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Abstract
The situation about palm rejection for laptops is less than ideal. Most research focuses
on touchscreens, and there is minimal research on touchpads. Some research is possibly
done privately in laptop manufacturer companies, but the technology is lacking behind
regardless. This thesis explores several shallow and deep machine learning models and
finds their accuracy to be very much sufficient. In addition, a real-time proof of concept is
implemented to demonstrate the model’s capabilities.

Abstrakt
Situace ohledně detekci a odmítnutí dlaně na laptopech je méně než ideální. Většina
výzkumů se zabývá odmítnutím dotyků na dotykových obrazovkách, a na laptopy probíhá
téměř žádný. Patrně nějaký uzavřený výzkům probíhá uvnitř výrobců laptopů, ale i přes to
je technologie pozadu. Tato práce prozkoumává několik metod plytkého a hlubokého stro-
jového učení, a výsledná přesnost byla zjištěna jako více než dostačující. Také implementuje
aplikaci v reálném čase na demonstraci modelu.
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Rozšířený abstrakt
Tato bakalářská práce se zabývá zkoumáním modelů strojového učení u problému detekce

dlaně u laptopů. Modely, které byly prozkoumány, jsou: umělá neuronová síť, konvoluční
neuronová síť, rekurentní neuronová síť, logistická regrese, model podpůrných vektorů a
náhodný les. Problém detekce dlaně se týká případů, kdy se uživatel dotýká touchpadu
(dotykové plochy pod klávesnicí laptopů), bez záměru s touchpadem interagovat, což způ-
sobuje nechtěný vstup na počítači, jako pohyb kurzoru, klikání kurzorem nebo některé ovlá-
dací gesta, jako například minimalizace všech oken na obrazovce a tyto případy následně
detekovat za účelem zamezení těchto vstupů. Což bez diskuze dělá používání počítače se
zapnutým touchpadem příjemnější. Tato práce rovněž prozkoumává, jak může touchpad
ovlivňovat věci i z ergonomického pohledu.

Cílem této práce je poukázat na aktuální nevyspělost a zastaralost problému detekce
dlaní na touchpadech. Současně v případě tabletů se provádí značné množství výzkumů
a na laptopy se zapomíná. Při tom laptopy jsou početnějším zařízením, každý laptop
touchpadem disponuje, a některé, ačkoliv malé množství, dokonce neumožňují jeho vypnutí.
Dále je cílem předvést modely, které by pro tento problém byly vhodné. Což, doufejme,
bude motivovat společnosti, které laptopy vyrábí, aby k tomuto problému detekce dlaně
přistupovala s větší iniciativou.

Zaměřil jsem se dosáhnutí přesnosti modelů vyšší než jaká je konkurence u dotykových
obrazovek, protože ohledně touchpadů nejsou k dispozici výzkumy. Dalším původním za-
měřením bylo dosáhnout nižší časové a paměťové náročnosti, ale nepodařilo se mi najít
výzkum, který by toto zkoumal u konkurenčních řešení dotykových obrazovek, a proto tyto
výsledky nebyly porovnány. Během práce na této práci se také objevil problém, který v
podstatě zamezuje implementování reálného odmítnutí dotyků. Problém je způsoben tím,
jak jsou laptopy navrženy. Touchpad je připojen velmi pomalou sběrnicí a sám o sobě
funguje jen jako oddělená periferie, než jako senzor laptopu. Z tohoto důvodu touchpad
nikdy nebyl připraven na množství dat, které sběrnicí prochází při kolekci nezpracovaných
dat. To způsobuje, že při sběru nezpracovaných dat dochází k nereakčnosti touchpadu. To
znamená, že pohyby po touchpadu často nejsou ve stoprocentním množství interpretovány
počítačovým systémem pro pohyb kurzorem, což omezuje spoustu výzkumů. Tato práce se
snaží tento problém obejít.

Nejvyšší přesnost detekce dlaně, která byla dosažena, byla metodou náhodných lesů, kde
při předem naměřené sbírce dat, odlišné od trénovací sbírky dat, byla naměřena přesnost
přes 99.5 %. Nutno ale uvést, že jak trénovací, tak testovací data nejsou dobrou reprezentací
tohoto problému, protože byly nasbírány jen mnou, bez výzkumu kvality dat. Byla také
vytvořena aplikace pro demonstraci tohoto modelu, která na obrazovce zobrazuje aktuální
data z touchpadu a uvádí, jestli by se měla tato data zamítnout nebo ne (jestli se jedná o
dotyk prstem a nebo dlaní). Ukázka tohoto programu ve video podobě je součástí odevzdané
práce.
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Chapter 1

Introduction

Palm rejection is a technology broadly researched for tablets, and other touch screen devices,
especially those using styluses. But touchpads on laptops tend to lag behind. There is very
little available research about laptop touchpads, especially for touch rejection, and access
to the touchpad itself as a device is usually minimal. This thesis aims to raise consciousness
about current issues with touch rejection on laptops, motivate companies to focus more on
touch rejection, and inspire more research toward touch rejection on laptops.

A touchpad, also called ”trackpad,“ is an input module that allows the user’s finger
on a smooth panel to control a device’s cursor, as well as other tasks, using gestures.
Almost every laptop features one, and they tend to be placed between the keyboard and
the user, usually directly under the space bar. Using a touchpad can also free up workspace
room otherwise used by a computer mouse, reducing the required workspace while still
maintaining productivity. Time and muscle movement when switching between a keyboard
and pointer device is also reduced [20]. However, people tend to prefer using a computer
mouse. Furthermore, the wrist extension angle tends to be higher, as shown in study [19].

Palm rejection is a technology that ignores touches made by a palm, which allows the
user to use the touchpad as a palm rest without activating any cursor movement. Research
by Camilleri et al. [7] found an association between palm rejection and more significant wrist
extension, lesser discomfort, and faster task speeds. On touch screens, palm rejections seem
to help lower hand positions. Lower hand positions, according to research from Erdelyil et
al. [10] decrease the shoulder movement and shoulder muscular effort, and discomfort.

The palm rejection process analyzes movements on a device’s touch sensor, classifying
the movement whether it is a palm and rejecting input assumed to be a palm. This process
eliminates inputs that the user probably did not want to use to control the device. This
thesis aims to use artificial intelligence machine learning techniques to implement palm
rejection for a laptop’s touch device. Those techniques have not been applied broadly for
palm rejection yet by the public. Suppose any of the explored AI techniques appeared to
be either more accurate, faster, or less resource-intensive. In that case, it could become
an alternative to current solutions and could replace or extend current solutions of palm
rejection on laptops. The thesis’ goal is to find a solution that would be better in at least
one of those three criteria mentioned and learn about machine learning algorithms and their
behaviour, their uses in practice.
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Chapter 2

Literature review

2.1 Training data
This thesis is created with data extracted from a Synaptics touchpad driver RMI (Synaptics
Register Mapped Interface). And is developed on a Fedora system with kernel version
5.9.0-rc5. Training data are collected by capturing the V4L2 stream of a touch device
stream. V4L (Video4Linux) is an API and collection of drivers used for video stream in
Linux systems.

The current way of capturing data has multiple limitations. The first limit is that
resolution of captured data is low. Using a Synaptics touchpad in a Lenovo T580 laptop,
debug data resolution is 20 × 13 ”antennas.“ Such resolution is very low for many AI
techniques, and overcoming this resolution is one of the most considerable obstacles of this
work. Each antenna has a value describing the pressure applied; a higher-touch surface
tends to have higher values. The second substantial limit is the bandwidth that a bus
connecting the touchpad can put through.

