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Abstract 

 Ongoing technological advancements in the field of remote sensing propose a 

sustainable and efficient solution to tackling the global plastic pollution problem. 

Although new studies are emerging, the use of remote sensing for the purpose of marine 

litter detection is a novel topic, with limited availability of in-situ data for accurate and 

extensive measurements. This study compares the existing methodologies performed in 

recent years to detect, analyze, and monitor floating plastic from space. Furthermore, this 

study utilizes freely-available Sentinel-2 remote sensing data containing the presence of 

plastic in the ocean, to test the effectivity of the existing ‘Random Forest’ algorithm to 

detect floating plastic debris. The in-situ data used in this study was acquired from 

previously conducted experiments, where artificial plastic targets of various sizes were 

set up to simulate plastic debris in the oceans. Using Sentinel-2’s Multispectral 

Instrument and an open-source atmospheric corrector, pixel values corresponding to 

plastic, as well as various water depths were extracted and inputted into the algorithm for 

optimal plastic detection. The Random Forest algorithm tested in this study showed 

promising results, being able to detect plastic pixels with a 91.5% accuracy. Furthermore, 

to better understand the spectral behavior of plastic, commonly occurring marine plastic 

samples were gathered and analyzed using a spectroradiometer, and a plastic spectral 

graph was generated.  
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Abstrakt 

Technologický pokrok v oblasti dálkového průzkumu Země přináší dlouhodobě 

udržitelné a účinné řešení celosvětového problému sledování znečištění oceánu plasty. I 

přes stále nové studie je však využití dálkového průzkumu Země pro účely detekce 

plovoucího odpadu v mořích novým tématem a má jen omezenou dostupnost in situ 

měření pro přesné a rozsáhlé experimenty. Tato práce porovnává nejnovější metodiky k 

detekci, analýze a monitorování plovoucích plastů  pomocí satelitního průzkumu Země. 

K tomu tato práce využívá volně dostupná data ze satelitu Sentinel-2 pro testování 

účinnosti stávajících algoritmů "náhodného lesa" pro detekci plovoucího plastového 

odpadu. In-situ data použitá v této studii byla získána  díky dříve provedeným 

experimentům, kde byly zřízeny umělé plastové cíle různých velikostí, aby simulovaly 

plastové úlomky plovoucí v oceánech. Pomocí multispektrálního senzoru družice 

Sentinel-2 a volně dostupné neuronové sítě C2RCC byly extrahovány hodnoty pixelů 

odpovídající plastům, stejně jako pixely odpovítající různým hloubkám vody, a byl 

vytvořen algoritmus pro optimální detekci plastů. Algoritmus Random Forest testovaný 

v této studii ukázal slibné výsledky a byl schopen detekovat plastové pixely s přesností 

91,5 %. Dále pro lepší pochopení spektrálního chování plastů byly shromážděny a 

analyzovány běžně se vyskytující vzorky mořského plastu pomocí spektroradiometru a 

byla vytvořena knihovna spektrálních příznaků. 
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1. Introduction 

 Plastic is an organic polymer made from a variety of natural elements such as 

hydrogen, oxygen, nitrogen, and carbon through the process of polymerization 

(monomers joining together to form a polymer) (Brown, 2022). It’s low cost, durability, 

light weight, and moldable nature, made this material so widely used in the modern world, 

amounting to a total of 322 million tons in 2015 (Piao Ma et al. 2019). Plastic’s versatility 

contributed to its use in almost every aspect of human lives, ranging from food packaging, 

clothing items, transportation vehicles, infrastructure, medical equipment, and much 

more (Johnson, 2019). Scientists estimate that around 12.7 million tons of plastic enters 

the marine ecosystem every year, after which it begins breaking down into smaller 

particles due to the effects of wind, sunlight, and water (Price, 2019). The plastic particles 

continue to degrade into smaller and smaller fragments, also known as ‘microplastics’ 

which are smaller than 5 millimeters in diameter (defined by the National Oceanic and 

Atmospheric Administration (NOAA)) (Piao Ma et al. 2019). Microplastics pose a 

considerable threat when they are ingested by various aquatic organisms such as plankton 

or fish and continue their way through the aquatic food web (Wagner et al. 2014). These 

small fragments cause direct physical harm to aquatic organisms by leaking toxins, 

contaminants, and other harmful plastic additives into the organism’s system. Whether 

added through manufacturing, or absorbed through the environment, plastics contain 

additives such as flame-retardants, pigments, fillers, and UV stabilizers that contain 

hazardous substances, and disrupt the endocrine system of aquatic organisms (GESAMP, 

2019). Additionally, microplastics have a tendency to attract hydrophobic persistent 

organic pollutants (man-made chemicals) which bind to floating plastics in the water 

(Wright, 2013). 

 Numerous studies have been conducted to find a solution to the global plastic 

pollution problem, and have shown that remote sensing systems such as Unmanned Aerial 

Vehicles (UAVs) and satellites can potentially be very effective in identifying and 

monitoring floating ocean plastics. Remote sensing involves acquiring information about 

materials on Earth without making direct contact with them. This is done by various 

sensors installed aboard satellites and aircrafts, which are able to record and distinguish 

the energy emitted from objects on Earth. Floating plastics are usually found within 0.5 
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meters of the water surface, thus can be observed by satellites (Kooi et al. 2016). The size 

and shape of plastic litter greatly varies and affects how the plastics behave, transport, 

and degrade in the marine environment. GESAMP (2019) took the measure to classify 

marine plastics into five distinct categories according to size: Mega (>1 m), Macro (25 – 

1000 mm), Meso (5 – 25 mm), Micro (<5 mm), Nano (<1 μm). The categories help 

researches choose appropriate measures when considering methods of plastic detection 

and monitoring. Large observation programs such as Copernicus (run by the European 

Space Agency) have conducted experiments to test the effectivity of satellites in plastic 

litter monitoring (Topouzelis, 2019). Satellites are known to have a large spatial coverage, 

meaning they can provide extensive information about the land and ocean surface, which 

makes them an effective tool in Earth observations. They contain various sensors that are 

able to measure the energy emitted from different materials on Earth, thus allowing 

scientists to identify substances based on their radiative properties (Brown, 2005). 

Plastic’s chemical properties can be identified using the near infra-red (NIR) and 

shortwave infra-red (SWIR) parts of the electromagnetic spectrum, which earth 

observation satellites can distinguish. Using knowledge about plastic’s spectral properties 

allowed researchers to successfully detect large plastic items such as fishing nets in the 

“Great Pacific Garbage Patch” (Guffogg, 2021). However, detecting plastics based on 

their spectral properties alone, can often be challenging. In the natural environment, 

plastic is often mixed with other organic substances such as seaweed, algae, and seafoam. 

Naturally these materials have a unique spectral reflectance that differ to those of plastic 

and can interfere with its signal. Additionally, effects of the atmosphere such as cloud 

cover can have a strong impact on the signal that is being received by the satellite 

(Moshtaghi, 2021), making plastic, and other materials hard to distinguish from space.  

2. Objectives of the thesis 

 Detection of floating plastic is essential before it begins breaking down and 

entering the marine ecosystem through ingestion of aquatic organisms, integrating itself 

into the marine food web. Modern technological advancements in the field of remote 

sensing and unmanned aerial systems (UAS) present effective and sustainable approaches 

to detect, monitor, and analyze marine plastic pollution. This study aims to investigate 
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the issues in relation to marine plastic detection, as well as to compare existing methods 

of plastic detection using remote sensing systems and UAS through literature review. 

Furthermore, this study aims to extract the spectral properties of plastic by gathering 

commonly occurring marine plastic samples, and analyzing them using a 

spectroradiometer. To better understand the spectral behavior of plastic, a spectral graph 

will be generated using the results of the spectroradiometer analysis. Additionally, freely 

available remote sensing images containing in-situ data of floating plastic, will be 

collected and analyzed with the aim to create an algorithm that will distinguish plastic 

apart from other pixels. Various satellite bands and band combinations (indices) will be 

tested to create an optimal combination for detecting floating plastic debris. Details about 

freely available remote sensing images containing in-situ data of plastic, as well as the 

algorithms and processes that were conducted are described in detail in the Methodology 

Section 5.1-5.2. Information about the type of plastic samples gathered for the 

spectroradiometer analysis, as well as the methodology used, can be found in Section 5.3 

of this study. 

