physical domain and the maximum frequency of interest, defining the spatially varying 
material properties (e.g., using a CT) , defining the properties of the ultrasound transducer 
(e.g., the aperture diameter of the transducer bowl and the radius of curvature) and the 
drive signal, and defining the desired output data. The source ultrasound signals are always 
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defined by a known harmonic function of a given frequency, usually a pressure sinusoid of 
frequency ranging from 0.5-1.5 MHz [73]. These parameters are defined in hierarchical data 
format (HDF5 5 ) files. 

The simulation phase is executed with the input data and with the discrete equations. 
The output data are stored. The postprocessing phase contains the analysis of the outputs 
and converts these data into human-readable form. 

Briefly, during the simulation phase, the complete set of data stored in the memory 
contains: 

• 21 x real 3-D matrices in the spatial domain, and 3 x real and 3 x complex 3-D matrices 
in the Fourier domain (medium properties, time-varying acoustic quantities, derivative 
and absorption operators and temporary storage), 

• 20 x one-dimensional (1-D) size variable real vectors and 

• approximately fifty scalar values defining, e.g., the domain size, grid spacing, number 
of simulation time steps, etc. 

For computing 3-D F F T with M P I , two main ways of domain decomposition were 
developed. The first of them is 1-D domain decomposition [33], where 3-D matrices are 
partitioned along the z dimension and distributed across the M P I processes. 1-D vectors 
oriented along the dimensions x and y are broadcast. A l l scalar variables are broadcast and 
replicated on each process. A n illustration of this approach is shown in Figure 2.3. 

Broadcast 

Scatter vector 

Figure 2.3: 1-D slab decomposition used to partition the 3-D domain within a distributed 
computing environment6. 

The second approach is hybrid open multiprocessing (OpenMP) / M P I decomposi­
tion [32] which tries to alleviate the disadvantages of the pure M P I decomposition by 
introducing a second level of decomposition and further breaking the 1-D slabs into pencils. 

Another approach to compute the simulations is to use the local Fourier basis decomposi­
tion. By reducing the communication overhead and accepting a small numerical inaccuracy, 
it is possible to improve scaling from 512 to 8192 cores while reducing the simulation time 

5

https: //www.hdf group.org/solutions/hdf5/ 
6The illustration taken from [33]. 
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by a factor of 8.55. This approach eliminates the necessity of all-to-all communications 
by replacing them with local nearest-neighbor communication patterns[35] (Figure 2.4). 
More recent work [77], dedicated to local domain decomposition analysis of performance 
and accuracy on a single server containing eight N V I D I A P40 graphical processing units 
(GPUs), and compares it with the M P I version. Another recent work describes the im­
plementation on the Salomon cluster equipped with 864 Intel Xeon Phi (Knight's Corner) 
accelerators [83]. 

total domain 

data initially copied to subdomains 

sub-domain 1 

physical domain 

sub-domain 2 

overlap region 

data transfer at each time step 

sub-domain 3 

Figure 2.4: Schematic showing domain decomposition using local Fourier basis7. 

The ratio between total simulation time with and without saving the output data de­
pends besides from the size of the sensor mask also on the type of implementation. The 
version with MPI - I /O technology provides several times faster parallel storing of the data. 
Generally, the time of storing the data range between 10 % and 70 % of the total simulation 
time. The minimal memory consumption of a typical simulation roughly corresponds to 
the size of the 3-D simulation domain times 30. But the M P I version with lots of compute 
nodes has a global memory peak many times higher (terabytes). Wi th double enlargement 

7The illustration taken from [35]. 
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of the simulation domain, the time required for the simulation is about ten times larger. 
These values and claims were obtained by personal consultation and custom experiments. 

2.3 Average intensity calculation 

To calculate the thermal ablation in the tissue, an acoustic simulation is first performed. 
When using a time-staggered P S T D method, the results are the time-varying acoustic 
pressure and particle velocity (spatially and temporally staggered, a vector field) which can 
be used to calculate the time-averaged vector intensity. The average intensity can be used 
to calculate the inputs to the thermal simulations [80]. 

During the execution of the acoustic simulation, the acoustic pressure and the time-
staggered particle velocity are often stored within the entire 3-D simulation domain. The 
reason why the entire domain is stored rather than a small area around the focus is the 
aliasing that arises when calculating the divergence of the average intensity as the input 
to the thermal simulations, and the accuracy of the input is the critical parameter of 
usability/precision of the thermal simulations. To calculate the average intensity, it is 
necessary to sample a signal with a duration of at least one period (T), which is given by 
the fundamental frequency of the ultrasound signal. 

In each simulation (sampling) step, the current acoustic pressure and the time-staggered 
particle velocity are available. The use of staggered temporal (and also spatial) grids in the 
simulation calculations is related to discretization. In the case of discretization, their use 
brings us additional accuracy and stability [23]. Importantly, Fourier interpolation, which 
is typically used to accurately recalculate the particle velocity time shift, requires entire 
time series. Therefore, after the end of the simulation phase, the calculation of the average 
intensity vector I a v g is performed in the postprocessing phase according to 

T 
Iavg = \ J P(t)u(t)dt (2.4) 

or 

1 N-l 
IAV§ = N Yl P(N)U(N) (2-5) 

n=0 

where 

u(n) = U s t a g g e red (n + 0.5) (2.6) 

and n or t is the simulation time step or time, respectively, p(t) is acoustic pressure and 
u(t) is the vector acoustic particle velocity, T is the acoustic period of the fundamental 
frequency of the ultrasound signal. The evaluation of this equation is performed through 
numerical integration. iV is the number of discrete signal samples taken within the period of 
T (it is assumed that T can be divided exactly into N sampling periods ( l / / s ) , At = T/N 
(so that NAt = T) , u s t a ggered(^) is the time-staggered particle velocity output from the 
simulation, and u(n) is the velocity shifted half a step forward in time, typically using 
Fourier interpolation. For the calculation of the average intensity, the pressure and velocity 

15 



data (vector field for the x, y, and z axes) must be read from the output file so that they 
are continuous over time [26, 78, 86]. 

A key bottleneck in this procedure is the fact that the average intensity must be cal­
culated after the end of the acoustic simulation from the stored time-varying pressure and 
velocity data. The reason is the time shift of the particle velocity with respect to the 
acoustic pressure, which results from the time grid staggering in the A:-space pseudospectral 
simulation method [33, 78]. This procedure requires reading the large stored time-varying 
simulation data from the files, temporally shifting the velocity data by half a time step, 
e.g., using Fourier interpolation, and calculating the average intensity by multiplying the 
velocity and pressure, and averaging. For large simulations, this means a large disk and 
memory consumption, in the order of terabytes, while the result should be a relatively small 
3-D matrix with average intensity [26, 33, 73, 78]. 

2.4 Thermal simulations 

As already mentioned in the Section 2.1, to obtain information about the temperature 
in focused regions, the thermal simulations can be performed based on the outputs of 
acoustic simulations. One of the ways to calculate thermal simulation is the Pennes' bio-
heat equation [22, 26, 63, 73, 86] that uses, due to ultrasound absorption, the volume rate 
of the heat deposition term Q as an input quantity and also includes heat loss due to tissue 
perfusion (tissue blood flow) [78]. 

dT 
ptCt— = KtV2T-phWhCh(T-Th) + Q (2.7) 

where pt is the tissue density in k g m - 3 , C t is the tissue specific heat capacity in J k g - 1 K _ 1 , 
T is the total temperature in K , Kt is the tissue thermal conductivity in W i n - 1 K _ 1 , /% is 
the blood density in k g m - 3 , W\, is the blood perfusion rate in s _ 1 , Cb is the blood specific 
heat capacity in J k g - 1 K _ 1 , Tb is the blood arterial temperature in K (initial temperature), 
and Q is the volume rate of heat deposition in W m - 3 . The subscripts 't' and 'b' refers 
to tissue and blood, resp. A n example implementation (the time-domain solution) of this 
function is the kWaveDiffusion M A T L A B function from k-Wave toolbox [78]. 

The calculation of the Q term is performed as soon as the acoustic simulation reaches 
a steady state. In the general case [26], the Q term can be calculated from the divergence 
of the time-averaged intensity according to 

Q = -d iv (I a v g ) (2.8) 

where the divergence is calculated as the sum of the gradients for each axis. Another way 
to calculate the Q term is by approximating the plane wave relationship [73] 

1 N 

Q = y > t ( n / 0 ) | P n | 2 (2.9) 

where c t is the sound speed in the tissue, pt is the frequency dependent attenuation in 
the tissue, fo is the fundamental frequency of the ultrasound signal, Ph is the pressure of 
the harmonic component h and H is the number of harmonics. The pressure values of 
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each harmonic component can be obtained e.g. using the discrete Fourier transform of the 
time-domain ultrasound waveforms at each spatial location. 

2.5 Simulation outputs 

The simulations outputs are usually saved in HDF5 files [33, 78]. This file format is built for 
heterogeneous data, fast I /O processing and storage, and is composed of two primary types 
of objects: groups and datasets, which may also contain attributes with some extra infor­
mation. By the way, this format also provides parallel writing to files. For postprocessing 
and visualization, there are two basic types of datasets: 3-D datasets and 4-D datasets. 

In case of time-variable 4-D datasets, acoustic pressure and acoustic particle velocity 
can be stored across the defined area - sensor mask. Important is that the sensor mask can 
be an arbitrary and sparse set of locations (e.g. part of the ball shape or selected points 
corresponding to the skull bone illustrated in Figure 2.5) and the distribution of points in 
the 3-D space can not be predicted. A typical pressure or velocity signal recorded at a single 
grid point can be subdivided into three stages according to the magnitude of the amplitude 
and its changes. During the first stage, the signal resembles noise with an amplitude close 
to zero. The length (in samples) of this stage depends on the distance of the grid point 
from the transducer. The second stage can be characterized by a large increase in amplitude 
(a leading edge). This transient stage is usually very short, for example, around 5 % of the 
total simulation length. The third stage carries a relatively stable amplitude. This part of 
the signal is the most important part of the calculation of a heat deposition [73]. The stable 
stage usually starts at the moment when all waves emitted from the transducer arrive at 
the focus point. A typical sampled pressure signal recorded at one grid point is shown in 
Figure 2.6. 

In 3-D datasets, aggregated values of acoustic pressure and acoustic particle velocity 
are stored (minimum, maximum and root mean square (RMS)) or its final, minimum and 
maximum values across the whole simulation domain. A n example of volume rendered 
maximum aggregated acoustic pressure and C T scan of a kidney is shown in Figure 2.7. 
The figure is composed of two 3-D datasets. The blue cone with the small red area represents 
the simulated acoustic pressure. Other blended colors correspond to different tissues in C T 
data. 

The data type of the computed values is float (32-bit). The datasets storage layout is 
simple, that is, usually contiguous linearly saved values, which are less suitable, e.g., for 
fast visualizations or postprocessing [40]. The format of the output data should be more 
analyzed and improved, and this is also related to the possible research topic, the topic of 
this thesis, and thus simulation data compression (more in Chapter 3). Everything depends 
on the application of the simulation outputs. One thing is certain, the outputs are very 
large and this fact must be considered. 
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9The illustration taken from [41]. 
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Figure 2.7: Example of volume rendered H I F U simulation output data . The blue cone 
represents the maximum acoustic pressure, other colors visualize different human tissues. 
For example, the kidney is yellow. 

'The illustration taken from [40]. 
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2.6 Applicat ion of simulation outputs 

The applications of outputs are still in the development stage but can be, for example, 
treatment planning, exposimetry, and medical equipment design. The output values are also 
compared to the values measured from laboratory experiments, that is, in pure water [72]. 

One of the few published texts [72] concerns the use of a nonlinear ultrasound simulation 
model to study the effect of attenuation, refraction, and reflection due to different types 
of tissue on H I F U kidney therapy. Attenuation and beam splitting due to refraction were 
found to be the most significant factors that reduce the intensity of the ultrasound field 
(see Figure 2.8). Reflections from the rib cage could possibly cause significant losses, but 
this can be avoided by optimal positioning of the transducer. The reflections due to tissue 
interfaces were found to be negligible. 

(a) (b) 

Figure 2.8: (a) The target focal point is marked with a black cross. It is possible to see 
the shifting and splitting of the focal point into one parent and child focal volumes, (b) 
Histogram showing the size of the child volumes relative to the parent focal volume 1 1 . 

Other results [73] show that the efficacy of H I F U therapy in the kidney could be im­
proved with aberration correction. A method is proposed by which patient specific pre-
treatment calculations could be used to overcome the aberration and, therefore, make ul­
trasound treatment possible. 

The next possible application is a "Convergence testing of a A:-space pseudospectral 
scheme for transcranial time-reversal focusing" [34]. The H I F U technology is used for the 
treatment of essential tremors by ablation of the thalamus. The skull is an important 
obstacle to efficient transcranial transmission of ultrasound. Ultrasound simulations are 
used for time-reversal focusing. 

Early-stage prostate cancer is often treated using external beam radiation therapy. This 
procedure usually involves implanting a small number of gold fiducial markers into the 
prostate to verify the position of the prostate gland between treatments. The objective 

1 1 The illustration taken from [72]. 
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of the work "Modelling beam distortion during focused ultrasound surgery in the prostate 
using k-Wave" [24] was to systematically investigate, using computational simulations, how 
the fiducial markers affect the delivery of H I F U treatment (see Figure 2.9). 

No marker / 
included 'I 1 

20 30 
x [mm] 

20 30 
x [mm] 

Figure 2.9: Maximum pressure field (b) due to the presence of a single spherical marker 
compared to (a) the a homogeneus simulation without a marker 1 2. 

Another publication that deals with the topic [7] experimentally investigates the effect 
of a single external beam radiation therapy (EBRT) fiducial marker on the efficacy of H I F U 
treatment delivery using a tissue-mimicking material ( T M M ) . 

Another study deals with transurethral ultrasound therapy and uses ultrasound simu­
lations to find out how prostatic calcifications affect therapeutic efficacy and to identify the 
best sonication strategy when calcifications are present [74]. 

Significant applications of simulation outputs that are not directly related to H I F U 
are in the field of UST. E.g., approach based on a second-order iterative minimization of 
the difference between the measurements and a model based on a ray approximation to 
the heterogeneous Green's function [36] or also applications in the field of photoacoustic 
microscopy [69, 70]. 

Ultrasonic simulations are also used in, for example, the inspection of railway track 
infrastructure. A n inspection based on nondestructive testing was developed. Ultrasonic 
testing is one powerful method for nondestructive testing of internal railway crack, e.g. 
detect internal defects. It is possible to simulate nondestructive testing processes that are 
used to determine the parameters of ultrasonic testing [75](see Figure 2.10). 

A n interesting application of the outputs of H I F U simulations that are not directly 
related to the k-Wave toolbox is an alternative solution to performing many simulations -
replacing with a surrogate model built from a database of simulation results. A n interpo­
lator is used, which enables the generation of results in near real time for configurations 
covered by the database range. This procedure and related tools have been implemented 
in CIVA-HealthCare [13]. 

The illustration taken from [24]. 
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90 mm 

Figure 2.10: (a) The cross section and 3-D 
The 3-D beam pattern of R M S pressure for 
> 3 P a 1 3 . 