The possibility that with current resolution will not be sufficient for training ML models,
an approach to upscale the data and approximate them will likely be required to have
satisfactory results. Most touches appear to be round; thus, the idea is to approximate
data to circles. Different approaches, such as using AI techniques for increasing detail,
should be explored too.

2.2 Existing solutions
For laptop touchpads, existing solutions are unfortunately proprietary and not documented.
Drivers get already processed data, so it is challenging to explore open-source drivers.
Nevertheless, touchscreens are broadly explored and documented. Thus, this chapter will
mainly aim at current solutions for touch screens.

2.2.1 Hardware solutions

Hardware solutions require additional equipment to function correctly. However, when
performed right, they tend to be reliable. This subsection will cover few hardware solutions
that could be used.

4



Figure 2.1: Example of raw data interpreted as a heatmap.

Active stylus

Devices with touch screens that aim to use an active pen tend to have special hardware
detecting the stylus, such as ultrasonic sensors sensing ultrasonic pulses from a pen. Other
approaches are using infrared light or pen sending pressure data over Bluetooth. Another
approach, which can be seen, for example, in Microsoft Surface, or Samsung Galaxy Note,
uses resonance inductive coupling or sensors for sensing the magnetic tip of the pen. It
is also easier to differentiate the pen from the palm because it has a very uniform shape
and capacitive properties. However, laptop touchpads do not use pens. Those methods are
mostly not used; fingertips are used instead, which are not so uniform and do not always
have the same capacitive properties as a dedicated pen.

Spacer dots

There is also a palm rejection approach that does not use any additional modules, but the
approach is still a hardware solution. The approach uses the setting distance of spacer
dots. Spacer dots create spacing between two conductive layers of the touchpad [23]. The
distance of those spacer dots seems to influence the maximum size of a contact getting
registered. Having a lower distance between spacer dots leads to only smaller objects
shorting conductive layers. Larger objects’ touches result in pressure being distributed
across spacer dots leading to conductive layers not getting touched. This approach seems
to be patented by Microsoft. Most touchscreen vendors use the average spacing of 3.5 mm
and dot size around 0.1 mm [23].

5



Figure 2.2: Components of touch screen [23]. ITO layers are conductive layers.

Palm rejection glove

The intention of this product is to cover all areas which should not be used for cursor
control with a non-capacitive material. However, it never gained popularity and ended up
being a gimmick.

2.2.2 Software solutions

The main advantage is that software solutions do not require any special hardware, and
they are reasonably cross-platform. Applications rely on analyzing data from the touchpad.
Extracting features like touch position, orientation, and size and using an algorithm to
decide whether reject the input.

Another very different approach is a Hand Occlusion Model, showed in figure 2.3, pro-
posed by Vogel et al. [22]. This model predicts from stylus location, where hand and forearm
would be located, any inputs located in hand projected area are rejected, whereas outside
area is accepted [22]. However, this approach appears to have low accuracy [2], though
the model in this study was simplified. This model appears to be ineffective. Several hand
positions lead to palm being outside wrist and forearm areas.

Annet et al. [2] investigated a comparison between several touch rejection algorithms.
The algorithms explored were:

• A contact area algorithm, where input got rejected if four or more sensors on touch-
screen were detecting touch.

• Pen hover algorithm, where if the pen was located at least 20 mm above the touch-
screen, all inputs were rejected.

• Hand occlusion model combined hover algorithm. Static rejection region algorithm,
shown in figure 2.4a, where depending if the user is left or right-handed, zones are
projected, where area rejecting the screen is about 2/3 of the touchscreen.

For the right-hand user, the highest certainty is located on the right side of the touchpad,
whereas on more left, input would get rejected. Stylus based rejection region algorithm 2.4b,
similar to static rejection, but the boundaries move together with the stylus, together with
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Figure 2.3: Vogel hand occlusion abstraction, adapted from [2]. Green area is location of
a pen. Orange area is a predicted area of a hand. Blue area corresponds to abstracted
forearm area.

a hover detection. Furthermore, for last, stylus-based rejection with a buffer, shown in
figure 2.4c, buffer corresponds to an additional area around the stylus, where input would
get still accepted. Hypothetical functionality is increasing hover height from 20 mm to 200
mm. The reason for it being hypothetical is that hardware in touchscreens cannot track
pens above 20 mm, and instead, special additional hardware for tracking the pen was used.

All algorithms except contact area and static rejection region use a pen hover algorithm,
which will not be possible for laptop touchpads because laptop touchpads do not use pens.
Using only contact area does not produce great accuracy but could be used as a classifier.
The hover algorithm is not usable for the reasons mentioned above. Vogel’s hand occlusion
model appeared to not be highly ineffective. Region rejection is probably not usable for
laptop touchpads since it is likely users would use more entirety of the touch area than
large touch screens. Usability for laptop touchpads, however, will need to be confirmed.

2.2.3 Software machine learning solutions

One of such already explored solutions is probabilistic palm rejection using spatiotemporal
touch features and iterative classification. Application is not looking at current touch prop-
erties but their evolution over time [18]. This is useful because palm touches tend to have
a long period of the same touches, and they do not change much over time. Pen or finger
movements, however, move faster. Spatiotemporal touch features chosen for this model
have five characteristics: the size of the touch area, sensors under palm touch area tend to
flicker, palm points tend to be clustered close together, palms have only small movements
[18]. Those features into a pre-trained decision tree, and classification is modeled. Similar
features should also be experimented with within this work. This approach had a valid
positive rate of 97.9 % and a false positive rate of 1.6 %, surpassing other publicly available
palm rejection applications.

7



(a) Static Rejection Region

(b) Stylus based rejection region

(c) Stylus based rejection region with a buffer

Figure 2.4: Examples of region rejection models for right-handed users. For left-handed
users, areas would be mirrored vertically. (a) vertical, (b) horizontal, (c) intersecting hori-
zontally and vertically. Taken from Annett et al. [2].

There are rumors of Microsoft and Dell researching machine learning for palm rejection.
However, this will need to be explored more.

2.3 Machine learning models
Machine learning can be defined as computational methods using learning to improve per-
formance and make accurate predictions based on experience. Experience refers to past
information available previously to learner, in form of learning, which is typically in form
of electronic data. Such data are collected by interaction with the environment, we want
the model to approximate. Most usually, data are in form of labelled dataset, which was
human-labeled, as explained in a book Mohri et al. [14]. It is a branch of artificial intelli-
gence. Learning algorithms can be applied to various applications such as text, language,
speech, and vision classification. Beside classification, other applications are regression,
ranking, clustering, dimensionality reduction and manifold learning [14]. Helping in vari-
ous of areas, such as: game AI (such as ”chess engines“), fraud detection, medical diagnosis,
autonomous driving, biology etc.

In many areas, machine learning has already changed the shape of the many sub-
industries. For example, in chess industry, AI models surpassed any human abilities and
as the result, chess professionals train by exploring and mimicking strategies developed by
AI, in order to stay on top of their ranking.

With current advances in computational technology, machine learning are getting more
efficient, more complex, and adapted to entirely new problems. Currently largest machine

8



Figure 2.5: Comparison of unintended touch algorithms. Taken from from Annett et al.[2].

learning model is a deep learning auto regressive language model developed by OpenAI.
Claimed to have up to 175 billion parameters. It’s capability is still being explored.

