
VYSOKÉ UČENI TECHNICKE V BRNE
BRNO UNIVERSITY OF T E C H N O L O G Y

FAKULTA INFORMAČNÍCH TECHNOLOGIÍ
ÚSTAV INTELIGENTNÍCH SYSTÉMŮ

FACULTY OF INFORMATION T E C H N O L O G Y
DEPARTMENT OF INTELLIGENT S Y S T E M S

VIZUÁLNÍ SLEDOVÁNÍ OBJEKTŮ V REÁLNÉM ČASE
VE VIDEU
REAL-TIME O B J E C T TRACKING IN VIDEO

DIPLOMOVÁ PRÁCE
M A S T E R ' S THESIS

AUTOR PRÁCE Be. MARTIN ŠIMON
AUTHOR

VEDOUCÍ PRÁCE Ing. JAROSLAV ROZMAN, Ph.D.
S U P E R V I S O R

BRNO 2015

Abstrakt
Práce se zaměřuje na vizuální sledování objektu v reálném čase ve videu s důrazem na
problémy vznikající při dlouhodobém sledování. Mezi tyto problémy patří především okluze,
ať už částečná či úplná, a vizuální změny objektu. Dále se práce zaměřuje na objekty
na hranici rozlišitelnost a trhavý pohyb kamery, jakožto problémy přítomné při sledování
vzdálených objektů. Součástí práce je shrnutí současného stavu s ohledem na zmíněné
problémy a návrh systému s vysokou kvalitativní stabilitou a odolností vůči zmíněným
problémům, především malé velikosti objektů. Navržený systém byl implementován a z
vyhodnocení vyplynulo, že je schopný tyto problémy částečně řešit.

Abstract
This thesis focuses on real-time visual object tracking with emphasis on problems caused by
a long-term tracking task. Among theses problems belong primarily an occlusion problem,
both the partial and the full one, and appearance changes of the object during the tracking.
The work is also concerned with tracking objects of a very limited size and unsteady camera
movements. These two particular problems are relatively common when tracking distant
objects. A part of this work is also a summary of related work and a proposal of a system
with high qualitative stability and robustness to problems mentioned. The proposed sys­
tem was implemented and the evaluation demonstrated that it is capable of solving these
problems partially.

Klíčová slova
Sledování objektů, Real-time sledování, Malá velikost objektů, Trhavý pohyb kamery,
čás tečná okluze, Úplná okluze, Násobné obousměrné sledování, Dlouhodobé sledování

Keywords
Object Tracking, Real-Time Tracking, Limited Object Size, Unsteady Camera Movement,
Partial Occlusion, Full Occlusion, Multiple Bidirectional Tracking, Long-Term Tracking

Citace
Martin Šimon: Real-time object tracking in video, diplomová práce, Brno, F IT V U T v Brně,
2015

Real-time object tracking in video

Prohlášení
Prohlašuji, že jsem tuto diplomovou práci na téma „Vizuální sledování objektů v reál­
ném čase ve videu" vypracoval samostatně pod vedením vedoucího diplomové práce Ing.
Jaroslava Rozmana, Ph.D., a odborného konzultanta Ing. Davida Hermana a s použitím
odborné literatury a dalších informačních zdrojů, které jsou všechny citovány v práci a
uvedeny v seznamu literatury na konci práce.

Martin Šimon
May 25, 2015

Poděkování
Poděkování patří především Ing. Davidu Hermanovi za jeho ochotu, konstruktivní nápady
a velkou pomoc, a také Tereze Kučerové za její velmi rychlou jazykovou korekturu.

© Martin Šimon, 2015.
Tato práce vznikla jako školní dílo na Vysokém učení technickém v Brné, Fakulté in­
formačních technologií. Práce je chráněna autorským zákonem a její užití bez udělení
oprávnění autorem je nezákonné, s výjimkou zákonem definovaných případů.

Contents

1 Introduction 3

2 Related Work 4
2.1 Object Representation and Matching 4
2.2 Object Localization 9
2.3 Unsolved Problems 15
2.4 Summary 19

3 Proposed Solution 20
3.1 Expected Behavior 20
3.2 Basics and Background 21
3.3 Object Representation 22
3.4 Object Tracking 25
3.5 Object Detection 30
3.6 Model Learning 32
3.7 Detector-Tracker Fusion 34
3.8 Summary 35

4 Implementation 37
4.1 Technical Background 37
4.2 System Structure 38
4.3 Points To Track Generation 38
4.4 Multiple Bidirectional Tracking 40
4.5 Detector-Tracker Fusion 41
4.6 G P U Acceleration 41
4.7 Summary 43

5 Evaluation 44
5.1 Evaluation Dataset 44
5.2 Quality Focused Experiment 45
5.3 Performance Focused Experiment 48
5.4 Stability Focused Experiment 49
5.5 Component Focused Evaluation 51
5.6 Comparison to State of the Art Solutions 53
5.7 Summary 55

6 Conclusion 56

1

A Paper at conference Excel@FIT 2015 62

2

Chapter 1

Introduction

A visual object tracking in video has become a popular topic in recent years, but it still
remains generally unsolved. There is a significant amount of very efficient object tracking
systems which are sufficiently accurate and which work in real-time speed. Unfortunately,
many problems, such as occlusion, no matter if full or partial, background clutter, noise or
unexpected rough camera movements, are bottlenecks of many recent visual object tracking
related projects and actually exclude them from daily professional usage. Among these
problems also belongs a problem of appearance changes caused by a long-term tracking,
when the object may vary.

In this work I would like to focus on recent solutions in the field of tracking and try
to build an object tracking system whose efficiency and speed performance are at least the
same as the performance of the state of the art trackers. Also, I would like to improve some
critical parts which have serious impacts on accuracy or are too narrowly focused and lack
generality. As the visual object tracking is a basic requirement for numerous applications
in contemporary robotics, the system should be focused also on limited sized objects, which
are basically all objects that are far enough, and a poor quality video input with low signal
to noise ratio.

Based on the recent work and the problems mentioned, a new long-term real-time
general object tracking system is proposed. The proposed system is implemented and
evaluated with usage of standard visual object tracking dataset as well as a few original video
sequences which were taken for this purpose. The proposed tracking system is designed in
such manner that it would handle both the standard dataset as well as the new one, ideally
without any significant reduction in speed or accuracy.

This work is organized as follows. In chapter 2, current progress in the visual object
tracking field and the issues related are summarized. The proposed system able to handle
the mentioned problems is described in chapter 3, including a newly introduced method to
increase quality of tracking points. The chapter also contains goals of this work and the
background on which this project is built. The implementation details are shortly summed
in chapter 4. Finally, the system is widely evaluated in chapter 5. This contains several
experiments focused on quality, stability, performance, and experiment focused on newly
proposed components as well as the comparison with the other state of the art solutions.
At the end, the thesis is summarized and the further work is outlined in chapter 6.

3

Chapter 2

Related Work

A significant amount of work has been written recently regarding the field of object tracking
in a video. In this chapter, related solutions to all parts of long-time object tracking in a
video frame-to-frame are described.

The object representation sets the apriori abilities of every tracking system. Some widely
used object representations are described in section 2.1. The section also contains notes
about the approaches to measuring similarity of these object representations. Afterwards,
the localization approaches are described in section 2.2, which is the actual core of every
tracking algorithm. The last section summarizes reasons behind writing this work - it is an
outline of commonly known and widely solved, yet unsolved problems.

2.1 Object Representation and Matching

The object representation is the first and very important task before developing a successful
tracking system. The object representation is the model how it is treated internally in the
system. The system abilities are frequently correlated with the model type - the object
representation.

Every object representation has its own way to compare these objects; the measurement
system. This is also very important because it has a direct impact on the resulting system
quality as well as on the speed and efficiency

2.1.1 Visual Templates and Blobs

The most straightforward way to define the object of interest is by a visual template of the
object. Such a template is obtained in the very first frame when the user chooses the object
and it is stored internally in a form of matrix.

The basic idea is to use static templates [25, 40] (Figure 2.1 on the left side). The
obvious problem is the inability to cover changes in the object's appearance, which may
occur during tracking non-rigid objects or during tracking for longer time. However, this
can be more or less solved with adaptive templates []. Furthermore, such systems are
also able to solve partial occlusion; another very frequent and generally unsolved problem
in the object tracking process.

Another approach is to represent an object as a blob (Figure 2.1). Blobs are understood
as a set of points, widely represented as a rectangular matrix and a matrix of weights,
also called a mask. The advantage of this approach is a better object representation and
therefore a more accurate comparison between them [8]. Basically, the blobs are still visual

4

Figure 2.1: The left figure is a general template pattern. In combination with the mask on
the right it is considered to be a blob.

templates and by their spatial information we are able to compare them statistically with
methods like color histograms, blob proportions or similar [].

The template similarity comparison can be done directly. The common ways are to
compare variations of such templates [17, 28], brute-force matching or using technique
called Integral Image or Summed Area Table [43, 38]. The Integral Image is able to make
rapid comparison of two matrices, no matter if they are monochromatic images, variances
or anything else. It is also very common to perform these methods on input templates after
filtering with e.g. edge detection techniques [31].

1 1 2 5 2 3 4 1 2 4 9 11 14 18
2 1 0 2 1 2 3 3 5 7 14 17 22 29
2 5 3 1 0 3 2 5 12 17 25 28 36 45
0 3 2 3 1 0 5 5 14 22 33 37 45 59
1 2 5 0 2 1 5 6 18 30 41 47 56 75
3 2 0 1 5 2 2 9 24 35 47 58 69 90

Figure 2.2: Illustration of an Integral image computation.

The main idea of the Integral Image method is an alternative image representation,
where every value of point (x,y) is a sum of all point values above and to the left of the
computed point, inclusive. That can be seen on equation 2.1, where I(x,y) represents a
value of the point (x,y) on the integral image and i(x',y') represents a value of the point
(x1, y') in the original image. A n illustration is in figure 2.2, where on the left is an original
image (represented as a matrix of values, that can be e.g. intensities or variances) and on
the right there is a corresponding integral image.

I(x,y)= Y, (2J)
x'<xAy'<y

Then, the value of any rectangle of the obtained integral image can be done in constant
time in exactly 4 matrix accesses [], as can be seen in figure 2.3. In the image there is a
rectangle defined by 4 vertices A, B, C and D and the corresponding area in the original

5

1 1 2 5 2 3 4

2 1 0 2 1 2 3

2 5 3 1 0 3 2

0 3 2 3 1 0 5

1 2 5 0 2 1 5

3 2 0 1 5 2 2

S(A,B,C,D)
= l(A)+l(b)-l(B)-l(C)
= 3+47-17-6
= 27 A

5+3+1+0
+3+2+3+1
+2+5+0+2
= 27

1 2 4 9 11 14 18

* 5 7 14 " i 29 * 12 17 25 28* 45

5 14 22 33 37 45 59

+ 18 30 41 47 i A6 75 + 24 35 47 58* & 90

Figure 2.3: Example of an Integral image computation.

image. The sum of the area S(A, B, C, D) is easily computed, as shown on equation 2.2.

S(A, B, C, D) = 1(D) + 1(A) - 1(B) - 1(C) (2.2)

Unfortunately, the integral image approach ignores the local spatial information. It is a
price for the speed of the method. Another method is a sum of absolute differences (SAD)
(equation 2.3a) or alternatively a sum of squared differences (SSD) (equation 2.3b). The
idea of both is similar; compute differences of corresponding points on both templates and
sum them.

m,n
\\TI,T2\\SAD = \Ti[i,j]-T2[i,j}\ (2.3a)

i=0,j=0
m,n

\\TI,T2\\SSD = Yl (Ti[i,j]-T2[i,j})2 (2.3b)
i=0,j=0

The equations represent going through the both 2D templates and computing the dif­
ferences. As there is no normalization part, both methods are quite inclined to illumination
changes. On the contrary to the integral image, the sum reflects the spatial information,
but it also brings higher computational cost; the number of calculations depends on the
pattern size and is not constant as in the integral image approach.

Figure 2.4: Illustration of the template matching with usage of the S A D and the SSD. On
the left there is an original image and the searched pattern. In the middle there is a result
matrix for the SAD and on the right side there is a result matrix of the SSD.

In a set of figures 2.4, an illustration of SAD and SSD can be seen. In the left image,
there is an image to be searched with a highlighted template to be searched for. In the

6

middle there is a 2D matrix describing the SAD results; the darker the point is, the lower
the output | T 2 I js^D is. In the right image there is similar 2D matrix, but reflecting the
SSD results.

A different way to compare matrices can be normalized cross correlation (NCC) [20],
which is due to the normalization also invariant to uniform illumination changes.

7
Ex,„ (f(x,y)-m(x,y)-t)

(2.4)

The equation to compute NCC values can be seen in 2.4 [20]. The equation result is
a value of NCC between two two-dimensional templates of the same size Mx x My. The
f(x, y) denotes a value in the first image on position (x, y) and hence the t(x, y) represents
a value in the second image on the same position. The / represents mean value of the
whole template / , the t is set analogically as a mean value of the template t.

-
Figure 2.5: From the left: A sample image, a template, which is searched on the sample
image by N C C metric and the result values of the N C C represented as a 2-dimensional
matrix with a marked maximum.

A visualization on NCC method can be seen in 2.5. The lightest location symbolized
the highest values, which means the most probable position of the template T in image I.
The computation of the NCC for two large images can be computationally quite expensive,
but the method gives generally more accurate results than the Integral Image.

2.1.2 Keypoints

Another option to represent the object of interest is to describe it with a limited set of good-
to-track keypoints. The term keypoint should be in this work understood as a significant
point like corner or peak with its neighborhood, commonly known as a point descriptor.
The point descriptor should be invariant to rotation, scale and illumination changes. There
are various widely used descriptors, such as [3, 23, 1, 37, 19]. A n illustration of detection
some of these keypoints can be seen in figure 2.6.

This method is more sophisticated than templates, but the quality of the keypoints is
critical. The benefit of such approach is a highly robust system with the ability to handle
object's appearance changes as well as the partial occlusion. This is achieved with the
ability to track an object with a very limited set of original points.

Also, the methods based on keypoints are mostly quite fast with high efficiency, which
was approved by [] or []. A problem occurs in case of overly various and/or cluttered
background, where a number of keypoints are detected. Therefore, many of true negative

7

comparisons are performed in contrast with a very few of true positive ones. In that
situation, the performance of such a method is very poor at least in the area of speed and
computational cost.

Figure 2.6: Images with highlighted positions of detected keypoints. From the left to right
they are O R B [], B R I S K [19] and Good Features To Track [40].

In [40] they measure quality of the keypoints to track also in the time domain and
therefore more stable keypoints can be chosen for tracking. However, even extremely various
scene can be missing significant stable keypoints and therefore provide very bad tracking
quality. This is an opposite problem to the abundance of such points described in the
previous paragraph, but the problem is equally serious. The effect of the lack of any
significant features is the lost ability to repeatedly succeed in finding the object of interest
and therefore inability to track.

The point descriptor is encoded in the form of a feature vector. Then, the similarity
can be measured simply with computing Euclidean or Mahalanobis distance between these
vectors [3, 23, 24], or in case of e.g. O R B [7] or BRISK[19] descriptors, which are both
encoded in binary vectors, the distance is computed using Hamming distance algorithm.

2.1.3 Contours

From time to time it is convenient to represent the object its geometry, also called a con­
tour [5]. This approach is often better than others when we are able to segment the object
from its background effectively. The suitable objects to represent with contour can be cars
on the road, where the road - the background - is relatively solid color and quite clearly
distinguished from the car - the object. Also, methods to track humans with representing
head as a contour and the body as an adjacent blob occurred. However, those methods
have poor results if occlusion appears.

The contours are usually based on response from edge highlighting filter. Based on the
image structure it is common that a lot of not wanted edges come up. The object is the
described with a set of connected edge fragments. This approach is generally more resistant
to object non-rigidity as well as to the occlusion problem. In figure 2.7, an illustration of
detecting contour described object can be seen.

In case of measurement of similarity of contours, it is convenient to use the limited
geometric information. Therefore, the contours are usually compared by their normalization
to predefined shape while measuring parameters needed to do the conversion [8].

8

5 3
Figure 2.7: Illustration of a contour representation and matching. From left to right: an
original image, detected long salient contours, correspondent contours found and marked
and a final image with joint contours. The images and the example are taken from [].

2.1.4 Complex Representation

The last representation method mentioned here is the combination of the ones above. The
resulting model is then built from other models (keypoints, templates, contours) which are
connected together. The connection can be set e.g. as a range of allowed angles for the
given parts [6, 21].

O v V \ / ^ 0

Figure 2.8: Illustration shows a simple object - bicycle - and its decomposition to simple
elementary parts - triangles, a line and ellipses - which are connected by relations.

The advantage of a model built from a graph of multiple parts is its ability to detect
the missing part and therefore handle partial occlusion and appearance changes. The
disadvantage can be the need for a big enough object to split it into submodels, which can
lead to inability to handle custom objects. A n appropriate object for complex representation
can be a bicycle, as illustrated in figure 2.8.

A similarity measurement approach can be seen in [39], where they experimented with
Euclidean and Cosine distance on separate connections among the parts of the object.

2.2 Object Localization

The last missing part, if we already have the object representation and the similarity mea­
surement tool is the object localization. There is a short overview of the current approaches
to object localization in the scene in this section.

For simplicity, the section is divided into two subsections - the object detection in
subsection 2.2.1, which contains methods of detection without any knowledge about the
scene history, and the recursive tracking in subsection 2.2.2, which is a short summary of
methods working through time domain and not merely in the present frame.

2.2.1 Object Detection

The object detection is the very first approach to object tracking. The task is to detect the
object on the scene on every frame and to give its position; otherwise, to inform about the
object's absence. This section is on different approaches to the search of the object in the
frame.

9

Keypoint Detection

Despite its name, the keypoint detection is not relevant only to keypoints described in 2.1.2.
The idea of this approach is to localize all significant points (e.g. corners, peaks, Good
Features to Track in [40]), compare them with the searched one and choose the most similar.
As this is the basic idea (and works very well with keypoints like S U R F [3], SIFT [3] or
BRISK []), the searched keypoint can be basically anything, from blobs, geometric shapes
and so on.

