
T
BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

FACULTY OF INFORMATION TECHNOLOGY
FAKULTA INFORMAČNÍCH TECHNOLOGIÍ

DEPARTMENT OF INFORMATION SYSTEMS
ÚSTAV INFORMAČNÍCH SYSTÉMŮ

WEB APPLICATION FOR VISUALISATION
OF AIR TRAFFIC DISRUPTIONS
WEBOVÁ APLIKÁCIA PRE VIZUALIZACIU PROBLÉMOVV LETOVEJ PREMÁVKE

BACHELOR'S THESIS
BAKALÁŘSKÁ PRÁCE

AUTHOR MATĚJ SLIVKA
AUTOR PRÁCE

SUPERVISOR Ing. JIŘÍ HYNEK, Ph.D.
VEDOUCÍ PRÁCE

BRNO 2024

Bachelor's Thesis Assignment
Institut:

Student :

P r o g r a m m e :

Tit le:

Ca tegory :

Depar tment of Information S y s t e m s (DIFS)

S l i v k a Mate j

Information T e c h n o l o g y

W e b A p p l i c a t i o n f o r V i s u a l i s a t i o n o f A i r T r a f f i c D i s r u p t i o n s

W e b appl ica t ions

154380

A c a d e m i c year : 2023 /24

Ass ignmen t :

1. S tudy the i ssue of report ing flight d isrupt ions. S tudy the exist ing p r o c e s s e s and tools for p rocess ing
data from these reports.

2. S tudy the genera l pr incip les of da ta p rocess ing and v isua l iza t ion . S tudy the tools and l ibraries
des igned for this pu rpose .

3. A n a l y z e the current p rocess for handl ing and evaluat ing air traffic d isrupt ions of the Kiwi c o m p a n y .
Eva lua te the shor tcomings of the current p rocess .

4 . A c c o r d i n g to the results of the ana lys i s , des ign a w e b appl icat ion to p rocess and v i sua l i ze data from
air traffic p rob lems.

5. After consul ta t ion with the superv iser , imp lement the p roposed w e b appl icat ion.
6. Tes t the usabi l i ty of the solut ion in co l laborat ion with Kiwi .

Literature:
• F e w , S . (2006). Information Dashboard Design. O 'Re i l l y M e d i a , Incorporated.
• J o h n s o n , J . (2010). Designing with the Mind in Mind: Simple Guide to Understanding User Interface

Design Guidelines. M o r g a n K a u f m a n n Pub l i she rs /E l sev ie r .
• Tufte, E . R. (2001). T h e V i s u a l D isp lay of Quant i tat ive Information. G r a p h i c s P r e s s .
• Internal documenta t ions of the Kiwi c o m p a n y .

Requ i remen ts for the semes t ra l de fence :
Items 1 to 4 .

Deta i led formal requi rements c a n be found at ht tps: / /www.f i t .vut .cz/study/ theses/

Superv iso r : H y n e k J i ř í , Ing. , P h . D .

H e a d of Depar tment : Kolář Dušan , doc . Dr. Ing.

Beg inn ing of work: 1.11.2023

S u b m i s s i o n dead l ine : 9 .5 .2024

Approva l date: 30 .10 .2023

Facu l ty of Information Techno logy , B rno Univers i ty of T e c h n o l o g y / Bože těchova 1/2 / 612 66 / Brno

https://www.fit.vut.cz/study/theses/

Abstract
This thesis is focused on analysing the whole process of parsing flight disruptions for the
K i w i company. The main goal is to create a web applicat ion which w i l l create statist ical
analysis on provided flight disruptions and visualise them. The applicat ion should ensure
easier access to a l l disruptions from various databases. I created a frontend and backend,
which w i l l need to communicate together using A P I calls. W h i l e creating a web applicat ion,
I simulated the behaviour of the K i w i company services for development purposes. One of
my most desired goals is to search in databases using the proposed applicat ion. The web
application should serve aviat ion-providing company i n managing flight disruptions and
creating statistical analysis based on provided flight data. In this thesis, I documented the
whole process of creating the service.

Abstrakt
V tejto p rác i analyzujem celý proces spracovanie le tových p r o b l é m o v pre spoločnosť K i w i .
H l a v n ý m cieľom je vytvor iť webovú apl ikác iu , k t o r á by š t a t i s t i cký spracovala p o s k y t n u t é
data a vizualizovala ich. Apl ikác ia by mala uľahčiť p r á c u s rôznymi d a t a b á z a m i . P o č a s pro
cesu v y t v á r a n i a webovej apl ikácie som sa rozhodol vytvor iť užívateľské rozhranie pomocou,
k t o r é h o by si užívateľ dokáza l jednoducho zadať filtry na vyhľadavn ie z d a t a b á z . Vytvo
r i l som frontend a backend, k t o r ý b u d ú medzi sebou komunikovať pomocou A P I volaní .
Jeden z najviac ž i adaných cieľov p r á c e je vyhľadávan ie v d a t a b á z a c h . Apl ikác ia by mala
pomôcť firme, posky tu júce j le tecké služby, s r i a d e n í m letov a vytvor iť š t a t i s t i ckú a n a l ý z u
nad p o s k y t n u t ý m i le teckými d á t a m i . V p rác i som zdokumetnoval celý proces v y t v á r a n i a
služby.

Keywords
data visualisation, flights, flight disruptions, web applicat ion, air traffic

Klíčová slova
vizual izacia dat, lety, le tový p r o b l é m , webová apl ikácie , le tová doprava

Reference
S L I V K A , M a t ě j . Web Application for Visualisation of Air Traffic Disruptions. Brno , 2024.
Bachelor's thesis. Brno Univers i ty of Technology, Facul ty of Information Technology. Su
pervisor Ing. J i ř í Hynek, P h . D .

Rozšířený abstrakt
V tejto p rác i som sa zaoberal v y t v o r e n í m webovej apl ikác ie . P r á c u som v y t v á r a l v spo lup rác i
so spoločnosťou K i w i . c o m . K i w i . c o m je spoločnosť p r e d á v a j ú c a letenky a ces tovné poistenie.
Jej h l a v n ý m produktom je webová s t r á n k a , na ktorej si zákaznic i m ô ž u po rovnať ceny od
m n o h ý c h le teckých spo ločnos t í , k t o r é p redáva jú lety po celom svete. Spoločnosť sa sk l adá z
m n o h ý c h odde len í a j a som, v spo lup rác i s o d d e l e n í m Disruptions Emai l s Automat isa t ion ,
vy tvo r i l t ú t o b a k a l á r s k u p r ácu .

Oddelenie sa z a o b e r á s p r a c o v a n í m le teckých p rob lémov , k t o r é m ô ž u vzniknúť na le t i skách.
N a j m ä sa j e d n á o oneskorenie letu, z rušenie letu a zmena leteckej spo ločnos t i vykonáva
júcej let. Tie to p r o b l é m y sa z praxe n e d a j ú ods t r án i ť kvôli z lož i tému procesu v y t v á r n i a
letov. Ce lému t í m u by v r á m c i p r á c e v ý r a z n e pomohlo, ak by si mohl i rýchlo a efekt ívne
dohľadávať d á t a z d a t a b á z . S p o m í n a n ý t í m si č a s to dohľadáva data z 5 rôznych d a t a b á z ,
p r i čom k a ž d á d a t a b á z a m á iné tabuľky, p r í s t u p o v é p ráva , s chému zapojenia. Tak t iež by
m n o h ý m č lenom t í m u pomohlo, ak by sa nad d a n ý m i d á t a m i robi la š t a t i s t i cká ana lýza ,
k t o r á by p o m á h a l a p r i t vo ren í m a n a ž e r s k ý c h r o z h o d n u t í , a k t o r á by p o u k á z a l a na súvis
losti alebo d l h o d o b é sp rávan ie d á t v d a t a b á z a c h . D a n é p r o b l é m y som sa snaži l vyriešiť.
V y t v o r i l som web, k t o r ý bo l z a m e r a n ý na v izual izác iu d á t s a m o t n ý c h , a to v jednoduchej
a z rozumiteľnej podobe. Zo zobrazených d á t som t ak t i e ž vy tvor i l grafy, k t o r é automaticky
analyzovali u rč i t é segmenty d á t .

Celé r iešenie p r o b l é m u sa sk l adá z frontendu a backendu webovej apl ikác ie . V r á m c i
spo ločnos t i K i w i sú už zadef inované d a t a b á z y a backend, k t o r ý s d a t a b á z a m i komunikuje.
No kvôli vývo ju webovej ap l ikác ie a z p r á v n y c h dôvodov som nemohol zverejniť spomí
n a n é s lužby v mojej baka lá r ske j p rác i . Namiesto toho som d a n é s lužby naimplementoval a
simuloval.

V bak lá rske j p raé i som zachoval a r c h i t e k t ú r u , v ktorej bude produkt nasadený . Celý
proces spracovania d á t je teda nas ledujúc i . Vytvor í sa dotaz na a p l i k a č n o m frontende. Ten
sa d o p ý t a ap l i kačného backendu na s a m o t n é data a š t a t i s t i cký sp racované data. S a m o t n é
data si d o ž i a d a z d a t a b á z y a to pomocou d a t a b á z o v é h o backendu. P o vyho toven í š ta t i s t ickej
ana lýzy sú data zas lané na ap l ikačný frontend na vizual izáciu .

V r á m c i d a t a b á z y som použ i l deväť m e s a č n ý z á z n a m z d a t a b á z spo ločnos t i K i w i . c o m .
Tabuľky m a j ú zachovanú r o v n a k ú š t r u k t ú r u , no data sú a n o n y m i z o v a n é a hešované . Im-
p l e m n t á c i a d a t a b á z y bola rea l izovaná pomocu technológie Pos tgreSQL. N a p r í s t u p do
d a t a b á z cez backend som použi l jazyk P y t h o n a kn ižn icu S Q L A l c h e m y . P r í s t u p je zais
t e n ý pomocou vygenerovaných S Q L dotazov.

Apl ikačný backend bo l i m p l e m e n t o v a n ý v j azyku Py thon , p r i čom š t a t i s t i cká a n a l ý z a
nad d á t a m i bola v y t v o r e n á pomocou knižnice Pandas. V r á m c i ap l ikačného backendu bola
p o u ž i t á t echnológ ia cacheovania a t ak t i e ž t echnológ ia v y t v á r a n i a a spracovania requestov
pomocou knižn ice F a s t A P I .

Ap l ikačný frontend bo l n a i m p l e m e n t o v a n ý pomocou j azyka React. V i z u á l n a časť fron
tendu sa sk l adá z fo rmulára , k t o r ý určuje d o p y t o v a n é data. Ďalej je na frontende z o b r a z e n á
t abuľka , k t o r á obsahuje n i ek to ré kľúčové atributy. V r á m c i t a b u ľ k y je m o ž n e si rozliknúť
de ta i lný pohľad na d a n é data, ten zobrazuje v š e t k y a t r ibuty aké sú v d a t a b á z e . Tak t iež sa
na webovom frontende n a c h á d z a 5 grafov. 3 z nich vizual izuju agregác iu podľa zvoleného
atr ibutu. K o n k r é t n e sú to agregácie podľa d a t a b á z y , z ktorej bo l n a h l á s e n ý le tový prob
lém, o aký typ le tového p r o b l é m u sa j e d n á a agregác ia podľa spo ločnos t í , k t o r á vykonáva
d a n ý let. Ďalš í graf kategorizuje d á t a podľa času pred odletom. Pos l edný graf zobrazuje
úspešnosť spracovania d á t v čase . D á t o v á tabulka bola v y t v o r e n á pomocou knižn ice Shadcn,
ako aj f romulár a de t a i l ný pohľad na d á t a . Pomocou knižnice N i v o bol i v y t v o r e n é grafy .

http://Kiwi.com
http://Kiwi.com
http://Kiwi.com

Spoločnos t i K i w i . c o m som podal už h o t o v ý produkt . V r á m c i testovania sme hod
not i l i ako d a n á ap l ikác ia funguje. Apl ikác ia splni la v š e t k y p o ž i a d a v k y spo ločnos t i . D á t a
sú s p r á v n e v izual izované a s fungovaním apl ikác ie sú spokojný. T í m , k t o r é m u som ap
likáciu podáva l , m a l ale v ý h r a d y k d e k o r á c i á m na s t r á n k e a celkovo k s p ô s o b u ako d a n á
s t r á n k a vyzerá . P o ú p r a v á c h frontendu webovej ap l ikác ie spoločnosť K i w i . c o m prijala moje
r iešenie p r o b l é m u . Webová ap l ikác ia dokáže v rozumnom čase spracovať data z d a t a b á z a
vizualizovať ich.

http://Kiwi.com
http://Kiwi.com

Web Application for Visualisation of A i r Traffic
Disruptions

Declaration
I hereby declare that this Bachelor's thesis was prepared as an original work by the author
under the supervision of M r . Ing. J i f i Hynek, P h . D . The supplementary information was
provided by M r . Mgr .Radovan Lapar who helped me wi th technical part of bachelor thesis.
I have listed a l l the l i terary sources, publications and other sources, which were used during
the preparation of this thesis.

Matej S l ivka
M a y 6, 2024

Acknowledgements
M y main gratitude belongs to two people. M y supervisor Ing. J i ř í Hynek, P h . D . for
deep patience w i t h my ever-repeating questions and to my boss M g r . Radovan L a p á r who
repeatedly explained to me many technological problems at our work.

Thank you for leading me when I got lost.