3. Review of Related Literature 

Tackling plastic pollution in the marine ecosystem, is now one of the primary goals 

of many researchers. Numerous studies have been conducted to try and find the most 

optimal way to detect plastic apart from other naturally occurring materials such as 

seaweed, sea foam, and other marine debris. Some of the earliest studies in marine plastic 

detection began in the 1970s where plastic, and other man-made debris, were visually 

monitored by scientific personnel aboard ships (Venrick et al. 1973). Modern 

technological advancements in remote sensing and unmanned aerial vehicles, allowed 

scientists to perform far more in-depth analysis on marine plastic litter. A project called 

“Plastic Litter Project 2018: Drone mapping and Satellite Testing for Marine Plastic on 

the Aegean Sea” (PLP18) was the first project conducted to test the reliability of UAS 

and open access satellite data in detection on marine plastic. The aim of this project was 

to use the Copernicus Sentinel-2 satellite to track man-made plastic targets from space, 

and furthermore to use UAS to enhance the geo-referencing of the coarse resolution of 

data obtained from the satellite. On the 6th and 7th of June 2018, Topouzelis et al. (2019) 
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deployed three man-made plastic targets composed of plastic bottles, plastic bags, and 

plastic fishing nets, close to the shore of Tsamakia Beach in Mytilene, Greece. The targets 

were designed to match the Sentinel-2 spatial resolution, thus were 10 x 10 m in area, and 

were positioned at least 30 meters from the coastline. The S900 UAV was used to collect 

very fine resolution imagery with the accuracy of 3-5 centimeters on June 7, 2018, in the 

same area. The flight altitude of the UAV was set to 100 meters above sea level, and the 

drone captured 2846 images in total, which were converted into true color orthorectified 

images. The process of orthorectification ensures that geometric errors such as sensor 

orientation, earth curvature, and optical distortions are removed (Esri Insider, 2016). It 

also ensures that the images taken from the UAV have a known coordinate system, that 

can be later matched with the images of the Sentinel 2 satellite. They concluded that 

plastic showed high reflectance in the NIR waveband (842 nm), meanwhile water had a 

low reflectance in this waveband. Water strongly absorbs light in the NIR and SWIR parts 

of the electromagnetic spectrum (Kou et. al 1993) thus making plastic materials stand out 

apart from water.  

The date of the experiment was picked according to the day that the Sentinel-2 

satellite would fly above the target area (June 7, 2018). Similarly to images taken from 

S900-UAS, the Sentinel-2 satellite was successful at detecting the three plastic targets in 

the true color composite; where red = 665 nanometers, green = 560 nanometers, and blue 

= 490 nanometers. The imagery from S900-UAV and Sentinel-2 was compared based on 

the spectral reflectance of the plastic targets in both images. The UAV images with a high 

resolution of 3 centimeters were used to improve the geo-referencing of the Sentinel-2 

images, which had a 10 meter resolution. Topouzelis et al. (2019), demonstrated for the 

first time, how remote sensing and UAVs can be used in the detection of floating marine 

plastics. The focus was purely on identifying floating plastics using freely available 

satellite data, as well as using unmanned aerial systems with high geospatial resolution 

to improve the geo-referencing of the satellite images. 

Furthermore, Topouzelis et al. (2019) explored the use of Synthetic Aperture Radar 

(SAR) aboard the Sentinel-1 satellite to monitor plastic litter. Similarly, to the previous 

images collected by Sentinel-2 MSI sensor and the S900-UAV, the SAR images were 
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obtained on the 7th of June 2018 in the same location. Unlike the MSI sensor used for 

optical imagery on Sentinel-2, SAR is an active sensor, which has the capability to 

transmit microwave signals to the Earth, and record their backscatter. This allows it to 

operate in the dark, as well as areas with heavy cloud cover, or rain (Laurencelle, 2022). 

The study concluded that using the Sentinel-1 radar did not lead to accurate detection of 

all three plastic targets. It was only able to identify the target consisting of plastic bottles, 

because the backscatter produced from fishing nets and plastic bags was too low meaning 

the targets would not be distinguishable from water. 

 Topouzelis et al. (2019) highlighted the importance of taking in-situ measurements 

of other commonly found materials in marine ecosystems like algae, suspended 

sediments, as well as other organic matter, as this could improve the accuracy of plastic 

detection. This study did not explore scenarios where plastic is integrated with other 

naturally occurring materials in marine debris, however, this issue was further examined 

in another study by Biermann et al., 2020.  

 Biermann et al., (2020) conducted a study with the aim to detect macroplastics 

(plastics greater than 5 mm in diameter) using the Multi-Spectral Instrument (MSI) sensor 

located aboard the Sentinel-2 satellite. Furthermore, their study aimed to investigate the 

spectral properties of various materials integrated with marine debris, and classify 

macroplastics apart from these materials on a sub-pixel scale. Using reflectance patterns 

from 10 bands of the Sentinel-2 MSI sensor, they were able to create spectral signatures 

of various materials such as seaweed, timber, seawater, seafoam, and macroplastics, all 

of which commonly make up large patches of marine debris. Knowing that water absorbs 

light in the near infrared (NIR) spectrum, they were able to distinguish plastic, as it shows 

a reflectance peak in the NIR (central wavelength of 842 nanometers). Their study found 

that seaweed, unlike plastic, reflects light in the green (560 nm) and red edge (700 – 

780nm) bands. They examined other materials and composed a graph of their unique 

spectral signatures (Figure 3.1) 
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 Moreover, Biermann et al. (2020) developed a novel index, known as the Floating 

Debris Index (FDI), which was based on the Floating Algae Index (FAI) tested and 

analyzed by Hu et al. (2015). FAI utilized the multi-spectral satellite sensors such as the 

Moderate Resolution Imaging Spectroradiometer (MODIS). The novel Floating Debris 

Index was applied on plastic targets deployed in Mytilene, Greece in an experiment 

conducted by Topouzelis et. al (2019). The FDI was found to be successful in detecting 

floating macroplastics within mixed debris when using it with known spectral signatures 

of different materials. The FDI works in a way where instead of the red band (used in 

FAI) the MSI Red Edge (RE) band is used. The FDI formula is as follows: 

 

 

 

Figure 3.1 Spectral signatures of different materials commonly found in marine debris. The x-axis depicts the range of 
Sentinel-2 MSI bands from visible blue light (490 nm) to short-wave infrared light (1610 nm). The left y-axis depicts 
spectral reflectance of seawater, seaweed, sea foam and plastic, meanwhile the right y-axis depicts the spectral 
reflectance of timber and pumice. Figure by Biermann et al. 2020 (https://www.nature.com/articles/s41598-020-
62298-z)  

 

Figure 3.2: Floating Debris Index formula developed by Biermann et. al 2020 showing the use of near infrared (NIR), 
red edge 2 (RE2), short wave infrared 1 (SWIR1), and red bands in identifying floating plastic debris. Formula 
developed by Biermann et al. 2020 : (https://www.nature.com/articles/s41598-020-62298-z) 
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The Normalized Difference Vegetation Index (NDVI) was applied in this study as well, 

to distinguish vegetation apart from other materials composing floating debris. According 

to Hu (2009), vegetation such as algae, present in the aquatic ecosystem, has an increase 

in reflectance at around 700 nanometers. The NDVI index works by   identifying the 

difference between the red and the near infrared bands allowing for the detection of 

photosynthetic activity, thus distinguishing vegetation (Biermann et al. 2020). The study 

concludes that using the NDVI alone can be used to distinguish plastics from seawater, 

seaweed, timber, and sea foam. When FDI was used alone the ranges of materials found 

in marine debris were larger, depending on how much of a given pixel was filled with the 

material (Figure 3.3). Using the two indices (NDVI and FDI) together showed distinct 

clustering of individual materials (Figure 3.4). The study tested the combination of using 

the FDI together with the created spectral signature of plastic on five different locations 

where floating macroplastics were likely to be found: Scotland, Ghana, South Africa, 

Vietnam, and Canada. The study concluded that the application of FDI with the spectral 

signature of plastic, on Sentinel-2’s Multispectral Instrument was successful at detecting 

the plastic materials on a sub-pixel scale (less than 10 x 10 meters), as long as the plastic 

covered at least 30 – 55% of the pixel.  