The only thing which needs to be guaranteed is the detection and comparison speed.
The critical point is to decide quickly whether the keypoint (or blob, shape, contour) is or
is not the same type as requested. Then, the located objects of the same type are compared
with the original one, but this time it is not a binary decision, but more often a probabilistic
one. This comparison does not need to be as fast the binary matching in the previous phase
because we have only a limited set of the keypoint of the same pattern.

Sliding Window

Similar to the previous approach is the localization method called sliding window. The
main difference is that the binary comparison is omitted and it is substituted with the
probabilistic comparison instead. This approach can bring the possibility of comparing
complex objects like templates, which we are frequently unable to classify as binary in the
early detection.

•

Figure 2.9: Sliding window detection illustration. The distance between every allowed
position and the searched template is measured by sliding the template through the image.

This approach is a basic brute force method of detection. The main idea is to divide the
whole frame into multiple subwindows, do comparison of every subwindow with the original
template and choose the most similar subwindow. If the similarity is bigger than the given
threshold, the result is marked as valid; otherwise the user is informed that the object is not
found. For such window-to-window comparison, methods like previously described Integral
Image or NCC are commonly used.

Wi th equation described above (Equation 2.4) the NCC can be computed for all of the
possible template positions of the investigated image. The result is then a set of NCCs for

10

different shifts of the template in the image. Therefore, it can be easily represented as a
map, as can be seen in figure 2.5.

The biggest disadvantage of the sliding window approach is the number of subwindows
to compare, and therefore a very high computational cost. The reason of such a high
number of subwindows is a small step (slide) to manage as many possible object positions
as possible. Moreover, all the windows can be in different sizes due to the object scale
allowed. A l l of these bring us a huge number of subwindows which are not easy to compute
in a reasonable time [43, 18, 28, 11].

A way to reduce the computational cost of the sliding window approach can be for
example fixed rectangle size and fixed sliding step (e.g. not by 1 pixel) [36] with so-called
pyramidal image to obtain object scale.

2.2.2 Recursive Tracking

Unlike the previous section, the recursive tracking describes a group of methods which do
the tracking itself. In this work, the term tracking stands for the detection with respect to
the previous frames and usage of the history

It brings better handling of missing information, but a potential processing error can be
cumulated over time. There is also more information in a frame-to-frame recursive tracking
then in a single frame image.

Therefore, recursive tracking is an approach much related to the object tracking. The
reason is clear - the object tracking is performed on top of a sequence of frames and it
comes with higher density of information than a single image. If it is possible, it is a good
approach to use this kind of additional information.

Optical Flow

Optical flow is a method to determine flow of points in two consecutive images. Basically,
it is exactly the movement which is interesting in the object tracking.

The idea of optical flow is quite old. The differential optical flow (because they use
mainly Taylor series approximations; that is, they use partial derivatives) is understand
as a 3 dimensional vector (Ax, A y , At) , representing the movement of distance given by
vector (Ax, Ay) in time At. This is shown on equation 2.5a. The I(x,y,t) represents a
value of pixel at location (x, y, t) and the A x , Ay and A t represent the movement between
two frames in times t and t + A t .

I(x, y, t) = I(x + Ax,y + Ay, t + At) (2.5a)
dl dl dl

I(x + Ax,y + Ay, t + At) = I(x, y, t) + — A x + —Ay + — A t + . . . (2.5b)
ox dy ot

d l r d l r dl
—Vx H Vv H
dx dy dt
—Vx + — Vy + — = 0 (2.5c)

The equation 2.5b is based on assumption of very small movements and therefore the
Taylor series can be developed and the higher-order terms can be omitted. These equations
directly lead to 2.5c, where Vx and Vy are components of the optical flow of the inten­

ds ' dy dt

dimensions [4, 10].
sity I(x,y,t), and | ^ and % are the derivatives of the image in the corresponding

11

Although many approaches have been developed, only two significant ones will be men­
tioned here. The first is an optical flow method by Farneback []. He computes dense
optical flow; it means that for every point of an image, an optical flow is estimated. It
can be generally more inclined to image noise and the computational cost is high due the
method density. On the other hand, the density can bring higher accuracy.

The second one is the method of sparse optical flow from Lucas and Kanade. They
invented the optical flow method based on the expectation that none of the points is moving
in frames independently, but it is always in some blocks [25]. According to that, the Lucas-
Kanade optical flow based trackers are resistant to noise and outliers, which makes them
relatively stable and very fast. Also, they do not need such good keypoints to track,
although they still need them [16].

Figure 2.10: Illustration of the optical flow. On the left there is one frame (out of the pair)
and on the right there is visualized optical flow (subsampled).

The size of the neighborhood is important and it leads from the Lucas-Kanade optical
flow itself. As described above, the points move in blocks. This block is our neighborhood
and it is basically an equivalent of the resolution ability of the tracker. A smaller block
size means higher resolution of resulting tracker, but it is also limiting value for pixel
displacement.

According to that, one of the requirements of Lucas-Kanade optical flow algorithm
requires small object movements. That can be very limiting for many applications. Fortu­
nately, this is solved with pyramidal implementation [6], which allows computing the flow in
different levels of frame size. Therefore, we are able to get compute optical flow in different
levels while keeping the neighborhood small without losing spatial information. To give an
example, for the pyramid of depth Lm = 3 pixel displacement gain can be 15. This actu­
ally means rather large movements while keeping the neighborhood small and high quality
resolution.

Another assumption of the method related to the spatial coherence is also solved with
pyramidal implementation. It says that all the points in one block move in the same
direction. As written above, the pyramidal implementation allows having small block size
and still keeping the performance of spatial point displacement, therefore we can have small
enough blocks to meet the spatial coherence without any performance reduction.

12

Kalman Filter

A Kalman filter is an approach for filtering of usually exceptionally noisy input values to
produce the best estimation of the output values. The output values tend to be more
accurate than using a single noisy input values. It is based on the recursive nature of the
filter, which means that the output value estimation is based on the previous values.

The filter is very versatile. It is very good in applications such as signal filtering men­
tioned above, when we have a lot of noisy input values. Other application can be related
to object tracking. It is basically the same - we have a lot of frames in a second and we are
processing real-time. So we can look at every frame result (meaning a position of the object
we are tracking) as at a noisy one, put them into Kalman filter and produce result, and if
the prerequisites for Kalman filter are passed, we can expect that the Kalman's output will
be more accurate.

Figure 2.11: Illustration of the Kalman filter. The blue curve is the correct sine, the blue
crosses are raw noisy sine data and the red dots are points filtered by Kalman filter.

A n illustration can be seen in figure 2.11. It shows a raw data from noisy sensor, which
are simulated as a sine values with randomly added noise. Then, you can see the original
sine curve and a filtered curve estimated by Kalman filter.

We can go even further. As well as the Kalman filter can estimate a value in time t
based on noisy values from times to to t — 1, we can shift the meaning and estimate a value
in time t + 1 based on values from times to to t instead. This way we can get estimation
of the object position in next sequence frame. It is still an estimation, but if the object's
motion model keeps unchanged, it will be quite accurate.

The algorithm consists of two steps; the prediction and the update. During the prediction
step, the new system state (the object position in our case) is a new state and the covariance
is predicted from the previous ones respectively. The estimation is based on the actual state
and transitional function, and the Gaussian noise added to every prediction. Consequently,
during the update step, the correction and the new posteriori state are computed. In
figure 2.12 an illustration of computation of Kalman filter can be seen.

The power of Kalman filter is in the correction. In focus on the object tracking, if
the estimation is successful and is very close to the real position, in the very next step
the algorithm will be concentrating to smaller area because it trusts in its predictions.
Otherwise, if the estimated position is far from the real position, the next step searched
area will be bigger [44, 45].

13

Initial estimates for x, andP,,

Time Update ("Predict")

(1) Project the state ahead

*it+l = Ak*k+Buk

(2) Project the error covariance ahead

p l + i = AkpkAl+Qk

Measurement Update ("Correct")

(1) Compute the Kalman gain

*k = P'kHl(HkPkHl + Rk)-]

(2) Update estimate with measurement

(3) Update the error covariance

Pk = V-KkHk>p'k

Figure 2.12: A complete diagram of Kalman filter computation (taken from [44]).

According to the generality mentioned above, the Kalman filter has been widely used
among many object tracking algorithms [33, 12].

Particle Filter

The Particle filter is another kind of a probabilistic estimation approach. It removes the
limitation to the Gaussian distribution used in the Kalman filter and can also cover non­
linear system complexity. In the particle filter system, the possible states are modeled with
a set of samples (the particles) and their weights.

A typical representative of particle filters can be a sequential Monte Carlo particle filter.
The algorithm itself consists of two main steps called prediction and update.

During the prediction step, each particle which represents the next possible object's
position is modified according to the previous values and its state model, and a noise in
order to simulate the effect of the noise on the state [7].

Then, the weight of each sample is recomputed, based on the new data when their
success is measured. In the object tracking application, this means measuring probability
of every sample that it covers the real position of the object in the new frame. It is measured
with model specific similarity measurement which depends on the chosen model.

The last step, which is very often considered as a part of the update step, is the resam­
pling. This brings the non-linearity mentioned before. The idea is that the low-weighted
particles cover most likely the space where the object is with the least probability. In­
stead, high-weighted particles most probably cover the real object position on the new
data. Therefore, the low-weighted samples can be omitted from further computation and
their sources can be re-used as replications of high-weighted samples.

The resampling step basically covers the most probable area with more particles of
those, which are situated in the object's least probability position. Then we are able to
cover the real object area with much density and do not lose computational performance
on computation probably position in the area where the real object almost surely is not.

14

This is illustrated in figure 2.13, where the particle values (positions) are represented with
blue dots and their weight is represented with their size.

Figure 2.13: Illustration of the particle filter. The particles (blue dots) represent expected
positions and their size is proportional to their weight. As can be seen, the most particles
are concentrated around the most expected position, while only a few cover the rest of a
space.

Another advantage over the Kalman filter is the system's non-Gaussianity. This comes
from the particles' character. We are able to model probability peaks on more places at
once because every particle can stand for one. This leads to possibility of multi-object
detection as well as much better single object detection [14, 7].

It is obvious that the particle filter is suitable for the object tracking purpose. According
to that, many object tracking issues have been solved with the particle filter as the prediction
unit [30, 42].

2.3 Unsolved Problems

As was noted in the introduction (Chapter 1), some unsolved problems still remain in the
field of the object tracking (and especially the long-term variant). The most problematic
issues are mentioned in this section.

2.3.1 Partial Occlusion

Partial occlusion is a very common problem in the area of object tracking. In most of the
cases, we are not tracking an object in ideal video without any other objects on it and
with solid color background. Instead, we have various scenes where the object is moving
randomly; sometimes it is partially hidden behind other fragments and sometimes it is
hidden completely. Partial occlusion is a problem when the object is still partially visible,
yet we want to track it, as seen in figure 2.14.

To be more precise, the partial occlusion is such situation when a part of the object is
behind other object. The problem comes from the projection of 3D space of the real world
into the 2D space of a video. In the 2D space an object can be easily hidden as the depth
dimension is generally omitted. To go further, such an occlusion can last only few frames

15

Figure 2.14: The partial occlusion. The objects are partially hidden, yet we want to track
them.

as well as a half of a video sequence; both options are permitted and the system generally
does not have any clue about it.

In the section about object representation (Section 2.1), the problem of occlusion was
mentioned briefly. As we want to continue in tracking even if it is occluded partially, we need
to choose such object representation and matching algorithm, which are immune enough
to noise and missing data.

This problem can be solved with trackers and detectors which are able to handle incom­
plete models. It can be generally done with keypoints. We are able to say that the limited
set of original keypoints, which was successfully founded (the rest was unable to found due
the occlusion), represents a part of the very same object/part of it, if the relation between
them remains unchanged. Of course, this can be problematic in case of non-rigid objects,
but generally it works.

Another way can be a usage of image patterns. In case of searching for a whole template
and a half of it is not visible, we have 50% error at the best. This is quite low, because we
need to count with the template changes themselves. As a solution may seem to divide the
whole pattern to a set of patches and to search them individually, which brings us to the
advantage of keypoints mentioned before. A n intensive research on the occlusion problem
was done [12, 46].

Figure 2.15: Problematic partial occlusion situation. In the illustration there is an object
- the runner - which is almost completely hidden behind barrier. The question is if it is a
partial occlusion or if the object is hidden already.

To determine whether the object is still partially visible or it is hidden completely is
question for deeper investigation. Very often the problem is self-solved by the tracker/de­
tector limits. The illustration of unsolvable problem can be seen in figure 2.15.

16

2.3.2 Full Occlusion

Despite resembling the partial occlusion, full occlusion needs to be solved differently. In
general, full occlusion happens when the object disappears from the scene or it is behind
another object on the scene. In these situations, the user should wait until the object
reappears.

The full occlusion problem almost always follows after the partial occlusion. The mo­
ment, when the partial occlusion changes to full occlusion can be illustrated with in fig­
ure 2.15. Regarding to that, the partial occlusion very often precedes and follows the full
occlusion. The only thing is to determine the moment when the partial occlusion changes
to the full occlusion.

The problem of full occlusion results very often into a failure of the tracking system. A n
exception can be systems based on particle filters or other prediction approach, which can
model the object movements even when it is fully hidden, with the movement history only.
The movement model will be less accurate every step without the correction and a deviation
between the correct and the predicted position will grow. Furthermore, unexpected object
movement (in meaning of difference from the movement model) while it is behind a barrier as
well as the unexpected camera movement during the full occlusion will break the prediction.

Another option is simply admit that the object is lost. Then the tracker cannot continue
in its job and the situation is commonly solved by cooperation with a detector, which is
started in the particular moment. The detector then searches for the object with usage of
information it gained during the period when the object was visible. As it does not have
any information about object position, it searches generally the whole frame. After the
object is found, the full occlusion ends and it usually continues in partial occlusion again,
which can be handled by the tracker again.

The duration of the full occlusion is a critical part. Not from the point of view of
time, but in terms of the period at which the object may change. If the object changes
significantly during full occlusion (the example can be a human which changes clothes in a
changing room), then it is usually considered as a different object by the detector and the
full occlusion ends with failure.

2.3.3 Long-Term Aspect

Another generally unsolved problem in tracking is the long-term aspect. It includes changes
in behaviour and appearance of the object during time, primarily scale changes, rotation
of the object and ideally other object deformations. The illustration is in the group of
figures 2.16.

Figure 2.16: The appearance changes during time. From left to right there are frames nr.
1, 181 and 252 of the same video sequence.

17

The important thing is to limit how much the object can change and still be referred
as the same object. The problem was described in previous subsection, and it is hard to
finally decide. A n example can be a sheet of paper and a question if it is still the same
object when a paper plane is build out of it.

The first problem which needs to be solved is the shortest aspect of long-term tracking.
We should be able to detect the object changes like scaling, rotation, uniform illumination
changes or non-rigid object changes. They should be solved by the system in part of its
robustness.

A different problem from the previous short aspect are the genuine long-term changes.
In real long-term tracking, the object evolves and as it changes the appearance in time, the
system should adapt to the changes. The ability to cover such long-term changes comes
from the object description type and from the ability of the system to learn.

A n example that the way of object representation can have significant influence on the
ability to cover object long-term appearance changes can be []. In that work, the object
is represented by a set of keypoints which are connected to each other. As the system is
model-free, the keypoints and the connections may vary over time and it is quite easy to
update them as the changes come.

Generally, to handle the appearance changes during the time is an engagement of an
adaptive detector/tracker. Some ways of solving it in the tracking were described, but there
are also a number of adaptive detectors [26, 15, 2, 30]. The idea is to update a detector's
knowledge base with some kind of online learning, or at least updating of the base.

2.3.4 Cluttered Background

One of the last mentioned problems here is cluttered background. This problem is very fre­
quent in the real world scenes, especially from outdoor scenes, e.g. urban intersections []
or others [24, 14]. The illustration in figure 2.17, where the object's position is difficult to
determine even for a human, can be considered as a cluttered background.

Figure 2.17: The cluttered background. Three different images from separate dataset to
visualize the background clutter. In all of the images, the object is really hard to find.

For keypoints, the intensive background clutter can be critical; too many false positive
points can be detected and therefore the performance of the matching can be very poor.
This is explained in section 2.1.2. In general, the detection in clutter scene in computer
vision is basically identical to the same situation in human vision; finally we are able to
find the object, but we do a lot of false match comparisons.

18

2.3.5 Similar Objects

The term similar object refers to an object very similar (identical) to the object tracked.
The problem occurs very often if we track an individual in a group of the same ones. In
such case it is very important to keep attention and the continuity of the tracker. The
problem is generally unsolvable in two frames which are not consecutive (Figure 2.18).

Figure 2.18: It is impossible to determine which object is which one in two frames which
are not directly consecutive. On the left image there are two objects, which are well known.
On the right image, both objects changed their position and it is impossible to distinguish
them.

Apart from the obviously unsolvable problem, the problem of similar objects is a task for
the tracker. The solution is possible only with the usage of objects trajectory and therefore
the position estimation.

The problem can be solved also with modelling of all objects in a scene. Also, this
method requests knowledge of history, but it could be easier as we know how many, where
and how much similar objects are in the scene. The disadvantage is usually higher compu­
tational cost than in tracking a single object [27, 41].

2.4 Summary

In this section, some important work related to object tracking in a video was summarized.
At first, the possibilities of representing an object were discussed, as this predetermines the
whole system abilities. Then, various approaches to localization of the object in a scene were
presented, which was split into two main ways; in-frame localization and frame-to-frame
localization. It was shown that both ways have their advantages and disadvantages.

At the end of this section some generally unsolved problems of object tracking systems
were described. Those problems occur in almost every real world tracking system and ways
how to solve them are very often contradictory.

19

Chapter 3

Proposed Solution

This chapter describes a design of the proposed system. Observed problems with current
technologies in all parts of the long-term object tracking and proposed solutions to these
issues are described here. Furthermore, a way to incorporate them into the system is
proposed. The system is also described from the view of expectations and requirements set
before the beginning.

