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Ing. María Quirós Segovia 

Utilization of Geographically Weighted Regression (GWR) in Forestry Modeling 

ABSTRACT 

 The diploma thesis is focused on the application of the Geographically Weighted 

Regression (GWR) in forestry models. This is a prospective method for coping with spatially 

heterogeneous data. In forestry, this method has been used previously in small areas with good 

results, but in this diploma thesis it is applied to a bigger area in the Region of Murcia, Spain. 

Main goal of the thesis is to evaluate GWR for developing of large scale height-diameter model 

based on data of National Forest Inventory of Spain. Final model is compared with local height-

diameter model on validation plots. The obtained results are very different according to the level 

of input data and GWR calibration type. The best result is obtained with individual tree data and 

with fixed kernel calibration. In order to improve quality of GWR calibration several suggestion 

were made, such as change weighted functions. 

 GWR method is highly promising because in the case of need a particular model for 

some large area, there is possible to make sufficiently precise model at any point of the area of 

interest without need of any additional measurements in particular forest stand. 

Key words: Spatial analysis, Spatial heterogeneity, Geographically Weighted Regressions. 

 

Ing. María Quirós Segovia 

Využití geograficky vážené regrese (GWR) v lesnických modelech  

ABSTRAKT 

 Diplomová práce je zaměřena na použití geograficky vážené regrese (GWR) v 

lesnických modelech. Je to perspektivní metoda pro analýzu prostorově heterogenních dat, 

přičemž v lesnictví byla tato metoda již používaná dříve v menších oblastech s dobrými 

výsledky. V této práci je metoda aplikována na větším území v regionu Murcia ve Španělsku.  

Hlavním cílem práce je ověření možnosti použití GWR pro odvození velkoplošně platného 

modelu výškové funkce na základě dat Národní invetarizace lesů Španělska. Výsledný model je 

pro validační plochy porovnán s lokálními výškovými funkcemi.  Získané výsledky se liší pro 

různé úrovně vstupních dat a různé způsoby  nastavení a kalibrace GWR. Nejlepší výsledky 

vykazuje model založený na individuálních stromových datech  a kalibračním jádru s pevnou 

šířkou. V rámci práce byly take navrženy možné změny a náměty pro další výzkum, které 

pravděpodobně přispějí ke zlepšení kvality GWR modelu.  

 

 Metoda GWR se jeví jako vysoce perspektivní, zvláště pro velkoplošné modely, kdy při 

správném provedení umožníodvodit dostatečně přesný model výškové funkce v jakémkoliv 

bodě zájmové oblasti bez nutnosti přímého měření výšky a tloušťky v daném porostu.  

 

Klíčová slova: prostorová analýza, prostorová heterogenita, geograficky vážená regrese,  GWR. 
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I. INTRODUCTION 

 Traditional regressions are actually very well known. This contains several methods for 

modelling relationships among one dependent variable and one or more independent variables. 

There exists a big diversity of model types, such as linear regression, multiple linear regression, 

non-linear regression etc. The main task of the regression is to get quantitative relationships 

between variables.  

 Traditional linear regressions models with standard estimation techniques make a 

number of assumptions about the predictor variables, the response variables and their 

relationship. These assumptions are as follows (Nau, 2014): 

- Linearity and additivity of the relationship between dependent and independent 
variables. 

- Normality of the error distribution.  

- Homoscedasticity (constant variance) of the errors.  

- Statistical independence of the errors, this assumes that the errors of the response 

variables are uncorrelated with each other.  

- Lack of multicollinearity in the predictors.  

 Sadly, not all data fulfil these conditions. In fact, in most of the real data (forestry data 

included) we can find that the data is structured. This data is structured mostly because of the 

following reasons: 

- Spatial variability, data varies from place to place and depends of environmental 
conditions. 

- Temporal variability, data varies according with the time. 

- Hierarchical structure, data belonging to one level of measurement takes part into more 

general data level (e.g. treestandforest). The main problem with structured data is 

that data is correlated, so variables are not independent. A linear regression cannot 

correctly explain real datasets and obtained results and conclusions could be probably 

wrong.  

 There are several methods to solve this problem, for example models based on 

heteroskedasticity specification, linear mixed models, generalized additive models, 

classification and regression trees and finally parametric instability models, e.g. geographically 

weighted regression (GWR) among others. The origin of GWR was in the area of geography 

and sustainable development but also has been applied in other areas as economy with very 

good results. In the forestry sciences we count with little experience with it, especially in the 

case of its applications in large areas. GWR attempts to capture spatial variation by calibrating a 

multiple regression model that allows different relationships between variables to exist at 

different points in space (Zhang, et al., 2004). GWR have several advantages when it is 

compared with other methods, for instance, it is widely applicable to almost any form of spatial 

data and it uses geographic information as well as attribute information among others.  

 The spatial modelling made by GWR describes the influence of the geographical 

position of the trees in their state of competition, their grow potential and the impact of the 

management activities. This made this regression a powerful tool for understand and improve 

the current management processes of some area.  
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II. OBJECTIVES 

 The diploma thesis is focused on the application of the Geographically Weighted 

Regression (GWR). Because it is a prospective method for coping with spatially heterogeneous 

data that are typical in forestry. In this field of study, this method has been used previously in 

small areas with good results. The objectives of this diploma thesis is to evaluate this method 

for large scale study. For this purpose we are going to use data of Pinus halepensis Mill. pure 

forests for selected area of  Spain. As a model, we are going to use height curve, it means 

height-diameter relationship, because this model is very suitable from methodological point of 

view because of its simplicity of application to the data.  

 The probable positive result in the application of geographically weighted regression in 

large areas would be very important under the practical point of view, especially in very large 

countries as Spain because it can make using of the forestry models highly more effective. The 

spatial modelling made by GWR, besides modelling the height diameter relationship itself, 

would be able to describe the influence of the geographical position of the trees in their growth 

potential. The methodological conclusions based on relatively simple height-diameter model 

can be applied in a further research for tree growth and volume models. 

 The main objectives of the thesis are as follows: 

1. A review concerning the spatial heterogeneity in forestry modelling and possibilities 

how to cope with it. 

2. Application of geographically weighted regression in large area  

3. Solution of basic methodological problems in its application (especially bandwidth and 

kernel type selection, calibration of the model on training data set, etc.). 

4. Application of GWR on height-diameter model of validation plots and comparison 

GWR model with local models from area of interest.  

5. Applicable recommendations and conclusions concerning both statistical comparison 

with traditional methods and practical usability.  
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III. LITERATURE REVIEW 

1. SPATIAL ANALYSIS 

 According to Fotheringham and Rogerson (2009), spatial analysis is a general term to 

describe a technique that uses locational information in order to better understand the processes 

generating the observed attribute values. Spatial analysis extracts or creates new information 

from spatial data and try to determine how spatial patterns are generated by one or several 

processes (Fortin and Dale, 2005). 

 This spatial analysis is quite different from the traditional or non-spatial analysis. 

Firstly, the traditional techniques developed for non-spatial data, are not valid for spatial data, 

because spatial data have unique properties and problems that demand a different set of 

statistical techniques and modelling approaches. The main problem and difference in both 

analysis is related with the location at which the regression is undertaken, this function may 

vary over the space in different locations. Subsequently, statistical analyses for spatial data have 

to deal with two potential types of local variation: the local relationship being measured in 

attribute space and the local relationship being measured in geographical space (Fortin and 

Dale, 2005), this means that spatial analysis deal with attribute information as well as 

geographical information.   

 Furthermore, we can find different kinds of spatial analysis: 

- Descriptive spatial statistics that are similar to the descriptive traditional statistics are 

used for a variety of purposes in geography, particularly in quantitative data analyses 

involving Geographic Information Systems.  

- Spatial pattern analysis that try to identify if the data follow some pattern or have some 

structure. It can be used for a lot of purposes, for instance, in criminology, ecology or 

medicine.  

- Spatial analysis that try to find and measure spatial relationships between variables 

involved in the study.  

 Spatial analysis has become one of the most rapidly growing field in ecology and 

forestry sciences. This popularity is related with three factors: (1) a growing awareness among 

scientist that it is important to include spatial structure in ecological thinking; (2) the alteration 

of landscapes around us at an increasing rate, which requires a constant re-evaluation of their 

spatial heterogeneity; (3) and the availability of software designed to perform spatial analyses 

(Fortin and Dale, 2005). 

1.1. Local vs Global Statistics 

When an analysis in the real worlds is made, it is logical to think that same stimulus makes 

different reaction depending of the location, type of soil, climate etc. Consequently, this natural 

reactions cannot be explained by the simple “global” models. The global models summarizes 

the characteristics of the spatial pattern over the whole study area, but in the other hand local 

statistics makes explicit the differences in the pattern observed among parts on the study area 

http://en.wikipedia.org/wiki/GIS
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(Fortin and Dale, 2005). This global models do not work with heterogeneity of spatial data (they 

dealing with them as they would be homogenous) and it often produce conclusions that would 

be probably biased. 

 Several differences exist between global and local models, which can be summarize in 

the following ones (Table 1). (1) Global statistics are typically single-valued, local statistics are 

multi-valued (different values of the statistic can occur in different locations in the study 

region). Consequently, (2) global statistics are non-mappable - they cannot be analysed with 

GIS. Local statistics are GIS friendly and can be mapped and examined within a GIS. (3) Local 

statistics are therefore spatial statistics but global statistics are spatially limited. (4) Finally, by 

their nature local statistics underline differences across space but global statistics lead into 

thinking that all parts of the study region can be represented by a single value or some existing 

pattern. This shows that local statistics are useful in searching for exceptions or what are known 

as local hot spots (Fotheringham, et al., 2002). 

Table 1 - Main properties of global regression VS local regression. (Fotheringham, et al., 2002)  

Global Local 

Summarize data for whole region Local disaggregation of global statistic 

Single-valued statistic Multi-valued statistic 

Non-mappable Mappable 

GIS-unfriendly GIS-friendly 

Spatially limited Spatial 

Emphasize similarities across space Emphasize differences across space 

Search for regularities or laws Search for exceptions or local hot spots 

Example; classic regression Example: GWR 

1.2. Spatial Autocorrelation and Spatial Heterogeneity 

 In spatial modelling there are two phenomena that cannot be ignored, spatial 

heterogeneity and autocorrelation. Both concepts are certainly linked and they will be explained 

in the next part.  

1.2.1. Spatial Autocorrelation  

 When a spatial analysis is implemented, is crucial to determine whether the data lack 

independence: and if so, what is the nature of the spatial dependence. We trust on independence 

to allow us to make trustworthy interpretations and predictions (Fortin and Dale, 2005). For this, 

it is very important the concept of spatial autocorrelation.  

 Cliff and Ord (1973) define spatial autocorrelation as: ‘If the presence of some quantity 

in a sampling unit (e.g., a county) makes its presence in neighbouring sampling units (e.g., 

adjacent counties) more or less likely, we say that the phenomenon exhibits spatial 

autocorrelation’. This type of autocorrelation tests the Tobler’s first law of geography, 

‘everything is related to everything, but near things are more related than distant things’ 

(Tobler, 1970). It implies that the relationship among the values of a given variable is a function 

of the spatial distances between them or their locations in space. Hence, the notion of spatial 
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dependence implies that there is a lack of independence between data from nearby locations 

(Fortin and Dale, 2005). 

 There are mainly two causes of autocorrelation which can be named in two categories, 

‘spurious’ and ‘real’. Spurious autocorrelation is an artefact of experimental design that use to 

happen when samples have not been randomly chosen but can occur as a result of some other 

aspect of the experimental design. In other hand, real autocorrelation can be defined as caused 

by the interaction of a response variable with itself or with independent variables due to some 

inherent characteristic of the variables (Zuur, 2008). The first case is called univariate spatial 

autocorrelation and the second is known as multivariate spatial autocorrelation.  

 For measure and detect spatial autocorrelation, there is common to use the Morans’s I 

coefficient, developed by Patrick Alfred Pierce Moran (Moran, 1950).  This coefficient has 

similar design as Pearson correlation index. Its values oscillate between 1 and -1, where the 1 

means perfect positive autocorrelation (perfect correlation), the -1 value means perfect negative 

autocorrelation (perfect dispersion) and 0 incomes a completely random spatial pattern that is 

the most desirable (see Figure 1).  

 

Figure 1 - the white and black squares are perfectly dispersed so 

Moran's I would be −1. If the white squares were stacked to one half of 

the board and the black squares to the other, Moran's I would be close 

to +1. A random arrangement of square colours would give Moran's I 

a value that is close to 0. Source: Wikipedia, 2014.  

 

1.2.2.  Spatial Heterogeneity  

 When a non-spatial regression was made, generally the heterogeneity of the data never 

was assumed. The relationships modelled were supposed to be the same everywhere within the 

study area. Talking about spatial data it cannot be assumed the homogeneity of the data, this 

condition is known as spatial heterogeneity (Charlton and Fotheringham, 2003). 

 Spatial heterogeneity refers to the uneven distribution of a feature, event, or relationship 

across a region (Anselin, 2010), and is defined as structural instability in the form of 

systematically varying model parameters or different response functions (Anselin, et al., 1988). 

It is related to locations in space, missing variables, and functional misspecification (Anselin 

1988).  

 In forestry, spatial heterogeneity is hypothesized as one of the major drivers of 

biological diversity (Wiens, 1976). Spatial heterogeneity results from the spatial interactions 

between a number of biotic and abiotic factors and the differential responses of organisms to 

these factors (Milne 1991). It may have significant influences on many ecosystem processes at 

multiple spatial scales (Turner 1989). The spatial heterogeneity of vegetation patterns (i.e., 

landscape heterogeneity) is a structural property of landscapes (Li and Reynolds 1994) that can 

be defined by the complexity and variability of ecological systems’ properties in space. The 

spatial heterogeneity of a tree variable (growth, total height, diameter...etc.) in a forest stand 

results from the complex historical and environmental mosaic imposed by competition and 

http://en.wikipedia.org/wiki/Patrick_Alfred_Pierce_Moran
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systematic environmental heterogeneity. This implies a spatio-temporal heterogeneity. Forest 

researchers have realized that spatial pattern of tree locations strongly affect (1) competition 

among neighboring trees, (2) size variability and distribution, (3) growth and mortality and (4) 

crown structure (Zhang, et al., 2004). Ignoring spatial heterogeneity in forest modeling, causes 

biased parameters estimates, misleading significance test, and sub optimal prediction (Anselin, 

et al., 1988).  

 

 There are several reason why we expect measurements of relationships to vary over 

space. An obvious reason in related with the sampling variation. This variation is uninteresting 

in that it relates to a statistical artefact and not to any underlying spatial process (Fotheringham, 

et al., 2002). A second possible cause is that the model from which the relationships are 

estimated is a gross misspecification of reality and that one or more relevant variables are either 

omitted from the model or are represented by an incorrect functional form, mapping local 

statistics is useful in order to understand more clearly the nature of model misspecification 

(Fotheringham, et al., 2002). And the last cause is that some relationships are intrinsically 

different across the space, this is what is called real heterogeneity (Danlin and Yehua, 2013). 

 

 As Anselin recommends (Anselin 1988), there are three powerful reasons why 

heterogeneity should be studied: (I) the structure undelaying the spatial instability is geographic, 

therefore the localization of the point is essential for define the form or specify this variability. 

(II) With spatial data, the heterogeneity occurs in conjunction with the autocorrelation problem. 

Then, traditional analysis and habitual heteroskedasticity contrasts can be biased in a spatial 

context. (III) In a regression model, both effects of autocorrelation and spatial heterogeneity can 

be fully equivalent. For example, a "cluster" or residual spatial clustering (seen in very nearby 

locations) with extreme values could be interpreted as a problem of spatial heterogeneity 

(heteroskedasticity groups or "groupwise"), or as an effect of spatial autocorrelation. Finally, 

traditional regression model can distinguish different specifications for spatial heterogeneity 

effect, manifested as heteroskedastic or structural parametric instability (Chasco, 2004). 

 

 Consequently for cope with spatial heterogeneity two options exist (Figure 2), (I) to 

specify spatial heteroskedasticity or (II) to use parametric instability models, and this one is the 

most important from our point of view.  
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Figure 2 - Methods for handle spatial heterogeneity.  

 

1.2.2.1. Spatial Heteroskedasticity Specification 

 Heteroscedasticity refers to the circumstance in which the variability of a variable is 

unequal across the range of values of a second variable that predicts it. The causes of the 

existence of heteroskedasticity in spatial regression model, according to Chasco (2004), would 

be: (I) Using data from irregular spatial units, i.e. with different area or territorial extension 

(countries, regions, provinces ...). (II) Treatment of geographic units in which a phenomenon is 

distributed irregularly in space. (III) Oversight of relevant variables or other model 

misspecification, which occur in the random disturbance term non-constant variance. (IV) Some 

causes of spatial heterogeneity can also cause the appearance of spatial autocorrelation, the 

contrast of both effects could be necessary in this cases.  

 

 Three models exist that are able to specify the heteroskedasticity of the data: (1) 

additive heteroskedasticity models, (2) random coefficients heteroskedasticity models and (3) 

groupwise models (Chasco, 2004).  
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1.2.2.2. Parametric Instability Models 

 As its name shows, parametric instability models refers to the lack of stability on the 

space (spatial variability) of a variable (Chasco, 2004). In this situations, as both the functional 

form and the parameters of the regression may differ in every geographic location being 

therefore not homogeneous throughout the sample data. In this group of models we can find two 

kind of models with continuous parametric instability and discrete parametric instability.  

 

- Continuous parametric instability models: In this case the coefficients associated with 

the explanatory variables may take a different value, or for each sample observation, as 

in the linear model with random coefficients (Hildreth-Houck, 1968) or as an expansion 

variable. Which may or may not be spatial, as in the model called expansion method 

(Casseti, 1997) or the geographically weighted regression, (Fotheringham, et al., 2002), 

that will be explained deeply in this thesis.  

 

- Discrete parametric instability models: this is a specific case of parametric instability 

that prevents an overall estimation of different coefficients for the entire data sample 

(N) by dividing it in a limited number (n) of different structures (where n < N), 

overcoming the problem of incidental parameters (lack of degrees of freedom) and 

obtaining efficient estimates. There are two distinct specifications for discrete 

parametric instability, the space ANOVA model (SANOVA) (Griffith, 1992), applicable 

rather in a context of univariate exploratory analysis, and model changing regressions 

("switching regressions") (Quandt, 1958). 

 

 As conclusion, spatial heterogeneity occurs when it is used spatial data. This effect of 

spatial heterogeneity usually occurs in conjunction with the effect of spatial autocorrelation. 

Then, the traditional statistical analysis is no longer adequate for study this data (i.e. models 

commonly used use to be biased in a spatial analysis) and is necessary different statistical tools 

for solve this problem. 

1.2.2.3. Other Models for Deal with Spatial Heterogeneity 

- Linear mixed models 

 

 Linear Mixed Models (LMM) are statistical models for continuous outcome variables in 

which the residuals are normally distributed but may not be independent or have not constant 

variance. Study designs leading to data sets that may be appropriately analyzed using LMMs 

include (1) studies with clustered data (autocorrelation)  and (2) longitudinal or repeated-

measures studies, in which subjects are measured repeatedly over time or under different 

conditions (West et al., 2007). This model works in an intermediate way between local and 

global models. LMM gives better results than Ordinary Least Squares (OLS), because LMM 

takes into account spatial and temporal dependence.  

 

 A linear mixed model can be expressed as:  

 

𝒀 = 𝑿𝜷 + 𝒁𝜸 + 𝜺    (1) 

 where Y is a vector of the observed response variable, X is a known model matrix 

including a column of 1 (for intercept), β is a vector of unknown fixed-effects parameters, Z is a 
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known design matrix, γ is a vector of unknown random effects parameters, and ε is a vector of 

unobserved random errors. LMM can be used to model spatial correlation among observations 

in data through R =Var(ε) such that:  

 

𝑹 = 𝑪𝒐𝒗(𝜺𝒊, 𝜺𝒋) = σ2f(dij)    (2) 

 

 Where dij is the distance between locations i and j. Different functions f(dij) are 

available including spherical, exponential, Gaussian, power, etc. (Zhang et  al., 2005). 