Contents

1 Introduction 2

2 Flight Disruptions 4
2.1 Scheduling Fl ights 4
2.2 Fl ight Decision Makers 5
2.3 Reasons of Disruptions 6
2.4 Sources of Fl ight Disruptions 8

3 D a t a Processing and Visualisation of D a t a 11
3.1 Principles of D a t a Visual isa t ion 11
3.2 Tools for Pars ing Fl ight Disruptions from Sources 13
3.3 Tools for Visual i s ing D a t a 14

4 Analysis of the Prob lem 18
4.1 Categorizing of Fl ight Disruptions 18
4.2 Processing of Fl ight Disruptions 19
4.3 Internal Storage and D a t a Access 20
4.4 Shortcomings of the Current Process 22

5 Design of W e b Appl icat ion 24
5.1 D a t a F low of Web Appl i ca t ion 24
5.2 Mock-up of Web App l i ca t i on 26

6 Implementation of Web Appl icat ion 29
6.1 Used Technologies 29
6.2 Architecture 30

7 Testing of Appl icat ion 37
7.1 U n i t Testing 37
7.2 End-to-end Testing 38

7.3 Testing in K i w i Company 39

8 Conclusion 42

Bibl iography 44

1

Chapter 1

Introduction

Dur ing the day, thousands of flights are taken across the globe. Avia t ion companies operate
these flights w i th caution and a i m to gain profit. It is a complex process, composed of getting
many approvals from security controls, airports and business managers. D u r i n g complex
processes like this, aircraft might encounter troubles along the way. This may include any
trouble varying from human factors to technical factors or business factors. Th is creates
unwanted behaviour both for customers and for aviat ion companies. K i w i . c o m is another
company which needs to resolve these flight disruptions. It is an aviat ion service-providing
company w i t h the a i m of automating the whole process of resolving issues related to flight
disruptions.

A s the whole process is complex, flight disruption reporting comes from many sources.
They need to be automatical ly processed. Because many tools extract information from
many sources, the data are stored i n many databases. Th is may challenge uni t ing infor
mat ion extracted from these databases regarding one or more flight disruptions. Also , in
the process of analysing data for future business plans, it is difficult to statist ically analyse
data from different databases wi th different schemes and tables.

The goal of this work is to easily access data from these sources without the need to
access mult iple different databases, visualise the data, and analyse them. In this thesis, I
propose a web applicat ion that makes the whole process of extracting data from databases
easier. Based on requirements, I wanted to make a simple and easy-to-use applicat ion that
would automatical ly visualise data from different databases and create statist ical analysis
through many graphs. Users should easily filter out data using a form wi th predefined
filters. Th is should ensure smoother operation when looking for data and their analysis.

In Chapter 2, I analyse flight disruptions. I d ig into the whole process of creating
flights, which sometimes results in flight disruption. I t ry to understand the whole process
of scheduling flights, how different flights affect each other, who decides about flights, their
paths and security. I mention different causes and sources of flight disruptions.

In Chapter 3, I take a look into visualisation of data. More precisely, the visualisation
of flight disruptions. I understand the correct way of creating graphs and charts. I analyse
how to parse information from different flight disruption sources. Lastly, I take a look into
libraries for working wi th data visualisation and how they may help me i n the process of
solving this issue.

In Chapter 4, I analysed the whole process of resolving disruptions in K i w i company. I
take a look at how flight disruptions are categorised, how they affect passengers on their
route, what is processing, and what part is it composed of. I analyse where the data is
stored and what data needs to be mentioned to report flight disruptions. I pinpoint the
weakness of the current process.

2

http://Kiwi.com

In Chapter 5, I propose a solution to the weakness of the current process. I came up
wi th the design for a web applicat ion which would t ry to solve the problem of accessing
data. I describe the technical part of the work. I propose frontend and backend and how
they should communicate w i th each other. I describe the data flow. I design a mock-up
wi th different parts, giving an understanding of extracted data about flight disruptions.

In Chapter 6, I describe the way I implemented my proposed solution from Chapter 5.
I describe the technologies that I used. I depict the overall architecture of the project and
the way I implemented separate project services.

In Chapter 7, I test my applicat ion. Testing was performed in mult iple testing stages.
I describe the way I created unit tests for my applicat ion. I explain the end-to-end testing
performed on a l l services. Last ly, I describe testing wi th the users i n the K i w i company
and how I implemented the changes they required.

3

Chapter 2

Flight Disruptions

"Disruption can be defined as an act of delaying or interrupting the continuity (Hyper
Dictionary, 2003). However, in operational terminology, Clausen, Hansen, Larsen, and
Larsen (2001) defines disruptions as a situation during the operation's execution in which
the deviation from plan is sufficiently large that the plan has to be changed substantially.
A disruption in flight operations takes place when the observed situation deviates from the
planned situation and the deviation on operation is substantial. Disruptions may have
minimal effect in some cases on the airline. In other cases, it can become severe, causing
the airlines to delay, cancel or divert substantial number of flights and imposing substantial
cost to them." [1]

W h i l e operating air traffic, most flights encounter no difficulties overall. Fl ights are
usually departing on t ime and arr iv ing on time; passengers have their correct seats, and
there are no technical difficulties. However, sometimes air traffic providers and controllers
might encounter some problems. These problems may cause some unwanted behaviour or
troubles while operating air traffic. Such problems can not be avoided. O n l y one issue can
create a chain reaction, which may lead to mult iple other disruptions as they share the
same airports of arr ival or departure.

According to the A i r l i ne Dis rup t ion Management: A Review of Models and Solut ion
Methods [23] "The aviation industry has become a major player in the global economy. As
people become increasingly dependent on air travel, the number of scheduled flights worldwide
grows every year. The civil aviation passenger demand increased by 4.2% while capacity
increased by 3.4% worldwide in 2019. Hence, demand appears to grow faster than capacity,
suggesting great development potential for the aviation market. With the development of the
aviation industry, airline planning and scheduling problems have attracted much attention,
and most airlines benefit from advanced optimization methods. Sophisticated models and
effective solutions have been developed for each stage of planning." Th is only pushes further
demand for handling any disruptions while operating airlines.

2.1 Scheduling Flights

The whole process of scheduling flights is complex. Fl ight , aircraft, and crew are scheduled
months in advance. The whole process is described as follows: [8, 16]

1. Based on marketing decisions, the aviat ion company has to decide at what t ime they
should schedule the departure and arr ival of a given flight.

4

2. The fleet type that w i l l execute the flight is chosen considering the demand for flight,
aircraft capacity and availability.

3. The aircraft is chosen considering maintenance constraints.

4. After that comes crew scheduling, which has 2 parts:

(a) F i rs t comes the crew pair ing phase, which creates crew itineraries based on
general regulations like m a x i m u m allowed working t ime or flying t ime per duty.

(b) Second, comes crew assignment, assigning ind iv idua l crew members to itineraries
w i t h the a i m of minimis ing cost.

However, crew, aircraft, and passengers are loosely connected before the scheduling day.
A c t u a l crew members are assigned according to the crew's availabil i ty on the given day.
Crew members, along wi th aircraft, may execute mult iple flights during one day, which
shows further dependencies of future flights on previous flights. Further, in the process
of managing flights, the most important aspects are crew, passengers and aircraft. The
process is also composed of ground staff (check-in staff, gate staff, ramp staff, and luggage
staff), catering, and gates, but these resources are generally more flexible and less expensive
than crew and aircraft and w i l l only be considered briefly [16].

2.2 Flight Decision Makers

Operat ion control is performed by many elements. It needs to be ensured that smooth and
safe flight operations w i l l be performed. Unfortunately, not everything goes as it is planned.
Fl ight depends on these decision-makers [16] who can change it significantly or even cancel
it:

• F l ight dispatch and following: dispatcher plays an important role i n N o r t h Amer ica .
He ensures flight safety and checks on the preparation and progress of a number of
flights. The dispatcher communicates w i th other areas where problems appear. In
Europe, the role of aircraft control usually only follows flights. F l igh t planning and
dispatch are often planned outside of the operational area.

• Aircraf t control: Manages central coordination, operational control, and management
of aircraft resources. In Europe, it is d ivided into long and short haul . In N o r t h
Amer ica , it is d ivided into geographical regions like N o r t h West, South West, West,
South, South East , East , N o r t h East , and Nor th .

• Crew tracking: T h i s role is the management of crew staffing. Crew check-ins must
be monitored, and crew pairings must be changed in case of delays or cancellations.
A reserve crew must be issued in case of trouble. Usually, the crew is d ivided into
cockpit and cabin crew.

• Aircraf t engineering: This role is responsible for servicing and maintaining aircraft
(as well as maintenance scheduling). Not a l l stations can do a l l types of maintenance,
so changes to aircraft rotation can cause disruptions.

• Customer service: This role is not part of the organisational structure, but they are
responsible for taking care of customers who encounter some inconvenience. Passen
gers need to be informed about disruptions, and i n some cases, passengers need to be
rebooked or ensured some meals or accommodation.

5

• A i r traffic control: Typical ly , a public authori ty that creates rules for every aviat ion
company. In Europe, it is the EuroCon t ro l . In N o r t h Amer ica , it is the Federal
Avia t ion Adminis t ra t ion .

• D u t y manager: This role ensures overall coordination, ensuring that every group acts
as one team. Most of the airlines leave the execution of such tasks to the D u t y
manager.

2.3 Reasons of Disruptions

A s the process of scheduling flights is made in advance and is composed of many elements,
there are a lot of possibilities for errors that may cause flight disruption. Outside of the
pre-scheduled process, there are other factors that may affect flights. These may vary
depending on weather factors, technical factors, and human factors (both on the crew side
and also on the passenger side). Based on my analysis i n K i w i . c o m company, these might
include the following:

• Ongoing strikes which may disable the whole airport for several days or maybe even for
weeks. This may be caused by people demanding better salaries and cal l ing attention
to staff reductions and education overhauls [4].

• Problems wi th aircraft technology (damaged engine, wing or any other part of aero
plane). This can be caused by wildlife l iv ing in the area of the airport [25]. A s the
area of the airport covers significant space, which is usually on the city's outskirts,
it creates enormous space which needs to keep wildlife out of i t . U p to 3306 square
kilometres of grassland are estimated to be contained at 2915 airports in the U S A .
Further, the s torm drainage and flat landscape properties attract wildlife [21]. In
case of damage, parts of the plane need to be scanned using methods like Ultrasonic
testing [14]. In case of damage, the repair or replacement of damaged parts is needed.

• Fuel shortage. A s a product of crude o i l , the jet fuel is l imi ted natural supply. How
ever, the aviat ion industry is heavily dependent on this supply. W i t h the current
rising demand for travel [20, 23], aviat ion companies w i l l have a hard t ime replacing
it.

• Absence of crew members. This may be due to their health condit ion or due to their
personal reasons. Furthermore, this issue might be more frequent as, for example, in
the U S A , the mandatory pilot 's retirement leave is at the age of 65, w i th requirements
of m i n i m u m flight hours for start ing pilots going up. Also , retired mi l i t a ry pilots, who
have been an ample supply of new pilots for the aviat ion industry, have decreased in
recent years [15].

• Delays of departure of the aeroplane. This may seem like an insignificant issue:
however, a l l delays may cause flight cancellations. Furthermore, each minute of delay
causes a substantial loss of money, which may be up to 100 euros per minute for
European airlines [17]. W i t h growing air travel, this may cause significant costs for
passengers as wel l as for aviat ion companies.

In the article Increasing stabil i ty of crew and aircraft schedules [8], it is proposed that
while creating schedules for aeroplanes, the manager should take into account that
the plane is going to be late. This is due to the fact that, according to the author,

6

http://Kiwi.com

flight disruptions are inevitable. Some techniques for reducing delays are scheduling
w i t h buffer t ime, swapping crew or aircraft or using a reserve crew to recover from
the delay.

• Postponing flight operation due to previous problems related to flight operation wi th in
one airport [22].

• Schedule change of route of the aeroplane. Th is may be due to commercial reasons or
due to a change of plans after the process of scheduling, as mentioned in Section 2.1
Scheduling Fl ights .

• Change of aircraft—this may be caused by aircraft availabil i ty or by technical damage
caused to the aircraft.

• F l ight cancellation. They may be caused by two types of reasons:

— Cancel la t ion beyond the control of the operator. This may happen because of
severe weather conditions, equipment failure, or maintenance repair, which is
necessary before the aircraft is operational.

— Strategic flight cancellation. Th is happens when an airline operator cancels for
economic reasons like low passenger bookings or when the airline operator cancels
the flight to avoid further delays on other flights.

[22]

• Whether forecast difficulties like rainfall , snowfall, frost or thunderstorms cause flight
disruptions [3].

• Diver t ing of the plane to another airport, which may happen due to sudden medical
emergencies on board [7] or to relieve a busy airport of traffic and divert it to a nearby
airport. Another method is to dodge enemy attacks by divert ing commercial planes
to nearby airports due to safety reasons [2].

• Problems related to global pandemics (C O V I D - 1 9) . D u r i n g the C O V I D - 1 9 pandemic,
governments enforced travel restrictions. Th is hugely affected air travel around the
world. Depending on the country and its restrictions, air travel varies [24].

• Issues related to terrorist attacks. Hamas attacks on Israel or W o r l d Trade Center
terrorist attacks. Most flights were changed, rerouted or cancelled due to safety
reasons.

Further, flight disruptions are caused mainly by another plane which was disrupted, national
aviat ion system delays, and extreme weather. However, there can be found a correlation
between flight disruptions and the days of the week (Thursdays, Fridays and Sundays are
less l ikely to have more disruptions), departure t ime and number of dai ly flights on a route.
Also , the age of the aircraft that executes a given flight significantly impacts whether the
flight is disrupted [22].

A s these problems are unwanted by both passengers and aviat ion companies, divert ing
flights as a result of such problems creates an extra amount of fossil fuels, which harms the
environment surrounding us [17]. A l l these troubles need to be resolved while providing the
service of scheduling flights across the globe. These problems are called Flight disruptions.
Fl ight disruption is any k ind of act which may affect the original travel plan i n a way that
changes the scheduled plan.