First of all, the expected behavior and the system requirements, as set in planning phase
of this thesis (Section 3.1), are described. Afterwards, the basics and background on which
this system will be built are summarized in section 3.2. Subsequently, the main part of the
design itself is discussed.

Section 3.4 is focused on the tracking itself, observed issues in the new application
and the solutions to these issues. The detector design used in the system is described in
section 3.5. Section 3.6 is focused on the long-term task concerning the meaning of learning
and updating the detector's model.

3.1 Expected Behavior

In this work, a system with the ability to track custom objects across many frames and time
is going to be developed. The aim is to track either a small object without any significant
points good to track, or bigger objects - the standard tracking objects, such as people, cars,
balls, and so on.

The input of the new system is a video or an image sequence in a grayscale color model
and a user input. The user is supposed to mark the object with a bounding rectangle in
order to enable the tracking itself. The system output should be the position of the object
- the centre coordinates and the bounding rectangle size. A complete pipeline can be seen
in figure 3.1.

In case of the object disappearance, the system output should also notice this fact and
it should be able to continue the tracking as soon as the object reappears. The new system
should be able to cope with a partial occlusion as long as possible.

3.1.1 Objectives to Achieve

A goal for speed and accuracy domain was set, too. The speed requirement for the proposed
system is real-time or near real-time processing, independently on images size and on a
present-day standard personal computer. Regarding the accuracy, the accuracy should be

20

P r o p o s e d

l o n g - t e r m

v i s u a l

o b j e c t

t r a c k i n g

s o l u t i o n [x,y] t, [sx,sy]t t+i

Figure 3.1: Expected behavior diagram.

at least as high as the state of the art solutions. Therefore, the goal is not to decrease the
current trackers quality, but to increase it instead.

Besides reaching the state of the art accuracy, the system should be generalized enough
to handle object not depending on their size or appearance correctly. The problem with
smaller objects is particularly interesting. The smaller objects, which are generally all the
objects distant enough, mean also less of information, either due to the low contrast quality
or higher impact of an image noise.

Such objects should be also treated in monochromatic color model. The reason is again
the possible object distance; the color information is getting worse with increasing distance;
and system which relies on color information could be misled.

3.2 Basics and Background

The long-term tracker's task, which should be solved in the proposed system, is not easily
solvable with a system based on a tracker only. Majority of trackers need to be re-initialized
after their loss or after a full occlusion occurs, as was described in section 2.3.

Therefore, the system proposed in this thesis is a combination of three parts; the tracker,
to track object with respect to movement history, the detector, to re-initialize tracker after
object loss, and an adaptive learning system. The adaptive learning system is needed to
update knowledge base for the detector during the long-term tracking.

The proposed solution is built on Georg Nebehay's master thesis system called OpenTLD
[8], where he implemented an improved version of T L D [17] by Kalal et al. The reason to
use this is that the system consists of the exactly same 3 parts as is described in previous
paragraph. Another reason, but equally weighted, is that it is considered as a state of the
art system for a long-term object tracking in this work.

As was mentioned, the OpenTLD consists of three parts, as well as the system proposed
here. The schematic diagram of the proposed solution can be seen in figure 3.2. The tracking
part from the OpenTLD is fully replaced with a new one, presented in section 3.4.

21

O b j e c t

D e t e c t i o n ^

D e t e c t o r

T r a c k e r

F u s i o n

Adaptive learning

Outpu t

Figure 3.2: Proposed solution diagram.

The detection part is taken from the OpenTLD and remains almost unchanged. The
whole solution of the detection part is described in section 3.5, including the proposed
changes. The nature of the changes is rather cosmetic than functional.

As well as the detector changes nature, also the adaptive learning system is primar­
ily taken from OpenTLD. The importance of the adaptive learning system was described
in 2.3.3. As the proposed system tends to be long-term related, such a learning system
should be present. The overtaken adaptive learning system is described in 3.6.

The last significant part of the proposed system is a detector-tracker fusion system.
Such a part exists in the OpenTLD, but it does not do an actual fusion - it only prioritize
the tracker's output before the detector's one or vice versa, depending on their successes
and confidences. The proposed detector-tracker fusion is introduced in section 3.7.

3.3 Object Representation

The object representation is the way the object is treated in the system internally. Several
principal methods were described in section 2.1, with main ways to compare and match
them.

As the object representation affects the whole system's performance significantly, it
needs to be chosen with caution. In this section an object representation is proposed. At
first, the object model for tracker is described, as it is the main task what the system should
perform. Then, as the system also consists of the detector, a different object model used by
the detector is described in the second part of this section. Both parts contain also reason,
advantages and disadvantages of these proposals.

3.3.1 Object Mode l for Tracker

The main task of the proposed system is an object tracking. As it was noted in 2.2.2,
the tracking means a frame-to-frame tracking. During this task the object needs to be

22

represented by its model, and the object model description is content of this subsection.
During the investigation phase, some critical areas where standard and state of the art

trackers are failing were observed. As could be seen in many works [17, 13, 29], the standard
solutions are able to track standard objects quite well. However, when they were tested
to track an object on a specific dataset, which is narrowly delineated in section 5.1, they
performed very poorly.

The main problem of the majority of trackers was the inability to track limited size
objects due the absence of significant features to track, e.g. S U R F or SIFT keypoints. In
the specific dataset, the objects are typically very limited in size and good feature points
are often missing completely or there are very few of them, like one or two. This is very
often beyond the edge of successful tracking. To perform successful point-based tracking
on such low information objects, also the points representing the objects need to be less
informative.

Although the quality of such points will be low, we still can choose the best of them.
The object in the tracker is represented by 16 points, which are chosen with respect to [40].
The total amount of points was set empirically, based on their success during tracking.

The points are represented in their 11 x 11 neighborhood as a raw patch. This results
in 16 patches of size 11 x 11, which represent the object. A n illustration of selection of the
point selecting from the detection to description can be seen in 3.3.

i Detect
\ points

Figure 3.3: Object model for tracker.

To increase overall quality of points to track, it is important to ensure that the points
are generated from the object area. As stated before, the object is determined by its
rectangular bounding box. But generally, the object is not rectangle-shaped and detecting
points in the whole rectangle could end with points detected on background, instead of on
the object. This is obviously wrong, so a mask computation approach is presented.

The mask computation comes from the assumption that inside the object's bounding
box is the object and partially a background and outside the bounding box there is only the
background. The mask should reflect the difference between the object and the background
to distinguish between them.

Then, the mask is 2-dimensional matrix of the same size as the original bounding box
symbolizing a difference inside and outside the box. The difference is also enhanced with
coefficient, which reflects a distance from the bounding box borders. The reason for that
is to penalize regions in the middle of the bounding box, as the object is expected to be in
the middle rather than near the borders.

Extract
patches

23

A

t*
D

d
T

•
X

b B

c

C

Figure 3.4: Computation of a mask for tracker point generation.

In figure 3.4 on the left, there is a diagram of mask computation. It symbolizes regions
which are compared to compute their similarity and the distances for coefficient penaliza­
tion. The corresponding equation is in 3.1.

p = NCC(T,A)*{1

NCC(T,B)*{1

NCC(T,C)*{1

NCC{T,D) * (1

(a/hf)+

(b/wf:

(c/hf)

{d/wf

1+

+
(3.1)

On the right side of figure 3.4, there is a pure mask which represents the impact of the
coefficient. The lighter area means that it is more likely the object than the background,
and the level of brightness is the certainty.

Figure 3.5: The original bounding box with surroundings and a corresponding mask.

The figure 3.5 shows the mask results themselves. On the left, there is an original
bounding box with a bit of surroundings, because it is required as is written above. The
original bounding box is highlighted. Then, on the right side, there is a resulting mask.
It is clearly seen that the background, although it is quite cluttered, is recognized by the
algorithm and the darker areas primarily shape the object.

The points to track are then generated from the bounding box and with usage of the
mask. The mask is binarized and used and the chosen points to track should be mainly
from the object area rather than from the cluttered background.

As mentioned in 2.1.4, the generated points could be connected to provide better overall
quality. A limited connection will be proposed in section 3.4.3, but it is only a weak connec-

24

tion. We suppose that any type of tighter connection would bring additional computational
cost or inability to handle non-rigid object. The connection proposed further should solve
the points relations well.

3.3.2 Object Mode l for Detector

As the detector treats the object differently from the tracker, the object model will be differ­
ent, too. The straightforward solution is to use template, as was presented in section 2.1.1.

The object model in the detection task is an inseparable part of the detector type as well
as the adaptive learning system. For that reason and the fact that the detector development
is not going to be solved in this work, the object model of the detector is also taken over.

Therefore, the model in the detector is a simple rectangle-shaped patch of the object
area. To eliminate an influence of the background (as the object is usually not rectangle-
shaped as well), the patch is normalized. The normalization is done by subtracting a patch
overall mean, to reduce patch elements standard deviation. As a side effect, this normal­
ization leads also to partial uniform illumination invariance, which is also an appreciable
benefit.

Resize to
15 x 15 px

Subtract

mean

Figure 3.6: Object model for detector.

The patch is finally re-scaled into 15 x 15 dimensions. The main reason is to unify
patches, which will by compared pixel-by-pixel, yet they can be in different sizes as the
object may scale in time. The whole process of transformation the object in the scene into
internal object model can be seen in figure 3.6. As mentioned already, the advantages are
primarily in speed domain, but also a lower influence of e.g. uniform illumination or scale
deformation.

3.4 Object Tracking

The main part of the proposed complex system is the tracking itself. This is going to
be the core part and its success is crucial for the whole system. As was shown, the ob­
ject representation intended to be used in the tracking are weak corner and peak points.
Their quality needs to be supported in the tracking so the new method called Multiple
Bidirectional Tracking (MBT) is presented in section 3.4.1.

Then, the tracking itself is proposed in section 3.4.2. This is based on sliding window
approach and the proposed method Multiple Bidirectional Tracking. The tracked patches
are weak points in their limited neighborhood and the comparison metric used is normalized
cross-correlation.

The final part is about an estimation of a new bounding box parameters, based on the
original points to be tracked and their tracked images. The method is based on median
flow [16] and contains also a scale prediction.

25

3.4.1 Mult iple Bidirectional Tracking

A conventional technique in the tracking field is an approach called forward-backward track­
ing. It comes from a simple idea, that tracking of a point a in a frame pto forward to a
point 6 in a frame pti should work as well as the tracking of the point 6 in the frame pn
backward to the point a in the frame pto- Therefore, every tracking should be followed by
the same tracking, only with switched frames and points, to validate the tracking.

The conventional method was extended by Kalal et al., when they introduced a method
called Forward-Backward Error (FBE) [16]. The difference between the traditional way
and the FBE is in the error measurement. The distance between the original point and the
backtracked point is measured simply using the Euclidean distance and it is called FBE. If
the error overcrosses a given threshold, then it is rejected. The threshold can be also set
dynamically and with respect to the target application.

Figure 3.7: KalaPs Forward-Backward Error.

The quality of the FBE has been proven and it does exactly what it should do. A n
illustration can be seen in figure 3.7, where the point at from the frame Ft is tracked into the
point Q+i inf frame Ft+i, which is then tracked backward into the point q . The distance
between the points at and q is computed and it is stated as the FBE.

The weakness of the FBE comes with usage of poor quality points to track. A poor
quality point refers to a point which is hardly repeatably searched and barely unique. Such a
point is therefore tracked forward, its image is tracked backward and the error is measured.
As the error is very high due to the poor quality, the tracking is rejected. It should be
noted that the refection is correct and expected, as the tracking most probably failed.

The extreme case of this problem can be a situation, when all or almost all points are
rejected and the overall tracking fails. This work could represent such situation, because
it was mentioned that such poor quality points should be used in the tracker part (sec­
tion 3.3.1). It is expected that the proposed points in problematic scenes (e.g. background
clutter et al.) would have high overall FBE and the whole tracking process would fail.

The proposed method is based on the forward-backward principle, but in contrast with
the traditional FBE, it proposes to go deeper in tracking algorithm itself and to rather
substitute the tracking criteria with the backward tracking ability. In simple words, this
means that it does not only measure the error, but effectively increases the tracking quality.

The extension is based on results of continuous testing which shows that the best can­
didate tracking image is not always the correct tracking image, but almost every time the
correct one is among three the best tracking candidates. Therefore, the proposed method
suggests tracking every point multiple times in forward direction in order to choose more
the best candidates than traditionally only one.

26

For the backward tracking, which is technically the same tracking only with swapped
data, the multiple tracking is suggested as well. The method is called Multiple Bidirectional
Tracking and it ends with n candidates for every tracked point and with m candidates of
backward tracked points. Then, the FBE is computed for every backtracked point (we have
n x m o f them), and if more of them is below a threshold, the lowest is chosen.

•<
- J *

^ c 3 t + i

\ a t = c 2 1
t

^ @ r f
- — " % 2 2 O*

c 1 2 t ^ ^ ^ ^ H ^ j i ^ ^

F o* c t o«—

r c 2 t + i 3^

r t • ^ • c V i r t + l

Figure 3.8: Multiple Bidirectional Tracking.

The whole proposed method is much easily understandable from an image. In figure 3.8
there are two consecutive frames of the same video sequence just like in the previous example
of FBE (figure 3.7). In the first frame Ft a point at is set and its image a^+i in frame i*t+i
is to be found.

Then, 3 out of the most probable candidates of the point at+i are computed in frame
Ff+i; they are called c£ + 1 , c f + 1 and c f + 1 . Each of the candidates is then backtracked
twice, which ends in 6 candidates of the backward test. As can be seen in the figure, the
backtracked point cf 1 is similar to original point at and therefore its FBE is equal to zero.
As the searched point at+i is then claimed the forwardly tracked point c^ + 1 , because the
point cf1 is among its backtracking candidates.

The exact amount of forward and backward points is 5 and 3 respectively and it was cho­
sen experimentally. Higher number of candidates in forward tracking has serious decreasing
impact on computational performance, and both the forward and the backward number of
candidates bring beside the more correctly tracked points also a number of wrongly tracked
points, yet undetected. A n experimental evaluation of different values of both numbers is
evaluated in section 5.5.

As stated already, this improvement should cover the correct correspondence and the
tracker should get more quality tracked points. Therefore, the absence of significant points
to track in the tracked object due to its small size should be compensated slightly, as the
system should be able to track also with low quality points.

3.4.2 Patch Tracking

The object is tracked in the form of a set of points with their neighborhoods, as was
described in section 3.3.1. The point in its neighborhood is in scope of this work called a
patch.

Regarding the described new approach in tracking called Multiple Bidirectional Track­
ing, every single tracking has to end in a list of probable future positions to enable sorting
and choosing more of the probable positions. This was described in the previous section.

As a sequel to that, the Lucas-Kanade optical flow [25] cannot be used. It is designed to

27

follow a ridge or a valley in a matrix of partial derivations. Therefore, it basically leads to
only one local maximum and no multiplication is possible. It was described in section 2.2.2.

More of the local maximums need to be localized. Thus, a sliding window approach
is used. This was described before as well in section 2.2.1. The resulting 2-dimensional
matrix (figure 2.5) makes it possible to find out the local maximums and to measure their
values. This is a fundamental requirement for the Multiple Bidirectional Tracking.

The difference from simple object detection (as the sliding window approach is one out
of primary object detection methods) is a limitation of sliding window search space. This
is also one of the parameters of this approach; to set where the patch can be searched for,
which equals to a maximal allowed object movement.

The parameter is internally called maximal allowed object movement (maom) and it
represents exactly what it stands for. Every single patch is searched in a window with a
center in the original patch's center position and with both the width and the height of two
times the maom size.

The searching metric is NCC as well as the metric in mask computation (section 3.3.1).
The local maximums are then easily obtained and regarding the MBT, a very similar track­
ing is performed with these points, only with opposite direction.

3.4.3 Next State Estimation

This section is dedicated to a problem of next state estimation from the tracked points.
The input of this functional block is a set of tracked points, both the original ones and the
tracked images, and the original bounding box. On the output there is a new bounding
box, estimated for the new state.

The first thing which is needed to investigate, is whether the object moved, and if so,
to where. This is done separately for x-axis direction and y-axis direction. The movement
is applied to the original bounding box, so the next state is recursively estimated on the
basis of the previous state.

Figure 3.9: Median Flow illustration. In the figure there exists 9 vectors vl...v9 and their
median vector and a mean vector. The vectors v6, v7 and v8 can be considered as outliers
and it can be seen that the median vector is more robust to them from its definition and it
follows the majority flow. Instead, the mean is affected by the outliers.

The method of finding the movement is called Median Flow []. The method builds

28

on computing movement vector for every single successfully tracked point and choosing
a median of these vectors as the resulting movement vector. As was said, this is done
independently for x-axis and y-axis. A n illustration of the median flow of a set of points'
movement vectors is in figure 3.9

The median flow has a significant advantage in high robustness of error which can be
caused by outliers. Therefore, we can easily do the median flow without taking them into
account. A different situation is in scale estimation.

The scale estimation is the second step in the next state estimation process. The scale
is not necessary an integral part of the new state estimation, but it is worthy. A reason
can be extending the object bounding box and thus extending a space for better point to
track generation. And of course the opposite reason, the reducing of the object bounding
box when its reducing can improve the object-to-background ratio.

The outliers are filtered out by their deviation from the mean. Thus, a standard devia­
tion a of the movement in both the x-axis and the y-axis direction is computed. It is known
from tye definition that the distance shorter or equal to 2 x a from the mean includes 95%
of all values for normally distributed samples. According to that, the tracked points which
are too distant from the mean by more than 2 x a, are discarded.

This outliers removing requirement also comes from the use of Multiple Bidirectional
Tracking, which on one side increases a number of successfully tracked points, but on the
other side increase the number of false positive trackings as well.

y
,g[6,5]

,f[2,4]

,e[2,3] #d[5,3]

. ,a[l , l] ,b[4,l] ,c[9,l]

0 X Distance matrix

y
,g[7,5]

. ,f[l,4]

. ,e[l,3] ,d[5,3]

. ,a[l,l] ,c[9,l]
_b[4,0]

0 X Distance matrix

Median((D2-Dl) x) = 1 Median((D2-Dl) y) = 0

Figure 3.10: Scale computation.