2.3.1 Learning approaches

This subsection lists several learning approaches deployed in various machine learning mod-
els.

Supervised learning

By learning correctly labeled patterns, it receives some partial information about the true
relationship between patterns and their labels. In the face recognition application, for
example, a number of images are received, each labeled as either legitimate or fraudulent.
In this manner, it is possible to learn to accurately label patterns from training data without
wasting a great deal of design time and effort, and it can be applied to problems that are
difficult to specify precisely in advance, perhaps because the environment is changing [4].

Training data set is a sample of input-output patterns. The result is a function that can
yield desired output, given the input. The objects are already associated with target values
before learning, thus the learning is supervised, it is told to the model how to interpret
input data. The task is to find a deterministic function that maps any input to any output,
predicting future input-output observations [14].

Unsupervised learning

Data is a sample of input patterns, without labels that would contain desired outputs. The
unsupervised model uses the association to make a prediction of how much data correspond
to the learned data set. It is often difficult to quantitatively evaluate a learner’s perfor-
mance in this situation due to the absence of labeled examples. In general, unsupervised
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learning refers to problems such as clustering and dimensionality reduction [14]. Unsu-
pervised learning algorithms are generally more costly and less accurate than supervised
learning models.

Reinforcement learning

Instead of passively receiving labeled data in supervised learning, the learner is actively
involved in the process. Through interaction with the environment, reinforcement learning
gathers information. Following an action, the learner receives two types of information: the
current state of the environment, and a reward, which relates to the corresponding goal.

Deep learning

Deep learning is a machine learning method that uses artificial neural networks. The main
difference in this type of learning is that feature extraction is learned from data, features
typically are not fed into the model. This is useful in cases where the best features are not
known.

Shallow learning

This is an opposite to deep learning. Shallow learning models are fed with features, and
are not capable of feature extraction.

2.3.2 Gaussian Mixture Model

This subsection is adapted from Reynolds [16].
A Gaussian Mixture Model (GMM) is a parametric probability density function that is

represented as a weighted sum of Gaussian component densities. These models are com-
monly used to calculate probability distributions for continuous measurements or features in
biometric systems, including spectral information related to vocal tracts in speaker recog-
nition systems. In GMM, parameters are estimated from training data using either the
iterative Expectation-Maximization (EM) algorithm or the Maximum A Posteriori (MAP)
estimation.

The Gaussian mixture model is an unsupervised learning model. The Gaussian mixture
is a function that is comprised of several Gaussians. Each Gaussian is described by a gaus-
sian function. Gaussian mixture model works best with data having Gaussian distribution’s
nature. Gaussian distribution is observed to be occurring in nature. Since most touches
tend to have a circular shape with pressure being higher in the center, using a uni-variate
Gaussian mixture could be possible.

A Gaussian mixture model is a weighted sum of M component Gaussian densities as
given by the equation,

𝑝(𝑥|𝜆) =

𝑀∑︁
𝑖=1

𝑤𝑖 𝑔(𝑥|𝜇𝑖,Σ𝑖) (2.1)

where,

• 𝑥 is a D-dimensional continuous-valued data vector (i.e. measurement or features),

• 𝑤𝑖, 𝑖 = 1, ...,𝑀 , are the mixture weights,
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• and 𝑔(𝑥|𝜇𝑖,Σ𝑖), 𝑖 = 1, ...,𝑀 , are the component Gaussian densities.
Each component density is a D-variate Gaussian function of the form,

𝑔(𝑥|𝜇𝑖,Σ𝑖) =
1√︀

(2𝜋)𝐷 |Σ𝑖|
exp− 1

2
(𝑥−𝜇𝑖)Σ

−1
𝑖 (𝑥−𝜇𝑖) (2.2)

with mean vector 𝜇𝑖 and covariance matrix Σ𝑖. The mixture weights satisfy the constraint
that

∑︀𝑀
𝑖=1𝑤𝑖 = 1. The complete Gaussian mixture model is parameterized by the mean

vectors, covariance matrices and mixture weights from all component densities. These
parameters are collectively represented by the notation,

𝜆 = {𝑤𝑖, 𝜇𝑖,Σ𝑖} 𝑖 = 1, ...,𝑀. (2.3)
Due to their ability to represent a wide variety of sample distributions, GMMs are

frequently used in biometric systems, most notably in speaker recognition systems. Its
ability to approximate arbitrarily shaped densities smoothly is one of the GMM’s strongest
assets.

Figure 2.6: From Reynolds [16]. Comparison of distribution modeling. (a) histogram of
a single cepstral coefficient from a 25 second utterance by a male speaker (b) maximum
likelihood uni-modal Gaussian model (c) GMM and its 10 underlying component densities
(d) histogram of the data assigned to the VQ centroid locations of a 10 element codebook.

11



2.3.3 Linear regression

Linear regression is a statistical approach for modeling the relationship between a predictor
and an independent variable. When a relation is deterministic, one variable can be express
by the other. For example, using a variable for distance in miles, the second variable for
kilometers can be accurately predicted by the first one. The idea is to find a line that best
fits all data.

2.3.4 Logistic regression

Logistic regression has very similar steps to linear regression, except it uses a binomial
response variable instead of a continuous one. It can be seen in both the choice of para-
metric model and the assumptions that are used in logistic regression and linear regression.
Following the same principles used in linear regression, when this difference is taken into
account, the methods used in a logistic regression analysis are identical.

Binary response data are most often modeled with logistic regression. Typically, binary
responses take the form of 1/0, with 1 generally indicating a success and 0 a failure. There
are numerous ways in which 1 and 0 can be defined, depending on the nature of the study.
As a general rule, response 1 indicates the foremost subject of interest for which a binary
response study is designed. Using normal linear regression to model a binary response
variable would introduce substantial bias into the parameter estimates. Standard linear
models assume that the response and error terms have normal or Gaussian distributions,
observations in the model are independent, and the variance, 𝜎2, is constant across obser-
vations. When a binary variable is modeled using this method, distribution and variance
assumptions are violated [11].

Figure 2.7: Linear regression vs Logistic regression. Taken from [8].

2.3.5 Support Vector Machine

This subsection is adapted from Tripathi [21].
A support vector machine is a type of discriminative classifier that is formally defined

by a separating decision function. An SVM decision function can be viewed as an optimal
hyperplane that serves to identify observations based on patterns of information about those
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observations, referred to as ”features.“. A hyperplane can then be used to determine the
most probable label for not yet seen data. The features used for inferring the hyperplane
are rarely raw data; instead, they are derivatives resulting from some form of interpolation.
Support vectors are derived from the relationships between features and are referenced by
coordinates. As a result, the algorithm outputs an optimal hyperplane that categorizes
new examples when given labeled training data (supervised learning) with the maximum
distance between both classes’ data points.. Two-dimensionally, this hyperplane can be
characterized as a line cutting a plane in half, with each class lying on one side. It can be
also used for regression analysis, but classification is mostly used. It is considered as very
effective classification algorithm. In regular variant support, vector machine algorithms can
separate only two non-overlapping classes. The result of the support vector machine is not
represented as the probability of representing a class. Instead, it produces a score.