7

2.4 Sources of Flight Disruptions

Fl ight disruptions can dramatical ly affect the passenger's route and create difficulties when
transferring to other flights or create any difficulties i n general. To report given disruptions,
air traffic providers should notify or provide information about any flight disruptions or
difficulties encountered during or before flight departures. Ideally, this information should
be provided as soon as possible so that the passengers can react appropriately to a given
change in time. Information regarding these flight disruptions can be reported from many
sources like:

• F l ight information from emails which is sent to the customer's email address regarding
any k ind of trouble which was encountered during the operation of a given flight.
These emails should provide as much information about affected flights as possible,
sometimes suggesting possibilities for passengers to manage his /her flight.

Avia t ion companies can suggest or transfer passengers on alternative flights. They
may also give a refund for flights. However, emails may not contain information about
flight disruption, instead notifying passengers about existing issues. They might have
a l ink to a website that contains information about flight disruptions, or they may
attach a file that contains a l l necessary information about the flight.

• F l ight information from companies—flight statuses and booking statuses can usually
be checked on the website of a given flight provider. Passengers usually need to
authenticate themselves to get information regarding their booking. This might be
done by providing their P N R (Passenger Name Record) o r / and passenger surname.

Fl ight status should be accessible on aviat ion websites. A n y further authentication
should not be needed. However, this information is accessible only 3 days prior to the
flight.

• F l ight information from a th i rd party—flight information provided by air traffic map
ping websites. Websites like ffightstats.com or ffightradar24.com. These websites
create v i r tua l maps wi th updated information regarding each flight, as shown i n F i g
ure 2.1. They provide up-to-date information about ongoing flights mapped a l l around
the globe using a G P S tracking system. The information obtained from these websites
can be:

— Ai rpo r t Disruptions—chart of airports w i th the highest Delay index, w i th Delay
index being the probabil i ty of F l igh t Delay. These indexes can go from 1 to
10—indicating a delay from 4 minutes to 175.

The L u m o [12] delay indexes are a score from 1 to 10 given to each flight,
indicat ing how "r isky" a flight is w i t h respect to being delayed. The score is
intended to capture both delay frequency (probabili ty of a delay occurring) and
delay severity (how long w i l l the delay be i f it does happen).
Quite simply, a delay index of 1 indicates near-certainty of less than a 30-minute
delay, while an index of 10 indicates a near-certain delay of 2 hours or more:
the numbers in between are essentially a weighted average of the l ikel ihood of a
delay of different magnitudes. L u m o calculates this index as a weighted average
of 4 numbers:

8

http://ffightstats.com
http://ffightradar24.com

* The l ikel ihood of a delay of less than 30 minutes (pO)

* The l ikel ihood of a 30-60 minute delay (p i)

* The l ikel ihood of a 1-2 hr delay (p2)

* The l ikel ihood of a 2+ hour delay(p3)

— Fl ight information—this information includes carrier, carrier number, airport of
destination and airport of origin. Scheduled arr ival t ime and departure t ime also
estimated arr ival t ime and departure time.

— Aircraf t information—technical information regarding aircraft i n use, such as
aircraft type, registration and place of registration, serial number and t ime of use.
Also , information regarding the terminal and gate which the aircraft departed
from, its average flight t ime and great circle distance.

— Operat ing information of aircraft—the scheduled flights of aircraft, al t i tude of
aircraft, latitude, longitude, also ground speed, true airspeed, indicated airspeed.

• F l ight information from airports—flight information provided by airports that track
flights start ing and arr iv ing flights at the given airport . Usually, airports provide
information regarding carrier, carrier number, airport of destination, scheduled time
of departure and estimated t ime of departure. These websites also provide information
regarding schedule changes and flight cancellations.

A l l these sources provide valuable information about flights, which can be used i n the
process of notifying and scheduling flights or transfers.

9

Figure 2.1: Screenshots of flightradar24.com. Both Screenshots show a virtual map
of flightradar24.com. The first Screenshot depicts overall statistics. The second Screenshot
depicts the route of a single plane along with its statistics.

10

http://flightradar24.com
http://flightradar24.com

Chapter 3

Data Processing and Visualisation
of Data

There are many ways of processing information from our surroundings and understanding
the concepts. For example, people can feel pressure, which may explain gravitat ional force
to us, we can hear effects like the Doppler effect, we can taste the p H of matter around us
and many more. One of the most essential ways of accessing information is w i th our sight [9].
We can grasp many concepts w i t h our eyes. For example, depth, colours, movement, etc.
However, w i t h our sight, we can grasp even more complex thoughts explained by human
beings—we can read. Not only can we read text that can interpret human thoughts, but
we can also read graphs and data that can interpret statistics and give us a higher level of
information. Graphs can create relationships between data and create connections among
them i n many ways. A l so , they can highlight some trends i n data overall, as shown in
Figure 3.1.

D a t a visualisation is a different approach to tel l ing an idea. One of the reasons to
use data visualisation is to process the amount of data that is being to ld to us. These
days, we encounter thousands of pieces of information dai ly that tel l different stories. To
make sense out of a l l this information, data visualisation can comprehensively interpret
this information. W i t h correct visualisation, the reader can process huge chunks of data
rapidly [11, 26]. It should push the viewer to th ink about the substance that the author
wants to te l l rather than to th ink about the methodology, graph, diagram, technology of
graphic production, or something unrelated [27, 18].

3.1 Principles of Data Visualisation

Visual isa t ion of data is an essential process for understanding the topic being discussed.
Depending on the provided data, the visualisation can either set back or push forward
the understanding of the given concept. The graphs should talk to the reader clearly and
immediately [11]. However, it depends on the author of the work to choose the correct
graph of display [18, 11]. W i t h many graphs which have their pros and cons, there are few
principles which can create understandable graph [18]:

• Use the right geometry—most geometries fall into categories: amounts (or compar
isons), compositions (or proportions), distributions, or relationships. These categories
are mostly displayed as follows:

11

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Annual
1990 127.4 128.0 128.7 128.9 129.2 129.9 130.4 131.6 132.7 133.5 133.8 133.8 130.7
1991 134.6 1348 135.0 135.2 135.6 136.0 136.2 1366 137.2 137.4 137.8 137.9 136.2
1992 138.1 138.6 139.3 139.5 139.7 140.2 140.5 140.9 141.3 141.8 142.0 141.9 140.3
1993 1426 1431 143.6 1440 1442 1444 144.4 1446 145 1 1457 1458 145.8 144.5
1994 1462 146.7 147.2 147.4 147.5 148.0 148.4 1490 149 4 149.5 149.7 149.7 148.2

1096 154.4 154.9 155.7 156.3 156.6 1S6.7 1S7.0 157.3 157.8 158.3 158.6 158.6 156.9
13KB lbU.U lbUJ IbU.I IbU.J IbU.J IbU.ti lb 1 J lb lb ibi a 101. J I6U.5 1

1998 161.6 161.9 162.2 162.5 1628 163.0 163.2 1634 1636 164.0 164.0 163.9 163.0
1 &99 1643 1645 165 0 166 2 1662 1662 1667 167 1 1679 1682 168 3 168 3 166.6
2000 168.8 169.8 171.2 171.3 171.5 172.4 172.8 172.8 173.7 174.0 174.1 174.0 172,2
2001 1751 175.8 176.2 176.9 177.7 178,0 177.5 177,5 1783 177.7 177.4 176.7 177.1
2002 177.1 177.8 178.8 179.8 179.8 179.9 180.1 180,7 181.0 181.3 181.3 180.9 179.9

159

168

157

156

155

154
Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Doc

Figure 3.1: G r a p h and table of data. B o t h the graph and table show information
regarding data interpretation. The graph might also pinpoint some data tendencies, like
growth over t ime. This picture was taken from the book of Stephen Few [11].

— Amounts or comparisons are often displayed wi th bar plots—graphs A and B
Figure 3.2, or w i th dotplots, even heat maps—graphs F Figure 3.2. However,
bar plots often depict low data density. They may also be misleading as they
always start at zero.

— Composit ions or proportions may take a wide range of geometries. Tradit ionally,
a pie chart is one option.

— Dis t r ibut ion—the most common geometry for dis t r ibut ional information is the
box plot, which shows five types of information i n one object—graph E F i g
ure 3.2. The histogram is another robust geometry that can reveal information
about data—graph B Figure 3.2. V i o l i n plots and density plots are other stan
dard dis t r ibut ional geometries—graph G Figure 3.2.

— Relationships—the basic scatterplot remains very effective, and layering informa
t ion by modifying point symbols, size, and colour is an excellent way to highlight
addit ional messages without taking away from the scatterplot—graphs C and D
Figure 3.2.

12

It is recommended to always show data as they give a k ind of proof of the whole
concept of the graph that is depicted using them.

• Colour always means something—another easy way to add an extra piece of informa
t ion to the graph. Colours can be used i n 3 ways.

— Sequential typical ly goes from dark to light, showing the scale of values distributed—
graphs B and F Figure 3.2.

— Diverging typical ly uses two different colours to show the opposites (black and
white), w i th the middle part as grey, which shows a neutral element—graph E
Figure 3.2.

— Qual i ta t ive typical ly shows differences between two objects and does not depict
any difference in values—graphs A and G Figure 3.2.

• Include uncertainty—not including uncertain and abnormal data or information can
be a misleading element as it deforms a graph or diagram.

• Use description—if it is not apparent what the graph is depicting, use description.
A few words can explain the graph and message that it sends. Alternat ively, using
infographics can help reading graphs.

3.2 Tools for Parsing Flight Disruptions from Sources

In this section, I want to dive into acquiring data from different sources because a part of
this work is analyzing flight disruptions. A s mentioned i n previous Chapter 2.4, the data
analysts or users can acquire data from at least 4 different sources. We choose different ways
of parsing the data into complete flight disruption depending on sources. In the following
subsections, I describe the mentioned ways of parsing.

3.2.1 E m a i l s P a r s i n g

E m a i l parsing can be achieved by searching for a given H T M L structure. Depending on
the implementat ion language, we can choose the way we want to access data provided in
email.

• H T M L D O M tree structure—we can use H T M L structures such as Beaut i fu lSoup 1 or
H T M L 5 , which create D O M tree structure out of provided H T M L code. B y searching
these structures, we can look for specific tag or IDs which identifies given data wi th in
the H T M L structure. Th is can be accessed through the iterator.

• Regular Expressions parsing—we can create a regular expression which specifies the
order of text and H T M L structures in a given email . This way, we can create a
template which always extracts data from a given posit ion.

• Pars ing from specific C S S selectors—CSS selectors can specify or highlight keywords
which we want to parse from text. C S S selectors can help us by specifying searched
data from H T M L .

xhttps://www. crummy.com/software/BeautifulSoup/bs4/doc/

13

https://www
http://crummy.com/software/BeautifulSoup/bs4/doc/

• Na tu ra l Language Processing—we can use this artificial intelligence, which w i l l lead us
to automatical ly parsing of a given H T M L structure and output t ing given attributes
of flight disruption. This can be achieved by spl i t t ing the whole text into tokens and
then composing the meaning of a given email . B y understanding this composit ion,
artificial intelligence can lead us to outputs which we want to get from email [19].

3.2.2 Acces s ing D a t a f r o m Webs i t e

The other three ways of accessing flight disruptions are similar. They a l l use information
from the website. It can be done in several ways:

• Connect ing to prepaid APIs—some websites are wi l l ing to provide information through
prepaid A P I s . Websites may even create protected A P I s . This is ensured by providing
the client w i th an A P I key which authenticates the user wi th in the system.

• Accessing website—another way of accessing data is directly from the website. Go ing
to the website and searching for clues that could give us some information regarding
flights.

3.3 Tools for Visualising Data

W h i l e creating the website, we are typical ly interested in 3 features of the website—the
website's content, the style of the website and the functionality of the website. These 3
features typical ly correspond to 3 files that define a website:

• H T M L file—which stands for Hyper Text M a r k u p Language file. It corresponds to
the content of the website [10].

• C S S file—which stands for Cascading Style Sheet. It corresponds to the style of the
website.

• Scripts defining functionalities of websites. Typ ica l ly Javascript [28].

These three files can define the whole website. However, for simpler website creation, there
are frameworks that can be used to make web applications. Depending on the functionality
that we want to ensure, we can choose from these popular frameworks:

• R e a c t 2 — w h i c h is very fast and has the feature of creating the components. Compo
nents may allow reusing of code. Also , React has a unique feature where it solves
issues wi th re-rendering the page. W h e n there is a change in the code, React updates
only a specific part of the H T M L code to update the web page.

• A n g u l a r 3 — i s maintained by Google.com. It provides many already bui l t - in features
like routing, forms management, and client-server communicat ion. In Angular , the
Model -View-Cont ro l le r pattern is followed, which means that the system links and
binds the M o d e l and the V i e w . Changes made to the interface have an immediate
impact on the objects of the applicat ion structure and vice versa.

2 h t t p s : //react.dev/
3 h t t p s : //angular. 10/

14

http://Google.com

• j Q u e r y — m a k e s it much easier to use JavaScript on your website. jQuery wraps
complex Javascript code into methods that you can cal l . jQuery also simplifies a lot
of the complicated things from JavaScript , like A J A X calls and D O M manipulat ion.

• Vue . j s 5 —is a Javascript framework for bui lding interfaces. Vue extends standard
H T M L , al lowing users to describe H T M L declaratively based on JavaScript code.
Vue tracks JavaScript changes and updates the D O M upon detecting a difference.

• Boo t s t r ap 6 — is a C S S framework. Developers use Boots t rap because it automatical ly
detects the size of the user's screen and creates a C S S layer responsively.