Since the outliers are filtered out, the scale can be computed. This is performed by

29

comparing distances among original tracking points and their tracked images. Above the
original points an each-to-each absolute distance is measured and a triangular matrix of
distances is stored. This is illustrated in figure 3.10, with the original points topology and
the corresponding each-to-each distance triangular matrices, where the x-axis distances are
in the upper triangular matrix and the y-axis direction distances are in the lower triangular
matrix. Both the triangular matrices are without diagonal values, as that measurement is
meaningless.

On the bottom line, there are the tracked points in a new, x-axis scaled topology. The y-
axis position of these points stays unchanged. Then, there is also the matrix with triangular
matrices, firstly for the x-axis direction and then for the y-axis one.

To compare those matrices, a difference between the original topology matrix and the
new topology matrix in a by-element meaning is computed. Finally, the median value of
the difference is considered as a majority scale. Again, this is done separately for the x-axis
and y-axis directions.

This approach provides an incremental change of the bounding box, with respect to the
recursive tracking itself. The only disadvantage can be the possibility of cumulative error,
but this is common for the whole recursive tracking process. The rotation or other object
deformations are not considered in this work.

3.5 Object Detection

When the tracking is not working for any reason, a detector is necessary. This can happen
if the object disappears from the frame completely, if it is covered with another object (no
matter whether entirely or only partially) or when we are not able to track because we lost
our tracking points, e.g. due to frame-cuts or because of fast camera movements.

The detector used in the proposed solution is taken from OpenTLD is left almost un­
changed and hence is not an original work here. But since the detector is a part of proposed
system, it is described in this section, including the updated parts.

The core idea of the detector is described in the subsection 3.5.1. There are also some
problematic parts mentioned, when the detector could fail instantly, as well as the proposed
changes against the original OpenTLD's detector.

3.5.1 Cascade Detector

The detector used in OpenTLD uses the sliding window approach described in 2.2.1. The
detector respects cascade (or pyramidal) principles and therefore consists of four stages.
The stages are the following:

1. Foreground Detection

2. Variance Filter

3. Ensemble Classifier

4. Template Matching

Obviously, in the intended general use, any background image will not exists, hence the
Foreground Detector is meaningless. The next 3 stages are taken from OpenTLD only with
minor changes. A n illustration of the suggested cascade is in figure 3.11.

30

Variance Filter

Input ' s t n e patch
variance above

threshold?

No

Yes

Ensemble Classifier

Are randomly
chosen points

similar enough?

No

Yes

Template Matching

Is the patch closer
to positive samples

rather than negatives?

Yes

No

Patch rejected Patch accepted

Figure 3.11: Proposed cascade detector. The detector consists of 3 stages - the Variance
Filter, the Ensemble Classifier and the Template Matching.

The first stage in the cascade detector is then the Variance Filter. As it is the first
stage, the main task is to reject as many false positives as possible. The measure metric is
a variance amin and the purpose is to reject patches with lower variance than the patch with
tracked object. The threshold is set and it is taken from OpenTLD unchanged.

The variance filter generally denies all the solid or near solid texture subwindows, where
the object most probably is not, and it does it rapidly. As the variance of a subwindow
increases, it becomes more interesting and the probability that it contains searched object
also grows.

The next cascade stage is the Ensemble Classifier. This classifier uses a method known
as random fern classification [32]. The classifier decision is based on comparing several
randomly chosen pixels instead of the whole frame, and therefore it is a good trade off
between the fast variance filter and the next stage, the template matching.

The last stage of the detector is the already mentioned template matching. To be more
accurate, the approach is build on a method called nearest neighbor and the distance metric
is also described NCC. To be able to perform any nearest neighbor method, samples from
all classes must exist. Therefore, the detector with cooperation of adaptive learning system
(described in section 3.6) stores a set of both positive and negative templates.

The difference between the last stage from the classical nearest neighbor approach is in
the output. The traditional nearest neighbor method outputs the nearest class from the
sample data to the new input sample. In the cascade classifier, the output has to be either
yes or no. So the evaluation searches for the nearest neighbor from the positive class as
well from the negative class, inverts them and then computes a new value called confidence.

dN = l- min(NCC(T, m)) (3.2a)
dP = 1 - min{NCC{T,pi)) (3.2b)

c o n f = d^TTp (3 - 2 c)

The whole computation can be seen in equations 3.2a, 3.2b and 3.2c. The function
min(NCC(T,rii)) stands for the nearest neighbor of template T from a set of negative
samples n when the distance metric is set as normalized cross-correlation (NCC).

31

res = (conf < @p)?True : False (3-3)

The thresholding part needed by the cascade classifier is in equation 3.3. The value of
the Qp is set as 0.65 as in [28]. In the res there is a final cascade detector decision whether
to accept the patch or not.

3.5.2 Detector's Confidence

It was shown that the last part of the cascade detector also contains a confidence measure­
ment. This is important for further fusion, because the detector's and the tracker's outputs
are not fused uniformly, but the fusion is weighted.

The confidence is used also for the tracker. It is done easily by performing the very same
computation with identical knowledge base, only with the tracker's output. The fusion is
described in section 3.7.

3.6 Model Learning

As mentioned before (long-term factor is described in section 2.3.3), a long-term tracking
needs to cope with the object appearance changes. It is necessary to cover these changes
in the proposed system to successfully perform the long-term tracking. The obvious and
at the same time the easiest thing is to try generate some variations with added rotation
or scale in detector itself. Unfortunately, that can be quite computationally expensive and
results are at least unsure.

A different approach is to develop an adaptive learning model to update and extend the
positive samples database when object is certainly found. This solution should cover more
object appearance changes, it even enables a complete object evolution. On the other hand,
it expects more sophisticated solution. Such a solution can be computationally expensive
as well as quite cheap and therefore very fast. The same diversity can supervene from the
point of view of memory consumption.

The proposed solution is an adaptive learning system, which is actually a rather a naive
approach. The main idea is to manage two databases of positive and negative sample
objects. Those samples are normalized and stored, so no actual learning is done and the
knowledge base is simply extended.

The solution is overtaken from OpenTLD []. A l l the changes made on it are described
in this section. Primarily, the limits to allow the learning in every single frame were made
stricter in order to prevent a false positive learning. The adaptive learning system can be
divided into an initial learning part and an in-progress learning part. This is the contents
of this section with all the subsections.

3.6.1 Initial Learning

The first point where the model learning system is called is immediately after the user
chooses the object rectangle. By drawing rectangle around an object of interest on the first
frame, the user indicates that he wants to track that object. The rectangle given by the
user is stored as the first positive sample.

Then, more positive and negative samples are generated from the initial frame. The
whole frame is covered by many different rectangles preserving the original rectangle aspect

32

ratio, with a limited scale and with fixed moving step. It ends with the whole frame covered
with rectangles, as can be seen in [28].

The positive samples are generated from the set of the rectangles according to their
overlap with the original one. Up to 10 samples sorted by their overlap are chosen. The
lowest overlap which can be added to positive samples set is 60%. The similar approach is
done for the negative samples. The only difference is that up to 100 rectangles with overlap
lower than 20% are added.

It is noticeable that the quality of the rectangle set by the user is critical. The object
should be fully inside the rectangle and at the same time the rectangle should be as small as
possible. However, the user-caused error is a limitation of every manual or semi-automated
system, where the user has its active role.

3.6.2 In-progress Learning

It is highly recommended to update the detection model in time in order to improve results
in the long-term tracking. Fortunately, the system based on a set of positive and negative
samples is very easy to update. If the system confidence is high enough, it just adds
a positive sample to the positive knowledge base and negative samples to the negative
sample knowledge base.

The important thing is to determine whether to learn and whether rather not to learn.
As any other system, also the proposed system is not perfect and occasional error can occur.
It does not need to be a problem, if the system can detect the mistake and does not perform
online learning. However, this could end in cumulative error which is described in detail in
the next section (3.6.3).

If we expect the system is correct in its output, we can learn. As was mentioned, the
learning is simply a new sample addition. The new sample is normalized as any other
sample, which means that the mean is subtracted and the sample is resized to 15 x 15 size.
Also the negative samples (those which do not overlap with the positive one) are added to
the negative sample set with the same normalization.

The sample problem, which can be reached with this adaptive learning model, can be
linear growth on memory needed to store all the positive and the negative samples. It
is a question of an experiment whether that problem becomes a real or stays only in the
hypothetical area. Nevertheless, this issue is not dealt with in this thesis.

Wi th the system runtime, also the quality of the detector increases, which comes from
the last stage. The critical part is right after the initial learning, when the object model in
not described well. It also requires a low factor of false positive learning, but it generally
becomes better in time.

3.6.3 False Positive Detection

The already mentioned critical point of the adaptive learning system is the involvement of
false positive detection result among the positive sample set. From that point, the detector
results should be considered untrustworthy due to the presence of a negative sample inside
the positive sample set. The problem becomes more crucial if we realize that the last part
of the detector, the template matching, uses the nearest neighbor approach.

Therefore, the learning is enabled only in some specific cases, when it is safe to say that
the confidence of the system is high enough. One of the cases is a successful fusion. Then it
is really safe to note that the system is sure enough and the learning can be performed. The
second case is after successful and high enough confident tracking. This case was actually

33

a part of original OpenTLD, only the limits to involve new sample into positive database
set were increased.

Another solution of this problem can be extending the nearest neighbor algorithm, to
use e.g. 3 of the nearest samples from both the positive and the negative sample set. Hence,
the minority of false positive samples in the positive samples database should not have any
big influence, as the voting is extended. This solution will be incorporated only if the
problem becomes more serious.

That should be enough to handle the most critical part. After all, a solving of the
learning system is not a part of this thesis and is mentioned here only because it is an
inseparable part of long-term tracking.

3.7 Detector-Tracker Fusion

The last part of the proposed tracking system is called a Detector-Tracker Fusion. It is
an original work and the purpose is to improve the quality and the stability of the overall
output result by fusion of both the tracker's and the detector's outputs, if both of them are
valid.

It was mentioned before that the last stage of the cascade detector contains also a
confidence estimation. It was also mentioned that the very same approach can be used to
estimate a confidence for the tracker, which is comparable to the detector's one. Therefore,
if we have both results valid, the fusion can be considered.

Tracker's Detector's
result result

confidence

Figure 3.12: Detector-Tracker Fusion workflow diagram. If both the detector and the
tracker have their results valid, it is considerable to fuse them to achieve higher stability
and quality of the proposed system.

The whole decision workflow diagram can be seen in figure 3.12. It is shown that another
condition for successful fusion is at least 40% overlap of the detector's and the tracker's
results. The reason is simple - if they do not overlap, one of them can be expected to be

34

wrong and a potential fusion of possibly correct and probably wrong can end only in wrong
result.

Therefore, they need to overlap at least a little. If they do not overlap or confidence of
any of them is too low, no fusion is performed. Then, the tracker is prioritized and if it is
at least a bit confident (more than 0.2, which basically means that it is not totally lost),
its result is used.

Otherwise, the detector's confidence is tested by the very same threshold value. Ana­
logically, if it passes, the detector's result is used. Finally, if none of these conditions is
satisfied, the object is marked as missing.

The fusion is computed as a weighted mean of both results and the weights are already
discussed confidences. The appropriate equations are shown in 3.4a, 3.4a, 3.4c and 3.4d.

X =
con ft *xt + confd * xd

con ft + confd

(3.4a)

y =
con ft *yt + confd * yd

(3.4b) y = con ft + confd
(3.4b)

w =
con ft *wt + confd * wd

con ft + confd
(3.4c)

h =
con ft *ht + confd * hd (3.4d)

(3.4e)

h =
con ft + confd

(3.4d)

(3.4e)

The [xt,yt], resp. [xd,yd] are coordinates of a center of the tracker's result, resp. the
detector's result. As a result, new coordinates [x, y] are computed. The fusion is done also
for the bounding box size, as it is shown in the last two equations.

The last part is a resulting confidence. The confidence is also fused, but this time it is
only averaged arithmetically. The only thing is that the higher confidence is counted twice,
as is expected the fused result if more confident than two single results. The equation can
be stated as in 3.5.

_ 2 * maxjconft, confd) + minjconft, confd) , ,
conj — - V>-v}

As it was already mentioned, the proposed fusion system should bring better system
stability and higher quality. A specific problem, which can be improved or partially reduced,
can be tracker's drift, when both the object and the camera does not move but due to
the noise and the internal tracker's work the resulting bounding box is drifting. After
incorporating the proposed Detector-Tracker Fusion, the tracker's drifting result can be
corrected by the detector from time to time.

3.8 Summary

This chapter described the proposed solution including the parts, which are not original.
The proposed solution is a complex tracking system with all parts needed to perform the
long-term visual object tracking.

In the first part, some expected behavior targets, especially system's inputs, outputs
and problems which should the system be able to handle are summarized. As the system

35

background was chosen the OpenTLD from Nebehay [], as it contains all the parts re­
quired for long-term tracking task. Also some limits which should be met are set in the
first sections, like real-time or near real-time performance.

Then the object representation was proposed. It was done separately for the tracker and
for the detector in appropriate section. The tracker's object representation was proposed as
a set of 16 points in their 11 x 11 neighborhood, searched by Good Features To Track []
concept. The detector's object representation is a patch reduced to size 15 x 15 with
subtracted mean of the patch.

The object representation in the tracker was used and the points quality was improved
by a newly proposed method called Multiple Bidirectional Tracking. This method builds on
the idea of tracking every point bidirectionally to measure its quality, but adds the points
tracking multiplication to improve the quality instead of simple measurement.

The points are then tracked by sliding window approach and the new bounding box is
estimated recursively. To determine majority tracking vector, a median flow is used. The
scale is estimated, too, and outliers are removed.

In the next section, the cascade detector is described. The cascade from OpenTLD is
overtaken with only minor changes, which are described. Generally, the cascade is built
from 3 stages - the variance filter, the ensemble classifier and the template matching.

Then the adaptive learning system is described. Again, the learning system is mainly
overtaken from OpenTLD, but for the completeness it is described here. Such a system is
generally necessary in a long-term tracking.

Finally, when both the tracker and the detector have their results, they can be fused.
The new Detector- Tracker Fusion system was proposed in the last section and it is expected
that it should bring both higher stability and confidence to the whole system.

36

Chapter 4

Implementation

This chapter is intended to describe briefly the implementation background. The implemen­
tation part of this thesis is attached to the printed version of this thesis and this chapter
should describe only the interesting and non standard ways, or algorithms of the newly
proposed methods.

Therefore, in the section 4.1 there is described the background, the original OpenTLD
[8], with a limited set of changes which were implemented in the original code. The section
is followed with the related section about the whole system structure (4.2).

The next three sections are dedicated to the new original methods proposed in the pre­
vious chapter. These are namely the Points To Track Generation in section 4.3, where the
mask and points to track are generated, then the Multiple Bidirectional Tracking describing
implementation details in section 4.4 of the originally proposed method for increasing the
quality during tracking, and finally the section Detector-Tracker Fusion where the short
description of the implementation of the proposed fusion is presented.

4.1 Technical Background

As it was numerously mentioned, this project builds on basics of OpenTLD by Nebehay [28].
Beside the structure advantages (the tracking-detection-learning), the implementation itself
has also several advantages. Thus, the source code, which is publicly accessible on the
Internet1, it was decided to use the code directly.

The source code is written in C++ and it is divided into a few logical blocks. The one
not related to tracking, but surely required is a system of reading input images or video
or input stream and providing the single frames one-by-one to the tracking system itself.
Also the output format is ready to be parsed automatically, hence the automatic evaluation
scripts were easy to implement.

Because the source code is already 4 years old, a structure update was needed. First of
all the component update was done. The OpenTLD uses OpenCV framework2, but due to
the long time, the version was obsolete. The update to the latest version was done, which
means that every use of a data type or a call of a function from OpenCV was replaced with
an alternative in the latest version.

Also, several third party dependencies were removed, if the function was replaceable,
which was often the Ccise, cis for example the new OpenCV contains much more functionality.

l rThe OpenTLD repository is on https://github.com/gnebehay/opentld.git
2OpenCV homepage is at http://opencv.org/

37

https://github.com/gnebehay/opentld.git
http://opencv.org/

Therefore, the dependency list was reduced rapidly. The code itself was updated from the
same reason. From time to time some approaches are more easily and effectively done with
standard C++ functions or again by the new OpenCV.

The initial code size was reduced by almost 20% only with removing redundant code,
unused (and probably not even intended to be used) functions and part of the code.

4.2 System Structure

The system structure is mainly overtaken. The basic diagram can be seen in figure 4.1.
The structure is divided into a library part and a utility part. The utility part contains the
input/output interface including configuration, mouse events handling and results printing
system.

Proposed
system

» Utilities

* Library

Support

Core

* Tracker

* Detector

Multiple
Bidirectional

Tracking

Variance
Filter

Ensemble
Classifier

NN
Classifier

Figure 4.1: Basic system structure.

In the utility part, the result application is named rtgot, which stands for Real-Time
General Object Tracker. That differs from the original opentld and the application also
differs internally.

The library part contains the tracking system itself. In conformity with the object
oriented approach the logical blocks are in separate files. The blocks can be summed as
a Core part, which is divided into two equal parts a ObjectTracker and a ObjectDetector.
The tracker part then contains primarily a MultipleBidirectionalTracking logical block, as
this is a core part of the tracker. The detector part contains all three stages as was de­
scribed in previous chapter. They are namely a VarianceFilter, a EnsembleClassifier and
a NN Classifier, which stands for the template matching part.

The Detector-Tracker Fusion is an internal part of the Core logical block. Also the
learning part is initialized from the Core part and the learning itself is performed by the
ObjectDetector, because the detector is learned.

Next to these two main parts, there is also a non-homogeneous block with support
functions. There are mainly conversion function, but also a bounding box definitions,
normalized patch structures and so on. Majority of these support functions was only
overtaken, the rest was extended and cleaned.