 

Figure 3.3 Graphs depicting the distribution of values in different categories of materials: water, seaweed, timber, 
plastic, foam, pumice. Classifying materials by NDVI alone (left) allows materials to form distinct ranges that do 
not overlap with plastic. Using FDI alone (right) gives more overlap in the ranges, as well as higher values 
depending on the amount of materials present in a given pixel. Figure by Biermann et. al 2020: 
(https://www.nature.com/articles/s41598-020-62298-z)  
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Another study done by Basu et al. (2021) aimed to identify floating plastic debris 

by developing novel classification algorithms and applying it on freely available 

multispectral Sentinel-2 remote sensing imagery. The study considered using in-situ data 

of plastic in the ocean by selecting two sites where plastic targets were deployed in 

previous experiments. The two locations of existing plastic targets were Limassol, Cyprus 

and Mytilene, Greece, deployed by Themistocleous et al. (2020), and Topouzelis et al. 

(2019) respectively. Remote sensing data from the two locations was downloaded and 

corrected using the ACOLITE atmospheric correction processor. In order to develop the 

classification models, 6 out of 12 Sentinel-2 bands were selected, which were blue (Band 

2), green (Band 3), red (Band 4), red edge 2 (RE2) (Band 6), near infrared (NIR) (Band 

8), and short-wave infrared 1 (SWIR1) (Band 11), as well as two indices NDVI and FDI. 

The use of NDVI and FDI has been proven to be effective in detecting floating plastics 

as discussed previously in an experiment conducted by Biermann et al. 2020 thus they 

were selected to develop the models. 

Figure 3.4: Graph depicting the distribution of values of different materials (seawater, seaweed, timber, plastic, 
sea foam, and pumice), when NDVI and FDI are applied together. Materials depicted in a 2-variable space (FDI 
and NDVI) demonstrates clear clustering within individual materials. Figure by Biermann et al. 2020: 
(https://www.nature.com/articles/s41598-020-62298-z) 
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 Basu et al. (2021), had no prior knowledge about the classification algorithm that 

would produce the highest accuracy in detection of floating marine plastic, thus, two 

unsupervised (K-means and Fuzzy C-means (FCM)) and two supervised (Support Vector 

Regression (SVR) and Semi-supervised Fuzzy C-means (SFCM)) classification 

algorithms were considered. Unsupervised classification is a tool used to classify pixels 

in remote sensing images that does not require training data. This means that the 

algorithm will group pixels together according to their spectral properties, the user can 

alter the number of classes the algorithm will generate, and must assign the name of the 

classes manually, such as “Plastic”, “Clean Deep Water”, “Shallow Water” etc. Unlike 

unsupervised classification algorithm, supervised classification requires the user to select 

“training sites”, which are pixels containing spectral properties of the desired classes. The 

spectral signatures of the training pixels will then be recognized and further applied to 

the entire image, classifying each pixel into a defined class based on your training data. 

For this reason, it was important to have in-situ data, not only to verify the accuracy of 

the algorithms, but also to have clear information on presence or absence of plastic that 

could be used as training data (GISGeography, 2022).  

 The unsupervised classification algorithms (K-means and Fuzzy C-means) relied 

only on the remote sensing imagery and did not use any in-situ data. The supervised 

classification algorithms (Support Vector Regression and Semi-supervised Fuzzy C-

means) required in-situ data as an input for the training data, which was used to calibrate 

the classification model. Once the model was calibrated, it was validated using the in-situ 

data and could be applied in other locations where the presence of floating plastic was 

unknown. From a previous study conducted by Biermann et al. 2020 it was evident that 

the Floating Debris Index and the Normalized Difference Vegetation Index are useful in 

detection of floating marine plastic, as well as the red, NIR, RE2 and SWIR1 bands. 

However, it was not known prior which combination of bands and indices would produce 

the optimal result in plastic detection. Basu et al. 2021, composed an attribute set of three 
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categories that contain different combinations of bands and indices, and fed them into the 

supervised and unsupervised classification algorithms (Figure 3.5). 

Figure 3.5: Table depicting attribute sets used to compare classification algorithms combosed by Basu et al. (2021) 

The total available training data was divided into the calibration and validation 

sets, in order to ensure that the validation data was not used as an input into the model. 

The four classification algorithms were tested and compared using the error/confusion 

matrix, the F-score, and the overall accuracy. The highest accuracy was found when using 

the SVR supervised classification algorithm when attribute set “A” was used as an input, 

which included all 6 bands as well as the FDI and NDVI indices, with an overall accuracy 

of 98.4%. For all four classification algorithms, using attribute set “A” showed the highest 

overall accuracy results. The SVR, the FCM algorithm showed second highest accuracies 

in all three attribute sets, with attribute set “A” being the highest. Figure  

3.6 depicts the four classification algorithms as well as their accuracies when used with 

attribute sets “A”, “B”, and “C”.  

Basu et al. (2021), stated that using the FDI and NDVI indices along with the six 

bands (blue, green, red, NIR, RE2, and SWIR) shows a higher performance in identifying 

floating plastic, than when the indices or bands were used alone. The study clearly 

demonstrated the ability of machine learning algorithms to identify floating marine 

plastics using freely available remote sensing data. It is important to mention that this 

study used Sentinel-2 imagery with a maximum resolution of 10 meters. The plastic 

Figure 3.6 Performance matrix of the four classification algorithms, K-means, Fuzzy c-means, Support vector 
regression, Semi-supervised fuzzy c-means when using Attribute Sets, A, B, and C. OA being the overall accuracy, and 
the numbers in the confusion matrix being the number of grids belonging to the validation set. Composed by Basu et 
al. (2021). 
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targets serving as in-situ information for this experiment were either 10 x 10 meters or 

larger. Basu et al. 2021 noted that floating plastics in real marine environments are not 

always covering the entire grid of the remote sensing data. This presents a challenge due 

to most open access satellite data having the highest spatial resolution of 10 meters, 

meaning smaller patches of marine plastic debris will simply not be recognized by the 

satellite. 

Another study conducted by Freitas et al. (2021), explored the use of 

hyperspectral imaging system for detecting plastic debris in the ocean. Unlike previously 

discussed studies, instead of the optical sensor of the Sentinel-2 satellite, the study aimed 

to compare the use of a hyperspectral sensor aboard manned and unmanned aircrafts. The 

MSI sensor of Sentinel-2 Satellite has only 13 bands, meanwhile the hyperspectral 

sensors can contain hundreds of narrow bands covering almost the entire electromagnetic 

spectrum. This means that hyperspectral sensors are more sensitive to the spectral 

properties of different objects on Earth and could potentially be very effective in 

distinguishing marine debris from other materials (Wasser, 2023). The study also 

explored automated detection of marine plastic by testing two supervised classification 

algorithms. The two classification algorithms were Random Forest (RF) and Support 

Vector Machines (SVM). 

Freitas et al. (2021) first characterized the spectral characteristics of marine plastic 

samples under different conditions such as amount of sunlight, time of day, as well as wet 

and dry samples. This spectral response was recorded by a hyperspectral camera (Specim 

FX10e), in a laboratory, which was placed 1 meter above the marine litter samples. The 

two other means of analyzing plastic’s spectral properties using a hyperspectral sensor 

included a manned aircraft (A Cessna F150L) and an unmanned aerial vehicle (Grifo-X). 

The two aircrafts observed plastic targets in Faial Island Azores from 16th to 25th of 

September of 2020. Similarly to the experiment conducted by Topouzelis et al. (2019), 

the targets had a 10 x 10 meter resolution to match the resolution of the Sentinel-2 

satellite. A 10 by 10 meter object on the Earth’s surface will be equivalent to 1 by 1 pixel 

of the Sentinel-2 satellite. The two aircrafts were launched to fly above the plastic targets 

at different altitudes, a few moments before or after Sentinel-2 satellite would fly over 
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the area. Freitas et al. (2021) noted that the data collected by the multispectral sensor of 

the Sentinel-2 satellite was contained less reliable information than the aircrafts’ data, 

due to the effects of cloud cover. Sentinel-2’s multispectral data is affected by cloud cover 

since clouds block direct sunlight from hitting the objects. This leads to variations in the 

energy of the reflections as well as the absorption coming from the objects on Earth’s 

surface (Arroyo-Mora et al. 2021).   