(a) 

computation domain of railway geometry, (b) 
selected iteration steps for the value of pressure 

The illustration taken from [75]. 
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2.7 Technologies 

The implementation of the discrete equations was originally written as an open-source k-
Wave acoustic toolbox for M A T L A B . C++ simulation codes written as an extension to 
this toolbox try to maximize computational performance for large simulations. The k-
Wave toolbox can be used for general time-domain acoustic and ultrasound simulations 
in complex and tissue-realistic media. Among other things, the toolbox also includes the 
option to use the forward model as a flexible time-reversal image reconstruction algorithm 
for photoacoustic tomography with an arbitrary measurement surface and includes a fast, 
one-step photoacoustic image reconstruction algorithm for recorded data. The HDF5 l i ­
brary, which also has a serial and parallel version (MPI-I/O) is used for storing simulation 
outputs and inputs. There are 4 basic versions of implementations [78, 79]: 

• The M A T L A B version - it is not suitable for large simulations, it is not accelerated, 
but it contains the most features, e.g. includes functions for thermal simulations. 

• The C++ OpenMP central processing unit (CPU) version - accelerated version suit­
able for larger simulations. The feasibility of the simulation is determined by the 
amount of available operating memory, and the simulation speed is mainly influenced 
by the performance of the processor cores. 

• The C++ G P U version - using C U D A to compute accelerated simulations on NVIDIA 
graphics cards. There is a significant acceleration of the simulation calculation com­
pared to the OpenMP version, but the main limitation is the small amount of memory 
on the G P U 

Versions that have not yet been officially released are also being developed: 

• The C++ M P I C P U version - used for the largest simulations, is written in C++ 
with M P I , F F T W 1 ' 1 , single instruction, multiple data (SIMD) and is executed on 
distributed clusters. Storing is performed via a parallel I /O module based on the 
HDF5 library and Luster file system. The unavailability of large powerful computing 
clusters for ordinary users may be limiting here [33]. 

• The C++ G P U version using the local Fourier basis decomposition - implementation 
of the approach where global all-to-all F F T communications are replaced by direct 
neighbor exchanges. At the expense of a slight reduction in accuracy, communication 
can be significantly reduced. [35, 77, 83] 

In general, the goal is to use the most modern technologies using parallel computing to 
enable the fastest possible simulations. 

www.fftw.org 
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Chapter 3 

Compression methods 

Since the goal of this work is to create a compression method for ultrasound simulation 
data, this chapter is focused on the data compression methods which are most relevant to 
the character of ultrasound simulation outputs. The point of the chapter is the introduction 
of methods that could be used to create a benchmark. First, a general introduction to the 
topic of data compression is presented. Then, the state-of-the-art compression methods of 
binary executables, natural language text, images, video, and audio are mentioned. Next, 
model-based coding is discussed. Some current papers and methods are described, which 
are oriented to 3-D time-varying data. More relevant information is obtained from two 
dissertations about ultrasonic signals compression. Finally, some methods from the H P C 
field in connection with big data compression are presented. 

3.1 Data compression 

In brief, data compression is the art or science of representing information in a compact 
form. These compact representations are created by identifying and using the structures 
that exist in the data. The compression algorithm takes an input X and generates a repre­
sentation Xc that requires fewer bits, and there is a reconstruction algorithm that operates 
on the compressed representation Xc to generate the reconstruction Y. Based on recon­
struction requirements, data compression schemes can be divided into two broad classes: 
lossless compression schemes, in which Y is identical to X, and lossy compression schemes, 
which generally provide much higher compression ratio than lossless compression, but allow 
Y to be different from X. Depending on the quality required from the reconstructed signal, 
varying amounts of loss of information about the value of each sample can be tolerated [67]. 

A compression algorithm can be measured in different ways - e.g. relative complexity, 
required memory, speed, compression ratio. In lossy compression, there needs to be some 
way to quantify the difference - often called distortion. In the compression of speech and 
video, the final quality arbitrator is the human [67]. In the case of ultrasound signal com­
pression, the evaluation measures depend on the methods used by physicians or scientists 
(more about measures in Chapter 4). 

The development of data compression algorithms for a variety of data can be divided 
into two phases - modeling (extraction of information about any redundancy and creation 
of a model) and coding (a description of the model and how the data differ from the model 
are encoded) [67]. 
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The principle of compression (especially lossless) is based on information theory (Shan­
non, probability, self-information, entropy) which are not described here due to lack of space. 
Many approaches are based on this theory - Huffman coding, arithmetic coding, dictionary 
techniques and their applications. Wi th lossy compression some possibilities to reduce data 
e.g. with vector and scalar quantization or differential encoding exist. Compression of mul­
timedia signals is often connected with transform coding (fast Fourier transforms (FFT) , 
discrete cosine transform (DCT), discrete wavelet transform (DWT)), which transforms the 
input data into a form more suited for compression (usually lossy) [8, 9, 67]. 

3.2 State-of-the-art compression methods 

Generally, it is challenging to find and check every compression method/tool. Usually, for 
many different types of data, there are different sophisticated compression methods. A l l 
data about compression quality, compression ratios and computing performance, specifically 
for example memory consumption per signal sample in time, often cannot be read directly 
from the available information. To measure the exact memory requirement of each method, 
it is necessary to apply it to the required data, which is possible but very demanding. The 
most known and state-of-the-art methods for common types of signals are mentioned bellow. 

Image compression - J P E G 2000 

J P E G 20001 is an image coding system that uses state-of-the-art (lossy and lossless) com­
pression techniques based on wavelet technology. It has a wide range of uses, from portable 
digital cameras to medical imaging, and other key sectors. Thus, this compression could be 
potentially applicable to the ultrasound simulations data. Of course, data compression in 
2-D blocks, or its expansion into 3-D, is assumed here. Lossy compression of 3-D statistical 
shape and intensity models of femoral bones is an example where the J P E G 2000 image 
coding system is applied [44]. 

C M I X 

C M I X 2 is a lossless data compression program aimed at optimizing the compression ratio 
at the cost of high CPU/memory usage. For new, this is the best known tool for large 
text compression3. C M I X uses three main components: preprocessing, model predictor 
(arithmetic coding), and context mixing. C M I X works with binary executables, natural 
text language, and images. The main disadvantages in connection with potential ultra­
sound simulation data compression are the preprocessing stage, where the complete input 
data must be transformed into another form and at least 32 G B of random-access memory 
( R A M ) . 

O p t i m F R O G 

O p t i m F R O G 1 is a lossless audio compression program. It is similar to ZIP compression, 
but it is highly specialized in compressing audio data. The compression ratios that can be 
obtained with Opt imFROG are generally ranging between 25% and 70%. This method is 

x

http: / / jpeg.org/ jpeg2000/index.html 

http: //www.byronknoll.com/ cmix.html 
3

http: / /mattmahoney. net /dc/t ext. html 
4

http: / 7losslessaudio.org/ 
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specialized for optimized high compression ratios at the expense of encoding and decoding 
speed. A comparison of C P U usage versus file size is shown in the Figure 3.1. 

- A - FLAC 1.3.4 - • - TAK 2.3.1 - 0 - MP4 ALS RM23 
- • - ALAC (refalac 1.73) - A - OptimFROG v5.100 A Shorten 3.6.1 
- • - WavPack 5.4.0 - B - Monkey's Audio 7.58 • WMA Lossless V12 
- X - WavPack 5.4.0, -x4 - 0 - L A 0.4b O TTA 2.3 

Figure 3.1: Lossless audio codec comparison. CPU-usage versus file size, average of all 
C D D A sources.5. 

5These graphs are part of a report which can be found on http://www.audiograaf.nl/losslesstest/ 
Lossless'/„20audio'/„20codecy„20comparisony„20-'/.20revision'/„205'/.20-'/„20cdda.html. 
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Audio compression 

In addition to the already mentioned Opt imFROG, which is among the codecs with the 
highest lossless compression, plenty of coding methods have been developed to deal with 
the compression of audio and speech signals. Motion picture experts group 1 (MPEG-1) 
or M P E G - 2 audio layer III (MP3), M P E G - 2 advanced audio coding ( A A C ) , Ogg Vorbis, 
Windows media audio ( W M A ) are the most known lossy audio compression technologies. 
Lossy compression methods provide higher compression ratios at the cost of fidelity. These 
methods rely on human psychoacoustic models to reduce the fidelity of less audible sounds. 
In contrast to this, lossless methods produce a representation of the input signal that de­
compresses to an exact duplicate of the original signal. However, the compression ratios are 
around 50-75 % of the original size. There is a possibility to apply some of these techniques 
to ultrasound simulation data, but general audio signals differ from ultrasound simulation 
signals - e.g., by number of harmonic frequencies (see Chapter 2). Furthermore, since the 
existing audio coding methods were not designed for use in extremely memory-limited en­
vironments, they consume the signal samples in frames typically containing thousands of 
samples. The size of these frames directly affects R A M consumption. These high memory 
requirements probably bring disadvantages for use in acoustic simulations. The following 
is a description of several methods, implemented in the FFmpeg 6 framework, that could be 
used for comparison with possible ultrasound signal compression [10, 19]. 

A A C is an international standard for lossy audio compression. It was designed to be 
the successor of the ubiquitous M P 3 format. Because A A C generally achieves better sound 
quality than M P 3 at the same bit rate. The compression process can be described as follows. 
First, a modified discrete cosine transform (MDCT) based filter bank is used to decompose 
the input signal into multiple resolutions. Afterward, a psychoacoustic model is used in 
the quantization stage to minimize the audible distortion. The time-domain prediction can 
be employed to take advantage of correlations between multiple resolutions. The format 
supports arbitrary bit rates. The minimum frame size is 1024 samples. 

Dolby AC-3 (also Dolby digital, A T S C A/52) is a lossy audio compression standard 
developed by Dolby Laboratories. The decoder has the ability to reproduce various channel 
configurations from 1 to 5.1 from the common bitstream. During compression, the input 
signal is grouped into blocks of 512 samples. However, depending on the nature of the 
signal, an appropriate length of the subsequent MDCT-based filter bank is selected. The 
format supports selected bit rates ranging between 32 and 640kb i t s - 1 . The minimum 
frame size is 1536 samples. 

Opus is an open lossy audio compression standard developed by the Xiph.Org Founda­
tion. It is the successor of the older Vorbis and Speex methods. The codec is composed of 
a layer based on linear prediction and a layer based on the M D C T , but both layers can be 
used at the same time (hybrid mode). Opus supports all bit rates from 6 to 510kb i t s - 1 . 
The minimum frame size is 120 samples. This compression requires input values in 16-bit 
P C M format. 

A D P C M is a lossy compression format with a single fixed compression ratio of approx­
imately 4:1. A D P C M compression works by separating the input signal into blocks and 
predicting its samples on the basis of the previous sample. The predicted value is then 
adaptively quantized and encoded in the nibbles, giving rise to the 4:1 compression ratio 
(192kbi t s - 1 for 48kHz sampling rate). A psychoacoustic model is not used at all. The 
minimum frame size is 2036 samples. 

6
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F L A C is an open lossless audio format now covered by the Xiph.org Foundation. F L A G 
uses linear prediction followed by coding of the residual (Golomb-Rice coding). For music, 
various benchmarks reported that F L A C generally reduces the size of the input signal size 
to 50-75 % of the original size. The minimum frame size is 16 samples, which is not so 
much, but on the other hand, the compression ratios are not very high. 

A L A C is the open lossless audio format by Apple. Similarly to F L A C , A L A C uses 
linear prediction with Golomb-Rice coding of the residual. Furthermore, the achievable 
compression performance is similar to that of F L A C . The minimum frame size is 4096 
samples, which is very high. 

As mentioned earlier, the typical size of the ultrasound data to be compressed reaches 
about 0.5 MHz. The frame sizes can be set to the minimum supported size of a given com­
pression method, but still typically require thousands of bytes of memory for one processed 
signal at a time. In conjunction with the previous point, such large frame sizes make the 
common audio codecs unusable for compression of the ultrasound data. Another issue to 
deal with is the sampling rate. Because the human hearing range is commonly given as 
20 to 20,000 Hz, the common audio codecs were designed to process signals of comparable 
rates (e.g., 44.1, 48, 96, or 192kHz). However, ultrasound signals are acquired (simulated) 
at a much higher sampling rate. Another problem is that many audio compression tech­
niques require a normalized signal at the input, for example, to the (0,1) interval. The 
outputs of ultrasound simulations are difficult to normalize, as the range of values is not 
known in advance. 

3.3 Model-based coding 

The idea of a model-based compression coding scheme is to characterize the source data in 
terms of some strong underlying model. Thus, some model parameters exist that define our 
signal [9]. It can be combined with transform coding - models created with transformed 
form of input signal. 

A typical example of the model-based approach is presented in a paper named "Model-
based filtering, compression and classification of the E C G " [17]. It is based on a realistic 
nonlinear electrocardiogram model (ECG) to account for T-wave asymmetry. The fitting 
procedure using a nonlinear optimization allows filtering (removing noise), efficient com­
pression, and classification of the E C G . Compression based on the E C G signal model based 
on the hybridization technique is also addressed in [2]. 

There are also techniques for model-based coding of 3-D head sequences [25]. 3-D frames 
are analyzed and registered using a 3-D face model. The result is efficient compression. 

In the voice codecs section, a model-based coding algorithm of M D C T spectral coeffi­
cients is used[71] in A A C , Dolby AC-3 and Opus. 

Model-based compression scheme for seismic data models seismic traces as multitone 
sinusoidal waves superposition. Sinusoidal waves are represented by a set of distinct pa­
rameters. Here, a parameter estimation algorithm takes place. The performance of the 
method was shown to be better than that of linear predictive coding (LPC) and distributed 
principal component analysis (DPCA) [56]. 

A n evaluation of model-based approaches to sensor data compression is presented [29]. 
This publication provides in-depth analysis of the benchmark results, obtained using 11 
different real data sets consisting of 346 heterogeneous sensor data signals (see Figure 3.2). 
Compression approaches are classified into 4 categories: constant models, linear models, 
nonlinear models, and correlation models. The constant models category includes, e.g., 
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piecewise aggregate approximation (PAA), piecewise constant approximation (PCA) , adap­
tive piecewise constant approximation ( A P C A ) , and piecewise constant histogram (PCH). 
Linear models include, for example, piecewise linear approximation (PLA) , piecewise linear 
histogram (PWLH) , sliding window and bottom-up (SWAB), lightweight temporal compres­
sion (LTC), and slide/swing filters (SF). The category of nonlinear models includes Cheby-
shev approximations (CHEB) . Correlation models include self-based regression (SBR), ro­
bust information-driven data compression architecture RIDA, and grouping and amplitude 
scaling ( G A M P S ) . Six approaches were selected for experimental evaluation: P C A , A P C A , 
P W L H , SF, C H E B , and G A M P S . The datasets contain various physical variables, e.g. 
moisture, humidity, voltage, radiation, or pressure. The interesting thing is that the com­
pression ratio with the error tolerance set to 1 and 5 % is usually significantly better for the 
pressure dataset than for the other signals. From this it can be concluded that model-based 
coding could also be suitable for our H I F U simulation signals. 

dataset (abbreviation) number of 
signals 

total number 
of readings 

sampling 
rate (avg.) min max mean standard 

deviation 
short-term 
fluctuation 

moisture (mois) 20 442,313 300 sec. 16.18 30.50 18.20 1.09 medium 
pressure (pres) 14 161,004 2 sec. 18.20 796.90 268.43 222.96 low 
humidity (humi) 34 2,031,732 60 sec. 19.88 93.02 72.89 14.27 meium 
voltage (volt) 16 523,877 600 sec. 3.29 3.49 3.41 0.05 medium 

lysimeter (lysi) 24 232,746 300 sec. 0 3.81 0.11 0.35 medium 
snow-height (snow) 29 349,557 600 sec. -662.10 370.00 -18.17 155.00 low 
temperature (temp) 78 4,846,162 60 sec. -29.76 49.05 -4.57 9.78 medium 

C 0 2 (C0 2 ) 16 3,088,233 16 sec. 0 2000 558.00 219.4 high 
radiation (radi) 34 3,955,268 600 sec. 137.5 798.40 261.02 46.86 medium 

wind-speed (wspd) 46 2,376,156 60 sec. 0 14.37 2.84 2.31 high 
wind-direction (wdir) 35 2,084,943 60 sec. 1.79 357.47 232.65 84.40 high 
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Figure 3.2: Real data sets used in the benchmark7. 

