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Abstract 
The si tuation about pa lm rejection for laptops is less than ideal. Most research focuses 
on touchscreens, and there is m in ima l research on touchpads. Some research is possibly 
done privately in laptop manufacturer companies, but the technology is lacking behind 
regardless. Th is thesis explores several shallow and deep machine learning models and 
finds their accuracy to be very much sufficient. In addi t ion, a real-time proof of concept is 
implemented to demonstrate the model's capabilities. 

Abstrakt 
Situace oh ledně detekci a o d m í t n u t í d l a n ě na laptopech je m é n ě než ideální . Vě t š ina 
v ý z k u m ů se zabývá o d m í t n u t í m d o t y k ů na do tykových ob razovkách , a na laptopy p r o b í h á 
t é m ě ř žádný . P a t r n ě ně jaký u z a v ř e n ý v ý z k u m p r o b í h á u v n i t ř v ý r o b c ů l a p t o p ů , ale i p řes to 
je technologie pozadu. Tato p r á c e p r o z k o u m á v á několik metod p l y t k é h o a h l u b o k é h o stro
jového učení , a výs l edná p řesnos t byla z j i š těna jako více než dos tačuj íc í . Také implementuje 
apl ikaci v r e á l n é m čase na demonstraci modelu. 
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Rozšířený abstrakt 
Tato b a k a l á ř s k á p r á c e se zabývá z k o u m á n í m m o d e l ů s t ro jového učen í u p r o b l é m u detekce 

d l aně u l a p t o p ů . Modely, k t e r é byly p rozkoumány , jsou: u m ě l á neu ronová síť, konvoluční 
neu ronová síť, r e k u r e n t n í neu ronová síť, logist ická regrese, model p o d p ů r n ý c h v e k t o r ů a 
n á h o d n ý les. P r o b l é m detekce d l a n ě se t ý k á p ř í p a d ů , kdy se už iva te l d o t ý k á touchpadu 
(dotykové plochy pod klávesnicí l a p t o p ů ) , bez z á m ě r u s touchpadem interagovat, což způ
sobuje nech t ěný vstup na poč í t ač i , jako pohyb kurzoru, k l ikání kurzorem nebo n ě k t e r é ovlá
dac í gesta, jako n a p ř í k l a d minimalizace všech oken na obrazovce a tyto p ř í p a d y nás l edně 
detekovat za úče lem zamezen í t ě c h t o v s t u p ů . Což bez diskuze dě lá použ íván í p o č í t a č e se 
z a p n u t ý m touchpadem př í jemnějš í . Tato p r á c e rovněž p r o z k o u m á v á , jak m ů ž e touchpad 
ovl ivňovat věci i z e rgonomického pohledu. 

Cí lem t é t o p r á c e je p o u k á z a t na a k t u á l n í nevyspě los t a zastaralost p r o b l é m u detekce 
d lan í na touchpadech. Současně v p ř í p a d ě tabletu se p rovád í značné m n o ž s t v í v ý z k u m ů 
a na laptopy se z a p o m í n á . P ř i t om laptopy jsou poče tně j š ím zař ízen ím, k a ž d ý laptop 
touchpadem disponuje, a něk te r é , ačkoliv m a l é množs tv í , dokonce neumožňu j í jeho v y p n u t í . 
Dá le je cí lem p ředvés t modely, k t e r é by pro tento p r o b l é m byly v h o d n é . Což, doufejme, 
bude motivovat společnos t i , k t e r é laptopy vyráb í , aby k tomuto p r o b l é m u detekce d l aně 
p ř i s t upova l a s vě tš í iniciat ivou. 

Zaměř i l jsem se d o s á h n u t í p ře snos t i m o d e l ů vyšší než j a k á je konkurence u do tykových 
obrazovek, p ro tože oh l edně touchpadu nejsou k dispozici výzkumy. D a l š í m p ů v o d n í m za
m ě ř e n í m bylo d o s á h n o u t nižší časové a paměťové ná ročnos t i , ale n e p o d a ř i l o se m i naj í t 
v ý z k u m , k t e r ý by toto zkoumal u k o n k u r e n č n í c h řešení do tykových obrazovek, a proto tyto 
výs ledky nebyly po rovnány . B ě h e m p ráce na t é t o p rác i se t a k é objevil p rob l ém, k t e r ý v 
p o d s t a t ě zamezuje i m p l e m e n t o v á n í r eá lného o d m í t n u t í d o t y k ů . P r o b l é m je z p ů s o b e n t í m , 
jak jsou laptopy navrženy . Touchpad je p ř ipo j en velmi pomalou sběrn ic í a s á m o sobě 
funguje jen jako o d d ě l e n á periferie, než jako senzor laptopu. Z tohoto d ů v o d u touchpad 
nikdy nebyl p ř i p r a v e n na m n o ž s t v í dat, k t e r é sběrn ic í p rocház í př i kolekci nezp racovaných 
dat. To způsobuje , že př i s b ě r u nezp racovaných dat docház í k ne reakčnos t i touchpadu. To 
z n a m e n á , že pohyby po touchpadu čas to nejsou ve s t o p r o c e n t n í m m n o ž s t v í i n t e rp r e továny 
p o č í t a č o v ý m s y s t é m e m pro pohyb kurzorem, což omezuje spoustu v ý z k u m ů . Tato p r á c e se 
snaží tento p r o b l é m obej í t . 

Nejvyšší p ře snos t detekce d laně , k t e r á byla dosažena , by la metodou n á h o d n ý c h lesů, kde 
př i p ř e d e m n a m ě ř e n é sbírce dat, od l i šné od t r énovac í sb í rky dat, byla n a m ě ř e n a p řesnos t 
přes 99.5 %. Nu tno ale uvés t , že jak t rénovací , tak tes tovac í data nejsou dobrou rep rezen tac í 
tohoto p rob l ému , p ro tože byly n a s b í r á n y jen mnou, bez v ý z k u m u kval i ty dat. B y l a t aké 
v y t v o ř e n a aplikace pro demonstraci tohoto modelu, k t e r á na obrazovce zobrazuje a k t u á l n í 
data z touchpadu a uvádí , jestl i by se m ě l a tato data z a m í t n o u t nebo ne (jestli se j e d n á o 
dotyk prstem a nebo d l an í ) . U k á z k a tohoto programu ve video p o d o b ě je součás t í o d e v z d a n é 
práce . 
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Chapter 1 

Introduction 

P a l m rejection is a technology broadly researched for tablets, and other touch screen devices, 
especially those using styluses. B u t touchpads on laptops tend to lag behind. There is very 
li t t le available research about laptop touchpads, especially for touch rejection, and access 
to the touchpad itself as a device is usually min imal . Th is thesis aims to raise consciousness 
about current issues w i t h touch rejection on laptops, motivate companies to focus more on 
touch rejection, and inspire more research toward touch rejection on laptops. 

A touchpad, also called „ t r ackpad , " is an input module that allows the user's finger 
on a smooth panel to control a device's cursor, as well as other tasks, using gestures. 
Almos t every laptop features one, and they tend to be placed between the keyboard and 
the user, usually directly under the space bar. Us ing a touchpad can also free up workspace 
room otherwise used by a computer mouse, reducing the required workspace while s t i l l 
maintaining productivi ty. T ime and muscle movement when switching between a keyboard 
and pointer device is also reduced [20]. However, people tend to prefer using a computer 
mouse. Furthermore, the wrist extension angle tends to be higher, as shown in study [19]. 

P a l m rejection is a technology that ignores touches made by a palm, which allows the 
user to use the touchpad as a pa lm rest without activating any cursor movement. Research 
by Cami l l e r i et a l . [7] found an association between pa lm rejection and more significant wrist 
extension, lesser discomfort, and faster task speeds. O n touch screens, pa lm rejections seem 
to help lower hand positions. Lower hand positions, according to research from E r d e l y i l et 
al . [10] decrease the shoulder movement and shoulder muscular effort, and discomfort. 