 

- Generalized additive models 

 

 Generalized additive models (GAM) were originally developed by Trevor Hastie and 

Robert Tibshirani  (1990) to blend properties of generalized linear models (GLM) with additive 

models. GLM emphasizes estimation and inference for the parameters of the model but GAM 

focuses on exploring data non-parametrically. The strength of GAM is its ability to deal with 

highly non-linear and non-monotonic relationships between the response variable and the set of 

explanatory variables (Zhang et al., 2005). GAM can be expressed by: 

 

𝒀 = 𝑺𝟎 + ∑ 𝑺𝒈(𝑿𝒈) + 𝜺
𝒑
𝒈=𝟏    (3) 

 

 Where S0 is the intercept, and Sg(Xg) is a nonparametric smoothing function for the gth 

independent variable X.  

 

 The only underlying assumption is that the smoothing functions in GAM are additive. 

This additive restriction allows us to interpret a GAM model in a similar way as a traditional 

linear regression model.  

 

- Classification and Regression trees (CART)  

 

  It is a non-parametric method that builds classification and regression trees for 

predicting continuous dependent variables (regression) and categorical predictor variables 

(classification) - see Figures 3 and 4. The CART methodology was introduced in 1984 by Leo 

Breiman, Jerome Friedman, Richard Olshen and Charles Stone as an umbrella term to refer to 

the following types of decision trees: 

 

 Classification Trees: where the target variable is categorical and the tree is used to 

identify the "class" within which a target variable would likely fall into. 

 

 

Figure 3 - Example of classification trees. (Rao, 2013) 

 Regression Trees: where the target variable is continuous and tree is used to predict 

http://en.wikipedia.org/wiki/Trevor_Hastie
http://en.wikipedia.org/wiki/Robert_Tibshirani
http://en.wikipedia.org/wiki/Generalized_linear_model
http://en.wikipedia.org/wiki/Additive_model
http://en.wikipedia.org/wiki/Additive_model
http://www.statsoft.com/textbook/statistics-glossary/i.aspx?button=i#Independent%20vs.%20Dependent%20Variables
http://en.wikipedia.org/wiki/Leo_Breiman
http://en.wikipedia.org/wiki/Leo_Breiman
http://www.kdd.org/node/362
http://www-stat.stanford.edu/~olshen/
http://vcresearch.berkeley.edu/charles-stone
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its value. 

  

Figure 4 - Example of Regression tree. (Rao, 2013) 

 The CART algorithm is structured as a sequence of questions, the answers to which 

determine what the next question, if any should be.  The result of these questions is a tree like 

structure where the ends are terminal nodes at which point there are no more questions (Rao, 

2013).   

2. INTRODUCTION TO GEOGRAPHICALLY WEIGHTED REGRESSION 

 The geographically weighted regression (GWR) is a kind of spatial analysis for explore 

spatial non-stationary or spatial heterogeneous processes (Brunsdon, et al., 1996). The 

underlying idea of GWR is that parameters may be estimated anywhere in the study area given a 

dependent variable and a set of one or more independent variables which have been measured at 

places whose location is known (Charlton and Fotheringham, 2009). GWR extends OLS linear 

regression models by accounting for spatial structure and estimates a separate model and local 

parameter estimates for each geographic location in the data based on a ‘local’ subset of the data 

using a differential weighting scheme (Mattews and Yang, 2012). This means that is possible to 

say that GWR is similar to a ‘spatial microscope’ in reference to the ability to measure and 

visualize variations in relationships that are unobservable in non-spatial, global models 

(Mattews and Yang, 2012). 

2.1. Theoretical Background  

 The following information has been taken mainly from two books, “Geographically 

Weighted Regression: the analysis of spatially varying relationships” (Fotheringham, et al., 

2002) and “Comparison of bandwidth selection in application of geographically weighted 

regression: a case study” (Guo, et al., 2008). 

 Considering the global regression model: 

𝒚𝒊 = 𝜷𝟎 + ∑ 𝜷𝒌𝒙𝒊𝒌 + 𝜺𝒊𝒌          (4) 

 GWR extends this traditional regression (2) by allowing local parameters, instead 

global, to be estimated so the model is rewritten as: 

𝒚𝒊 = 𝜷𝟎(𝒖𝒊𝒗𝒊) + ∑ 𝜷𝒌(𝒖𝒊𝒗𝒊)𝒙𝒊𝒌 + 𝜺𝒊𝒌        (5) 

 Where (𝒖𝒊𝒗𝒊) denotes the coordinates of the ith point in the space and 𝜷𝒌(𝒖𝒊𝒗𝒊) is a 

realization of the continuous function 𝜷𝒌(𝒖𝒗) at point i. That is, is allowed there to be a 

continuous surface of parameter values, and measurements of this surface are taken at certain 

point to denote the spatial variability of the surface. Is important to notice that equation (4) is 

special case of (5) in which the parameters are assumed to be spatially invariant. Thus the GWR 
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equation (5) recognizes that spatial variation in relationships might exist and provides a way in 

which they can be measured.  

 Very important part of GWR is its calibration. We need to calibrate GWR function for 

each independent variable X and at each geographic location i. The estimation procedure of 

GWR is as follows:  

1. Draw a circle of given bandwidth, h around one particular location i (centre). 

2. Calculate a weight for each proximal observation according to the distance between the 

neighbour and the centre.  

3. Estimate the model coefficients using weighted least squares regression, such that: 

�̂�𝒊 = (𝑿𝑻𝑾𝒊𝑿)−𝟏𝑿𝑻𝑾𝒊𝒀        (6) 

  Were 𝑾𝑖 is a geographical weight matrix for the center i, such that 𝑾𝒊 = 𝒇(𝒅𝒊, 𝒉), 

where f() is a spatial kernel function, 𝒅𝒊 is a distance vector between the centre i and all 

neighbours, and h is a bandwidth or decay parameter (see Figure 5).  

 

Figure 5 - A spatial kernel. (Fotheringham, et al., 2002)  

 

 In the basic GWR, two kernel functions exist for accomplish this calibration, the fixed 

spatial kernel function and the adaptive spatial kernel function. In general, geographically 

weighted regression calibration uses regions described around regression points i and all the 

points in this regions were used to calibrate a model. Each data point is weighted by its distance 

from the regression point and data that is closer are weighted more heavily than are data points 

farther away. For example, for a given data point, the maximum weight is given when it shares 

the same location as the regression point. This weight decrease as the distance between the two 

points increases. The full regression model is calibrated locally by the moving the regression 

point across the region. For each location the calibration is different. 

2.1.1. Fixed Kernel Function 

 A fixed spatial kernel function can be used to define the geographical weight 

matrix 𝑾𝒊, such as the Gaussian distance- decay kernel function: 
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𝒘𝒊𝒌 = 𝒆−(
𝒅𝒊𝒌

𝒉
)𝟐

    (7) 

 The fixed kernel function assumes that the bandwidth at each centre i is a constant 

across the study area (see Figure 6). If the locations i and k are the same (dik=0), 𝑤𝑖𝑘 = 1; 

whereas 𝒘𝒊𝒌 decreases according to a Gaussian curve as dik increases. Nevertheless, the weights 

are nonzero for all data points, no matter how far they are from the centre i.  

 A potential problem with the fixed kernel function is that for some locations in the 

study area there are only few data points available to calibrate the model if the data is sparse 

around the centre location, that is ‘weak data’ problem. In this case the local models might be 

calibrated on very few data points, this may cause large standard error and resulting surfaces 

that are under smoothed. And even can be impossible if there are insufficient data.   

 

Figure 6 - GWR with fixed kernel (Fotheringham, et al., 2002).  

2.1.2.  Adaptive Kernel Function 

 To reduce the problem with the ‘weak data’ the spatial kernels in GWR can be made to 

adapt themselves in size to variation in the density of the data so that the kernels have larger 

bandwidths where the data is sparse and have smaller bandwidths where the data is plentiful. A 

commonly used adaptive kernel function is a bisquare distance decay kernel function: 

𝒘𝒊𝒌 = [𝟏 − (
𝒅𝒊𝒌

𝒉𝒊
)

𝟐

]

𝟐

 𝑤ℎ𝑒𝑛 𝒅𝒊𝒌 ≤  𝒉𝒊 

                                                             (8) 

𝒘𝒊𝒌 = 𝟎 𝑤ℎ𝑒𝑛 𝒅𝒊𝒌 >  𝒉𝒊 

 Weight is 𝑤𝑖𝑘 = 1 at the center I and 𝑤𝑖𝑘 = 0 when the distance equals the bandwidth. 

When the distance is greater than the bandwidth, the weight is 0. The bandwidth is selected such 

that the number of observation with nonzero weights is the same at each location i across the 

study area. Consequently, the adaptive kernel function adapts itself in the size to the variation in 

the density of data. It has larger bandwidths where the data is sparse and smaller ones where the 

data is denser (see Figure 7).  
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Figure 7 - GWR with adaptive kernel. (Fotheringham, et al., 2002)  

2.1.3.  Determining the Bandwidth 

 Once selected the proper kernel function, there are three possible strategies for 

determining the bandwidth. (1) Predefined bandwidth, (2) a technique based on a least squares 

cross-validation (CV)  (equation 9) and (3) a method that minimizes the Aikake information 

criterion (AIC) for fitting the regression model. 

Cross-validation method (CV) minimizes the squared error:  

𝑪𝑽 = ∑ [𝒚𝒊 − 𝒚≠𝒊(𝒉)]𝟐
𝒊     (9) 

 where 𝒚≠𝒊(𝒉) is the fitted value of yi with the observation for location i omitted from 

the estimation process.  

 Finally, there are some important facts about the kernel selection studied by Guo (2008) 

that should be mentioned.  

- GWR models with smaller bandwidths fit the data better, yielded smaller model 

residuals across tree sizes, significantly reduced spatial autocorrelation and 

heterogeneity for model residuals, and generated better spatial patterns for model 

residuals; however, smaller bandwidth sizes produced a high level of coefficient 

variability. 

- GWR models based on the fixed spatial kernel function produced smoother spatial 

distributions for the model coefficients than those based on the adaptive kernel 

function. 

- The GWR cross-validation or Akaike’s information criterion (AIC) optimization 

process may not produce an ‘‘optimal’’ bandwidth for model fitting and performance. 

It was evident that the selection of spatial kernel function and bandwidth has a strong 

impact on the descriptive and predictive power of GWR models. 

 Finally, GWR results can be mapped in a visualization tool such as GIS to explore 

spatial heterogeneity or non-stationarity across the study area (Zhang, et al., 2004). 

3. SUMMARY OF GEOGRAPHICALLY WEIGHTED REGRESSION PROPERTIES 

IN COMPARISON WITH OTHER TYPES OF SPATIAL ANALYSIS 

 Geographically Weighted Regression method have several and very powerful gains 

over other spatial analysis methodologies. Mainly for testing the heterogeneity of the study area, 
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for the ability of working with spatial and attribute data, and other practical and technical 

advantages that will be explained next, we think that GWR method is appropriate for working 

with forestry data, which are entirely heterogeneous according with their natural behavior.   

 This advantages has been already mentioned along this document, but as a summary the 

most important are the following ones: 

(1)  Let us move from a global perspective to local analysis of the problem 

obtaining better detail and precision (Duque, et al., 2011). 

(2)  Facilitates the exploration of the spatial structure of the model, this means, 

measure the degree of spatial dependence (autocorrelation) in the model - if be positive 

or negative, or detect data clusters (Anselin, 1988). Similarly, the spatial heterogeneity 

is tested in this method and it is supposed that everything is related, especially things 

that are closer (Danlin and Yehua, 2013). 

(3)  It is possible calculate local indexes for each spatial unit based on the values of 

a set of neighbouring observations. This lets to know how locally the regression 

combine the variables for achieve a "specific fit" in a specific location (Fotheringham, 

et al., 2002).  

(4)  The disaggregation of the global R-square coefficient in local coefficients 

and the analysis of its geographical distribution allows the recognition of what point in 

the independent variables have greater or worse explanatory power (Fotheringham, et 

al., 2002). 

(5)  GWR is widely applicable to almost any form of spatial data (Danlin and 

Yehua, 2013). 

(6)  GWR is an advance spatial technique because it uses geographic information as 

well as attribute information.  

(7)  Employs a spatial weighting function with the assumption that near places are 

more similar than distant ones, it means that the geographical position really matters in 

the moment of calculate the regression. 

(8)  Residuals from GWR are generally much lower and usually much less spatially 

dependent (Zhang, et al., 2004; Zhang and Shi, 2004) compared with other methods, 

especially ordinary least square, linear mixed model and generalized additive model.  

(9)  Is very easy to use GWR together with Geographical Information Systems 

(GIS).  It is really easy to make big variety of maps with the results of the analysis (R-

squared, dependent and independent variables, coefficients…) (Mennins, 2006).  

 

(10) Is possible to generate interpolated surfaces to know the continuous spatial 

distribution of the parameters and apply the principles of "spatial prediction" to find the 

values of missing observations (Páez, 2006).  
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IV. MATERIALS AND METHODS 

4. MATERIALS 

4.1. Overview of the Study Area 

4.1.1. Location 

 The Region of Murcia (see Figure 8) is an Autonomous Community of Spain located in 

the southeast of the state, between Andalusia, Castile-La Mancha, Valencian Community, and 

on the Mediterranean coast. The Region of Murcia is bordered by the provinces of Almeria and 

Granada (Andalusia); the province of Albacete (Castile–La Mancha), which was historically 

connected to Murcia until 1980; province of Alicante (the Valencian Community); and the 

Mediterranean Sea. The community measures 11,313 km² and has a population of 1.4 million. 

 

Figure 8 Region of Murcia Location.  

4.1.2. Climate 

 The region of Murcia in south east part of Spain is in a zone of subtropical climate. Its 

orographic distribution makes difficult maritime Atlantic influences; this way it presents a clear 

influence of Mediterranean see in all the climatic particulars. 

 There are two seasons with defined characteristics (summer and winter) and other two 

transitional seasons (autumn and spring). There is an absence of cold season, temperatures 

below 0 are really strange (see Figure 9). The warm season is from June to October, and there 

are common heat waves (tropical sub-Saharan air) where is possible see white skies and very 

high temperatures. The precipitation rate is very low during the year. All the region is under 

700mm per year. 

 Wind is one of the most important climatic factors in the region, due to the transfer of 

atmospheric action centres governing weather and climate throughout the year on the Peninsula. 

The barrier effect of the Betic Cordilleras favours the direction of the south west.  

 Murcia region can be divided in five climate regions: 

 Zone I: Areas above 800m and limited with Granada and Albacete. It has cold 

season with temperatures under 7ºC during 5-7 months. Precipitation rate is around 

500mm, with a dry season of 4-6months. According to H. Walter and H. Lieth 

(1967), it is climate area IV. 

http://en.wikipedia.org/wiki/Autonomous_communities_of_Spain
http://en.wikipedia.org/wiki/Spain
http://en.wikipedia.org/wiki/Andalusia
http://en.wikipedia.org/wiki/Mediterranean_Sea
http://en.wikipedia.org/wiki/Almería_%28province%29
http://en.wikipedia.org/wiki/Province_of_Granada
http://en.wikipedia.org/wiki/Province_of_Albacete
http://en.wikipedia.org/wiki/Castile–La_Mancha
http://en.wikipedia.org/wiki/Province_of_Alicante
http://en.wikipedia.org/wiki/Valencia_%28autonomous_community%29
http://en.wikipedia.org/wiki/Mediterranean_Sea
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 Zone II: Areas above 600m and limited with Albacete and Alicante. Is transition 

area. 

 Zone III: Areas between 400-800m and areas near Segura River. The cold season is 

3-5 months with average temperature 1-7ºC. Warm season of 2-3months with 

average temperature of 25º-27ºC. The climate area is III and IV. 

 Zone IV: Areas under 400m and closer to sea. Not real cold season, the average of 

cold months are around 8-11ºC, and warm season average temperature is 26º-28ºC. 

Climate area III. 

 Zone V: Area around coast (200m-0m). There are not cold season at all, the average 

temperature in the coldest month is 13ºC this is due to the coast influence. There are 

dry period of 11-12 months and the precipitation rate per year is 150-200mm. 

Climate area III.  

 

 

Figure 9 - Provincia de Murcia Climate, (San Javier observatory) España. Instituto Nacional 

de Meteorología [www.inm.es]. Years 1971-2000. 

4.1.3. Geology, Edaphology and Hydrology 

    The region is located in the eastern part of the Betics range mountains and it is 

influenced by their orography. These are chains of Alpine folding, affected by regional scale 

faults and remaining activity from the Upper Miocene. Betics mountain ranges are divided as 

well in the Prebetic, Subbetic and Penibetic mountain ranges (Figure 10). 

http://en.wikipedia.org/wiki/Cordillera_Bética
http://en.wikipedia.org/wiki/Cordillera_Penibética
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Figure 10 - Baetic Systems. (Wikipedia, 2014) 

 Traditionally it has been considered that the peak of Revolcadores, in the range of the 

same name, was the highest point in the Region of Murcia, with a height of 2027 meters; but in 

measurements of the most recent maps of the SNIG (National Service of Geographic 

Information of Spain), Revolcadores appears with a height of 1999 m, and the mountain, Los 

Obispos ("The Bishops"), located slightly further north, is higher (2015 m). Approximately 27% 

of the Murcian territory can be described as mountainous, 38% as intra-mountainous 

depressions and running valleys, and the remaining 35% as flat lands and plateaux. 

 The edaphology of Murcia region presents unevolved soils, with low amount of 

horizons and not easily differentiated. The amount of organic matter generally is not big. 

Nitrogen in soils has an organic origin, the levels of nitrogen are similar than levels of organic 

matter. The concentration of available phosphorus in soils is usually low. The cation exchange 

capacity of the soil use to be in average way (Region de Murcia, 2014). It is possible to find six 

types of soils: (1) Uninvolved soils, (2) developed soils on Quaternary calcareous sediments, (3) 

Developed soils on consolidated limestone, (4) Alluvial soils, (5) Soils over siliceous materials 

and (6) Saline soils. 

 If we talk about hydrology, the hydrographic network of the region is made up of the 

Segura River and its effluents. The river Mundo, it is the one that contributes to the Segura with 

the greatest volume. Other rivers are Alhárabe and its affluent, the Benamor; Mula River, 

Guadalentín, Sangonera and Reguerón (which is born upper before town of Lorca). Due to the 

water supplying incapacity of the Segura river basin, contributions to this river basin are made 

from the basin of the Tajo River, by means of the Tajo-Segura transvasement. 

 The greatest natural lake of Spain can be found in the region: the Mar Menor (Small 

Sea) lagoon. It is a salt water lagoon, adjacent to the Mediterranean Sea. Its special ecological 

and natural characteristics make the Mar Menor a unique natural place and the largest saltwater 

lake in Europe. With a semi-circular shape, it is separated from the Mediterranean Sea by a sand 

strip of 22 km in length and between 100 and 1200 m wide, known as La Manga del Mar Menor 

(the Minor Sea's Sandbar). The lagoon has been designated by the United Nations as a Specially 

Protected Zone of Importance for the Mediterranean. Its coastal perimeter accounts for 73 km of 

coast in which beaches follow one another with crystal clear shallow water (the maximum depth 

does not exceed 7m). The lake has an area of 170 square kilometres.  

  

http://en.wikipedia.org/wiki/Moratalla,_Murcia
http://en.wikipedia.org/wiki/Segura
http://en.wikipedia.org/wiki/Lorca,_Spain
http://en.wikipedia.org/wiki/Tajo
http://en.wikipedia.org/wiki/Lake
http://en.wikipedia.org/wiki/Spain
http://en.wikipedia.org/wiki/Mar_Menor
http://en.wikipedia.org/wiki/Seawater
http://en.wikipedia.org/wiki/Mediterranean_Sea
http://en.wikipedia.org/wiki/La_Manga_del_Mar_Menor
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Figure 11 - Pinus 

halepensis cone. 