7The illustration taken from [29]. 
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3.4 3-D time-varying data compression 

The next point of view, which is connected to the topic compression and ultrasound simu­
lation data, is 3-D time-varying data compression. Some works in the medical data imaging 
section, which are focused on 4-D (usually volume) medical data, G P U , visualization and 
also compression. None of the bellow mentioned techniques is focused directly on ultra­
sound. 

For example, there is a framework for 4-D medical data compression architecture [87]. 
It is based on the detection of spatial and time redundancy in recorded 4-D medical data. 
The motion that produces input parameters for the neural network is analyzed. It is a 
combination of segmentation, block matching, motion field prediction, and wavelet packets. 
However, this framework is designed for general medical data and from the perspective of 
parallel processing, memory requirements and large-scale simulations it is not suitable for 
large ultrasound simulation data. 

Compilation is usually related to rendering (out-of-core streaming techniques, G P U ) . 
Some streaming compression techniques have been developed for interactive visualization 
of time-varying volume data [62]. The rendering scheme combines a temporal prediction 
model and variable-length coding with a fast block compression algorithm. However, similar 
to other methods, 4-D data must be stored somewhere and are not applicable to on-the-fly 
ultrasound simulations. 

For large-scale scientific simulations, which typically run on a cluster of C P U and the 
time steps are stored in the file system, compression of floating-point values was pro­
posed [54]. Most of the compression schemes are designed to operate offline, but this 
proposed lossless scheme works online and achieves state-of-the-art compression rates and 
speeds. This method is also included in the H P C compression category. It is probably pos­
sible to apply these methods to ultrasound simulations as well, but the average compression 
rates of around 30 % that the method achieves may not be so beneficial for the simulations. 

Another important thing is a fast decompression process. A compression scheme for 
large-scale time-varying volume data using spatio-temporal features with low-cost and fast 
decompression process was proposed [88]. This compression scheme contains two compres­
sion processes: spatial domain compression and temporal domain compression, which utilize 
spatial features and temporal features and are also connected to the fast rendering process 
(specialized particle-based volume rendering (PBVR)) . However, this case of compression 
and decompression probably is not designed to work with really large-scale datasets. The 
presented experiments were carried out with only about 19 G B of data for all time steps 
and are not focused on on-the-fly parallel processing with a cluster of CPUs. 

3.5 Ultrasound signals compression 

Some works have been developed focused directly on the ultrasound signals compression. 
Many techniques have been applied to process 1-D ultrasonic signals (e.g., matching pursuit, 
1-D discrete cosine transform (DCT), Walsh-Hadamard transform (WHT)) [1, 9]. They 
specialize in the topics of general ultrasonic imaging [11, 39, 64], 3-D ultrasound computed 
tomography (USCT) [66] or fetal Doppler ultrasound audio signals [76]. 

The last publication [76] is older, but the character of Doppler ultrasound signals is 
similar to H I F U simulation signals. A method was proposed to reduce the data rate for 
transmitting signals to cardiotocographs. The method involves splitting the signal into 
amplitude and frequency components. The amplitude is represented by samples of the signal 
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envelope, and the frequency information is represented by the number of zero-crossings 
within fixed intervals (windows). They claim that their method can be used to reproduce 
the signal with no audible difference compared to the original waveform. A 15: 1 reduction 
in the data rate is achieved. However, the purpose of Doppler ultrasound signals (e.g. to 
determine the fetal heart) is different from H I F U signals and better precision than "no 
audiable difference" is needed for H I F U simulations (Figure 3.3). 
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Figure 3.3: A fetal Doppler ultrasound audio signal shown over one heart cycle: (a) before 
compression; (b) after reconstruction using 5 ms windows and zero-crossing averaging8. 

The dissertation "Compression, estimation, and analysis of ultrasonic signals" [11] deals 
with different signal processing techniques to compress and denoise ultrasonic signals. The 
focus is on ultrasonic imaging, so the processing of data gained by transmitting acoustic 
waves into the specimen using an ultrasound transducer. The compression of this type of 

8The illustration taken from [76]. 
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data is also handled, for example, by publication [39]. Other work addresses this problem 
using deep neural networks [64]. The type of data in ultrasonic imaging is different from 
HIFU. 

The other dissertation named "Data Compression in Ultrasound Computed Tomog­
raphy" [66] is focused on the reduction of 3-D U S C T data. U S C T is developed at the 
Karlsruhe Institute of Technology aiming at a new medical imaging system for early detec­
tion of breast cancer. A discrete wavelet based data compression method at a compression 
ratio of 15 was suggested for compression of U S C T datasets. 

There are also other compression algorithms for radio frequency (RF) ultrasound sig­
nals [1, 15, 37]. These images are compressed after analog to digital conversion and before 
beamforming. The most used techniques are peak gates (PG), trace compression (TC), 
largest variation (LAVA), linear predictive coding (LPC) , and also the well-known ZIP, 
J P E G or M P E G . In context with H I F U simulation signals, these data have some similar 
properties, i.e., temporal redundancy between adjacent frames. 

In the area of GPU-based simulations, a paper focused on acceleration of GPU-based 
ultrasound simulation via data compression [27] was published. They have demonstrated a 
speedup of 1.5 times on a simulation that compresses single-precision floating-point values 
into 3 bytes. Unfortunately, this approach was developed only for small two-dimensional 
(2-D) simulations on G P U . 

3.6 High-performance computing data compression 

With exascale computing era, big problems are approaching - transferring and storing really 
big data. It is quite challenging to design a generic error-bounded lossy compressor with a 
very high compression ratio for H P C applications [19]. 

There is some comparison of the most known lossy and lossless compression schemes [68]. 
The lossless compression schemes such like F P C , ISOBAR, P R I M A C Y , A L A C R I T Y , C C 
or IOFSL usually have the maximum achievable compression ratio just above 2 x . Some of 
them use well-known algorithms like zlib or gzip. The typical lossy compression schemes 
for H P C are I S A B E L A , F P Z I P or A P A X . They use approximation algorithms similar to 
B-spline on sorting data or Lorenzo predictor with mapping values to integers and encoding 
residuals. The typical compression ratio, for example, for I S A B E L A is up to 5 x with error 
less than 1%. Wi th lossy compressions several future challenges remain - e.g reducing 
the memory requirements to perform in-situ compression and performing compression in 
parallel. 

ZFP and FPZIP are floating-point compressors developed by Peter Lindstrom et a l . 9 

These libraries were designed for compressing 1-D, 2-D or 3-D arrays of floating-point 
precision numbers. FPZIP is the floating-point analogue to P N G image compression, and 
Z F P is an advanced J P E G for floating-point arrays. Z F P [53] is lossy but optionally error-
bounded compression, FPZIP [54] is a (older) library for lossless or lossy compression of 
2-D or 3-D floating-point scalar fields. 

SZ (Squeeze) [19] is a lossy compression scheme with strictly bounded errors and low 
overheads. In an extreme-scale use case, experiments show that the compression ratio (3.3-
436) of SZ exceeds that of Z F P by 80 %. The key idea is to check each data point to see if it 
can be approximated by some bestfit curve fitting model and replace it by using a two-bit 
code indicating the model type if the approximation is within user-specified error bound. 

9

http://computation.llnl.gov/proj ects/floating-point-compression 
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Another example of a research area where it is necessary to solve data compression for 
H P C is astronomy. Research astronomy facilities can generate terabytes of data per day 
at a constant rate. Lossless compression algorithms were developed for these astronomical 
radio data, which reduce their size to 28% of its original size and decompression with a 
throughput greater than 1 G B s - 1 on a single core [61]. 

A n example of an efficient compression algorithm that falls into the category of H P C , 
simulations, and also into Section 3.4 (3-D time-varying data compression) is named H L R -
compress [50]. It is spatial data compression. It is based on hierarchical low-rank H L R 
methods combined with floating-point number compression schemes. On average, a greater 
than 100-fold compression of the original size of the datasets is achieved. 

A similar lossy compression method, based on the theory of multigrid methods, is 
multigrid adaptive reduction of data ( M G A R D ) [3, 14]. A specific feature of this method 
is the provision of guaranteed, computable bounds on the loss incurred by the reduction of 
the data. 

Some of the methods from that section could be applied offline to ultrasound simulation 
outputs ( ISABELA, ZFP, FPZIP) ; here is the question of compression error with regard to 
the application of these data. Other methods could also be applied to the data during the 
simulation calculation, e.g. M G A R D or HLRcompres. However, these methods are focused 
on spatial compression. 
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Chapter 4 

Evaluation measures 

This chapter focuses mainly on compression quality metrics and evaluation methods. In 
general, compression evaluation is a complex problem due to the lack of measures to univer­
sally evaluate compression methods. It is hard to claim that one compression algorithm is 
better than the other. The first one can have a higher compression ratio with a smaller er­
ror, but the second one can be faster and less memory-intensive. Another thing is utilization 
of the compressed data, e.g. an audio stream vs. an image. For some cases, mathematical 
metrics can be used, but especially video, audio, and image compression quality measure­
ments have to be tested on humans - algorithms are based on auditory perception in a 
human visual system [67]. Thus, it is necessary to set some evaluation methods for our case 
of data compression, including, for example, in terms of the application of outputs or the 
consumption of computing resources. 

4.1 General measures 

Several basic general evaluation measures exist [67]. A very basic and very logical way to 
measure how well a compression algorithm compresses is to look at the ratio of the number 
of bits required to represent the data before compression to the number of bits required to 
represent the data after compression - compression ratio. The compression ratio can also 
be expressed as a percentage, i.e. the reduction of the amount of data as a percentage of 
the size of the original data. Another measure is rate - e.g. the average number of bits 
required to represent a single sample. 

Several ways to quantify the difference between the original and compressed signal in 
lossy compression exists - often called the distortion. Lossy techniques are generally used 
for the compression of data that originate as analog signals, such as speech and video. Here, 
the final arbiter of quality is a human. 

Two popular measures of distortion or difference between the original and reconstructed 
sequences are the squared error measure and the absolute difference measure. These are 
called difference distortion measures. If {xn} is the source output and {yn} is the recon­
structed sequence, then the squared error measure is given by 

dsei^XniVn) — (•£ n (4.1) 

and the absolute difference measure is given by 

= \x. n Vn\- (4.2) 
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Several average measures are used to summarize the information in the difference se­
quence. The most used average measure is the average of the squared error measure - mean 
squared error (MSE). The mean squared error can be defined as 

1 1 N 

) n=l 

D = E \ ^ - r Y ( X n -Yn)2} = ^ - T ) E \(Xn - Yn)2] (4.3) 

where the information sequence is a sequence of random variables {Xn} and the reconstruc­
tion sequence is the sequence of random variables {In}, for a sequence of length N, where 
the expectation is with respect to the joint distribution of Xn and Yn. In practice (ergodic 
sequences), the ensemble averages in Equation (4.3) are replaced with the time averages to 
obtain 

1 N 

^ = ^ E ( * « - ^ ) 2 - ( 4- 4) 
n=l 

Symbol o2

d is used for M S E and implies that the variance of the distortion sequence d(xn,yn) 
is equal to the second moment or that the distortion sequence is zero mean. For the size of 
the error relative to the signal, it is possible to calculate the ratio of the average squared 
value of the source output and the M S E - signal-to-noise ratio (SNR): 

2 
SNR = % (4.5) 

where a2 is the average squared value of the source output. The SNR can be measured on 
a logarithmic scale in decibels (dB) units. If the interest is in the size of the error relative 
to the peak value of the signal xPeak> it is possible to use peak-signal-to-noise ratio (PSNR, 
in dB): 

x2 

PSNR(dB) = 10 l o g 1 0 . (4.6) 
ad 

A simple difference distortion measure, that is, the average of the absolute difference 
(based on the £i-norm [21]), is also often used: 

1 N 

di = -jy Y \ X n ~ (4-7) 
n=l 

To evaluate errors in some applications, the maximum value of the error magnitude may 
also be of interest (£oo-norm, ^ - e r ro r [21]): 

doo = max|x„ - yn\ (4.8) 
n 

or its relative version [6]: 

max|x„ - yn\ 
Relative doo = — ;—:—• (4-9) 

max(x n ) 
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And similarly the distortion measure based on ^-norm (^-error) [6]: 

N 

\ n=l 
(4.10) 

and its relative version: 

Relative cfo 
Z^n=lx 

(4.11) 

For 2-D images compressed with J P E G or JPEG2000, structure similarity measure 
(SSIM) is often used. The average mutual information (AMI) and normalized mutual 
information (NMI) are widely used for image registration, the entropies are calculated to 
show the quality of distorted images. Other metrics are homogeneity-based measure or 
gradient vector flow [48, 66, 67]. 

4.2 Evaluating of compression quality of ultrasound simula­
tion data 

For our case of data compression, the quality of compression can be measured, for example, 
in three ways. 

1. In the first case, the original and compressed data can be obtained and compared. It 
is possible to use known quality metrics (MSE, SNR, error, ...) and compare the 
measured numbers (e.g. the compression ratio) of the new method with other state-of-
the-art compression methods designed for various data types (e.g. JPEG2000, A A C , 
C M I X , I S A B E L A , SZ, ZFP) . In this case, many algorithms can be tested because the 
parallel environment where the simulations are performed and their applications are 
not taken into account 

2. The next possible measurement is from the point of view of the application of the 
simulated data. It is meant as the utilization of the data by scientists or medical 
doctors - e.g. visualization, related calculations, more efficient treatment planning. It 
is possible to conduct experiments and measure how the compression method affects 
the quality of the application. It is possible to compare the application with and 
without compression. If a new compression can be shown to facilitate the work of 
doctors or scientific research, the work can be said to have a scientific benefit. Carrying 
out experiments is, however, demanding and complex, because the applications of the 
outputs are still in the development phase. For example, a comparison of temperature 
doses after thermal simulation with and without compression is offered here. 

3. A third possible way of evaluating compression is in the area of computer simulation 
performance. That is, how the new compression method affects computing resources 
( R A M , a storage space, network bands, computing speed, the number of C P U cores 
within a supercomputer, G P U memory), e.g., from an economic point of view, if 
the target quality is set as satisfactory for applications and the goal is to compress 
data on-the-fly, during simulations. However, this measurement case depends on the 
previous case. 
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Some combinations of approaches between these measures can be tested and evaluated. 
It is ideal to carry out an evaluation using a combination of all three approaches. First, 
to perform a potential new method of compressing ultrasound simulation data with other 
methods that compress signals of a similar type, and then to evaluate this method from 
the point of view of application, comparing the quality of the outputs and the use of 
computing resources with and without compression. However, it is necessary to determine 
the acceptable quality of the simulation outputs and their application. 

4.3 Acceptable errors in ultrasound simulation outputs 

It is very difficult to determine which output quality is satisfactory and which is not. 
Unfortunately, there are almost no applications that determine specific and clear values of 
acceptable errors. 