The pa lm rejection process analyzes movements on a device's touch sensor, classifying 
the movement whether it is a pa lm and rejecting input assumed to be a pa lm. This process 
eliminates inputs that the user probably d id not want to use to control the device. Th is 
thesis aims to use art if icial intelligence machine learning techniques to implement pa lm 
rejection for a laptop's touch device. Those techniques have not been applied broadly for 
pa lm rejection yet by the public . Suppose any of the explored A l techniques appeared to 
be either more accurate, faster, or less resource-intensive. In that case, it could become 
an alternative to current solutions and could replace or extend current solutions of pa lm 
rejection on laptops. The thesis' goal is to find a solution that would be better in at least 
one of those three criteria mentioned and learn about machine learning algorithms and their 
behaviour, their uses in practice. 
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Chapter 2 

Literature review 

2.1 T r a i n i n g data 

This thesis is created wi th data extracted from a Synaptics touchpad driver R M I (Synaptics 
Register M a p p e d Interface). A n d is developed on a Fedora system wi th kernel version 
5.9.0-rc5. Tra in ing data are collected by capturing the V 4 L 2 stream of a touch device 
stream. V 4 L (Video4Linux) is an A P I and collection of drivers used for video stream in 
L i n u x systems. 

The current way of capturing data has mult iple l imitat ions. The first l imi t is that 
resolution of captured data is low. Using a Synaptics touchpad i n a Lenovo T580 laptop, 
debug data resolution is 20 x 13 „ a n t e n n a s . " Such resolution is very low for many A I 
techniques, and overcoming this resolution is one of the most considerable obstacles of this 
work. Each antenna has a value describing the pressure applied; a higher-touch surface 
tends to have higher values. The second substantial l imi t is the bandwidth that a bus 
connecting the touchpad can put through. 

The possibil i ty that w i th current resolution w i l l not be sufficient for t ra ining M L models, 
an approach to upscale the data and approximate them w i l l l ikely be required to have 
satisfactory results. Mos t touches appear to be round; thus, the idea is to approximate 
data to circles. Different approaches, such as using A I techniques for increasing detail , 
should be explored too. 

2.2 E x i s t i n g solutions 

For laptop touchpads, existing solutions are unfortunately proprietary and not documented. 
Drivers get already processed data, so it is challenging to explore open-source drivers. 
Nevertheless, touchscreens are broadly explored and documented. Thus, this chapter w i l l 
mainly a i m at current solutions for touch screens. 

2.2.1 H a r d w a r e solut ions 

Hardware solutions require addi t ional equipment to function correctly. However, when 
performed right, they tend to be reliable. Th is subsection w i l l cover few hardware solutions 
that could be used. 
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Figure 2.1: Example of raw data interpreted as a heatmap. 

Active stylus 

Devices w i th touch screens that a im to use an active pen tend to have special hardware 
detecting the stylus, such as ultrasonic sensors sensing ultrasonic pulses from a pen. Other 
approaches are using infrared light or pen sending pressure data over Bluetooth . Another 
approach, which can be seen, for example, in Microsoft Surface, or Samsung G a l a x y Note, 
uses resonance inductive coupling or sensors for sensing the magnetic t ip of the pen. It 
is also easier to differentiate the pen from the pa lm because it has a very uniform shape 
and capacitive properties. However, laptop touchpads do not use pens. Those methods are 
mostly not used; fingertips are used instead, which are not so uniform and do not always 
have the same capacitive properties as a dedicated pen. 

Spacer dots 

There is also a pa lm rejection approach that does not use any addi t ional modules, but the 
approach is s t i l l a hardware solution. The approach uses the setting distance of spacer 
dots. Spacer dots create spacing between two conductive layers of the touchpad [23]. The 
distance of those spacer dots seems to influence the m a x i m u m size of a contact getting 
registered. Hav ing a lower distance between spacer dots leads to only smaller objects 
shorting conductive layers. Larger objects' touches result in pressure being distr ibuted 
across spacer dots leading to conductive layers not getting touched. This approach seems 
to be patented by Microsoft . Most touchscreen vendors use the average spacing of 3.5 m m 
and dot size around 0.1 m m [23]. 

5 



•* Glass substrate 

Figure 2.2: Components of touch screen [23]. I T O layers are conductive layers. 

P a l m rejection glove 

The intention of this product is to cover a l l areas which should not be used for cursor 
control w i t h a non-capacitive material . However, it never gained popular i ty and ended up 
being a gimmick. 

2.2.2 Software solutions 

The main advantage is that software solutions do not require any special hardware, and 
they are reasonably cross-platform. Appl ica t ions rely on analyzing data from the touchpad. 
Ex t rac t ing features like touch posit ion, orientation, and size and using an algori thm to 
decide whether reject the input. 

Another very different approach is a H a n d Occlusion Mode l , showed in figure 2.3, pro
posed by Vogel et a l . [22]. Th is model predicts from stylus location, where hand and forearm 
would be located, any inputs located i n hand projected ctr6ct sire rejected, whereas outside 
area is accepted [22]. However, this approach appears to have low accuracy [2], though 
the model i n this study was simplified. Th is model appears to be ineffective. Several hand 
positions lead to pa lm being outside wrist and forearm areas. 

Annet et a l . [2] investigated a comparison between several touch rejection algorithms. 
The algorithms explored were: 

• A contact area algori thm, where input got rejected i f four or more sensors on touch
screen were detecting touch. 

• Pen hover algori thm, where i f the pen was located at least 20 m m above the touch
screen, a l l inputs were rejected. 

• H a n d occlusion model combined hover algori thm. Static rejection region algori thm, 
shown in figure 2.4a, where depending i f the user is left or right-handed, zones are 
projected, where area rejecting the screen is about 2/3 of the touchscreen. 

For the right-hand user, the highest certainty is located on the right side of the touchpad, 
whereas on more left, input would get rejected. Stylus based rejection region algori thm 2.4b, 
similar to static rejection, but the boundaries move together w i t h the stylus, together w i th 

l.i 



Figure 2.3: Vogel hand occlusion abstraction, adapted from [2]. Green area is locat ion of 
a pen. Orange predicted Ml CB. of a hand. Blue corresponds to abstracted 
forearm 

a hover detection. Furthermore, for last, stylus-based rejection wi th a buffer, shown in 
figure 2.4c, buffer corresponds to an addi t ional area around the stylus, where input would 
get s t i l l accepted. Hypothe t ica l functionality is increasing hover height from 20 m m to 200 
m m . The reason for it being hypothetical is that hardware i n touchscreens cannot track 
pens above 20 mm, and instead, special addi t ional hardware for t racking the pen was used. 

A l l algorithms except contact area and static rejection region use a pen hover algori thm, 
which w i l l not be possible for laptop touchpads because laptop touchpads do not use pens. 
Us ing only contact area does not produce great accuracy but could be used as a classifier. 
The hover a lgori thm is not usable for the reasons mentioned above. Vogel's hand occlusion 
model appeared to not be highly ineffective. Region rejection is probably not usable for 
laptop touchpads since it is l ikely users would use more entirety of the touch area than 
large touch screens. Usabi l i ty for laptop touchpads, however, w i l l need to be confirmed. 

2.2.3 Software mach ine l earn ing solutions 

One of such already explored solutions is probabil ist ic pa lm rejection using spatiotemporal 
touch features and iterative classification. App l i ca t ion is not looking at current touch prop
erties but their evolution over t ime [18]. Th is is useful because pa lm touches tend to have 
a long period of the same touches, and they do not change much over t ime. Pen or finger 
movements, however, move faster. Spatiotemporal touch features chosen for this model 
have five characteristics: the size of the touch area, sensors under pa lm touch area tend to 
flicker, pa lm points tend to be clustered close together, palms have only smal l movements 
[18]. Those features into a pre-trained decision tree, and classification is modeled. Similar 
features should also be experimented wi th wi th in this work. This approach had a valid 
positive rate of 97.9% and a false positive rate of 1.6%, surpassing other publ ic ly available 
pa lm rejection applications. 
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(a) Static Rejection Region 
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(b) Stylus based rejection region 
b. C. 

(c) Stylus based rejection region with a buffer 

Figure 2.4: Examples of region rejection models for right-handed users. For left-handed 
users, areas would be mirrored vertically, (a) vertical , (b) horizontal , (c) intersecting hori
zontally and vertically. Taken from Annet t et a l . [2]. 

There are rumors of Microsoft and D e l l researching machine learning for pa lm rejection. 
However, this w i l l need to be explored more. 

2.3 M a c h i n e learning models 

Machine learning can be defined as computat ional methods using learning to improve per
formance and make accurate predictions based on experience. Experience refers to past 
information available previously to learner, in form of learning, which is typical ly in form 
of electronic data. Such data are collected by interaction wi th the environment, we want 
the model to approximate. Most usually, data are i n form of labelled dataset, which was 
human-labeled, as explained i n a book M o h r i et a l . [14]. It is a branch of art if icial intel l i
gence. Learning algorithms can be applied to various applications such as text, language, 
speech, and vision classification. Beside classification, other applications are regression, 
ranking, clustering, dimensionality reduction and manifold learning [14]. Help ing in vari
ous of areas, such as: game A l (such as „chess engines"), fraud detection, medical diagnosis, 
autonomous dr iving, biology etc. 