(Wikipedia, 2014) 

4.1.4. Flora and Fauna 

 The climatic conditions of Murcia region, makes flora highly 

variable around the region. In inner mountain areas, use to rain more 

and the flora is similar to other places of the Betics Mountains. There 

are the presence of Pinus halepensis Mill. (Figure 11) and Pinus 

pinaster Aiton. and Pinus nigra J.F. Arnold subsp. clusiana (Clemente) 

Rivas-Mart., Quercus ilex L subs ballota, Quercus rotundifolia Lam., 

Juniperus oxycedrus L., Juniperus  communis L. subsp. hemisphaerica 

(C. Presl) Nyman, Arbutus unedo L. and finally some relict areas of 

Quercus suber L. In humid areas of the north part can be found species 

of Sorbus aria (L.) Crantz, Fraxinus angustifolia Vahl. and Quecus 

faginea Lam.  

 Some inner ranges suffered high deforestation along centuries, 

this made problematic flooding processes along the valleys. This made that Spanish foresters 

start in this areas a fast process of forestation, the first forestation was made in Sierra Espuña in 

the end of XIX century. In this moment started a big recovery of forests in all Murcia region, 

but mainly in the center area. In areas closer to Almeria province, in Andalusia, there is a low 

pluviometric average. In this area we can find semiarid areas, in terms of flora it is possible to 

find a big amount of endemism and afro-endemism. Some examples of this species are 

Juniperus phoenicea L., Tetraclinis articulata (Vahl) Mast., Chamaerops humilis L., Rhamnus 

hispanorum Gand., Anthemis chrysantha J.Gay, Thymus moroderi Pau ex Martínez, Periploca 

angustifolia Labill., Astragalus nitidiflorus Jiménez  Pau. In this semiarid area the most 

common plant is the Stipa tenacissima L. More information about current situation of 

vegetation in Murcia is in the Figure 12. 

 The different kinds of climatic conditions in Murcia makes this region very rich also in 

fauna species, with some endemic species. Firstly, we can find raptors like Aquila chrysaetos L., 

Aquila fasciata V., Hieraaetus pennatus Gmelin., Circaetus gallicus G., Falco peregrinnus T. 

and Bubo bubo L. In some ranges like 'Carrascoy' and 'El Valle' exists a big communities of 

Bubo bubo. In higher ranges “Sierra de Mojantes” and “Sierra del Gigante” it is possible to find 

Gyps fulvus H. About mammals is possible to find Capra pyrenaica S., and Cervus elaphus. In 

the 70’s it was introduced as game specie the Ammotragus lervia P., this specie currently is 

extended in some mountains of south Spain. Also are important species Sus scrofa L., Felix 

silvestris S., Meles meles L., Vulpes vulpes L. There are native species like Sciurus vulgaris 

hoffmani Valverde. In the river areas around Segura and some inflowing as river Alhárabe 

recently we can find Lutra lutra L.   

http://es.wikipedia.org/wiki/Hieraaetus
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Figure 12 - Actual vegetation map. Source (Region of Murcia, 2014)
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Figure 13 - Spanish National Inventory 

design. (Aguirre, 2012) 

4.2. Data Sources and Operational Tools 

4.2.1. National Forestry Inventory of Spain 

 In this research the data were obtained of the Third National Forestry Inventory of 

Spain. It has been elaborated between 1997 and 2007.  In Spain National Forest Inventories are 

made every 10 years, which means that actually the Fourth National Inventory is under 

construction. In the Third Inventory are included all the forest systems: the wooded, as it was 

done in the previous Inventories, and the un-wooded species, like bush, brushwood and 

herbaceous (Villaescusa Sanz, 1997).  

 This inventory was made with the objective of show and evaluate the state of the forest 

in Spain though 100 state index and evolution, for instance, area, tree and bush species, 

growing, distribution and soil features. Also include data of biodiversity, forest health, 

silviculture, recreational importance and sustainable management (MAGRAMA, 2014).  

 Design of the Forest National Inventory 

 The design of the inventory was made in order to be accurate for measure very different 

kinds of forest (even age, uneven age, dense or spread forest, industrial reforestations...). For 

this reasons, it was decided measure in plots with variable radio, which is a cheap method to get 

better estimations of forest variables (Schreuder et al., 1993). IFN uses circular plots composed 

by other subplots of 5, 10, 15 and 25 meters of radio and in every plot the tree diameter that can 

be measured is different (Figure 13). These plots are distributed in UTM grids of 1km aside 

(MAGRAMA, 2014) and the plot’s centre is in the vertex of the grid.  

 The data collection is according with the specie, localization with polar coordinates, 

perpendicular diameters of trees at breast height (1.3 meters) (DBH), total height of tree (Ht), 

quality and other parameters. 

 

 

 

 

 

 

 

 

 

 Data used in the thesis 

 For this study, pure stands of Pinus halepensis Mill. were used. This pine can reach 20 

m height, its crown is sparse and irregular. It is very resistant to the drought (minimum water 

requirements of 250 mm of water per year) and we can find it from heights around 1300m to the 

Tree distance to  

the centre of 

the plot 

DBH to measure 

≤ 5 m 75mm ≤ d < 125 mm 

≤ 10 m 125 mm ≤ d < 225 mm 

≤ 15 m 225 mm ≤ d < 425 mm 

≤ 25 m 425 mm ≤ d 
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sea level. This pine is widespread around all the region but the best forests are in the northeast 

(Valle del Ebro, Iberian range and Pre-Pyrenees ranges). This tree has been traditionally used 

for resins and in natural medicine. The quality of the wood is not good for processing (e.g. 

construction, furniture), so the wood is used for firewood. 

 National Forest Inventory provides us basic data of the measured trees (height, 

diameter, coordinates, species...). Some of this data has been provided by professor Sonia 

Condés of the Polytechnic University of Madrid, consultant of this thesis.  

 We have a sample of 5352 Pinus halepensis’s plots in Spain, with the stand variables: 

number of trees per ha (Nha), basal area per ha (Gha), quadratic mean diameter (dg), top height 

(Hdom), mean height (Hmed), Reineke stand density index (SDI), volume per ha (Vha), 

increments of basal area (incG) and volume (incV), and finally, coordinates of plots which are 

in European Datum 1950 (ED-50).  And all Pinus halepensis in this plots are measured with the 

tree variables: diameter at breast height (DBH), total height (Ht), and individual coordinates of 

trees etc.  

4.2.2.  R Statistic Programming Language  

 The statistic programming language R is a freeware for statistical computing, analysis 

and graphics. R was created by Ross Ihaka and Robert Gentleman at the University of 

Auckland, New Zealand, and is currently developed by the R Development Core Team. R is an 

implementation of the S programming language combined with lexical scoping semantics 

inspired by Scheme. S was created by John Chambers while at Bell Labs. There are some 

important differences, but much of the code written for S runs unaltered (Wikipedia, 2015). 

 R provides a wide variety of statistical (linear and nonlinear modelling, classical statistical 

tests, time-series analysis, classification, clustering etc.) and graphical techniques (R 

Development Core Team, 2011). R can be easily extensible thanks to the “packages”, which are 

collections of R functions, data, and compiled code in a well-defined format. The directory 

where packages are stored is called the library. R comes with a standard set of packages. Others 

are available for download and installation (Kabacoff, 2014). The most important packages used 

in this study: car, lmtest, nlstools, nls2, spgwr, sp, nortest. 

4.2.3. Geographical Information System  

 A geographic information system (GIS) is a computer system designed to capture, store, 

manipulate, analyse, manage, and present all types of spatial or geographical data. The most 

used and famed GIS is ArcGIS, it is a geographic information system for working with maps 

and geographic information. It is used for creating and using maps; compiling geographic data; 

analysing mapped information; sharing and discovering geographic information; using maps 

and geographic information in a range of applications; and managing geographic information in 

a database (ESRI, 2014).  

 As alternative to ArcGIS is QGIS that is a cross-platform free and open source desktop 

geographic information systems application providing data viewing, editing, and analysis 

capabilities (Sherman, 2014). This program has the advantage to be free. 

 In this diploma thesis has been used QGIS. The used tools and modules were: (1) 

interpolation tool for rastering GWR results, (2) Geospatial Simulation plugin for transform 

raster to polygons, and (3) the vector tool intersect for obtain the final desired GWR parameters. 

https://en.wikipedia.org/wiki/Ross_Ihaka
https://en.wikipedia.org/wiki/Robert_Gentleman_%28statistician%29
https://en.wikipedia.org/wiki/University_of_Auckland
https://en.wikipedia.org/wiki/University_of_Auckland
https://en.wikipedia.org/wiki/S_%28programming_language%29
https://en.wikipedia.org/wiki/Lexical_scoping
https://en.wikipedia.org/wiki/Scheme_%28programming_language%29
https://en.wikipedia.org/wiki/S_%28programming_language%29
https://en.wikipedia.org/wiki/John_Chambers_%28programmer%29
https://en.wikipedia.org/wiki/Bell_Laboratories
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5. METHODS 

 In this diploma thesis, we want to evaluate whether National Forest Inventory data from 

relatively large area can be used for sufficiently precise height-diameter model for selected 

point of area of interest. Furthermore, because there are two levels of data ((I) average data of 

plots and (II) data of individual trees), another objective is evaluate if the model derived from 

average plot data can be sufficiently precise in comparison with model derived from individual 

trees data. Both models were compared with local height curve computed from all trees 

measured on respective plot.  

 This will be made in two ways. 

1. Applying plot average information (dg, Hmed, coordinates of the centre of plot) in 

GWR and comparing the resulting model with local models derived from direct 

measured information of trees (DBH, Ht).  

2. Applying measured information of individual trees (DBH, Ht, coordinates of individual 

trees) in GWR and comparing the resulting model with local models of height curve 

based on individual trees.   

5.1. Analysis Procedure 

 The Province of Murcia was selected because it has suitable properties for such type of 

study – area is large enough (11 313 km²) and there is a relative high number of plots with pure 

stands of Pinus halepensis.  Positions of individual plots can be seen on Figure 14. 

 

Figure 14 - Sampled plots in Murcia Region  

 The procedure of the analysis consists of following steps:  

1) Area Selection.  

2) Sample selection. Two different samples were randomly selected. 

a) Training data set (appr. 2/3 of all plots) – this set of data were used for estimating of 

model parameters 

b) Validation data set - this set of data were used for validation of final model 

3) Height-diameter function.  - We must select suitable height function that can be converted 

into linear form because of easy implementation in GWR.  

4) GWR model fitting 

a) Finding of the best type and bandwidth of GWR kernel  

http://es.wikipedia.org/wiki/Kil%C3%B3metro_cuadrado
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b) Application of GWR model for the whole area 

c) Extracting of model parameters for validation plots  

5) Comparison of GWR model vs local height-diameter models  

a) Application of height-diameter models with parameters derived from GWR on 

validation plots 

b) Computation of height-diameter local models with parameters derived from individual 

trees of respective plots 

c) Comparison of both models 

6) Evaluation of the results for the whole area 

This step will be explained in detail in the following text. 

5.2. Area Selection 

 In Murcia, we count with 835 plots with pure Pinus halepensis and 8358 trees 

were measured on the plots. 

 A summary of the data can be found in the Table 2. 

Table 2 - Summary statistics, Murcia sample 

 Nº trees/ha dg(cm) G(m2/ha) H(m) 

Average 255.160 17.560 4.690 6.030 

Standard deviation 272.770 6.520 4.300 1.850 

Minimum 5.090 7.500 0.390 2.000 

Maximum 1750.700 54.000 26.120 14.570 

 

 According to the Table 2 it is possible to observe that forests are not very dense and the 

number of trees per ha is very different from one plot to another, this shows very irregular 

forest. This high variability across the area is very challenging for large scale GWR model and 

it is probable that parameter estimation will be complicated. Spatial distribution of selected 

variables is described in Figure 15. 
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Figure 15 - Murcia’s average forestry characteristics 

  

5.3. Sample Selection 

 Within the Murcia region, two thirds of the plots was used as training data and the other 

third as the validation data set. These plots were chosen randomly without replacement.  

 For each training sample plot we were used both average variables (the quadratic mean 

diameter (dg) and the mean height (Hm) and variables for individual trees (total height (Ht) and 

the diameter at breast height (DBH)) for comparison of two types of GWR models. 

 In the other hand, the validation data set is composed by the individual trees that 

compose that plots (measured diameter at breast height and total height). This set will be used 

for validate the final model.  

 Originally, we wanted to work with complete Murcia region, but the big amount of data 

in Murcia makes problematic to work with all the trees, it caused unacceptably long time of 

computations (several days in some cases for individual calibration or estimation of model). In 

order to avoid that problem, we had to select smaller region, preferably composed by a regular 

grid of plots and with a big number of trees for accomplish the analysis.  

 As a result, Espuña, Cambrón, Burete Lavia and Quipar ranges has been selected 

(Figure 16). Inside the mountain ranges previously selected we can find 234 plots with 2931 

trees. 
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Figure 16 - Selected area for the study 

 Within this area, two samples were made. Two thirds of the data (156 plots and 1697 

trees) have formed ‘training data set’ and the other third (78 plots) were used as the validation 

data set (Figure 17). Sampling was made randomly without replacement.  

 

Figure 17 - Validation and training data sets 

5.3.1. Statistical Characteristics - Training Data Set 

 In the Table 3, there is a statistical comparison among both training data sets. We can 

see that diameter values have higher variability in comparison with the height that remains with 

low standard deviation. 
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Table 3 - Training data set  

 TRAINING DATA SET 

Average values of plots Individual trees 

Height Diameter Height  Diameter 

Average 6.450 18.180 8.570 21.390 

Standard deviation 1.840 6.130 2.580 8.310 

Minimum 3.000 8.000 2.000 7.500 

First quantile 5.160 13.340  6.700 15.050 

Median 6.260 16.670 8.500 19.850 

Third quantile 7.500 21.220 10.000 25.700 

Maximum 14.100 35.300 21.500 55.700 

 

 According to Figure 18 and 19, we can see that both average data and tree data is 

slightly asymmetric but there are no very distant extremes.  The degree of asymmetry is higher 

in the case of DBH. 

 

 

Figure 18 - Training data set Box-Plots for individual trees 
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Figure 19 - Training data set Box-Plots for plots 

5.3.2. Statistical Characteristics - Validation Data Set 

 The validation statistical characteristics (Table 4) are similar to the training data set 

relative to trees. It is logical, because both data sets come from the same population by random 

sampling. 

Table 4 - Validation data set 

 
VALIDATION DATA SET 

Height Diameter 

Average 8.010 19.950 

Standard deviation 2.070 7.400 

Minimum 2.400 7.550 

First quantile 6.500 14.300 

Median 8.000 18.900 

Third quantile 9.200 24.400 

Maximum 15.500 65.200 

 

In the Figure 20, we can see that in general the validation data set follows same pattern that 

training tree data set. 
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Figure 20 - Validation data set Box-Plot 

5.4. Height- Diameter Function 

 In this study Petterson (Petterson, 1955) height-diameter formula was used 

ℎ = 1.3 +
1

(𝑎+
𝑏

𝑑
)

3         (10) 

 This equation (10) has been selected because it was used with very good results in many 

previous studies (eg. Adamec, 2014, Drápela, 2011), it was also recommended by respected 

yield science textbooks (eg. Pretzsch, 2009) and it is possible to linearize it. It was applied for 

obtain OLS coefficients and GWR coefficients.  

 The way how to linearize this formula is the following one: 

1

√ℎ−1.3
3 = a + b ∗

1

𝑑
          (11) 

 Equation (10) would be easily computed in R programing language by nonlinear 

models, but for correct application in GWR is needed to linearize it. 

 If we take 𝐻 =
1

√ℎ−1.3
3  and =

1

𝑑
 , we can assume equation (11) as  H=a + b*D, which is 

linear regression that can be easily implemented in GWR. It was checked that models of 

linearizable equation and nonlinear equation do not differ, just make easy the operation in 

GWR. For all tests we used 95% significance level.   
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5.5.  GWR model fitting  

5.5.1. Finding the optimal bandwidth. GWR method overview 

  The first step for correct implementation of GWR method is the selection of suitable 

kernel and its bandwidth. Kernel type tells us whether we should define our bandwidth based on 

distance (fixed) or number of neighbours (adaptive). As it was said in the literature review we 

count with three options to calibrate the GWR model, (1) adaptive kernel with and bisquare 

weighted function, (2) fixed kernel with a Gaussian weighted function and (3) predefined 

bandwidth where the user choose the bandwidth. According to Luo Guo’s article (Guo, et al., 

2008) GWR model made by adaptive kernel gives smaller bandwidths, fits data better and has 

smaller model residuals with reduced spatial autocorrelation and heterogeneity. On the other 

hand, model based on fixed spatial kernels produces smoother spatial distributions. 

 

 In this study all the possibilities were checked in order to obtain the best possible result. 

In the case of predefined bandwidths, we select values of 1km and 500m. The reason for this 

selection is that 1km is the distance between inventory plots and 500m is the half of this 

distance.  

5.5.1.1. Calibrations 

 Adaptive kernel 

 It was used the adaptive kernel with the bisquare distance decay kernel function 

(equation 8) (Fotheringham, et al., 2002). The bandwidth was optimized by the method which 

minimize AIC.  

 Fixed kernel 

 It was used the fixed spatial kernel with Gaussian distance- decay kernel function 

(equation 7) (Fotheringham, et al., 2002). The bandwidth was optimized by the technique based 

on a least squares CV that minimizes the squared error (equation 9). 

 Predefined bandwidths 

 It was used two predefined bandwidths in accordance with the National Forest 

Inventory grid of 1000 m (distance between grid points) and 500 m. 

All kernel types and bandwidth functions are summarised in Figure 21.

 

Figure 21 - Kernel and bandwidth function types for the GWR calibration 

GWR calibration

Adaptative kernel 
Bisquare weighted 

function

Fixed kernel 
Gaussian weighted 

function

Predefined 
bandwidht

1000 meters

500meters 
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5.5.2. GWR application to analysis area  

 All above mentioned types of GWR (adaptive, fixed kernel and different bandwidths) 

were applied both to Plots training data set and to Tree training data set.   

 Results are presented both in graphical and numerical outputs. Graphical output is 

represented by map of interpolated parameters which represents the values of the parameters 

around all the selected area. Numerical output consists of the following values: 

 Coefficients of the regression.  

 The Akaike information criterion (AIC) - which is a measure of the relative 

quality of a statistical model for a given set of data. 

 The residual sum of squares (RSS) - it is a measure of the discrepancy between 

the data and an estimation model. 

 R squared - a number that indicates how well data fit a statistical model. 

5.5.3.  Extracting model parameters  

 GWR has the advantage that we can estimate the value of parameter for any point of the 

area of interest. Therefore we can compare model obtained by GWR with the model obtained by 

local regression. The desirable result is that both models should be as close as possible.  

 We used GIS tools for extracting parameter values for validation plot positions. For 

make this comparison we count with powerful tools as the GIS. This tool will be used as 

follows: 

- Interpolation of the coefficients obtained in GWR analysis were made (156 plots and 

1697 trees). The result was four raster layers, two with coefficients relative to GWR 

applied to plots and likewise, two relative to GWR applied to tree data set.  

- The four interpolation rasters were transformed to polygon (vector) by the tool called 

‘Geospatial simulation’ in QGIS.  

- Validation data set (vector) and polygon layer were intersected. In this way, the values 

of “GWR” coefficients were obtained for all validation plots.  

5.6. Compare GWR and Local Regression Results 

 When parameters of GWR models are known for all validation plots we can compute 

and visualised all height-diameter models based on these parameters.   

 Local Petterson function was applied on validation plots (78 overall). Because some of 

validation plots have only a few trees and local model would be very unreliable, we used for 

comparison with GWR models only plots with 10 and more trees.  

 The comparison of models consists of two parts.  

a) Curves comparison: both curves relative to local regression and GWR regression of 

both training data sets were computed and visualised in plot.  In total there are five 

curves in every image: Petterson local regression, curve made by Adaptive GWR 

parameters, curve made by Fixed GWR parameters, curve made by 1000 meters 

bandwidth parameters and curve made by 500 meters bandwidth parameters. In this 

http://en.wikipedia.org/wiki/Statistical_model
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way we can visually compare the similarity or dissimilarity of local model (it is 

considered as the most precise model) with all types of GWR models.  

b) Residual analysis and regression diagnostics in the Table 5 there are all the formulas 

that were applied for the numerical evaluation of residuals and selected regression 

diagnostics. Results of this analysis were presented as the average number of these 

values in all validating plots.  

