
BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

FACULTY OF INFORMATION TECHNOLOGY
FAKULTA INFORMAČNÍCH TECHNOLOGIÍ

DEPARTMENT OF COMPUTER GRAPHICS AND MULTIMEDIA
ÚSTAV POČÍTAČOVÉ GRAFIKY A MULTIMÉDIÍ

AUTOMATIC GRAPHICS TOOL SELECTION USING FREE­
HAND SKETCHES
AUTOMATICKÁ VOLBA GRAFICKÉHO NÁSTROJE POMOCÍ RUČNĚ KRESLENÝCH SKIC

BACHELOR'S THESIS
BAKALÁŘSKÁ PRÁCE

AUTHOR
AUTOR PRÁCE

RICHARD HARMAN

SUPERVISOR
VEDOUCÍ PRÁCE

doc. Ing. MARTIN ČADÍK, Ph.D.

BRNO 2023

T BRNO FACULTY I

UNIVERSITY OF INFORMATION |

OF TECHNOLOGY TECHNOLOGY

Bachelor's Thesis Assignment
147457

Institut: Department of Computer Graphics and Multimedia (UPGM)
Harman Richard
Information Technology
Information Technology

Student:
Programme:
Specialization:

Title: Automat ic Graph ics Tool Select ion Us ing Freehand Sketches
Computer Graphics Category:

Academic year: 2022/23

Assignment:

1. Create an overview of the related work and select the best possible approach for recognition and
placement of graphics tools (such as cursors and arrows) based on freehand sketches. List
existing literature and software.

2. Design the sketches which will correspond to the graphics tools. The tools will be provided by the
supervisor and will include at least a cursor, cursors connected with line segments into a polygon,
and an arrow.

3. Collect the data necessary to train a sketch classifier.
4. Experiment with the classifier training procedure to get the best possible results.
5. Create a demo application which will recognize the sketches and will place the graphics at the

position of the sketch.
6. Discuss the pros and cons of the selected approach and propose what could be improved in the

future work.

1. Zhang, S. Liu, C. Zhang, W. Ren, R. Wang, and X . Cao, "SketchNet: Sketch Classification with
Web Images," 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
2016, pp. 1105-1113, doi: 10.1109/CVPR.2016.125.

Detailed formal requirements can be found at https://www.fit.vut.cz/study/theses/

Literature:

Supervisor: Cadik Martin, doc. Ing., Ph.D.
Head of Department: Černocký Jan, prof. Dr. Ing.
Beginning of work: 1.11.2022
Submission deadline: 10.5.2023
Approval date: 31.10.2022

Faculty of Information Technology, Brno University of Technology / Božetěchova 1/2 / 612 66 / Brno

https://www.fit.vut.cz/study/theses/

Abstract
This thesis works on classifications of sketch representations of telestration tool . Th is clas­
sification is being developed for telestration applicat ion as part of the free-hand drawing
section. After choosing the sketch representations, collecting data wi th specifically created
applicat ion I created two datasets. F i rs t dataset was used to t ra in a convolutional neural
network to classify the sketches. Second dataset was used to t ra in segmentation neural
network to classify lines and ellipses i n sketches. B o t h networks was then implemented into
application to showcase their usage i n real-time and experiment on their accuracy. This
applicat ion also contains post-processing process to recreate the telestration tool represen­
tations from the sketches.

Abstrakt
T á t o p r á c a je z a m e r a n á na klasifikáciu skíc r ep rezen tu júc ich t e l e s t r ačné nás t ro j e . T á t o
klasifikácia bola v y t v o r e n á pre t e l e s t r a č n ú ap l ikác iu ako súčasť sekcie na kreslenie vol­
nou rukou. Po v y b r a t í skíc reprezen tu júc ich nás t ro j e , zozbe ran í d á t za pomoci apl ikácie ,
k t o r ú som vy tvor i l na tento účel, som vy tvor i l dva datasety. P r v ý dataset bo l p o u ž i t ý na
t r énovan ie konvolúčnej neurónove j siete na klasifikáciu skíc. D r u h ý dataset bo l použ i t ý na
t r énovan ie s egmen tačne j neurónove j siete pre rozlíšenie línií a elíps v skici . Obe siete bol i
i m p l e m e n t o v a n é do apl ikác ie na u k á ž k u ich funkcionality v r e á l n o m čase a zá roveň pre ex­
perimentovanie a zisťovanie ich presnosti. T á t o apl ikác ie t iež obsahuje proces d o d a t o č n é h o
spracovania, vďaka k t o r é m u vie r ep rodukovať r ep rezen tác i e t e l e s t r ačných ná s t ro jov zo skíc.