The SVM algorithm uses a set of mathematical functions called Kernels. In some
classification problems, it is not possible to find a hyperplane or a linear decision boundary
(figure 2.10). We may obtain a hyperplane in the projected dimension if we project the data
into a higher dimensional space compared to the original space. In this way, Kernel aids
the search for hyperplanes in higher dimensional spaces without increasing computational
cost. With an increase in dimensions, the computational cost typically increases.

SVM optimization uses a regularization parameter (called C in Python’s sklearn library)
to determine how much it wants to avoid misclassifying the training examples when opti-
mizing the model. Optimization will choose a smaller-margin hyperplane for large values
of C if that hyperplane does a better job of classifying all the training points correctly. On
the other hand, a very small value of C will cause the optimizer to look for a larger-margin
separating hyperplane, even if it misclassified more points.

Gamma describes how far the influence of a single training example extends, with a low
value meaning ’far’ and a high value meaning ’close’. Alternatively, when gamma is low, the
calculation for the separation line takes into account points that are away from plausible
separation lines. In contrast, high gamma means that the points close to plausible lines are
considered.

Also, some hyperparameters are specific to Classification or Regression Problems, or
they are used along with any specific and dependent hyperparameter.

SVM has a high time complexity 𝑂(𝑛3) for LibSVM implementation [1] and as the result,
it’s demanding, and it is not recommended for learning datasets with size > 100,000. SVM
can be capable of either linear or nonlinear classification (figure 2.10), but usually it’s the
former. Linear SVM has advantage of having considerably lower time complexity. The use
of SVM is widespread in many areas, such as disease detection, text categorization, software
defect, intruder detection, time-series forecasting, detection, etc.
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Figure 2.8: Illustration of the hyperplane that separates the support vectors. Taken from
[17].

2.3.6 Random Forest

Random forests are a scheme proposed by Leo Breiman in the 2000’s for building a predictor
ensemble with a set of decision trees that frow in randomly selected subspaces of data. It’s
strength were analysed in the next 10 years, where they were proven to be very strong, and
one of the most accurate general-purpose learning techniques available. Random forests
ideas are influenced by the early work on geometric feature selections, random subspace
methods and random split selection approaches [5].

Leo Breiman in [6] explains random forests as a combination of tree predictors in which
each tree is influenced by a vector of values selected at random and with the same distribu-
tion throughout the forest. As the number of trees for forests increases, the generalization
error almost certainly reaches a limit. The generalization error of a forest of tree classifiers
depends on the strength of the trees within the forest and their correlation. Internal esti-
mates are used to monitor error, strength, and correlation, and these are used to measure
the effect of increasing the number of features used in the splitting. Variable importance is
also measured using internal estimates. Regression is also applicable with these ideas.
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Figure 2.9: Random forests scheme taken from [3]

As a random forest model, hyperparameters can be either used to increase the model’s
predictive ability or make it run faster. The first hyperparameter is n_estimators, which
determines how many trees are built before a maximum vote is taken or before averages
of predictions are calculated. There is generally an increase in performance and stability
with more trees, but the computation becomes slower with more trees. The max_features
hyperparameter determines how many features are used to split a node. The last hyperpa-
rameter is textttmin_sample_leaf, which determines how many leaves are needed to split
an internal node. It has some advantages for people who have not yet been exposed to
machine learning and coding since it is very versatile, requires very little feature analysis
compared to other types of models, and even with the default hyperparameters, is very
accurate with little need to change them. A key issue in machine learning is overfitting,
but random forests do not suffer from this problem. Furthermore, although random forests
are fast to train as long as the number of trees is not extremely high, the calculation of the
prediction is not that fast [9].

2.4 Artificial neural networks
Artificial neural networks (ANNs) are the foundation of deep learning. In the last decade,
artificial neural networks have become popular for applications ranging from financial pre-
diction to machine vision. These networks were originally designed to be simplified versions
of biological neural networks. However, their focus has shifted from biological neural net-
works to supervised learning problems. We neglect the word ’artificial,’ and we consider
neural networks as nothing more than a type of nonlinear function (figure 2.10).
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Figure 2.10: Linear vs. nonlinear problems. Source Sebastian Raschka [15]

Neural networks were named after neurons in biology and connections between them.
In biology, a neuron is a type of cell found in the brain that accepts input and responds.
Inputs and outputs are in the form of electrical signals. However, artificial neural networks
are different from neural networks within a brain. Especially, learning methods of artificial
neural networks are not inspired by human processes. A biological neural network’s learning
mechanism is unknown.

Before the term artificial neural network was introduced, models that fit the description
of neural networks existed. A popular model that was created before ANNs were intro-
duced is the Multi-layer perceptron (MLP), but mathematical interpretations of neurons
existed even before this. Mathematical model of a perceptron is represented in equation
2.4. Nowadays, it’s classified as an ANN. Due to more accurate options available nowadays,
MLPs are rarely used in practice, but they are used to teach deep learning basics.

If a neuron network is large enough, it can model any function [12][13]. The process of
neural network learning is referred to as deep learning. In deep learning, neurons’ activation
functions change when misclassification occurs.

A typical artificial neuron network consists of three types of layers. An input layer,
an output layer, and hidden layers. The hidden layer’s cells are hidden from everyone,
including the network’s developer, and are adjusted only through learning methods.

Convolutional neural networks introduce a new type of layer into neural network struc-
ture, a convolutional layer. Convolution is a process of combining two informations into
a new information, typically by applying a filter. It is inspired by biological processes in
brain, resembling a visual cortex. It is used mainly for deep learning problems with image
data.

Recurrent neural networks introduce memory capabilities to neural networks. By using
memory processes, they are able to process sequence of inputs and extract contexts.

2.4.1 Perceptron

Perceptron calculates a function from R𝑛 to 0, 1. Network with of type of neuron, having
an output of either 0 or 1 can be used for pattern classification problems where we want to
divide patterns into two classes, labelled ’0’ and ’1’. A perceptron computes a function 𝑓
of the form:
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𝑓(𝑥) = 𝑠𝑔𝑛(𝑤 · 𝑥− 𝜃), (2.4)

for input vector 𝑥 ∈ R where:

• 𝑤 = (𝑤1, ..., 𝑤𝑛) ∈ R is an input weight for each precedent neuron connected, and

• 𝜃 ∈ R is a bias (threshold weight).

𝑤 · 𝑥 denotes the inner product
∑︀𝑛

𝑖=0𝑤𝑖𝑥𝑖, and

𝑠𝑔𝑛(𝛼) =

{︃
1 if 𝛼 ≥ 0

0 otherwise.
(2.5)

When learning, on misclassification, weights get update to move the decision boundary
towards a misclassified example.

2.4.2 Cost Function

Cost function is used to determine a relation between weights and biases and correct output
of the network. To find the best weights configuration, a minimum of cost function can be
found. However, finding minimum in multidimensional space is an intricate problem. Cost
function also can have multiple local minimums, and finding global minimum is a difficult
task. Usually because of how complex cost functions are, only local minimums are found
by approximation.

2.4.3 Gradient Descent

Gradient descent is a method for finding a minimum of a function. Gradient descent cannot
find always the best result. Gradient descent can be abstracted as dropping a ball at a 3
dimensional space. When ball touches any surface, it rolls down according to angle of the
surface hit. In a same way as gradient descent, dropping a ball, doesn’t have to find the best
result, when there are more local minimums. Simulating ball physics isn’t needed to find
such minimum, this is only an oversimplified explanation. The most elementary gradient
descent has a fixed step, and when a ”ball“ is crossed with a function, the new trajectory by
a function slope, which can be calculated as derivatives of the function at certain position.
More advanced back-propagation methods usually optimize this process.