Table 5 - Residual formulas. Legend: e, value of residuals; n, sample size; m, number of 

parameters; yi measured value of individual i; �̂�𝑖, model value of individual i; 𝑦�̅� average value 

of all individuals I; �̂�𝐺𝑊𝑅 model value of GWR model, �̂�𝑃𝐸𝑇 model value of local regression 

model 

Mean value of residuals �̅�𝒊 =
∑ 𝒆𝒊

𝒏
 

Standard deviation of residuals 𝝈𝒆𝒊
= √

∑(𝒆𝒊 − �̅�𝒊)𝟐

𝒏
 

Standard error of residuals 𝑺𝑬𝒆𝒊
=

𝝈𝒆𝒊

√𝒏
 

Aikake information criterion 𝑨𝑰𝑪 = 𝒏 ∗ 𝐥𝐧 (
∑ 𝒆𝒊

𝟐

𝒏
) + 𝟐 ∗ 𝒎 

Coefficient of determination 𝑹𝟐 = 𝟏 −
∑ (𝒚𝒊 − �̂�𝒊)𝟐𝒏

𝒊=𝟏

∑ (𝒚𝒊 − 𝒚�̅�)𝟐𝒏
𝒊=𝟏

 

Root mean standard error model 𝑹𝑴𝑺𝑬 = √
∑ (𝒚𝒊 − �̂�𝒊)𝟐𝒏

𝒊=𝟏

𝒏 − 𝒎
 

Mean value of deviation between GWR 

and local models 
𝚫𝒊 =

∑ |(�̂�𝑮𝑾𝑹 − �̂�𝑷𝑬𝑻)|𝒏
𝒊=𝟏

𝒏
 

 

- Mean value of residuals: the difference between the observed value of the dependent 

variable and the predicted value is called the residual. The average of residuals is the 

mean value of residuals. The ideal value of this criterion is zero. 

- Standard deviation of residuals: is a measure that is used to quantify the amount of 

variation or dispersion of the residuals. The smaller value the better. 

- Standard error of residuals: is the standard deviation of the sampling distribution.  

- Aikake information criterion: is a measure of the relative quality of a statistical model 

for a given set of data. If a single model is to be selected as the best, then this should be 

the one with the lowest AIC.  

- Coefficient of determination: is a number that indicates how well data fit a statistical 

model. It will give some information about the goodness of fit of a model. In 

regression, the R2 coefficient of determination is a statistical measure of how well the 

http://en.wikipedia.org/wiki/Statistical_dispersion
http://en.wikipedia.org/wiki/Standard_deviation
http://en.wikipedia.org/wiki/Sampling_distribution
http://en.wikipedia.org/wiki/Statistical_model
http://en.wikipedia.org/wiki/Goodness_of_fit
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regression line approximates the real data points. An R2 of 1 indicates that the 

regression line perfectly fits the data. 

- Root mean standard error model (RMSE): refer to the amount by which the values 

predicted by an estimator differ from the quantities being estimated. 

- Mean value of deviation between GWR and local models: It explains the existent 

difference between the GWR and local models. 
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V. RESULTS 

6.  GWR APPLIED TO PLOTS TRAINING DATA SET 

 In the Figures 22, 23, 24 and 25, there are the results of interpolation of parameters of 

four studied GWR types along with the training plots. Table summarises basic regression 

statistics.  

 In this situation fixed kernel gives the worst result and adaptive kernel is slightly better.  

 

Figure 22 - Adaptive Kernel parameters 

 

Kernel function: gwr.bisquare  

Adaptive quantile: 0.301 (about 47 of 

156 data points) 

 

Summary of GWR coefficient estimates at 

data points  

 Min 1st Q Median  3rd Q Max 

A 0.361 0.407 0.434 0.448 0.477 

B 2.012 2.417 2.74 2.988 3.689 
 

 

Number of data points: 156  

AIC : -483.591  

Residual sum of squares: 0.373  

Global R2: 0.545 
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Figure 23 - Fixed Kernel parameters 

 

Kernel function: gwr.Gauss  

Fixed bandwidth: 19048.03 m 

 

Summary of GWR coefficient estimates at 

data points:                  

 Min 1st Q Median  3rd Q Max 

A 0.428 0.433 0.441 0.447 0.451 

B 2.416 2.451 2.515 2.609 2.685 
 

 

Number of data points: 156  

AIC : -467.821 

Residual sum of squares: 0.447  

       Global R2: 0.454 

 

Figure 24 - 1Km bandwidth parameters 

 

Kernel function: gwr.Gauss  

Fixed bandwidth: 1000 m 

 

Summary of GWR coefficient estimates at 

data points:      

 Min 1st Q Median  3rd Q Max 

A 0.075 0.390 0.449 0.493 1.413 

B -9.356 1.572 2.456 3.242 11.460 
 

 

Number of data points: 156  

AIC : -594.442  

Residual sum of squares: 0.110  

Global R2: 0.866 
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Figure 25 - 500 meters bandwidth parameters 

 

Kernel function: gwr.Gauss 

Fixed bandwidth: 500 m 

 

Summary of GWR coefficient estimates at 

data points: 

 Min 1st Q Median  3rd Q Max 

A -0.302 0.366 0.449 0.561 1.761 

B -20.20 0.462 2.118 3.688 12.670 
 

 

Number of data points: 156  

AIC : -933.583  

Residual sum of squares: 0.009  

Global R2: 0.989 

 

7. GWR APPLIED TO TREES TRAINING DATA SET 

 In the Figures 26, 27, 28 and 29, there are the results of GWR to the tree training data 

set.  

 In this case adaptive kernel and fixed kernel have similar results, maybe slightly better 

in the case of fixed kernel. Is important to remark that bandwidth obtained by fixed kernel 

(366.97m) is smaller than the predefined bandwidths.  
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Figure 26 - Adaptive Kernel parameters 

 

Kernel function: gwr.bisquare  

Adaptive quantile: 0.012 (about 20 of 

1697 data points) 

 

Summary of GWR coefficient estimates 

at data points: 

 Min 1st Q Media
n  

3rd Q Max 

A -0.205 0.406 0.438 0.467 0.638 

B -0.495 1.142 1.660 2.355 22.440 

      
 

 

Number of data points: 1697  

AIC : -6870.908  

Residual sum of squares: 1.447  

Global R2: 0.835 

  

Figure 27 - Fixed Kernel parameters 

 

Kernel function: gwr.Gauss  

Fixed bandwidth: 366.9758 m 

 

Summary of GWR coefficient estimates 

at data points: 

 Min 1st Q Median  3rd Q Max 

A 0.355 0.404 0.435 0.460 0.710 

B -2.446 1.159 1.673 2.331 4.752 

      
 

 

Number of data points: 1697  

AIC : -6881.24  

Residual sum of squares: 1.466  

Global R2: 0.832  
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Figure 28 - 1Km bandwidth parameters  

 

Kernel function: gwr.Gauss  

Fixed bandwidth: 1000 m 

 

Summary of GWR coefficient estimates at 

data points: 

 Min 1st Q Median  3rd Q Max 

A 0.341 0.404 0.422 0.441 0.517 

B -0.225 1.605 2.023 2.489 4.065 

      
 

  

Number of data points: 1697  

AIC (GWR p. 96, eq. 4.22): -5923.227  

Residual sum of squares: 2.832 

Global R2: 0.676 

 

Figure 29 - 500meters bandwidth parameters 

 

Kernel function: gwr.Gauss  

Fixed bandwidth: 500 m 

 

Summary of GWR coefficient estimates at 

data points:         

 Min 1st Q Median  3rd Q Max 

A 0.324 0.405 0.427 0.454 0.693 

B -1.09 1.261 1.719 2.421 4.312 

      

 

 

Number of data points: 1697  

AIC : -6675.755  

Residual sum of squares: 1.703  

      Global R2: 0.805 
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8. VALIDATION DATA SET  

 There are 20 plots which fulfil the requirements of (1) have 10 or more trees and (2) 

linear regression is significant. Parameters of local height curves are in Table 6. 

Table 6 - Validation tested points 

plot Nº trees A B R2
 

1151 17 1.738 0.419 0.770 

1174 12 2.467 0.405 0.826 

1191 11 2.229 0.423 0.811 

1196 17 3.829 0.415 0.675 

1202 32 1.144 0.448 0.373 

1215 12 1.749 0.497 0.786 

1455 15 2.198 0.396 0.769 

1468 13 0.994 0.452 0.693 

1477 23 3.155 0.363 0.529 

1511 10 2.718 0.403 0.779 

1524 10 2.460 0.381 0.812 

1527 26 2.245 0.377 0.565 

1533 15 1.515 0.387 0.607 

1555 14 0.930 0.440 0.595 

1598 13 1.517 0.437 0.738 

1648 16 1.629 0.446 0.558 

1660 11 2.163 0.403 0.673 

1666 17 2.608 0.410 0.886 

1667 30 1.501 0.430 0.687 

1781 10 2.643 0.400 0.962 

  

9. COMPARISON OF GWR MODELS WITH LOCAL HEIGHT CURVES FOR 

SELECTED VALIDATION PLOTS  

 In this section, we compared local height curves (they are considered as the best 

possible model) with different GWR regression curves obtained in the 20 selected plots (listed 

in Table 6).  The first part of graphical comparison is done with GWR models based on average 

plot values, which parameters values are in the Appendix, Table 8. The second part count with 

GWR models based on individual trees, which parameters values are in the Appendix, Table 9. 
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9.1. Local Petterson parameters vs Plots training GWR  
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Figure 30 - Curves comparing different GWR curves and Local Petterson 

parameters (Plots). 

 We can see in Figure 30 that almost all the curves have some kind of offset from the 

Petterson curve.  

 In order to find some explanation, we can compare two groups of validation plots (1) 

the most isolated plots from the surrounding training plots and (2) the plots that are surrounded 

by training plots. The most isolated plots are the number 1202, 1215, 1648 and 1660 with no 

plots nearby or just one plot around them; and the most surrounded plots are 1191, 1455, 1477 

and 1667 with at least four plots around them. The logical thinking would lead us to think that 

results in the isolated plots would be worse than in the surrounded plots, but in Figure 29 we can 

see that results in both cases are unsatisfactory. It is clear that GWR model based only on 

average values has insufficient precision. 
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9.2. Local Petterson Parameters Vs Trees Training GWR 
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Figure 31 - Curves comparing different GWR curves and Local Petterson 

parameters (Trees). 

 In the Figure 31 we can see that the results have been clearly improved in comparison 

with average plot models (Figure 30). Some curves still have the displacement but in other cases 

they follow almost exactly Petterson local regression.  

 The comparisons between plots locations shows that the plots which gives best results 

(1781, 1666, 1598 and 1191) are surrounded by very different amount of plots (2, 2, 3 and 6 

respectively). Likewise, the worst results are in plots 1533, 1555 and 1667, this plots are 

surrounded correspondingly by 4, 2 and 4 plots. Therefore, there is no relation among location 

of plots and obtained GWR results.  

 If GWR types of curves are compared, we can see that almost all calibrations are very 

similar among each other. For example in the plots 1196, 1468 1555 and 1667 it is possible to 

see that adaptive kernel, fixed kernel and both bandwidths are almost the same kind of curve, 

and they shift systematically to the same area. This could mean that the GWR regression gives 

correct shape of the curves but they are displaced from the local regression.  The reason of this 

shift should be examined in further research.  
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9.3. Residual Analysis and Regression Diagnostics 

Table 7 - Residual Analysis. Legend: Mean of Residuals; RMSE, Root Mean Standard Error Model; Δi, Mean value of deviation between GWR and local 

models; LL Δi. Lower Limit of Confidence Interval; UL Δi, Upper Limit of Confidence Interval; Sdev, Standard Deviation; Sdev Error, Standard Deviation 

Error;  R2, Coefficient of Determination; AIC, Aikake Information Criterion. 

Model 

Criterion 

 
Mean residuals RMSE Δi LL Δi UL Δi Sdev Sdev Error 

Coefficient of  

determination 
AIC 

Local regression  -0.072 0.986 

   

0.944 0.066 0.645 0.740 

 For average plot values: 
 Adaptive -1.536 2.145 1.546 1.078 2.013 0.998 0.223 0.148 24.929 

Fixed (19 km) -1.574 2.181 1.579 1.121 2.037 1.024 0.229 0.109 25.049 

Bandwidth 1 km -1.566 2.280 1.639 1.176 2.101 1.233 0.276 0.125 25.708 

Bandwidth 500 m -2.273 3.917 3.148 2.218 4.079 1.486 0.332 0.019 41.195 

 For individual tree values: 

 Adaptive -0.419 1.551 0.940 0.606 1.273 0.996 0.223 0.359 14.430 

Fixed (366.98 m) -0.385 1.526 0.907 0.552 1.263 0.992 0.222 0.375 13.410 

Bandwidth 1 Km -0.382 1.539 0.947 0.600 1.294 0.970 0.217 0.367 14.050 

Bandwidth 500 m -0.414 1.549 0.946 0.595 1.298 0.989 0.221 0.365 14.090 

 

The Table 7 shows important information that confirms the graphical comparison in Figures 30 and 31. The original data used in the calculation of Table 7 can 

be found in the Appendix, Tables 10 to 20: 
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- Mean residuals: This criteria shows that GWR curves for average plot values are in 

generally far from the real values of the trees. This results confirm the presence of big 

displacements observed in Figure 30. It is observed that results obtained in GWR 

curves for tree values are much better.  

- RMSE: This result is, again, another hint that confirm the offsets observed in the figure 

30. Very high value there is in the case of the 500 m bandwidth. But it is logical result 

if we take a look into the Figure 30 we can see that there are some plots where 500m 

bandwidth curve is not even in the frame, this means that the deviation is big. The case 

of the GWR curves for tree values, the variability is still big but it improves from the 

previous ones, this also is visible in the Figure 31. 

- Δi: In this point we can see the big difference that exists between local regression and 

GWR applied in average plot values. If we compare this criteria together with 

confidence interval we can see that the average plot values has deviation about 1.5-1.6 

meters and the CI width is around 1 meter. In other hand, individual tree values have a 

deviation around 0.9 meter with CI width of 0.6 meters. The most important result is 

that GWR curves for tree values are significantly closer to the local regression with 

smaller confidence intervals. 

- Sdev and Sdev error: it shows that GWR curves for average plot values are more 

dispersed than the GWR curves for tree values.  

- Coefficient of determination: This coefficient is clearly better for individual tree values 

but not as good as in the local regression. In average plot values are evidently worse in 

comparison with tree values, fact that is expected according with previous results.  

- AIC: We can see that best AIC in case of GWR curves for average plot data is more or 

less similar except in the case of 500m bandwidth. In case of GWR curves for tree data 

AIC stays more or less constant but the best one is for fixed kernel, width a bandwidth 

of 366.98 meters. If we take a look into Figure 30 this curve (colour green) is the one 

which is closest to local regression curve in most of the plots. 

 In this diploma thesis, has been used the basic GWR configuration for its calibration, it 

means that bisquare weighted function for adaptive kernel and Gaussian function for fixed 

kernel has been used (Fotheringham, et al., 2002). This calibration was applied for the average 

data and the tree data. The results of this calibration are different in both types of data: (1) 

average data set shows poor results with high values of mean residuals, RMSE, standard 

deviation and very low coefficient of determination. (2) On the other hand, tree data shows 

better results in all the criteria, but still it is not completely satisfactory because results are little 

bit farther of obtained local regression. Furthermore, in GWR basic calibration we can observe 

(Table 7) that results are very different according with the kind of selected kernels. In general, 

the application of the fixed kernel give good overall results with better criteria values compared 

with adaptive kernel. However, talking about predefined bandwidths it is possible to see that 

when smaller bandwidth are selected, the model decrease in its quality giving bad results in 

criteria values and with the existence of abnormal extreme values that are visible in the 

minimum and maximum of the regression summary displayed, for instance, in Figures 24 and 

25. It is important to say that a lower bandwidth selection limit exists at which the weighted 

function cannot be computed. In the case of average plot training data set this limit is 388 

meters and in case of tree data set is 270 meters.  
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VI. DISCUSSION 

 GWR was able to work correctly in large areas in many applications, like economy and 

civil engineering. For example, GWR was applied in the calculation of the hedonic pricing, this 

is the modeling to estimate the extent to which factor (size, appearance, features, condition, 

accessibility to schools, level of water, air pollution, value of other homes…) affects the price of 

houses, in the city of London (Fotheringham, et al., 2002) or in the estimation of the Metro 

traffic in Madrid (Puebla, et at., 2012), both with good results.  

 

 In forestry, there exist some remote sensing applications made in large areas with very 

different results about GWR performance. For instance, it was obtained a net primary 

production (NPP) regression model based on the GWR and compared with OLS and lag model 

(Wang, et al., 2005), the conclusion of this comparison is that GWR made a significant 

improvement in model performance of GWR over OLS and the spatial lag model. In the other 

hand, we can find a study in which is used LiDAR technology for modelling tree diameter from 

airborne laser scanning derived variables. In this study there was compared GWR, OLS, 

generalized least squares with a non-null correlation structure (GLS) and linear mixed-effects 

model (LME); the conclusion exposed that GWR displays no improvement in this modelling 

(Salas, et al.m 2010). As final example, we can find one study about GWR that was used to 

estimate forest canopy height using high spatial resolution Quickbird (QB) images (Cheng, et 

al., 2012). It was examined four spatial analysis techniques: OLS, inverse distance weighting 

(IDW), ordinary kriging (OK) and cokriging (COK) and compared their performance with 

GWR. Conclusion shows better GWR performance than other spatial techniques.  

 In the field of forestry and ecology, there exist some large scale researches that provides 

interesting information about GWR applied to large areas, these studies are framed mainly in 

the fields of forest fires, afforestation and less commonly in forest management. Some examples 

are: (1) Mexican researchers analyzed the causing factors behind deforestation in the state of 

Mexico by the application of GWR (Pineda-Jaimes, et al., 2010), the conclusion was that the 

GWR application is especially effective in explaining the spatial heterogeneity in deforestation 

processes from one region to another within the state territory. (2) About wildfires it was 

explored the spatial patterns of fire density in Southern Europe (Oliveira, et al., 2014), this 

relationship was investigated with GWR and it was compared with OLS. These results agree 

with previous studies, which showed the potential of GWR for modelling fire occurrence at a 

large scale, and regarding model performance GWR showed an improvement over OLS. (3) 

Finally, Douglas fir site index (SI) was modelled in a large area (206 000 ha) using ecological 

data (climate, soil, soil parent material, SI) (Kimsey, et al., 2008) with two forms of regressions: 

standard multiple linear regression (MLR) and GWR. The conclusions show again that GWR 

model is able to provide better results in large areas.  

 

 GWR also has been applied with forestry data (height, DBH…) but in this case the 

studies have proven to be clearly effective just in small forest areas (Zhang, et al., 2004, Zhang 

& Shi, 2004).  For instance, in the previous cited researches it was applied GWR together with 

OLS in areas around 0.5 ha, with the aim of knowing what model gives better results. The 

conclusions were similar in both studies, it was determined that GWR improves significantly 

the model over global models. Similarly, other studies (Zhang, et al., 2005) confirm that in 

small areas (around 5 ha) GWR provides better results than other kinds of regressions such as 
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OLS, GWR, linear mixed model (LMM), generalized additive model (GAM), multi-layer 

perceptron (MLP) neural network and radial basis function (RBF) neural network.  

 

 Most of the studies above repeat the same pattern in their design, in general it was 

applied the basic GWR calibration in some area and then this results are compared with other 

kinds of regression, especially global regressions. The basic GWR calibration is based on fixed 

kernel with Gaussian distance decay weighted function and adaptive kernel with bisquare 

distance decay kernel function. Also there are some cases in what it is used the predefined 

bandwidth, in order to facilitate comparison (Zhang, et al., 2012). Exists certain issues in the 

bandwidth calibration, because occur some cases where the study area is very small for spatial 

analysis and is not possible to compute the kernel calibration (Zhang, et al., 2005). About data 

set division, in most studies there are no selection of data in terms of validation and training 

data set. However, in some researches GWR is applied in all the study area and then are selected 

some plots or points within the analyzed area for check the results (Zhang, et al., 2005), or 

studied area is divided in training data set (60 % of points) and validation data set (40 % of 

points), but in this last case a GWR modification is used, namely geographically weighted 

logistic regression (Rodrigues, et al., 2014). In most of the cases, when there are not selected 

points for testing the results, the global models or other kind of models are compared with GWR 

by some other criteria like: Moran coefficient, criteria used for measure spatial autocorrelation; 

Z-Values, that are the number of standard deviations an observation or datum is above the 

mean; F-Test, used for comparing statistical models in order to identify the model that best fits 

the population from which the data were sampled; and spatial heterogeneity percent (SH%), 

where large SH values indicate high levels of heterogeneity or low levels of spatial randomness; 

Variance inflation factor (VIF), which quantifies how much an estimated regression coefficient 

increases due to multicollinearity  (Zhang, et al., 2004., Zhang, et al., 2005, Zhang, et al., 2008, 

Zhang, et al., 2009., Cheng, et al., 2012, Oliveira, et al., 2014).  