• Ta i lwind C S S ' — i s a C S S framework that helps developers define the style of H T M L
elements directly i n the code. B y naming class specifically, it defines the visual style
of a given element.

A s for the visualisation of data on web applications, we can use H T M L elements, such as
Canvas or S V G , to create graphs. B o t h create areas wi th in the webpage where we can
create elements for visualisation. The difference is the way they visualise i t . Canvas creates
raster pictures, while S V G is composed of vector-defined elements. Further, S V G provides
functions for responsive handling of S V G elements, such as On-Cl i ck . Another way of
showing data is by using a predefined A P I that returns our desired graph. For example,
Google Maps create an A P I which developers can connect i n order to render maps on their
sites. However, creating graphs ourselves might not always be easy, especially w i t h more
complex graphs. Therefore, there are several libraries for visualising data.

3.3.1 L i b r a r i e s for D a t a V i s u a l i s a t i o n

• D 3 l ibrary—it is an open-source JavaScript l ibrary. D 3 l ibrary is a low-level approach
for bui ld ing data-driven, dynamic graphs. Composing a chart i n D 3 means composing
it out of a variety of primitives. D 3 is not a single monol i th but rather a suite of 30
discrete libraries. D 3 groups these modules together for convenience rather than
necessity, so your tools are wi th in reach as you iterate on your design. W i t h input,
such as C S V or J S O N , it creates data visualisation [6].

• Google Charts—the most common way to use Google Char ts is w i th simple JavaScript
embedded in your webpage. The ma in goal of Google Charts is to create an easy-
to-use system that is accessible to many, regardless of their technical expertise. It
is a community-driven l ibrary meant to integrate w i th Google services environments
such as Google Sheets or Google Ana ly t i cs . Load ing libraries and providing input
data creates graphs. Then , creating <d iv> wi th the correct i d displays the Google
Char t [13].

• Chart . js is a free, open-source JavaScript l ibrary for data visualisation. It supports
8 types of visualisations: bar, line, area, pie (doughnut), bubble, radar, polar, and
scatter. Chart . js renders i n H T M L 5 canvas. The l ibrary 's goal is to create flexible
graphs wi th a wide variety of modifications. It creates elements which can be displayed
on mobile devices. O n top of that, Chart . js has interactivity, which contains tools
like hover effects, tooltips or clickable legends [5].

4 h t t p s : / / j q u e r y . c o m /
5 h t t p s : //vue j s . o r g /
6 h t t p s : / / g e t b o o t s t r a p . com/
7 h t t p s : // ta i lwindcss .com/
8 h t t p s : //developers.google.com/maps ^ 5

https://jquery.com/
http://js.org/
https://getbootstrap

• N ivo is a free and open-source l ibrary buil t for using React. It is based on D 3 . It
provides mult iple sets of different pre-build graphs for visualisation. N i v o provides
highly customisable elements. Push ing forward the developers' experience by pro
vid ing modular i ty and reusability. E a c h component is encapsulated as a separate
module. It is a developers-community-driven l ibrary for the visualisation of data.

16

„ 10 c • o
O 5

20

15

>, 10

5

0

=> 100 o o
so

1,00

0.75

3 0.50
Q.

0.25

0.00

5 10 15

Value

o 1

X

60

0) 40

<
20

Yes Maybe Unsure Doubtful No April May June July August

Figure 3.2: Examples of different graphs. In the figure, we can see 7 graphs depicting
different ways of visualising data. Graph A is a bar graph showing differences between
values. Graph B is a histogram depicting data dis tr ibut ion. Graph C is a scatterplot w i th
dots representing the actual data. Graph D is a logistic regression w i t h dots representing
actual data. The line represents the model of regression. The grey area represents the con
fidence str ip. Graph E represents a box plot which shows the age of respondents of a given
question. The thick line i n the middle represents the median. The vert ical line represents
the stretch of data w i t h boxes representing the quartal , which divides the dis t r ibut ion of
the given answer. Graph F represents a heatmap, which depicts v is ib i l i ty in lakes during
different months of the year. Colour is adequate to the vis ib i l i ty of a given lake, creating a
sequence. Graph G shows the Densi ty plot of simulated temperatures by season. The data
in these graphs are not real. These graphs were used as an example i n the article Principles
of Effective D a t a Visual isa t ion by Stephen R . M i d w a y [18].

17

Chapter 4

Analysis of the Problem

K i w i is an aviat ion service-providing company. The company's main product is a service
(website) that allows its customers to search for and book flights from many different
companies a l l around the globe. It serves as a tool which compares many different options on
a market and offers solutions for passengers while managing their flights for them. To create
an offer for customers, it searches the web to find the most suitable flights for passengers.
These flights are then filtered, which can be done based on time, money, earliest departure
or number of transfers. These days, w i th the increasing demand for airline services, a flight
searching system is more needed than ever.

W h i l e managing the flights, K i w i company might encounter many problems that may
affect their customers' experience, pr imar i ly the problems related to air carriers and flights.

4.1 Categorizing of Flight Disruptions

K i w i company categorizes a l l flight disruptions into five different categories depending on
how they affect a given flight and how these flights can be parsed later i n the process of
addressing flight disruptions. These categories are:

• Delay—which includes delays of the estimated t ime of departure and estimated t ime
of arr ival of an aeroplane on its route.

• Schedule Change—which includes any k ind of change i n scheduled departure t ime or
scheduled arr ival t ime. These include earlier or later departures and arrivals of flights.

• F l ight Replacement—which includes changing of aircraft. This might also change a
flight number (a number which identifies a given flight wi th in one air traffic-providing
company). Changing one of the previously mentioned attributes, along wi th changing
the scheduled departure or arr ival time, is also classified as F l igh t Replacement.

• F l ight Sp l i t—which includes spl i t t ing flights into more flights. The route of the flight
split has to be somewhat similar to the route of the replaced flight. For example,
flights going from London to D u b a i can be split into two flights. London to V ienna
and Vienna to Duba i . These may include spl i t t ing flights into even more than 2
flights.

x h t t p s : //www.kiwi.com/

18

http://www.kiwi.com/

• F l ight Cancel la t ion—which includes any k ind of flight cancellation caused by any k ind
of problem (airport strikes, business-related problems, technical difficulties, weather
difficulties, safety difficulties, pol i t ica l difficulties, etc.).

Depending on the type of flight disruption, K i w i company creates an adequate response
to a given problem.

4.2 Processing of Flight Disruptions

Fl ight disruptions reported from different sources are usually parsed automatically. This
includes acquiring disruption from the source, val idat ing the data, report ing given flight dis
rupt ion and updat ing databases, alternatively creating a notification for manual processing
in case of failure. The whole process is also described i n Scheme 4.1.

A l l parsed data have to go through data val idat ion i n the first place. Disruptions
val idat ing uses a list of plug-and-play prepared validators that can be enabled or disabled
for a l l reported disruptions or just by disruptions from a specific source.

Here are the examples of some of the existing validations:

• Checking the reported flight disruption—this val idat ion checks whether flight data re
ported i n flight disruption are complete. For example, i f there is no missing departure
of the aeroplane. If there is one, this val idat ion w i l l not go through.

• Val idate Carr ier I A T A — I A T A Carr ier code is a 2-letter code given to a part icular
aviation company which operates under this code. It is assigned to a company as a
sort of ident i f icat ion 2 . T h i s val idat ion checks whether the reported Carr ier I A T A in
flight disruption is a number. V a l i d Carr ier I A T A should contain a letter.

• Val idate Carr ier Number—carrier number identifies flight wi th in one aviat ion com
pany. This val idat ion checks whether the reported Carr ier Number is a 1 to 4-digit
number.

• A r r i v a l or Departure Date and time—this val idat ion checks both departure and arrival
times. They have to be reported using the correct data class structure.

• Val idate P N R — t h i s val idat ion checks if P N R is not too short or i f it is missing from
reported flight disruption.

• Source A i r p o r t and Dest inat ion Ai rpo r t—th i s val idat ion checks both reported I A T A
codes of airports. They need to be 3 capi tal letters.

If data val idat ion is successful, then the flight disruption is forwarded to automatic
processing, which notifies the customer and takes action depending on the given disruption
and flight protection that the customer has had required. The customer is always notified
about flight disruptions which happen to his /her flights. In case of more significant changes
which may affect customers' flights, the customer may be automatical ly re-booked.

In case the automatic process fails i n some step of automatic validation, the flight
disruption is reported to the M a n u a l resolving queue, where they are supposed to be resolved
by people manual ly wi th a given air-traffic provider.

2 https://www. i a t a . o r g / e n / p u b l i c a t i o n s / d i r e c t o r i e s / c o d e - s e a r c h /

19

https://www
http://iata.org/en/publi

Fl ight disruptions can be reported data v i a different ways of data access. These sources
are:

• F l ight Information from emails—emails which are sent to the customer regarding any
k ind of trouble which was encountered during the operation of a given flight.

• F l ight Information from a company—flight status and booking status can usually be
checked on the website of a given flight provider.

• F l ight Information from th i rd party—flight information provided by air traffic map
ping websites.

• F l ight Information from airports—flight information provided by airports which track
flights start ing and arr iv ing at the given airport.

Rescheduling ^
and notifying

client of
reschedule

Cancell ing of
flight and

notifying client of
cancellation ,

Updating
Databases

Figure 4.1: Scheme of processing flight disruption Scheme shows the process of han
dl ing Fl ight Disruptions from sources of flight disruptions up to the point of notifying clients
and updat ing databases. Note that i n case of failures, the process is being handled manually
by people who need to resolve the issue. The desired path leads to automatic processing.

4.3 Internal Storage and Data Access

Information about flight disruptions is stored i n mult iple databases. Based on the data
access mentioned above.

4.3.1 E m a i l s Database

There is a pursuit to parse every email which is reported to the K i w i company automatically.
If this email has any k ind of information regarding flight disruption, then it should be
reported and automatical ly parsed. K i w i has a code segment dedicated to automatical ly
wi thdrawing cr i t ica l information from emails. T h i s information is:

• Departure Ai rpor t—the airport from which the given flight should depart, alterna
tively, the I A T A code of the given airport.

• A r r i v a l Ai rpor t—the airport to which the given flight should arrive, alternatively, the
I A T A code of the given airport.

20

• A r r i v a l date—date when the given flight arrives at A r r i v a l A i rpo r t .

• Departure date—date when given flight departs from Departure A i rpo r t .

• A r r i v a l t ime—time when given flight arrives at A r r i v a l A i r p o r t .

• Departure t ime—time when given flight departs from Departure A i rpo r t .

• Reservation Number—a six-characters long identifier, which identifies a given flight
reservation i n the flight provider's system.

• Carr ier Code—code of aeroplane carrier which identifies a given flight provider com
pany wi th in air traffic. The Carr ier Code and Carr ier Number should identify a given
plane wi th in the entire air traffic area on a part icular day.

• Carr ier Number—one to four-digit number which identifies a given flight wi th in one
company. The Carr ier Code and Carr ier Number should identify a given plane wi th in
the entire air traffic area on a part icular day.

The I A T A code of an airport or carrier is a group of letters and numbers identifying
a given airport or carrier wi th in air traffic. Carr ier I A T A codes are 2 symbols containing
at least one capi tal letter. It can contain numbers. A i rpo r t I A T A codes are 3 capital
letters. P N R is the Passenger Name Record. It identifies passengers' reservations wi th in
one system. There can be mult iple people listed under one P N R .

A l l this information, which was reported this way, is stored i n the Emai l s Database.
The database also stores information regarding the t ime of flight disruption reporting and
time of flight disruption parsing.

The database also stores information regarding email , which was parsed like sender
email address, receiver email address, or subject of email . Some companies send flight
disruption information in attachments, so we also need to save attachment data.

Lastly, the Emai l s Database stores data regarding reservations, which can identify given
bookings wi th in K i w i company or w i th in the air service providing company.

4.3.2 C o m p a n y P r o v i d e d D i s r u p t i o n Database

This database is for the purpose of marking flights w i th K i w i company partners. Not a l l
flight disruptions are accessed v ia E m a i l notifications. Some flight disruptions are accessed
through information given on flight provider A P I s . To access this information, we commu
nicate w i th our partners. We need to look at our providers' flight status A P I s automatically.
Th is information is similar to data extracted from the Emai l s Database.

A s every flight disruption should be notified v i a E m a i l , not every checking of Booking
can create a notification for the internal system about the flight disruption (email already
created notification). Th is way of accessing data is not sufficient. However, it may be good
practice to have data like these as a secondary check for flight disruption about cr i t ica l and
essential flights to the company.

This database does not need any further information regarding flight disruption. The
reported disruption itself is enough to identify the affected F l igh t . Other than disruption
itself, the database stores information regarding reservation and booking itself.

21

4.3.3 T h i r d P a r t y D i s r u p t i o n Database

There is a pursuit to get notified about as many flight disruptions from as many sources as
possible. Other than searching for data online on A i r traffic-providing sites or from E m a i l
notifications, we can get information about flights from th i rd parties who share information
about flights. We can get information about flights from:

• A i rpo r t websites—airports usually provide information about current flight statuses
and delays online.

• A i r traffic radars—some sites are focused on mapping the current state of flight which
are flying across the globe.

• Twitter—some companies notify their users about flight disruption on Twitter .

Th is database, s imilar to the Emai l s Database, extracts from given sources the arr ival date
and time, departure date and t ime, or igin airport, destination airport, and carrier and
carrier number.

4.3.4 M a n u a l l y R e s o l v e d D a t a b a s e

The previous three databases store data they find from different sources. Usually, data that
are parsed that way are later processed automatical ly to notify the passenger. However,
data parsing is not always successful, and some data and flight disruptions need to be
checked manually. These manual checks are performed by people. They have to go through
emails or online bookings and make notifications or make changes to reservations. In
order to avoid losing track of these changes, we store information about these changes in
the Manua l ly resolved database. Notif icat ion requiring flight disruption addressing can
be created automatical ly i f flight disruption does not go through validat ion i n automatic
processing.