In many areas, machine learning has already changed the shape of the many sub-
industries. For example, in chess industry, A l models surpassed any human abilities and 
as the result, chess professionals t ra in by exploring and mimicking strategies developed by 
A l , i n order to stay on top of their ranking. 

W i t h current advances i n computat ional technology, machine learning are getting more 
efficient, more complex, and adapted to entirely new problems. Current ly largest machine 
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Figure 2.5: Compar ison of unintended touch algorithms. Taken from from Anne t t et al.[2]. 

learning model is a deep learning auto regressive language model developed by O p e n A I . 
C la imed to have up to 175 bi l l ion parameters. It's capabil i ty is s t i l l being explored. 

2.3.1 L e a r n i n g approaches 

This subsection lists several learning approaches deployed i n various machine learning mod
els. 

Supervised learning 

B y learning correctly labeled patterns, it receives some par t ia l information about the true 
relationship between patterns and their labels. In the face recognition application, for 
example, a number of images are received, each labeled as either legitimate or fraudulent. 
In this manner, it is possible to learn to accurately label patterns from training data without 
wasting a great deal of design t ime and effort, and it can be applied to problems that are 
difficult to specify precisely in advance, perhaps because the environment is changing [4]. 

Tra in ing data set is a sample of input-output patterns. The result is a function that can 
yield desired output, given the input . The objects are already associated wi th target values 
before learning, thus the learning is supervised, it is to ld to the model how to interpret 
input data. The task is to find a deterministic function that maps any input to any output, 
predicting future input-output observations [14]. 

Unsupervised learning 

D a t a is a sample of input patterns, without labels that would contain desired outputs. The 
unsupervised model uses the association to make a prediction of how much data correspond 
to the learned data set. It is often difficult to quanti tat ively evaluate a learner's perfor
mance i n this si tuation due to the absence of labeled examples. In general, unsupervised 
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learning refers to problems such as clustering and dimensionality reduction [14]. Unsu
pervised learning algorithms are generally more costly and less accurate than supervised 
learning models. 

Reinforcement learning 

Instead of passively receiving labeled data i n supervised learning, the learner is actively 
involved i n the process. Through interaction wi th the environment, reinforcement learning 
gathers information. Fol lowing an action, the learner receives two types of information: the 
current state of the environment, and a reward, which relates to the corresponding goal. 

Deep learning 

Deep learning is a machine learning method that uses art if icial neural networks. The main 
difference i n this type of learning is that feature extraction is learned from data, features 
typical ly are not fed into the model . Th is is useful i n cases where the best features are not 
known. 

Shallow learning 

This is an opposite to deep learning. Shallow learning models are fed w i t h features, and 
are not capable of feature extraction. 

2.3.2 G a u s s i a n M i x t u r e M o d e l 

This subsection is adapted from Reynolds [16]. 
A Gaussian M i x t u r e M o d e l ( G M M ) is a parametric probabil i ty density function that is 

represented as a weighted sum of Gaussian component densities. These models are com
monly used to calculate probabil i ty distributions for continuous measurements or features in 
biometric systems, including spectral information related to vocal tracts i n speaker recog
ni t ion systems. In G M M , parameters are estimated from t ra ining data using either the 
iterative Expec ta t ion-Maximiza t ion ( E M ) algori thm or the M a x i m u m A Posteriori ( M A P ) 
estimation. 

The Gaussian mixture model is an unsupervised learning model . The Gaussian mixture 
is a function that is comprised of several Gaussians. E a c h Gaussian is described by a gaus-
sian function. Gaussian mixture model works best w i th data having Gaussian distr ibution's 
nature. Gaussian dis t r ibut ion is observed to be occurring in nature. Since most touches 
tend to have a circular shape wi th pressure being higher i n the center, using a uni-variate 
Gaussian mixture could be possible. 

A Gaussian mixture model is a weighted sum of M component Gaussian densities as 
given by the equation, 

• x is a D-dimensional continuous-valued data vector (i.e. measurement or features), 

• Wi, i = 1 , M , are the mixture weights, 

AI 

i=l 

where 
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• and g(x\/j,i, E j ) , i = 1 , M , are the component Gaussian densities. 

Each component density is a D-variate Gaussian function of the form, 

1 
g(x\/j,i,Y,i : exp -\(x-pii) T,i

 1 (x-fli) (2.2) 

w i th mean vector /Xj and covariance mat r ix S j . The mixture weights satisfy the constraint 
that = 1- The complete Gaussian mixture model is parameterized by the mean 
vectors, covariance matrices and mixture weights from a l l component densities. These 
parameters are collectively represented by the notation, 

\ = {wi,^i,Ei} i = l , . . . , M . (2.3) 

Due to their abi l i ty to represent a wide variety of sample distributions, G M M s are 
frequently used in biometric systems, most notably in speaker recognition systems. Its 
abil i ty to approximate arbi t rar i ly shaped densities smoothly is one of the G M M ' s strongest 
assets. 

0 . 0 3 

0 . 0 2 

O . O l 

(bp U1VIMODAL GAUSSIAN 

iTc") GAUSSIAN MDCTUKE DENTSITY 

(dl VO HISTOGRAM 

Figure 2.6: F r o m Reynolds [16]. Compar ison of dis t r ibut ion modeling, (a) histogram of 
a single cepstral coefficient from a 25 second utterance by a male speaker (b) max imum 
likel ihood uni-modal Gaussian model (c) G M M and its 10 underlying component densities 
(d) histogram of the data assigned to the V Q centroid locations of a 10 element codebook. 
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2.3.3 L i n e a r regression 

Linear regression is a statist ical approach for modeling the relationship between a predictor 
and an independent variable. W h e n a relation is deterministic, one variable can be express 
by the other. For example, using a variable for distance i n miles, the second variable for 
kilometers can be accurately predicted by the first one. The idea is to find a line that best 
fits a l l data. 

2.3.4 Log i s t i c regression 

Logist ic regression has very similar steps to linear regression, except it uses a b inomial 
response variable instead of a continuous one. It can be seen i n both the choice of para
metric model and the assumptions that are used i n logistic regression and linear regression. 
Fol lowing the same principles used i n linear regression, when this difference is taken into 
account, the methods used in a logistic regression analysis are identical. 

B ina ry response data are most often modeled wi th logistic regression. Typical ly , binary 
responses take the form of 1 / 0 , w i t h 1 generally indicat ing a success and 0 a failure. There 
are numerous ways i n which 1 and 0 can be defined, depending on the nature of the study. 
A s a general rule, response 1 indicates the foremost subject of interest for which a binary 
response study is designed. Us ing normal linear regression to model a binary response 
variable would introduce substantial bias into the parameter estimates. Standard linear 
models assume that the response and error terms have normal or Gaussian distributions, 
observations i n the model are independent, and the variance, a 2, is constant across obser
vations. W h e n a binary variable is modeled using this method, dis t r ibut ion and variance 
assumptions are violated [11]. 

FIGURE 5. LINEAR VERSUS LOGISTIC FUNCTIONS OF X 

Figure 2.7: Linear regression vs Logist ic regression. Taken from [8]. 

2.3.5 S u p p o r t V e c t o r M a c h i n e 

This subsection is adapted from Tr ipa th i [21]. 
A support vector machine is a type of discriminative classifier that is formally defined 

by a separating decision function. A n S V M decision function can be viewed as an opt imal 
hyperplane that serves to identify observations based on patterns of information about those 
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observations, referred to as „features ." . A hyperplane can then be used to determine the 
most probable label for not yet seen data. The features used for inferring the hyperplane 
are rarely raw data; instead, they are derivatives resulting from some form of interpolation. 
Support vectors are derived from the relationships between features and are referenced by 
coordinates. A s a result, the a lgori thm outputs an op t imal hyperplane that categorizes 
new examples when given labeled t ra ining data (supervised learning) w i t h the max imum 
distance between both classes' data points.. Two-dimensionally, this hyperplane can be 
characterized as a line cut t ing a plane in half, w i th each class ly ing on one side. It can be 
also used for regression analysis, but classification is mostly used. It is considered as very 
effective classification algori thm. In regular variant support, vector machine algorithms can 
separate only two non-overlapping classes. The result of the support vector machine is not 
represented as the probabil i ty of representing a class. Instead, it produces a score. 