4.3 Points To Track Generation

The points used to track are generally quite weak, as was presented before, including the
reasons for that. Within the implementation process two different approaches were used.

38

Beside the proposed solution, also a pseudo random point generator of a Monte Carlo
type was used. The idea was to involve not only the strongest points, but also the weaker
ones, and lower computational cost, as no detection is needed. The method works as
following: generate pseudo random point coordinates [xj,yi] from the space of bounding
box. If the value of the mask in coordinates [xj,yj] is above 0.75 (on a scale from 0 to 1,
where 1 equals to 100% probability that it covers the object), then it is added to a list of
points. The pseudo code can be seen in 4.1.

Algorithm 4.1: Monte Carlo Points To Track Generation pseudo code.
input : bbWidt , bbHeight , nPoints , t h r e sho ld
poin ts = []

while (po in ts . s ize < nPo in t s)
do

x = rand () % bb . width
y = rand () % bb .he igh t

i f (mask [x ,y] > th re sho ld)
then

points . add(x ,y)
f i

done

Some of the generated points can be seen in figure 4.2. It can be seen that some of the
points are very hard to track and also some of them are multiplied. Another serious problem
which occurred was the computation cost. If the ratio between the object area to the whole
bounding box area is very low, the used time grows a lot, as there were many missed tries.
So, the computation cost, which was expected to be low due the non requirement of the
points detection, was not confirmed.

0 0
Hi .2 i L.

Figure 4.2: Results of Monte Carlo Points To Track Generation. On the left side there is the
original bounding box with its mask. On the right there is a set of enlarged points in their
neighborhood as they are supposed to be used in tracking. It can be seen that some of them
are duplicated as well as barely unique. The computational time was disproportionately
long due the number of missed generations.

The second approach is the one described in section 3.3.1. The chosen points should be
generally weaker than similar point detected by S U R F or SIFT like methods, but it should
be the best which can be found. Therefore, the points are detected by the method proposed
in [40].

The limit of the quality to accept points is set to a l%o of the quality of the best point
detected. Also it is set that the minimal distance between such detected points must be at

39

least 3 pixels. To get the points detected, the OpenCV function GoodFeaturesToTrack is
called with the mentioned parameters.

Figure 4.3: Results of G F T T Points To Track Generation. On the left side there is the
original bounding box with its mask again and on the right there are enlarged points in
their neighborhood generated by this method. It can be seen that the quality increased.

The results are shown in figure 4.3. The quality increased notably and the performance
as well. Although the points are detected in the first step, it means a finite time consumption
instead of random generation above. This approach is used in a final implementation, for
the reasons mentioned.

4.4 Mul t ip le Bidirectional Tracking

The originally proposed method called Multiple Bidirectional Tracking was described in
section 3.4.1. The method was deeply described and in this section some implementation
details are noted. The pseudo code can be seen in 4.2.

In the pseudo code, it can be seen that every point is tracked in its neighborhood
separately. Beside other implications, it means that the used structures can be reused and
a lot of initializations can be omitted. First of all, for every tracked point a neighborhood
is obtained from the first frame imgl . Then the neighborhood is searched in the second
frame imgj, which ends with a map of distances for every position, called fDistanceMap.
A visualization of such a map can be seen in figure 2.4.

In the distance map, the highest peaks are searched, exactly 5 of them for the forward
direction and 3 of them in the backward direction. Every of them is then searched in the
very same manner, but in the opposite direction. This is a content of the inner loop. At
the end of the inner loop, every backtracked point is appended into a list of all candidates.

At the end of tracking of each point in forward direction, the backtracked candidates are
evaluated. The candidate which was backtracked to the closest position from the original
point is chosen and the distance is stored. A sigraa is set, which is the maximal allowed
distance of the backtracked point. This is the same as FBE. So, if the stored distance is
smaller than the sigma, the candidate is stored as a correct tracking into appropriate list.

The list of the successful trackings is then used for the estimation of the next state,
which is described in 3.4.3. It ends with a new bounding box, which is in the one side
printed as a result and at the second side it is used as a bounding box for tracking between
the next frames pair.

40

Algorithm 4.2: Multiple Bidirectional Tracking.
input : imgl , imgj , rad ius = 32
output : s u c c e s s f u l l y T r a c k e d P o i n t s = []

foreach pt from points
do

ptNeighborhood = getPtNeighbordhood (pt , imgl)
fDistanceMap = computeDistance (ptNeighborhood , imgj , r ad ius)
fCandidates = f indPeaks (fDistanceMap , 5)
t rackedCandida tes = []

/ / Track every candidate backward and choose 3 of best candidates
foreach cand from fCandidates
do

candNeighborhood = getPtNeighbordhood(cand)
bDistantMap = computeDistance (candNeighborhood , i m g l , r ad ius)
bCandidates = f indPeaks (bDistantMap , 3)
/ / Copy the candidated to candidates array
t rackedCandida tes . add (bCandidates)

done

/ / Get d is tance of the c loses t backtracked point wi th the point
/ / which led to that t r a c k i n g
d i s t a n c e , btPt = ge tCloses tCand ida te (pt , t r ackedCandida tes)

/ / Add t r a c k i n g s that are c lose r than sigma
i f (d i s t ance < sigma)
then

s u c c e s s f u l l y T r a c k e d P o i n t s . add(b tPt)
f i

done

4.5 Detector-Tracker Fusion

The Detector-Tracker Fusion takes a small place in a code. It is designed as a decision tree
and so it is implemented. In the pseudo code 4.3 can be seen the pipeline which precedes
the very fusion.

The fusion is connected with permission to learning and with general validation sign.
This is signalized with the l e a r n V a l i d and v a l i d variables. The l e a r n V a l i d variable
signalize that the learning can be performed, if it is not disabled at all (from configuration,
mainly for testing purposes). The v a l i d variable is a general sign that the tracking was
valid at all. It means, that at least one part has a valid result and the object position can
be determined.

The confidence limits used in the pseudo code are default values, which are stored in
configuration file. Therefore, they can be changed, but this is the default settings which is
used in evaluation presented further. Generally, the logic says that the confidence can be
lower if the result was valid in previous frame and if not, in needs to be a bit higher.

4.6 G P U Acceleration

From the pseudo codes above is easily notable that many of the parts can be done in parallel.
Moreover, many of the loops operate on the same data, like two consecutive frames for all

41

Algorithm 4.3: Detector-Tracker Fusion.
input : t rackerBB , t rackerConf idence , detectorBB , de tec torConf idence

wasVal id
output : newBB, newConfidence , v a l i d , l e a r n V a l i d

i f (de tec to rConf idence > 0.5 &fe
t r ackerConf idence > 0.5 &&
computeOverlap (t rackerBB , de tec torBB) > 0.4)

then
newBB = fuseBBs (detectorBB , de tec torConf idence ,

t r a c k e r B B , t r acke rConf idence)
newConfidence = (2 * MAX(detectorConf idence , t r acke rConf idence) +

MIN(detectorConf idence , t r a cke rConf idence)) / 3.0
v a l i d = true
i f (newConfidence > 0.65)
then

l e a r n V a l i d = true
e l i f (wasVal id &fc newConfidence > 0.5)
then

l e a r n V a l i d = true
f i

e l i f (t r acke rConf idence > 0.2)
then

newBB = t rackerBB
newConfidence = t r ackerConf idence
v a l i d = true
i f (newConfidence > 0.65)
then

l e a r n V a l i d = true
e l i f (wasVal id &fc newConfidence > 0.5)
then

l e a r n V a l i d = true
f i

e l i f (de tec to rConf idence > 0.2)
then

newBB = detectorBB
newConfidence = de tec torConf idence
v a l i d = true

f i

the tracked points. Thus, a gpu acceleration of some of the parts is involved as well. For
that purpose the N V I D I A C U D A framework3 was chosen.

By the profiling of the proposed implementation was determined, that the bottleneck of
the proposed solution is in the multiple tracking in both direction for several points. This is
the part where the same image is compared several times with almost identical data, with
performing the same operation. That part takes by estimation almost 80% of the total
computational time.

As the acceleration is not the main part of this thesis, it stays in a form of a draft.
The acceleration was done mainly on the OpenCV side. The OpenCV contains modules
that are accelerated in G P U by C U D A framework. Therefore, only minor changes of data
structures, used functions and code structure were needed to achieve significant speed gain.
Better refactoring with a highlight on reducing a data transfers (as this is the most expensive

3 NVIDIA CUDA framework homepage is at https://developer.nvidia.com/cuda-zone

42

https://developer.nvidia.com/cuda-zone

operation in G P U acceleration field) could bring even higher performance gains, probably
multiplied.

4.7 Summary

The content of this chapter was a description of the implementation. As the implementation
is in separate media attached to the printed version of this thesis, this chapter contains only
a few important parts of it.

Firstly, the technical background was mentioned. It covered also a project structure
divided in some logical blocks. The blocks were primarily the ObjectTracker, the Object-
Detector and a support functions. It is based on C++ implementation of OpenTLD [28],
which uses an OpenCV. The original code was massively updated and simplified on the
level of logical blocks, on the level of code itself or about the dependency list, which was
pruned a lot.

Then the three main parts were described from the pseudo code point of view. It was a
section about generation of points to track, which also contains one unused approach from
the early implementation stages. Then, it is a section about Multiple Bidirectional Tracking
itself. As the main idea was exhaustively drawn in previous chapter, the implementation
details with the pipeline pseudo code were mentioned here. The last code part was about
the proposed Detector-Tracker Fusion. As it is designed as a decision tree and so it is
implemented. The pseudo code contains also the parts which permit the learning.

At the end the G P U acceleration is proposed. Many of the logical blocks of the proposed
system use a computation above matrices and majority of these parts can be done in parallel.
Some parts where the acceleration makes the biggest sense are emphasized and a further
enhancement is proposed.

43

Chapter 5

Evaluation

The evaluation of the proposed solution is as important as the proposal itself. In this
chapter, the evaluation is summarized. The chapter consists of several chapters. Wi th
exception of the first section, which is focused on an evaluation dataset, the sections are
dedicated to evaluation of the proposed solution from several different points of view.

Every section is divided into two parts; a description and results. The reason is to
precisely define what is tested in the particular section, how the the accurate procedure,
what is the reason for testing it and what are expected results. In the results part there are
the results evaluated exactly by the procedure noted before and the results are presented.

It was noted that the first section is different from the others. The section is called
Evaluation dataset (section 5.1) and the used dataset is described in it. The dataset is a
basis for every experiment proposed further.

The following sections are dedicated to experiment themselves. The first experiment
is about the proposed system's quality (section 5.2), the second is about the achieved
performance (section 5.3), then the section about stability evaluation in 5.4 comes.

The last two experiments are about evaluation of original parts of the proposed system
(section 5.4) and about the comparison with other state of the art solutions. This is also
the second most important experiment, besides the quality focused one.

The last section summarizes results from separate experiments and interprets them.
A l l the interpretation of results is done there and not in the sections themselves. It is so
because of consistency; the result is not the same as the result interpretation.

5.1 Evaluation Dataset

This section describes a dataset, which is used to evaluate all experiments, including the
evaluation of the separate components as well as the comparison evaluation. The dataset
itself consists of two main parts, which are combined.

The first part consists of the standard dataset for visual object tracking. The used set
is a subset of dataset used in VOT'14 [22], which collects the dataset in a complete set
used to evaluate visual object trackers worldwide. The reason to use this set of evaluation
sequences is to evaluate the proposed system on similar data as alternative solutions.

The used sequences from VOT'14 are all in format of consecutive images, which comes
from the video decomposition. The images are in resolution from Q V G A to V G A and in
color. However, the color information is not used in the proposed solution, so it is not
important. A l l the images are labeled manually by a committee of V O T in the meaning of

44

bounding rectangle and its orientation, which is done severally and the result is done by a
mean. The groundtruth then consists of coordinates of four vertices of a bounding rectangle
[xi, yi,X2,2/2,%3,2/3,£4,2/4]- This format comes from the evaluation used in V O T , where
they compare the overlap of the groundtruth bounding box and the tracker's bounding
box, which should be able to estimate also the rotation.

In this thesis the evaluation is done by computing a distance from the object center.
The reason is noted in the following paragraphs and comes from the labeling of the new
dataset and the fact that the proposed system should not be designed to estimate rotation,
only scale. It means that the V O T groundtruth has to be recomputed. The equation is
shown in 5.1 and it comes from the groundtruth representation mentioned in the previous
paragraph.

The second part is an original newly proposed dataset for visual object tracking pur­
poses. The sequences have been taken from airport Medlanky 1 and the tracked subjects
are aircrafts. The difference from the standard dataset noted in the previous paragraphs is
a limited size of the objects and their distance. The aircrafts are generally very far, which
means the already mentioned limited size and quite high SNR (signal-to-noise ratio). To
summarize that, the objects are low contrast, blurred and very small.

On the other hand, the cluttered background problem mentioned in 2.3.4 or the similar
objects problem noted in 2.3.5 almost never appears. But, the camera is very unsteady, so
the full occlusion problem described in section 2.3.2 appears quite often.

The new dataset was annotated manually by me. The groundtruth is set as coordinates
of the object center [x, y] in particular frame. The labelling was repeated few times and the
results have been averaged by a geometric mean. It was done for every proposed sequence
of the new dataset.

As there are several generally unsolved problems mentioned in section 2.3, the dataset
tries to cover them. The proposed system is designed to be general, hence all the mentioned
problems should be tested. The problems and their occurrences in single testing sequences
are summed in table 5.1.

The values noted in the table are either in percentage form, absolute form or binary
form. The percentage value means a ratio between frames where the problematic parts
occur and all frames. The binary form consequently signalize if the problem occurs at
all. It is primarily by problems which are not exactly measurable, like scale or appearance
changes.

A simple visual dataset overview can be seen in figure 5.1. There is a representative
from every dataset sequence with a noted object. This is only to see how the object and
the overall scenes look like.

5.2 Quality Focused Experiment

The experiment focused on quality can be considered as the most important experiment at
all. The quality is the value which is the most interesting and which is very often the only

1Public civil domestic airport Medlanky, Brno, Czech Republic

X =

y =

X\ + X2+ X3 +

4
m + V2 + 2/3 + 2/4

4

(5.1)

45

Name FrCnt FrRes P O FO C B CS IC S SO A C
Bal l 602 320x240 0% 0% No Yes No 32% No No

Bicycle 271 320x240 1% 0% Yes Yes No 37% No No
Car 252 620x272 10% 0% No Yes No 66% No Yes

Drunk 1210 508x336 0% 0% No Yes No 6% Yes Yes
F i sh l 436 460x259 0% 0% Yes Yes No 67% Yes Yes

03
T5

Gymnastics 207 320x180 0% 0% Yes Yes No 22% No Yes
Pi
a3 Jogging 307 352x288 7% 0% No Yes No 40% No No
4̂
CO

Polarbear 371 640x360 0% 0% No Yes No 13% Yes Yes
Skating 400 640x360 11% 0% Yes Yes Yes 16% Yes Yes
Surfing 282 320x240 11% 0% No Yes No 0% Yes No
Woman 597 352x288 57% 0% No Yes No 7% No No

_M> Helicopter 440 640x480 4% 3% No No No 34% No No
o Plane51 923 640x480 2% 7% No No No 63% No Yes

Table 5.1: Dataset description. The abbreviations are following: FrCnt stands for total
frames count, FrRes for frames resolution, PO for Partial Occlusion, FO for Full Occlusion,
CB for Cluttered Background, CS for Camera Stability, IC for Illumination Changes, S for
Scale, SO for Similar Objects and AC for Appearance Changes.

evaluation field for many solutions. Regarding that, the informative value of the quality
targeted experiment was the highest.

Going further, the quality is also an entry point for next testing. Saying this in other
words, it does not make any sense to evaluate performance of stability of the system which
does not work as expected. This can be determined from a low value of quality.

In this case, it is not reasonable or even possible to expect any overall quality. The
quality strongly depends on used dataset, besides the system itself. It can be expected
that the quality for majority of the evaluation dataset will be about the higher boundaries.
According to general purpose of the tracker, it is not expected to fail at all in any of the
evaluation datasets.

5.2.1 Description

The quality is evaluated using all the datasets. The wider the set of datasets is, the better.
The quality is meant to be an average success rate of a success rate in every frame of a
particular sequence. A l l the rates of one sequence are averaged in a one value for every
dataset.

If the object center predicted by the tracker lies within a circle with 30 pixels in diameter
with center in the groundtruth, the results are considered as a 100% successful. If it lies
out of the circle with a diameter of 70 pixels and with center in the very same groundtruth,
the results are set to 0% instead. The success rate between these two limitation boundaries
is computed linearly. The reason for the hard limits is that the evaluation script does not
know the size of the object. The equation is shown in 5.2.

rate = 1 - V (* 2 - * i) 2 + - l f t) 2 - * (5 2)

7 — a

The a is the lower boundary and it equals to 30 pixels. The 7 is the opposite limit and

46

Figure 5.1: Visual description of evaluation dataset. The sequences are following: a) ball,
b) car, c) bicycle, d)surfing, e) jogging, f) woman, g) gymnastics, h) skating, i) drunk, j)
polarbear, k) fishl, 1) plane51 and m) helicopter.

its value is already mentioned 70 pixels. The [xi,yi] are coordinates of the groundtruth
object center and the [£2,2/2] are the position of the center predicated by a tracker.

For every dataset, the evaluation is done in 10 runs, which are then averaged and
additional values like standard deviation, minimum and maximum are obtained.

5.2.2 Results

On the introduced datasets the evaluation was done. The results are summarized in a
table 5.2, where specific numbers can be found, and in the graph in figure 5.2, for a better
perspective.

The graph aggregates all overall success rates, including the standard deviations, min-
imums and maximums as was described in description. The legend is attached. Both the
graph and the table contain the same values, only the table contains the accurate values
and the graph is well-arranged visualization.

