Applications of modular functions in algebraic number theory – Bc. Ondrej Bínovský
Bc. Ondrej Bínovský
Master's thesis
Applications of modular functions in algebraic number theory
Applications of modular functions in algebraic number theory
Abstract:
V tejto diplomovej práci skúmame grupu racionálnych bodov na eliptickej krivke tvaru x^3+y^3=2p, respektíve x^3+y^3=2p^2, kde p je nepárne prvočíslo, ktoré spĺňa istú podmienku modulo 9. Zkonštruujeme modulárnu parametrizáciu homogénneho priestoru prislúchajúcemu danej eliptickej krivke a použitím Šimurovej reciprocity zkonštruujeme racionálny bod na tomto homogénnom priestore. Nakoniec použitím metódy …moreAbstract:
In this thesis we study the group of rational points on the elliptic curve of the form x^3+y^3=2p and x^3+y^3=2p^2 where p is an odd prime satisfying a certain condition modulo 9. We will construct a modular parametrization of a homogeneous space associated with the elliptic curve in question, and using Shimura reciprocity we will construct a rational point on this homogeneous space. Finally, using …moreKeywords
Eliptická krivka Modulárna funkcia Súčet dvoch tretích mocnín racionálnych čísel Zostup na eliptickej krivke Rank eliptickej krivky Mordellova-Weilova veta Šimurova reciprocita Elliptic curve Modular function Sum of two rational cubes Descent on an elliptic curve Rank of an elliptic curve Mordell-Weil theorem Shimura reciprocity
Language used: English
Date on which the thesis was submitted / produced: 7. 5. 2024
Identifier:
https://is.muni.cz/th/pdxd0/
Thesis defence
- Date of defence: 17. 6. 2024
- Supervisor: prof. RNDr. Radan Kučera, DSc.
- Reader: doc. Lukáš Vokřínek, PhD.
Citation record
Full text of thesis
Contents of on-line thesis archive
Published in Theses:- světu
Other ways of accessing the text
Institution archiving the thesis and making it accessible: Masarykova univerzita, Přírodovědecká fakultaMasaryk University
Faculty of ScienceMaster programme / field:
Mathematics / Mathematics
Theses on a related topic
- No theses on a related topic available.