4.3.5 R e s e r v a t i o n D a t a b a s e

This database stores information about flights, which should be up to date. Fl ights men
tioned i n this database are compared to reported flight disruptions. Th is determines the
action the system takes in order to address a given problem.

4.4 Shortcomings of the Current Process

In the K i w i company, there is a considerable pursuit of automatical ly parsing every flight
disruption that can be found online. D a t a are accessed through many sources. In case of
any flight disruption which may affect flights significantly, K i w i takes act ion to ensure the
smooth operation of flights.

However, i n some cases, automatic flight disrupt ion handling results i n failure. They
have to be resolved manual ly by people working w i t h their computers. In Figure 4.1,
I present the whole process of parsing flight disruptions. These people might encounter
trouble fetching actual flight data from the database and they might encounter trouble
looking for flight disruptions themselves. A s flight disruptions are stored i n 4 different
databases, they might have some trouble fetching data from databases as it requires some
technical expertise on how to search in a database. A n applicat ion which could ensure the

22

visualisation of data from these 3 databases, along wi th the database of M a n u a l Dis rupt ion
and data from the Reservation Database, could help them in processing of flight disruption
for customers. A l o n g wi th actual data themselves, statist ical evaluation from these fetched
data can help manage the purposes of the K i w i company. These data might help i n the
decision-making of strategy of evaluating flight disruption automatically. Furthermore, even
for people w i t h technical expertise, there is no unified way of visualising data from these 4
databases, and it is t ime-consuming to search for data from these sources.

To sum up, developers, people who manual ly book flights, managers, and team leaders
need an applicat ion to visualise data from databases. People who manual ly book flights
would use it only to search for specific flights and check the flight status. Developers,
managers, and team leaders would do the same, but they also need to use the applicat ion
to check aggregated data. For example, most used carrier aggregation provides business
value information. Also , data tendencies like low automatic parsing would be helpful for
developers. Developers also need to check whether parsed flight disruptions were made
before actual flight departure. Then, developers need to check the status of the flight
disruption sources and flight disruption types. A l l these functions could help developers,
managers, and team leaders investigate the problems connected to maintaining the proper
working of their code.

23

Chapter 5

Design of Web Application

Based on my analysis, I decided to create a web applicat ion that can access 4 disruption
databases and visualise data which were fetched. The applicat ion should be easy to use,
w i th a simple interface for searching reservations in databases. This appl icat ion should help
users who resolve flight disruption manual ly by providing actual information regarding flight
status. It w i l l make searching for flight status faster as people who resolve these issues do
not have to look for flight disruption from many different databases. Instead, they just
need to use the applicat ion and fi l l out the provided form. The applicat ion should output
every disruption from every source that it can get. Furthermore, the applicat ion should
perform statist ical analysis and data visualisation on fetched data. Th is process can serve
the purpose of managing strategies for future purchases or for future code refactoring.

5.1 Data Flow of Web Applicat ion

In the following sentences, I w i l l describe the ideal data flow and the intended functioning
of the applicat ion. For i l lustrat ion, I present Figure 5.1. F i r s t , the applicat ion user needs to
select out (on the frontend) which k ind of data he wants to fetch from a l l databases. Th is
w i l l be done by fill ing out the form inputs corresponding to filters (for example, one input
for carrier, one input for carrier number, etc.). After submit t ing the desired request to the
web applicat ion, the fronted w i l l create an A P I cal l to the web applicat ion backend. It w i l l
have to check the input ted data and fetch data from databases. The applicat ion backend
needs to fetch data from 4 different databases. These databases are not accessible directly,
but the applicat ion backend needs to connect to them through their predefined backend.
Each database needs to have a separate cal l to wi thdraw data from it . These data are then
fetched back to the web applicat ion backend. In the appl icat ion backend comes raw data
parsing. It w i l l create the J S O N dict ionary needed for raw data visualisation. A l so , the
web applicat ion backend needs to create statist ical analysis on the provided data. For each
graph, there needs to be a correct J S O N , which w i l l be displayed. Stat is t ical analysis for
each type of graph is as follows:

• P ie Graphs—as this graph is supposed to depict the composit ion, as mentioned in
Section 3.1, we need to aggregate flights based on their wanted properties. For each
type of graph, it is:

— Automat ic vs Manual—this aggregation defines the way of processing flight dis
ruption. It can be either manual or automatic. Implementation-wise, this means
going through a l l fetched data and counting these 2 outputs.

24

— Types of disruption—one of five disruptions mentioned above i n 4.1 plus one at
tr ibute none, which means the disruption was not created. Implementation-wise,
this means going through a l l fetched data and counting how many properties be
long to each category.

• B a r Graphs—one bar graph is supposed to depict the most frequent carriers which
organised the flights mentioned i n fetched data. The other bar graph depicts the time
between the parsing of flight disruption and the actual flight t ime.

— Implementing top carrier graph means going through a l l fetched data and count
ing each new carrier.

— Implementing t ime between the parsing of flight disruption and actual flight time
means d iv id ing the timeline into positive and negative values. Then , divide the
timeline into defined categories, which w i l l represent a t ime of parsing prior to or
past the actual flight departure (for example, 5 hours prior to the flight, -2 hours
after the flight, etc.). Then, manually go through a l l fetched data, categorise
them into these categories, and define the success rate of parsing.

• L ine Char t—i t is supposed to depict the success rate of automatic parsing over a time
period. Implementing this means defining several t ime periods, which w i l l be depicted
on the graph and calculate the success rate for each of these periods (calculating how
many flights were parsed out of a l l flights in that t ime period). Then, put a l l the
columns together, which w i l l create the graph itself.

Dur ing filtering, I need to take into account that the same disruption might be reported
from different sources. A s these data are redundant and can create misleading graphs, I
need to filter them out. Then, after a l l these calculations, we create a J S O N file w i th data.
The data are sent to the frontend, where they are visualised i n graphs. In Figure 5.2, I
present a mock-up of the application.

f
Emails Database

r
3rd Party Database

J

t '•\
Company provided

Database
\ J

\

Manually resolved
Database

J

Kiwi Company Databases
Backend Web Application Backend

API / JSON .
- 5 > Web Application Frontend

Figure 5.1: Scheme of application data flow. Scheme shows data flow among elements
which w i l l compose the web applicat ion. It is needed to communicate w i th the K i w i com
pany backend, which w i l l fetch data from each database. F i l t e r ing and data visualisation
are made later i n the process.

Out of the four parts which are mentioned in Figure 5.1, there are already defined
databases and the K i w i company database backend, which I do not need to implement. M y
implementation is composed of the web applicat ion backend and frontend. The backend
needs to communicate w i th the K i w i company backend, which needs to create A P I calls for
databases to wi thdraw the needed data. Then , the data need to be filtered and sent to the
frontend, which needs to be designed to update information upon receiving them.

25

A s for my backend A P I calls, I need to create the ma in A P I cal l , which w i l l fetch a l l
data that w i l l be visualised on the frontend. This w i l l be based on filter values provided
from the frontend. However, these data need to be input ted based on convention. For
example, input t ing the date and t ime might be cr i t ical . I suggest input t ing the date and
t ime i n the format Y Y Y Y - M M - D D - H H - M M . These data need to be checked on the backend
and provide answers i n case of wrongly submit ted data. Other than that, I should create
pagination for the data table, as sending a l l information to the frontend might overload
the applicat ion. I need to send an adequate amount of data to the frontend. This means
creating an A P I to get to the next and previous page. Other than that, I should implement
a detailed view of a flight disruption as it may be better for visualisation than put t ing a l l
data in the data table. The detailed view should be accessible directly from the table.

This system should be expandable easily. For example, creating a new graph should
be done by s imply wr i t ing a new H T M L component on the frontend side. O n the backend
side, it means fetching one more set of statist ically analysed data, which w i l l be displayed.
Another possible expansion is adding a new filter to the submit form at the top of the web
page, see Figure 5.2. This filter w i l l be another value that needs to be checked and another
value that needs to be sent to the database.

5.2 Mock-up of Web Applicat ion

For the mock-up, I created the design i n Figure 5.2. The web page should be composed
of filters, which can be seen at the top of the page. The user should be able to filter out
data based on different attributes of flight disruption (for example, carrier, source of flight,
parser which executed the parsing, etc. See the mentioned Figure 5.2.). U p o n entering
data, the frontend w i l l make a cal l to the backend, which w i l l then fetch the given data,
filter them and send them to the frontend as described in the previous Section 5.1. Then ,
the frontend w i l l visualise fetched data along w i t h mult iple graphs created from fetched
data. Ment ioned graphs are:

• A l l data table—this a l l data fetched and visualised as it is needed to see the actual data
for people working wi th manual processing to make decisions based upon these fetched
data. Also , one of the main functions of this applicat ion is to visualise databases. Th is
table should visualise a l l data fetched from the database. In case a huge amount of
data is fetched, it needs to be paginated. A s depicting a l l data might not be the best
solution, the table should have a but ton which w i l l pop up a detailed view of flight
disruption.

• Au tomat ic vs manual—this graph shows the composit ion of automatic versus manual
processing of flight disruption. I chose the pie chart as it is according to Section 3.1 on
visualising data—it is good practice to show the composit ion wi th a pie chart. Th is
chart should show at what state automatic processing is and the overall performance
of manual vs computer processes. Despite Stephen Few mentioning that people do
not have the abi l i ty to compare angles to each other [11], I prefer research mentioned
in Section 3.1. P ie graphs create an intuit ive understanding of the composit ion of
given data. Th is also goes for the next pie graph.

• Types of disruption—this graph should depict one of five flight disruption types, which
are mentioned i n Section 4.3.1 of emails database. S imi lar ly to the previous graph, I
chose the pie chart as it is good practice to show the composit ion wi th a pie chart.

26

This graph can help determine the impact of the world around us on the performance
of our code. For example, i n case of mult iple flight cancellations from one airport, we
can determine troubled airports which have a high possibil i ty of cancelling flights in
the future.

• Top carrier—this graph shows the aggregation of fetched carriers. It creates the
bar plot, as i n the previous Section 3.1 I described that it is good practice to show
comparison wi th a bar graph. It shows mult iple instances of a key measure [11]. This
graph should determine which carrier is most used and has the most value for the
company and the biggest business impact.

• Success rate—this graph depicts success rate over t ime. I used a line chart as it
highlights long-term trends and creates comparison. A line chart, as the pattern
formed by one or more lines in a line graph, can represent a great deal of information
as a single chunk [11]. Th is chart should show the performance of disruptions through
time. It serves as a review for the development team to see how they are doing
compared to the past.

• T i m e between flights' departure and parsed time—this graph shows the difference
between the t ime of actual flight and t ime of parsing on our side. If this graph goes to
negative values, it w i l l suggest that the processing t ime of K i w i company is too late
or in advance. I choose the bar graph as it is decent for comparison, as mentioned in
Section 3.1, and shows mult iple instances of a cr i t ical measure.

27

All data

Success rate

BID Source Dest. PNR Arrival Departure Carrier. Carrier N

Time between flights
time and parsed time

Figure 5.2: M o c k - u p of web application. Figure shows a mock-up of a web applicat ion
wi th a l l its components. There is a filters section at the top, and beneath, there is a table
of a l l fetched data. O n the sides, we can see graphs that depict the statist ical analysis of
fetched data and its visualisation.

28

Chapter 6

Implementation of Web
Application

The implementat ion chapter is d ivided into two sections. The first section describes which
technologies were used in the process of wr i t ing this work and information regarding them.
The second section describes the overall architecture of the system, algorithms, and how I
handled data parsing and the overall connectivity of the software architecture components.

6.1 Used Technologies

• For creating a database, I used P o s t g r e S Q L 1 as it is also used i n K i w i company, and
I wanted to simulate a real environment as much as possible.

• For both applicat ion backend and Kiwi-backend, I used P y t h o n . A s a K i w i company
works i n a changing environment, I wanted an agile programming language that can
adapt quickly. It also provides many libraries for working wi th data, stat ist ical anal
ysis and databases. I used the latest stable version 3.11, as it is optimized, it does
not contain bugs and most of the libraries are made for newer versions.

• For connecting to database, I used S Q L A l c h e m y 2 . S Q L A l c h e m y is the P y t h o n S Q L
toolki t . It contains functions that connect effectively to databases.

• For parsing connections on server sides, I used Fast A P I 3 . It is a modern, fast web
framework that creates A P I in P y t h o n languages 3.8 or newer. It is fast to code using
P y t h o n decorators.

• For working wi th data, I used Pandas l i b r a r y 1 . Pars ing large data, it creates an object
DataFrame wi th many fast methods for aggregating, parsing, changing of rows and
columns wi th in the table.

x h t t p s : //www.postgresql.org/
2 h t t p s : //www.sqlalchemy.org/
3 h t t p s : / / f a s t a p i . t i a n g o l o . c o m /
4 h t t p s : //pandas .pydata. org/

29

http://www.postgresql.org/
http://www.sqlalchemy.org/
http://tiangolo.com/

• For caching data on applicat ion backend, I used P y t h o n Cache Tools l i b r a r y ' . It uses a
simple decorator, which puts data into temporary memory and can help you store data
for a temporary time. T h i s way, it creates a faster response, ensuring faster project
speed. CacheTools provides mult iple caching techniques which determine how are
data temporary stored. It is based on the logic of queues—First i n F i rs t out, Least
Frequently Used element, Least Recently Used element, Most Recently Used element,
R a n d o m Replacement, T ime to L ive or T i m e Aware Least Recently Used element.
This project uses the deletion of the least recently used element.