The publication from which these values can be derived deals with intercomparison of 
compressional wave models within transcranial ultrasound simulation [6]. Nine numerical 
benchmarks are defined for increasing geometric complexity (e.g. different types of bones, 
see Table 4.1 and Figures 4.1 and 4.2). 

Table 4.1: Summary of benchmarks of the intercomparison. SCI corresponds to the focused 
bowl transducer and SC2 to the plane piston transducer. Outputs are resampled to a regular 
Cartesian mesh with a grid spacing of 0.5 mm. Simulation layouts are shown in Figures 4.1 
and 4.2), gp = grid points [6]. 

Label Description Output grid size 

PH1-BM1-SC1/2 Water (lossless) 120 x70mm (241x141 gp) 
n m m . o c m /o Water (artificial absorption of 1 dB/cm at , „ . , , PH1-BM2-SC1/2 v _„„ , £1 . ' 120x70mm (241x141 gp) 500 kHz) 
PH1-BM3-SC1/2 F l a t ' si^e-lzyer skull (cortical bone) in 1 2 0 x 7 0 m m ( 2 4 1 x l 4 1 g p ) 

water 
PH1-BM4-SC1/2 Flat, skin, three-layered skull, and brain 120 x70mm (241x141 gp) 
n l I 1 ,_ Curved, single-layer skull (cortical bone) , PH1-BM5-SC1/2 > b J \ i 120x70mm (241x141 gp) 

in water 
PH1-BM6-SC1/2 C u r v e d ' S k i n ' t h ; e

r

6

a ; 1

n

a y e r e d S k U l 1 ' 120x70mm (241x141 gp) 

PH1-BM7-SC1/2 T r u n c a t e d s k u U ™f i n

+

 w a t e r > t a r S e t i n 120x70x70mm (241x141x141 gp) 
visual cortex 

PH1-BM8-SC1/2 Whole skull mesh, target in visual cortex 225x170x190mm (451x341x381 gp) 
PH1-BM9-SC1/2 Whole skull mesh, target in motor cortex 212x224x184mm (425x449x369 gp) 

Eleven different modeling tools are used to compare the results. Modeling tools include, 
in addition to the pseudospectral method, other numerical techniques, such as the finite 
difference method in the time domain, the angular spectrum method, the boundary element 
method, and the spectral element method. Difference metrics used for the intercomparison 
are defined in Equations (4.12) to (4.15): 

Relative l 2 = W ^ ^ I ^ , (4.12) 
V 2 > i 
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Relative £, 
max|pi — p2 

(4.13) 
max(pi) 

Focal (peak) pressure 
max(pi) — max(p2)| 

max(pi) 
(4.14) 

Focal position = ||pos max(pi) — pos max(p2)||2- (4.15) 

Here, p\ and p2 are amplitudes of the pressure in the 2-D or 3-D comparison domains, for 
reference and comparison field, resp. The sums and maximum values are over the entire 
domain. The focal values are taken from inside the brain region only [6]. 

When comparing the results in a cross-comparison, the mean values for each benchmark 
for the difference in focal pressure and position are less than 10% and 1mm, respectively. 
It can be read from the results that the values of difference in focal pressure are below 1 % 
only exceptionally, usually during simulations only in water, without bones, skin and other 
more complex properties of the medium. Similar are the results of relative and £2 errors 
in cases for the entire field (simulation domain). Based on the results of these benchmarks, 
where the errors of different modeling tools are evaluated, it can be concluded that the 
maximum acceptable relative errors caused by the application of potential compression 
should be in units of percent [6]. 
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Figure 4.1: Transducer definitions and simulation layouts for benchmarks 1-7. Benchmarks 
1-6 use a 2-D comparison domain, benchmark 7 uses a 3-D comparison domain (description 
in Figure 4.1) 1. 

l rThe illustration taken from [6]. 
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2 The illustration taken from [6]. 
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Chapter 5 

Proposal of on-the-fly compression 
in ultrasound simulations 

This chapter covers the core of the work - proposal of on-the-fly compression in ultrasound 
simulations. First, in Section 5.1, the objectives of the work are presented, that is, the 
hypothesis is formulated and the way of verifying it. In the next Section 5.2, the potential 
of the new compression method is shown on hypothetical application examples, and the 
justification of this proposal is presented. 

In the following Section 5.3, the proposal of the new compression method is detailed. 
Experiments with this method and their results follow. Specifically, a comparison of the new 
method with other state-of-the-art methods that have a similar character is presented. Since 
there are a large number of compression methods for data with partially similar character, 
as mentioned, among others, in Chapter 3, and it is not possible to make a comparison with 
all of them, selected audio compression algorithms were used for this purpose. However, 
these experiments are primarily intended to verify that the new method has comparable 
properties in terms of output quality according to general evaluation measures, such as 
compression ratio or PSNR. 

The next Section 5.4 presents probably the most important part of this work, namely 
the application of the compression method for on-the-fly calculation of the average acoustic 
intensity in time-domain ultrasound simulations. The section first describes a new, more 
efficient way to calculate the acoustic intensity using the already introduced compression 
method. Furthermore, an experimental evaluation, where there is a comparison of the use 
and not use of the compression with regard to the consumption of computing resources and 
numerical errors. 

5.1 Goal of the thesis 

The area of interest of my work is the compression of H I F U large-scale simulation data. 
No standard compression scheme exists for this type of simulation data. The goal was to 
develop new methods for simulation data reduction that will be efficient and applicable 
within large-scale H I F U simulations. Compression is assumed to be performed in parallel 
and on-the-fly during simulations on large C P U clusters. From the point of view of scientific 
contribution, the goal is primarily to find a significant application of this compression. The 
scientific contribution of my Ph.D. work consists in proving the following hypothesis: 

42 



It is possible to develop a novel on-the-fly compression method for 1-D time-varying data 
series - HIFU simulation outputs, with a compression-ratio comparable the other state-of-
the-art methods, with the quality of application outputs from the users (scientists or medical 
doctors) point of view using the compressed data will be comparable to the quality achieved 
when the original uncompressed data or data compressed by other state-of-the-art methods 
are used, and the novel method will lead in significant improvement of the HPC simulation 
calculation through saving disk storage space by more than 90 % while the demands on other 
computing resources, such as RAM and and computational time will remain approximately 
the same. 

The hypothesis is proved experimentally in the following Sections 5.3 and 5.4. At 
least 3 types of simulation datasets for the experiments were obtained from scientists in 
the field of H I F U simulations. The datasets contain typical data for clinical applications. 
The experimental evaluation of quality of outputs applications is performed automatically, 
e.g. calculation of heat propagation. Comparisons with other state-of-the-art compression 
methods is made using general evaluation measures such as P S N R or the compression ratio. 
The utilization of the computer resources is measured on H P C platforms typical for clinical 
simulations. 

5.2 Justification of the design of the novel method properties 

Based on the study of the state-of-the-art in the field of ultrasound simulations, specifically 
the k-space pseudospectral method that uses a time-staggered P S T D , it was generally found 
that: 

• the simulations generate really large data, continuously, during simulation calcula­
tions, and this data should be compressed already during the simulations, 

• computations are performed primarily in a parallel environment and it is expensive 
to exchange data between neighboring nodes, blocks or points, 

• calculations have a high computational time and operational memory requirements 
and since a large number of nodes and large matrices are used for calculations, an 
increase in memory requirements for each point is undesirable, 

• the selected sampled points can be often sparsely located in the space of the simulation 
domain, multidimensional compression cannot be reasonably used, 

• the outputs of the simulations have a harmonic character, while the input fundamental 
frequency is known, and this information can be used in compression. 

Furthermore, various compression methods were investigated and it was found that no 
state-of-the-art method exactly matches for this type of data. 

From these facts, it was decided that it would be appropriate to design a novel com­
pression method that would ideally have the following properties: 

• design for parallel environment, so that data does not have to be sent between nodes, 
blocks or points, 

• on-the-fly simulation outputs processing, which allows saving compressed data during 
the simulation, 
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• low memory complexity, due to the high memory requirements for each point in the 
simulation domain, 

• high computational speed, which does not slow down the demanding calculation of 
the simulation 

• design for 1-D, due to the arbitrary shapes of the masks used in ultrasound simula­
tions, 

• model-based coding, which uses the known input fundamental frequency and harmonic 
character of the signal. 

It is assumed that the novel method does not necessarily need to use spatial coherence, as 
the individual points in space can be examined independently and sensor mask (selected 
points to be sampled and stored) can be an arbitrary and sparse set of locations. Every grid 
point of interest in 3-D space is processed separately. Moreover, by treating every spatial 
grid point independently, no additional communication is needed on distributed clusters (in 
the case of on-the-fly processing). 

Suppose that some already existing state-of-the-art compression method was hypothet-
ically applied to the simulation data. Due to the nature of the processed ultrasound signal, 
audio compression methods can be used, for example. Let us assume that the selected com­
pression method would have compression ratio 20:1. As discussed in the state-of-the-art 
(Section 3.2), these methods process the signal by frames, which typically include thousands 
of samples. Based on this, it can be assumed that the selected state-of-the-art compression 
method could have a memory consumption per voxel (1 sampled point in the domain) of 
1,024 bytes. Furthermore, let us assume that the novel compression method has a slightly 
worse compression ratio of 10:1, but significantly less memory consumption of 16 bytes per 
voxel for each harmonic component in the signal. 

Several arguments why the development of a novel compression method defined in this 
way makes sense are shown in Tables 5.1 to 5.4. Memory consumption in these examples 
refers only to R A M , disk memory is not taken into account. 

Let us define the simulation parameters as follows (close to the real life simulations): 
The simulation domain size (number of voxels) iV a i i is computed as iV a i i = Nx x Ny x Nz, 
where Nx, Ny, and Nz are simulation domain sizes for the x-, y- and z-axes. The total 
memory consumption is calculates as 30 x iV a i i x 4 (ca 30 temporary matrices, 4 bytes per 
voxel, see Section 2.2). The sensor mask size i V s e n s o r is the number of voxels sampled in 
one time step and is calculated as A ^ s e n s 0 r = ^Vaii x -Rsenson 

since the -R s ensor is a ratio that 
indicates the number of sampled points of the domain size. The number of bytes stored in 
one step is calculated as A" s ensor x 4 x 4 since 4 time-variable quantities are stored with 4 
bytes per voxel. The simulation speed is hypothetical simulation speed given in steps per 
second, adjusted for simulation size and computing environment. 

In the first Table 5.1, another hypothetical (also realistic) example of simulation pa­
rameters is given. The simulation domain size is 7683 and in the each simulation step 
10% of the simulation size is stored. Thus, the number of bytes stored in one simulation 
step (sensor mask size) is ca 724 M B . The total memory consumption (RAM) is ca 54 G B 
(30 x 7683 x 4). We can assume that state-of-the-art compression method has a slightly 
better compression ratio (20:1), but much bigger memory consumption per voxel 1,024. 
The novel compression would require, for example, 48 bytes per voxel for 3 harmonic fre­
quencies (16 x 3). Data flow and increased memory consumption are shown in Table 5.2. 
Without any compression there is excessive data flow (ca 7 6 0 M B s _ 1 ) , and with the use 
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of some state-of-the-art compression method with a good compression ratio, the increase 
in memory consumption is enormous (185 G B ) . The novel compression method is a com­
promise, ca 8.6 G B is not so much memory due to 54 G B and the data flow 7 6 M B s _ 1 is 
acceptable. 

Table 5.1: A n example of simulation parameters for Table 5.2. The domain size: 7683, 
10% of the size sampled for 4 time-variable quantities (acoustic pressure and the particle 
velocity vector) 

Simulation parameters 

Total memory consumption 
Simulation domain size (number of voxels) 
Sensor mask size (number of sampled voxels in one time step) 
Number of bytes stored in one step 
Simulation speed (steps per second) 
Bytes/voxel - novel compression method 
Bytes/voxel - state-of-the-art compression method 
Novel compression ratio 
State-of-the-art compression ratio 

54 G B 
452,984,832 

45,298,483 
724,775,731 

1.05 
48 

1,024 
10:1 
20:1 

Table 5.2: A n hypothetical example of the comparison of approaches without compression, 
with novel compression, and with state-of-the-art compression. The values are computed 
from the parameters in Table 5.1. 

No compression Novel 
compression 

State-of-the-art 
compression 

Mega samples/second 190 19 10 
Megabytes / second 761 76 38 
Increase in memory con­ 0 G B 9 G B 186 G B 
sumption 

Excessive 
Excessive data 

flow 
O K 

increase in 
memory 

consumption 
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The next hypothetical example of simulation parameters and the corresponding data 
flow and the increase in memory consumption for larger simulations is shown in Tables 5.3 
and 5.4. The simulation domain size is 11523 and ca 6.6% of the size is sampled. Total 
memory consumption is much higher due to large-scale simulation on distributed clusters 
(more than 700 G B ) . We assume that the novel method is model-based and has higher 
unit memory requirements for larger simulations, due to the occurrence of six harmonic 
frequencies; therefore, the number of bytes per voxel of the novel compression method is 
larger (96 bytes, 16 x 6). Due to the calculation on distributed clusters, the simulation itself 
could be about twice faster. It can be seen an enormous increase in memory consumption 
(more than 500 GB) with the state-of-the-art compression method and large data flow 
without any compression in Table 5.4. 

Table 5.3: A n example of simulation parameters for Table 5.4. The domain size: 11523, ca 
6.6 % of the size sampled for 4 time-variable quantities (acoustic pressure and the particle 
velocity vector) 

Simulation parameters 

Total memory consumption 
Simulation domain size (number of voxels) 
Sensor mask size (number of sampled voxels in one step) 
Number of bytes stored in one step 
Simulation speed (steps per second) 
Bytes/voxel - novel compression method 
Bytes/voxel - state-of-the-art compression method 
Novel compression ratio 
State-of-the-art compression ratio 

715 G B 
2,038,431,744 

134,217,728 
2,147,483,648 

2.19 
96 

1,024 
10:1 
20:1 

Table 5.4: A n hypothetical example of the comparison of approaches without compression, 
with novel compression, and with state-of-the-art compression. The values are computed 
from the parameters in Table 5.3. 

No compression Novel 
compression 

State-of-the-art 
compression 

Mega samples/second 1,176 118 59 
Megabytes / second 4,703 470 235 
Increase in memory con­ 0 G B 52 G B 550 G B 
sumption 

Excessive 
Excessive data 

flow 
O K 

increase in 
memory 

consumption 

The presented hypothetical examples show that it is really desirable to develop a new 
compression method with the properties listed at the beginning of this subsection. 
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5.3 Efficient compression of H I F U data 

The subject of this section is the presentation of a new compression method for ultrasound 
simulations. The core compression method for time varying H I F U simulation data I pub­
lished in [42], Efficient Lossy Compression of Ultrasound Data, with my colleagues Pavel 
Zemčík, and Jiří Jaroš, and in [41], Efficient Low-Resource Compression of H I F U Data, 
with my colleagues David Bařina, Pavel Zemčík, and Jiří Jaroš. Both publications contain, 
in addition to the definition of the method itself, a comparison with audio codec - state-
of-the-art methods for on-the-fly data compression. The second publication is an extended 
journal version of the first publication. 

The compression algorithm is able to compress 3-D pressure time series of linear and 
nonlinear simulations with very acceptable compression ratios and errors (over 80 % of the 
space can be saved with an acceptable error). The proposed compression enables significant 
reduction of resources, such as storage space, network bandwidth, C P U time, and so forth, 
enabling better treatment planning using fast volume data visualizations. This section is 
based on the revised texts of the journal paper [41]. Specifically it contains a description 
of the new method for compressing ultrasound simulation data, and also experiments and 
comparison results with other compression methods. The presentation of this method here 
is key to the Section 5.4 with its application to the calculation of time-averaged acoustic 
intensity. 