2.4.4 Back-propagation

Back-propagation is a learning algorithm for training neural networks. It is generally faster
than calculating a gradient descent of a cost function. It works by propagating desired
output in the direction of the input (backwards), on each neuron checking all input neurons
in previous layer and changing the weights to better match the desired function. And in
the same way, adjusting the next layer and so on.

Perceptron is one of the earliest machine learning algorithms. It is a binary linear 2.10
classification algorithm. It learns a decision function by processing training points one at a
time. A binary function is a function whether input belongs to some specific class. It is a
linear classifier. If data cannot be linearly separable, it does not converge all points to the
correct class. Perceptron is an artificial neuron with an activation function. A network of
perceptrons could be technically classified as a simple artificial neural network. The output
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from the neural network used for classification is a probability of data being a specific class
[4].

A function of perceptron is as follows:
𝑓(𝑥) = 𝑠𝑔𝑛(𝑤𝑥− 𝜃)
where 𝑤 and 𝜃 are adjustable parameters. Output of the function is 0, 1.
Decision boundary corresponds to 𝑤𝑥− 𝜃 = 0.
When learning, the perceptron algorithm starts with arbitrary values and when it mis-

classifies data, parameters get updated: 𝑤 = 𝑤+𝜂(𝑦−𝑓(𝑥))𝑥, where 𝜂 is a prescribed fixed
positive constant. The result of this update is decision boundary moving closer towards
misclassified point 𝑥.

Anomaly detection

Analyzing data for anomalies involves finding patterns that differ from expected behavior.
The terms anomaly and outlier are often used interchangeably in the context of anomaly
detection. As an example, anomaly detection is extensively used in the detection of fraud for
credit cards, health care services, cyber-security intrusions, faults in critical safety systems,
and military spying.
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Chapter 3

Implementation

This chapter discusses the methods used in this work and ways to approach it, such as
tools for creating the dataset, tools to gather more data for deep learning, walking through
several prototypes of machine learning, and implementing a final program that uses one
chosen model and demonstrates a model in real-time.

3.1 Data collection
This section will talk about the implementation of algorithms, that made it possible to get
a dataset for learning algorithms. It is common for capturing sessions to contain many
data frames, where there were no touches at the time, so a model could be created to locate
and eliminate these images. Due to low amount of training data, it might be necessary to
manipulate the data to increase the accuracy of deep learning models so that enough data
is available, thus several data augmentation algorithms are proposed and implemented.

3.1.1 Raw data capture

The only way to capture raw data is to enable debug mode on the RMI touchpad driver.
During driver compilation, it is necessary to specify CONFIG/_RMI4/_F54=y when compiling
drivers from Linux repository. It is then necessary to load the driver with debug/_flags=1
as an insmod argument command.

The driver passes raw data through a file stream, usually located in /dev/v4l-touch0.
It is likely that touchpad performance will be greatly compromised as a result of the debug
mode’s excessive amounts of data traffic. Because of this, only laptop manufactures are
able to properly adapt palm rejection. In the best-case scenario, this will encourage them
to develop hardware that would allow palm rejection implemented outside firmware to be
efficient and lag-free, enabling better public researches about this problem.

Because of the limitations with the hardware for collecting data, explained in section
2.1, data had to be collected only by me. Because this project aims to experiment more
with deep learning, the project requires a good amount of training data. As a result, only
selected data collection approaches are practical from a time standpoint.

As soon as this step was completed, the next step was figuring out how to obtain
any decent amount of data, while having them properly labeled. With the first attempt
of collecting data, an approach of manually positioning a hand and then capturing this
moment as one image was used. Trying to use this method quickly proved to be very
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time-consuming, as well as creating very unnatural results, and so another approach was
needed.

The second method involves utilizing the computer’s system in order to obtain informa-
tion about the rejection. It could be done, for instance, by tracking cursor movements in the
system and labeling data accordingly. The approach nonetheless seemed complicated, and,
first of all, the touch rejection on the ThinkPad T580 used is, based on my observations,
inadequate, where the only case when it rejects touches are if the touch is on the left edge
of the touchpad. This would result in a dataset that wasn’t labeled accurately enough,
severely limiting the model’s potential.

The last method focuses on having label-specific scenarios, wherein for each data collec-
tion scenario, only selected types of touches, matching desired training classes, are collected.
In spite of the reduction in mislabelling risk, the results may not be as a great representation
of real-world scenarios as the previous method. For a dataset collection containing legal
data (data that should be accepted), the touchpad will not be touched with the palm, for
example, in sessions involving playing a cursor-only game. Likewise, to record palm data,
having wrists rested on the laptop while writing some long text, as well as experimenting
with hand resting and typing positions. This third approach was chosen for creating train-
ing and test datasets. However, this approach also relies on removing anomalous data from
the dataset containing illegal data.

3.1.2 Data elimination

Data collection faces multiple problems, explained in previous subsection 3.1.1, that de-
termined how data were captured. Due to this, the dataset contains scenarios when the
touchpad is not touched, or it may happen just after the touchpad was touched. It was,
therefore, necessary to establish a way of identifying insufficient data that could confuse
learning models.

In order to remove unsatisfactory data, a model must be developed. Normally, this
type of analysis falls under anomaly detection; however, anomaly detection tends to deal
with anomalies that are sparsely represented in the dataset, thus requiring statistical ap-
proaches. However in this situation, unsatisfactory data are more substantially contained
in the dataset, because of that, statistic methods are not explored and the shallow learning
approach is explored.

This problem involved creating two classes of data. The first class contains all touch
values from the palm rejection training dataset, both legal (fingers) and illegal (palms). The
second dataset was manually created and aimed to contain two specific scenarios. The first
situation is when the user isn’t touching the touchpad, and the images consist mainly of
blank images. TThe second situation aimed to capture images that happen right after the
user stopped touching the touchpad; the reason is that this situation produced unreliable
data, and I wanted the model to learn not to reject this situation. Those inconsistent data,
after a while, get into an equilibrium that corresponds to the first situation. This effect
resembled heat residue after touching a cold surface and viewing it with a thermal camera,
but the residual values reached negative numbers. This second dataset consists of only 265
images; however, since very few scenarios were needed to cover this dataset, this size was
sufficient.

Data were analyzed for valuable features. Features explored were:

• Minimum value (min)
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• Maximum value (max)

• Mean

• Variance (var)

• Sum

• Peak to peak value (ptp)

• Standard deviation (std)

• A sum across diagonals (trace)

Feature selection was performed on the newly established dataset. Three features were
distinct when plotting their densities for each class: max, ptp, and standard. Although
these visualizations are helpful for selecting features, a more objective method was needed.
With a Random Forest classifier, the importance of each feature was extracted and plotted,
where it’s clear which features are useful for classification. As some features determine very
similar factors, using them together would not enhance the classifier’s accuracy, but quite
the opposite. It is thus vital when selecting features to consider the correlation between
them. This is done with a correlation plot, which can be seen on figure 3.2. A correlation
of above 0.9 (or below -0.9) is usually considered too high, and those features shouldn’t be
used together. Correlation values of 1 (or -1) indicate a linear relationship, which means the
features are often identical but interpreted differently. I chose variance as the first feature,
due to high importance, and as the second feature maximum value, due to low correlation
between them. Although standard deviation would be a better alternative, due to the lower
correlation with maximum value, the original option is accurate enough for this problem.