• For frontend implementation, I used Reac t 6 , which allowed me to create the user
interface and use libraries for pre-defined components. I implemented frontend using
Next.js framework' . It is only a dev-dependency i n which I implemented the whole
frontend, and I d id not use server-side rendering.

• For more friendly styling, I used Ta i lwind , which helps you to define the styles of
your H T M L elements. S imply by defining the class names of elements that compose
actual Cascade Style Sheet attributes.

• For easier deployment, compat ibi l i ty and transportabil i ty of given app, I used Docker 9

and for managing the created Docker containers between each other I used Docker-
compose 1 0 .

• For versioning and source code managing, I used G i t L a b . The whole project can be
accessed from l i n k 1 1 .

• For documenting and creating a thesis, I used Over leaf 1 2 .

6.2 Architecture

The architecture used i n this thesis follows the Scheme of applicat ion mentioned in F i g
ure 5.1, about the Design of Web App l i ca t ion . The main goal of pract ical work was to create
the application's frontend and backend, which would communicate together. In deployment,
the applicat ion backend should communicate w i t h the K i w i backend for databases. Then ,
the Kiwi-backend should communicate w i th databases. However, due to legal reasons and
due to the scope of this work, I am not provided wi th Kiwi - s ide services (Kiwi-backend and
databases). Therefore, I simulate Kiwi-backend and databases themselves.

A s for components of the architecture

• App l i ca t ion frontend is a web which enables users to search, view and filter data
provided by the applicat ion backend.

5 h t t p s : //cachet o o l s . r e a d t h e d o c s . i o / e n / l a t e s t /
6 h t t p s : //react.dev/
7 h t t p s : //next j s.org/
8 h t t p s : / / t a i l w i n d c s s . c o m /
9 h t t p s : / / d o c s . d o c k e r , com/engine/reference/commandline/cl i/

1 0 h t t p s : //docs.docker.com/compose/
n h t t p s : / / g i t l a b . c o m / A p e t o r S k o l / d i s r u p t i o n - v i e w e r
1 2 h t t p s : //www.overleaf .com/

30

http://ools.readthedocs.io/en/latest/
https://tailwindcss.com/
https://docs.docker
http://www.overleaf

• App l i ca t ion backend receives requests from applicat ion frontend. U p o n receiving a
request, it creates a request for the Kiwi -backend asking for data. U p o n applicat ion,
the backend receives data from the K i w i backend. It parses the data and, gives them
new attributes, and then creates statist ical analysis for graphs on the frontend. A l l
this information is sent back.

• Kiwi-backend listens for communicat ion from the applicat ion backend. U p o n receiving
a request from the applicat ion backend, it creates a query, which is then sent to the
database asking for data. U p o n receiving data from the database, it sends fetched
data back to the applicat ion backend.

• Database stores a l l data regarding flight disruptions and metadata regarding flight dis
ruptions. U p o n receiving the query from the Kiwi-backend, it responds wi th filtered-
out data. In this work, I got data only from one database. However, i n deployment,
there w i l l be 4 databases accessed by one Kiwi-backend.

6.2.1 D a t a b a s e

The database stores a l l the data regarding flight disruptions that have happened. For the
development of this work, the K i w i company provided me wi th comma-separated value
sheets that represent given information regarding flight disruptions. In total , I received
over 9 months of mock-up data from databases. Comma-separated values are stored i n two
files. One file contains information regarding a l l flight disruptions. Th is information is:

• ID of given disruption which identifies disruption wi th in the internal system.

• Source of parsing of given flight disruption. In this case, it can be either emails or
A P I sources.

• Type of flight disruption, which means whether the given flight disruption is a schedule
change or flight replacement.

• T ime of creation of F l igh t Disrupt ion .

• Status of flight disruption, which decides whether flight disruption was processed,
failed, or skipped i n case of unwanted emails.

• Whether processing was automatic or manual.

• Reservation code which identifies given flight w i th flight provider company or website.

• Carrier , carrier number, t ime and place of both destination and origin airports. A s
flight replacement disruptions might change the flight route significantly, this includes
information before and after a change (original segment and revised segment).

• Lastly, the mentioned file contains a foreign key which identifies a given flight disrup
t ion wi th in other comma-separated values file provided by K i w i company.

The second comma-separated values file contains metadata regarding emails, which tr ig
gered the whole process of parsing emails into flight disruption. They have the pr imary key,
which is mentioned in one flight disruption from the previous file, and connect the flight
disruption wi th the mentioned email metadata (every email has a flight disruption, but not
every flight disrupt ion has an email) . Other than that, the file contains:

31

• E m a i l address of the sender of the given email .

• E m a i l address of the recipient of the given email .

• Subject of given email .

A s in reality, the provided data are not stored in comma-separated value sheets, but rather
in databases, I created two tables and filled them w i t h provided data. A s mentioned in
Section Used technologies 6.1, the whole database is made using Pos tgreSQL. It stores a l l
data and awaits queries using Structured Query Language (S Q L) , to which it responds wi th
data.

6.2.2 K i w i C o m p a n y B a c k e n d for Databases

For the K i w i Company Databases Backend, I created a server. It is a service which parses
H T T P G E T connections from the applicat ion backend. Us ing F a s t A P I , it filters out given
flight disruptions based on provided requests. It gets a query that is checked using regular
expressions. The query should contain each filter that exists exactly one t ime. However,
there may not be any value assigned to it.

The regular expression also checks for the keyword " or " which is used in filtering. It
extends one filter to mult iple options. For example, a request can define that it requires a
flight disruptions that involves one of several airports or carriers. W h i l e searching carriers
w i th code "XB" and "CD", instead of wr i t ing "XB" and "CD" to the search each time, we
can write "XB or CD", which fetches a l l data that have carrier either "XB" or "CD".

This way, the regular expression returns a l l filters that I need i n order to filter data from
the database. The service creates a query for the database. Fi rs t ly , the backend selects a l l
attributes except pr imary and foreign keys mentioned i n the previous part 6.2.1. Then, it
joins both tables that are provided on the key. Last ly, i terating through a l l provided filters,
it defines values i n given columns of data. In case of no filters are selected, it s imply returns
al l data. U p o n creating a query, it is sent to the database. The database responds wi th
filtered-out data. Fetched data are parsed using the P y t h o n Pandas l ibrary and sent to the
application backend. This is the whole part of s imulat ing K i w i side services. The database
backend should just return a l l non-aggregated data regarding flight disruptions for further
processing.

6.2.3 A p p l i c a t i o n B a c k e n d

The applicat ion backend awaits requests from the applicat ion frontend. U p o n receiving a
request, it is processed, data are fetched, and a statist ical analysis of given data is created,
which is then sent to the frontend for visualisation. The applicat ion backend can process
2 different requests. F i r s t is the overall data processing, which includes statist ical analysis
using the Pandas library. The second request is for pagination purposes. It is not effective
to send a l l fetched data to the frontend for visualisation as they may contain over hundreds
of thousands of data lines for visualisation. Th is way, the frontend may freeze or shut down.
Therefore, I implemented pagination, which sends a m a x i m u m of 50 lines of data to the
frontend at a t ime.

32

Creat ing New Search

A s for creating a new search, firstly, the applicat ion backend checks whether the query which
was sent is val id and contains a l l required filters. It is performed using regular expression.
Similarly, as in the previous Subsection 6.2.2, it takes into account the possibil i ty that
one filter might ask for mult iple values using the keyword " or ". In case a query is not
val id, the exception is thrown. If it is val id, then the same request is sent to the K i w i
backend, demanding the data. After the resulting data are fetched, they are stored in
Pandas DataFrames for further processing. The extra at tr ibute is attached to data for
further processing (the mentioned attr ibute is parsing t ime compared to departure time,
which determines whether parsing of flight disruption was on t ime or not. Th is attribute
is not put into the database for opt imising as the applicat ion backend and web applicat ion
should be the same i n K i w i product ion as they are i n this thesis, and changing the database
would be inefficient). Then , filtering on the backend side is made based on the provided
attribute.

The statistical analysis begins after we filter out a l l the data we need. Us ing Pandas
methods, I aggregate and create DataFrame to determine the analysis of flight disruption
types. Us ing the same method, I get similar outputs while aggregating the Source of flight
disruptions and Revised Segment Carriers of flight disruptions. In the case of Revised
Segment Carriers of flight disruptions, I can get over 30 results of carriers which, after
visualisation, create a chart which is not good visually. Therefore, in case there are more
than 30 results, the last n-30 results are collected into one category, "others" , and visualised
this way. The mentioned graphs are displayed i n Figure 6.1.

Another graph for visualisation is the success rate graph of processing flight disruptions
automatical ly throughout the selected t ime. In this case, flight disruptions can be cate
gorised as parsed, failed (due to error or non-existing code) or skipped (in case of unwanted
email). A s it is not possible to interpret continuous t ime on a finite screen, I decided to
create a t ime window i n which we calculate successfully parsed flight disruptions, skipped
flight disruptions and failed flight disruptions overall flight disruptions. It is performed
by selecting max ima l and min ima l parsing t ime out of a l l flight disruptions. Th is creates
a period of t ime, which is then divided into 30 t ime frames. For each t ime frame, it is
manually counted how many flight disruptions belong there. After processing, this creates
a list of values that define the success rate graph. Figure 6.3 depicts the mentioned graph
in the upper part.

The last graph that I implemented is composed of an added attr ibute that defines how
much K i w i parses flight disruptions i n advance. It is s imply a list of predefined values
and counts of attributes belonging to them. For example, the list contains value 8h. 8h
is a category of flights that happened wi th in a t ime window of 8 hours prior to the flight
departure. O n the graph, 8h has a number assigned to it , which defines how many flights
happened a m a x i m u m of 8 hours prior to flight departure. Figure 6.3 depicts the mentioned
graph i n the bo t tom part. After a l l these statistical analyses are made, the results, along
wi th the first 50 rows of data, are sent to the appl icat ion frontend for visualisation. After
statist ical analysis is performed, the raw data, along w i t h graph data, are put into one
dictionary. Th is dict ionary is then sent to the frontend for visualisation.

33

Pagination

A s for requests responsible for pagination, it follows a similar process of sending data to
the appl icat ion frontend. A s mentioned before, it checks for correct queries using a regular
expression, fetches data from the K i w i backend, adds addi t ional value to the Dataframe
and sorts by i t . However, i n this case, it only responds wi th 50 rows of data. Depending on
the page number, the 50 rows which are sent back w i l l vary. The visualisation of the data
table can be seen i n Figure 6.2.

I implemented caching as creating statist ical analysis, fetching data from the backend,
and adding extra attributes to Pandas Dataframe may take a lot of t ime. E a c h t ime a
request is made, Cache Tools automatical ly saves data to temporary memory, which is used
as a response. This way, i n the case of s imilar or identical calls, cached data w i l l make data
fetching faster.

6.2.4 A p p l i c a t i o n F r o n t e n d

The whole frontend is composed out of 7 visual parts. O n top of the page, there is a form for
filtering. Below, there is a data table showing a l l fetched data, or depending on the tab that
you choose, there are parts composed of graphs that visualise statist ically analysed data.
Other than visual parts, it contains two main React hooks that define the page's behaviour.
There is a React hook responsible for data visualisation and a React hook responsible for
the creation of a filter, which determines the data that w i l l have been fetched. The whole
visual look of the applicat ion can be seen i n Figure 6.2, Figure 6.3, and Figure 6.1.

The first v isual component—form—is composed of inputs for each value mentioned in
database Subsection 6.2.1. It has 2 possible views, either extended for a full search of
every value or reduced, which is more visual ly pleasing and it does not take a lot of space.
There are also inputs labelled "from" and "to", which define the t ime window in which
we want to select flight disruptions. Some inputs take into account that there can be
mult iple inputs concatenated wi th the keyword " or ". W h e n submit t ing, the frontend
checks whether input ted data was wri t ten correctly. If so, it updates the filter React hook,
which states which data w i l l have been fetched in the future. After that, the asynchronous
function creates a request that asks the applicat ion backend for data for visualisation. U p o n
receiving, it updates the React hook responsible for the visualisation of data. I used React
hook as they trigger on-page re-rendering of affected components, resulting in updat ing
graphs.

The second part of the website is the data table. It visualises raw data that was fetched
from the applicat ion backend. The data table has an implemented but ton for each header
column, which triggers sorting based on specific columns. The data table also provides a
dropdown menu from which the user can define which columns he wants to see. Other than
that, it contains a detailed view. De ta i l view is a but ton embedded into each row. U p o n
cl icking it , a l l data are visualised into a more comprehendible form, and also, i n case of email
flight disruption, metadata such as sender of email , receiver of email and subject are shown.
Lastly, the data table has pagination buil t i n . A s previously mentioned, visualising a l l data
could break down the frontend. The data table has a pagination to visualise only part of
the data. U p o n demanding more data, the request is made for the appl icat ion backend,
demanding other rows of data. U p o n receiving data, the data React hook is updated (with
the filter React hook staying the same).

3 4

The th i rd part of the website is a l l the graphs, which visualise the data. Especial ly there
are 2 pie graphs for visualising disruption type and parsing source. One bar graph visualises
the top carriers used. In the case of more than 30 carriers, the last n-30 carriers are united
into one column. Then , a line chart visualises parsed compared to skipped compared to
failed data over t ime, and lastly, there is a bar graph which visualises the t ime between the
parsing of flight disruption and departure of the flight. It divides a l l flights into categories
based on their parsing and departure t ime difference.