5.3.1 Compression method 

Our compression method is focused on time-varying signals (on-the-fly data compression 
during simulations) and is designed for 1-D data. Because the shape of the sensor mask can 
be an arbitrary and sparse set of locations, we decided not to deal with spatial coherence. 
Furthermore, by treating every spatial grid point independently, there was no need for ad­
ditional communication on the distributed clusters. The goals of the compression method 
are low memory complexity and high processing speed; negligible data distortion is accept­
able. These intentions differentiate our method from other state-of-the-art compression 
techniques. 

The source ultrasound signal is defined by a known harmonic function of a given fre­
quency, usually a pressure sinusoid. We can assume that the time-varying quantities, such 
as pressure and velocity at every grid point, also have a harmonic character with only small 
amplitude and phase deviations. These quantities are usually amplitude-modulated and 
can be composed of the fundamental and several harmonic frequencies. The number of har­
monics depends on the size of the simulation grid and a factor of nonlinearity. Currently, 
we use up to five or six harmonics for real simulations, which corresponds to the H I F U in 
thermal mode. 

The proposed approach is to model an output signal, such as the decomposition of a 1-D 
signal (one point in the 3-D space), as a sum of overlapped exponential bases multiplied 
by a window function. We decided to use complex exponential bases, because such bases 
can represent fundamental harmonic functions well, including phase changes and higher 
harmonics, as well as window functions whose sum is constant if they are half-overlapped, 
because of on-the-fly processing by parts of the signal. It is important that the input 
frequency emitted by the transducer is known and that it can be used by the compression 
algorithm. 
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Each base is defined by its complex coefficients (amplitude and phase) and a harmonic 
frequency (wavenumber). A shifted window function w is defined as 

or 

[O (m + 2)dT < t < mdT , . 
w(t,m,d) = { v ' ~ (5.1) 

I wo(t — mdT) otherwise 

fo (m + 2)dN < n < mdN , 
w(n, m,d) = < (5-2) 

I wo(n — mdN) otherwise 

where WQ is a window function (typically Hann or Triangular), iV or T is the number of 
samples within the period or acoustic period, respectively (At = T/N, NAt = T), n or t is 
the simulation time step or time, resp., m is a window (the basis) index, and d is an integer 
multiple of overlap size (MOS). The length of the window is therefore 2dN or 2dT, resp. 
We obtain complex exponential sliding-window basis vectors 

b(t, m, h, d) = w(t, m, d)e~ihu)t (5.3) 

or 

b(n,m,h,d) = w(n,m,d)e j h Q n (5.4) 

where 

OJ = — and 57 = — (5.5) 

with the number of the harmonic frequency (wavenumber) h and the known fundamental 
angular frequency u (fl). 

Let M be the total number of periods of the fundamental frequency of the signal (let 
us assume that MN is the total number of samples taken, also MT is the total duration 
of the signal). The whole reconstructed signal s can then be expressed as 

H ^ M _ 1 

s(n) = ^ — ^2 b(n,m,h,d)k(m,h) (5.6) 
h=l m=0 

where H is the number of harmonics (1 to H), his a harmonic index, and k are the resulting 
complex coefficients. The normalization factor 2/dN is based on the sum of the window 
function samples dN/2, i.e., the area dT/2 in continuous time. 

A n illustration of three half-overlapped windows with d = 2 (length = 4iV) and the 
real-part sum of window functions is shown in Figure 5.1. 

The coefficients k for the harmonic frequency h used to model the output simulation 
signal x are approximately computed for every frame m (usually with a minimum length 
of two periods 2N, which experimentally proved to be the most suitable) as a dot product 
of the simulation signal sample x(n) and the windowed exponential basis vector b (the 
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vinculum denotes complex conjugate of b) 

MN-l 

k(m,h)= b(n,m, h,d)x(n). (5-7) 
n=0 

The bases of the individual harmonic components are independent/perpendicular to 
each other because 

M-l 

b(n, m, g, d)b(n, m, h, d) = 0 whenever g ^ h. (5-8) 
m=0 

The coefficients for other harmonic frequencies can be computed independently and are 
summed in the reconstruction phase. Every point in 3-D space can be processed separately 
and in parallel within both the encoding and decoding phases. It is not necessary to have 
the entire signal x available to calculate one coefficient, because the sliding-window basis 
vectors b are zero for 

(m + 2)dN < n < mdN. (5.9) 

The number of memory cells c (single-precision floating-point numbers) required for 
computing intermediate results in one time step depends on the number of harmonics H 
and it can be evaluated as 

c = 4H (5.10) 

as two complex numbers are needed per every harmonic frequency. 
Within the decoding phase, the memory requirements remain the same as in the encod­

ing phase. Two complex coefficients are needed for every harmonic frequency; however, the 
decoded samples are computed independently, which can be useful, for example, for fast 
data visualization. 
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The compression ratio of the method can be expressed as 

length(x)/(lengthy) 2#). (5.11) 

The ratio is proportional to the width of the overlapping window bases. This signal 
approximation method yields a very small distortion for the stable parts of the signal, 
where the distortion depends only on the number of considered harmonic frequencies. The 
distortion is greater in the transient parts of the signal. 

5.3.2 Implementation 

Currently, two baseline implementations of the proposed methods are available—an imple­
mentation in M A T L A B and FFmpeg to process 1-D signals and a second implementation 
in C + + to process large 4-D datasets. Both versions process the simulation data sequen­
tially and offline by reading datasets in the HDF5 format. Another parallel on-the-fly 
implementation with C U D A and with the OpenMP version is also available. 

The M A T L A B and FFmpeg implementations were developed specifically to process 1-D 
data (time series at a single grid point). The FFmpeg implementation mediates simple ways 
for the compression method's debugging, comparison with other coding methods (e.g., audio 
codecs), and the visualizations of processing steps and results. The C + + implementation 
differs from the M A T L A B implementation in the ability to process a large amount of 4-D 
data. Individual HDF5 datasets are loaded by 3-D blocks depending on the main memory 
size. Both implementations were tested on a desktop computer with 24 G B memory and 
Intel Core i5-6500 processor. For experiments with extensive HDF5 files, the Salomon 
cluster with 128 G B memory, two Intel Xeon E5-2680v3 processors, and Lustre shared 
storage space with a maximal theoretical throughput of 6 G B s _ 1 for one computing node 
was used [31]. 

5.3.3 Experiments and Results 

Two sets of experiments were performed. The first set was focused on testing the compres­
sion method on 1-D signals, and the second set was conducted for large 4-D datasets. A 
triangular window was used as a window function for the proposed compression method 
for all experiments. The main objectives of the experiments were to determine the peak 
signal-to-noise ratio (PSNR) with respect to the bit rate and to compare the proposed 
method with other compression methods, particularly with audio codecs. 

For the 1-D signal compression tests, three different types of signals were selected. We 
always chose 50 random 1-D signals (points within the sensor mask) from the given datasets. 
The schematic overview of the test signals is shown in Tables 5.5 and 5.6. 

Table 5.5: The types of testing signals - part 1. A l l signals represent acoustic pressure. 

Name Max number of harmonics (H) Simulation size 

Linear 1 256 x 256 x 350 
Nonlinear 2 2 512 x 384 x 384 
Nonlinear 6 6 1536 x 1152 x 1152 
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Table 5.6: The types of testing signals - part 2. A l l signals represent acoustic pressure. 

Name Sensor mask size Samples Period (N) 

Linear 55 x 55 x 82 3301 15 
Nonlinear 2 101 x 101 x 101 10,105 35 
Nonlinear 6 101 x 101 x 101 30,604 106 

The signals differ mainly in the simulation size, sensor mask size, number of sampled sim­
ulation steps, input period, and type of the simulation. The dense sensor mask was always 
defined within the highly focused H I F U area in which the highest amplitude and most of the 
harmonics are observed. A l l signals contain acoustic pressure stored in 32-bit floating-point 
format. The dataset referred to as Linear is the output of a linear simulation; thus, there 
are no harmonics. The other datasets comprise the outputs from nonlinear simulations, and 
the number of harmonics depended, among other factors, on the simulation resolution. For 
a better connection to reality, a realistic simulation that was representative of the clinical 
situation with heterogeneous tissue used a simulation grid size of 1536 x 1152 x 1152 and 
contained about six significantly strong harmonics (referred to as nonlinear 6). The same 
simulation (nonlinear 2) but with a smaller simulation grid size 512 x 384 x 384 contained 
only two harmonics. 

The compression experiments compared the results of the proposed H I F U compression 
method (HCM) with several audio codecs implemented in the FFmpeg framework (either 
natively or through an external library), specifically with A D P C M , F L A C , A L A C , A A C , 
AC-3 , Opus, and P C M . The main properties and settings of these codecs, including the 
proposed method, are shown in Table 5.7. The above-listed methods were selected for 
comparison purposes only. Except for P C M , none of them meets the memory requirements 
needed for implementation in a distributed parallel environment. Because we target a 
memory-limited environment, we set the frame size to the minimum size supported by the 
specific sampling rate, sample format, and codec. We note that as a result of the frame-
based system, a delay is introduced after the encoding and decoding processes. This delay 
is shown in the last column of the referenced table. 

Table 5.7: Overview of tested formats and codec settings. 

Codec Long Name Class Frame Size Delay 

P C M Pulse-code modulation Lossless 1 0 
F L A C Free lossless audio codec Lossless 16 0 
A L A C Apple lossless audio codec Lossless 4096 0 

A D P C M Microsoft A D P C M Lossy 2036 0 
Opus Opus Lossy 120 120 
A A C Advanced audio coding Lossy 1024 1024 
AC-3 Dolby digital (ATSC A/52) Lossy 1536 256 
H C M H I F U compression method Lossy 1 0 

Because several audio codecs require the signal to be normalized on the (0,1) interval, 
we used the maximal absolute signal value for normalization. In some cases, the input 
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signal had to be stored in 16-bit P C M format before the codec could be applied ( A D P C M 
and Opus). This conversion was performed with the use of the maximum 16-bit integer 
value. 

By default, the H C M expects an unknown maximum absolute signal value and therefore 
uses 32-bit floating-point numbers to store compression coefficients. If the dynamic range of 
values is known in advance, the method can convert 32-bit floating-point numbers into 16-
bit or even 8-bit integers with negligible loss of information (4 or 2 bytes for one complex 
number). Thus, for normalized signals, two additional modifications of the H C M were 
implemented. As shown in all figures and tables except Figures 5.2 to 5.4, 5.10 and 5.11, 
the H C M used 8-bit integers for coefficients and thus 2 bytes for one complex number. For 
a better understanding, a comparison of three types of H C M coding is shown in Figures 5.2 
to 5.4. 

Figure 5.2: Different variations of the high-intensity focused ultrasound (HIFU) compres­
sion methods (HCMs). The average bit rate and the corresponding peak signal-to-noise 
ratio (PSNR) for Linear dataset. 

The dependence of the distortion on the bit rate is shown in Figures 5.5 to 5.7 for the 
datasets Linear, nonlinear 2, and nonlinear 6. The lossless methods are represented by a 
single point, as they do not have, by their nature, the ability to choose any custom bit 
rate. Except for the A D P C M , the lossy methods are represented as a curve for which the 
independent variable is the custom bit rate. Although the A D P C M is a lossy method, it 
has no ability to choose a bit rate. Thus, in this case, the method is also represented by 
a single point. Looking more closely at the referenced figure, we can see that the H C M 
exhibited at least comparable compression performance. More precisely, the P S N R for the 
Linear case, cts shown in Figure 5.5, reached comparable values for all lossy methods except 
the A D P C M and Opus, which had significantly worse results. The proposed H C M reached 
the lowest bit rate. At its highest bit rate, the H C M also exhibited the best PSNR, which 
was about 52 dB. It is possible to obtain better bit rates with the proposed method by 
setting the multiple of overlap size (MOS) to higher values. 

The results for the nonlinear simulation signals were slightly different from those for 
the Linear dataset. In Figure 5.6, the P S N R and bit rate for the Nonlinear 2 dataset are 
shown. We obtained a slightly worse PSNR, approximately 48 dB, for the proposed H C M , 
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Figure 5.3: Different variations of the high-intensity focused ultrasound (HIFU) compres­
sion methods (HCMs). The average bit rate and the corresponding peak signal-to-noise 
ratio (PSNR) for Nonlinear 2 dataset. 

and better values for the other methods. We believe this was due to the presence of more 
harmonics. 

In the case of the Nonlinear 6 dataset (larger simulation grid size and about six har­
monics), the proposed method gave similar results as for the previous cases. A D P C M 
exhibited comparable PSNR, and it was only slightly worse in terms of bit rate than the 
proposed H C M . Moreover, the A A C codec achieved a slightly better bit rate, followed by 
the competitive AC-3 . Further details can be seen in Figure 5.7. 

Different variations of the H C M s used for the Linear, Nonlinear 2, and Nonlinear 6 
compression datasets can be observed in Figures 5.2 to 5.4. Importantly, the P S N R reached 
comparable-quality values for all cases. It can be noticed that the bit rates converged to a 
single point in the plot—this was caused by the use of a W A V E file header for storing the 
compressed data. The W A V E format was used only for testing purposes with the FFmpeg 
tool. 

The particular results, including compression ratios, with the PSNRs set as close as 
possible to 50 dB are listed in Tables 5.8 to 5.10. The values correspond to Figure 5.8. We 
note the comparable bit rates of the H C M , AC-3 , and A A C . 

A short segment of a signal in the 1-D Nonlinear 6 dataset is shown in Figure 5.9. 
The individual sub-figures illustrate the original, HCM-reconstructed, and corresponding 
difference signals, respectively. A l l of these correspond to a MOS value set to 1. We note 
the maximal error in a part with very transient signal values. 

Table 5.8: Results for Linear dataset. Bit rates taken as close as possible to 50 dB. 

H C M AC-3 A A C Opus A D P C M A L A C FLAC P C M 

Bit rate (bits" 1) 1.28 1.33 5.33 6.38 4.27 7.54 43.42 16.19 
Compression ratio 25:1 24:1 6:1 5:1 7.5:1 4.2:1 0.7:1 2:1 

PSNR (dB) 52.05 44.66 48.67 22.43 33.83 101.11 101.11 101.11 
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Figure 5.4: Different variations of the high-intensity focused ultrasound (HIFU) compres­
sion methods (HCMs). The average bit rate and the corresponding peak signal-to-noise 
ratio (PSNR) for Nonlinear 6 dataset. 

Table 5.9: Results for Nonlinear 2 dataset. Bit rates taken as close as possible to 50dB. 

H C M AC-3 A A C Opus A D P C M A L A C FL A C P C M 

Bit rate (bits" 1) 0.98 1.33 2.03 5.65 4.12 6.69 
Compression ratio 32.6:1 24:1 15.8:1 5.7:1 7.8:1 4.8:1 

PSNR (dB) 47.81 47.87 49.85 25.35 42.03 101.23 

27.04 16.06 
1.2:1 2:1 

101.23 101.23 

We also conducted compression experiments with two 4-D datasets. The tested signals 
were chosen from Nonlinear 2 and Nonlinear 6, and all the points stored in the sensor 
mask were compressed (101 x 101 x 101 x 10,105 points for Nonlinear 2 4-D signal and 
(101 x 101 x 101 x 30,604 points for Nonlinear 6 4-D signal). The proposed compression 
method was tested with the setting of the MOS to values of 1, 2, 3, and 4. 