 

 All of previous studies, independently of the used method, agree that GWR is a useful 

tool that provides much more information on spatial relationships to assist in model 

development and understanding of spatial processes. 

 

 In this way, we count with important hints and good hopes about the workability of 

GWR in large areas with the application of Forest Inventory data. One of the objectives of this 

project was to check the behavior of GWR applied in large areas, the studied area is around 

871.80 km2. We wanted to compare two levels of data from the Third National Spanish Forest 

Inventory (MAGRAMA, 2014) – average data from individual plots and data about individual 

trees. However, the obtained results have not been as satisfactory as we would have expected, 

and especially wrong result was obtained in case of the average data from individual plots. 

 

 According with our current results, it is evident that basic GWR configuration is not 

suitable for obtain optimal results, but there are several possibilities how to improve the current 

calibration. Several different calibration options exists (Figure 32). For instance, it is possible to 

change weighted function in the kernel to: (1) exponential, (2) box-car and (3) tri-cube (Binbin, 

et al., 2015). Where (1) exponential kernel is continuous function of the distance between two 

observation points, in our case Gaussian weighted functions has several similitudes with 

exponential function (Gollini, et al., 2015). The (2) box-car kernel is a simple discontinuous 

function that excludes observations that are further than some distance ‘b’ from the GW model 

calibration point. This kernel allows for efficient computation, since only a subset of the 

https://en.wikipedia.org/wiki/Standard_deviation
https://en.wikipedia.org/wiki/Data
https://en.wikipedia.org/wiki/Mean
https://en.wikipedia.org/wiki/Model_selection
https://en.wikipedia.org/wiki/Population_%28statistics%29
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observation points need to be included in fitting the local model at each geographically 

weighted model calibration point. This can be particularly useful when handling large data sets. 

(3) The tri-cube kernel is discontinuous function that makes it similar to bisquare function 

(Gollini, et al., 2015), giving null weights to observations with a distance greater than a specific 

point. However unlike a box-car kernel, they provide weights that decrease as the distance 

between observation/calibration points increase. 

 

  Also, apart from changing weighted functions is possible to apply some extensions to 

GWR, these extensions are very promising because our data is very heterogeneous and mostly 

of this methods cope with some kind of non-constant variability: 

 

- Robust GWR (Fotheringham, et al., 2002). This kind of GWR is made in order to 

reduce the effect of anomalous observations or outliers on its outputs. To provide a 

robust GWR, each local covariance matrix is estimated using the robust minimum 

covariance determinant (MCD) estimator (Gollini, et al., 2015). 

 

- Heteroscedastic GWR (Fotheringham, et al., 2002). In the basic GWR, although the 

regression coefficients vary geographically, the variance of error term is assumed as 

fixed. In this method there is introduced that variance may also vary geographically. 

This method could be very interesting for our investigation because of the big data 

variability across the study area.  

 

- Mixed GWR models (Fotheringham, et al., 2002). In some situations not every 

regression coefficient in a model varies geographically, in others the degree of 

variation for some coefficients might be insignificant. It therefore may be helpful to 

consider mixed GWR models in which some coefficients are global (they do not vary 

over space). The remaining coefficients are termed local and these are expected to be 

functions of geographical location, as in the basic GWR model.  

 

- Geographically Weighted Generalized Linear Models (GWGLM) (Fotheringham, et 

al., 2002), local form of generalized linear models that assumes that the data follow a 

Poisson or Binomial distribution. 

 

 Other options in GWR calibration are based in the GWR modification itself. For 

instance, with the application of some modifications by incorporating attitudinal effects into the 

spatial weighting function, this method was named ‘Geographically and Attitudinal Weighted 

Regression’ (GAWR) (Propastin, 2012). Another modification example is related with the 

incorporation of spatial dependence among neighboring observations at each location in the 

study area by modelling local variograms, it was called ‘Geographically Local Linear Mixed 

Models’ (GLLMM) (Zhang & Lu, 2012). Finally, in the study of wildfires occurrence in Spain 

GWR modified into GW linear model and GW logistic model was used (Martínez-Fernández, et 

al., 2013). The calibration options and modifications are so wide and are in constant evolution. 

 

 Finally, it would be interesting change the initial height-diameter equation. The 

regression equation that has been selected in this diploma thesis is the Petterson function. This 

function usually gives good results, however it is possible that for the shape of Spanish forest 

this equation may be insufficient. Spanish forest are very heterogeneous, hence the formula to 

model them should include for example, density data. Likewise, it is possible that GWR model 

http://www.biomedware.com/files/documentation/spacestat/Statistics/Multivariate_Modeling/Regression/Geographicallly_Weighted_Regression_-_Poisson.htm#Poisson_distribution
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gives better results when they are included more parameters (ESRI, 2014). It would be 

interesting apply generalized functions in the next research of this topic. There are many 

possible generalized functions for modelling height-diameter relationship in what we can use 

tree and stand variables. For instance, López-Sánchez et al., 2003 analyzed the 26 generalized 

height-diameter equations for modelling of Pinus radiata in Galicia, Spain and they grouped 

them into the following categories: 

 

 Group 1: Low sampling effort models, including those models which need diameter 

measurements and knowledge of age in some cases. 

 

 Group 2: Medium sampling effort models, including models which need measurements 

of diameter and of a sample of tree heights. 

 

 Group 3: High sampling effort models, including models which need the knowledge or 

measurements of stand age as well. 

 

 The problem with these functions is in their more difficult application in GWR model 

because they are not easily linearizable. Consequently, in this case we must develop some 

another strategy how to apply generalized functions to GWR.  

 

 

Figure 32 - GWR calibration option 
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VII. CONCLUSIONS 

 In this diploma thesis it was tried to deal with spatial heterogeneity of forestry data 

through geographically weighted regression. The results of this study are promising, but 

different for two used data levels:  

 

- In the case of average data of plots we can see that results are completely unsatisfactory. 

The results are completely far from the local regressions. It seems that average data (eg. 

stand average data in practice) are too rough for practically applicable height-diameter 

model for large area. A possible solution for this, is just work with the average tree data. 

With this kind of data it is possible investigate about the growing and volumes, as well as 

increment of this growing and volumes in Forest Inventory plots.   

 

- In case of tree data we obtain relative good results, being the fixed kernel the one which 

gives best results. Therefore, it is likely to assume that GWR is promising to obtain the 

optimal desired results with some calibration or modelling method changes. The average 

deviation of current GWR model from local model is about 0.9 m (with confidence interval 

appr. 0.6 – 1.2 m). Desired deviation that can be used in practice with good results should 

be cca 0.5 m (with confidence interval about 0.3 – 0.7 m, at least below 1 m). 

 

 From the methodological point of view, there are several possibilities how to improve 

the model. These changes would focus in: (1) select more suitable height-diameter equation 

based on generalized height-diameter functions, and (2) make more precise GWR calibration. 

The calibration options themselves are wide but there are some GWR extensions based on 

coping with the heterogeneity of the data that can be useful for our interest (details are in the 

chapter “Discussion”). Also both methodological and practical comparison with other 

prospective methods (like ‘Classification and Regression trees’, ‘Linear mixed models’ and 

‘Generalized additive models’) can be useful and interesting. 

 

 GWR is highly promising method because it gives the opportunity that in the case of 

need a particular model for some area, there is possible to make sufficiently precise height-

diameter curve without any additional measurements to the existing Forest Inventories. 

Therefore, this method needs very detailed data, for instance, it is needed each specific 

geographical location and spatial distribution of the information, as well as attribute data 

information about all desired parameters.  This makes GWR method very demanding in the 

sampling and also in the needed powerful equipment for calculate the regression.   

  

The above mentioned methodological suggestions and possible improvements of the 

method will be developed and evaluated in my Ph.D. study on the same topic.  
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VIII. SUMMARY 

 The diploma thesis is focused on the application of the Geographically Weighted 

Regression (GWR). This is a prospective method for coping with spatially heterogeneous data, 

which is the kind of data that we can find in the forests. GWR method has been used previously 

in small forest areas with good results. The objectives of this diploma thesis is to evaluate and 

check GWR behaviour for a large scale study. For this purpose we used data of Pinus 

halepensis Mill. pure forests in the Spanish Region of Murcia. Height-diameter model was 

selected as an example of model frequently used in forestry, because it is very suitable from 

methodological point of view because of its simplicity of application to the data. 

 Within Murcia Region, a suitable study area was selected, characterized by a regular 

sample plot spatial distribution. Inside this region, two random samples were made, the ‘training 

data set’ and the ‘validation data set’. Training data set is composed by two levels of data, plot 

average data and individual tree data; and validation data set is composed just by individual tree 

data. In order to apply GWR to the selected data, Petterson height-diameter equation was 

selected for its good quality and relatively easy application in GWR.  

 In training data set, GWR was implemented with the basic recommended GWR 

calibration (fixed kernel together with Gaussian weighted function and adaptive kernel together 

with Bisquare function), plus two predefined bandwidths (1km and 500 m). Local regressions 

were implemented in the suitable validation plots (with 10 measured trees at least). Finally, at 

selected validation plots, GWR parameters were extracted by suitable GIS tools and resulting 

GWR height-diameter models were compared with local models based on all measured trees of 

respective plot. GWR and local models were compared by residual analysis and regression 

diagnostics tools.   

 The comparison results are clearly divisible by type of analysed data. Plot average data 

gives bad results in all the analysed points (average deviation from local model was about 1,5 

m, with confidence interval about 1-2 m) . In the other hand, individual tree data, in general, 

gives more satisfactory results, being closer to local models (average deviation from local model 

was about 0,9 m, with confidence interval about 0,6 -1,2 m). However, is noticeable the need to 

improve GWR calibration quality for obtain the optimal result (average deviation from local 

model should be about 0,5 m, with  upper boundary of confidence interval less than 1 m). 

 Suggested improvements of the GWR calibration are focused on two aspects. The first 

one is using more suitable weighted function in the calibration, there exist several possible 

functions, for instance Tricube, Boxcar or Exponential. The second possible improvement  is 

using of GWR extension that cope with highly heterogeneous data, such as Robust, 

Heterocedastic, Generalised or Mixed GWR; these extensions are very promising because they 

deal with some kind of non-constant variability. 

 Finally, another option that can improve the GWR quality is the change of the height-

diameter Petterson equation for another more suitable equation based on generalized height-

diameter functions. It is possible that this kind of functions would be able to deal with the 

spatial heterogeneity that exist in Spanish Mediterranean forests in a better way.  
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X. APPENDIX 

10. R CODE 

library(nlstools) 

library(nls2)  

library(nortest) 

library(car)  

library(lmtest) 

 

 Petterson local formula 

#h~1.3 + (1/(a+(b/diameter))^3) tree by tree 

start <- 

read.csv("C:/Users/mariA/Documents/R/datos/Phalepensis/valiP.csv", 

sep=";", dec=".") 

#start <- 

read.csv("C:/Users/mariA/Documents/R/datos/Phalepensis/species_24_coor

ds_polar/24_all_out.csv", sep=";", dec=".") 

attach(start) 

h<- height 

d<-diameter 

#Peterson lineal 

H= 1/(h-1.3)^(1/3) 

D<-1/d 

Peters<-lm(H~D) 

summary(Peters) 

anova(Peters) 

out<-summary(Peters) 

confint(Peters) 

plot(Peters) 

res<-residuals(Peters) 

lillie.test(res) #no normal 

durbinWatsonTest(res) #no correlated 

AIC(Peters) 

 

 Petterson GWR 

plots<- 

read.csv("C:/Users/mariA/Documents/R/datos/Phalepensis/valiP.csv", 

sep=";", dec=".") 

library(spgwr) 

library(sp) 

attach(plots) 

map = SpatialPointsDataFrame(data=start, coords= cbind(CX_H30,CY_H30)) 

 

#Fixed kernel calculation 

#Gauss-cross-validation     

bandA<-gwr.sel(H~D, data=map) 

gwrA<-gwr(H~D, data=map, bandwidth=bandA,hatmatrix=T, se.fit=T)  

gwrA 

 

#Adapted kernel calculation 

#Bisquare-AIC 

Bisq_AD_AIC<-gwr.sel(H~D, data=map, adapt=T, 

gweight=gwr.bisquare,method = "AIC", verbose = TRUE, longlat=NULL, 

RMSE=FALSE, tol=.Machine$double.eps^0.25, show.error.messages = FALSE) 
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Bisqu_AD_AIC_gwr<-gwr(H~D, data=map, adapt=Bisq_AD_AIC,hatmatrix=T, 

se.fit=T, gweight = gwr.bisquare) 

Bisqu_AD_AIC_gwr 

 

#1 km bandwidth calculation 

#Bisquare-AIC 

gwrB<-gwr(H~D, data=map, bandwidth=1000,hatmatrix=T, se.fit=T)  

gwrB 

 

#500 m bandwidth calculation 

#Bisquare-AIC 

gwrB<-gwr(H~D, data=map, bandwidth=500,hatmatrix=T, se.fit=T)  

gwrB 

 

 Curves Plots vs Local Regression (Petterson) 

 

#Plot nº 1151 

start3 <- 

read.csv("C:/Users/mariA/Documents/R/datos/Phalepensis/Inventos/sIERRA

/ValiTrees/V1151.csv", sep=";", dec=".") 

attach(start3) 

h<-height 

d<-diameter 

plot(h~d, xlab='diameter', ylab="height") 

curve(1.3+(1/(0.41902+1.73792 /x)^3), add=TRUE,col="black") #Petterson 

curve(1.3+(1/(0.434711+2.701881 /x)^3), add=TRUE,col="orange") 

#Adaptive 

curve(1.3+(1/(0.450459+2.56751/x)^3), add=TRUE,col="green") #Fixed 

curve(1.3+(1/(0.43273604+2.319682 /x)^3),add=TRUE,col="red") #1km 

curve(1.3+(1/(0.4190656+2.31722 /x)^3),add=TRUE,col="blue") #500m 

legend(title='Plot 1151',"topleft", 

c("Petterson","Adaptive",'Fixed','1km bandwidth','500m bandwidth'), 

col = c('black','orange','green','red','blue'),lwd=2, cex = 0.7) 

 

#Plot nº 1174 

start4 <- 

read.csv("C:/Users/mariA/Documents/R/datos/Phalepensis/Inventos/sIERRA

/ValiTrees/1174.csv", sep=";", dec=".") 

attach(start4) 

h<-height 

d<-diameter 

plot(h~d, xlab='diameter', ylab="height") 

curve(1.3+(1/(0.40478+2.4672 /x)^3), add=TRUE,col="black") #Petterson 

curve(1.3+(1/(0.441815+2.261727 /x)^3), add=TRUE,col="orange") 

#Adaptive 

curve(1.3+(1/(0.4504086+2.1794 /x)^3), add=TRUE,col="green") #Fixed 

curve(1.3+(1/(0.43139446+2.311824 /x)^3),add=TRUE,col="red") #1km 

curve(1.3+(1/(0.46094277+2.31182 /x)^3),add=TRUE,col="blue") #500m 

legend(title='Plot 1174',"topleft", 

c("Petterson","Adaptive",'Fixed','1km bandwidth','500m bandwidth'), 

col = c('black','orange','green','red','blue'),lwd=2, cex = 0.7) 

 

#Plot nº 1191 

start7 <- 

read.csv("C:/Users/mariA/Documents/R/datos/Phalepensis/Inventos/sIERRA

/ValiTrees/1191.csv", sep=";", dec=".") 
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attach(start7) 

h<-height 

d<-diameter 

plot(h~d, xlab='diameter', ylab="height") 

curve(1.3+(1/(0.42307+2.22909 /x)^3), add=TRUE,col="black") #Petterson 

curve(1.3+(1/(0.432269+2.752624 /x)^3), add=TRUE,col="orange") 

#Adaptive 

curve(1.3+(1/(0.458488+2.427429 /x)^3), add=TRUE,col="green") #Fixed 

curve(1.3+(1/(0.45880453+2.3411 /x)^3),add=TRUE,col="red") #1km 

curve(1.3+(1/(0.43646272+2.5987987 /x)^3),add=TRUE,col="blue") #500m 

legend(title='Plot 1191',"topleft", 

c("Petterson","Adaptive",'Fixed','1km bandwidth','500m bandwidth'), 

col = c('black','orange','green','red','blue'),lwd=2, cex = 0.7) 

 

#Plot nº 1196 

start9 <- 

read.csv("C:/Users/mariA/Documents/R/datos/Phalepensis/Inventos/sIERRA

/ValiTrees/1196.csv", sep=";", dec=".") 

attach(start9) 

h<-height 

d<-diameter 

plot(h~d, xlab='diameter', ylab="height") 

curve(1.3+(1/(0.41489+3.82912 /x)^3), add=TRUE,col="black") #Petterson 

curve(1.3+(1/(0.435216+2.496689 /x)^3), add=TRUE,col="orange") 

#Adaptive 

curve(1.3+(1/(0.448562+2.321209 /x)^3), add=TRUE,col="green") #Fixed 

curve(1.3+(1/(0.36822739+4.1315299 /x)^3),add=TRUE,col="red") #1km 

curve(1.3+(1/(0.33919546+4.1019285 /x)^3),add=TRUE,col="blue") #500m 

legend(title='Plot 1196',"bottomright", 

c("Petterson","Adaptive",'Fixed','1km bandwidth','500m bandwidth'), 

col = c('black','orange','green','red','blue'),lwd=2, cex = 0.7) 

 

#Plot nº 1202 

start10 <- 

read.csv("C:/Users/mariA/Documents/R/datos/Phalepensis/Inventos/sIERRA

/ValiTrees/1202.csv", sep=";", dec=".") 

attach(start10) 

h<-height 

d<-diameter 

plot(h~d, xlab='diameter', ylab="height") 

curve(1.3+(1/(0.4475+1.1437 /x)^3), add=TRUE,col="black") #Petterson 

curve(1.3+(1/(0.445705+2.396964 /x)^3), add=TRUE,col="orange") 

#Adaptive 

curve(1.3+(1/(0.459891+2.135036 /x)^3), add=TRUE,col="green") #Fixed 

curve(1.3+(1/(0.5111695+0.8107863 /x)^3),add=TRUE,col="red") #1km 

curve(1.3+(1/(0.64521706+0.94664653 /x)^3),add=TRUE,col="blue") #500m 

legend(title='Plot 1202',"topleft", 

c("Petterson","Adaptive",'Fixed','1km bandwidth','500m bandwidth'), 

col = c('black','orange','green','red','blue'),lwd=2, cex = 0.7) 

 

#Plot nº 1215 

start12 <- 

read.csv("C:/Users/mariA/Documents/R/datos/Phalepensis/Inventos/sIERRA

/ValiTrees/1215.csv", sep=";", dec=".") 

attach(start12) 

h<-height 

d<-diameter 

plot(h~d, xlab='diameter', ylab="height") 
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curve(1.3+(1/(0.49675+1.74904 /x)^3), add=TRUE,col="black") #Petterson 

curve(1.3+(1/(0.446581+2.36908 /x)^3), add=TRUE,col="orange") 

#Adaptive 

curve(1.3+(1/(0.4572283+2.184688 /x)^3), add=TRUE,col="green") #Fixed 

curve(1.3+(1/(0.45285087+2.643429 /x)^3),add=TRUE,col="red") #1km 

curve(1.3+(1/(0.51661324+2.5489603 /x)^3),add=TRUE,col="blue") #500m 

legend(title='Plot 1215',"topleft", 

c("Petterson","Adaptive",'Fixed','1km bandwidth','500m bandwidth'), 

col = c('black','orange','green','red','blue'),lwd=2, cex = 0.7) 