47

Dataset Overall StdDev Minimum Maximum
Ball 67.8 8.3 55.3 82.4

Bicycle 79.9 10.8 65.9 99.5
Car 74.7 6.9 63.1 81.8

Drunk 57.4 29.0 14.3 87.9
Fishl 11.1 1.3 10.0 13.3

Gymnastics 39.9 3.1 36.5 47.3
Jogging 89.5 2.0 86.6 92.7

Polarbear 89.2 2.2 86.1 91.8
Skating 39.3 11.5 20.5 55.2
Surfing 100.0 0.0 100.0 100.0
Woman 90.2 8.3 69.8 98.6

Helicopter 15.5 12.0 7.0 32.5
Plane51 88.0 1.1 87.0 89.1

Table 5.2: Quality experiment - results.

5.3 Performance Focused Experiment

The proposed system performance comes from its title. It is also mentioned in section 3.1.1,
where it is said that the expected performance is about real-time or near real-time.

This section describes the performance experiment and the acquired results. The system
performance can be critical for some applications, where the tracker is not the primary
function or where the solution computation power is limited. Such applications are typical
for a field of robotics, where the tracking is only one of many and the solution hardware
is typically low-end and relatively weak, as the power consumption of such devices is often
more important.

5.3.1 Description

The measured value unit is a number of frames per second (fps). The fps value is obtained
as inverted value of a time consumed to proceed one frame. The relation between time
consumed and the fps value is on equation 5.3.

fps = ^ (5.3)

The overall value is a geometric mean of the fps value for all frames, where the tracking
is performed. The „tracking is performed" statement references to a state, when the object
position is estimated in the particular frame, no matter if successfully or not. The point
what matters is that the tracking algorithm does its work.

The reason is simple. When the object is lost (in meaning that the tracking is persuaded
that it is lost), the tracking algorithm does not need to be executed and the speed is not
relevant. Thus, the speed measurement of non working solution is a bit meaningless.

The evaluation is done on all dataset sequences. For every sequence the speed for every
valid frame is measured and averaged using geometric mean, and the minimal and maximal
speed for single frame is noted. The standard deviation is computed for every sequence
using the values for single frames.

48

• Average Minimum Maximum . l Standard Deviation
Overall
success

rate

Figure 5.2: Visual results of quality focused experiment.

The proposed MBT multiplies the number of trackings done for one frame pair. There­
fore, the performance evaluation is done for a system with usage of the MBT as well as for
the system without it.

Every sequence is evaluated 10 times for both the MBT presences, to get more statis­
tically informed values. The minimal and maximal values are absolute values over all the
runs, whether the overall speed and the standard deviation are obtained by averaging the
results in single runs with geometric mean.

5.3.2 Results

The experiment was executed on a machine with a Intel Core i7-3520M (the IvyBridge
Mobile) C P U at frequency 2.90GHz. The speed is not meaningful in itself, but it can be
observed at least in general and also as a comparison for the different parameters. The
results are again in both the table 5.3 and in the figure 5.3.

The visualization shows overall average fps for the system with and without the MBT.
From the results can be seen that the system's performance does not depend on the used
dataset, which basically means the object size and its movement model does not affect the
computational part. The occasional high or low number of fps is caused by higher number
of failures during single tracking step.

5.4 Stability Focused Experiment

The stability of a system is often not one of the most observed factors. However, the
proposed system is evaluated also in this area. The stability in scope of this thesis means
a rate how much the results are stable, on a level of every frame and on a level of whole
evaluation sequence.

49

M B T enabled M B T disabled
Dataset FPS StdDev M i n Max FPS StdDev M i n Max

Ball 24.3 0.7 11.2 75.2 45.8 2.6 16.0 93.9
Bicycle 23.1 0.2 14.3 35.1 40.6 0.6 25.0 62.3

Car 20.7 0.0 12.2 23.0 34.1 1.0 19.4 41.1
Drunk 17.2 1.3 6.5 22.3 28.5 1.6 10.2 35.4
Fishl 14.4 0.1 7.2 15.6 32.9 0.1 19.4 37.9

Gymnastics 22.5 0.5 12.8 28.8 38.7 1.0 31.9 54.0
Jogging 22.7 0.2 14.3 25.4 37.4 3.7 21.4 48.3

Polarbear 16.3 0.3 9.7 17.9 24.4 0.2 13.7 30.1
Skating 16.3 0.7 7.1 34.3 26.6 2.4 7.3 42.4
Surfing 24.6 0.6 14.6 27.4 49.3 0.3 34.8 56.8
Woman 22.1 0.4 9.0 37.3 37.6 2.2 17.4 69.4

Helicopter 15.3 1.2 5.1 17.1 21.4 3.1 7.7 26.9
Plane51 16.0 0.5 4.4 16.8 22.9 1.7 10.4 24.6

Table 5.3: Performance experiment - results.

The system is not stabilized with any extra stabilization method, like Kalman filtering.
The only part which could provide more stability is a fusion detected in section 3.7. As
the frames are samples from continuous stream and there are no frame-cuts or any other
moments which can have serious impact on the continuity, the evaluation of the stability
makes good sense.

5.4.1 Description

The stability is measured as a side effect of the quality and the performance experiments.
The standard deviation of the quality among the whole runs was already displayed as a
part of quality experiment in section 5.2. The standard deviation of performance results
was also collected, again on the level of whole runs.

This experiment is based on standard deviation among results obtained during several
testings. As the system contains some parts, where the random number generator occurs
as one of the inputs, the stability can be statistically measured.

Therefore, 10 runs focused on performance are executed and the standard deviation of
the result is computed. The standard deviation is computed also above all overall perfor­
mance results, collected from the whole run. The evaluation is done only above a subset
of the whole dataset pool, when the most important results from the performance and the
quality point of view were measured. Also an overall value is added, which summarizes a
mean over all particular values of all datasets with a standard deviation above those results.

Similar situation is in the stability evaluation of the quality. The 10 runs are executed
and overall success rate is computed. The standard deviation is the obtained from these
overall results. This is already mentioned as the evaluation of the system quality earlier.

5.4.2 Results

The stability experiment was evaluated as a part of the other experiments, primarily the
performance and the quality focused ones. Therefore, the table 5.4 only summarizes the

50

FPS M B T enabled M B T disabled
50

25 J j j j j J j - . I j J
^ ^ ^ N ,& & £ & & £ J? #

Figure 5.3: Visual representation of the performance focused experiment.

results, which are the standard deviations in this context. To understand the results, the
lower value means the system is more stable, the minimum is then 0, which is equivalent
of perfectly steady results of the system.

The maximum and in the same time the worst value of stability of the system's quality
is 50, which basically means that the system either totally succeeds or totally fails. For
the performance experiment it depends on actual fps value, but the general „the lower the
better" is valid, too.

Dataset
Experiment Ball Polarbear Woman Plane51 Total

Quality 8.3 2.2 8.3 0.7 7.4/7.5
Performance 0.7 0.3 1.1 0.5 0.6/0.4

Table 5.4: Stability focused experiment. The results represent standard deviation from
appropriate experiments, which is here interpreted as a system stability.

It can be seen that the stability for single datasets can quite vary, which can point to
some problematic parts and implicate further work.

5.5 Component Focused Evaluation

During the chapter designing the solution, some of the new methods were introduced. There
are namely the Points To Track Generation, which consists of mask computation primarily
in section 3.3.1 and the Multiple Bidirectional Tracking, which is the core contribution.

The both contributions will be evaluated in this section. The expected results are clear;
to prove that the use of the proposed parts has an impact on better quality performance of
the whole system and that the system without usage of these parts is not as good as with
them.

51

5.5.1 Description

The component experiment was performed on subset of dataset chosen by random. The
reason for this limited evaluation is a number of combinations for which the evaluation
needs to be executed. The components are evaluated from the point of the quality.

It was stated that the two tested components are the MBT and the mask generation.
The MBT has few parameters which need to be evaluated. From the section 3.4.1 it is a
number of points tracked in forward direction m and a number of points tracked backward
for every forwardly tracked points n. The situation when the m = 1 and the n = 1 is the
same as the conventional Forward-Backward Error []. The specific numbers which will
be used in for the parameters are m £ 1, 3, 5 and n £ 1, 2, 3

For the mask there are no parameters which need to be set. So the only flag about the
mask computation is whether the mask is used or not. A l l the possibilities are evaluated in
a subset of all combinations, as it does not make any sense to evaluate an acquisition for a
mask for all of the combinations of MBT.

On the proposed dataset to evaluate component tests, the particular evaluations are
executed in agreement with the performance and the quality experiment introduced above.
So it means that all the results are obtained from several runs.

5.5.2 Results

The proposed solution was evaluated from the point of view of involving newly proposed
component parts, namely the mask computation (stated as mask in the graph and the table
below) and the Multiple Bidirectional Tracking (the MBT abbreviation bellow). For both
the components a number of parameters were set, and all of them resulted in a table 5.5
and a simplified view can be seen in figure 5.4.

Parameters
Dataset 1/1 1 / 1 / M 3/2 3 / 2 / M 5/3 5 / 3 / M

Ball 59.8/09.4 56.9/14.8 64.2/13.4 64.5/15.4 67.9/08.7 67.8/08.3
Bicycle 82.6/09.9 72.9/07.3 86.5/08.6 83.3/11.6 82.8/06, 79.9/10.8

Car 74.4/08.1 74.6/08.4 82.1/03.0 74.2/06.7 81.0/02.1 74.7/06.9
Jogging 88.8/04.4 75.0/26.9 91.2/01.4 90.1/01.6 88.8/02.4 89.6/02.0

Polarbear 87.7/04.2 87.3/03.5 89.1/01.6 88.5/04.1 89.5/02.3 89.2/02.2
Woman 67.4/21.4 66.2/23.3 76.3/27.9 79.1/19.4 76.3/14.5 90.2/08.3

Helicopter 17.1/12.6 31.2/27.5 45.3/28.8 32.7/00.8 63.6/21.7 15.5/12.0
Plane51 87.1/01.2 85.5/00.2 85.2/00.7 85.2/00.7 83.9/00.2 88.0/01.1

Table 5.5: Component focused evaluation - results for all input parameters.

In the table 5.5 the parameters noted are in format m/n[/M], where the m stands for
the number of forwardly tracked points, the n is for the backwardly tracked points and the
/M part signalize whether the mask is used (the /M presence) or not. The same notation is
used also in the graph 5.4.

52

2/3 • 3 /5

2 / 3 / M • 5 / 3 / M (proposed)

100

Figure 5.4: Component focused evaluation, the simplified visual representation.

5.6 Comparison to State of the A r t Solutions

The final evaluation is based on comparison with other state of the art solutions. As the
state of the art were chosen the original OpenTLD citenebehaythesis and the C M T [29].
The first one uses Lucas-Kanade optical flow [] as the tracking core and the points to
track are generated by uniformly distributed grid.

The second one, C M T , uses a B R I S K [] descriptors for points detected by F A S T [34,
35] detector. As the tracking core, it uses a Lucas-Kanade optical flow as well.

The results are expected to be equal with the state of the art solutions on the standard
datasets and to exceed them in the newly proposed datasets. This should be a general sign
that the proposed solution is successful.

5.6.1 Description

A l l needed results of the proposed system are already gathered in the previous experiments.
So we need to evaluate also the state of the art solutions, to do the comparison.

The used dataset to comparison is set as a subset of the whole dataset, chosen by overall
success rate of the proposed solution, to equally cover an axis of success from the lowest
success rate achieved to the highest success rate achieved.

The comparison is done on the quality level as well as on the performance one. The
other trackers are compiled locally and evaluated with the same manners as the proposed
tracker. It means that the runs are repeated several times and the results are combined
together, to get statistically relevant results. The other reason is to evaluate all solutions
in the same way.

53

5.6.2 Results

The evaluation was done for all the trackers in the same way. As was stated, both the
performance and the quality focused experiments were performed. The results can be seen
in graph in figure 5.5, or in the table 5.6 for exact values, too.

Quality experiment Performance experiment
Dataset Our OpenTLD C M T Our OpenTLD C M T

Ball 67.8/08.3 98.6/00.0 97.8/00.7 24.3/00.7 119.6/03.6 152.8/02.6
Bicycle 79.9/10.8 07.0/00.0 65.6/02.9 23.1/00.2 144.7/04.3 35.4/00.7

Car 74.7/06.9 63.9/00.0 62.4/00.0 20.7/00.0 108.9/03.2 77.0/00.7
Jogging 89.5/02.0 25.4/00.0 81.8/00.0 22.7/00.2 196.8/07.1 132.4/01.5

Helicopter 15.5/12.0 04.3/00.0 45.5/00.0 15.3/01.2 56.9/09.5 61.6/00.9
Plane51 88.0/01.1 07.9/00.0 03.5/09.8 16.0/00.5 107.2/01.9 40.1/01.7

Table 5.6: Comparison to state of the art solutions - exact results for both the performance
and the quality focused experiments. The most significant numbers (both the best and the
worst) are highlighted.

In the table there are the exact achieved values for all solutions. Beside the average
value (both the overall success rate and the fps), also the standard deviation is presented.
The standard deviation again stands for the deviation between single runs of the same
experiment which were used to get overall result.

Overall
success

rate

100

Propopsed solution OpenTLD C M T

50

1 J I I I I 1

* * < ř
^ _ > ^

& < r

Quality comparison Performance comparison

Figure 5.5: Comparison to state of the art solutions, the visual representation.

The graph quite clearly demonstrates that the proposed solution achieves better results

54

in the quality focused experiment. The performance of the proposed solution was lower,
but it still met the requirements and it is outweighed with better performance.

5.7 Summary

In this chapter, an evaluation was designed and executed. At first, the evaluation dataset
was introduced in detail, including the problems which occur in the particular datasets.
The next part is dedicated to the experiments themselves. Every experiment was described
deeply, to permit its repetition. It contains also the expected results.

The first experiment was focused on quality. This is apparently the most important
evaluation and very often also the only one, which is executed. It was shown that the
proposed system reaches a satisfactory level of quality across a various set of dataset,
which was proposed before. There is also no dataset, which would fail totally, which was
the target result in this experiment. The mean overall success rate is 64.81 %, while the
minimal is 11.1 % and the maximal 100.0 %.

The next evaluation was aimed to the performance domain. The measured value is fps
and the expected result is real-time of near real-time. The achieved value was on average
19.7 fps for the complete proposed solution, the highest value was then 24.6 fps and the
lowest was 14.4 fps. It is useful to mention that even the highest average value achieved
(24.6 fps) is for the system with limited object movement to 32 pixels in all directions,
which is more than the majority of the state of the art trackers. Therefore, the real-time
expectation was fulfilled.

The experiment in the next section focuses on the system's stability. The stability is
deduced from the standard deviation of the quality and the performance experiments. No
specific result was expected, but the achieved stability can be considered as satisfactory.

The newly proposed components of the system, the mask computation and the Multiple
Bidirectional Tracking are evaluated in the next experiment. For the majority of the tested
parameters, it was proven that the MTB brought an increase in quality. On the other hand,
the mask was far not always better and the system without the mask sometimes behaved
better. In overall, with both components connected in the system, the improvement was
reached. Furthermore, it can be seen from the table that the majority of best results
achieved solution with parameters set as 5 forward trackings and 3 backward trackings.
That seems as the best parameters observed so far.

The last part was about the comparison with other state of the art solutions. It was
shown that in the standard dataset the proposed solution performed comparable to the
other solutions, and in the newly proposed part of the dataset the proposed solution also
overperformed them. Both results are considered as very valuable.

The proposed system was evaluated from several points of view. The evaluation demon­
strated that the proposed solution including all the parts performs better than the system
without the improvements. Moreover, the proposed system also overperformed the state of
the art solutions in the quality focused experiment in several evaluation datasets. It was
also the aim of this thesis.

55

Chapter 6

Conclusion

This work is aimed to the visual object tracking in video with focus on long-term task. The
tracking object is supposed to be general object and the proposed system has no previous
knowledge about it. The system should work in real-time speed and should learn the model
adaptive.

The proposed solution was designed on top of knowledge of recent related work in a field
of object trackers and object detectors. The detector is an integral part of the long-term
task, which means also of the proposed solution. Some previous approaches to perform
visual object tracking in context of long-term behavior and primarily used methods were
summarized in chapter 2. In the chapter, some problems of object tracking, which are
either generally unsolved or at least still problematic, are also described.

The system was designed as a complex system built from three main parts; the tracker,
which is the core part, the detector, which allows to re-initialize the tracking process after
its lose, and the adaptive model learning, which is also a required part to successfully handle
long-term caused appearance changes. This design of the proposed tracking system is in
chapter 3. The system is designed to be able to successfully solve tasks with the problems
described in the first chapter and still be general as much as possible.

The completely new tracking core was proposed, based on the proposed method called
Multiple Bidirectional Tracking. The method comes from the Forward-Backward Error
from [], but instead of simple measurement of a quality of tracking points it adds a
solution how to increase the quality by the tracking itself.

The object is tracked frame-to-frame and is represented by its bounding rectangle. As
the system is based on tracking weak quality corner points by approach called GoodFea-
turesToTrack [], it is necessary to pick out these corner points from the object area,
instead of the background regions. For that purpose a mask computation method, to esti­
mate the object shape from its bounding rectangle was also introduced.

The stability of the system was improved by another proposed part called Detector-
Tracker Fusion. As the name suggests, it is the component called when both the tracker
and the detector have valid results. It helps to reduce cumulative tracker's error as well as
the tracker's drift.

The system is implemented on the background of the OpenTLD tracking system by
Nebehay []. The implementation uses the latest OpenCV framework and it is written in
C++ with respect to object oriented principles.

The system was evaluated from several points of view, which are all described in chap­
ter 5. The first experiment focuses on the most expected quality, which stands in the scope
of this project as an overall success rate averaged for all single frames of an image sequence.

56

Then, the experiments focused on the computational performance, the stability of the sys­
tem results and the particular improvements follow. The last experiment compares quality
and performance results of the proposed solution with other state of the art solutions.

The evaluation revealed that the proposed system behaves better in a quality domain
than the other solutions, in a majority of tested datasets. Moreover, in the original part of
evaluation dataset, the differences were much more significant. In the performance domain,
the proposed system reaches a speed between 10 and 25 fps, which satisfies the real-time
requirement.