 Results of the hyperspectral signatures of plastic retrieved from the laboratory as 

well as from the two aircrafts were similar, proving that altitude of the UAV does not 

affect spectral responses. Multispectral data from Sentinel-2 however, could not be 

compared due to the effect of cloud cover interfering with the signal. Furthermore, the 

two classification algorithms Random Forest and Support Vector Machines were trained 

with the data from the 18th September, 2020, flight of the manned aircraft. The two 

algorithms were then tested using data collected over the same area on the 20th September 

of 2020. Their results showed that SVM has a higher accuracy than the RF algorithm in 

detecting plastic targets overall, however RF algorithm provided more consistent results 

when it did detect a target. The study concludes that the RF and SVM classification 

algorithms have the potential to detect plastic marine litter with a 0.70 – 0.80 precision 

when using a hyperspectral sensor at a 600-meter altitude. Freitas et al. (2021) noted that 

developing unsupervised classification algorithms could aid in the process of automated 

detection of marine litter. The study also stated that looking into spectral unmixing 

techniques could expand the quality and quantity of marine plastic detection. 

 Previously mentioned studies focused mainly on the detection of floating plastics 

by using known in-situ data on the presence of plastic. The in-situ data came in a form of 

plastic targets, first set up during the Plastic Litter Project: 2018 by Topouzelis et.al 

(2019), and their team at the University of Aegean. As discussed in the earlier paragraphs 

of this section, the targets that were deployed had a 10 x 10 meter area, which is Sentinel-

2’s highest resolution. Topouzelis et al. (2020) decided to continue this study on plastic 

litter monitoring from space, however the objective was to use 5 x 5 m and 1 x 5 m targets 

which are below the highest resolution of Sentinel-2 satellite. This study, known as the 

Plastic Litter Project: 2019 (PLP2019), would resemble more realistic conditions on the 
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presence of floating plastic in the ocean. The structure of targets created for the PLP2019 

composed of pipes made from polyvinyl chloride (PVC), which is a common plastic 

polymer. The targets themselves were composed individually of polyethylene 

terephthalate (PET) (plastic bottles), polyethylene (plastic bags), and natural debris 

(reeds). The PLP2019 was conducted in the same location as PLP2018, Mytilene, Greece, 

where the targets were set up every five days off the coast of the beach to match Sentinel-

2’s flight path. The targets were first set up on April 18, 2019, up until June 7 of 2019. 

 In total 5 Level-1C and Level-2 cloud free images were acquired from the 

Sentinel-2 Satellite using Copernicus Open Access Hub. The study used the ACOLITE 

atmospheric correction processor to perform atmospheric corrections on the Level-1C 

images and remove the sun glint. Exact position of plastic targets was recorded by an 

UAV which captured the target’s exact position on the same day that the Sentinel-2 

satellite would fly overhead. The percentage of plastic in each Sentinel-2 pixel was 

calculated by an object-based image analysis. This process included isolating the pixels 

at the testing site and extracting the percentage of plastic pixel coverage based on the 

UAV images. Furthermore, the study extracted spectral data from each plastic target. This 

study used the inverse spectral unmixing technique to derive spectral signatures of the 

plastic targets. Since the percentages of plastic was already calculated in the previous 

step, it was possible to use this variable as an input to the inverse spectral unmixing 

formula, which, as a result, will provide an estimation of the spectral response of the 

plastic targets. Furthermore, this study utilized the use of matched filtering which is 

another technique to calculate the occurrence of a known material in a pixel by increasing 

the response from the known material and suppressing the signals from the background 

(Topouzelis et al. 2020). 

 The study generated a spectral curve graph of the plastic targets (Figure 3.7) and 

found that plastics have a peak in the NIR and a high reflectance in the visible range. This 

finding is correlated with the spectral graph created by Biermann et al. (2020), which was 

mentioned earlier in this section. The study also noted that when a plastic target consisting 

of plastic bags was wet, or even submerged by water, the spectral response was very weak 

and the plastic could not be distinguished from the surrounding water. 



14 
 

 

Figure 3.7: Spectral signature graph generated by Topouzelis et.al (2020) for the Plastic Litter Project 2019, with each 
target pixel containing a different percentage of floating plastic in relation to the total pixel area. 
https://www.mdpi.com/2072-4292/12/12/2013 

 The matched filtering technique was applied to all six images of the PLP19 

acquired from April 2018 to June 2019. The study concluded that the matched filtering 

approach was successful at detecting floating marine plastic with the use of a known 

spectral signature, in this case the signature of PET. In other words, pixels that contain a 

bigger percentage of debris, were identified as having a bigger percentage of debris by 

this method. Furthermore, the matched filtering process was successful when using the 

PET spectral signature, when the fractional abundance of PET was at least 25%. This 

means that the algorithm would detect the presence of a 25 square meters plastic patch in 

a 100 square meters pixel. 

 

Author/Authors Name of Study 
Location of 

Study Area 
Satellite, Sensor Method Year 

Basu et al. Development of Novel 

Classification 

Algorithms for 

Detection of Floating 

Plastic Debris in 

Coastal Waterbodies 

Using Multispectral 

Limassol, 

Cyrus, 

Mytilene 

Greece 

Sentinel-2, MSI Supervised/Unsupervised 

Classification  

algorithms 

2021 
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Table 1: Summary of literature review examined in this study including the authors, name of study, location of study 
area, satellite/sensor used, method, and year that study was conducted. With MSI standing for Multispectral 
Instrument and UAV standing for Unmanned Aerial Vehicle. 

4. Characteristics of study area and in-situ data 

To perform further analysis of floating plastic debris, this study used in-situ data of 

floating plastic targets from previously conducted experiments to propose an alternative 

algorithm for floating plastic detection. The two main locations of plastic targets were in 

Mytilene, Greece, and Limassol, Cyprus, and the images were obtained from the 

Copernicus Open Access Hub database. Topouzelis et al. (2019), conducted the Plastic 

Litter Project 2018 (PLP18), where on June 06 and 07, 2018 three plastic targets were set 

up about 30 meters away from the coastline of Tsamakia Beach of Mytilene, Greece. The 

Sentinel-2 Remote 

Sensing Imagery 

Biermann et al. Finding plastic patches 

in coastal waters using 

optical satellite data 

Scotland, 

Ghana, South 

Africa, 

Vietnam, 

Canada, 

Greece 

Sentinel-2, MSI Spectral data acquisition 

+ Indices 

2020 

Freitas et al. Remote Hyperspectral 

Imaging Acquisition 

and Characterization for 

Marine Litter Detection 

Faial Island, 

Portugal 

Hyperspectral 

sensor aboard 

UAV 

Hyperspectral signature 

analysis + classification 

algorithms 

2021 

Topouzelis et al. Detection of floating 

plastics from satellite 

and unmanned aerial 

systems (Plastic Litter 

Project 2018) 

Mytilene, 

Greece 

Sentinel-2,MSI, 

UAV, Sentinel-1, 

SAR 

Spectral signal analysis 2018 

Topouzelis et al. Plastic Litter Project 

2019: Exploring the 

Detection of Floating 

Plastic Litter Using 

Drones and Sentinel 2 

Satellite Images 

Mytilene, 

Greece 

Sentinel-2, MSI 

,UAV 

Spectral signature 

analysis + Spectral 

unmixing 

2019 
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three targets being 10 x 10 meters in size, consisted individually of plastic bottles, plastic 

bags, and plastic fishing nets. The targets were placed on those dates keeping in mind that 

the Sentinel 1 and 2 satellites would be flying above the area. A similar experiment was 

again conducted by Topouzelis et al. (2020), where on April 18, 2019, 45 x 5 meter plastic 

targets were deployed in the same location of Mytilene, Greece with the targets consisting 

of 50% plastic bottles and 50% plastic bags. The same year on May 3 (2019) Topouzelis 

et al. placed 45 x 5 meter targets, as well as 21 x 10 meter targets some consisting of 

plastic bottles, while others consisting of plastic mesh and plastic bags. On June 07, 2019 

more plastic targets 45 x 5 meters in size were placed in the same location by Topouzelis’ 

team. On December 15, 2018 Themistocleous et al. (2020) placed a 3 x 10 meter target, 

200 meters from the coastline of Old Port in Limassol, Cyprus. The target was made up 

of solely plastic bottles, tied together with a nylon string. The date of the experiment was 

selected according to the Sentinel 2 satellite overpass.  

Table 2: Description of the satellite images downloaded for this study, including date of acquisition, satellite type, 
full path of satellite image, and the location where the plastic targets were set up. 