The S V M algori thm uses a set of mathematical functions called Kernels . In some 
classification problems, it is not possible to find a hyperplane or a linear decision boundary 
(figure 2.10). We may obtain a hyperplane in the projected dimension if we project the data 
into a higher dimensional space compared to the original space. In this way, Ke rne l aids 
the search for hyperplanes i n higher dimensional spaces without increasing computat ional 
cost. W i t h an increase in dimensions, the computat ional cost typical ly increases. 

S V M opt imizat ion uses a regularization parameter (called C i n Python ' s sklearn l ibrary) 
to determine how much it wants to avoid misclassifying the t ra ining examples when opti
miz ing the model . Opt imiza t ion w i l l choose a smaller-margin hyperplane for large values 
of C i f that hyperplane does a better job of classifying a l l the t ra ining points correctly. O n 
the other hand, a very smal l value of C w i l l cause the optimizer to look for a larger-margin 
separating hyperplane, even if it misclassified more points. 

G a m m a describes how far the influence of a single t ra ining example extends, w i th a low 
value meaning 'far' and a high value meaning 'close'. Alternat ively, when gamma is low, the 
calculation for the separation line takes into account points that are away from plausible 
separation lines. In contrast, high gamma means that the points close to plausible lines are 
considered. 

Also , some hyperparameters are specific to Classification or Regression Problems, or 
they are used along wi th any specific and dependent hyperparameter. 

S V M has a high t ime complexity 0 (n3 ) for L i b S V M implementat ion [1] and as the result, 
it 's demanding, and it is not recommended for learning datasets w i th size > 100,000. S V M 
can be capable of either linear or nonlinear classification (figure 2.10), but usually it 's the 
former. Linear S V M has advantage of having considerably lower t ime complexity. The use 
of S V M is widespread in many areas, such as disease detection, text categorization, software 
defect, intruder detection, time-series forecasting, detection, etc. 
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Figure 2.8: I l lustrat ion of the hyperplane that separates the support vectors. Taken from 
[17]. 

2.3.6 R a n d o m Forest 

R a n d o m forests are a scheme proposed by Leo Bre iman i n the 2000's for bui ld ing a predictor 
ensemble w i t h a set of decision trees that frow in randomly selected subspaces of data. It's 
strength were analysed i n the next 10 years, where they were proven to be very strong, and 
one of the most accurate general-purpose learning techniques available. R a n d o m forests 
ideas are influenced by the early work on geometric feature selections, random subspace 
methods and random split selection approaches [5]. 

Leo Bre iman i n [6] explains random forests as a combination of tree predictors i n which 
each tree is influenced by a vector of values selected at random and wi th the same distr ibu
t ion throughout the forest. A s the number of trees for forests increases, the generalization 
error almost certainly reaches a l imi t . The generalization error of a forest of tree classifiers 
depends on the strength of the trees wi th in the forest and their correlation. Internal esti
mates are used to monitor error, strength, and correlation, and these are used to measure 
the effect of increasing the number of features used i n the spl i t t ing. Variable importance is 
also measured using internal estimates. Regression is also applicable wi th these ideas. 
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Figure 2.9: R a n d o m forests scheme taken from [3] 

A s a random forest model, hyperparameters can be either used to increase the model's 
predictive abi l i ty or make it run faster. The first hyperparameter is n_estimators, which 
determines how many trees are buil t before a m a x i m u m vote is taken or before averages 
of predictions are calculated. There is generally an increase i n performance and stabil i ty 
wi th more trees, but the computat ion becomes slower wi th more trees. The max_f eatures 
hyperparameter determines how many features are used to split a node. The last hyperpa
rameter is text t tmin_sample_leaf , which determines how many leaves are needed to split 
an internal node. It has some advantages for people who have not yet been exposed to 
machine learning and coding since it is very versatile, requires very l i t t le feature analysis 
compared to other types of models, and even wi th the default hyperparameters, is very 
accurate w i th l i t t le need to change them. A key issue in machine learning is overfitting, 
but random forests do not suffer from this problem. Furthermore, al though random forests 
are fast to t ra in as long as the number of trees is not extremely high, the calculat ion of the 
prediction is not that fast [9]. 

2.4 A r t i f i c i a l neural networks 

Art i f i c i a l neural networks ( A N N s ) are the foundation of deep learning. In the last decade, 
artificial neural networks have become popular for applications ranging from financial pre
dict ion to machine vision. These networks were originally designed to be simplified versions 
of biological neural networks. However, their focus has shifted from biological neural net
works to supervised learning problems. We neglect the word 'art if icial , ' and we consider 
neural networks as nothing more than a type of nonlinear function (figure 2.10). 

15 



Linear Nonlinear 

Figure 2.10: Linear vs. nonlinear problems. Source Sebastian Raschka [15] 

Neura l networks were named after neurons i n biology and connections between them. 
In biology, a neuron is a type of cell found i n the bra in that accepts input and responds. 
Inputs and outputs are in the form of electrical signals. However, art if icial neural networks 
are different from neural networks wi th in a brain. Especially, learning methods of artificial 
neural networks are not inspired by human processes. A biological neural network's learning 
mechanism is unknown. 

Before the term artif icial neural network was introduced, models that fit the description 
of neural networks existed. A popular model that was created before A N N s were intro
duced is the Mul t i - layer perceptron ( M L P ) , but mathematical interpretations of neurons 
existed even before this. Mathemat ica l model of a perceptron is represented i n equation 
2.4. Nowadays, it 's classified as an A N N . Due to more accurate options available nowadays, 
M L P s are rarely used i n practice, but they are used to teach deep learning basics. 

If a neuron network is large enough, it can model any function [12] [13]. The process of 
neural network learning is referred to as deep learning. In deep learning, neurons' activation 
functions change when misclassification occurs. 

A typ ica l artificial neuron network consists of three types of layers. A n input layer, 
an output layer, and hidden layers. The hidden layer's cells are hidden from everyone, 
including the network's developer, and are adjusted only through learning methods. 

Convolut ional neural networks introduce a new type of layer into neural network struc
ture, a convolutional layer. Convolut ion is a process of combining two informations into 
a new information, typical ly by applying a filter. It is inspired by biological processes in 
brain, resembling a visual cortex. It is used mainly for deep learning problems wi th image 
data. 

Recurrent neural networks introduce memory capabilities to neural networks. B y using 
memory processes, they are able to process sequence of inputs and extract contexts. 

2.4.1 P e r c e p t r o n 

Perceptron calculates a function from W1 to 0 ,1 . Network wi th of type of neuron, having 
an output of either 0 or 1 can be used for pattern classification problems where we want to 
divide patterns into two classes, labelled '0 ' and '1'. A perceptron computes a function / 
of the form: 
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f{x) = sgn{w • x — 9), 

for input vector i £ i where: 

(2.4) 

• w = (u>i, . . . ,u>„) G 1 is an input weight for each precedent neuron connected, and 

• 9 G M is a bias (threshold weight). 

w • x denotes the inner product Y17=o w i x i i an<^ 

W h e n learning, on misclassification, weights get update to move the decision boundary 
towards a misclassified example. 

2.4.2 C o s t F u n c t i o n 

Cost function is used to determine a relation between weights and biases and correct output 
of the network. To find the best weights configuration, a m i n i m u m of cost function can be 
found. However, finding m i n i m u m in mult idimensional space is an intricate problem. Cost 
function also can have mult iple local minimums, and finding global m i n i m u m is a difficult 
task. Usual ly because of how complex cost functions are, only local minimums are found 
by approximation. 

2.4.3 G r a d i e n t Descent 

Gradient descent is a method for finding a m i n i m u m of a function. Gradient descent cannot 
find always the best result. Gradient descent can be abstracted as dropping a ba l l at a 3 
dimensional space. W h e n bal l touches any surface, it rolls down according to angle of the 
surface hit . In a same way as gradient descent, dropping a bal l , doesn't have to find the best 
result, when there are more local minimums. Simulat ing ba l l physics isn't needed to find 
such min imum, this is only an oversimplified explanation. The most elementary gradient 
descent has a fixed step, and when a „ball" is crossed wi th a function, the new trajectory by 
a function slope, which can be calculated as derivatives of the function at certain posit ion. 
More advanced back-propagation methods usually optimize this process. 

2.4.4 B a c k - p r o p a g a t i o n 

Back-propagation is a learning algori thm for t ra ining neural networks. It is generally faster 
than calculat ing a gradient descent of a cost function. It works by propagating desired 
output in the direction of the input (backwards), on each neuron checking a l l input neurons 
in previous layer and changing the weights to better match the desired function. A n d in 
the same way, adjusting the next layer and so on. 