 

#Plot nº 1455 

start13 <- 

read.csv("C:/Users/mariA/Documents/R/datos/Phalepensis/Inventos/sIERRA

/ValiTrees/1455.csv", sep=";", dec=".") 

attach(start13) 

h<-height 

d<-diameter 

plot(h~d, xlab='diameter', ylab="height") 

curve(1.3+(1/(0.3963+2.1981 /x)^3), add=TRUE,col="black") #Petterson 

curve(1.3+(1/(0.4427+2.43219 /x)^3), add=TRUE,col="orange") #Adaptive 

curve(1.3+(1/(0.45494+2.2343299 /x)^3), add=TRUE,col="green") #Fixed 

curve(1.3+(1/(0.49723301+1.487969 /x)^3),add=TRUE,col="red") #1km 

curve(1.3+(1/(0.53426256+1.5033928 /x)^3),add=TRUE,col="blue") #500m 

legend(title='Plot 1455',"topleft", 

c("Petterson","Adaptive",'Fixed','1km bandwidth','500m bandwidth'), 

col = c('black','orange','green','red','blue'),lwd=2, cex = 0.7) 

 

#Plot nº 1468 

start16 <- 

read.csv("C:/Users/mariA/Documents/R/datos/Phalepensis/Inventos/sIERRA

/ValiTrees/1468.csv", sep=";", dec=".") 

attach(start16) 

h<-height 

d<-diameter 

plot(h~d, xlab='diameter', ylab="height") 

curve(1.3+(1/(0.45172+0.9936 /x)^3), add=TRUE,col="black") #Petterson 

curve(1.3+(1/(0.454889+2.30014 /x)^3), add=TRUE,col="orange") 

#Adaptive 

curve(1.3+(1/(0.461077+2.212158 /x)^3), add=TRUE,col="green") #Fixed 

curve(1.3+(1/(0.45023518+2.60985 /x)^3),add=TRUE,col="red") #1km 

curve(1.3+(1/(0.4025015+2.4939588 /x)^3),add=TRUE,col="blue") #500m 

legend(title='Plot 1468',"topleft", 

c("Petterson","Adaptive",'Fixed','1km bandwidth','500m bandwidth'), 

col = c('black','orange','green','red','blue'),lwd=2, cex = 0.7) 

 

#Plot nº 1477 

start17 <- 

read.csv("C:/Users/mariA/Documents/R/datos/Phalepensis/Inventos/sIERRA

/ValiTrees/1477.csv", sep=";", dec=".") 

attach(start17) 

h<-height 

d<-diameter 

plot(h~d, xlab='diameter', ylab="height") 

curve(1.3+(1/(0.3631+3.15528 /x)^3), add=TRUE,col="black") #Petterson 

curve(1.3+(1/(0.44725+2.43812 /x)^3), add=TRUE,col="orange") #Adaptive 

curve(1.3+(1/(0.45944+2.24098 /x)^3), add=TRUE,col="green") #Fixed 

curve(1.3+(1/(0.48407964+2.08492 /x)^3),add=TRUE,col="red") #1km 

curve(1.3+(1/(0.47791439+2.0829614 /x)^3),add=TRUE,col="blue") #500m 
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legend(title='Plot 1477',"topleft", 

c("Petterson","Adaptive",'Fixed','1km bandwidth','500m bandwidth'), 

col = c('black','orange','green','red','blue'),lwd=2, cex = 0.7) 

 

#Plot 1511 

start20 <- 

read.csv("C:/Users/mariA/Documents/R/datos/Phalepensis/Inventos/sIERRA

/ValiTrees/1511.csv", sep=";", dec=".") 

attach(start20) 

h<-height 

d<-diameter 

plot(h~d, xlab='diameter', ylab="height") 

curve(1.3+(1/(0.40292+2.71806 /x)^3), add=TRUE,col="black") #Petterson 

curve(1.3+(1/(0.439642+2.594797 /x)^3), add=TRUE,col="orange") 

#Adaptive 

curve(1.3+(1/(0.45658401+2.35388 /x)^3), add=TRUE,col="green") #Fixed 

curve(1.3+(1/(0.49115155+1.593816 /x)^3),add=TRUE,col="red") #1km 

curve(1.3+(1/(0.53202745+1.5871263 /x)^3),add=TRUE,col="blue") #500m 

legend(title='Plot 1511',"topleft", 

c("Petterson","Adaptive",'Fixed','1km bandwidth','500m bandwidth'), 

col = c('black','orange','green','red','blue'),lwd=2, cex = 0.7) 

 

#Plot 1524 

start22 <- 

read.csv("C:/Users/mariA/Documents/R/datos/Phalepensis/Inventos/sIERRA

/ValiTrees/1524.csv", sep=";", dec=".") 

attach(start22) 

h<-height 

d<-diameter 

plot(h~d, xlab='diameter', ylab="height") 

curve(1.3+(1/(0.38065+2.46048 /x)^3), add=TRUE,col="black") #Petterson 

curve(1.3+(1/(0.428184+2.70688 /x)^3), add=TRUE,col="orange") 

#Adaptive 

curve(1.3+(1/(0.45019628+2.299784 /x)^3), add=TRUE,col="green") #Fixed 

curve(1.3+(1/(0.51110544+0.9706428 /x)^3),add=TRUE,col="red") #1km 

curve(1.3+(1/(0.79693978+0.98158809 /x)^3),add=TRUE,col="blue") #500m 

#curve(1.3+(1/(0.78620205-1.1405355/x)^3),add=TRUE,col="violet") #388m 

legend(title='Plot 1524',"topleft", 

c("Petterson","Adaptive",'Fixed','1km bandwidth','500m bandwidth'), 

col = c('black','orange','green','red','blue'),lwd=2, cex = 0.7) 

 

#Plot 1527 

start23 <- 

read.csv("C:/Users/mariA/Documents/R/datos/Phalepensis/Inventos/sIERRA

/ValiTrees/1527.csv", sep=";", dec=".") 

attach(start23) 

h<-height 

d<-diameter 

plot(h~d, xlab='diameter', ylab="height") 

curve(1.3+(1/(0.3773+2.2447 /x)^3), add=TRUE,col="black") #Petterson 

curve(1.3+(1/(0.409362+2.852913 /x)^3), add=TRUE,col="orange") 

#Adaptive 

curve(1.3+(1/(0.42682768+2.523297 /x)^3), add=TRUE,col="green") #Fixed 

curve(1.3+(1/(0.42588919+2.16222 /x)^3),add=TRUE,col="red") #1km 

curve(1.3+(1/(0.43876482+2.1529716 /x)^3),add=TRUE,col="blue") #500m 

legend(title='Plot 1527',"bottomright", 

c("Petterson","Adaptive",'Fixed','1km bandwidth','500m bandwidth'), 

col = c('black','orange','green','red','blue'),lwd=2, cex = 0.7) 
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#Plot 1533 

start24 <- 

read.csv("C:/Users/mariA/Documents/R/datos/Phalepensis/Inventos/sIERRA

/ValiTrees/1533.csv", sep=";", dec=".") 

attach(start24) 

h<-height 

d<-diameter 

plot(h~d, xlab='diameter', ylab="height") 

curve(1.3+(1/(0.38709+1.5151 /x)^3), add=TRUE,col="black") #Petterson 

curve(1.3+(1/(0.417151+2.853721 /x)^3), add=TRUE,col="orange") 

#Adaptive 

curve(1.3+(1/(0.44041852+2.42105 /x)^3), add=TRUE,col="green") #Fixed 

curve(1.3+(1/(0.44441696+1.9060955 /x)^3),add=TRUE,col="red") #1km 

curve(1.3+(1/(0.52498635+1.9060955 /x)^3),add=TRUE,col="blue") #500m 

legend(title='Plot 1533',"topleft", 

c("Petterson","Adaptive",'Fixed','1km bandwidth','500m bandwidth'), 

col = c('black','orange','green','red','blue'),lwd=2, cex = 0.7) 

 

#Plot 1555 

start25 <- 

read.csv("C:/Users/mariA/Documents/R/datos/Phalepensis/Inventos/sIERRA

/ValiTrees/1555.csv", sep=";", dec=".") 

attach(start25) 

h<-height 

d<-diameter 

plot(h~d, xlab='diameter', ylab="height") 

curve(1.3+(1/(0.44002+0.93015 /x)^3), add=TRUE,col="black") #Petterson 

curve(1.3+(1/(0.410985+2.788965 /x)^3), add=TRUE,col="orange") 

#Adaptive 

curve(1.3+(1/(0.42839681+2.439593 /x)^3), add=TRUE,col="green") #Fixed 

curve(1.3+(1/(0.46104902+2.0101134 /x)^3),add=TRUE,col="red") #1km 

curve(1.3+(1/(0.80511484+2.0101134 /x)^3),add=TRUE,col="blue") #500m 

legend(title='Plot 1555',"topleft", 

c("Petterson","Adaptive",'Fixed','1km bandwidth','500m bandwidth'), 

col = c('black','orange','green','red','blue'),lwd=2, cex = 0.7) 

 

#Plot 1598 

start27 <- 

read.csv("C:/Users/mariA/Documents/R/datos/Phalepensis/Inventos/sIERRA

/ValiTrees/1598.csv", sep=";", dec=".") 

attach(start27) 

h<-height 

d<-diameter 

plot(h~d, xlab='diameter', ylab="height") 

curve(1.3+(1/(0.4369+1.51652 /x)^3), add=TRUE,col="black") #Petterson 

curve(1.3+(1/(0.3917304+3.1196247/x)^3), add=TRUE,col="orange") 

#Adaptive 

curve(1.3+(1/(0.41382609+2.658969 /x)^3), add=TRUE,col="green") #Fixed 

curve(1.3+(1/(0.27760987+4.8266982 /x)^3),add=TRUE,col="red") #1km 

curve(1.3+(1/(0.23557085+4.7515349 /x)^3),add=TRUE,col="blue") #500m 

legend(title='Plot 1598',"bottomright", 

c("Petterson","Adaptive",'Fixed','1km bandwidth','500m bandwidth'), 

col = c('black','orange','green','red','blue'),lwd=2, cex = 0.7) 

 

#Plot 1648 

start29 <- 

read.csv("C:/Users/mariA/Documents/R/datos/Phalepensis/Inventos/sIERRA

/ValiTrees/1648.csv", sep=";", dec=".") 
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attach(start29) 

h<-height 

d<-diameter 

plot(h~d, xlab='diameter', ylab="height") 

curve(1.3+(1/(0.44571+1.62916 /x)^3), add=TRUE,col="black") #Petterson 

curve(1.3+(1/(0.3868865+3.288398 /x)^3), add=TRUE,col="orange") 

#Adaptive 

curve(1.3+(1/(0.40941561+2.8312022 /x)^3), add=TRUE,col="green") 

#Fixed 

curve(1.3+(1/(0.41570921+2.7156847 /x)^3),add=TRUE,col="red") #1km 

curve(1.3+(1/(0.29831487+2.7151616 /x)^3),add=TRUE,col="blue") #500m 

legend(title='Plot 1648',"bottomright", 

c("Petterson","Adaptive",'Fixed','1km bandwidth','500m bandwidth'), 

col = c('black','orange','green','red','blue'),lwd=2, cex = 0.7) 

 

#Plot 1660 

start30 <- 

read.csv("C:/Users/mariA/Documents/R/datos/Phalepensis/Inventos/sIERRA

/ValiTrees/1660.csv", sep=";", dec=".") 

attach(start30) 

h<-height 

d<-diameter 

plot(h~d, xlab='diameter', ylab="height") 

curve(1.3+(1/(0.40342+2.163 /x)^3), add=TRUE,col="black") #Petterson 

curve(1.3+(1/(0.3996343+3.101009 /x)^3), add=TRUE,col="orange") 

#Adaptive 

curve(1.3+(1/(0.41183224+2.8391931 /x)^3), add=TRUE,col="green") 

#Fixed 

curve(1.3+(1/(0.47383604+1.8238681 /x)^3),add=TRUE,col="red") #1km 

curve(1.3+(1/(0.66925232+1.7930344 /x)^3),add=TRUE,col="blue") #500m 

legend(title='Plot 1660',"topleft", 

c("Petterson","Adaptive",'Fixed','1km bandwidth','500m bandwidth'), 

col = c('black','orange','green','red','blue'),lwd=2, cex = 0.7) 

 

#Plot 1666 

start31 <- 

read.csv("C:/Users/mariA/Documents/R/datos/Phalepensis/Inventos/sIERRA

/ValiTrees/1666.csv", sep=";", dec=".") 

attach(start31) 

h<-height 

d<-diameter 

plot(h~d, xlab='diameter', ylab="height") 

curve(1.3+(1/(0.41014+2.60797 /x)^3), add=TRUE,col="black") #Petterson 

curve(1.3+(1/(0.4041607+3.060545 /x)^3), add=TRUE,col="orange") 

#Adaptive 

curve(1.3+(1/(0.45596309+2.05049 /x)^3), add=TRUE,col="green") #Fixed 

curve(1.3+(1/(0.69590184-0.88811265 /x)^3),add=TRUE,col="red") #1km 

curve(1.3+(1/(0.79270163-0.88811265 /x)^3),add=TRUE,col="blue") #500m 

legend(title='Plot 1666',"topleft", 

c("Petterson","Adaptive",'Fixed','1km bandwidth','500m bandwidth'), 

col = c('black','orange','green','red','blue'),lwd=2, cex = 0.7) 

 

#Plot 1667 

start32 <- 

read.csv("C:/Users/mariA/Documents/R/datos/Phalepensis/Inventos/sIERRA

/ValiTrees/1667.csv", sep=";", dec=".") 

attach(start32) 

h<-height 
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d<-diameter 

plot(h~d, xlab='diameter', ylab="height") 

curve(1.3+(1/(0.43019+1.50054 /x)^3), add=TRUE,col="black") #Petterson 

curve(1.3+(1/(0.40560477+3.0434651 /x)^3), add=TRUE,col="orange") 

#Adaptive 

curve(1.3+(1/(0.45648572+2.0457464 /x)^3), add=TRUE,col="green") 

#Fixed 

curve(1.3+(1/(0.67738605-0.41408126 /x)^3),add=TRUE,col="red") #1km 

curve(1.3+(1/(0.87263822-0.23019408 /x)^3),add=TRUE,col="blue") #500m 

legend(title='Plot 1667',"topleft", 

c("Petterson","Adaptive",'Fixed','1km bandwidth','500m bandwidth'), 

col = c('black','orange','green','red','blue'),lwd=2, cex = 0.7) 

 

#Plot 1781 

start33 <- 

read.csv("C:/Users/mariA/Documents/R/datos/Phalepensis/Inventos/sIERRA

/ValiTrees/1781.csv", sep=";", dec=".") 

attach(start33) 

h<-height 

d<-diameter 

plot(h~d, xlab='diameter', ylab="height") 

curve(1.3+(1/(0.40038+2.64309 /x)^3), add=TRUE,col="black") #Petterson 

curve(1.3+(1/(0.4028729+2.996512 /x)^3), add=TRUE,col="orange") 

#Adaptive 

curve(1.3+(1/(0.43432961+2.3311978 /x)^3), add=TRUE,col="green") 

#Fixed 

curve(1.3+(1/(0.38003307+3.3344083 /x)^3),add=TRUE,col="red") #1km 

curve(1.3+(1/(0.52364313+3.3344083 /x)^3),add=TRUE,col="blue") #500m 

legend(title='Plot 1781',"topleft", 

c("Petterson","Adaptive",'Fixed','1km bandwidth','500m bandwidth'), 

col = c('black','orange','green','red','blue'),lwd=2, cex = 0.7) 

 

 Curves Trees vs local Petterson 

 

#Plot  1151 

start3 <- 

read.csv("C:/Users/mariA/Documents/R/datos/Phalepensis/Inventos/sIERRA

/ValiTrees/V1151.csv", sep=";", dec=".") 

attach(start3) 

h<-height 

d<-diameter 

plot(h~d, xlab='diameter', ylab="height") 

curve(1.3+(1/(0.41902+1.73792 /x)^3), add=TRUE,col="black") #Petterson 

curve(1.3+(1/(0.42724577+1.8565383 /x)^3), add=TRUE,col="orange") 

#Adaptive 

curve(1.3+(1/(0.42302678+1.8852055/x)^3), add=TRUE,col="green") #Fixed 

curve(1.3+(1/(0.40100915+2.4699093 /x)^3),add=TRUE,col="red") #1km 

curve(1.3+(1/(0.41536399+2.0513537 /x)^3),add=TRUE,col="blue") #500m 

legend(title='Plot 1151',"topleft", 

c("Petterson","Adaptive",'Fixed','1km bandwidth','500m bandwidth'), 

col = c('black','orange','green','red','blue'),lwd=2, cex = 0.7) 

 

#Plot  1174 

start4 <- 

read.csv("C:/Users/mariA/Documents/R/datos/Phalepensis/Inventos/sIERRA

/ValiTrees/1174.csv", sep=";", dec=".") 

attach(start4) 
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h<-height 

d<-diameter 

plot(h~d, xlab='diameter', ylab="height") 

curve(1.3+(1/(0.40478+2.4672 /x)^3), add=TRUE,col="black") #Petterson 

curve(1.3+(1/(0.45380431+1.2310749 /x)^3), add=TRUE,col="orange") 

#Adaptive 

curve(1.3+(1/(0.45230982+ 1.3451496/x)^3), add=TRUE,col="green") 

#Fixed 

curve(1.3+(1/(0.42486352+1.8383351 /x)^3),add=TRUE,col="red") #1km 

curve(1.3+(1/(0.45723842+1.4488124/x)^3),add=TRUE,col="blue") #500m 

legend(title='Plot 1174',"topleft", 

c("Petterson","Adaptive",'Fixed','1km bandwidth','500m bandwidth'), 

col = c('black','orange','green','red','blue'),lwd=2, cex = 0.7) 

 

#Plot  1187 

start5 <- 

read.csv("C:/Users/mariA/Documents/R/datos/Phalepensis/Inventos/sIERRA

/ValiTrees/1187.csv", sep=";", dec=".") 

attach(start5) 

h<-height 

d<-diameter 

plot(h~d, xlab='diameter', ylab="height") 

curve(1.3+(1/((0.38193+2.68613 /x)^3)), add=TRUE,col="black") 

#Petterson 

curve(1.3+(1/((0.45376848+1.117626 /x)^3)), add=TRUE,col="orange") 

#Adaptive 

curve(1.3+(1/(0.44075716+1.4338303/x)^3), add=TRUE,col="green") #Fixed 

curve(1.3+(1/(0.41316598+2.0220193 /x)^3),add=TRUE,col="red") #1km 

curve(1.3+(1/(0.42901412+1.7120061 /x)^3),add=TRUE,col="blue") #500m 

legend(title='Plot 1187',"topleft", 

c("Petterson","Adaptive",'Fixed','1km bandwidth','500m bandwidth'), 

col = c('black','orange','green','red','blue'),lwd=2, cex = 0.7) 

 

#Plot  1191 

start7 <- 

read.csv("C:/Users/mariA/Documents/R/datos/Phalepensis/Inventos/sIERRA

/ValiTrees/1191.csv", sep=";", dec=".") 

attach(start7) 

h<-height 

d<-diameter 

plot(h~d, xlab='diameter', ylab="height") 

curve(1.3+(1/(0.42307+2.22909 /x)^3), add=TRUE,col="black") #Petterson 

curve(1.3+(1/(0.41188752+2.8469041 /x)^3), add=TRUE,col="orange") 

#Adaptive 

curve(1.3+(1/(0.43025968+2.1816946/x)^3), add=TRUE,col="green") #Fixed 

curve(1.3+(1/(0.41845423+2.3373027 /x)^3),add=TRUE,col="red") #1km 

curve(1.3+(1/(0.4240043+2.2525501 /x)^3),add=TRUE,col="blue") #500m 

legend(title='Plot 1191',"topleft", 

c("Petterson","Adaptive",'Fixed','1km bandwidth','500m bandwidth'), 

col = c('black','orange','green','red','blue'),lwd=2, cex = 0.7) 

 

#Plot  1196 

start9 <- 

read.csv("C:/Users/mariA/Documents/R/datos/Phalepensis/Inventos/sIERRA

/ValiTrees/1196.csv", sep=";", dec=".") 