IN SITU DATA ON THE PRESENCE OF PLASTIC 

Date Of 

Acquisition 

mm/dd/yyyy 

Satellite Path Location 

06/07/ 2018 2A S2A_MSIL1C_20180607T085601_N0206_R007_T35SMD_20180607T110513 
Mytilene, 

Greece 

12/15/ 2018 2A S2A_MSIL1C_20181215T083341_N0207_R021_T36SWD_20181215T085809 
Limassol, 

Cyprus 

04/18/ 2019 2B S2B_MSIL1C_20190418T085559_N0207_R007_T35SMD_20190418T110441 
Mytilene, 

Greece 

05/03/ 2019 2A S2A_MSIL1C_20190503T085601_N0207_R007_T35SMD_20190503T103221 
Mytilene, 

Greece 

06/07/ 2019 2B S2B_MSIL1C_20190607T085609_N0207_R007_T35SMD_20190607T110335 
Mytilene, 

Greece 
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Figure 4.1: Areas of interest containing in situ data of the presence of plastic, (top) Mytilene, Greece, (bottom) Limassol, 
Cyprus 
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5. Methodology 

5.1  Sentinel-2 data and atmospheric correction  

In total 5, Sentinel-2 Level 1-C multispectral images were downloaded from 

Copernicus Open Access Hub Open Access Hub (copernicus.eu). Level 1-C data produces 

Top of the Atmosphere reflectance values meaning values that have not been adjusted 

prior by an atmospheric corrector. It is possible to download already atmospherically 

corrected (Level 2A) data for the same dates. The European Space Agency (ESA) running 

the Copernic Open Access Hub provides the so-called Bottom of the Atmosphere 

reflectance values (Level 2A) which have been atmospherically corrected meaning 

certain effects of the atmosphere such as cloud coverage was removed. Furthermore, the 

atmospherically corrected images can provide you with the information on different 

conditions at the time of the image collection such as water vapor or sun angle (ESA, 

2023). In this study Level 1C data was downloaded with the purpose of performing 

independent atmospheric correction of images using the C2RCC (Case 2 Regional Coast 

Color) atmospheric correction processor. Typically, atmospheric correction processors 

are designed for land surface images, showing less accuracy when applied to water areas. 

For instance, ESA’s Sen2Cor processor is based on the dark dense vegetation approach, 

where the algorithm considers vegetation as sufficiently dark, and requires certain pixels 

in the image to correspond to the dark dense vegetation (Pereira-Sandoval, 2019). This 

atmospheric corrector may not be optimal when considering images consisting mostly of 

water. The C2RCC is open source and can be accessed through the SNAP (ESA’s 

Sentinel Application Platform) in the Sentinel Toolboxes. This atmospheric correction 

processor was developed with the aim to atmospherically correct as well as to retrieve 

certain components in the water (C2RCC.org, 2023). The output of C2RCC includes 

atmospherically corrected bands, various inherent optical properties, as well as 

concentrations of different substances in the water. 

5.2 Using multispectral satellite imagery to obtain optimal plastic recognition 

Pre-processing of satellite imagery 

This study aims to use freely available multispectral remote sensing imagery to 

inspect various bands, band combinations, and indices to identify floating plastic in the 

https://scihub.copernicus.eu/
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marine ecosystem. In Section 4 of this study the description and acquisition of the in-situ 

data can be found. It is important to perform pre-processing before analyzing spectral 

properties of the in-situ plastic targets. The pre-processing of remotely sensed images 

often includes two steps, the radiometric correction (image enhancement), and geometric 

correction (georeferencing). Pre-processing allows for the correction of some distortions 

and helps increase the overall quality of the images for a more accurate image analysis. 

More specifically performing radiometric correction helps calibrate the effects of the 

atmospheric condition, the sun’s illumination, and other outside factors present during 

image acquisition. The process of geometric correction allows for the reduction of spatial 

errors by adjusting the remotely sensed image to a desirable coordinate system 

(Wageningen University, GIMA). This study used ESA’s SNAP remote sensing software 

to perform all processing and analysis of the remote sensing data. All Sentinel-2 Level 

1C data used in this study underwent geometric correction, more specifically the S2 

Resampling Processor was used for all the images. Resampling is a technique that allows 

for the manipulation of resolution, along with other applications such as change of 

orientation or change of rotation of the image (Gurjar, 2005). The images in this study 

were resampled to have an output resolution of 10 meters for all bands. The upsampling 

method used was “Bilinear”, while the down sampling method used was “Mean”. 

Resampling is also required for the files to be an input into the C2RCC atmospheric 

correction processor mentioned previously. Subsets of the resampled images were then 

created in order to reduce the amount of data and minimize processing time for the next 

steps. All Sentinel-2 images were processed with the C2RCC atmospheric correction 

processor. As mentioned previously in Section 4.1, the output of the C2RCC atmospheric 

correction processor includes various inherent optical properties which are useful for the 

analysis of water characteristics. Moreover, the outputs include the scattering and 

absorption of various components, such as the absorption of phytoplankton pigments, or 

the scattering coefficient of marine particles. The outputs of the C2RCC were relevant 

for the creation of appropriate plastic detection formula. 
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Selection of appropriate plastic and sea pixels, and satellite derived variables 

 In order to evaluate the optimal bands, combination of bands, or indices needed 

for plastic recognition. Reflectance values of in-situ data were gathered, along with 

reflectance information of pixels at different water depths in each image. This process 

required pins to be placed at each pixel where plastic targets were present. Information 

regarding the location of the plastic targets for Limassol, Cyprus is described in detail by 

Themistocleous et. al (2020), meanwhile data for Mytilene, Greece is available at: 

PLP2019 dataset | Zenodo. The pins were placed on the location of each pixel containing 

a plastic target in a particular image, furthermore three pins each were placed randomly 

for pixels at shallow, medium, and deep water levels in each image. In total 59 pins were 

placed on plastic targets, meanwhile 45 pins were placed on water pixels. The pixels 

values from the atmospherically corrected Bands 2 (Blue), 3 (Green), 4 (Red), and 8 

(NIR), as well as the inherent optical properties (iop_adet, iop_agelb, iop_apig, iop_atot, 

iop_bpart, iop_bwit), were extracted into a table. Furthermore, the Plastic Index (PI) was 

applied on each of the images and its values for each pixel were extracted. The Plastic 

Index was generated and tested in a study by Themistocleous et. al (2020) where it was 

tested on plastic targets of various sizes deployed in Limassol, Cyprus. The PI utilizes 

bands 4 (Red) and 8 (Near Infrared) of the Sentinel-2 satellite in the following formula: 

PI = B08/(B08 + B04). Their study tested various indices; however, the PI had shown to 

be the most optimal in identifying the plastic targets, thus it was chosen as a variable in 

this study. The following table provides detailed information about the values extracted 

from different bands and indices for each pixel. 

Table 3: Description of the bands and indices from which pixel values were extracted in each satellite image. 

Chosen Bands and Indices for the Extraction of Values 

Bands Color Central Wavelength 

Band 2 Blue 490nm 

Band 3 Green 560nm 

Band 4 Red 665nm 

Band 8 Near Infrared 842nm 

IOP Description 

https://zenodo.org/record/3752719#.Y-kCty_MK3C
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iop_adet Absorption coefficient of detritus 

iop_agelb Absorption coefficient of gelbstoff 

iop_apig Absorption coefficient of phytoplankton pigments 

iop_atot Phytoplankton + detritus + gelbstoff absorption 

iop_bpart Scattering coefficient of marine particles 

iop_bwit Scattering coefficient of white particles 

Index Formula 

Plastic Index (PI) (Band 8)/(Band 8 + Band 4) 

*Complete table of extracted values used for the analysis can be found in the Appendices section of this 

study (Table 11.1). 

Testing algorithms for optimal plastic detection using R studio 

 To visualize the distribution of values in each band and index, the data values 

were uploaded into the R studio software which is designed for statistical computation 

and creating graphics for large sets of data. Boxplots were generated for each individual 

image as well as for all images combined. Boxplots for individual dates can be found in 

the Appendices section of this study. 