Besides the evaluated results, a project which comes from this thesis was presented at
Excel@FIT 2015, the student conference and Faculty of Information, Brno University of
Technology. The paper called Real-Time Long-Term Visual Object Tracking was accepted
for oral presentation as well as for the poster presentation, and in the associated competition
won the first prize in a category Innovation Potential and the fifth prize in a category
Technological Level. The accepted paper is attached in appendix A .

Regarding the proposed solution and its evaluation, including the evaluation performed
before accepting the paper for the conference, the thesis tasks were accomplished.

The proposed solution can be further improved in many aspects. The first one can be
a better online learning system, which performs the actual learning. This could help the
detector in better behavior and therefore the overall quality should increase significantly.
The tracker acceleration, which was drawn in implementation chapter, could be analyzed
deeper to achieve higher computational performance. A shorter time needed to proceed
frame could mean more time to improve results in a quality field. Furthermore, the system
is designed to be modular and even the main parts like the detector or the tracker can be
easily replaced with different methods.

57

Bibliography

[1] A L A H I , A . , O R T I Z , R . , A N D V A N D E R G H E Y N S T , P . F R E A K : Fast retina keypoint. In
Computer Vision and Pattern Recognition (CVPR), 2012 IEEE Conference on (June
2012), pp. 510-517.

[2] B A B E N K O , B . , Y A N G , M . - H . , A N D B E L O N G I E , S. Robust object tracking with
online multiple instance learning. Pattern Analysis and Machine Intelligence, IEEE
Transactions on 33, 8 (2011), 1619-1632.

[3] B A Y , H . , E S S , A . , T U Y T E L A A R S , T . , A N D G O O L , L . V . Speeded-up robust features
(SURF). Comput. Vis. Image Underst. 110,2, (June 2008), 346-359.

[4] B E A U C H E M I N , S. S., A N D B A R R O N , J . L . The computation of optical flow. ACM
Computing Surveys (CSUR) 27, 3 (1995), 433-466.

[5] B I B B Y , C . , A N D R E I D , I. Real-time tracking of multiple occluding objects using
level sets. In Computer Vision and Pattern Recognition (CVPR), 2010 IEEE
Conference on (2010), I E E E , pp. 1307-1314.

[6] B O U G U E T , J . - Y . Pyramidal implementation of the affine lucas kanade feature
tracker description of the algorithm. Intel Corporation 5 (2001).

[7] B R A S N E T T , P . A . , M I H A Y L O V A , L . , C A N A G A R A J A H , N . , A N D B U L L , D . Particle

filtering with multiple cues for object tracking in video sequences. In Electronic
Imaging 2005 (2005), International Society for Optics and Photonics, pp. 430-441.

[8] C O M A N I C I U , D . , R A M E S H , V . , A N D M E E R , P . Kernel-based object tracking. Pattern
Analysis and Machine Intelligence, IEEE Transactions on 25, 5 (Apr. 2003), 564-577.

[9] F A R N E B A C K , G . Two-frame motion estimation based on polynomial expansion. In
Image Analysis. Springer, 2003, pp. 363-370.

[10] F L E E T , D . , A N D W E I S S , Y . Optical flow estimation. In Handbook of Mathematical
Models in Computer Vision. Springer, 2006, pp. 237-257.

[11] F O R S Y T H , D . , A N D P O N C E , J . a modern approach, 2nd ed. ed. Pearson, Boston,
2012.

[12] G A B R I E L , P . F . , V E R L Y , J . G . , P I A T E R , J . H . , A N D G E N O N , A . The state of the
art in multiple object tracking under occlusion in video sequences. In Advanced
Concepts for Intelligent Vision Systems (2003), pp. 166-173.

58

[13] H A R E , S., S A F F A R I , A . , A N D T O R R , P . H . S. Struck: Structured output tracking
with kernels. In Computer Vision (ICCV), 2011 IEEE International Conference on
(Nov. 2011), pp. 263-270.

[14] I S A R D , M . , A N D B L A K E , A . Condensation—conditional density propagation for
visual tracking. International journal of computer vision 29, 1 (1998), 5-28.

[15] K A L A L , Z . , M A T A S , J . , A N D M I K O L A J C Z Y K , K . Online learning of robust object
detectors during unstable tracking. In Computer Vision Workshops (ICCV
Workshops), 2009 IEEE 12th International Conference on (2009), I E E E ,
pp. 1417-1424.

[16] K A L A L , Z . , M I K O L A J C Z Y K , K . , A N D M A T A S , J . Forward-backward error:
Automatic detection of tracking failures. In Pattern Recognition (ICPR), 2010 20th
International Conference on (Aug. 2010), pp. 2756-2759.

[17] K A L A L , Z . , M I K O L A J C Z Y K , K . , A N D M A T A S , J . Tracking-learning-detection. IEEE
Transactions on Pattern Analysis and Machine Intelligence 34, 7 (2012), 1409-1422.

[18] L A M P E R T , C . H . , B L A S C H K O , M . B . , A N D H O F M A N N , T . Beyond sliding windows:
Object localization by efficient subwindow search. In Computer Vision and Pattern
Recognition, 2008. CVPR 2008. IEEE Conference on (2008), I E E E , pp. 1-8.

[19] L E U T E N E G G E R , S., C H L I , M . , A N D S I E G W A R T , R . Y . BRISK: Binary robust
invariant scalable keypoints. In Computer Vision (ICCV), 2011 IEEE International
Conference on (Nov. 2011), pp. 2548-2555.

[20] L E W I S , J . Fast normalized cross-correlation. In Vision interface (1995), vol. 10,
pp.120-123.

[21] L I N , L . , W U , T . , P O R W A Y , J . , A N D X U , Z . A stochastic graph grammar for
compositional object representation and recognition. Pattern Recognition 42, 7
(2009), 1297-1307.

[22] L I R I S , F . The visual object tracking vot2014 challenge results.

[23] L O W E , D . G . Object recognition from local scale-invariant features. In Computer
Vision, 1999. The Proceedings of the Seventh IEEE International Conference on
(Sept. 1999), vol. 2, pp. 1150-1157.

[24] L O W E , D . G . Distinctive image features from scale-invariant keypoints.
International Journal of Computer Vision 60, 2 (Nov. 2004), 91-110.

[25] L U C A S , B . D . , A N D K A N A D E , T . A n iterative image registration technique with an
application to stereo vision. In Proceedings of the 7th International Joint Conference
on Artificial Intelligence - Volume 2 (San Francisco, C A , USA, Apr. 1981),
IJCAI'81, Morgan Kaufmann Publishers Inc., pp. 674-679.

[26] M A T T H E W S , I., I S H I K A W A , T . , A N D B A K E R , S. The template update problem.
Pattern Analysis and Machine Intelligence, IEEE Transactions on 26, 6 (June 2004),
810-815.

59

[27] M E D R A N O , C , H E R R E R O , J . , M A R T I N E Z , J . , A N D O R R I T E , C . Mean field approach
for tracking similar objects. Computer Vision and Image Understanding 113, 8
(2009), 907-920.

[28] N E B E H A Y , G . Robust object tracking based on tracking-learning-detection. Wien,
2012.

[29] N E B E H A Y , G . , A N D P F L U G F E L D E R , R . Consensus-based matching and tracking of
keypoints for object tracking. In Winter Conference on Applications of Computer
Vision (Mar. 2014), I E E E .

[30] N U M M I A R O , K . , K O L L E R - M E I E R , E . , A N D V A N G O O L , L . Object tracking with an
adaptive color-based particle filter. In Pattern Recognition. Springer, 2002,
pp. 353-360.

[31] O L S O N , C . F . Maximum-likelihood template matching. In Computer Vision and
Pattern Recognition, 2000. Proceedings. IEEE Conference on (2000), vol. 2, I E E E ,
pp. 52-57.

[32] O Z U Y S A L , M . , F U A , P . , A N D L E P E T I T , V . Fast keypoint recognition in ten lines of
code. In Computer Vision and Pattern Recognition, 2007. CVPR'07. IEEE
Conference on (2007), Ieee, pp. 1-8.

[33] R A B I U , H . Vehicle detection and classification for cluttered urban intersection.
International Journal of Computer Science, Engineering and Applications 3, 1
(2013).

[34] R O S T E N , E . , A N D D R U M M O N D , T . Fusing points and lines for high performance
tracking. In IEEE International Conference on Computer Vision (Oct. 2005), vol. 2,
pp. 1508-1511.

[35] R O S T E N , E . , A N D D R U M M O N D , T . Machine learning for high-speed corner detection.
In European Conference on Computer Vision (May 2006), vol. 1, pp. 430-443.

[36] R O W L E Y , H . A . , B A L U J A , S., A N D K A N A D E , T . Human face detection in visual
scenes. School of Computer Science, Carnegie Mellon University Pittsburgh, PA,
Nov. 1995.

[37] R U B L E E , E . , R A B A U D , V . , K O N O L I G E , K . , A N D B R A D S K I , G . O R B : A n efficient

alternative to SIFT or S U R F . In Computer Vision (ICCV), 2011 IEEE International
Conference on (Nov. 2011), pp. 2564-2571.

[38] S C H W E I T Z E R , H . , B E L L , J . W . , A N D W U , F . Very fast template matching. In
Computer Vision — ECCV 2002, A . Heyden, G . Sparr, M . Nielsen, and P. Johansen,
Eds., vol. 2353 of Lecture Notes in Computer Science. Springer Berlin Heidelberg,
2002, pp. 358-372.

[39] S H A N G , J . , C H E N , C , L I A N G , H . , T A N G , H . , A N D S A R E M , M . A novel

fragments-based similarity measurement algorithm for visual tracking. Journal of
Computers 9, 9 (Sept. 2014), 2167-2172.

60

[40] S H I , J . , A N D T O M A S I , C . Good features to track. In Computer Vision and Pattern
Recognition, 1994- Proceedings CVPR '94-, 1994 IEEE Computer Society
Conference on (June 1994), pp. 593-600.

[41] S T A L D E R , S., G R A B N E R , H . , A N D V A N G O O L , L . Beyond semi-supervised tracking:
Tracking should be as simple as detection, but not simpler than recognition. In
Computer Vision Workshops (ICCV Workshops), 2009 IEEE 12th International
Conference on (2009), I E E E , pp. 1409-1416.

[42] S U N , X . , Y A O , H . , A N D Z H A N G , S. Contour tracking via on-line discriminative
appearance modeling based level sets. In Image Processing (ICIP), 2011 18th IEEE
International Conference on (2011), I E E E , pp. 2317-2320.

[43] V I O L A , P . , A N D J O N E S , M . Rapid object detection using a boosted cascade of
simple features. In Computer Vision and Pattern Recognition, 2001. CVPR 2001.
Proceedings of the 2001 IEEE Computer Society Conference on (2001), vol. 1, I E E E ,
pp. 501-511.

[44] W E L C H , G . , A N D B I S H O P , G . A n introduction to the kalman filter, 1995.

[45] Y I L M A Z , A . , J A V E D , O. , A N D S H A H , M . Object tracking: A survey. .4cm computing
surveys (CSUR) 38, 4 (2006), 13.

[46] Y I L M A Z , A . , L i , X . , A N D S H A H , M . Contour-based object tracking with occlusion
handling in video acquired using mobile cameras. Pattern Analysis and Machine
Intelligence, IEEE Transactions on 26, 11 (Nov. 2004), 1531-1536.

[47] Z H U , Q. , W A N G , L . , W U , Y . , A N D S H I , J . Contour context selection for object
detection: A set-to-set contour matching approach. In Computer Vision-ECCV
2008. Springer, 2008, pp. 774-787.

61

Appendix A

Paper at conference ExcelOFIT
2015

A paper based on a work on this thesis was proposed and accepted for the student conference
Excel@FIT 2015. The paper is called Real-Time Long-Term Visual Object Tracking was
published in the conference proceedings and is attached from the next page.

62

h t t p : / / e x c e l . f i t . v u t b r . c z

Real-Time Long-Term Visual Object Tracking
Martin Simon*

Abstract
Visual object tracking with focus on occlusion, background clutter, image noise and unsteady
camera movements, those all in a long-term domain, remain unsolved despite the popularity it
experiences in recent years. This paper summarizes a related work which has been done in trackers
field and proposes an object tracking system focused on solving mentioned problems, especially the
occlusion, rough camera movements and the long-term task. Therefore, a system combined from
three parts is proposed here; the tracker, which is the core part, the detector, to re-initialize tracker
after a failure or an occlusion, and a system of adaptive learning to handle long-term task. The
tracker uses newly proposed approach of bidirectional tracking of points, which are generally weaker
then commonly used keypoints. Outputs of both the tracker and the detector are fused together and
the result is also used for the learning part. The proposed solution can handle mentioned problems
well and in some areas is even better then the state-of-the-art solutions.

Keywords: object tracking — bidirectional tracking — partial occlusion — long-term tracking — full
occlusion — rough camera movement

Supplementary Material: Demonstration Video

*xsimon 14@stud.fit.vutbr.cz, Faculty of Information Technology, Brno University of Technology

1. Introduction

Despite the fact that a visual object tracking in video
has become a popular topic in recent days, it still
remains generally unsolved. There is a significant
amount of very efficient object tracking systems which
are sufficiently accurate and which work in real-time.
Unfortunately, many problems, such as occlusion, no
matter if full or partial, background clutter, noise or
unexpected rough camera movements, are problem­
atic parts of many recent visual object tracking related
projects and actually exclude them from daily profes­
sional usage.

In this work I would like to focus on recent solu­
tions in the field of tracking and try to build an object
tracking system whose efficiency and performance are

at least the same as the performance of the state-of-
the-art trackers. Also, I would like to improve some
critical parts which have serious impacts on accuracy
or are too narrowly focused and lack generality.

Further aim of this work is to bring a new challeng­
ing evaluation dataset with some highlighted problems,
which the standard trackers handle incorrectly. These
problems include primarily very small objects of in­
terest or very similar objects in comparison with the
background. The new tracking system should be de­
signed in the way to handle both the standard visual
object tracking evaluation dataset and the new chal­
lenging dataset, ideally without any significant speed
or accuracy reduction.

This paper is organized as follows. In section 2
related work is summarized. The section is further di-

http://excel.fit.vutbr.cz
mailto:14@stud.fit.vutbr.cz

vided into a part describing current situation in objects
representations (Subsection 2.1), tracking approaches
are described in subsection 2.2 and the last subsec­
tion provides a short overview of complex tracking
solutions presented in recent days.

The core contribution of the paper is in section
3, where the main parts of the proposed solution are
described. The experiment is described in section 4,
which contains the evaluation as well. In the last sec­
tion (5) the results are interpreted and a conclusion is
given.

2. Related Work
A significant amount of work has been written recently
regarding the field of the object tracking in a video. In
this section, related parts of tracking based systems are
described.

2.1 Object Description
An object representation sets the apriori abilities of
every tracking system. The object representation is
a way how to treat the object model internally in the
system. The system abilities are highly correlated with
the type of the object representation.

Possibly the most straightforward way how to rep­
resent an object is to use a visual image template [1,2].
The weakness of this representation can be an inability
to cover object appearance changes, which may occur
in case of tracking non-rigid objects or during tracking
for longer periods.

Another option to represent an object could be a
description with a set of good-to-track keypoints. The
term keypoint is commonly understood as a significant
point like corner or peak with its neighborhood. This
method is generally much better than templates, but the
quality of the keypoints is critical. There are various
widely used descriptors, such as [3, 4, 5, 6].

There are also some other object description meth­
ods, like contours [7], which is basically an object ge­
ometry, or complex object representations [8], which
combine other models together.

2.2 Localization Methods
Localization can be presented as the core of every
object tracking system. The used approaches can be di­
vided into two types; frame-to-frame (recursive) track­
ing and in-frame detection. The main difference is in
usage of history of object position.

In the frame-to-frame tracking the history is used.
It brings better handling of the missing information,
but the processing error can be cumulated over time.
On the other side, the in-frame detection does not

use the history and searches for the object in every
frame separately. The error cannot be cumulated, but it
cannot handle the missing information neither. There
is also less information in a single frame then in a
sequence of multiple frames.

The object detection is performed with a method
called sliding window, and it is widely used in many
trackers and detectors [9, 10, 11]. This is generally
a very slow approach, but the performance can be
improved by developing some kind of pyramid to dis­
card as many true negatives in early stages as possible
[10, 12, 13, 14].

The recursive tracking is an approach much related
to the object tracking. The reason is clear - the tracking
is performed on top of a sequence of frames and it
comes with higher density of information than single
image. If it is possible, it is a good approach to use
this kind of added information.

One way how to use this information is to model
object with its movement, very often in form of po­
sition and velocity. Then, the future object position
can be estimated and therefore the amount of possible
object positions is significantly reduced. This is used
in systems based on particle filters [15, 16] or optical
flow [1, 17], among others.

2.3 Complex Solutions
The tracking system parts described in previous section
are building blocks of complex tracking systems. Such
a complex long-term tracking system requires a tracker
for the basic tracking function, a detector for handling
situations when the object gets lost or the tracker has
failed, and some kind of learning system to handle
object appearance changes. This does not necessarily
require a presence of an object model [18], but the
adaptation needs to be present in some way.

A huge number of visual object trackers exists.
One often highlighted system is T L D [12, 19]. It is a
tracking system with sufficient tracking performance,
subtitled tracking-learning-detection. A tracking sys­
tem based on strong keypoints and their voting can be
C M T [20], which is considered a good representative
of key-point based trackers. Another tracker which is
good to mention is Struck [21], which is a tracker so­
lution with adaptive visual templates and online S V M
classifier. A l l of these trackers are considered state-of-
the-art.

3. Proposed Solution

The long-term tracking system proposed here is based
on OpenTLD [10], an improved C++ implementation
of TLD [12]. The main reason is that the TLD consists

of two main parts, the tracker and the detector, which is
improved with adaptive learning system. In OpenTLD,
there is more improvements, like breaking away from
the necessity of strong keypoints.

Therefore, the proposed solution is the OpenTLD
with a completely new tracker and a new system of
fusion of outputs of both the tracker and the detector.