attach(start9) 

h<-height 

d<-diameter 
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plot(h~d, xlab='diameter', ylab="height") 

curve(1.3+(1/(0.41489+3.82912 /x)^3), add=TRUE,col="black") #Petterson 

curve(1.3+(1/(0.43900264+1.7721102/x)^3), add=TRUE,col="orange") 

#Adaptive 

curve(1.3+(1/(0.43771839+1.7383301/x)^3), add=TRUE,col="green") #Fixed 

curve(1.3+(1/(0.41493189+2.1877471 /x)^3),add=TRUE,col="red") #1km 

curve(1.3+(1/(0.42799641+1.8728016 /x)^3),add=TRUE,col="blue") #500m 

legend(title='Plot 1196',"bottomright", 

c("Petterson","Adaptive",'Fixed','1km bandwidth','500m bandwidth'), 

col = c('black','orange','green','red','blue'),lwd=2, cex = 0.7) 

 

#Plot  1202 

start10 <- 

read.csv("C:/Users/mariA/Documents/R/datos/Phalepensis/Inventos/sIERRA

/ValiTrees/1202.csv", sep=";", dec=".") 

attach(start10) 

h<-height 

d<-diameter 

plot(h~d, xlab='diameter', ylab="height") 

curve(1.3+(1/(0.4475+1.1437 /x)^3), add=TRUE,col="black") #Petterson 

curve(1.3+(1/(0.4460641+1.5854774/x)^3), add=TRUE,col="orange") 

#Adaptive 

curve(1.3+(1/(0.44569024+1.56827 /x)^3), add=TRUE,col="green") #Fixed 

curve(1.3+(1/(0.43550696+1.774532 /x)^3),add=TRUE,col="red") #1km 

curve(1.3+(1/(0.43670611+1.8232702 /x)^3),add=TRUE,col="blue") #500m 

legend(title='Plot 1202',"bottomright", 

c("Petterson","Adaptive",'Fixed','1km bandwidth','500m bandwidth'), 

col = c('black','orange','green','red','blue'),lwd=2, cex = 0.7) 

 

#Plot  1215 

start12 <- 

read.csv("C:/Users/mariA/Documents/R/datos/Phalepensis/Inventos/sIERRA

/ValiTrees/1215.csv", sep=";", dec=".") 

attach(start12) 

h<-height 

d<-diameter 

plot(h~d, xlab='diameter', ylab="height") 

curve(1.3+(1/(0.49675+1.74904 /x)^3), add=TRUE,col="black") #Petterson 

curve(1.3+(1/(0.43941702+1.7548859/x)^3), add=TRUE,col="orange") 

#Adaptive 

curve(1.3+(1/(0.43942092+1.7428753 /x)^3), add=TRUE,col="green") 

#Fixed 

curve(1.3+(1/(0.42907945+1.9394386/x)^3),add=TRUE,col="red") #1km 

curve(1.3+(1/(0.43670611+1.8232702 /x)^3),add=TRUE,col="blue") #500m 

legend(title='Plot 1215',"bottomright", 

c("Petterson","Adaptive",'Fixed','1km bandwidth','500m bandwidth'), 

col = c('black','orange','green','red','blue'),lwd=2, cex = 0.7) 

 

#Plot  1455 

start13 <- 

read.csv("C:/Users/mariA/Documents/R/datos/Phalepensis/Inventos/sIERRA

/ValiTrees/1455.csv", sep=";", dec=".") 

attach(start13) 

h<-height 

d<-diameter 

plot(h~d, xlab='diameter', ylab="height") 

curve(1.3+(1/(0.3963+2.1981 /x)^3), add=TRUE,col="black") #Petterson 
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curve(1.3+(1/(0.44398075+1.7320823 /x)^3), add=TRUE,col="orange") 

#Adaptive 

curve(1.3+(1/(0.44313654+1.6965262 /x)^3), add=TRUE,col="green") 

#Fixed 

curve(1.3+(1/(0.43876759+1.8602901/x)^3),add=TRUE,col="red") #1km 

curve(1.3+(1/(0.44431856+1.6976159 /x)^3),add=TRUE,col="blue") #500m 

legend(title='Plot 1455',"bottomright", 

c("Petterson","Adaptive",'Fixed','1km bandwidth','500m bandwidth'), 

col = c('black','orange','green','red','blue'),lwd=2, cex = 0.7) 

 

#Plot  1468 

start16 <- 

read.csv("C:/Users/mariA/Documents/R/datos/Phalepensis/Inventos/sIERRA

/ValiTrees/1468.csv", sep=";", dec=".") 

attach(start16) 

h<-height 

d<-diameter 

plot(h~d, xlab='diameter', ylab="height") 

curve(1.3+(1/(0.45172+0.9936 /x)^3), add=TRUE,col="black") #Petterson 

curve(1.3+(1/(0.44683822+1.5829411 /x)^3), add=TRUE,col="orange") 

#Adaptive 

curve(1.3+(1/(0.44902797+1.6152754 /x)^3), add=TRUE,col="green") 

#Fixed 

curve(1.3+(1/(0.44748814+1.608336 /x)^3),add=TRUE,col="red") #1km 

curve(1.3+(1/(0.44998584+1.5663694/x)^3),add=TRUE,col="blue") #500m 

legend(title='Plot 1468',"bottomright", 

c("Petterson","Adaptive",'Fixed','1km bandwidth','500m bandwidth'), 

col = c('black','orange','green','red','blue'),lwd=2, cex = 0.7) 

 

#Plot  1477 

start17 <- 

read.csv("C:/Users/mariA/Documents/R/datos/Phalepensis/Inventos/sIERRA

/ValiTrees/1477.csv", sep=";", dec=".") 

attach(start17) 

h<-height 

d<-diameter 

plot(h~d, xlab='diameter', ylab="height") 

curve(1.3+(1/(0.3631+3.15528 /x)^3), add=TRUE,col="black") #Petterson 

curve(1.3+(1/(0.47015152+1.578027 /x)^3), add=TRUE,col="orange") 

#Adaptive 

curve(1.3+(1/(0.46412782+1.5427659 /x)^3), add=TRUE,col="green") 

#Fixed 

curve(1.3+(1/(0.43801047+1.7655199/x)^3),add=TRUE,col="red") #1km 

curve(1.3+(1/(0.45852328+1.4997644 /x)^3),add=TRUE,col="blue") #500m 

legend(title='Plot 1477',"bottomright", 

c("Petterson","Adaptive",'Fixed','1km bandwidth','500m bandwidth'), 

col = c('black','orange','green','red','blue'),lwd=2, cex = 0.7) 

 

#Plot 1511 

start20 <- 

read.csv("C:/Users/mariA/Documents/R/datos/Phalepensis/Inventos/sIERRA

/ValiTrees/1511.csv", sep=";", dec=".") 

attach(start20) 

h<-height 

d<-diameter 

plot(h~d, xlab='diameter', ylab="height") 

curve(1.3+(1/(0.40292+2.71806 /x)^3), add=TRUE,col="black") #Petterson 
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curve(1.3+(1/(0.43632981+1.8376018/x)^3), add=TRUE,col="orange") 

#Adaptive 

curve(1.3+(1/(0.43694763+1.8501165 /x)^3), add=TRUE,col="green") 

#Fixed 

curve(1.3+(1/(0.42166756+2.1462104 /x)^3),add=TRUE,col="red") #1km 

curve(1.3+(1/(0.43259811+1.889839/x)^3),add=TRUE,col="blue") #500m 

legend(title='Plot 1511',"bottomright", 

c("Petterson","Adaptive",'Fixed','1km bandwidth','500m bandwidth'), 

col = c('black','orange','green','red','blue'),lwd=2, cex = 0.7) 

 

#Plot 1524 

start22 <- 

read.csv("C:/Users/mariA/Documents/R/datos/Phalepensis/Inventos/sIERRA

/ValiTrees/1524.csv", sep=";", dec=".") 

attach(start22) 

h<-height 

d<-diameter 

plot(h~d, xlab='diameter', ylab="height") 

curve(1.3+(1/(0.38065+2.46048 /x)^3), add=TRUE,col="black") #Petterson 

curve(1.3+(1/(0.44527166+1.6397589 /x)^3), add=TRUE,col="orange") 

#Adaptive 

curve(1.3+(1/(0.44641821+1.5903641 /x)^3), add=TRUE,col="green") 

#Fixed 

curve(1.3+(1/(0.43760595+1.8479355/x)^3),add=TRUE,col="red") #1km 

curve(1.3+(1/(0.44474732+1.6362684/x)^3),add=TRUE,col="blue") #500m 

legend(title='Plot 1524',"topleft", 

c("Petterson","Adaptive",'Fixed','1km bandwidth','500m bandwidth'), 

col = c('black','orange','green','red','blue'),lwd=2, cex = 0.7) 

 

#Plot 1527 

start23 <- 

read.csv("C:/Users/mariA/Documents/R/datos/Phalepensis/Inventos/sIERRA

/ValiTrees/1527.csv", sep=";", dec=".") 

attach(start23) 

h<-height 

d<-diameter 

plot(h~d, xlab='diameter', ylab="height") 

curve(1.3+(1/(0.3773+2.2447 /x)^3), add=TRUE,col="black") #Petterson 

curve(1.3+(1/(0.43726257+1.451449 /x)^3), add=TRUE,col="orange") 

#Adaptive 

curve(1.3+(1/(0.43335128+1.4739929/x)^3), add=TRUE,col="green") #Fixed 

curve(1.3+(1/(0.41536579+1.8048409/x)^3),add=TRUE,col="red") #1km 

curve(1.3+(1/(0.42881637+1.6184497/x)^3),add=TRUE,col="blue") #500m 

legend(title='Plot 1527',"bottomright", 

c("Petterson","Adaptive",'Fixed','1km bandwidth','500m bandwidth'), 

col = c('black','orange','green','red','blue'),lwd=2, cex = 0.7) 

 

#Plot 1533 

start24 <- 

read.csv("C:/Users/mariA/Documents/R/datos/Phalepensis/Inventos/sIERRA

/ValiTrees/1533.csv", sep=";", dec=".") 

attach(start24) 

h<-height 

d<-diameter 

plot(h~d, xlab='diameter', ylab="height") 

curve(1.3+(1/(0.38709+1.5151 /x)^3), add=TRUE,col="black") #Petterson 

curve(1.3+(1/(0.43690102+1.7596909 /x)^3), add=TRUE,col="orange") 

#Adaptive 
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curve(1.3+(1/(0.44355362+1.7317658/x)^3), add=TRUE,col="green") #Fixed 

curve(1.3+(1/(0.42751475+1.9813983 /x)^3),add=TRUE,col="red") #1km 

curve(1.3+(1/(0.43798761+1.7526127/x)^3),add=TRUE,col="blue") #500m 

legend(title='Plot 1533',"topleft", 

c("Petterson","Adaptive",'Fixed','1km bandwidth','500m bandwidth'), 

col = c('black','orange','green','red','blue'),lwd=2, cex = 0.7) 

 

#Plot 1555 

start25 <- 

read.csv("C:/Users/mariA/Documents/R/datos/Phalepensis/Inventos/sIERRA

/ValiTrees/1555.csv", sep=";", dec=".") 

attach(start25) 

h<-height 

d<-diameter 

plot(h~d, xlab='diameter', ylab="height") 

curve(1.3+(1/(0.44002+0.93015 /x)^3), add=TRUE,col="black") #Petterson 

curve(1.3+(1/(0.4403088+1.6239772 /x)^3), add=TRUE,col="orange") 

#Adaptive 

curve(1.3+(1/(0.437975+1.6300924 /x)^3), add=TRUE,col="green") #Fixed 

curve(1.3+(1/(0.43120479+1.8006116 /x)^3),add=TRUE,col="red") #1km 

curve(1.3+(1/(0.43717904+1.754497/x)^3),add=TRUE,col="blue") #500m 

legend(title='Plot 1555',"topleft", 

c("Petterson","Adaptive",'Fixed','1km bandwidth','500m bandwidth'), 

col = c('black','orange','green','red','blue'),lwd=2, cex = 0.7) 

 

#Plot 1598 

start27 <- 

read.csv("C:/Users/mariA/Documents/R/datos/Phalepensis/Inventos/sIERRA

/ValiTrees/1598.csv", sep=";", dec=".") 

attach(start27) 

h<-height 

d<-diameter 

plot(h~d, xlab='diameter', ylab="height") 

curve(1.3+(1/(0.4369+1.51652 /x)^3), add=TRUE,col="black") #Petterson 

curve(1.3+(1/(0.41375696+1.7925799/x)^3), add=TRUE,col="orange") 

#Adaptive 

curve(1.3+(1/(0.41563524+1.8012457/x)^3), add=TRUE,col="green") #Fixed 

curve(1.3+(1/(0.40575553+2.0038413 /x)^3),add=TRUE,col="red") #1km 

curve(1.3+(1/(0.41109678+1.8509747/x)^3),add=TRUE,col="blue") #500m 

legend(title='Plot 1598',"bottomright", 

c("Petterson","Adaptive",'Fixed','1km bandwidth','500m bandwidth'), 

col = c('black','orange','green','red','blue'),lwd=2, cex = 0.7) 

#Plot 1660 

start30 <- 

read.csv("C:/Users/mariA/Documents/R/datos/Phalepensis/Inventos/sIERRA

/ValiTrees/1660.csv", sep=";", dec=".") 

attach(start30) 

h<-height 

d<-diameter 

plot(h~d, xlab='diameter', ylab="height") 

curve(1.3+(1/(0.40342+2.163 /x)^3), add=TRUE,col="black") #Petterson 

curve(1.3+(1/(0.4324257+1.9290773 /x)^3), add=TRUE,col="orange") 

#Adaptive 

curve(1.3+(1/(0.43988133+1.8039612/x)^3), add=TRUE,col="green") #Fixed 

curve(1.3+(1/(0.42037046+2.1298904 /x)^3),add=TRUE,col="red") #1km 

curve(1.3+(1/(0.43716172+1.8505755/x)^3),add=TRUE,col="blue") #500m 
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legend(title='Plot 1660',"bottomright", 

c("Petterson","Adaptive",'Fixed','1km bandwidth','500m bandwidth'), 

col = c('black','orange','green','red','blue'),lwd=2, cex = 0.7) 

 

#Plot 1648 

start29 <- 

read.csv("C:/Users/mariA/Documents/R/datos/Phalepensis/Inventos/sIERRA

/ValiTrees/1648.csv", sep=";", dec=".") 

attach(start29) 

h<-height 

d<-diameter 

plot(h~d, xlab='diameter', ylab="height") 

curve(1.3+(1/(0.44571+1.62916 /x)^3), add=TRUE,col="black") #Petterson 

curve(1.3+(1/(0.43863539+1.984595/x)^3), add=TRUE,col="orange") 

#Adaptive 

curve(1.3+(1/(0.45778777+1.6278768/x)^3), add=TRUE,col="green") #Fixed 

curve(1.3+(1/(0.44483963+2.0213166/x)^3),add=TRUE,col="red") #1km 

curve(1.3+(1/(0.47004587+1.665568/x)^3),add=TRUE,col="blue") #500m 

legend(title='Plot 1648',"topleft", 

c("Petterson","Adaptive",'Fixed','1km bandwidth','500m bandwidth'), 

col = c('black','orange','green','red','blue'),lwd=2, cex = 0.7) 

 

#Plot 1666 

start31 <- 

read.csv("C:/Users/mariA/Documents/R/datos/Phalepensis/Inventos/sIERRA

/ValiTrees/1666.csv", sep=";", dec=".") 

attach(start31) 

h<-height 

d<-diameter 

plot(h~d, xlab='diameter', ylab="height") 

curve(1.3+(1/(0.41014+2.60797 /x)^3), add=TRUE,col="black") #Petterson 

curve(1.3+(1/(0.42617671+2.1488279/x)^3), add=TRUE,col="orange") 

#Adaptive 

curve(1.3+(1/(0.42232201+2.2148975/x)^3), add=TRUE,col="green") #Fixed 

curve(1.3+(1/(0.40401351+2.4784541 /x)^3),add=TRUE,col="red") #1km 

curve(1.3+(1/(0.41897464+2.2087962/x)^3),add=TRUE,col="blue") #500m 

legend(title='Plot 1666',"bottomright", 

c("Petterson","Adaptive",'Fixed','1km bandwidth','500m bandwidth'), 

col = c('black','orange','green','red','blue'),lwd=2, cex = 0.7) 

 

#Plot 1667 

start32 <- 

read.csv("C:/Users/mariA/Documents/R/datos/Phalepensis/Inventos/sIERRA

/ValiTrees/1667.csv", sep=";", dec=".") 

attach(start32) 

h<-height 

d<-diameter 

plot(h~d, xlab='diameter', ylab="height") 

curve(1.3+(1/(0.43019+1.50054 /x)^3), add=TRUE,col="black") #Petterson 

curve(1.3+(1/(0.42482001+2.4346516/x)^3), add=TRUE,col="orange") 

#Adaptive 

curve(1.3+(1/(0.42175064+2.3092389/x)^3), add=TRUE,col="green") #Fixed 

curve(1.3+(1/(0.40942222+2.576566/x)^3),add=TRUE,col="red") #1km 

curve(1.3+(1/(0.41922925+2.4149062/x)^3),add=TRUE,col="blue") #500m 

legend(title='Plot 1667',"topleft", 

c("Petterson","Adaptive",'Fixed','1km bandwidth','500m bandwidth'), 

col = c('black','orange','green','red','blue'),lwd=2, cex = 0.7) 
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#Plot 1781 

start33 <- 

read.csv("C:/Users/mariA/Documents/R/datos/Phalepensis/Inventos/sIERRA

/ValiTrees/1781.csv", sep=";", dec=".") 

attach(start33) 

h<-height 

d<-diameter 

plot(h~d, xlab='diameter', ylab="height") 

curve(1.3+(1/(0.40038+2.64309 /x)^3), add=TRUE,col="black") #Petterson 

curve(1.3+(1/(0.41385572+2.2144794/x)^3), add=TRUE,col="orange") 

#Adaptive 

curve(1.3+(1/(0.41335765+2.2532911/x)^3), add=TRUE,col="green") #Fixed 

curve(1.3+(1/(0.40883907+2.2713785/x)^3),add=TRUE,col="red") #1km 

curve(1.3+(1/(0.41246948+2.3442321/x)^3),add=TRUE,col="blue") #500m 

legend(title='Plot 1781',"bottomright", 

c("Petterson","Adaptive",'Fixed','1km bandwidth','500m bandwidth'), 

col = c('black','orange','green','red','blue'),lwd=2, cex = 0.7) 
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11. PARAMETERS TABLE 

 

Table 8 Parameters table average data plot 

Plot n DepP IndepP R2 DepAd IndepAd DepFix IndepFix Dep1km Indep1km Dep500m Indep500m x y 

1151 17 1.738 0.419 0.770 2.702 0.435 2.568 0.450 2.320 0.433 2.317 0.419 604988 4211030 

1174 12 2.467 0.405 0.826 2.262 0.442 2.179 0.450 2.312 0.431 2.312 0.461 611974 4210011 

1191 11 2.229 0.423 0.811 2.753 0.432 2.427 0.458 2.341 0.459 2.599 0.436 601953 4207998 

1196 17 3.829 0.415 0.675 2.497 0.435 2.321 0.449 4.132 0.368 4.102 0.339 606948 4208000 

1202 32 1.144 0.448 0.373 2.397 0.446 2.135 0.460 0.811 0.511 0.947 0.645 615964 4207937 

1215 12 1.749 0.497 0.786 2.369 0.447 2.185 0.457 2.643 0.453 2.549 0.517 613981 4206982 

1455 15 2.198 0.396 0.769 2.432 0.443 2.234 0.455 1.488 0.497 1.503 0.534 610968 4205960 

1468 13 0.994 0.452 0.693 2.300 0.455 2.212 0.461 2.610 0.450 2.494 0.403 616027 4204976 

1477 23 3.155 0.363 0.529 2.438 0.447 2.241 0.459 2.085 0.484 2.083 0.478 611943 4203872 

1511 10 2.718 0.403 0.779 2.595 0.440 2.354 0.457 1.594 0.491 1.587 0.532 615000 4201000 