 

Figure 5.1 Boxplots depicting the overall distribution of values among individual bands and indexes for all images from 
December 15, 2018 to June 07, 2019. Rtoa_B2, rtoa_B3, rtoa_B4, rtoa_B8, being Bands 2, 3, 4, and 8 respectively. 
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 To predict the presence or absence of plastic in pixels, the extracted data from the 

selected bands and indices was tested with the Random Forest algorithm. The Random 

Forest algorithm, (also known as Breiman and Cutler’s Random Forests for Classification 

and Regression) can be accessed through a package ‘randomForest’ in the R Studio 

software. Detailed description of the algorithm related to usage, arguments, and examples 

can be accessed with the following link: randomForest: Breiman and Cutler's Random 

Forests for Classification and Regression (r-project.org) . The Random Forest algorithm 

works similarly to the Decision Tree algorithm; however, it produces a model with a 

lower variance, meaning the results are not overfit. The Random Forest algorithm uses a 

technique known as Bootstrap Aggregation created by Leo Breiman. In this technique 

samples from the original dataset are randomly selected and placed in a new dataset of a 

smaller size, making these samples independent from each other. These datasets are then 

inputted in the model and all the results from the model are combined into one final output 

(Bento, 2021). The exact code for the Random Forest algorithm, as well as the 

visualization of the distribution of pixel values used in this study can be found in the 

Appendices - Section 11, Figure 11.7. 

5.3 Using a spectroradiometer to measure the reflectance of different plastic 

samples occurring in marine debris 

According to GESAMP (2019), plastics are defined as synthetic polymers that have 

thermo-set characteristics, meaning they are made from hydrocarbon or other biomass 

raw materials. GESAMP(2019) characterize most plastics into two main categories: 

thermoplastics and thermoset. Thermoplastics such as polyethylene, polypropylene, and 

polystyrene, are plastics that have the capability to be broken down by heat. On the other 

hand, thermoset plastics such as polyurethane, paints, and epoxy resins do not break down 

under the influence of heat. They further explain that marine plastic litter is often mixed 

with other additives like colorants, stabilizers, and plasticizers. GESAMP (2019) created 

a table (Table 4) depicting the most common polymers found in marine debris as well as 

their common applications, specific gravity, and their behavior (ability to float or sink in 

the aquatic environment). 

https://cran.r-project.org/web/packages/randomForest/randomForest.pdf
https://cran.r-project.org/web/packages/randomForest/randomForest.pdf
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 In this study, the spectral reflectance of various materials was measured using a 

spectroradiometer. A spectroradiometer is a device that is able to analyze electromagnetic 

wavelengths of various materials by having a built-in radiation source as well as analysis 

equipment. Main types of spectroradiometers include emission, absorption, and Fourier-

transform type of device. In an emission spectroradiometer the built-in radiation source 

is able to capture electromagnetic wavelengths of various materials by shining a bright 

light directly at the material, and measuring the radiation emitted from them. The 

absorption spectroradiometer is able to detect various wavelengths by passing a known 

wavelength directly through a sample, while the detector system measures the absorption 

of the wavelength. Lastly the Fourier-transform spectroradiometer works similarly to the 

absorption spectroradiometer, except using a radiation of a broad band and producing an 

absorption spectrum of a material (Encyclopædia Britannica, 2018).  

 In this analysis the Malvern Panalytical ASD Leaf Clip was used to aid in 

measuring reflectance data of nine different plastic samples. The Leaf Clip accessory is 

commonly used in field measurements, specifically on live vegetation, as its structure 

allows vegetation samples to be placed inside and analyzed without inflicting damage. In 

Table 4: Common polymers found in the marine environment along with their applications, specific gravity, and 
behavior (ability to float or sink in the marine environment), GESAMP 2019 modified from GESAMP 2016. 
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this case the Leaf Clip was used to accommodate the various shapes and sizes of selected 

plastic samples. The Leaf Clip has a lock/release system where an object of interest is 

placed and its’ spectral properties are then analyzed by a spectroradiometer. The Leaf 

Clip is equipped with a head that contains a rotating panel with black and white faces, the 

white panel is used for transflectance while the black for reflectance (Malvern 

Panalytical, 2019). In this experiment the white panel with no samples inside was used 

first, to calibrate the spectroradiometer. After the spectroradiometer was calibrated, the 

target was changed to the black panel, which produced a spectral reflectance of zero. 

Based on previous literature review from GSAMP 2019, nine types of plastic samples 

commonly found in marine debris were collected and analyzed using the 

spectroradiometer. The nine samples were adjusted in size to fit inside the ASD Leaf Clip. 

Each sample of plastic was measured individually and its spectral curve was recorded to 

a text file, after which a spectral graph was generated using Microsoft Excel. The 

following table (Table 5) shows ten measurements that were taken and analyzed with the 

spectroradiometer: 

Table 5: Materials collected and tested for spectral curve generation of plastic debris, including the type of plastic 
category they belong to and some of their most common uses. 

 

 

Materials Used in Spectroradiometer Analysis 

Black Panel Target - 

Type of Plastic Common Uses 

Poly(ethylene terephthalate) (PET) Plastic Bottle 

Cellulose Acetate Cigarette Filter 

Polystyrene Container 

Closed-cell extruded polystyrene foam Styrofoam 

Polyethylene Bubble Wrap 

Polyethylene Layered Bubble Wrap 

Polyethylene Plastic Bag 

Styrene-butadiene (SBR) Rubber 

Polystyrene Utensils 
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6. Current state of play 

Although many new methods and algorithms are being developed for floating 

plastic detection, there are a few important aspects that must be considered that could 

present issues and challenges. In this study, the in-situ data collected for the verification 

of the plastic detection algorithms was acquired from experiments of Topouzelis et. al 

(2019, 2020), and Themistocleous et. al (2020). These studies performed experiments 

where they placed artificial plastic targets, made from various plastic materials, in the 

water on days that the Sentinel-2 satellite would fly over the area. The in-situ data from 

these experiments is crucial for many similar studies and can be accessed freely through 

the Copernicus Open Access Hub. However, due to the fact that such studies are not 

common, the in-situ data of plastic is limited. Due to the atmospheric condition, some 

images that were downloaded contained a substantial amount of cloud coverage, which 

made them unusable for plastic detection. This study was able to use five images 

containing a total of 59 pixels where plastic was present. Having a bigger in-situ dataset 

could alter the results of the algorithm, thus must be considered when judging its 

effectivity. Furthermore, choosing an appropriate atmospheric corrector is crucial in 

optimal plastic detection, as it plays a role in the response of the plastic spectral signal. 

Performing more measurements using the spectroradiometer can be very useful to 

determine whether the atmospheric corrector is returning accurate spectral signatures. A 

total of nine samples were collected for the measurement of a spectral signal of various 

commonly found debris using a spectroradiometer. Acquiring a wider range of samples 

could also provide a more defined spectral curve when averaging all the curves from the 

materials.  

Additionally, the placement of pins to extract properties of shallow, medium, and 

deep water was purely random, in situ measurements of water depth were not taken in the 

area as this study is not focused on the water aspect. However, the results of the 

algorithms used will contain information on the classification of water pixels as well. It 

is important to note that the sensitivity of the classification algorithm for water depths 

should not be taken into account when evaluating the accuracy of the algorithm, as it has 

been trained focusing on the detection of plastic.   
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7. Results 

7.1 Spectral graph of plastic samples 

 The Leaf Clip spectroradiometer was used in this study to measure the spectral 

properties of nine plastic samples commonly found in marine debris. The type of plastic 

samples used in this part of the study was based on literature from GESAMP (2019), 

where most common occurring polymers in floating plastic debris were identified. 