We obtained interesting results for the Nonlinear 2 case (Figure 5.10). The P S N R values 
for the 4-D dataset were approximately 20 dB better than for the 1-D signals. 

In the case of the Nonlinear 6 signal, the results were slightly different (Figure 5.11). 
The P S N R values for the 4-D signal were about 13 dB better than for the 1-D signal. This 
phenomenon was likely caused by a 3-fold larger simulation grid size in the Nonlinear 6 case 
but the same size of the sensor mask. We could conduct experiments with a corresponding 
higher sensor mask size (e.g., 301 x 301 x 301) and expect results similar to those of the 
Nonlinear 2 case, but more than 3 T B of data would be need for the testing dataset, and 
the time for offline compression would be enormous. 

Table 5.10: Results for Nonlinear 6 dataset. Bit rates taken as close as possible to 50dB. 

H C M AC-3 A A C Opus A D P C M A L A C FL A C P C M 

Bit rate (bits" 1) 0.92 1.00 0.69 5.55 4.05 4.53 19.41 16.02 
Compression ratio 34.6:1 32:1 46.7:1 5.8:1 7.9:1 7.1:1 1.6:1 2:1 

PSNR (dB) 45.92 49.80 50.82 28.94 51.28 102.34 102.34 102.34 
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Figure 5.5: A relationship between the average bit rate and the corresponding peak signal-
to-noise ratio (PSNR) for Linear dataset with one harmonic. 
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Figure 5.6: A relationship between the average bit rate and the corresponding peak signal-
to-noise ratio (PSNR) for Nonlinear 2 dataset with two harmonics. 

The overall results indicate useful properties of the proposed method. The PSNRs of 
all the signals had values comparable with those of the state-of-the-art audio codecs. The 
maximum errors occurred only in short transient parts of the signals. The errors in the 
stable segments were negligible. We expect better PSNRs with larger sensor masks and 
smaller MOS values. 

In further work from the point of view of publication [41, 42] it would be worth trying 
to further optimize the basis and window functions so that the errors in transient signal 
segments will possibly be reduced or to apply follow-up compression algorithms to further 
compress the resulting coefficients so that higher compression ratios are achieved. 

A n efficient compression algorithm for H I F U simulation data was proposed, and offline 
experiments were performed to evaluate it. We have shown that our method produces very 
useful results. The important stable parts of the simulation signals are compressed with 
very small distortion (0.1 %) at compression ratios over 80 %. The very short transient parts 
of the signals are compressed with acceptable errors. The proposed compression algorithm 
was also implemented in the existing implementation of the k-Wave simulation toolbox [78]. 
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Figure 5.7: A relationship between the average bit rate and the corresponding peak signal-
to-noise ratio (PSNR) for Nonlinear 6 dataset with six harmonics. 
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Figure 5.8: Average bit rates for the peak signal-to-noise ratio (PSNR) as close as possible 
to 50 dB for three testing datasets. 
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Figure 5.9: Illustration of the Nonlinear 6 original, reconstructed, and difference signals 
with multiple of overlap size (MOS) equal to 1. 
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Figure 5.10: Peak signal-to-noise ratios (PSNRs) for different multiples of overlap size 
(MOSs) with Nonlinear 2 1-D and 4-D signals. 
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Figure 5.11: Peak signal-to-noise ratio (PSNRs) for different multiples of overlap size 
(MOSs) with Nonlinear 6 1-D and 4-D signals. 
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5.4 On-the-fly calculation of time-averaged acoustic inten­
sity 

The subject of this section is the application of the compression method presented in the 
previous chapter, i.e. on-the-fly calculation of the average acoustic intensity in time-domain 
ultrasound simulations. The main article [43], On-the-Fly Calculation of Time-Averaged 
Acoustic Intensity in Time-Domain Ultrasound Simulations Using a k-Space Pseudospec-
tral Method, that I published with my colleagues Pavel Zemcik, Bradley E . Treeby, and 
Jif i Jaros in the I E E E Transactions on Ultrasonics, Ferroelectrics, and Frequency Control 
journal, is the core publication of this work. This article presents a method for calculating 
the average acoustic intensity during ultrasound simulation using a new approach that takes 
advantage of compression of intermediate results. 

The thermal simulation is preceded by the calculation of the average intensity within 
the acoustic simulation. Due to the time staggering between the particle velocity and the 
acoustic pressure used in such simulations, the average intensity calculation (Section 2.3) 
is typically executed offline after the acoustic simulation, which consumes both disk space 
and time (the data can spread over terabytes). Our new approach calculates the average 
intensity during the acoustic simulation using the output coefficients of a new compression 
method, which enables resolving the time staggering on-the-fly with huge disk space savings. 
To reduce R A M requirements, the article also presents a new 40-bit method for encoding 
compression complex coefficients. 

Experimental numerical simulations with the proposed method have shown that disk 
space requirements are up to 99 % lower. The simulation speed was not significantly affected 
by the approach and the compression error did not affect the prediction accuracy of the 
thermal dose. From the standpoint of supercomputers, the new approach is significantly 
more economical. Saving computing resources increases the chances of real use of acoustic 
simulations in practice. 

This section contains a description of a new time-averaged acoustic intensity calculation 
approach and an experimental evaluation of the application of this calculation, i.e. the 
section is based on the revised texts of the journal paper [43]. 

The following subsection follows the simulation workflow and offline average intensity 
calculation that are described in the state-of-the-art part of this work - Section 2.3, as well 
as the compression method described in the Section 5.3.1. 

5.4.1 Proposed approach 

This subsection is divided into 3 parts. The first is devoted to the calculation of the intensity 
itself, the second to the memory requirements of the method and the third to the improved 
coding of complex coefficients. 

On-the-fly calculation of intensity 

Here, we describe how to calculate the time-averaged intensity vector during the simulation 
using on-the-fly data compression (Section 5.3.1) [41, 42]. This directly uses compression 
coefficients to calculate the average intensity, which are not stored in files during the sim­
ulation. 

In case of the average intensity calculation, we are specifically interested in the coef­
ficients of the acoustic pressure and the particle velocity. Let kp and k u _ s t a g g e r e d be the 
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computed compression coefficients for the pressure and the staggered velocity from the pre­
vious Section 5.3.1. For simplicity, we consider the coefficients only for the one window 
base. The shift of the particle velocity in time by half the sampling period (At /2 , 1/2 
sample, thus phase shift by 0/2) is being calculated by exploiting a shift of the phase, 
therefore 

ku{h) = k u_ staggered(^') e ' : ' ^ (5-12) 

where k u is the particle velocity coefficient that is no longer shifted in time by (At/2) 
relative to the pressure. 

Equations (5.13) and (5.17) show only the derivation and only the last Equation (5.18) 
or Equation (5.19) are important for the calculations. To use the integral for derivation, the 
continuous notation is used. Using complex magnitude and phase angle of the coefficients, 
the harmonic functions for the pressure p and the velocity u with the angular frequency w 
(first harmonics) and time t for the one frame can be expressed as 

pit) = \kp\ sin(a;t + aig(kp)) (5.13) 
u(t) = |k„| sin(a;t + arg(k„)) . (5.14) 

The average intensity can be calculated as the integral of product of pressure and particle 
velocity over time from 0 to T, dividing by T to take the average 

1 r 
I a v g = — / \kv\sin(o;t + aig{kp)) 

1 Jo 
x | k u | sin(a;t + arg(k u))dt 

(5.15) 

Iavg = I M k « l cos(arg(/cp) - arg(k u))/2 (5.16) 

by modifying the expression using trigonometric functions, we achieve 

Iavg = I M k « l Re(cos(arg(/cp) - arg(k„)) 
+j sin(arg(/cp) - arg(k u)))/2 

(5.17) 

I a v g = Re(kpku)/2 (5.18) 

The average intensity over multiple frames (M) including all harmonic frequencies H can 
be calculated using a simple principle of numerical integration with exploitation of non-
staggered velocity as 

j M-l H 

I av g _a i i = R e ( M m ; h)ku(m, h))/2. (5.19) 
m=0 h=l 

To obtain suitable results using the compression method, the half-width of the complex 
exponential window basis should be an integer multiple of N = 2ir/(ujAt) (i.e. the input 
period T), where UJ is the known driving fundamental angular frequency and A t is known 
time step. The minimum value of the half-width is equal to one period, and therefore, we 
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need at least 2N of signal samples for the complete calculation of one complex coefficient. 
However, if the signal already contains steady-state amplitudes, we can calculate an equally 
accurate coefficient from the iV samples of the signal by mirroring the envelope (window 
function). Thus, the window function has a constant value in the processed signal frame. 
This is illustrated in Figure 5.12 (for the first harmonic frequency). The period is 106 time 
steps. The first coefficient is "mirrored" and calculated as the sum of even (2nd, 4th,...,) 
and odd (1st, 3rd,...,) coefficient for a signal length of one period. The second and third 
coefficient are computed from two periods. To reconstruct one point in time of the modeled 

Figure 5.12: Accumulation of compression coefficients for the first and more periods. 

signal, we need two coefficients whose weights are given by the overlapping envelopes. For 
special cases, thus for the first and last period, the first and last coefficients are duplicated. 

The minimum number of memory cells c (single-precision floating-point numbers, 32 
bits) required for computing intermediate results in one-time step for the stable parts of 
the signal is 

c = 2H (5.20) 

as one complex number is needed per every harmonic frequency. Section 5.4.1 further 
describes the method of encoding a complex coefficient to 40 bits instead of 2 x 32 bits. 

Compared to the original average intensity calculation procedure, the new approach 
does not need to save the pressure and velocity data to a file during the simulation, but 
needs more R A M . The calculation of the volume rate of heat deposition term Q is performed 
in the same way as in the case of non-use of the compression method (offline). 

Resource consumption 

The compression method described above is advantageous especially in terms of saving disk 
space, but also increases memory consumption. Consider the following several simulation 
scenarios representing clinical H I F U simulations. 

Table 5.11 shows the basic simulation parameters and the comparison of the minimum 
file sizes required to calculate the Q term. The columns named Nx, Ny, and Nz are simula­
tion domain sizes. The column named "Period" represents the number of simulation steps 
per period (N = l / ( / A t ) = T/At, where / is the known transducer driving frequency, and 
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A t is the known time step). The parameters (period, harmonics and number of simulation 
steps) are calculated as part of creating the input simulation file, using the domain sizes, 
transducer driving frequency, sound speed, real size in z-axis, and the Courant-Friedrichs-
Lewy (CFL) number [78]. 

The transducer driving frequency / is 1 MHz. Due to the nature of the input simula­
tion data (heterogeneous absorbing material properties) and in order to obtain reasonable 
accuracy and stability of the simulations, the C F L number is set to 0.1. The real size in the 
£-aXlS £-size IS 22 cm. The aperture diameter of the transducer bowl is 12 cm, and the radius 
of curvature is 14 cm. The reference sound speed c r e f is 1,524 m s - 1 . The number of points 
per z-axis Az = zs\ze/Nz and the number of points per wavelength P P W = c r e f / ( / A z ) . 
The time step A t = l / ( / [ P P W / C F L J ) and therefore the period N = l / ( / A t ) . End time 
is calculated as t e n d = 2 z s i z e / c r e f and the number of simulation steps, i.e. the total number 
of simulation steps from the beginning to the end of the simulation Nt = [ ( t e n d/At) ] . The 
number of harmonics supported by the spatial grid is given by H = [ l x 10 - 6 (c r ef / (2Az)) ] . 

The larger the grid size, the more accurate and usable results (more harmonics). As 
already mentioned in Section 2.1, for planning H I F U therapy, we need a reasonably high 
number of harmonic frequencies and the reasonably high spatial resolution. A typical 
scenario using a single supercomputer node is the case 4. Case 9 is approaching the limits 
of available supercomputers, using multiple nodes, if we do not want to wait a few days for 
the result of the simulation. 

In case of the proposed method that uses compression, it is enough to store only one 
the Q term (a single 3-D matrix). Without the compression, the time series of pressure and 
velocity data time series is necessary to store (leading into storage of four 4-D matrices). 
Please note the fundamental difference in the amount of disk space required. 

Table 5.11: Minimum file sizes for Q term calculation. 

File sizes generated during 
simulation 

with 
compres-

Domain size without compression sion 

1 and 
3 more 

Case Nx Ny Nz N H Nt 
1 period periods periods 

1 256 256 350 24 2 6929 8.49 G B 25.3 G B 88 M B 
2 384 384 512 35 2 10105 40.6 G B 121GB 288 M B 
3 576 576 768 53 3 15302 207 G B 619 G B 972 M B 
4 768 768 1024 70 4 20210 647 G B 1.94 T B 2.30 G B 
5 960 960 1280 88 5 25407 1.59 T B 4.76 T B 4.50 G B 
6 1152 1152 1536 106 6 30604 3.30 T B 9.90 T B 7.78 G B 
7 1344 1344 1792 124 7 35801 6.14 T B 18.4 T B 12.3GB 
8 1536 1536 2048 141 8 40709 10.4 T B 31.2 T B 18.4 G B 
9 1728 1728 2304 159 8 45906 16.7TB 50.1TB 26.2 G B 
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Table 5.12: R A M used for the on-the-fly average intensity calculation. 

with compression (2 x 32 bits) with 40-bit compression (Section 5.4.1) 

Case 1 period 2 and more periods 1 period 2 and more periods 

1 1.66 G B 3.06 G B 1.14 G B 2.01GB 
2 5.47 G B 10.1GB 3.74 G B 6.62 G B 
3 26.2 G B 49.6 G B 17.5 G B 32.1GB 
4 80.6 G B 154 G B 53.0 G B 99.1GB 
5 194 G B 374 G B 126 G B 239 G B 
6 397 G B 770 G B 257 G B 490 G B 
7 729 G B 1.42 T B 469 G B 901GB 
8 1.23 T B 2.41TB 793 G B 1.53 T B 
9 1.76 T B 3.44 T B 1.13 T B 2.18 T B 

The R A M required for the on-the-fly average intensity calculation is given in Table 5.12. 
Here, we see that the amount of memory required depends on the number of harmonic 
frequencies. 40-bit compression refers to the reduction of memory (reduce format) used for 
complex coefficients from 64 to 40 bits, which is described in Section 5.4.1. The memory 
calculation is performed according to 

where Nx, Ny, and Nz are simulation domain sizes, H is the number of harmonic frequencies, 
n is 1 for one period or 2 for any number of periods larger than 1, and complex size 
multiplier m is equal to 2 for compression and 1.25 for 40-bit compression. The first 
number 4 represents the number of bytes per float while the second number 4 represents 
the number of compressed 3-D matrices, i.e. pressure and velocity for the x-, y- and z-
axes. The number 3 represents uncompressed 3-D matrices for the time-averaged intensity 
in each Cartesian direction. The operating memory for the original pressure and velocity 
data is not included in Equation (5.21) as it is part of the simulation itself (described in 
the following paragraph). 

Table 5.13 shows the common memory requirements for the remaining partial opera­
tions of the entire acoustic simulation process. They are the same with and without the 
compression. The first column is an estimate of the memory requirements of the simula­
tion itself, without other operations, such as compression or postprocessing, calculated on 
the basis of simulation experiments. These values refer to the C++ OpenMP version of 
k-Wave. By the way, data obtained from the k-Wave researcher from the M P I versions of 
the simulations showed that the R A M requirements for the simulation itself are more than 
twice as large. The second column contains the memory requirements for the calculation 
of the Q term, which is performed as part of postprocessing, and the size corresponds to 
the three auxiliary matrices that are needed to copy the average intensity matrices due to 
the sensor mask (the sensor mask is a defined set of locations that will be sampled. In our 
examples, all points in the domain are sampled, but in general the sensor mask can be an 
arbitrary and sparse set of locations [65, 78]). 

memory [MB] 
10242 
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Table 5.13: Other common R A M requirements. 