Perceptron is one of the earliest machine learning algorithms. It is a binary linear 2.10 
classification algori thm. It learns a decision function by processing t ra ining points one at a 
t ime. A binary function is a function whether input belongs to some specific class. It is a 
linear classifier. If data cannot be l inearly separable, it does not converge a l l points to the 
correct class. Perceptron is an artificial neuron w i t h an activation function. A network of 
perceptrons could be technically classified as a simple art if icial neural network. The output 

(2.5) 
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from the neural network used for classification is a probabi l i ty of data being a specific class 

[4]-
A function of perceptron is as follows: 
f{x) = sgn{wx — 9) 
where w and 9 are adjustable parameters. Output of the function is 0 ,1 . 
Decision boundary corresponds to wx — 9 = 0. 
W h e n learning, the perceptron a lgor i thm starts w i th arbi trary values and when it mis-

classifies data, parameters get updated: w = w + rj(y — f(x))x, where r\ is a prescribed fixed 
positive constant. The result of this update is decision boundary moving closer towards 
misclassified point x. 

A n o m a l y detection 

A n a l y z i n g data for anomalies involves finding patterns that differ from expected behavior. 
The terms anomaly and outlier are often used interchangeably i n the context of anomaly 
detection. A s an example, anomaly detection is extensively used in the detection of fraud for 
credit cards, health care services, cyber-security intrusions, faults i n cr i t ica l safety systems, 
and mi l i t a ry spying. 
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Chapter 3 

Implementation 

This chapter discusses the methods used i n this work and ways to approach it, such as 
tools for creating the dataset, tools to gather more data for deep learning, walking through 
several prototypes of machine learning, and implementing a final program that uses one 
chosen model and demonstrates a model i n real-time. 

3.1 D a t a col lect ion 

This section w i l l talk about the implementat ion of algorithms, that made it possible to get 
a dataset for learning algorithms. It is common for capturing sessions to contain many 
data frames, where there were no touches at the time, so a model could be created to locate 
and eliminate these images. Due to low amount of t ra ining data, it might be necessary to 
manipulate the data to increase the accuracy of deep learning models so that enough data 
is available, thus several data augmentation algorithms are proposed and implemented. 

3.1.1 R a w d a t a capture 

The only way to capture raw data is to enable debug mode on the R M I touchpad driver. 
Dur ing driver compilat ion, it is necessary to specify C0NFIG/_RMI4/_F54=y when compil ing 
drivers from L i n u x repository. It is then necessary to load the driver w i t h debug/_f lags=l 
as an insmod argument command. 

The driver passes raw data through a file stream, usually located in /dev/v41-touch0. 
It is l ikely that touchpad performance w i l l be greatly compromised as a result of the debug 
mode's excessive amounts of data traffic. Because of this, only laptop manufactures are 
able to properly adapt pa lm rejection. In the best-case scenario, this w i l l encourage them 
to develop hardware that would allow pa lm rejection implemented outside firmware to be 
efficient and lag-free, enabling better public researches about this problem. 

Because of the l imitat ions w i t h the hardware for collecting data, explained i n section 
2.1, data had to be collected only by me. Because this project aims to experiment more 
wi th deep learning, the project requires a good amount of t ra ining data. A s a result, only 
selected data collection approaches are pract ical from a t ime standpoint. 

A s soon as this step was completed, the next step was figuring out how to obtain 
any decent amount of data, while having them properly labeled. W i t h the first attempt 
of collecting data, an approach of manually posit ioning a hand and then capturing this 
moment as one image was used. T ry ing to use this method quickly proved to be very 
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t ime-consuming, as well as creating very unnatural results, and so another approach was 
needed. 

The second method involves ut i l iz ing the computer's system in order to obtain informa
t ion about the rejection. It could be done, for instance, by tracking cursor movements i n the 
system and labeling data accordingly. The approach nonetheless seemed complicated, and, 
first of a l l , the touch rejection on the T h i n k P a d T580 used is, based on my observations, 
inadequate, where the only case when it rejects touches are if the touch is on the left edge 
of the touchpad. This would result i n a dataset that wasn't labeled accurately enough, 
severely l imi t ing the model's potential. 

The last method focuses on having label-specific scenarios, wherein for each data collec
t ion scenario, only selected types of touches, matching desired t ra ining classes, are collected. 
In spite of the reduction in mislabell ing risk, the results may not be as a great representation 
of real-world scenarios as the previous method. For a dataset collection containing legal 
data (data that should be accepted), the touchpad w i l l not be touched w i t h the palm, for 
example, i n sessions involving playing a cursor-only game. Likewise, to record pa lm data, 
having wrists rested on the laptop while wr i t ing some long text, as well as experimenting 
wi th hand resting and typing positions. Th is th i rd approach was chosen for creating train
ing and test datasets. However, this approach also relies on removing anomalous data from 
the dataset containing il legal data. 

3.1.2 D a t a e l i m i n a t i o n 

D a t a collection faces mult iple problems, explained i n previous subsection 3.1.1, that de
termined how data were captured. Due to this, the dataset contains scenarios when the 
touchpad is not touched, or it may happen just after the touchpad was touched. It was, 
therefore, necessary to establish a way of identifying insufficient data that could confuse 
learning models. 

In order to remove unsatisfactory data, a model must be developed. Normally , this 
type of analysis falls under anomaly detection; however, anomaly detection tends to deal 
w i th anomalies that are sparsely represented in the dataset, thus requiring statist ical ap
proaches. However i n this situation, unsatisfactory data are more substantially contained 
in the dataset, because of that, statistic methods are not explored and the shallow learning 
approach is explored. 

This problem involved creating two classes of data. The first class contains a l l touch 
values from the pa lm rejection t ra ining dataset, bo th legal (fingers) and il legal (palms). The 
second dataset was manually created and aimed to contain two specific scenarios. The first 
si tuation is when the user isn't touching the touchpad, and the images consist mainly of 
blank images. T T h e second si tuation aimed to capture images that happen right after the 
user stopped touching the touchpad; the reason is that this si tuation produced unreliable 
data, and I wanted the model to learn not to reject this si tuation. Those inconsistent data, 
after a while, get into an equi l ibr ium that corresponds to the first s i tuation. This effect 
resembled heat residue after touching a cold surface and viewing it w i th a thermal camera, 
but the residual values reached negative numbers. This second dataset consists of only 265 
images; however, since very few scenarios were needed to cover this dataset, this size was 
sufficient. 

D a t a were analyzed for valuable features. Features explored were: 

• M i n i m u m value (min) 
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M a x i m u m value (max) 

• Mean 

• Variance (var) 

• Sum 

• Peak to peak value (ptp) 

• Standard deviation (std) 

• A sum across diagonals (trace) 

Feature selection was performed on the newly established dataset. Three features were 
distinct when plot t ing their densities for each class: max, ptp, and standard. A l though 
these visualizations are helpful for selecting features, a more objective method was needed. 
W i t h a R a n d o m Forest classifier, the importance of each feature was extracted and plotted, 
where it 's clear which features are useful for classification. A s some features determine very 
similar factors, using them together would not enhance the classifier's accuracy, but quite 
the opposite. It is thus v i t a l when selecting features to consider the correlation between 
them. This is done w i t h a correlation plot, which can be seen on figure 3.2. A correlation 
of above 0.9 (or below -0.9) is usually considered too high, and those features shouldn't be 
used together. Correla t ion values of 1 (or -1) indicate a linear relationship, which means the 
features are often identical but interpreted differently. I chose variance as the first feature, 
due to high importance, and as the second feature m a x i m u m value, due to low correlation 
between them. A l though standard deviat ion would be a better alternative, due to the lower 
correlation w i t h m a x i m u m value, the original option is accurate enough for this problem. 

The „ ta rge t " column is not considered a feature, but rather a label on the data that 
indicates i f it is legal or i l legal (finger type, pa lm type). The feature for max value has a 
very low importance value. However, a l l values wi th higher importances were too correlated 
wi th a variance feature. 

Figure 3.1: Feature importances according to R a n d o m Forest a lgori thm 

Since Gaussian M i x t u r e Models don't generate decision values and generate likelihoods 
instead, a decision threshold is used to label data based on the model's predictions. A 
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Figure 3.2: Correlat ion of features 
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logari thmic l ikel ihood of -500 proved to be a good threshold for this decision. The l ikelihood 
of data exceeding this value is considered „non- touch" and for i l legal datasets, they are 
eliminated, as there is no reason to reject data where no touch is detected. 

