Bc. Ondrej Bínovský

Master's thesis

Applications of modular functions in algebraic number theory

Applications of modular functions in algebraic number theory
Abstract:
V tejto diplomovej práci skúmame grupu racionálnych bodov na eliptickej krivke tvaru x^3+y^3=2p, respektíve x^3+y^3=2p^2, kde p je nepárne prvočíslo, ktoré spĺňa istú podmienku modulo 9. Zkonštruujeme modulárnu parametrizáciu homogénneho priestoru prislúchajúcemu danej eliptickej krivke a použitím Šimurovej reciprocity zkonštruujeme racionálny bod na tomto homogénnom priestore. Nakoniec použitím metódy …more
Abstract:
In this thesis we study the group of rational points on the elliptic curve of the form x^3+y^3=2p and x^3+y^3=2p^2 where p is an odd prime satisfying a certain condition modulo 9. We will construct a modular parametrization of a homogeneous space associated with the elliptic curve in question, and using Shimura reciprocity we will construct a rational point on this homogeneous space. Finally, using …more
 
 
Language used: English
Date on which the thesis was submitted / produced: 7. 5. 2024

Thesis defence

  • Date of defence: 17. 6. 2024
  • Supervisor: prof. RNDr. Radan Kučera, DSc.
  • Reader: doc. Lukáš Vokřínek, PhD.

Citation record

Full text of thesis

Contents of on-line thesis archive
Published in Theses:
  • světu
Other ways of accessing the text
Institution archiving the thesis and making it accessible: Masarykova univerzita, Přírodovědecká fakulta

Masaryk University

Faculty of Science

Master programme / field:
Mathematics / Mathematics

Theses on a related topic

  • No theses on a related topic available.