Case 
R A M estimation used for 

simulation itself 
R A M used for offline Q term 

calculation 

1 3.50 G B 263 M B 
2 11.0GB 864 M B 
3 36.5 G B 2.92 G B 
4 87.0 G B 6.91GB 
5 170 G B 13.5 G B 
6 294 G B 23.3 G B 
7 467 G B 37.0 G B 
8 697 G B 55.3 G B 
9 992 G B 78.7 G B 

A comparison of the total memory usage with partial operations of the whole acoustic 
simulation process using the new approach is shown in Figure 5.13. The graph shows the 
case of using 40-bit compression over one period. 

4 

DQ 
b 

1 2 3 4 5 6 7 8 9 

C a s e 

Total R A M with the 40-bit compress ion of 1 period • R A M used for offline Q term calculation 

• R A M estimation used for simulation itself 

Figure 5.13: R A M memory requirements of the proposed method in T B . 

It is difficult to evaluate what memory requirements the offline process of calculating the 
average intensity without the compression has. In the presented case, the amount depends 
on how much free memory is available on a given computing resource, and more R A M 
means faster reading and computing. The ideal amount of R A M corresponds to the size of 
the entire time series of pressure and velocity in the output files. In addition, the size of 
the auxiliary matrix for the F F T is needed. It is important that due to the time shifts, it 
is necessary to read at least the whole time series in time, while we can load and process 
blocks of different sizes. The total offline intensity calculation time does not depend only on 
the disk speed. In terms of memory layout of the stored 4-D data, it is more advantageous 
to load as much data as possible at once. 
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From the point of view of today's clusters, one node contains up to hundreds of G B 
of R A M . A n example is the Barbora supercomputer in Ostrava (IT4Innovations), where 
each standard computational node is equipped with 192 G B of R A M [31]. Therefore, this 
memory limits us to using the compression if it wants to use only one node, e.g., with 
OpenMP technology. In the case of simulation on multiple nodes using the message passing 
interface (MPI), the operating memory is not such a problem. Conversely, the amount of 
free disk space and disk write speed can be a bigger complication, such as unavailability of 
disk space, its high price or disk space quota for the user (e.g., user space quota 10 T B on 
Barbora scratch filesystem). 

If we consider, in the case of no compression, the possibility of storing the entire time 
series in R A M instead of in the file, in terms of the size of these data, it will not be 
overall advantageous. This would be possible for smaller simulations, but, for example, 
already in case 3 we would need at least 246 G B R A M (207 + 36.5 + 2.92, according 
to Tables 5.11 to 5.13), which is not realistic on one node of a common supercomputer. In 
addition, if we needed to calculate the average intensity from two or more periods. R A M 
requirements would multiply with each period. In the case of using the compression, the 
R A M requirements for calculations from two or more periods will be essentially the same. 

Efficient coefficient encoding 

To reduce the R A M memory required for temporary complex coefficients kept during ac­
cumulation (scalar product or computing intermediate results in a one-time step), we have 
proposed a method that uses 40 bits instead of 64 bits (2 x 32 bits) for the float complex 
number. There are many methods for lossy and lossless compression of float data, the best 
known of which are F P Z I P and Z F P [53, 54]. These algorithms do not solve our problem 
because they are designed for single- or double-precision floating-point arrays. Further­
more, procedures for compressing blocks of complex numbers have been published. For 
example, an exponent is shared across the block of samples and the encoding box is used 
for the shared exponent to reduce quantization error [16]. Another approach is based on the 
principle that the number of bits per mantissa is determined by the maximum magnitude 
sample in the group and the exponent differences are encoded [85]. 

Our algorithm encodes one complex number independently of neighboring values and 
uses an approximate range of pressure and particle velocity values. The assumption is 
that we have at the input a complex number whose exponents of the imaginary and real 
components do not differ significantly. Thanks to this and the assumed maximum range 
of the values, only 4 bits are used to encode the larger exponent. The second exponent is 
stored as the difference in the shifted mantissa. The format of the 40-bit encoded complex 
number is shown in Table 5.14. Mantissa is composed from: 0-16 zero bits, 1 flag bit, and 
0-16 data (mantissa or fraction) bits, in total it consists of exactly 17 bits. Number of zero 
bits means exponent shift from the stored exponent. For comparison, the Table 5.15 shows 
the standard format (IEEE-754) for encoding 2 x 32-bit complex number [30]. 

The encoding procedure is illustrated by Algorithm 1. The analogous decoding proce­
dure is illustrated by Algorithm 2. 

The number of bits for the mantissa can potentially be further reduced, however, 16 + 
1 bits, thus a total of 40 bits, is practical in terms of memory alignment to bytes and 
acceptable errors. Within this article, the relative normalized error of the Q term 
calculation caused by compression up to about 1 % is considered acceptable [6]. 
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Table 5.14: 40-bit complex floating-point format. 

Type of 
data real sign 

imag. 
sign 

real 
mantissa 

imag. 
mantissa 

shifted 
expo­
nent 

Number 
of bits 1 1 17 17 4 

Table 5.15: Standard 2x32-bit complex floating-point format (IEEE-754). 

Type of 
data real sign 

real ex­
ponent 

real 
mantissa 

imag. 
sign 

imag. 
expo­
nent 

imag. 
mantissa 

Number 
of bits 1 8 23 1 8 23 

5.4.2 Experimental evaluation 

The goal of the experimental numerical simulations was to investigate how the compression 
method affects the simulation execution time, the consumption of computing resources, and 
the numerical accuracy for realistic H I F U simulations. 

Within the time measurement of the experimental simulations, the most important time 
is the time of the simulation phase itself (iteration of simulation steps), which can range 
from a few minutes to days, depending on the size of the simulation domain. The purpose of 
this measurement is to show that applying compression does not slow down the simulation 
process. Furthermore, we are interested in the time of the postprocessing phase, where the 
calculation of the Q term and offline calculation of the average intensity takes place. 

Considering the consumption of computing resources, we are mainly interested in the 
consumption of R A M and disk space. The aim is to confirm the assumption that despite 
the higher demands of the compression method on the operating memory, the total memory 
requirements, including disk space, are significantly smaller. 

Finally, the evaluation of compression errors is performed, both for the Q term, the av­
erage intensity, and for the outputs of the thermal simulation. The purpose is to show that 
the number of different points of ablated tissue is ideally the same with and without the use 
of compression. The proposed method was implemented within the k-Wave toolbox [78]. 
Simulations using the k-Wave (A:-space pseudospectral methods) were experimentally ver­
ified with phantoms and biological tissues [18, 58, 59, 84]. The compression method was 
implemented in both C+-1- OpenMP and C U D A versions, but due to the extent of the 
measured data, this work contains detailed measured results of only the OpenMP version. 
The original version of the intensity and Q term calculation was implemented only in the 
M A T L A B version. To compare the performance of both approaches, the calculation was 
ported to C+-1- to the postprocessing stage. Spatial gradients are computed using Fourier 
transform. The compression algorithm was implemented in a parallel environment and is 
performed during the simulation. 

Acoustic simulations were performed on one node of the Barbora supercomputer cluster, 
where 36 processor nodes (2x Intel Cascade Lake 6240, 2.6 GHz) and at least 192 G B of 
R A M are available. For reading and writing files, Barbora provides the Luster shared 
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Algorithm 1 The 40-bit coefficient encoding procedure 
1: Get the real and imaginary part of the input float complex number and their sign bits. 

2: Get 8-bit exponents and subtract e constant from them which allow the exponent to 
be stored for only 4 bits. 
In case of the acoustic pressure: 

e = 138, max exponent is 2 2 6 (15 + 138 = 153, 153 - 127 = 26) 
maximal encoding value is 2 2 6 - 1 6 x OxlFFFF = 134216704 
minimal encoding value is 2 2 6 - 1 6 - 1 5 x 0x1 = 0.03125 

In case of the particle velocity: 
e = 114, max exponent is 2 2 (15 + 114 = 129, 129 - 127 = 2) 
maximal encoding value is 2 2 - 1 6 x OxlFFFF = 7.99993896484375 
minimal encoding value is 2 2 - 1 6 " 1 5 x 0x1 = 0.00000000186264514923095703125 

3: Get 23-bit mantissas and set their default shift to the right by 6 bits - these least 
significant bits will be discarded. 

4: Find the higher exponent to be saved. Add the difference between the larger and smaller 
exponents to the shift to the right for the mantissa of a number with a smaller exponent. 

5: Crop exponents less than zero and the right shifts greater than 23. Apply right shifts 
to the mantissas. 

6: Round the least significant bits in the mantissas. 
7: Set 1 flag bit for the shifted mantissa with a smaller exponent. 
8: Check exponent overflow, and set maximum values if necessary. 
9: Store the output data at 40 bits (using bitwise operators) as shown in Table 5.14. 

filesystems. On the positive side, it provides a theoretical maximum throughput of 5 G B s 
(38 G B s _ 1 with burst mode) [31]. Unfortunately, the fact that the filesystem is shared does 
not guarantee this throughput. Experimental simulations have shown that the times of such 
calculation phases, in which large files were written or read, sometimes differed significantly 
(e.g., by a factor of 10). 

Due to the available computing resources, four sizes of the simulation domain between 
256 x 256 x 350 and 768 x 768 x 1024 were tested, corresponding to cases 1-4 presented 
in Section 5.4.1. The average intensity was calculated only in the last simulation period. The 
input simulations material properties such as sound speed, attenuation, density and B/A 
(nonlinearity parameter) were generated from the AustinWoman electromagnetic voxels 
model [60]. The heterogeneous parameters were specified for every grid point independently 
wherever enabled by the simulation tool. Individual book values for the material properties 
in the human body were used [28]. 

Tables 5.16 and 5.17 show the measured performance data for each simulation case 
without the use of compression (N), with the use of compression (C) and with the use of 
compression using 40-bit coding (C 40-bit). The "file size" represents the size of the file that 
must be used during the simulation. The R A M memory is divided into two columns. The 
first is the memory needed for the simulation and sampling itself. The total R A M corre­
sponds to the amount of memory used in the whole simulation case, including compression 
and postprocessing. In the case no compression is used, the effort is to use the maximum 
amount of free R A M so that the data for offline calculation of the average intensity within 
the postprocessing phase is read from the file as quickly as possible, to make the compar-
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Algorithm 2 The 40-bit coefficient decoding procedure 

1: Get the mantissas, signs, and exponent from the input 40-bits value (using bitwise 
operators). 

2: Shift the mantissas 6 bits to the left (we now have 23-bit mantissas). 
3: Add the e constant to the exponents (e = 138 for the acoustic pressure, e = 114 for the 

particle velocity). 
4: For the both mantissas (mR, ml) and exponents (eR, el): 
5: if the mantissa is zero then 
6: set the exponent zero (zero mantissa means zero float number), 
7: else 
8: find the index of the most left one bit in mantissa using the specialized function 

(_BitScanReverse or builtin_clz) 
9: and shift the mantissa according to the index value to the left (mR «= 23 - index) 

10: and recompute the final exponent by the index (eR -= 22 - index). 
11: end if 
12: Put together the output complex float numbers using bitwise operators at 2x32 bits 

from signs, mantissas, and exponents. 

ison as fair as possible. In the postprocessing phase, differences can be seen between the 
times when only the Q term calculation is performed and when the average intensity is also 
calculated. Given the overall simulation time, these values are negligible. To determine 
the variability of the total times, the simulation time was measured for every 5 % of the 
total simulation steps. The Coefficient of Variation of simulation times c v = o~//i, where a 
is the standard deviation and \x is the mean, was about 9%. Based on the measurement 
results, we can say that the total simulation times with and without compression for the 
given domain sizes do not differ significantly (variability is about 3%). Due to the fact 
that only the last period was sampled for the calculation of the average intensity, which is 
approximately 0.35 % of all simulation steps, the total times are not significantly affected 
by this sampling. However, we can also see the average iteration times in which the sam­
pling takes place in the table, and we can see that compression is faster than writing to 
the files. The average non-sampling iteration time of a given simulation case is calculated 
as the ratio of the sum of individual iteration times to the number of iterations, within 
the simulation, when sampling was not performed. The average sampling iteration time is 
calculated as the ratio of the sum of individual iteration times to the number of iterations, 
within the simulation, when sampling was performed. In particular, the iteration times are 
2 to 10 times faster with the compression than without the compression. In terms of the 
memory used - the sum of the file size and R A M , the new approach is considerably more 
economical. A disadvantage of the new approach may be the need for a minimum amount 
of free R A M depending on the number of coded harmonics. 

The numerical error caused by the compression is expressed as relative normalized 
error, i.e., maximum absolute difference between non-compression (calculated without the 
use of the compression) and compression data (calculated using compression) divided by the 
absolute maximum value of non-compression data. The maximum values were calculated 
across the entire domain. So for Q term and the average intensity over the whole simulation 
3-D space and for the pressure and the velocity in addition also over the sampling simulation 
time (4-D). Table 5.18 shows the error values in the percent of the volume rate of heat 
deposition (Q term), the average intensity for the individual axes (IXa,vg, - /̂avg> a n d -fzavg)> 
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Table 5.16: Comparison of memory usage in individual cases of simulations on one node of 
the Barbora supercomputer cluster, with 36 processor cores (2x Intel Cascade Lake 6240, 
2.6 GHz) and at least 192 G B of R A M . 

Total R A M 
Simulation + including 

Case Method File size sampling R A M postprocessing 

1 N 8.54 G B 3.44 G B 14.1GB 
1 C 88 M B 5.08 G B 5.34 G B 
1 C 40-bit 88 M B 4.55 G B 4.82 G B 
2 N 40.6 G B 11.0 G B 61.7GB 
2 C 288 M B 16.5 G B 17.3 G B 
2 C 40-bit 288 M B 14.7GB 14.7 G B 
3 N 207 G B 36.9 G B 168 G B 
3 C 972 M B 63.2 G B 66.1GB 
3 C 40-bit 972 M B 54.4 G B 57.3 G B 
4 N 648 G B 87.1GB 168 G B 
4 C 2.30 G B 168 G B 175 G B 
4 C 40-bit 2.30 G B 140 G B 147 G B 

the acoustic pressure (p), and the non-staggered particle velocity for the individual axes (ux, 
uy, uz). If we take into account the accuracy of the float data type (~7.2 decimal digits), 
then the intensity errors are very small. Higher error values for the Q term are most likely 
due to the type of gradient calculation, where many products are performed between F F T 
and inverse fast Fourier transform (IFFT). In the case of compression, especially with 40-bit 
coding, the error generally increases with the number of samples in the period. 

The C U D A version is fundamentally limited especially by the amount of memory avail­
able on the G P U . The amount of memory listed in Table III, in the first column (approx­
imately) should also be available on the G P U and this is quite a major and fundamental 
limitation. The compression with calculating the average intensity it is not performed on 
a G P U and uses a C P U and a R A M connected to it. The compression on the G P U does 
not make sense yet, as in one iteration its computational time is negligible compared to the 
simulation and in addition it would need the amount of R A M similar to the sizes available 
to CPUs on the GPUs, which is not yet true. 