A l l these graphs are interactive. A s for pie graphs, cl icking on certain parts updates
the filter React hook, and upon receiving data, using the data React hook, it updates the
whole page using an updated filter w i t h certain pie graph values. A s for other graphs, the
user can select the interval from which he/she wants to select data. The first click brings
graphs to the state of selection. M o v i n g the cursor w i l l visualise which columns should be
fetched. U p o n cl icking a second time, s imilar ly as for pie graphs, the filter React hook is
updated and shown data are refreshed using the React hook.

Disruption type[s]

Figure 6.1: Pie graphs and one bar graph of the application frontend. Figure shows
2 pie graphs and one horizontal bar graph. E a c h of these graphs was made by aggregation of
specific attributes of flight disruptions from K i w i company. Ei ther Dis rup t ion type, Parsing
source, or Revised Segment Carr ier . Th is is part of the second tab out of two tabs on the
web frontend.

35

D Reservation N. Source Orig. Carrier Orig. Carrier N. Orig. Source Apt. Orig. Dest. Apt. Orig. Departure time Orig. Arrival time Time pre-flight

1231 PNR emails W4 1234 LTN TYO 2024-12-30 14:3 2024-12-3C 14:3 8h

Type Processing New Carrier New Carrier N. New Source Apt. New Dest. Apt. New Departure time New Arrival time From To

schedu led automatic: W4 1234 LTN TYO 2024-12-3014:2 2024-10-301 2024-10-30 2024-10-30

Show reduced filter =.-

Data Table H Graphs and analysis Iii

All data fe tched

46836 row(s) fetched. Showing data number 1 - 50. Coljmns v

Created Ti ID U PNR U Source t l Type U Processed t l Original Original
Carrier Carrier N.

B J B J U m B 2023-09-01
• V N H S H 37869 J820KO emais scheduler hange ajtomatically XW 5555

OJ.1z-3/.b88bbd

B S B B B B 2023-C9-C1

KHH^H 00-42-15 767954 3 7 3 6 SG2N03 emais schedule_change ajtonatically KW 9366

• s S S S H H 2023-09-01

BS9!^^I 00'42"25 469030 1 1 8 2 S PVZF7G emai s scheduler hange ajtonatically XW 3742

MggEfflM 2023-09-01

HlffiH^^I niTi9'?R W\AAI 13956 YSIV5I emai s scnedule_change ajtonatically XW 2953 Figure 6.2: D a t a table and extended filter of the application frontend. Figure
shows how was the data table visualised on the frontend side. It has key attributes which
correspond to the values saved i n the database. O n top of the Figure, we can see the
extended applicat ion form made for filtering of wanted values. This is part of the first tab
out of two tabs on the web frontend.

Success rate of automatic vs fai led vs sk ipped parsing over time

too-

90

•J 40 - auiDmafi-
M 30 - ' • < .

20

Time between parsing and flight departure

u -illLi . I
less -32d -280 -24d -20d -16d -120 -3d -5c -4(1 -30 -26 -10 -IGll -8h -4h -2h -1h -30n Om 30m 1h 2h 4h 8h 1Gh 1d 20 3d 40 5ll 80 120 1GC 20a 24d 28d 326 more

Figure 6.3: Horizontal graphs of the web frontend. Figure shows the visualisat ion of
horizontal graphs. The first graph depicts the success rate over t ime. The second graph
shows categories and the number of flight disruptions belonging to them. Each category
represents how i n advance the flight was parsed on the K i w i side. This is part of the second
tab out of two tabs on the web frontend.

36

Chapter 7

Testing of Application

Testing the whole applicat ion was performed i n mult iple steps. Fi rs t ly , dur ing implemen
tat ion. Every code change was followed by testing the whole applicat ion. U p o n creating
the whole applicat ion, extensive testing of the applicat ion and tuning were performed in
order to create a better applicat ion. Secondly, after the application's functionality was
achieved, testing was conducted wi th the help of other people or by using testing software.
The a im was to find the correct solution that would be suitable for the K i w i company. In
the following sections, I describe the whole process of creating the tests and performing the
analysis.

7.1 Uni t Testing

A s a part of the testing, I chose to perform unit tests. These tests should check whether
the given parts of services work correctly. Seeing ind iv idua l parts of the system perform
correctly or incorrectly could pinpoint the weaknesses of a given code. The tests are per
formed on my applicat ion backend, and also, as an assurance that the app works correctly,
I performed the tests on my K i w i backend simulator. A s both of these services are im
plemented in Py thon , I tested both of them using P y t e s t 1 . U p o n completion of the tests,
Pytest creates a user-friendly output w i th statistics of the tests. Therefore, I choose this
software for testing. I performed testing on parsing parts of the applicat ion backend and
K i w i backend simulator.

The applicat ion backend parser checks the H T T P G E T query that was received from
the frontend. I simulated mult iple queries that could be fetched from the frontend. For
each filter, there was a query which checked whether the given filter refused incorrect value,
whether the given filter accepted a correct value, and lastly, whether the given filter (if
possible) accepted mult iple values using the keyword " or ". Th is feature was described
in Subsection 6.2.2. A s some filters accept the same values, for example, the filter for orig
inal segment departure t ime and the filter for revised segment departure t ime both check
for t ime, I t r ied to choose different values for each failed and parsed test. Then , the tests
run through a more complex query, which uses mult iple filters. Lastly, the tests check
whether the output sent to the frontend is correct. Stat is t ical analysis is performed on 50
flight disruptions, which the K i w i company provided me. These tests include checking the
dictionary, which is sent to the frontend for visualisation of raw data, checking statistical
analysis of disruption types graph (aggregation by flight disruption type), source type graph

x h t t p s : //docs .pytest .org/en/stable/index.html

37

(aggregation by flight disruption source), bar chart of carriers (aggregation by flight dis
ruptions revised segment carriers), line chart for success rate (dividing of flight disruptions
into t ime segments and calculating their parsing success rate), bar chart for times before
flight (categorising flight disruptions into pre-set categories of pre-departure times). The
whole applicat ion backend was described i n Subsection 6.2.3.

The K i w i backend parser works very s imilar ly to the applicat ion backend parser. There
fore, the tests performed for the K i w i backend parser are similar. Fi rs t ly , the tests check
whether the received H T T P G E T request is correct. Similar ly, as for the previous part, I
check whether the parser can recognize incorrect values, correct values, and correct multiple
values using the " or " keyword. However, after the filtering of parameters comes different
stages of testing. A s the next step, the K i w i backend parser creates an S Q L query, which is
then sent to the database. Therefore, in the tests which I performed, I checked whether the
given queries were correct. Fi rs t ly , I t r ied to determine whether the S Q L query was correct
for no filters provided, and then I checked whether it could parse a single value from each
filter. Lastly, I checked whether the parser could create a query for mult iple filters that
were provided.

7.2 End-to-end Testing

One way to test the whole appl icat ion is by using the automatic existing testing software.
The purpose of the tests was to create expected output based on input without any knowl
edge of architecture wi th in the applicat ion. For this purpose, I choose Cypress 2 for testing
the applicat ion. In my case, it is the end-to-end testing of the whole applicat ion. Cypress
helps testing by navigating through H T M L tags and performing code-defined actions. This
way, people can automatical ly perform fast tests upon changing the code of their applica
t ion. It is suitable for debugging as it takes real-time snapshots of the applications while
real-time commands are executed. O n top of that, Cypress can perform tests on multiple
platforms, expanding test possibilities. Also , for further development, which could happen
in the future, I choose automatic tests as they may be integrated into G i t Continuous in
tegration and continuous deli very/deployment. This means that s imply by commit t ing a
change, a suite of automatic tests w i l l run through your new commit , checking its function
ality and setting it up for deployment. W h i l e implementing the tests, I followed 3 main
steps:

• Set up the applicat ion state.

• Take an action which w i l l create an environment wi th in which I expect to have results.

• Check the resulting applicat ion state and make needed assertions.

The tests which I implemented check the basic and expected functionality of the applicat ion.
The tests are divided into 3 ma in categories, start ing from simpler tests to more complex
testing. The first set of tests checks the form as an in i t ia l iz ing element wi th in the page. It
checks for the existence of every filter that there is, the submit but ton, and the existence of
the switch to the advanced filter. The tests do the same for advanced filter. U p o n correct
input t ing of values, the code also tries to input incorrect values to H T M L inputs to see
whether the applicat ion w i l l respond or not.

The second suit of test tries to use the basic functionality of a web page. E a c h test
enters a single value into one input and checks the answer for fetched data. It is done using
an advanced filter and also using the reduced filter. After this search, the tests t ry to fetch

2 h t t p s : //www.cypress.io/ 38

http://www.cypress.io/

al l data and check whether fetched data wi thdrawn graphs have good values. The last part
of this test suit is the test for pagination. The tests t ry to move through the pages of data
back and forth. Each t ime it visits a certain page, the test expects there to be the same
value.

The th i rd suit of tests checks for graphs and their interactivity. Each graph wi th in the
page should be interactive. Therefore, the tests t ry selecting the data from the graphs.
Firs t ly , the tests t ry to select only one instance from the graph (one table). After that,
the graphs are tested by selecting mult iple instances. A s a final test, the code tries to find
certain data only wi th the use of graphs. Then , it tries to find certain data by using a form
and tests together.

7.3 Testing in K i w i Company

A s a part of testing, I conducted in-person testing w i t h the K i w i company employees who
w i l l use and perform tasks wi th the whole appl icat ion and to whom I w i l l ins ta l l the whole
software. In total , there were 8 people, of whom 5 were developers (2 senior software-
developers, 2 medior software-developers, 1 junior software-developer), one team leader,
team manager and a quali ty assurance supporter. The team was provided w i t h a project
and asked to instal l it and first test it independently. After that, I asked them to test the
tasks that I had given them. The tasks which I gave them are as follows:

• F i l t e r out specific Fl ight Dis rupt ion based on the provided I D and based on the pro
vided reservation number. T ry to inspect the properties of F l igh t Dis rup t ion whether
you can read them.

• T h e n followed filtering mult iple flight disruptions based on different attributes. Each
user was given a specific t ime window or set of destination and origin airports or a
set of carrier and carrier numbers. Try to inspect the data fetched and the graphs
shown.

• T r y to filter by each graph. F i rs t , t ry filtering by mult iple values, then t ry to filter
out only a single value. T ry combining form filter inputs w i t h the interactivi ty of
graphs.

Overal l , the functionality of the project was achieved, and the work served its purpose.
The users could navigate through the pages, fetch data from the databases, filter the ones
that they need, they could read graphs, and they found graph interact ivi ty helpful. The
requirements from Section 4.4, which the employees needed, were met. The employees could
search for the part icular reservations. The developers were satisfied wi th the graphs that
would help them mainta in their code. Tha t includes the disruption type graph, parsing
source graph, success rate graph, and graph comparing parsing t ime and departure t ime of
flight disruption. The team leader and manager were pleased wi th the results, which may
help them while creating business decisions. Tha t includes previously mentioned graphs
wi th graphs depicting the most used carriers. However, there were many suggestions re
garding the design of the work, styling and overall web look. The whole conclusion of their
report is as follows:

• Docker and start ing of the whole application—one junior software developer and
quality assurance supporter had trouble starting up the project. They tr ied to start
up the project using docker-compose up command. After further investigation, we

39

together found out that they had services running on allocated ports, which blocked
them from turning on certain services of the web applicat ion. After shutting down
services which had allocated the ports, their project started up.

• Layout and visuals—the whole visual aspect of the page was not pleasing to them.
They would rather find data and graphs separately. Also , the whole page was rendered
on the whole screen. They would prefer an empty margin from the left and right side
of the screen. They like that the filter has advanced and reduced selection as a part
of the layout. O n top of that, they found it useful that it sticks to the top of the
screen. Th is way, the user does not have to scroll to the top of the screen to change
the filter values. O n the other side, the names of filters could be shorter. People w i l l
get used to them, so it would be better i f they d id not take up so much space.

• D a t a table—one of the main functionalities of the project was focusing on data display.
The first action that testers took was looking at the data table. They disliked that
data table cells were far apart, creating very wide objects, and there were too many
white spaces i n the data table. W i d e objects resulted i n the creation of a horizontal
scroll bar, which was, i n their opinion, not user-friendly. A l so , an issue occurred when
one user tr ied to click the Next Page but ton rapidly. A s there were many requests
for the backend, eventually, it froze and crashed the whole applicat ion.

• De ta i l view—the data table provided a special view to see the whole flight disruption.
U p o n entering, they found it k ind of disorganized and not eye-pleasing. O n top of that,
the detai l view but ton was not visual ly s tr iking, so they could not tel l that the given
feature existed. M a n y visuals were unnecessary for a detailed view and could have
been better styled using icons. However, they really l iked the visual part of styling
the previous flight compared to the new flight. They said that the previous flight
could be crossed out as a l i t t le improvement to the detail view. A s their suggestion,
having rather short data table rows and a more detailed and styled De ta i l view was
proposed.

• Graphs were viewed posit ively i n the whole work. Users found it really pleasing that
graphs are interactive. The team leader, team manager, and quali ty assurance sup
porter found them really useful for the purpose of creating statistics. Everyone could
comprehend how data selection works, but there were a few misunderstandings about
the line chart. The line chart d id not seem that much intuit ive, w i t h users struggling
to select a given t ime interval. They used to double-click one value, selecting a t ime
window which started and ended at the same time.

7.3.1 F i x i n g Suggestions f r o m K i w i C o m p a n y E m p l o y e e s

A s a part of fixing suggestions from K i w i company employees mentioned in the previous
section, I implemented features that should help wi th to ta l navigation wi th in the web page.

• Docker and start ing the whole applicat ion—I added a descriptive R E A D M E . m d file,
which describes the process of start ing up the whole service and possible problems
which may be encountered along the way.