The ”target“ column is not considered a feature, but rather a label on the data that
indicates if it is legal or illegal (finger type, palm type). The feature for max value has a
very low importance value. However, all values with higher importances were too correlated
with a variance feature.
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Figure 3.1: Feature importances according to Random Forest algorithm

Since Gaussian Mixture Models don’t generate decision values and generate likelihoods
instead, a decision threshold is used to label data based on the model’s predictions. A
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logarithmic likelihood of -500 proved to be a good threshold for this decision. The likelihood
of data exceeding this value is considered ”non-touch“ and for illegal datasets, they are
eliminated, as there is no reason to reject data where no touch is detected.

3.1.3 Data augmentation

Models that use deep learning require a lot of data. In addition, we cannot control what
deep learning models will focus on. For example, deep learning models could learn to reject
touches on the right side of the touchpad based on touch position. Among the ways to
mitigate these problems is to train your model with very diverse touch positions. Three
techniques are used to modify the data in this thesis to increase the dataset size: mirroring
(flipping), shifting, and rotating.

Mirroring

It can be used to simulate an other-handed user and can be applied to any image with-
out limitations. Using mirroring is primarily useful for illegal palm data, where touches
aren’t uniform and the image can’t be shifted much. To implement mirroring, the func-
tion numpy.flip is used, and it was the simplest of the three data augmentation solutions
explored. This data augmentation approach doubles data.

Numpy is a Python library for n-dimensional arrays. It also provides wide range of
operations for working with such arrays. N-dimensional arrays can be created in Python,
but working with them is not as easy, as well as Numpy can be a lot of faster.

Shifting

The method shifts touches within the image’s range. A range of free motion is computed
across each image. When shifting data, the first problem is to decide how much to shift so
that data still retain some of its nature and do not lose any detail. Therefore, the indices of
all cells containing values above 25 are extracted. These indices are used to draw a rectangle
around the cells, this rectangle is shown in figure 3.4. In order to not affect the features of
the touches, this rectangle was decided not to be able to exit outwards from the image’s
frame. In addition, if the rectangle touches any edge already, it must keep touching that
edge; if it touches both axes, the image cannot be shifted. The range of motion the image
can be shifted depends on these rules. A median of the entire image fills in the missing
values caused by shifting since large touches wouldn’t allow the image to move in any case.
Using this augmentation method, it was possible to produce a dataset that was 100 times
larger than the original.
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Figure 3.4: Visualisation of the ”rectangle“. Where dots mean a significant pixel

A pixel-by-pixel shift is realized. Shifting by less than one pixel is also possible, but this
results in more distortions, such as stretching and losing detail (smoothing). Additionally,
the image will have higher values than the original one as shown on figure 3.5.

211

Original image

218

Shifted 0.5 px down

209

Original image

211

Shifted 0.5 px down

Figure 3.5: Shifting per half pixel.

Since palm data have larger touch areas and those touch areas usually touch edges of
the image. This method cannot generate as much illegal data as legal, which changes the
ratio between legal and illegal touches. Shifting is performed by a scipy.ndimage.shift
function.
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Rotating

Among the three explored methods, rotation of the touches is the most complicated. Ad-
ditionally, it usually plays a more significant role in the creation of illegal data, which
helps rectify ratio imbalances caused by shifting limitations. Also, it may be beneficial for
diversifying legal data containing multiple touches at once.

A function called ”scipy.ndimage.rotate“ is used to rotate data. The main advantage
of this function is that it covers the biggest obstacle in rotation: Filling in the gap created
by rotated space beyond image boundaries into the space in boundaries, resulting in blank
areas without values if rotation is inwards toward the center. Various modes were available
for overcoming this, but satisfactory results were only obtained with three: the ”reflect“,

”nearest“ and ”mirror“ modes, from whose ’nearest’ was chosen.

No rotation Nearest Mirror

Reflect Constant Wrap

Figure 3.6: Rotation mode of filling outside boundaries.

A strong limitation exists despite the benefits of this function. The image can only be
rotated with the center as the reference point. This caused touches to move across the
image, and even out of the image’s frame. Rotating images with the center of the touch as
a reference point fixes those problems.

To overcome this, a way to find a center of the touch has to be found. Because of time
limitations, the center is only approximated. The approximation is made by calculating
an average index weighted by a sum of the entire column or row. Essentially, a sum is
calculated across columns and rows, then, each value in this sum is summed and multiplied
with its index. This index corresponds to a coordinate of each column or row. The result
of this sum is an X or Y coordinate for an approximation of the center touch. For this to
work, all cells that are not part of touch itself have to be zero. Due to this, all values below
35 are replaced with a zero value.
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Figure 3.7: Image’s heat-map with calculated center using proposed algorithm shown as
blue dot.

When using ”scipy.ndimage.rotate“, the image’s dimensions get larger after the rotation,
since the image’s frame uses the least amount of space horizontally and a new image frame
is adjusted to cover all rotated cells, the frame rotates with the image. This rotation
function provides the option of cropping the result rotated image in order to maintain
original dimensions. This cropping, on the other hand, occurs at the center of the image,
causing touches to shift, and with high rotation angles even moving out of the image. By
using the touch center algorithm previously created for rotation, the image is shifted so
that the new center after rotation moves to the original image’s center, and it is cropped
by array splicing. Shifting can be again done only per pixel, so the image isn’t shifted to
the same exact point.
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No rotation Rotation with in-build cropping

Rotation with custom resizing Rotation with custom cropping

Figure 3.8: Resize techniques used for rotation

This works reliability enough for rotation to not get shifted in any significant way.
However, if there are multiple touches, the center is usually between those touches. This
approach was chosen because of its low time complexity. A possible alternative was using
k-means clustering.

Original image Ndimage rotation with reshape flag Newly implemented rotation algorithm

Figure 3.9: Comparison between the old and new rotation algorithm.

3.2 AI/ML prototyping
This chapter discusses models which were experimented with in order to see how they
behave for this problem, and how are they usable in achieving solution to the problem this
thesis is about.
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3.2.1 Deep learning models

This chapter explains procedures that were taken to create prototypes of basic deep learning
models. In order to understand their behaviour with touchpad dataset, how well they
can be applied for this thesis’ problems and how well they compare to shallow learning
models. Models explored are: Artificial Neural Network (ANN), Convolutional Neural
Network (CNN) and Recurrent Neural Network (RNN). Focus is on general overview, not
on analysing complex behaviours of learned models.

Deep learning models are implemented using a Keras library. Which is a high-level
Python interface for TensorFlow library. However, it also supports other deep learning
back-ends, such as: Theano, PlaidML, MXNet and CNTK (Microsoft cognitive toolkit).
Purpose of Keras is mainly prototyping artificial neural networks and learning basics about
deep learning without needing to know how to work with tensors and other such concepts.

Training data

Unlike shallow learning models, deep learning models are additionally fed with augmented
data in order to meet their high quantity dataset requirements. This is however a problem
for recurrent neural networks, since they require sequential data with context, shifting, at
least how it is implemented here, destroys this context. As the result, RNN in overall was
fed with less data than ANN and CNN. However, for comparison purposes, models were
also compared between each other with data gathered for RNN.