To be able to meaningfully evaluate the magnitudes of errors caused by the compres­
sion, the Q term is applied to the calculation of the thermal simulation. This will show 
how large the differences will be caused by compression in the heat applied to the tissue, 
and specifically how the ablated tissue will differ. Thermal simulations were performed in 
M A T L A B using the kWaveDif fus ion function for the time-domain solution of the Pennes' 
bioheat equation. 

The input parameters of the thermal simulation are shown in Table 5.19. The heating 
with the Q term calculated in the acoustic simulation was set to 10 s, the cooling time with 
the (5 = 0 was set to 20 s. 

The results of the thermal simulation shown in Table 5.20 are the temperature after 
heating, the temperature after cooling, cumulative equivalent minutes relative to T = 43 °C 
(CEM43) in %, maximum absolute value of CEM43 for cases without compression, and 
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Table 5.17: Comparison of computational times in individual cases of simulations on one 
node of the Barbora supercomputer cluster, with 36 processor cores (2 x Intel Cascade Lake 
6240, 2.6 GHz) and at least 192 G B of R A M . 

Average Average 
non-sampling sampling 

Simulation iteration iteration 
Postprocessing time time time 

Case Method time [seconds] [seconds] [seconds] [seconds] 

1 N 11.4 906 0.11 0.82 
1 C 1.05 814 0.11 0.27 
1 C 40-bit 0.27 767 0.11 0.34 
2 N 57.4 3,834 0.36 3.63 
2 C 1.18 3,665 0.36 0.81 
2 C 40-bit 2.73 3,816 0.36 1.11 
3 N 529 20,456 1.33 45.5 
3 C 6.64 21,383 1.33 3.13 
3 C 40-bit 6.32 19,532 1.33 4.54 
4 N 1,880 74,531 3.51 53.5 
4 C 6.56 78,232 3.51 9.42 
4 C 40-bit 7.22 74,849 3.51 12.4 

the number of different points (also expressed as ablated volume in mm 3 ) of binary matrix 
representing ablated tissue, where CEM43 > 240 min. 

A very important result of the thermal numerical simulations is the number of ablated 
tissue points. This value is essentially the same without and with the use of compres­
sion. The maximum thermal dose £oo errors are around 0.5%, which is negligible. The 
temperature differences are also minimal. 

Figures 5.14 to 5.18 show sections of the output 3-D data in the center of the x-axis 
for the case 4. Some of the figures also include a zoomed-in figure cutout from the focused 
region. Average intensity in z-axis and volume rate of heat deposition is shown in Fig­
ure 5.14, errors caused by the compression in Figure 5.15 and Figure 5.16. The thermal 
dose in CEM43 units is shown in Figure 5.17 on the top and the ablated tissue (CEM43 > 
240 min) is shown in red on the bottom, where shades of gray show the mass density derived 
from the AustinWoman voxel model. The thermal dose errors caused by compression can 
be seen in Figure 5.18, the compression error is on the top, the 40-bit compression error on 
the bottom. The absolute thermal dose errors caused by compression shown in Figure 5.18 
are, in fact, only very small relative errors (0.24% top and 0.036% bottom) due to the very 
large maximum value of thermal dose 2.57 x 10 1 3 (see Table 5.20). 

The overall results of the experimental evaluation showed that the application of the 
new compression method for calculating the average intensity brings significant savings in 
disk space, while other demands on computing resources are comparable. The quality of 
the outputs is not fundamentally affected by the compression and is comparable to the 
outputs without compression. 
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Table 5.18: Relative errors caused by compression. The particle velocities (ux, uy, uz) are 
non-staggered. 

Case Q Ix "̂ avg V Uy uz 

Compression loo error in % (method C ! in Table 5.16) 

1 0.0003C ) 0.000045 0.000040 0.000031 0.0068 0.042 0.040 0.012 
2 0.0092 0.000066 0.000058 0.000041 0.018 0.083 0.084 0.010 
3 0.0098 0.000066 0.000094 0.000071 0.023 0.065 0.061 0.013 
4 0.016 0.000090 0.000089 0.000085 0.014 0.048 0.044 0.010 

40-bit compression t ?oo error in % (method C 40-bit in Table 5.16) 

1 0.034 0.0045 0.0031 0.0038 0.0068 0.043 0.040 0.013 
2 0.46 0.0046 0.0042 0.0043 0.020 0.083 0.085 0.013 
3 0.85 0.0060 0.0049 0.0063 0.024 0.067 0.063 0.015 
4 1.21 0.0093 0.0067 0.0068 0.017 0.051 0.046 0.013 

Table 5.19: Thermal simulation parameters. 

The initial temperature 37 °C 
Density 1,020 kg m ~ 3 

Thermal conductivity 0.5 W m _ 1 K 
Specific heat capacity 3,600 J k g - 1 K 
Number of heating time steps 100 
Number of cooling time steps 200 
Size of the time step (dt) 0.1 
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Table 5.20: Thermal simulation errors. 

Number of 
different 
points of 

Maximum Absolute ablated 
Maximum Maximum thermal maximum tissue 
tempera­ tempera­ dose thermal dose (ablated 
ture after ture after (CEM43) without the volume in 
heating cooling loo error compression m m 3 in 

Case error [°C] error [°C] [1%] [CEM43] brackets) 

Compression error 

1 0.0001 0.000019 0.0013 2.82 x 10 7 0(0) 
2 0.00023 0.000019 0.0082 8.06 x 10 9 0(0) 
3 0.00029 0.000027 0.0089 4.37 x 10 1 2 0(0) 
4 0.00028 0.000038 0.010 2.57 x 10 1 3 0(0) 

40-bit compression error 

1 0.0094 0.000088 0.049 2.82 x 10 7 0(0) 
2 0.016 0.00011 0.62 8.06 x 10 9 0(0) 
3 0.020 0.00019 0.48 4.37 x 10 1 2 1 (0.0235) 
4 0.020 0.00015 0.42 2.57 x 10 1 3 0(0) 
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Average intensity in z-axis 
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Figure 5.14: Visualization of (a) average intensity in z-axis and (b) volume rate of heat 
deposition without the compression. 
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Figure 5.15: Visualization of (a) average intensity error in z-axis and (b) volume rate of 
heat deposition with the compression. 
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Figure 5.16: Visualization of (a) average intensity error in z-axis and (b) volume rate of 
heat deposition with the 40-bit compression. 
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Figure 5.17: Visualization of (a) thermal dose and (b) ablated tissue without use of the 
compression. 

76 



Thermal Dose 

-50 0 50 

z-position [mm] 

H H H I i i i i i 

-8 -6 - 4 - 2 0 2 4 6 

[CEM43] x10
8 

(a) 

Thermal Dose 

-50 0 50 

z-position [mm] 

H i 

-6 -4 -2 0 2 4 

[CEM43] x10
10 

(b) 

Figure 5.18: Visualization of the thermal dose errors, (a) Compression error and (b) 40-bit 
compression error. 
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5.5 Validation and scientific contribution 

In Section 5.3 a novel on-the-fly compression method for H I F U simulations outputs is in­
troduced and validates the first part of the hypothesis in the following way: The method 
is focused on 1-D time-varying data series. Furthermore, the results of a comparison with 
other state-of-the-art compression methods are presented. The compression ratio at the 
maximum quality that this method enables is comparable to other state-of-the-art com­
pression methods, e.g. for compression of audio signals and significantly exceeds some. The 
quality of outputs compressed by the method is comparable to the quality of compressed 
by other state-of-the-art methods within general measures such as M S E or PSNR. From 
the point of view of users, according to the Section 4.3, the ^-errors caused by the new 
compression can be evaluated as acceptable, as they are at most in the order of percent. 

The remaining part of the hypothesis is validated in Section 5.4 in the following way: The 
compressed intermediate results are used for the on-the-fly calculation of the time-averaged 
acoustic intensity. This quantity is further used to calculate the thermal simulation from 
which the ablated tissue is then determined. The worst error in the performed experimental 
evaluation caused by compression in ablated volume in is 0.0235 m m 3 a maximum thermal 
dose (CEM43) ^oo-error is 0.62%. It is verified here that the quality of the outputs com­
pressed by the new method is also acceptable from the point of view of the application 
of these outputs. The new procedure in the calculation of acoustic intensity significantly 
reduces the consumption of disk space by up to 99 %. At the same time, this procedure has 
almost the same demands on total R A M consumption. The computing time is comparable 
and in the case of longer simulations, the method can even reduce this time. Thus, the last 
condition of the hypothesis in the field of computing resources is also fulfilled. Finally, the 
entire hypothesis was proven by the above experiments, both parts of hypothesis on the 
same types of datasets. The hypothesis worked on all the data it was tested on and it can 
be assumed to be valid generally; however, further experiments would be needed for this. 

In terms of contribution to science, the published methods allow users (scientists, doc­
tors) who use demanding simulations not only in the field of H I F U , to make more eco­
nomical calculations, especially in simulations, which use a staggered-grid pseudospectral 
time-domain method. 

5.6 Possible applications 

Ultrasound simulations are widely used, for example, in the healthcare industry. Due to 
the effect of nonlinearity, absorption, refraction, and scattering, the position of the focus 
and the shape of the focal volume can be significantly affected, unlike the propagation 
of an ultrasound wave, for example, in water or in a homogeneous environment. Using 
simulations, it is possible to model these effects, and thus predict wave propagation more 
accurately. And specifically to these simulations, it is possible to apply the presented 
compression method, which significantly saves the disk space required for storing large-
scale output simulation data. The large-scale data represent a fundamental problem for 
better deployment of simulations in practice. 

The main application of the proposed method is presented in experiments with thermal 
simulations. H I F U is used for fast precise localized non-invasive tissue destruction, for ex­
ample, in the treatment of cancer. The H I F U has been used in clinical trials, e.g., for the 
treatment of tumors in the prostate, kidney, liver, bone, breast, and brain. The destruction 
of tissue in the focus of the ultrasound beam is caused by thermal and cavitation effects. 
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For the most accurate predictability of thermal effects, thermal simulations are performed. 
However, only if the absorption of ultrasound waves is accurately captured in models and 
simulations, a dose threshold in cumulative equivalent minutes leading to tissue devitali-
sation can be determined. Therefore, these thermal simulations are directly dependent on 
the acoustic simulations, which are able to calculate the absorption. For accurate modeling 
and simulation of the absorption, it is advisable to use general, i.e. more accurate methods 
of calculating thermal simulation inputs, namely the heat deposition term, instead of using 
other approximations. The improved calculation of the thermal simulation inputs, i.e. first 
the average intensity and then the volume rate of heat deposition with the new proposed 
compression method, brings significant savings in the use of computing resources, and thus 
significantly positively pushes the boundaries of usability in practice. 

Another possible application of the compression is, for example, in the area of fast 
visualizations of simulation data. By the way, this has already been partially implemented 
in compression experiments, but it has not yet found direct use for scientists. In the case of 
a more significant deployment of H I F U simulations in practice, it could be useful. Reading 
the compression coefficients instead of the complete uncompressed data from the files will 
significantly reduce the required data flow, and thus the time required for fast visualization. 
For visualizations, much larger distortions caused by compression, which are not detectable 
by human vision, could theoretically be acceptable. This could again achieve higher data 
flow and faster decompression. If the goal of the visualizations is to quickly display time 
series of selected points in space or parts of the domain, the proposed compression is also 
a suitable candidate for this, as it currently compresses individual points independently of 
others and in parallel. 

The application of effectively calculated average intensity, which could be explored and 
tested, for example, in the field of 2-D/3-D reconstruction. Some of the publications in 
which I participated deal with 3-D reconstruction of fractured long bones from plain 2-D 
radiographs [44, 45, 46, 47, 48, 49]. Based on the 3-D statistical shape and intensity 
models and two 2-D X-ray images, a 3-D model is calculated. If the subject was not the 
bone registration, but e.g., registration of ablated tissue of the H I F U procedure, perhaps it 
would be possible, analogously to two 2-D X-ray images, to perform two cheap and fast 2-D 
simulations in different directions and with these the registration would then be performed. 
Precisely 3-D statistical intensity models could be created using many spatial simulations, 
which would not be so expensive and unavailable due to the use of the average acoustic 
intensity calculation approach proposed in this work. 

The method may also be useful in other industries. Wherever it is useful to perform 
acoustic simulations, there are harmonic functions at the input of these simulations and 
where the user is interested, for example, in the average acoustic intensity itself. The 
possible use of simulations is offered, for example, in the production of acoustic instruments, 
audio technology or for the propagation of sound in water pipes. 
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Chapter 6 

Conclusion 

This work introduces a new compression method within ultrasound simulations and the 
application of this method for calculating the time-averaged acoustic intensity vector during 
ultrasound simulations performed using a staggered-grid P S T D method. 

A n efficient compression algorithm for H I F U simulation data is proposed, and offline 
experiments were performed to evaluate it. Is it shown that our method produces very 
useful results. The important stable parts of the simulation signals are compressed with 
very small distortion (0.1%) at compression ratios over 80%. The very short transient 
parts of the signals are compressed with acceptable errors. 

The results of the application of the proposed method are based on the improvement 
of the important intermediate step in the acoustic simulations - calculation of the average 
intensity. The presented approach calculates it using the compression coefficients obtained 
on-the-fly during the simulation, avoiding saving of the intermediate results of acoustic 
pressure and particle velocity to the disk during the simulation, as used in state-of-the-art 
approaches. The method has significant advantages over the state-of-the-art simulation with 
uncompressed output. The main advantage is largely (up to 99%) reduced consumption 
of precious disk space during the simulation, which may significantly reduce the price of 
the computational platform and, in some existing configurations of such platforms, it can 
even present an enabling factor for execution of the simulations. At the same time, the 
presented method generally has approximately the same demand for R A M and in longer 
simulations it can even reduce the computational time. Moreover, the compression errors 
in the proposed method are negligible. 

While acoustic simulation (without the intensity calculation) with the compression has 
higher R A M requirements than without the compression, it brings significant disk space 
savings. From the standpoint of supercomputers, the extensive consumption of fast I /O 
disk storage space is a much bigger problem than the need for R A M . In terms of disk space 
requirements, the new method is significantly more economical. 

Through experimental numerical simulations, it has been shown that the average iter­
ation time during sampling is 2-10 times shorter, which can reduce the simulation time in 
some cases. The compression does not adversely affect the overall simulation time. 

The accuracy of the new method was evaluated using thermal simulations. Using the 
new method, essentially the same results were achieved in the determination of the ablated 
tissue as with other approaches. The maximum errors are around 0.5 % for thermal dose and 
0.02 °C for temperature after heating, which are minimal or even negligible. The accuracy 
is equivalent to the state-of-the-art. 
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The future work may show that the new method could be applicable for signals of 
a similar nature, e.g., for electromagnetic radio waves, where the problem of immediate 
calculation of intensity is the mutual time shift of the signals in time. Future work could 
focus, e.g, on M P I implementation of the compression. This implementation has not been 
done yet. Here, it could be proven that the higher demand for operational memory is not 
such a big problem, since there should be enough of it on each node. The problem without 
using compression will be expensive disk space and disk access policy, i.e. shared user 
access and unguaranteed throughput. However, further optimizations of the compression 
algorithm in the area of R A M utilization would also be useful. Furthermore, it is possible 
to focus, for example, on the optimization of overlapped window functions and bases or 
the reduction of the operational memory for higher harmonic frequencies, where the values 
are usually very small but still very important. Extending compression to the 2-D or 3-D 
space and using spatial correlation of the data is another area in which this work could be 
followed. 
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