Keywords
sketch classification, automatic tool selection, image segmentation, convolutional neural
network, computer vision, image processing, human - computer interaction

Kľúčové slová
klasifikácia skíc, a u t o m a t i c k ý v ý b e r nás t ro jov , s e g m e n t á c i a obrázkov , konvolučné neurónové
siete, poč í t ačové videnie, spracovanie obrazu, interakcia človek - p o č í t a č

Reference
H A R M A N , Richard . Automatic Graphics Tool Selection Using Freehand Sketches. Brno ,
2023. Bachelor's thesis. B rno Univers i ty of Technology, Facul ty of Information Technology.
Supervisor doc. Ing. M a r t i n Cad ik , P h . D .

Rozšírený abstrakt
T á t o p r á c a sa z a o b e r á v y t v o r e n í m a u t o m a t i c k é h o n á s t r o j a na spracovanie skíc t e l e s t r ačných
nás t ro jov . Tento n á s t r o j je i m p l e m e n t o v a n ý pre t e l e s t r a č n ú apl ikác iu , k t o r á slúži na špor­
tové a n a l ý z y pre š p o r t o v ý c h analyt ikov a t r éne rov . T á t o ap l ikác ia obsahuje priestor na
kreslenie do š p o r t o v ý c h z á z n a m o v voľnou rukou, v k torom neu rónová sieť bude rozoznávať
u rč i t é skice užívateľov a ná s l edne ich bude ap l ikác ia meniť na funkcie n a i m p l e m e n t o v a n é v
apl ikáci i , k t o r é tieto skice rep rezen tu jú .

Konvo lučná neu rónová sieť bude rozoznávať skice r ep rezen tu júce t e l e s t r ačné nás t ro j e .
Tieto skice bol i v y b r a n é po zozb ie ran í n á v r h o v od malej skupiny užívateľov, podľa zhody
v iacerých užívateľov. N á s l e d n e pomocou mnou vytvorenej ap l ikác ie na zbieranie d á t bo l i
zozb ie rané d á t a od 97 účas tn íkov zberu d á t . D á t a obsahovali nak res l ené skice, aj informácie
o ich kreslení . Tie to d á t a sa ná s l edne použi l i na vytvorenie dvoch datasetou.

P r v ý dataset bo l v y t v o r e n ý na t r énovan ie konvolučnej neurónove j siete pre rozoznávanie
k t o r ú t e l e s t r a č n ú funkciu skica reprezentuje. D r u h ý dataset slúži na t r énovan ie segmen-
tačne j neurónove j siete, k t o r á je p o t r e b n á pre s p r á v n e vytvorenie funkcie zo skice.

S e g m e n t a č n á neu rónová sieť sa použ íva na z ískanie pozíci í a veľkostí objektov tvoriacich
skicu, pre replikovanie funkcie na r o v n a k ý c h pozíc iách. V prvej verzii s egmen tačne j siete,
bol pokus o z ískanie t ý c h t o informáci í pomocou segmen tačne j masky obsahujúce j smery
ťahu na kres lených pixeloch v o b r á z k u . T á t o sieť bola t r é n o v a n á na datasete vytvorenom
zo zozb ie raných d á t .

Pre experimentovanie a u k á ž k u funkčnost i n a t r é n o v a n ý c h modelov oboch n e u r ó n o v ý c h
sietí som vy tvo r i l d r u h ú ap l ikác iu . P o nakres len í skice reprezen tu júce j jednu zo 7 funkcií
v y b r a n ý c h pre t ú t o p r á c u v danej apl ikáci i , model konvolučnej neurónove j siete klasifikuje
d a n ú skicu a urč í k t o r ú funkciu m á t á t o skica reprezentovať . N á s l e d n e model s egmen tačne j
siete vy tvo r í masku, k t o r á prejde procesom d o d a t o č n é h o spracovania a ná s l edne ap l ikác ia
podľa t ý c h t o sp racovaných d á t p r e tvo r í r ep rezen t ác iu klasifikovanej funkcie na rovnakej
pozícii ako sa n a c h á d z a l a skica.