Datasets for ANN and CNN are augmented; shifted, mirrored and rotated. For rotation,
all possible shifting in range of motion is used, but rotation has more options, and only
some rotation can be done. Rotation is mainly done for illegal data, to balance out the ratio
between legal and illegal data, where legal data were augmented more because of free-er
range of motion.

As range of rotation. Only integer angles are used. To use rotation for the generation
of data, a range of motion has to be defined. Where above this range of motion, generated
data would not be corresponding to real data. The first idea was an analytical approach.
From a dataset containing real data, angles of each touch would be pulled, for example by
fitting an oval over the touch area and calculating the rotation of such oval. This could be
then fitted on a normal distribution and used this distribution for determining angle for
rotation to achieve a generation of new data. However, this was not explored to save time.

Artificial Neural Network

ANN networks implemented, unlike of the other two options, CNN and RNN, consists only
of artificial neurons.

This network achieved a decent accuracy even with only 2 neurons in hidden network.
Showing that this problem is not very complex for a neural network.

input: InputLayer flatten: Flatten dropout: Dropout dense: Dense output: Dense

Figure 3.10: A general graph of Artificial Neural Network used.
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Convolutional Neural Network

For convolution, another layer in hidden layer is added, a convolutional one. Usually,
convolutional neural networks are applied to high resolution images. And there a polling
layer is needed after the convolutional layer. But here, it wasn’t needed, and decreased
accuracy. The reason for this might be due to incredibly low resolution. Also a different
layer is applied here. A dropout layer. This layer is used to prevent over-fitting the model.
It randomly selects input cells which get erased to zero. Also it scales unaffected cells so
the sum across the layer doesn’t change. This increased accuracy quite well.

Convolutional neural networks configurations that well tried when prototyping were:
Number of filter in convolutional layer, size of the filter kernel, dropout values in dropout
layer.

input: InputLayer reshape: Reshape conv2d: Conv2D dropout: Dropout flatten: Flatten dense: Dense output: Dense

Figure 3.11: A general graph of Convolutional Neural Network used.

Recurrent Neural Network

For recurrent neural network, a LSTM (Long Short-Term Memory) layer is added.

input: InputLayer reshape: Reshape lstm: LSTM dense: Dense output: Dense

Figure 3.12: A general graph of Recurrent Neural Network used.

3.2.2 Shallow learning models

This subsection talks about prototyping shallow learning models. Shallow learning models
are models that require a human to perform feature extraction on the dataset unlike deep
learning models that accept mostly raw data.

Shallow learning models are implemented using a Scikit-learn (sklearn) library. Scikit-
learn provides supervised, unsupervised machine learning algorithms and statistical models,
as-well as some validation, dimensionality reduction, ensemble and feature-related models.

Training data

Shallow learning models require feature extraction steps prior to learning. This requires a
feature selection part in process of developing a model. Random forests model is a little
bit exception, it is capable of feature selection by itself. However there is one problem
with Random Forests that makes it still require someone to select features. The problem is
caused by feature correlation. Random Forests internal feature selection doesn’t account for
correlation in features being fed to it. Using correlated features makes Random Forest less
accurate, most probably because it distorts feature importances, which is the foundation
of Decision Trees. For this reason, Random Forests will be fed on selected features too.
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Unlike deep learning models, shallow learning models will use unaugmented data. The
reason for this is that their ideal amount of data is way lower than deep learning’s, and it
is more difficult to control over-fitting.

These features were explored for selection:

• Minimum value (min)

• Maximum value (max)

• Mean

• Variance (var)

• Sum

• Peak to peak value (ptp)

• Standard deviation (std)

• Sum across diagonals (trace)

• Marginal mean across all pixels on axis x (mmeanx)

• Marginal mean across all pixels on axis y (mmeanx)

• Marginal mean across high density cluster on axis x (mmeanxTF)

• Marginal mean across high density cluster on axis y (mmeanyTF)

• Marginal standard deviation across all pixels on axis x (msdx)

• Marginal standard deviation across all pixels on axis y (msdy)

• Marginal standard deviation on axis x using marginal mean across high density cluster
(msdxTF)

• Marginal standard deviation on axis y using marginal mean across high density cluster
(msdyTF)

This is similar to features explored for data elimination, but marginal means and stan-
dard deviations are added. These marginal functions show higher importance than all
previous features as seen on figure
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Figure 3.13: Random forest’s feature importances.

Same as with data elimination. A Random Forest algorithm is used to determine feature
importances, plotted graph is showed on figure 3.13. Where marginal standard deviation
across axis x had stronger importance than all other features, which is a reason why I chose
this feature as a first feature for learning.
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Figure 3.14: Correlation between features.
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And similarly as in data elimination, a correlation plot, showed on figure 3.14. First
feature that was chosen was ”msdx“, and other features selected cannot have high cor-
relation with this feature, again, above 0.9 or -0.9. For this reason, another features
used are ”mmeanxTF“ and ”std“. Resulting features however, ended up being ”msdxTF“,

”mmeanx“, and ”std“. This will be detailed in the next chapter.
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Figure 3.15: Probability distributions of each feature.

Three models are used for prototyping, all implemented using sklearn library:

• Logistic Regression

• Support Vector Machine

• Random Forests

3.3 Proof of concept
This section will talk about implementation of chosen model. To differentiate between
prototypes and chosen model. This model will work real-time, and will show it’s input and
output on graphical user interface.

Currently, the model uses Random Forest with three features. For user interface, library

”Tkinter“ is used. To show the raw data of touchpad, figure from Seaborn library is fitted
onto a canvas into the interface. To reduce loading times. Application uses serialized model
from file, which is already trained.
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All previous implementation used datasets gathered by a raw data collection program
written in C. However, this demostration is written in Python, mainly due to machine
learning libraries I was already familiar with. The original idea was using a Ctypes library
for it to access the C code. However this proved to be too complex, mainly because of
extensive structures that the C code uses. For this reason, a different approach was chosen:
implementing V4L2 communication in python code itself. There is a v4l2 library available
for Python, but last time it was updated was 2010, as the result, the code doesn’t work on
Python 3. For this reason, I had to search for a fork on GitHub.

Using a code from forked repository, I reimplemented V4L2 code in Python. Implemen-
tation was mostly similar to the one in C, however there was on problem when initiating
and closing stream. Where the ioctl command requires an address for an integer value
corresponding to buffer type. This cannot be done in Python well and was a large obsta-
cles to making v4l2 code work. This was resolved by creating an array with this value,
using buf_type = array.array(’I’, [bufinfo.type]). Other than that, v4l2 code is
straightforward. This application still requires a recompiled and properly initiated driver.

Figure 3.16: Screenshot of demostration UI, containing a visualisation of raw data and
result of classification.
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Chapter 4

Testing and summarization

The purpose of this chapter is to examine the behavior of models implemented in this thesis.
Mainly their accuracy, memory, and time complexity. Accuracy is a quotient of correctly
predicted labels to total amount of labels, as shown in equation 4.1. Memory complexity
indicates how much computer memory algorithm utilizes. Time complexity suggests how
much time is required to finish the calculation.