3.1.3 D a t a a u g m e n t a t i o n 

Models that use deep learning require a lot of data. In addit ion, we cannot control what 
deep learning models w i l l focus on. For example, deep learning models could learn to reject 
touches on the right side of the touchpad based on touch posit ion. A m o n g the ways to 
mitigate these problems is to t ra in your model w i th very diverse touch positions. Three 
techniques are used to modify the data i n this thesis to increase the dataset size: mirror ing 
(flipping), shifting, and rotating. 

M i r r o r i n g 

It can be used to simulate an other-handed user and can be applied to any image wi th
out l imitat ions. Us ing mirror ing is p r imar i ly useful for illegal pa lm data, where touches 
aren't uniform and the image can't be shifted much. To implement mirror ing, the func
t ion numpy.f l i p is used, and it was the simplest of the three data augmentation solutions 
explored. This data augmentation approach doubles data. 

N u m p y is a P y t h o n l ibrary for n-dimensional arrays. It also provides wide range of 
operations for working wi th such arrays. N-dimensional arrays can be created in Py thon , 
but working wi th them is not as easy, as well as N u m p y can be a lot of faster. 

Shifting 

The method shifts touches wi th in the image's range. A range of free mot ion is computed 
across each image. W h e n shifting data, the first problem is to decide how much to shift so 
that data s t i l l retain some of its nature and do not lose any detail . Therefore, the indices of 
al l cells containing values above 25 are extracted. These indices are used to draw a rectangle 
around the cells, this rectangle is shown in figure 3.4. In order to not affect the features of 
the touches, this rectangle was decided not to be able to exit outwards from the image's 
frame. In addi t ion, if the rectangle touches any edge already, it must keep touching that 
edge; if it touches both axes, the image cannot be shifted. The range of motion the image 
can be shifted depends on these rules. A median of the entire image fills in the missing 
values caused by shifting since large touches wouldn' t allow the image to move in any case. 
Us ing this augmentation method, it was possible to produce a dataset that was 100 times 
larger than the original. 
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Figure 3.4: Visual i sa t ion of the „ rec tangle" . Where dots mean a significant pixel 

A pixel-by-pixel shift is realized. Shifting by less than one pixel is also possible, but this 
results in more distortions, such as stretching and losing detai l (smoothing). Addi t ional ly , 
the image w i l l have higher values than the original one as shown on figure 3.5. 

Original image Shifted 0.5 px down 

Figure 3.5: Shifting per half pixel . 

Since pa lm data have larger touch and those touch usually touch edges of 
the image. Th is method cannot generate as much il legal data as legal, which changes the 
ratio between legal and il legal touches. Shifting is performed by a scipy.ndimage.shift 
function. 
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Rotat ing 

A m o n g the three explored methods, rotat ion of the touches is the most complicated. A d 
ditionally, it usually plays a more significant role i n the creation of i l legal data, which 
helps rectify ratio imbalances caused by shifting l imitat ions. Also , it may be beneficial for 
diversifying legal data containing mult iple touches at once. 

A function called „sc ipy .nd image . ro ta te" is used to rotate data. The ma in advantage 
of this function is that it covers the biggest obstacle i n rotation: F i l l i n g i n the gap created 
by rotated space beyond image boundaries into the space i n boundaries, resulting i n blank 
areas without values i f rotat ion is inwards toward the center. Various modes were available 
for overcoming this, but satisfactory results were only obtained wi th three: the „reflect", 
„neares t" and „mir ror" modes, from whose 'nearest' was chosen. 

No rotation Nearest Mirror 

Figure 3.6: Ro ta t ion mode of fill ing outside boundaries. 

A strong l imi ta t ion exists despite the benefits of this function. The image can only be 
rotated wi th the center as the reference point. Th is caused touches to move across the 
image, and even out of the image's frame. Rota t ing images wi th the center of the touch as 
a reference point fixes those problems. 

To overcome this, a way to find a center of the touch has to be found. Because of time 
l imitations, the center is only approximated. The approximat ion is made by calculating 
an average index weighted by a sum of the entire column or row. Essentially, a sum is 
calculated across columns and rows, then, each value in this sum is summed and mult ipl ied 
wi th its index. This index corresponds to a coordinate of each column or row. The result 
of this sum is an X or Y coordinate for an approximat ion of the center touch. For this to 
work, a l l cells that are not part of touch itself have to be zero. Due to this, a l l values below 
35 are replaced wi th a zero value. 
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Figure 3.7: Image's heat-map wi th calculated center using proposed algori thm shown as 
blue dot. 

W h e n using „sc ipy .nd image . ro ta t e" , the image's dimensions get larger after the rotation, 
since the image's frame uses the least amount of space horizontally and a new image frame 
is adjusted to cover a l l rotated cells, the frame rotates wi th the image. Th is rotat ion 
function provides the option of cropping the result rotated image i n order to mainta in 
original dimensions. Th is cropping, on the other hand, occurs at the center of the image, 
causing touches to shift, and wi th high rotat ion angles even moving out of the image. B y 
using the touch center a lgori thm previously created for rotation, the image is shifted so 
that the new center after rotat ion moves to the original image's center, and it is cropped 
by array splicing. Shifting can be again done only per pixel , so the image isn't shifted to 
the same exact point. 
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No rotation Rotation with in-build cropping 

Rotation with custom resizing Rotation with custom cropping 

Figure 3.8: Resize techniques used for rotat ion 

This works rel iabil i ty enough for rotat ion to not get shifted i n any significant way. 
However, i f there are mult iple touches, the center is usually between those touches. This 
approach was chosen because of its low time complexity. A possible alternative was using 
k-means clustering. 

Figure 3.9: Compar ison between the o ld and new rotat ion algori thm. 

3.2 A I / M L p r o t o t y p i n g 

This chapter discusses models which were experimented w i t h i n order to see how they 
behave for this problem, and how are they usable i n achieving solution to the problem this 
thesis is about. 
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3.2.1 D e e p l earn ing models 

This chapter explains procedures that were taken to create prototypes of basic deep learning 
models. In order to understand their behaviour w i th touchpad dataset, how well they 
can be applied for this thesis' problems and how well they compare to shallow learning 
models. Models explored are: Ar t i f i c i a l Neura l Network ( A N N ) , Convolut ional Neura l 
Network ( C N N ) and Recurrent Neura l Network ( R N N ) . Focus is on general overview, not 
on analysing complex behaviours of learned models. 

Deep learning models are implemented using a Keras library. W h i c h is a high-level 
P y t h o n interface for TensorFlow library. However, it also supports other deep learning 
back-ends, such as: Theano, P l a i d M L , M X N e t and C N T K (Microsoft cognitive toolki t ) . 
Purpose of Keras is mainly prototyping artif icial neural networks and learning basics about 
deep learning without needing to know how to work wi th tensors and other such concepts. 

Training data 

Unlike shallow learning models, deep learning models are addi t ional ly fed wi th augmented 
data in order to meet their high quantity dataset requirements. Th is is however a problem 
for recurrent neural networks, since they require sequential data w i th context, shifting, at 
least how it is implemented here, destroys this context. A s the result, R N N i n overall was 
fed w i t h less data than A N N and C N N . However, for comparison purposes, models were 
also compared between each other w i th data gathered for R N N . 

Datasets for A N N and C N N are augmented; shifted, mirrored and rotated. For rotation, 
a l l possible shifting in range of mot ion is used, but rotat ion has more options, and only 
some rotat ion can be done. Rota t ion is mainly done for illegal data, to balance out the ratio 
between legal and il legal data, where legal data were augmented more because of free-er 
range of motion. 

A s range of rotat ion. O n l y integer angles are used. To use rotat ion for the generation 
of data, a range of mot ion has to be defined. Where above this range of motion, generated 
data would not be corresponding to real data. The first idea was an analyt ical approach. 
F rom a dataset containing real data, angles of each touch would be pulled, for example by 
fitt ing an oval over the touch area and calculat ing the rotat ion of such oval. Th is could be 
then fitted on a normal dis t r ibut ion and used this d is t r ibut ion for determining angle for 
rotation to achieve a generation of new data. However, this was not explored to save time. 

Artif icial Neura l Network 

A N N networks implemented, unlike of the other two options, C N N and R N N , consists only 
of artificial neurons. 