Po prvej sérii experimentov som zis t i l , že s e g m e n t a č n á sieť n e v y t v á r a d o s t a t o č n e p resné
masky, na to aby sa dal i spracovať . N a porovnanie som zapisoval body v apl ikáci i a v y t v á r a l
tieto smerové masky v apl ikáci i . V p r í p a d e masiek v y t v o r e n ý c h ap l ikác iou , proces spraco­
vania bo l funkčný a ap l ikác ia d o k á z a l a z reprodukovať funkcie zo skíc.

Nás l edne som vy tvo r i l d r u h ú verziu s e g m e n t a č n é h o datasetu, k t o r ý rozoznáva l elipsy a
línie v skice. Po n a t r é n o v a n í tejto siete na novom datasete, som model tejto siete vložil do
apl ikácie namiesto s t a r é h o nefunkčného modelu a pomocou m a l ý c h ú p r a v procesu doda­
t o č n é h o spracovania bola ap l ikác ia s c h o p n á z reprodukovať funkcie zo skíc pomocou oboch
neu rónových sietí .

V tejto apl ikáci i bo l i ná s l edne z r e p r o d u k o v a n é experimenty, k t o r é ukáza l i , že d r u h á
verzia s egmen tačne j neurónove j siete vy tvor i la d o s t a t o č n e p r e s n é masky na zreprodukovanie
funkcií vo v še tkých p r í p a d o c h a konvo lučná n e u r ó n o v á sieť klasifikovala skice s úspešnosťou
99.64 %.

A k t u á l n e m á ap l ikác ia možnosť spracovania skíc dvoma spôsobmi . P r v ý je pomo­
cou smerových masiek v y t v o r e n ý c h ap l ikác iou a d r u h ý je pomocou modelu segmen tačne j
neurónovej siete.

Automat ic Graphics Tool Selection Using Free­
hand Sketches

Declaration
I hereby declare that this Bachelor's thesis was prepared as an original work by the author
under the supervision of doc. Ing. M a r t i n C a d i k P h . D . and consultants Ing. Jan Brejcha
P h . D . and M g r . D o m i n i k a Trebaticka from ChyronHego Corporat ion. I have listed a l l the
literary sources, publications and other sources, which were used during the preparation of
this thesis.

R ichard Ha rman
M a y 8, 2023

Acknowledgements
I would like to thank my supervisor doc. Ing. M a r t i n Cad ik P h . D . and both of the
consultants, Ing. Jan Brejcha P h . D . and M g r . D o m i n i k a Trebaticka from ChyronHego
Corporat ion, for guiding me through the process of creating this thesis, g iving me advice
along the way and passing on their knowledge.

Contents

1 Introduction 2

2 Related work 3
2.1 Sketch Classification 3
2.2 Classification Neura l Network 6
2.3 Segmentation Neura l Network 7
2.4 Post-processing Functions 8

3 Dataset 10
3.1 Choosing data 10
3.2 Dataset collection 11
3.3 Sort ing datasets 12

4 M e t h o d 18
4.1 Annota t ion tool 18
4.2 Neura l networks 20
4.3 Segmentation of lines and ellipses 24
4.4 Technical details 26
4.5 Showcasing tool 27
4.6 Post-processing 28

5 Experiments 36
5.1 Fi rs t phase of testing 36

5.2 Second phase of testing 38

6 Conclusion 41

Bibl iography 43

A Tools visualizations 45

B Tools sketch representations 48

C Scientific Poster 51

1

Chapter 1

Introduction

Hand-drawn sketches have long been used as a method of conveying ideas and concepts
i n various fields, including architecture, engineering, and design. However, the process of
converting these sketches into digi ta l forms, such as C A D drawings or 3D models, can be
t ime-consuming and error-prone. In recent years, advances i n machine learning, par t icular ly
neural networks, have led to the development of tools that can automatical ly interpret and
convert hand-drawn sketches into digi ta l forms.