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
, (4.1)

where:

• TP stands for true positive

• TN stands for true negative

• FP stands for false positive

• FN stands for false negative

4.1 Dataset
This section considers datasets used for training and testing and what possible effects they
have on model behaviors. The structure of the training dataset and amount of images in
them is as follows:

• Legal

– Orig - 2204
– Mirrored - 2155
– Shifted - 180400
– Shifted-mirrored - 180400
– Rotated - 2155 each

• Illegal

– Orig - 1602
– Mirrored - 1565
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– Shifted - 5438
– Shifted-mirrored - 5438
– Rotated - 1565 each

The rotation angle can be almost any number, but only -5 degrees and +5 degrees are
provided with the dataset. All the data augmentation tools are available with the thesis,
especially another rotation degrees can be generated using program described in 3.1.3.
Augmented data are used only for neural networks due to their requirements. However,
they are tested with only orig data too. With more ideal conditions for collecting data,
deep learning models could be experimented with using only original data; however, this is
not the case for this thesis.

For reasons detailed in sub-section 3.1.2, data elimination is performed in the case of
illegal data, which removes a portion of the dataset. About six percent of the illegal data has
been removed due to this data elimination. The data elimination process removes chunks
of data from the dataset, which may remove context from the data sequence required for
recurrent neural networks. This raises questions about whether this dataset is ideal for
RNNs, and whether it would perform better on datasets collected in a different way. The
same concern is with part of data augmentation - shifting, which breaks the order of the
images.

There are 378 images for the legal class and 236 images for the illegal class in the testing
dataset. Those data are from new data collection scenarios. Images in this dataset are saved
as .png files. The width of one image is 20 pixels, and its height is 13. Values range from
value 0 to 255. Values from 0 to 9 correspond to negative values in the raw dataset, clipped
down to a range of size 10. The reason for cutting down values like that is because, in some
cases, negative values appear, but it seemed like there isn’t a significant difference between
a value -10 and -100. And because of the large size of the dataset, its 8-bit values should
decrease dataset sizes.

This dataset isn’t representative of the problem since it is captured only by one person,
me, due to the pandemic, which may introduce biases into the dataset and the testing
dataset being too artificial and not having many extreme cases.

4.2 Neural Networks parameters
This section will look up how some configurations of neural networks affect their accuracy.
In order to calculate accuracy, the model is trained and evaluated at least five times.
Consequently, x-axis values are chosen randomly, without any planning, and this can cause
graphs in this section to be biased. However, the purpose of this section is to explore
networks behaviors, not analyze them.

4.2.1 Artificial neuron networks

For ANNs, different amounts of Relu neurons were experimented with. Surprisingly, even
with one neuron, the model’s accuracy was around 67%. Although this is low, it shows that
neurons can work on their own.
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4.2.2 Convolutional neuron networks

Amount of neurons were investigated using 12 filters and a 4x4 kernel. Dropout regulariza-
tion was investigated using a 4x4 kernel, the layer of 6 neurons, and 14 filters. The number
of convolutional filters was investigated using a 2x2 kernel. Kernels were investigated using
12 filters.
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4.2.3 Recurrent neural networks

In the hidden layer, 64 LSTM cells were used to investigate the accuracies of the numbers
of neurons. 10 neurons were used in the following layer to explore the number of LSTM
cells.
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4.3 Prototypes analysis
This section will talk about the behaviors of implemented models. Their accuracies, time
complexity, and for few, behaviors when changing their parameters (such as for deep learn-
ing the neural network’s shape). However, this is not a proper analysis and should be used
for comparing models and possibly for trying to understand how they work.

To get close to shallow models’ accuracy, neuron networks were fed with a bigger dataset
to reach accuracy above 90%. Deep learning models were fed with a training dataset
containg 19,371 images, containing datasets orig, mirrored, rotated5.0 and rotated-5.0
as opposed to 3,806 images used for shallow models, made up by only an orig dataset.

4.3.1 Accuracy

Logit is using features: mmeanxTF, mean, msdxTF. Random forests features mmeanx, std,
mstdxTF. SVM is using all features shown in subsection 3.2.2. For deep learning mod-
els, accuracy is again calculated from 5 measurements. Accuracies are calculated from
predictions of a new dataset of 614 images.

Deep learning model following accuracies were measured: 94.59% for ANN, 95.86% for
CNN, 92.93% for RNN. For logistic regression, resulting accuracy was 98.04%, for SVM
classifier 99.35% and for random forests 99.51%.
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Figure 4.4: Prototype accuracies
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4.3.2 Time complexity

Time duration of algorithms are measured by a %time profiler provided with IPython.
This measures CPU user time, kernel time, and real time, from which CPU user times are
measured.
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4.3.3 Memory complexity

Memory usage is measured by a %memit profiler provided with IPython. This provides total
memory used by the kernel, and the difference in memory budget before and after running
the command, which were used to calculate memory usages.
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4.4 Summarization
From all prototypes, the best accuracy was observed with the Random Forests algorithm.
Which also has an exquisite time complexity and memory complexity when predicting
labels. For this reason, it was chosen as the best model for demonstration application.
Most models were run with standard parameters, and there might be better combinations
of them. However, to show comparisons between each algorithm, this should be accurate
enough. Also, there might be a lot more promises for neural networks in terms of accuracy.
However, when run on a CPU, their time and memory complexity when predicting labels
is considerably higher. This leaves the possibility that if neural networks were modeled
and trained better, their accuracy might be higher in more extreme cases. For neural
calculations, however, a special instrument would be required due to time and memory
constraints.
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Models expectations

Before starting the thesis, it was thought that data that can be extracted from touchpad
are not good enough to have any successful accuracy. Which in the end was not true,
since there were many models explored with accuracy above 90%. My expectation was that
shallow learning methods will have accuracy lower than 90%. And that I will reach accuracy
above 90% only if I will be able to train a neural network with large enough dataset. This
again, didn’t happen, since shallow learning methods were reaching very good accuracies,
over 99%.

Comparison to existing solutions

Existing solutions were explored in subsection 2.2.2. Where Annet et. al. [2] showed several
rejection methods, from which the most accurate one was a hover detection with accuracy
below 90%. And [18] reached 97.9%. Those methods, however are for touchscreens, which
is slightly different. Regardless results show that result accuracies are very high compared
to other publicly existing solutions.
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Chapter 5

Conclusion

In this thesis, three criteria were used to compare various AI/ML models for palm detection:
accuracy, speed and resource insensitivity. The chosen model is Random Forests. Results
showed higher accuracy than models it was compared to. But time and memory complexity
of those methods wasn’t known, and thus it couldn’t be compared with the proposed model.
Due to low time and memory complexity, the chosen model could be implemented in the
firmware of the touchpad device and provide palm detection without adding significant
latency. Beyond those three criteria, a large limitation was found, mainly caused by how
laptops are built. Where touchpads are not designed to send raw data through the bus, it
is connected through. Because of this, real-time demonstration of the selected model makes
cursor movements stutter; the touch-pads bus cannot handle raw data transmission and
makes the bus overloaded. This limitation, however, doesn’t apply to implementing such a
model in the firmware by laptop manufacturers.

This thesis can be continued upon by better adjustment of models parameters. Explor-
ing different models, for example, Hopfield Networks (HNNs). Creating a bigger, unaug-
mented, and better-representing dataset, presumably by a survey from multiple people, by
representative study, without the need to use data augmentation. Designing a better neural
network structure. Introduce new data than just raw data.

This thesis will hopefully motivate companies to explore AI/ML for touch rejection,
publicly and open-source. Or give developers access to touchpad data to implement palm
rejection in kernel space because the current state of touchpads is a major limitation for
subsequent research.
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