This network achieved a decent accuracy even wi th only 2 neurons in hidden network. 
Showing that this problem is not very complex for a neural network. 

input: InputLayer flatten: Flatten dropout: Dropout flatten: Flatten dropout: Dropout dense: Dense output: Dense dense: Dense output: Dense 

Figure 3.10: A general graph of Ar t i f i c i a l Neura l Network used. 
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Convolutional Neural Network 

For convolution, another layer in hidden layer is added, a convolutional one. Usually, 
convolutional neural networks are applied to high resolution images. A n d there a pol l ing 
layer is needed after the convolutional layer. B u t here, it wasn't needed, and decreased 
accuracy. The reason for this might be due to incredibly low resolution. A l so a different 
layer is applied here. A dropout layer. This layer is used to prevent over-fitting the model. 
It randomly selects input cells which get erased to zero. A l so it scales unaffected cells so 
the sum across the layer doesn't change. Th is increased accuracy quite well. 

Convolut ional neural networks configurations that well t r ied when prototyping were: 
Number of filter in convolutional layer, size of the filter kernel, dropout values in dropout 
layer. 

conv2d: Conv2D dropout: Dropout flatten: Flatten dense: Dense output: Dense conv2d: Conv2D dropout: Dropout flatten: Flatten dense: Dense output: Dense 

Figure 3.11: A general graph of Convolut ional Neura l Network used. 

Recurrent Neural Network 

For recurrent neural network, a L S T M (Long Short-Term Memory) layer is added. 

input: InputLayer reshape: Reshape lstm: LSTM dense: Dense output: Dense lstm: LSTM dense: Dense output: Dense 

Figure 3.12: A general graph of Recurrent Neura l Network used. 

3.2.2 Shal low l earn ing mode l s 

This subsection talks about prototyping shallow learning models. Shallow learning models 
are models that require a human to perform feature extraction on the dataset unlike deep 
learning models that accept mostly raw data. 

Shallow learning models are implemented using a Scikit- learn (sklearn) l ibrary. Sciki t-
learn provides supervised, unsupervised machine learning algorithms and statist ical models, 
as-well as some validation, dimensionality reduction, ensemble and feature-related models. 

Training data 

Shallow learning models require feature extraction steps prior to learning. Th is requires a 
feature selection part i n process of developing a model . R a n d o m forests model is a l i t t le 
bit exception, it is capable of feature selection by itself. However there is one problem 
wi th R a n d o m Forests that makes it s t i l l require someone to select features. The problem is 
caused by feature correlation. R a n d o m Forests internal feature selection doesn't account for 
correlation in features being fed to i t . Us ing correlated features makes R a n d o m Forest less 
accurate, most probably because it distorts feature importances, which is the foundation 
of Decision Trees. For this reason, R a n d o m Forests w i l l be fed on selected features too. 
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Unlike deep learning models, shallow learning models w i l l use unaugmented data. The 
reason for this is that their ideal amount of data is way lower than deep learning's, and it 
is more difficult to control over-fitting. 

These features were explored for selection: 

• M i n i m u m value (min) 

• M a x i m u m value (max) 

• Mean 

• Variance (var) 

• Sum 

• Peak to peak value (ptp) 

• Standard deviation (std) 

• Sum across diagonals (trace) 

• Marg ina l mean across a l l pixels on axis x (mmeanx) 

• Marg ina l mean across a l l pixels on axis y (mmeanx) 

• Marg ina l mean across high density cluster on axis x (mmeanxTF) 

• Marg ina l mean across high density cluster on axis y (mmeanyTF) 

• Marg ina l standard deviation across a l l pixels on axis x (msdx) 

• Marg ina l standard deviation across a l l pixels on axis y (msdy) 

• Marg ina l standard deviation on axis x using marginal mean across high density cluster 
(msdxTF) 

• Marg ina l standard deviation on axis y using marginal mean across high density cluster 
(msdyTF) 

This is similar to features explored for data el iminat ion, but marginal means and stan
dard deviations are added. These marginal functions show higher importance than a l l 
previous features as seen on figure 
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msdx msdxTF mmeanx mean sum mmeanxTF var std max ptp msdy trace mmeanyTF msdyTF mmeany min 

Figure 3.13: R a n d o m forest's feature importances. 

Same as wi th data el iminat ion. A R a n d o m Forest a lgori thm is used to determine feature 
importances, plotted graph is showed on figure 3.13. Where marginal standard deviat ion 
across axis x had stronger importance than a l l other features, which is a reason why I chose 
this feature first feature for learning. 
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Figure 3.14: Correla t ion between features. 
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A n d s imilar ly as in data el iminat ion, a correlation plot, showed on figure 3.14. Fi rs t 
feature that was chosen was „msdx" , and other features selected cannot have high cor
relation wi th this feature, again, above 0.9 or -0.9. For this reason, another features 
used are „ m m e a n x T F " and „s td" . Resul t ing features however, ended up being „ m s d x T F " , 
„ m m e a n x " , and „s td" . T h i s w i l l be detailed i n the next chapter. 

mmeany mmeanyTF msdy msdyTF 

legal illegal 

Figure 3.15: Probabi l i ty distributions of each feature. 

Three models are used for prototyping, a l l implemented using sklearn l ibrary: 

• Logist ic Regression 

• Support Vector Machine 

• R a n d o m Forests 

3.3 P r o o f of concept 

This section w i l l talk about implementat ion of chosen model . To differentiate between 
prototypes and chosen model . This model w i l l work real-time, and w i l l show it 's input and 
output on graphical user interface. 

Currently, the model uses R a n d o m Forest w i th three features. For user interface, l ibrary 
„Tk in te r " is used. To show the raw data of touchpad, figure from Seaborn l ibrary is fitted 
onto a canvas into the interface. To reduce loading times. App l i ca t ion uses serialized model 
from file, which is already trained. 
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A l l previous implementat ion used datasets gathered by a raw data collection program 
wri t ten in C . However, this demostration is wri t ten i n Py thon , mainly due to machine 
learning libraries I was already familiar w i th . The original idea was using a Ctypes l ibrary 
for it to access the C code. However this proved to be too complex, mainly because of 
extensive structures that the C code uses. For this reason, a different approach was chosen: 
implementing V 4 L 2 communicat ion in python code itself. There is a v412 l ibrary available 
for Py thon , but last t ime it was updated was 2010, as the result, the code doesn't work on 
P y t h o n 3. For this reason, I had to search for a fork on G i t H u b . 

Using a code from forked repository, I reimplemented V 4 L 2 code i n P y t h o n . Implemen
tat ion was mostly similar to the one i n C , however there was on problem when ini t ia t ing 
and closing stream. Where the ioc t l command requires an address for an integer value 
corresponding to buffer type. Th is cannot be done i n P y t h o n well and was a large obsta
cles to making v412 code work. This was resolved by creating an array wi th this value, 
using buf_type = array. array (' I ' , [buf info .type] ) . Other than that, v412 code is 
straightforward. This appl icat ion s t i l l requires a recompiled and properly ini t ia ted driver. 

Reject 

Quit 

Figure 3.16: Screenshot of demostration U I , containing a visualisation of raw data and 
result of classification. 
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Chapter 4 

Testing and summarization 

The purpose of this chapter is to examine the behavior of models implemented i n this thesis. 
M a i n l y their accuracy, memory, and t ime complexity. Accuracy is a quotient of correctly 
predicted labels to to ta l amount of labels, as shown i n equation 4.1. Memory complexity 
indicates how much computer memory algori thm utilizes. T i m e complexity suggests how 
much time is required to finish the calculation. 

TP + TN 
A c C U r a C V = TP + TN + FP + FN> ( 4 J ) 

where: 

• T P stands for true positive 

• T N stands for true negative 

• F P stands for false positive 

• F N stands for false negative 

4.1 Dataset 

This section considers datasets used for t ra ining and testing and what possible effects they 
have on model behaviors. The structure of the t ra ining dataset and amount of images in 
them is as follows: 

• Legal 

— Or ig - 2204 

— Mir ro red - 2155 

— Shifted - 180400 

— Shifted-mirrored - 180400 

— Rota ted - 2155 each 

• Illegal 

— Or ig - 1602 

— Mir ro red - 1565 
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— Shifted - 5438 

— Shifted-mirrored - 5438 

— Rota ted - 1565 each 

The rotat ion angle can be almost any number, but only -5 degrees and +5 degrees are 
provided wi th the dataset. A l l the data augmentation tools are available w i th the thesis, 
especially another rotat ion degrees can be generated using program described i n 3.1.3. 
Augmented data are used only for neural networks due to their requirements. However, 
they are tested wi th only orig data too. W i t h more ideal conditions for collecting data, 
deep learning models could be experimented wi th using only original data; however, this is 
not the case for this thesis. 