Detailed information on the type of plastic polymer as well as the samples used, can be 

found in Table 5 of Section 5.3 of this study. The generation of the spectral graph of the 

samples aids in understanding of the spectral behavior of plastic, and can help in 

identifying the correct method for floating plastic detection. Figure 7.1 shows the trends 

and patterns of plastic’s reflectance along the electromagnetic spectrum. The “Black 

Target” sample was an additional measurement used to see the results of the calibration 

of the spectroradiometer, therefore, its spectral reflectance is close to zero. Five out of the 

nine samples produced a distinct spectral curve (polyethylene (plastic bag), cellulose 

acetate (cigarette filter), polystyrene foam (styrofoam), polyethylene (layered bubble 

wrap), and styrene-butadiene (rubber). The other four samples, (polyethylene (bubble 

wrap), polystyrene (container), poly(ethylene terephthalate) (plastic bottle), and 

polystyrene (utensils), did not produce a distinct spectral curve, having a reflectance 

below zero. Detailed information about the patterns and trends of the spectral curves is 

discussed in Section 8.1 of this study. 
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7.2 Algorithm for optimal plastic detection 

      As mentioned previously in the Methodology Section 5.2, the Random Forest 

algorithm was chosen to test the optimal detection of plastic. Five Sentinel-2 images 

(Table 2) that contained in-situ data about the presence of plastic were downloaded and 

processed. Pixel values were extracted from each of the images containing information 

about plastic, as well as shallow, medium, and deep water.  Pixel values from bands 2 

(blue), 3 (green), 4 (red), 8 (near-infrared), as well as inherent optical properties iop_adet, 

iop_agelb, iop_apig, iop_atot, iop_bpart, iop_bwit, and the plastic index (PI) were chosen 

as variables in the Random Forest algorithm. Detailed description of the chosen variables 

can be found in Table 3 of Section 5.2 of this study. The variables considered for this 

study were picked based on their distribution in the boxplot (Figure 5.1), the 

bands/indices where the plastic distribution differed from the other three classes (shallow, 

Figure 7.1: Spectral reflectance of commonly found plastics in marine debris generated with a spectroradiometer. 
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medium, deep water) were considered to be superior, and were chosen as in input to the 

Random Forest algorithm. Different combinations of the bands and indices were fed into 

the algorithm to see which of the combinations would produce the highest sensitivity to 

plastic. Four classes were used in the algorithm which were plastic, as well as, deep, 

medium, and shallow water. The best results were produced when the combination of PI, 

iop_adet, iop_agelb, iop_bpart, band 2, band 3, band 4, and band 8 was used. Using these 

variables, the algorithm detected 54 out of 59 pixels of plastic with the overall sensitivity 

to plastic being 91.5%. The following table presents the Confusion Matrix depicting the 

predictions of the Random Forest Classification algorithm: 

Table 6: Confusion matrix produced by the Random Forest Classification Algorithm using the combination of PI, 
iop_adet, iop_agelb, iop_bpart, band 2, band 3, band 4, and band 8 of the Sentinel-2 satellite. 

Random Forest Classification Correct vs. Predicted Values 

Class Deep Medium Shallow Plastic 

Deep 8 1 0 2 

Medium 2 7 0 2 

Shallow 0 0 13 1 

Plastic  5 7 1 54 

 

The overall accuracy for the classification of all classes was 78.9% with the Plastic 

class having the highest sensitivity of 91.5%. The sensitivity for classes Deep, Medium, 

and Shallow was: 53.3%, 46.7%, and 86.7% respectively. As mentioned previously, the 

model was not trained with the intention of recognizing various water depth classes, thus 

the algorithm was less sensitive to the three water classes than to the plastic class. 

The following table (Table 7) presents the overall statistics by class based on the 

Random Forest algorithm when the optimal combination of PI, iop_adet, iop_agelb, 

iop_bpart, band 2, band 3, band 4, and band 8 was used: 
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Table 7: Overall statistics of classes: plastic, deep, medium, and shallow water. Sensitivity: the percentage of “true 
positives” the model was able to distinguish. Specificity: the percentage if “true negatives” the model was able to 
distinguish. Prevalence: the occurrence of positive events, in relation to all positive and negative events. Detection 
Rate: percentage of true positives divided by the remaining true positive and false negative events. Balanced 
Accuracy: mean of sensitivity and specificity. 

 

8. Discussion 

8.1 Spectroradiometer analysis: tends, pattens, and limitations 

The collection, measurement, and analysis of nine different plastic samples 

commonly found in marine debris, allowed for the generation of a spectral reflectance 

graph. Due to the fact that plastics are composed from various polymer types, their 

spectral signatures are unique, yet still follow similar patterns along the electromagnetic 

spectrum. A few trends can be noticed where plastic samples tend to have a similar 

behavior. The first trend is a dip that occurs from 1100 – 1300 nanometers in six of the 

nine samples. These samples consist of polystyrene (utensils), cellulose acetate (cigarette 

filters), CCE polystyrene foam (styrofoam), polyethylene (layered bubble wrap), styrene-

butadiene (SBR) (rubber), and polystyrene (container). The range of 1100 – 1300 

nanometers lies between bands 9 and 10 of the Sentinel-2 satellite, meaning these bands 

can potentially be helpful in identifying some of the floating plastic marine debris. It is 

interesting to note that the spectral reflectance of the same material ‘polyethylene’ 

behaves differently depending on its structure. When layered on top of each other 

polyethylene sample (layered bubble wrap) produces a distinct dip around 1200 

nanometers, however the same material shows no dip when only a single layer is 

measured. Although plastics in the marine environment are commonly layered together, 

Overall Statistics by Class 

 Deep Medium Shallow Plastic 

Sensitivity 0.533 0.467 0.867 0.915 

Specificity 0.966 0.955 0.989 0.689 

Prevalence 0.144 0.144 0.144 0.567 

Detection rate 0.077 0.067 0.125 0.519 

Balanced Accuracy 0.750 0.711 0.928 0.802 
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identifying single layers of thin transparent plastic, such as bubble wrap presents a 

challenge when looking solely at the reflectance curve. Another trend can be observed 

around 1400 nanometers, which lies between bands 10 and 11 of the Sentinel-2 satellite, 

these bands are both short-wave infrared (SWIR). Four of the nine samples show a slight 

dip in their reflectance in this range. The most coherent trend can be observed around 

1700 nanometers where eight of the nine samples have a reduced reflectance, this again 

falls in the SWIR bands range of the Sentinel-2 satellite. Previously mentioned 

experiment by Topouzelis et al (2019), showed how plastic targets consisting of plastic 

bags, bottles, and fishing nets all reflect (show a distinct peak) in the near infrared (NIR) 

part of the spectrum (842 nanometers). The spectral graph created in this study does not 

show a distinct peak in NIR. It is a possibility that the samples used to measure spectral 

reflectance in this study did not show a peak due to the samples being too thin, as well as 

being transparent in color such as the Poly(ethylene terephthalate) (PET) (plastic bottle), 

polyethylene (bubble wrap), and polystyrene (container). Biermann et al. (2020) noted 

that individual pieces of plastic existing in a marine environment are not likely to be 

detected by satellites unless aggregated together into a larger patch. This could support 

the discrepancy of no reflectance in the NIR spectrum of this study, due to samples being 

too thin in their structure. 

8.2 Optimal plastic detection using multispectral satellite imagery: influence of 

algorithm and atmospheric correction 

One of the main aims of this study was to use freely available satellite imagery to 

develop an algorithm for optimal floating plastic detection. This study used Sentinel-2 

satellite imagery from two sites where in-situ information about floating plastic was 

known: Limassol, Cyprus, and Mytilene, Greece. In total 59 pixels containing values that 

represented floating plastic’s reflectance were extracted, along with 45 pixels containing 

information on the reflectance of various water depths: shallow, medium, and deep. The 

Random Forest algorithm was trained according to the in-situ data collected in this study. 

Although the algorithm and chosen variables (bands: 2, 3, 4 ,8, iop_adet, iop_agelb, 

iop_bpart, and the plastic index) showed very promising results, it is important to keep in 

mind that having a bigger set of training data could alter the results of the algorithm. 
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Unfortunately, studies such as the ones done by Topouzelis et. al 2019, 2020, and 

Themistocleous et al. 2020, are not very common. These studies aimed at testing 

satellites’ capabilities at detecting floating plastic from space, by manually setting up 

plastic targets of various sizes on the days that Sentinel-2 satellite would fly overhead. 

These plastic targets are extremely useful for being able to analyze floating plastic’s 

properties, and seeing the extent to which satellites can capture them. Having more large-

scale experiments similar to the previously mentioned ones, could be extremely helpful 

for future studies.  