The particular tracking problem to solve is defined
in 3.1. It directly leads into the object representation,
which is described in 3.2. The core contribution of this
paper, the bidirectional tracking proposal, is described
in 3.3. Finally, the results of the detector and the
tracker are fused in accordance with 3.4.

3.1 Problem Definition
The problem of visual object tracking in video se­
quence can be described as follows. The input of the
system is a sequence of monochromatic video frames.
The output can be generally a four dimensional vector
(x, y, w, h)t symbolizing the object position and the size
in every frame. The result can be also a zero vector, if
the object is not present in a particular frame.

The algorithm is commonly initialized by the user,
after marking the object with bounding rectangle. The
object is generally unknown to the system and this user
input is the very first information about the object.

So far the tracking is not different from the de­
tection of an object. The difference comes with the
usage of history of results to improve result in follow­
ing frames. Unfortunately, an error introduced in early
states leads to bigger error at the end, or eventually, a
failure during the process.

3.2 Object Representation
The tracking object can be generally anything which
exists in the real world. Therefore, every good object
tracking system needs to find a proper object represen­
tation with respect to other system parts.

The most promising seems to be keypoints model
described with usage of keypoints like [3, 4, 5, 6].
The advantages are that these keypoints are easily and
quickly found and even if some of them are lost (e.g.
due the partial occlusion), the rest can still represent
the object well. The disadvantage comes with a situa­
tion when we are not able to find such strong keypoints
on the object; that can happen e.g. due to a limited
object size or poor object resolution or contrast.

In the proposed solution the object is internally
treated in two different processes. According to that,
there are also two different object representations. Af­
ter the user sets the bounding box of the object, the
image pattern is stored also as a very first true pos­
itive sample for the detector. The pattern is resized

and normalized and stored in internal memory besides
the true negative, which are taken randomly from the
area in the same frame. The frames are marked as
true negatives in this initial learning phase if they are
disjunctive to the true positive one.

Much more interesting is the object representation
used during tracking phase. We propose to use 16
points in their 11x11 neighborhood to describe the
object, and to choose these points according to their
quality to track [2]. As it was mentioned before, there
is a very limited set of such points in our dataset (small
object, poor resolution/contrast). Therefore, we select
those 16 best points which are possible to find. It is
highly expectable that the quality of the majority of
these points will be very poor.

One of the problems of visual object tracking is
called background clutter. It means that the back­
ground contains more information than the object it­
self and, hence, the best points will be chosen from
the background rather than from the object, what is
obviously a failure. To compensate this problem, a
mask of the object is computed before the points are
actually searched.

The mask represents generally a difference be­
tween the internal bounding box area and the bounding
box neighborhood. The mask value is calculated for
every single bounding box point. As it was outlined,
the value is a sum of weighted differences of the near­
est out-box regions. Each region size is set to 5 x 5
pixels. This is illustrated in figure 1.

A

J*
D

d
T

•
X

b B

c

C

Figure 1. Mask computation illustration. The
resulting value is given by a sum of weighted inverted
NCC between the point neighborhood and all four
nearest out-box regions

The figure 1 is described by equation 1. The sym­
bols are the same as in the figure 1. Symbols A, B,
C and D stand for the nearest out-box regions, the T
is a neighborhood of the point x, which is the point
of the mask. The function NCC(M,N) stands for the
normalized cross correlation and it is used to compute
the similarity/difference between the templates M and
N. The symbols a, b, c and d are distances of the

computed region T and corresponding out-box regions.
These distances are used to compute weights. The
symbols w and h represents the bounding box width,
resp. height.

NCC{T,A)*(\-(a/h)3)+

NCC{T,B)*(l-(b/w)3)+

NCC(T,C)*(l-(c/h)3)+

NCC{T,D)*(l-(d/w)3)

(1)

The mask can be seen in illustration 2. On the left
there is the original bounding box used to compute
the mask. On the right there is the mask. The white
color means the most different regions and therefore
the object.

Figure 2. Original bounding box and its mask. The
white color represents the most different areas

This mask is used to select points to track from the
object regions rather than from the background. The
points placed on the background can lead to serious
tracking error.

3.3 Multiple Bidirectional Tracking
Regarding the expected poor quality of points used
to track, it has to be improved in tracking process
itself. In [19] an approach called Forward-Backward
Error (FBE) is presented. This basically means that
every point is tracked in forward direction, the result
is tracked back and the distance between the original
point and the returned one is measured and called the
FBE. Points with too high FBE are then excluded from
the tracking process.

This idea brings very good results as it was proved
in [19]. Unfortunately, this only excludes wrongly
tracked points from the process, but does not improve
their individual quality.

In this paper is proposed an improved solution
based on multiple tracking in both directions. Ev­
ery point selected to tracking is tracked in forward
direction, which results in 2D histogram (a map) of
expected point positions in the next frame, which are
measured as the NCC between the original point area
and the tracking point area.

Instead of taking only the most valuable point to
track back, like it is in FBE, we track back 3 most

expected positions. As it was observed from experi­
ments, the correct tracking position is not always the
most valuable position in the map, but sometimes also
the second one or even the third one.

After tracking them back we take into account 2
best candidates of every backward tracking, so for
one tracking point we get 3 image candidates and 6
possible backward tracking images. For each of these
backtracked images a distance to the original position
is measured and the closest point is noted. The starting
point for the noted one is then marked as a result.

Figure 3. Multiple Bidirectional Tracking (MBT).
Taking into account more candidates and tracking
them back brings higher chance to find successful
tracking path

The situation is better described with an image. In
figure 3 can be seen point at on the left part (frame in
time t) and three of its possible trackings to the frame
in time t+l. Also, two possible trackings back for
every candidate to the original frame can be seen, with
some failing results and a successful one.

In the end, the successfully tracked points are
those, which end in the same point they came from,
with a as a spatial tolerance. Other points are excluded
as wrongly tracked, as is in the FBE.

3.4 Detector-Tracker Fusion
The detector is an integral part of a long-term tracking
system. It is the only way how to re-initialize tracking
process after full occlusion or tracker failure.

The detector used in the proposed solution is taken
from [10] unchanged. The detector is very fast, be­
cause it is developed with respect to cascade (or pyra­
midal) principles. The detector cascade consists of 3
stages. A Variance filter, which is the first stage with
straightforward task to reject as many false positives as
possible. The measurement metric is a simple variance.
The next stage is an Ensemble classifier. This classifier
uses method called random fern classification [22, 23].
The last stage and the slowest one is a template match­
ing with usage of NCC as the similarity measurement
technique.

With usage of both the detector and the tracker,
following rules can be set. If only the detector or the
tracker has result, its result is used. When neither the
tracker nor the detector has result, then the object is
considered as invisible.

In case both the tracker and the detector have their
results, then the detector's output is used as an addition
to the tracker's one in a fusion originally presented in
this paper. A l l the combinations are for better overview
in figure 4.

n F u s e d
l—i resu l t

J

Figure 4. If only one (the detector or the tracker) is
successful, its output is used. Otherwise, their outputs
are fused

The tracker's and the detector's output is a position
and a size of the object. Then, if the results overlap
with at least 40%, they can be fused. The fusion re­
sult is computed as weighted mean and the weight
is considered to be a certainty of the tracker and the
detector.

The detector's certainty is computed in its last
stage as in equation 2. Then n G negativesamples,
and p G positivesamples.

(IN = 1 — max(NCC(T,m))
dp = 1 — max(NCC(T, pi))
a = d^l {dp + dff) (2)

The certainty of the tracker is set in accordance
with the detector's one. It can be easily done with a
small hack; the tracker's result put as an input for the
last stage of the detector to get the very same certainty,
only for the tracker this time.

The fused result position is illustrated in equations
3 and 4.

at*xt + ad*xd

at + ad

at*yt + ad*yd

(3)

(4)
at + ad

In the equations 3 and 4 the x and y are the fused
coordinates of the object center, the at and ad are the
certainties of the tracker and the detector. The xd,yd,
xt and yt are original outputs from the detector and
from the tracker.

This kind of fusion should bring better movement
correction in case, e.g. the tracker drifts. On the other
hand, an additional error can be entered from the de­
tector, in case of false positives.

4. Experiment and Evaluation

This section consists of two main parts. In the first
part (Subsection 4.1), the experiment and evaluation
prerequisites are set, including the evaluation dataset.
The next part (Subsection 4.2) summarizes results of
the evaluation according to the experiment presented
in the first part.

4.1 Experiment Description
The dataset used for evaluation of the proposed track­
ing system consists of several standard video sequences
and a few new ones. The standard dataset is repre­
sented with sequences known as ball, bicycle, car and
jogging and it is taken from VOT2014 [24]. The subset
covers problems like object rotation (the ball), back­
ground clutter (the bicycle), object scale (the car) and
occlusion (jogging).

The originally obtained sequences have work ti­
tles helicopter and plane51. This dataset focuses on
small objects of interest (both), low contrast and poor
quality resolution (the helicopter), object appearance
changes (the plane51) and rough camera movements
(both). The plane51 consists from 923 frames and
the helicopter from 440 frames. The groundtruth was
annotated manually by marking objects' centers.

In figure 5 can be seen representatives from all the
datasets. In the top line can be seen the representative
images from the standard dataset, in the bottom line
are representatives from the original one.

For every frame sequence the proposed tracking
solution is evaluated several times to get statistically
relevant result. The only result which is measured is a
position of the object center on a particular frame. The
success rate for every frame is measured according to
equation 5.

rate = 1 \l(x~2 -xi)2 + (y2 -yi):

(5)

The equation 5 says that the success rate for the par­
ticular frame is equal to complement to 1 of normalized
Euclidean distance between the correct center position
and the position the tracker gives. The equation also
contains boundaries due the manual groundtruth mark­
ing process. It says that the distances shorter than a
(30 pixels) are considered as 100% correct, and longer
that 7(70 pixels) are considered as 100% incorrect.

Other long-term tracking solutions have been al­
ready mentioned in section 2.3. Only to summarize it,
the compared trackers are OpenTLD [10] and C M T
[20]. The reason is mainly that they are considered the
state-of-the-art. Another reason is that these trackers
have their reference implementation publicly available.

Figure 5. Dataset samples. From the left to the right they are: ball, bicycle, jogging, helicopter, car and plane51

4.2 Results
The proposed solution have been tested in quality do­
main as was mentioned in the previous subsection. In
table 1 are summarized evaluation results for system
without the mask computation nor the MBT, for both
improvements separately and a complete system. Ev­
ery results is combined from a mean of overall success
rate of all sequence frames together in several runs and
a standard deviation which symbolizes how unstable
the system is (how different the single overall results
were).

Table 1. Improvements results. Overall success rate
for particular improvement usage and standard
deviation. A l l values are percentages

None Mask M B T Complete

Ball 66/16 66/10 73/09 71/06
Bicycle 70/05 72/10 71/05 79/07
Car 73/09 79/11 78/10 79/14
Jogging 81/10 78/13 90/03 84/13
Helicopter 75/07 09/01 74/04 70/32
Plane51 87/02 85/01 87/02 85/02

The table shows how the proposed improvements
mostly bring an increase of performance in compari­
son with a system without these improvements. The
complete system is almost always better than the basic
one.

Table 2 sums success rates for every evaluation
dataset and the mentioned trackers to compare, and
also the results of system with all proposed improve­
ments. The overall success rate is again a mean from
several runs. The most significant numbers (both the
best and the worst) are highlighted.

Table 2. Evaluation results. Overall success rate and
standard deviation. A l l values are percentages

Our OpenTLD C M T

Ball 71/35 99/11 98/11
Bicycle 79/38 01/09 66/46
Car 79/36 64/48 62/48
Jogging 84/29 25/43 82/37
Helicopter 70/43 04/20 46/21
Plane51 85/33 08/27 04/17

According to the results, the proposed solution
performs better in our dataset. That was expected, as

the dataset contains some problematic parts that the
other solutions do not solve well. This was also the
main reason for the proposed solution.

In the standard dataset the quality performance of
the proposed solution is comparable to other solutions.
This is considered as a very good result; maybe even
better than overperforming the original dataset. It also
means that after the generalization to solve our dataset
the common performance was not disrupted.

Table 3. Speed evaluation. The M means that M B T is
applied, otherwise it is not. A l l values are means
across all datasets.

64 64/M 256 256/M/C OpenTLD C M T

fps 23.2 14.8 2.4 8.8 107.2 45.5

The computational speed is highly affected by an
allowed maximal object movement and a number of
backtracked points (usage of MBT) . In table 3 are
shown average values for few configuration with added
average values of other trackers, to avoid dependency
on machine performance. The values stand for frames-
per-second (fps) and the proposed solutions is evalu­
ated with 6Apx and 256px as a maximal object move­
ment in all axis directions and by usage of MBT. It is
good to mention that the movement by 64px is gen­
erally much bigger than is needed and much bigger
than other solutions offer. The C symbolizes a partial
CUDA acceleration.

5. Conclusions
In this paper a long-term tracker was introduced. The
proposed solution is focused on some particular prob­
lems, like small object size and poor image contrast
quality. Beside these specific problems, the tracker per­
formance on standard dataset should not be decreased
and the tracker should not lose its generality.

As the evaluation showed, the proposed solution
overperformed state-of-the-art trackers in specific dataset.
On the standard dataset, our tracker performed compa­
rably to others.

The main contribution is the tracking quality mea­
surement called multiple bidirectional tracking. The
main idea of the method is to move tracking point
quality measurement into the tracking process itself.

The system was built on OpenTLD background

and therefore it took its structure; the tracker and the
detector cooperation. The cooperation was tied closely
by newly proposed Detector-Tracker Fusion.

The proposed solution is a general object tracker
prototype generalized to solve the new problems and
able to run in real-time, although it is slower then
other solutions. Hence, it can be improved in any
conceivable domain. Some of the first steps should be
more sophisticated online learning system.

References
[1] Bruce D. Lucas and Takeo Kanade. An iterative

image registration technique with an application
to stereo vision. In IJCAI, volume 2, pages 674-
679, San Francisco, C A , USA, 1981. Morgan
Kaufmann Publishers Inc.

[2] Jianbo Shi and Carlo Tomasi. Good features to
track. In CVPR, pages 593-600, 1994.

[3] Herbert Bay, Andreas Ess, Tinne Tuytelaars,
and Luc Van Gool. Speeded-up robust features
(SURF). Computer Vision and Image Under­
standing, 110(3):346-359, 2008.

[4] Alexandre Alahi, Raphael Ortiz, and Pierre Van-
dergheynst. F R E A K : Fast retina keypoint. In
CVPR, pages 510-517. IEEE, 2012.

[5] Ethan Rublee, Vincent Rabaud, Kurt Konolige,
and Gary Bradski. ORB: An efficient alternative
to SIFT or SURF. In ICCV, pages 2564-2571.
IEEE, 2011.

[6] Stefan Leutenegger, Margarita Chli, and
Roland Y. Siegwart. BRISK: Binary robust in­
variant scalable keypoints. In ICCV, pages 2548-
2555. IEEE, 2011.

[7] Charles Bibby and Ian Reid. Real-time tracking
of multiple occluding objects using level sets. In
CVPR, pages 1307-1314. IEEE, 2010.

[8] Alper Yilmaz, Xin L i , and Mubarak Shah.
Contour-based object tracking with occlusion
handling in video acquired using mobile cam­
eras. TPAMI, 26(11): 1531-1536, 2004.

[9] Christoph H. Lampert, Matthew B. Blaschko, and
Thomas Hofmann. Beyond sliding windows: Ob­
ject localization by efficient subwindow search.
In CVPR, pages 1-8. IEEE, 2008.

[10] Georg Nebehay. Robust object tracking based on
tracking-learning-detection. Wien, 2012.

[11] David Forsyth and Jean Ponce, a modern ap­
proach. Pearson, Boston, 2 edition, 2012.

[12] Zdenek Kalal, Krystian Mikolajczyk, and Jiri
Matas. Tracking-learning-detection. TPAMI,
34(7):1409-1422, 2012.

[13] Anna Bosch, Andrew Zisserman, and Xavier
Munoz. Representing shape with a spatial pyra­
mid kernel. In CIVR, pages 401-408. A C M ,
2007.

[14] Ondrej Chum and Andrew Zisserman. An exem­
plar model for learning object classes. In CVPR,
pages 1-8. IEEE, 2007.

[15] Paul A . Brasnett, Lyudmila Mihaylova, Nishan
Canagarajah, and David Bull. Particle filtering
with multiple cues for object tracking in video
sequences. In Electronic Imaging, pages 430-
441. SPIE, 2005.

[16] X i n Sun, Hongxun Yao, and Shengping Zhang.
Contour tracking via on-line discriminative ap­
pearance modeling based level sets. In ICIP,
pages 2317-2320. IEEE, 2011.

[17] Jean-Yves Bouguet. Pyramidal implementation
of the affine lucas kanade feature tracker descrip­
tion of the algorithm. Intel Corporation, 5, 2001.

[18] L u Zhang and LJP van der Maaten. Preserv­
ing structure in model-free tracking. TPAMI,
36(4):756-769, 2014.

[19] Zdenek Kalal, Krystian Mikolajczyk, and Jiri
Matas. Forward-backward error: Automatic de­
tection of tracking failures. In ICPR, pages 2756-
2759, 2010.

[20] Georg Nebehay and Roman Pflugfelder.
Consensus-based matching and tracking of key-
points for object tracking. In Winter Conference
on Applications of Computer Vision. IEEE,
IEEE, 2014.

[21] Sam Hare, Amir Saffari, and Philip H . S. Torr.
Struck: Structured output tracking with kernels.
In ICCV, pages 263-270. IEEE, IEEE, 2011.

[22] Mustafa Ozuysal, Pascal Fua, and Vincent Lep-
etit. Fast keypoint recognition in ten lines of code.
In CVPR, pages 1-8. IEEE, 2007.

[23] Mustafa Ozuysal, Michael Calonder, Vincent
Lepetit, and Pascal Fua. Fast keypoint recogni­
tion using random ferns. TPAMI, 32(3):448-461,
2010.

[24] VOT2014. [online], [cit. 2015-04-14].