• Layout and visuals—I created two tabs on the page, showing different parts of the
view. One tab shows the data table and a l l its attributes. The second tab shows every
graph and statist ical analysis of the view. O n top of that, the whole page now has a

40

margin on the left and right sides, focusing the user's view on the centre of the page.
A s for filters, their names got shortened so they would not take up so much space. A s
a l i t t le improvement for overall graphics, I added a loading screen for fetching data
through the submit form.

• D a t a table as an object got reduced significantly. Now, it is on a separate tab and
does not have a horizontal or vert ical scrollbar. Users can navigate through it by
scrolling down the page. Also , most of the columns were deleted i n order to shorten
the rows i n the table. More focus on detai l was left in the detail view opt ion of the
row. A s for pagination buttons, they are now disabled as the user waits for one page
to load.

• De ta i l V i e w as a function got highlighted wi th in the whole page. Before the testing,
the but ton wi th in the I D of the row triggered the detai l view. After testing, the
detail view is triggered by a separate but ton wi th in one row. A s a l i t t le improvement,
I crossed out previous flights as mentioned by K i w i company employees. The order
and alignment of components of the detail view were changed. Also , as a better
visualisation of properties of the detai l view, I added icons for some properties like
sender, which suits to have an icon. Based on this improvement, icons were also added
to other parts of the page.

After the testing in the K i w i company and fixing their suggestions, I presented a new
solution to them, which they found much more helpful. They found the newer solution
more eye-pleasing and more organized than the previous solution.

41

Chapter 8

Conclusion

M y goal was to create a web applicat ion that could help the K i w i company employees
perform dai ly tasks while using mult iple databases filled w i th flight disrupt ion data. The
application visualises raw data along wi th statist ically analysed data into graphs. Before
implementing the web service itself, I researched flight disruptions, their cause and therefore
also briefly air traffic. Then, I researched data visualisation and best practices, as well as
how and when to visualise data. W h e n I was done wi th my external research, I reached
out to the K i w i company to conclude an analysis of their current state of parsing flight
disruptions and the current state of their software stack. Then , I created the design of a
web applicat ion based on my research. Last ly, I implemented the provided applicat ion and
performed the tests to ensure a better appl icat ion run.

The web applicat ion was created specifically to visualise raw data and create a statist ical
analysis of key data attributes. A l o n g w i t h the web application, I implemented services
which the applicat ion would use. Tha t includes the applicat ion backend, which would
perform a l l data analytic tasks and send correct values to the frontend for visualisation.
To develop this work, I simulated K i w i company side services locally. Tha t includes K i w i
databases, which were filled w i th comma-separated values provided by the K i w i company,
and the K i w i backend for databases. A l l these services were successfully created and can
perform data t rading among each other, w i th graphs interactively changing the visualised
data.

The applicat ion frontend can filter and fetch data from the backend and visualise them.
The applicat ion backend can accept requests and send parsed data back to the frontend.
It can also communicate w i th the K i w i backend and request data. K i w i backend and K i w i
databases store data and can perform basic data fetching for appl icat ion services.

After conducting testing and bug repairing, the K i w i company accepted my applicat ion.
Currently, it is i n the process of being deployed to the K i w i company. In the second quarter
of 2024, it w i l l be deployed for everyone to use. However, the appl icat ion backend w i l l need
to have some minor changes that w i l l define how it w i l l communicate w i t h the real-time
K i w i company services. I expect that it w i l l overcome changes after some t ime, which I
would gladly help wi th , as K i w i company practices agile programming.

A s for this work, I created my own services from scratch to complete a solution wi th
4 functional services. I also published my results at the E x c e l ® F I T 2024 conference (sub
mission number 20 1) , where I highlighted my solution and approach to the visualisation of
flight disruptions for other people interested who could use my research or code in future
for further development.

x h t t p s : / / e x c e l . f i t . v u t b r . c z / s b o r n i k /

42

http://vutbr.cz/

4 3

Bibliography

[1] A B D I , M . R . and S H A R M A , S. Information system for flight disruption management.
International Journal of Information Management. 2008, vol . 28, no. 2, p. 136-144.
D O I : https://doi.Org/10.1016/j.ijinfomgt.2008.01.006. I S S N 0268-4012. Available at:
https://www.sciencedirect.com/science/article/pii/S026840120800008X.

[2] A H I T U V , N . , I G B A R I A , M . and S E L L A , A . V . The effects of t ime pressure and

completeness of information on decision making. Journal of management information
systems. Taylor &; Francis. 1998, vol . 15, no. 2, p. 153-172.

[3] B O R S K Y , S. and U N T E R B E R G E R , C . B a d weather and flight delays: The impact of
sudden and slow onset weather events. Economics of Transportation. 2019, vol . 18,
p. 10-26. D O I : https://doi.Org/10.1016/j.ecotra.2019.02.002. I S S N 2212-0122.
Available at:
https: //www. sciencedirect.com/science/article/pii/S2212012218300753.

[4] B R E E D E N , A . French strikes disrupt traffic and flights. International New York
Times. International Hera ld Tribune. 2016, p. N A - N A .

[5] C H A R T J S . Chart.js [online]. Char tJs , 2023 [cit. 2024-01-09]. Available at:
https: //www. chart js.org/docs/latest/.

[6] D 3 . What is D3? [online]. D 3 , 2023 [cit. 2024-01-09]. Available at:
https: //d3j s.org/what-is-d3.

[7] D E L A U N E , E . F . , L U C A S , R . H . and I L L I G , P . In-flight medical events and aircraft

diversions: one airline's experience. Aviation, space, and environmental medicine.
Aerospace Med ica l Associat ion. 2003, vol . 74, no. 1, p. 62-68.

[8] D U C K , V . , I O N E S C U , L . , K L I E W E R , N . and S U H L , L . Increasing stabil i ty of crew and

aircraft schedules. Transportation Research Part C: Emerging Technologies. 2012,
vol . 20, no. 1, p. 47-61. D O I : https://doi.Org/10.1016/j.trc.2011.02.009. I S S N
0968-090X. Special issue on Opt imiza t ion i n P u b l i c Transpor t+ISTT2011. Available
at: https : //www.sciencedirect.com/science/article/pii/S0968090Xl 1000350.

[9] E N O C H , J . , M C D O N A L D , L . , J O N E S , L . , J O N E S , P . R . and C R A B B , D . P . Evaluat ing

whether sight is the most valued sense. JAMA ophthalmology. Amer ican Medica l
Associat ion. 2019, vol . 137, no. 11, p. 1317-1320.

[10] E S I R G A P O V I C H , K . A . et a l . T H E E A S I E S T R E C O M M E N D A T I O N S F O R

C R E A T I N G A W E B S I T E . Galaxy International Interdisciplinary Research Journal.
2022, vol . 10, no. 2, p. 758-761.

44

https://doi.Org/10.1016/j.ijinfomgt.2008.01.006
https://www.sciencedirect.com/science/article/pii/S026840120800008X
https://doi.Org/10.1016/j.ecotra.2019.02.002
http://sciencedirect.com/science/article/pii/S2212012218300753
http://js.org/docs/latest/
https://doi.Org/10.1016/j.trc.2011.02.009
http://www.sciencedirect.com/science/article/pii/S0968090Xl

[11] F E W , S. Information dashboard design: The effective visual communication of data.
O ' R e i l l y Media , Inc., 2006.

[12] D W O R K , J . What do the Lumo Delay Indexes mean? [online]. Resilient Ops, Inc.,
2018 [cit. 2023-12-28]. Available at:
h t tp s : //www.thinklumo.com/news/what-do-the-lumo-delay-indexes-mean.

[13] G O O G L E . Using Google Charts [online]. Google, 2023 [cit. 2024-01-09]. Available at:
h t tp s : / /deve lopers .google .com/char t / in te rac t ive /docs .

[14] K A T U N I N , A . , D R A G A N , K . and D Z I E N D Z I K O W S K I , M . Damage identification i n
aircraft composite structures: A case study using various non-destructive testing
techniques. Composite Structures. 2015, vol . 127, p. 1-9. D O I :
https://doi.Org/10.1016/j.compstruct.2015.02.080. I S S N 0263-8223. Available at:
h t tp s : //www. sciencedirect .com/science/ar t ic le /pi i/S0263822315001683.

[15] K L A P P E R , E . S. and R U F F S T A H L , H . - J . K . Effects of the pilot shortage on the
regional airline industry: A 2023 Forecast. International Journal of Aviation,
Aeronautics, and Aerospace. 2019, vol . 6, no. 3, p. 2.

[16] K O H L , N . , L A R S E N , A . , L A R S E N , J . , R o s s , A . and T I O U R I N E , S. A i r l i ne disruption
management—Perspectives, experiences and outlook. Journal of Air Transport
Management. 2007, vol . 13, no. 3, p. 149-162. D O I :
https://doi.Org/10.1016/j.jairtraman.2007.01.001. I S S N 0969-6997. Available at:
h t tp s : //www. sciencedirect .com/science/ar t ic le /pi i/S0969699707000038.

[17] M A L A N D R I , C , M A N T E C C H I N I , L . and R E I S , V . Aircraft turnaround and industrial
actions: How ground handlers' strikes affect airport airside operational efficiency.
Journal of Air Transport Management. 2019, vol . 78, p. 23-32. D O I :
https://doi.Org/10.1016/j.jairtraman.2019.04.007. I S S N 0969-6997. Available at:
h t tp s : //www. sciencedirect .com/science/ar t ic le /pi i/S0969699719300183.

[18] M I D W A Y , S. R . Principles of effective data visual izat ion. Patterns. Elsevier. 2020,
vol . 1, no. 9.

[19] N A D K A R N I , P . M . , O H N O M A C H A D O , L . and C H A P M A N , W . W . Natural language
processing: an introduction. Journal of the American Medical Informatics
Association. September 2011, vol . 18, no. 5, p. 544-551. D O I :
10.1136/amiajnl-2011-000464. I S S N 1067-5027. Available at:
https://doi.org/10.1136/amiajnl-2011-000464.

[20] N Y G R E N , E . , A L E K L E T T , K . and H 6 6 K , M . Avia t ion fuel and future o i l product ion
scenarios. Energy Policy. 2009, vol . 37, no. 10, p. 4003-4010. D O I :
https://doi.Org/10.1016/j.enpol.2009.04.048. I S S N 0301-4215. Ca rbon i n Mot ion :
Fuel Economy, Vehicle Use, and Other Factors affecting C 0 2 Emissions F rom
Transport . Available at:
h t tp s : //www. sciencedirect .com/science/ar t ic le /pi i/S0301421509003152.

[21] P F E I F F E R , M . B . , K O U G H E R , J . D . and D E V A U L T , T . L . C i v i l airports from a
landscape perspective: A multi-scale approach wi th implications for reducing b i rd
strikes. Landscape and Urban Planning. 2018, vol . 179, p. 38-45. D O I :

45

http://www.thinklumo.com/news/what-do-the-lumo-delay-indexes-mean
http://google.com/chart/
https://doi.Org/10.1016/j.compstruct.2015.02.080
http://sciencedirect.com/science/article/pii/S0263822315001683
https://doi.Org/10.1016/j.jairtraman.2007.01.001
http://sciencedirect.com/science/article/pii/S0969699707000038
https://doi.Org/10.1016/j.jairtraman.2019.04.007
http://sciencedirect.com/science/article/pii/S0969699719300183
https://doi.org/10.1136/amiajnl-2011-000464
https://doi.Org/10.1016/j.enpol.2009.04.048
http://sciencedirect.com/science/article/pii/S0301421509003152

https://doi.Org/10.1016/j.landurbplan.2018.07.004. I S S N 0169-2046. Available at:
h t tp s : //www. sciencedirect .com/science/axt icle/pi i/S0169204618305917.

[22] R U P P , N . G . and H O L M E S , G . M . A n investigation into the determinants of flight
cancellations. Economica. W i l e y Onl ine Library . 2006, vol . 73, no. 292, p. 749-783.

[23] S u , Y . , X I E , K . , W A N G , H . , L I A N G , Z . , A R T C H A O V A L I T W O N G S E , W . et a l . A i r l i ne

Disrupt ion Management: A Review of Models and Solution Methods. Engineering.
2021, vol . 7, no. 4, p. 435-447. D O I : https://doi.Org/10.1016/j.eng.2020.08.021. I S S N
2095-8099. Available at:
h t tp s : //www. sciencedirect .com/science/axt icle/pi i/S2095809921000175.

[24] S U Z U M U R A , T . , K A N E Z A S H I , H . , D H O L A K I A , M . , I S H I I , E . , N A P A G A O , S. A . et a l . The

Impact of C O V I D - 1 9 on Fl ight Networks. In: 2020 IEEE International Conference on
Big Data (Big Data). 2020, p. 2443-2452. D O I : 10.1109/BigData50022.2020.9378218.

[25] T A L R E J A , R . and P H A N , N . Assessment of damage tolerance approaches for
composite aircraft w i th focus on barely visible impact damage. Composite Structures.
Elsevier. 2019, vol . 219, p. 1-7.

[26] T O N I D A N D E L , S., K I N G , E . B . and C O R T I N A , J . M . Big data at work: The data

science revolution and organizational psychology. Routledge, 2015.

[27] T U F T E , E . R . The visual display of quantitative information. Graphics press
Cheshire, C T , 2001.

[28] R A M O T I O N . Website Data Visualization Techniques That Make Information
Understandable [online]. Cloudinary, 2023 [cit. 2024-01-09]. Available at:
h t tp s : / / c loudinary.com/guides/f xont-end-development/f xont-end-development-
the-complete-guide.

46

https://doi.Org/10.1016/j.landurbplan.2018.07.004
http://sciencedirect.com/science/axticle/pii/S0169204618305917
https://doi.Org/10.1016/j.eng.2020.08.021
http://sciencedirect.com/science/axticle/pii/S2095809921000175
http://cloudinary.com/