  The Random Forest algorithm chosen for this study was able to predict the 

presence of plastic with a 91.5% sensitivity, however the classes of different water depths 

(shallow, medium, and deep) had a lower sensitivity. This was due to the fact that when 

choosing the variables as an input, this study focused mainly on the distribution of values 

of plastic rather than water. This resulted in the overall accuracy of the algorithm being 

brought down to 78.9%. The Random Forest algorithm showed promising results in 

detecting the true positive events of plastic (91.5%), however the rate of detection of true 

negative results was much lower (68.9%), therefore the balanced accuracy of the plastic 

class was brought down to 80.2%. The shallow water class had the overall highest 

balanced accuracy (92.8%) out of the four classes meaning the algorithm accurately 

detected the most “true positive” and “true negative” events in this class. It could be useful 

for future studies to train the algorithm for correctly classifying both the plastic pixels as 

well as the water pixels to achieve an overall higher accuracy.  Furthermore, it is 

important to pick appropriate variables in order to achieve the best results using a 

classification algorithm, Figure 5.1 in the methodology section of this study shows the 

distribution of values in various bands an indices. This information was very crucial in 

determining which variables and their combinations would be useful to detect plastic 

apart from other pixels. For instance, the distribution of values in the PI is much more 

isolated in the plastic category than in the water categories. Seeing these distributions in 

various bands and indices helped this study determine that bands 2 (blue), 3 (green), 4 

(red), and 8 (near infrared) are useful in distinguishing plastic apart from water. This is 

also supported by a study done by Topouzelis et al. (2020), where a spectral graph was 
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generated that showed that in the visible (bands: 2, 3, and 4) and near infrared (band: 8) 

parts of the electromagnetic spectrum, plastic’s spectral curve differed from water. 

Additionally, when working with satellite images, it is crucial to pick an 

appropriate atmospheric correction processor. As mentioned previously, the atmospheric 

correction processor helps deduct the effects of clouds and other influences that can 

interfere with the reflectance coming from the surface. This study explored the use of 

Case 2 Regional Coast Color (C2RCC) atmospheric correction processor, which along 

with atmospherically correcting the images, provided informative properties of water 

pixels. Using C2RCC this study was able to extract values from new bands that contained 

information about the inherent optical properties of water such as the absorption 

coefficient of detritus. These new bands generated by C2RCC were useful in training the 

random forest algorithm to detect pixels containing plastic. Previously done studies such 

as the Plastic Litter Project 2018, conducted by Topouzelis et.al 2019, show that other 

atmospheric correction processors such as “ACOLITE”, have end-products that contain 

useful information for the detection of floating plastic debris. ACOLITE atmospheric 

correction processor was found to have a higher performance in the 490 – 681 nm 

(visible) range, for atmospherically correcting coastal waters, compared to other 

commonly used atmospheric correction processors (Vanhellemont et al. 2021). 

Therefore, choosing an appropriate atmospheric corrector can play a big role especially 

when analyzing satellite images consisting mostly of water. 

8.3 Consensus of related literature 

In Section 3 of this study, previous literature on the methods of detection of 

floating plastic debris was gathered and examined. The common consensus is that the 

near infrared band (Band 8) of the Sentinel-2 satellite is one of the essential bands for 

detection of floating plastic debris. Biermann et. al (2020), confirmed that plastic 

materials strongly reflect light in the near infrared part of the electromagnetic spectrum, 

whereas water absorbs light in this area. They further noted that the combination of 

Floating Debris Index (FDI) and Normalized Difference Vegetation Index (NDVI), had 

the best results for forming clusters for individual materials commonly found in marine 

debris, meaning these indices were effective in isolating plastic from other materials. This 
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same conclusion is seen in the study by Basu et al. (2021), where various classification 

algorithms were tested for optimal detection of plastic. They confirmed that when using 

the FDI and NDVI together with six bands of the Sentinel-2 satellite (Bands: blue, green, 

red, near infrared, red edge-2, short wave infrared), the accuracy of detection of floating 

plastic was at its peak, having an overall accuracy of 98.4%. The study done by 

Topouzelis et al. (2020), during the Plastic Litter project 2019, also confirmed the 

previous finding that plastic shows a peak in the NIR and can be distinguishable from 

water at the visible spectrum (Bands 2 (blue), 3 (green), and 4(red)) of the Sentinel-2 

satellite. Furthermore, the Plastic Index (PI), developed by Themistocleous et. al (2020), 

which was proven to be the most effective index for detecting floating plastic in their 

study, utilizes bands 4 (red) and 8 (near infrared) of the Sentinel-2 satellite, further adding 

to the consensus of the two studies mentioned previously. All the studies reviewed in the 

related literature section of this study concluded that plastic targets can be detected from 

space with the Sentinel-2 satellite at a 10 meter resolution, meaning a patch of floating 

plastics is covering a 10 x 10 meter pixel. Topouzelis et. al (2020) further conclude that 

detection of floating plastic from the Sentinel-2 satellite is even possible on a subpixel 

scale when using a spectral unmixing approach. Their study found that floating plastic 

detection on a subpixel scale is possible using the known spectral signature of a plastic 

sample with the matched filtering technique, as long as the plastic covers at least 25% of 

the whole area.  

 

9. Conclusion 

This study explored the capabilities and limitations of using of remote sensing 

systems for the purposes of floating plastic detection. The literature review in this study 

compared methods from different authors to demonstrate that remote sensing systems can 

successfully detect plastic from space, even on sub-pixel scales. Different approaches 

such as classification algorithms, spectral curve generations, and applications of indices, 

showed the versatility of detecting and monitoring floating plastic debris. Indices such as 

the Plastic Index (PI), have been proven to be successful in identifying floating plastic 

targets of a 3 x 10 meter size (smaller than a Sentinel-2 pixel). Additionally, this study 
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explored the use of a spectroradiometer to generate a spectral curve of commonly found 

plastic materials in marine debris. Previously done studies analyzing plastic’s spectral 

properties concluded that plastic reflects light much greater than water in the visible (400 

– 700nm) and near infrared (800 - 2500nm) parts of the electromagnetic spectrum. This 

confirms that bands 2 (blue), 3 (green), 4 (red), 8 (near infrared) of the Sentinel-2 satellite 

can contribute to the distinction of plastic apart from water pixels. When appropriate in-

situ data of floating plastic is available, vital information about plastic’s spectral 

properties can be analyzed and applied to methods of plastic detection. Furthermore, this 

study explored the use of the Random Forest classification algorithm in detection of 

floating plastic debris. Pixel values from different bands of the Sentinel-2 satellite were 

extracted and used as variables in the algorithm. The Case 2 Regional Coast Color 

atmospheric correction processor played a vital role in generating inherent optical 

properties whose values were also used as an input into the Random Forest algorithm. 

Using bands 2 (blue), 3 (green), 4 (red), 8 (near infrared), as well as the plastic index (PI), 

and a combination of the inherent optical properties, the Random Forest algorithm 

detected 54 out of 59 plastic pixels, having a 91.5% sensitivity to plastic.  

The availability of remote sensing images where presence of plastic was known, 

served as crucial information for performing the analysis and testing the algorithm for 

floating plastic detection in this study. Having more studies done where plastic targets 

are set up to simulate floating plastic debris, would greatly impact the possibilities for 

further plastic detection, monitoring, and analysis. It is essential for more experiments to 

be conducted such as the Plastic Litter Project 2018 and 2019 with a wider range of plastic 

target sizes, structures, and locations, to simulate floating plastic debris in various 

conditions. Furthermore, this study proposes further research to explore the use of 

different atmospheric correctors and their capabilities in influencing plastic detection. 

Future studies can utilize the algorithm tested in this study on other satellite systems such 

as Synthetic Aperture Radar (SAR) to perform plastic detection below the surface of the 

water. 
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Figure 11.3: Distribution of values for individual bands and indices from Sentinel-2 image acquired on June 07, 2018 

Figure 11.2: Distribution of values for individual bands and indices from Sentinel-2 image acquired on December 15, 2018 

Table 11.1: Table of values extracted from pins placed on plastic targets, as well as shallow, medium, and deep 

water from five remote sensing images (Dec 15, 2018, June 07, 2018, Apr 18, 2019, May 03, 2019, June 07, 

2019) With PI, iop_adet, iop_agelb, iop_apig, iop_atot, iop_bpart, iop_bwit, being : Plastic Index, Absorption 

coefficient of detritus, Absorption coefficient of gelbstoff, Absorption coefficient of phytoplankton pigments, 

Phytoplankton + detritus + gelbstoff absorption, Scattering coefficient of marine particles, Scattering coefficient 

of white particles respectively.  
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Figure 11.4: Distribution of values for individual bands and indices from Sentinel-2 image acquired on April, 18, 2019 

Figure 11.5: Distribution of values for individual bands and indices from Sentinel-2 image acquired on May, 03, 2019 
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Figure 11.6: Distribution of values for individual bands and indices from Sentinel-2 image acquired on June 07, 2019 

Figure 11.7: Full code used in “R Studio” statistical software to visualize plastic reflectance data using boxplots, and 
test the Random Forest algorithm. *Pins_ALL being the file containing the pixel values from the remotely sensed 
images (refer to Table 11.1 of this section) 