1524 10 2.460 0.381 0.812 2.707 0.428 2.300 0.450 0.971 0.511 0.982 0.797 620165 4200165 

1527 26 2.245 0.377 0.565 2.853 0.409 2.523 0.427 2.162 0.426 2.153 0.439 630190 4200042 

1533 15 1.515 0.387 0.607 2.854 0.417 2.421 0.440 1.906 0.444 1.906 0.525 620018 4199003 

1555 14 0.930 0.440 0.595 2.789 0.411 2.440 0.428 2.010 0.461 2.010 0.805 625025 4196977 

1598 13 1.517 0.437 0.738 3.120 0.392 2.659 0.414 4.827 0.278 4.752 0.236 622058 4193972 

1648 16 1.629 0.446 0.558 3.288 0.387 2.831 0.409 2.716 0.416 2.715 0.298 619079 4189940 

1660 11 2.163 0.402 0.672 3.101 0.3996 2.839 0.412 1.824 0.474 1.793 0.669 617998 4189940 

1666 17 2.608 0.410 0.886 3.061 0.404 2.050 0.456 -0.888 0.696 -0.888 0.793 628994 4189064 

1667 30 1.501 0.430 0.687 3.043 0.406 2.046 0.456 -0.414 0.677 -0.230 0.873 630086 4189039 

1781 10 2.643 0.400 0.962 2.997 0.403 2.331 0.434 3.334 0.380 3.334 0.524 632000 4191000 
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Table 9 - Parameters table tree data 

Plot n DepP IndepP R2p DepAd IndepAd DepFix IndepFix Dep1km Indep1km Dep500m Indep500m x y 

1127 13 0.893 0.468 0.563 1.873 0.437 1.832 0.441 2.164 0.418 1.971 0.431 612002 4213978 

1151 17 1.738 0.419 0.770 1.857 0.427 1.885 0.423 2.470 0.401 2.051 0.415 604988 4211030 

1174 12 2.467 0.405 0.826 1.231 0.454 1.345 0.452 1.838 0.425 1.449 0.457 611974 4210011 

1187 11 2.686 0.382 0.678 1.118 0.454 1.434 0.441 2.022 0.413 1.712 0.429 609958 4208987 

1191 11 2.229 0.423 0.811 2.847 0.412 2.182 0.430 2.337 0.418 2.253 0.424 601953 4207998 

1196 17 3.829 0.415 0.675 1.772 0.439 1.738 0.438 2.188 0.415 1.873 0.428 606948 4208000 

1202 32 1.144 0.448 0.373 1.585 0.446 1.568 0.446 1.775 0.436 1.612 0.442 615964 4207937 

1215 12 1.749 0.497 0.786 1.755 0.439 1.743 0.439 1.939 0.429 1.823 0.437 613981 4206982 

1455 15 2.198 0.396 0.769 1.732 0.444 1.697 0.443 1.860 0.439 1.698 0.444 610968 4205960 

1468 13 0.994 0.452 0.693 1.583 0.447 1.615 0.449 1.608 0.447 1.566 0.450 616027 4204976 

1477 23 3.155 0.363 0.529 1.578 0.470 1.543 0.464 1.766 0.438 1.500 0.459 611943 4203872 

1511 10 2.718 0.403 0.779 1.838 0.436 1.850 0.437 2.146 0.422 1.890 0.433 615000 4201000 

1524 10 2.460 0.381 0.812 1.640 0.445 1.590 0.446 1.848 0.438 1.636 0.445 620165 4200165 

1527 26 2.245 0.377 0.565 1.451 0.437 1.474 0.433 1.805 0.415 1.618 0.429 630190 4200042 

1533 15 1.515 0.387 0.607 1.760 0.437 1.732 0.444 1.981 0.428 1.753 0.438 620018 4199003 

1555 14 0.930 0.440 0.595 1.624 0.440 1.630 0.438 1.801 0.431 1.754 0.437 625025 4196977 

1598 13 1.517 0.437 0.738 1.793 0.414 1.801 0.416 2.004 0.406 1.851 0.411 622058 4193972 

1648 16 1.629 0.446 0.558 1.985 0.439 1.628 0.458 2.021 0.445 1.666 0.470 619079 4189940 

1660 11 2.163 0.403 0.673 1.929 0.432 1.804 0.440 2.130 0.420 1.851 0.437 617998 4188940 

1666 17 2.608 0.410 0.886 2.149 0.426 2.215 0.422 2.478 0.404 2.209 0.419 628994 4189064 

1667 30 1.501 0.430 0.687 2.435 0.425 2.309 0.422 2.577 0.409 2.415 0.419 630086 4189039 

1781 10 2.643 0.400 0.962 2.214 0.414 2.253 0.413 2.271 0.409 2.344 0.412 632000 4191000 
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12. RESUDUALS TABLES 

12.1. Petterson Local Regression 

Table 10 - Regression residual coefficients 

Plot average_p rmse_p std_p stde_p aic_p 

1151 -0.107 0.960 0.903 0.082 0.887 

1174 -0.064 1.013 0.971 0.069 2.195 

1191 -0.031 0.511 0.483 0.044 -12.994 

1196 -0.041 0.721 0.679 0.068 -4.768 

1202 0.009 0.576 0.543 0.054 -9.265 

1215 -0.057 0.920 0.871 0.079 -0.033 

1455 -0.095 1.066 1.026 0.064 3.923 

1468 -0.057 0.921 0.888 0.055 -0.770 

1477 -0.085 1.067 1.046 0.034 5.979 

1511 -0.022 1.166 1.099 0.110 4.847 

1524 -0.058 0.738 0.707 0.050 -6.650 

1527 -0.091 1.111 1.085 0.042 7.406 

1533 -0.092 1.400 1.345 0.090 11.943 

1555 -0.040 0.737 0.702 0.058 -5.504 

1598 -0.041 0.680 0.666 0.022 -21.248 

1648 -0.162 1.468 1.411 0.083 14.916 

1660 -0.081 0.838 0.805 0.050 -3.790 

1666 -0.130 1.407 1.319 0.132 8.591 

1667 -0.004 1.009 0.966 0.074 2.074 

1781 -0.201 1.411 1.361 0.062 17.052 

12.2. Plot Curves 

Table 11 - Adaptive kernel residual coefficients. 

Plot average_ad rmse_ad mean_gwr_pred_ad std_ad stde_ad aic_ad 

1174 -1.066 1.635 0.950 1.075 0.098 12.607 
1555 -2.449 2.883 2.387 1.101 0.079 31.486 

1215 0.337 0.708 0.421 0.571 0.052 -5.807 

1191 -1.185 1.506 1.148 0.674 0.067 9.952 

1781 -0.646 0.924 0.668 0.543 0.054 0.184 

1660 -1.625 2.022 0.086 0.880 0.080 17.278 

1151 -2.335 2.723 2.241 1.049 0.066 33.916 

1648 -0.637 1.387 0.616 1.167 0.073 12.324 

1202 -2.470 2.790 2.364 1.105 0.036 65.543 

1524 -2.162 2.660 2.126 1.047 0.105 21.339 

1455 -1.524 1.846 1.475 0.802 0.057 19.001 

1527 -2.253 2.586 2.173 1.068 0.041 51.315 

1533 -4.318 4.846 4.232 1.353 0.090 49.196 

1468 -2.731 3.092 2.679 0.747 0.062 28.907 

1667 -2.245 2.413 2.210 0.638 0.021 54.773 

1666 -0.622 1.542 0.465 1.348 0.079 16.596 

1196 1.073 1.432 1.157 0.828 0.052 13.359 

1511 -1.129 1.927 0.997 1.372 0.137 14.887 

1598 -1.481 2.002 1.472 1.139 0.088 19.876 

1477 -1.246 1.975 1.048 1.445 0.066 31.841 
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Table 12 - 1km bandwidth residual coefficients 

Plot average1km rmse_1km mean_gwr_pred_1km std_1km stde_1km aic_1km 

1174 -0.786 1.379 0.671 1.016 0.092 8.865 
1555 -2.997 3.393 2.934 0.979 0.070 36.051 

1215 -0.174 0.607 0.279 0.546 0.050 -9.178 

1191 -1.563 1.932 1.526 0.776 0.078 14.939 

1781 -0.441 0.847 0.463 0.650 0.065 -1.547 

1660 -1.425 1.874 0.559 0.963 0.088 15.611 

1151 -1.716 2.128 1.622 1.042 0.065 26.032 

1648 -0.776 1.343 0.707 1.021 0.064 11.312 

1202 -1.564 1.942 1.459 1.056 0.034 43.075 

1524 -1.983 2.728 2.114 1.498 0.150 21.840 

1455 -1.128 1.569 1.079 0.950 0.068 14.449 

1527 -1.534 1.934 1.454 1.071 0.041 36.230 

1533 -3.659 4.163 3.573 1.324 0.088 44.643 

1468 -3.039 3.422 2.987 0.757 0.063 31.339 

1667 -3.162 3.505 3.128 1.231 0.041 77.182 

1666 -2.758 4.683 2.769 3.532 0.208 54.363 

1196 0.805 1.212 0.889 0.825 0.052 8.029 

1511 -1.192 2.131 1.168 1.567 0.157 16.897 

1598 -0.663 2.541 2.022 2.333 0.179 26.075 

1477 -1.569 2.269 1.371 1.525 0.069 37.949 

Table 13 - 500 m bandwidth residual coefficients 

Plot average500m rmse500m meangwr_pred_500m std_500m stde_500m aic_500m 

1174 -1.689 2.242 1.574 1.176 0.107 19.552 
1555 -7.506 8.215 7.444 1.275 0.091 60.809 

1215 -1.273 1.499 1.236 0.488 0.044 10.694 

1191 -1.118 1.448 1.081 0.689 0.069 9.174 

1781 -3.354 3.929 3.377 1.103 0.110 29.134 

1660 -4.318 4.976 2.607 1.332 0.121 37.095 

1151 -1.248 1.702 1.153 1.022 0.064 18.883 

1648 6.262 7.197 6.330 2.554 0.160 65.023 

1202 -4.315 4.607 4.209 1.129 0.036 96.637 

1524 -5.906 6.925 5.870 1.968 0.197 40.472 

1455 -1.824 2.248 1.775 1.041 0.074 24.526 

1527 -1.870 2.241 1.791 1.087 0.042 43.876 

1533 -5.743 6.362 5.657 1.498 0.100 57.362 

1468 -1.774 2.200 1.722 0.983 0.082 20.737 

1667 -5.231 5.542 5.197 1.158 0.039 104.669 

1666 -4.043 5.545 3.886 3.385 0.199 60.112 

1196 1.831 2.188 1.915 0.944 0.059 26.914 

1511 -2.178 3.027 2.046 1.695 0.169 23.920 

1598 1.275 4.089 2.851 3.683 0.283 38.445 

1477 -1.440 2.163 1.242 1.512 0.069 35.859 

Table 14 - Fixed kernel residual coefficients 

Plot average_fix rmse_fix mean_gwr_pred_fix std_fix stde_fix aic_fix 

1151 -2.553 2.951 2.459 1.085 0.068 36.496 
1174 -1.190 1.769 1.074 1.123 0.102 14.345 

1191 -1.638 2.004 1.600 0.767 0.077 15.667 

1196 0.894 1.300 0.978 0.851 0.053 10.258 

1202 -2.421 2.731 2.315 1.075 0.035 64.229 

1215 0.343 0.677 0.400 0.532 0.048 -6.796 
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1455 -1.460 1.797 1.411 0.827 0.059 18.252 

1468 -2.735 3.094 2.683 0.735 0.061 28.920 

1477 -1.239 1.989 1.041 1.470 0.067 32.160 

1511 -1.281 2.078 1.149 1.420 0.142 16.401 

1524 -2.214 2.735 2.177 1.098 0.110 21.893 

1527 -2.173 2.515 2.093 1.077 0.041 49.872 

1533 -4.355 4.879 4.269 1.336 0.089 49.402 

1555 -2.517 2.927 2.455 1.042 0.074 31.913 

1598 -1.391 1.859 1.382 1.035 0.080 17.954 

1648 -0.707 1.327 0.639 1.053 0.066 10.914 

1660 -1.486 1.882 0.225 0.872 0.079 15.706 

1666 -0.849 2.112 0.715 1.848 0.109 27.285 

1667 -1.934 2.119 1.899 0.682 0.023 46.973 

1781 -0.578 0.876 0.615 0.558 0.056 -0.869 

Table 15 - Coefficient of Determination 

Plot R_ad R_fix R_1km R_500km 

1151 0 0 0 0.269 
1174 0.496 0.409 0.641 0.052 

1191 0 0 0 0.063 

1196 0 0.076 0.196 0 

1202 0 0 0 0 

1215 0.527 0.568 0.652 0 

1455 0 0 0 0 

1468 0 0 0 0 

1477 0.026 0.012 0 0 

1511 0.321 0.209 0.169 0 

1524 0 0 0 0 

1527 0 0 0 0 

1533 0 0 0 0 

1555 0 0 0 0 

1598 0 0 0 0 

1648 0 0 0 0 

1660 0 0 0 0 

1666 0.781 0.59 0 0 

1667 0 0 0 0 

1781 0.802 0.822 0.834 0 

12.3. Tree Curves 

Table 16 - 500m bandwidht residuals 

Plot average500m rmse500m meangwr_pred_500m std_500m stde_500m aic_500m 

1174 -0.224 1.336 0.592 1.245 0.113 8.166 
1555 -1.708 2.122 1.645 1.006 0.072 22.904 

1215 1.560 1.840 1.592 0.607 0.055 15.206 

1191 -0.121 0.733 0.080 0.679 0.068 -4.445 

1781 0.111 0.548 0.146 0.503 0.050 -10.255 

1660 -0.544 1.110 0.487 0.885 0.080 4.088 

1151 -0.611 1.241 0.516 1.020 0.064 8.778 

1648 -1.017 1.411 0.960 0.868 0.054 12.874 

1202 -0.980 1.498 0.895 1.085 0.035 26.987 

1524 -0.949 1.562 1.045 1.081 0.108 10.690 

1455 -0.293 0.881 0.314 0.790 0.056 -1.694 

1527 -0.483 1.205 0.471 1.073 0.041 11.617 



 

84 

 

1533 -3.163 3.660 3.071 1.312 0.087 40.780 

1468 -1.357 1.677 1.318 0.739 0.062 14.217 

1667 -1.584 1.767 1.544 0.646 0.022 36.076 

1666 0.173 1.579 0.371 1.518 0.089 17.396 

1196 2.403 2.709 2.484 0.832 0.052 33.753 

1511 0.243 1.464 0.405 1.356 0.136 9.389 

1598 0.241 1.122 0.337 1.045 0.080 4.823 

1477 0.029 1.524 0.657 1.487 0.068 20.455 

Table 17 - Adaptive kernel residual coefficients 

Plot average_ad rmse_ad mean_gwr_pred_ad std_ad stde_ad aic_ad 

1174 0.343 1.398 0.564 1.276 0.116 9.159 
1555 -1.595 2.011 1.532 0.995 0.071 21.397 

1215 1.600 1.875 1.631 0.589 0.054 15.616 

1191 -0.564 0.935 0.523 0.651 0.065 0.432 

1781 0.299 0.624 0.290 0.497 0.050 -7.656 

1660 -0.548 1.104 0.491 0.876 0.080 3.977 

1151 -0.686 1.299 0.591 1.036 0.065 10.232 

1648 -0.410 1.050 0.353 0.922 0.058 3.417 

1202 -1.057 1.546 0.972 1.076 0.035 28.959 

1524 -0.976 1.584 1.063 1.083 0.108 10.965 

1455 -0.355 0.906 0.340 0.789 0.056 -0.907 

1527 -0.388 1.184 0.468 1.090 0.042 10.684 

1533 -3.136 3.633 3.044 1.311 0.087 40.554 

1468 -1.295 1.621 1.255 0.748 0.062 13.408 

1667 -1.768 1.944 1.727 0.646 0.022 41.823 

1666 0.004 1.636 0.382 1.584 0.093 18.606 

1196 2.148 2.459 2.229 0.852 0.053 30.661 

1511 0.198 1.467 0.397 1.368 0.137 9.439 

1598 0.270 1.114 0.328 1.029 0.079 4.629 

1477 -0.464 1.622 0.610 1.510 0.069 23.196 

Table 18 - Fixed kernel residual coefficients 

Plot average_fix rmse_fix mean_gwr_pred_fix std_fix stde_fix aic_fix 

1174 0.169 1.320 0.485 1.239 0.113 7.897 
1555 -1.507 1.932 1.443 1.000 0.071 20.280 

1215 1.624 1.899 1.655 0.588 0.053 15.900 

1191 -0.271 0.799 0.231 0.697 0.070 -2.713 

1781 0.245 0.596 0.236 0.499 0.050 -8.589 

1660 -0.539 1.112 0.482 0.891 0.081 4.133 

1151 -0.578 1.230 0.483 1.028 0.064 8.501 

1648 -0.524 1.064 0.467 0.874 0.055 3.855 

1202 -1.008 1.511 0.923 1.076 0.035 27.520 

1524 -0.923 1.550 1.044 1.091 0.109 10.539 

1455 -0.260 0.866 0.299 0.787 0.056 -2.192 

1527 -0.299 1.148 0.411 1.083 0.042 9.099 

1533 -3.328 3.828 3.236 1.320 0.088 42.128 

1468 -1.428 1.748 1.389 0.744 0.062 15.221 

1667 -1.468 1.656 1.428 0.647 0.022 32.212 

1666 0.035 1.594 0.334 1.543 0.091 17.717 

1196 2.264 2.575 2.345 0.851 0.053 32.135 

1511 0.151 1.462 0.373 1.369 0.137 9.364 

1598 0.175 1.083 0.270 1.021 0.079 3.902 

1477 -0.226 1.553 0.617 1.498 0.068 21.283 
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Table 19 - 1 km bandwidht residual coefficients 

Plot averagE1km rmse1km mean_gwr_pred_1km std_1km stde_1km aic_1km 

1174 0.297 1.115 0.406 1.011 0.092 4.193 
1555 -1.542 1.977 1.478 1.023 0.073 20.920 

1215 1.599 1.899 1.630 0.659 0.060 15.903 

1191 -0.021 0.708 0.046 0.667 0.067 -5.139 

1781 0.379 0.683 0.370 0.505 0.051 -5.859 

1660 -0.557 1.100 0.500 0.864 0.079 3.884 

1151 -0.873 1.417 0.778 1.030 0.064 13.018 

1648 -0.700 1.203 0.643 0.910 0.057 7.776 

1202 -1.096 1.599 1.012 1.109 0.036 31.039 

1524 -1.086 1.645 1.115 1.046 0.105 11.720 

1455 -0.480 0.959 0.422 0.775 0.055 0.666 

1527 -0.441 1.173 0.387 1.058 0.041 10.224 

1533 -3.212 3.709 3.120 1.312 0.087 41.174 

1468 -1.368 1.691 1.328 0.748 0.062 14.420 

1667 -1.595 1.777 1.554 0.646 0.022 36.435 

1666 0.286 1.468 0.448 1.391 0.082 14.931 

1196 2.329 2.629 2.411 0.814 0.051 32.793 

1511 0.185 1.425 0.320 1.330 0.133 8.857 

1598 0.106 1.135 0.390 1.081 0.083 5.131 

1477 0.147 1.472 0.582 1.428 0.065 18.906 

Table 20 - Coefficient of Detemination 

 

 

Plot R_ad R_fix R_1km R_500km 

1151 0.574 0.618 0.493 0.611 
1174 0.631 0.671 0.765 0.663 

1191 0.405 0.49 0.639 0.555 

1196 0 0 0 0 

1202 0 0 0 0 

1215 0 0 0 0 

1455 0.642 0.673 0.599 0.661 

1468 0 0 0 0 

1477 0.342 0.397 0.459 0.419 

1511 0.606 0.609 0.628 0.608 

1524 0.492 0.513 0.452 0.506 

1527 0.454 0.486 0.463 0.434 

1533 0 0 0 0 

1555 0 0 0 0 

1598 0.618 0.639 0.603 0.612 

1648 0.213 0.191 0 0 

1660 0.536 0.529 0.539 0.531 

1666 0.754 0.766 0.802 0.771 

1667 0 0 0 0 

1781 0.91 0.918 0.892 0.93 