For reasons detailed i n sub-section 3.1.2, data el iminat ion is performed in the case of 
illegal data, which removes a por t ion of the dataset. A b o u t six percent of the il legal data has 
been removed due to this data el iminat ion. The data el iminat ion process removes chunks 
of data from the dataset, which may remove context from the data sequence required for 
recurrent neural networks. Th is raises questions about whether this dataset is ideal for 
R N N s , and whether it would perform better on datasets collected i n a different way. The 
same concern is w i th part of data augmentation - shifting, which breaks the order of the 
images. 

There are 378 images for the legal class and 236 images for the illegal class in the testing 
dataset. Those data are from new data collection scenarios. Images in this dataset are saved 
as .png files. The wid th of one image is 20 pixels, and its height is 13. Values range from 
value 0 to 255. Values from 0 to 9 correspond to negative values in the raw dataset, cl ipped 
down to a range of size 10. The reason for cut t ing down values like that is because, in some 
cases, negative values appear, but it seemed like there isn't a significant difference between 
a value -10 and -100. A n d because of the large size of the dataset, its 8-bit values should 
decrease dataset sizes. 

This dataset isn't representative of the problem since it is captured only by one person, 
me, due to the pandemic, which may introduce biases into the dataset and the testing 
dataset being too artif icial and not having many extreme cases. 

4.2 N e u r a l N e t w o r k s parameters 

This section w i l l look up how some configurations of neural networks affect their accuracy. 
In order to calculate accuracy, the model is trained and evaluated at least five times. 
Consequently, x-axis values are chosen randomly, without any planning, and this can cause 
graphs in this section to be biased. However, the purpose of this section is to explore 
networks behaviors, not analyze them. 

4.2.1 A r t i f i c i a l n e u r o n networks 

For A N N s , different amounts of R e l u neurons were experimented wi th . Surprisingly, even 
wi th one neuron, the model's accuracy was around 67%. Al though this is low, it shows that 
neurons can work on their own. 
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Neurons (b) Accuracy per dropout value in hid-
(a) Accuracy per number of Relu neu- den layer using 200 neurons in hidden 
rons in hidden layer. layer. 

4.2.2 C o n v o l u t i o n a l n e u r o n networks 

Amount of neurons were investigated using 12 filters and a 4x4 kernel. Dropout regulariza-
t ion was investigated using a 4x4 kernel, the layer of 6 neurons, and 14 filters. The number 
of convolutional filters was investigated using a 2x2 kernel. Kernels were investigated using 
12 filters. 

0 10 20 30 40 50 60 10 15 20 25 30 
Neurons Filters 

(a) Accuracy per number of neurons in (b) Accuracy per number of convolution 
hidden layer filters in hidden layer 

(c) Accuracy per number size of the con- (d) Accuracy per dropout value in hid-
volution kernel in hidden layer den layer 

4.2.3 R e c u r r e n t n e u r a l networks 

In the hidden layer, 64 L S T M cells were used to investigate the accuracies of the numbers 
of neurons. 10 neurons were used in the following layer to explore the number of L S T M 
cells. 
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(a) Accuracy per number of neurons in (b) Accuracy per number of L S T M cells 
hidden layer. in hidden layer. 

4.3 Pro to types analysis 

This section w i l l talk about the behaviors of implemented models. The i r accuracies, time 
complexity, and for few, behaviors when changing their parameters (such as for deep learn
ing the neural network's shape). However, this is not a proper analysis and should be used 
for comparing models and possibly for t ry ing to understand how they work. 

To get close to shallow models' accuracy, neuron networks were fed w i t h a bigger dataset 
to reach accuracy above 90%. Deep learning models were fed wi th a t ra ining dataset 
containg 19,371 images, containing datasets orig, mirrored, rotated5 . 0 and rotated-5 . 0 
as opposed to 3,806 images used for shallow models, made up by only an orig dataset. 

4.3.1 A c c u r a c y 

Logi t is using features: mmeanxTF, mean, msdxTF. R a n d o m forests features mmeanx, std, 
m s t d x T F . S V M is using a l l features shown in subsection 3.2.2. For deep learning mod
els, accuracy is again calculated from 5 measurements. Accuracies are calculated from 
predictions of a new dataset of 614 images. 

Deep learning model following accuracies were measured: 94.59% for A N N , 95.86% for 
C N N , 92.93% for R N N . For logistic regression, resulting accuracy was 98.04%, for S V M 
classifier 99.35% and for random forests 99.51%. 

Logit 

Figure 4.4: Prototype accuracies 
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4.3.2 T i m e c o m p l e x i t y 

Time durat ion of algorithms are measured by a °/0time profiler provided w i t h IPy thon . 
This measures C P U user time, kernel t ime, and real time, from which C P U user times are 
measured. 

ANN CNN RNN Logit SVM Forests ANN CNN RNN Logit SVM Forests 

(a) Time duration when training. (b) Time duration when predicting 
across a dataset. 

4.3.3 M e m o r y c o m p l e x i t y 

Memory usage is measured by a °/0memit profiler provided wi th IPy thon . This provides total 
memory used by the kernel, and the difference i n memory budget before and after running 
the command, which were used to calculate memory usages. 

E9 10° 

10 1 

ANN CNN RNN Logit SVM Forests ANN CNN RNN Logit SVM Forests 

(a) Memory usage when training. (b) Memory usage when predicting 
across a dataset. 

4.4 S u m m a r i z a t i o n 

From a l l prototypes, the best accuracy was observed wi th the R a n d o m Forests algori thm. 
W h i c h also has an exquisite t ime complexity and memory complexity when predicting 
labels. For this reason, it was chosen as the best model for demonstration applicat ion. 
Most models were run w i t h standard parameters, and there might be better combinations 
of them. However, to show comparisons between each algori thm, this should be accurate 
enough. Also , there might be a lot more promises for neural networks i n terms of accuracy. 
However, when run on a C P U , their t ime and memory complexity when predict ing labels 
is considerably higher. Th is leaves the possibil i ty that i f neural networks were modeled 
and trained better, their accuracy might be higher i n more extreme cases. For neural 
calculations, however, a special instrument would be required due to t ime and memory 
constraints. 
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Models expectations 

Before start ing the thesis, it was thought that data that can be extracted from touchpad 
are not good enough to have any successful accuracy. W h i c h i n the end was not true, 
since there were many models explored wi th accuracy above 90%. M y expectation was that 
shallow learning methods w i l l have accuracy lower than 90%. A n d that I w i l l reach accuracy 
above 90% only i f I w i l l be able to t ra in a neural network wi th large enough dataset. This 
again, didn ' t happen, since shallow learning methods were reaching very good accuracies, 
over 99%. 

Comparison to existing solutions 

Exis t ing solutions were explored i n subsection 2.2.2. Where Anne t et. a l . [2] showed several 
rejection methods, from which the most accurate one was a hover detection wi th accuracy 
below 90%. A n d [18] reached 97.9%. Those methods, however are for touchscreens, which 
is slightly different. Regardless results show that result accuracies are very high compared 
to other publ ic ly existing solutions. 
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Chapter 5 

Conclusion 

In this thesis, three cri teria were used to compare various A I / M L models for pa lm detection: 
accuracy, speed and resource insensitivity. The chosen model is R a n d o m Forests. Results 
showed higher accuracy than models it was compared to. B u t t ime and memory complexity 
of those methods wasn't known, and thus it couldn' t be compared wi th the proposed model. 
Due to low time and memory complexity, the chosen model could be implemented i n the 
firmware of the touchpad device and provide pa lm detection without adding significant 
latency. Beyond those three criteria, a large l imi ta t ion was found, mainly caused by how 
laptops are bui l t . Where touchpads are not designed to send raw data through the bus, it 
is connected through. Because of this, real-time demonstration of the selected model makes 
cursor movements stutter; the touch-pads bus cannot handle raw data transmission and 
makes the bus overloaded. This l imi ta t ion , however, doesn't apply to implementing such a 
model i n the firmware by laptop manufacturers. 

This thesis can be continued upon by better adjustment of models parameters. Explor 
ing different models, for example, Hopfield Networks ( H N N s ) . Creat ing a bigger, unaug-
mented, and better-representing dataset, presumably by a survey from mult iple people, by 
representative study, without the need to use data augmentation. Designing a better neural 
network structure. Introduce new data than just raw data. 

This thesis w i l l hopefully motivate companies to explore A I / M L for touch rejection, 
publ ic ly and open-source. O r give developers access to touchpad data to implement pa lm 
rejection i n kernel space because the current state of touchpads is a major l imi ta t ion for 
subsequent research. 
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