M y work w i l l focus on sketches of sports analysts and coaches and convert them to basic
telestration tools needed for sport analysis. This tool is planned to be used as an input
method for the telestration software created by ChyronHego Corporation, which w i l l ease
the work for users, because they w i l l not need to activate the functions manually. Usual
users of these tools are coaches and sports analysts, so I w i l l t ry to incorporate as many
users from sporting background as possible for both data collection and testing.

This thesis w i l l focus on the use of machine learning techniques for the automatic selec­
t ion of the most appropriate graphical tool based on the interpreted hand-drawn sketches.
The thesis w i l l investigate current state of the art in sketch recognition and graphical tool
selection, and w i l l propose the best method for automatic selecting the most appropriate
tool for a given sketch.

The goal of this thesis is to develop a prototype of a system which w i l l be able to
convert hand-drawn sketch representation of telestration tools chosen for this thesis, into
telestration tools. The thesis w i l l start by picking neural network architecture that w i l l
provide sketch recognition as accurate as possible.

Creat ion of the dataset w i l l also be an important part of completing this task, since
the sketched representations of the telestration tools w i l l be picked, and there are not any
datasets w i th these specifically picked sketches i n existence. Different types of data w i l l be
collected from users who then w i l l go through the pipeline to create a dataset for t raining
a chosen neural network.

2

Chapter 2

Related work

2.1 Sketch Classification

Works on sketch recognition and classifications date back to the development of Sketch-
P a d [16], a device that made it possible to transfer hand-made drawings from a computing
device, thus recording the first sketches. Since then, there have been a lot of different
approaches to recognize different types of sketches.

Some sketch classification projects focused on hand-writ ten words, others on sketches
or doodles of real-life objects. K h a t r i et a l . [6] focused on creating a neural network able
to recognizing hand-writ ten numbers v i a learning vector quantization abbreviated. They
deconstructed their input images into vectors and trained the neural network to recognize
the numbers based on these vectors. They found out the problems wi th recognition of this
type is usually due to different hand-wri t ing styles of users.

Y u a n and J i n [18] created an Intelligent Whi teboard used as a tool for Computer Sup­
ported Cooperative Learning and measured an efficiency of sketching in the learning process
and tota l usabil i ty of this type of communicat ion wi th a device. They mainly used detection
of strokes and post-processing features to recreate sketches into U M L class diagrams, dig­
i ta l circuits, chemical diagrams and many other things. For post-processing process, they
detected certain feature points i n strokes and from these points they recognized pr imary
symbols they chose, which inspired me i n t ra ining my Stroke recognition neural network in
the Section 4.2.2 and Section 4.3 and my post-processing i n Section 4.6.

There was one work that t r ied to develop a sketch feature representation named Sketch-
Net [19], which t r ied to recognise sketches based on their real web images as seen i n the
Figure 2.1.

3

Figure 2.1: Examples of correctly classified sketches on a test case w i t h real images as
references. The first column shows the test sketch, and the top 5 category predictions are
displayed from the top row to the bot tom, i n sequence. Specifically, each row of real images
represents the nearest visual ly s imilar images i n its category. This Figure is from SketchNet
thesis [19].

This was not applicable to my thesis because the tools that I w i l l classify w i l l have only
a symbolic representation, and it is not a sketch mirror ing the exact look of real-life figure.

One of the biggest open-source datasets created i n sketch recognition history was done
by Google Inc. named Quick, Draw! consisting of more than 50 mi l l ion sketches divided
into 345 categories w i t h size of 28 by 28 pixels, contributed by players playing a game wi th
the same name. M a n y works have been done w i t h this dataset. One of them was focused
on t ra ining the Recurrent neural network to learn sketch abstractions for reconstruction,
expanding and finishing sketches based on input unfinished sketch images [4]. There were
other works interested i n sketch classification and since sketch classification is my main
goal, I was interested i n those.

One of image classification works realised on Quick, Draw! dataset was done by Tran
and L u [17] who architected Deep Convolut ional neural network for sketch classification
based on residual neural network architecture, also known as ResNet. They found an
issue wi th hard recognition wi th s imilar ly looking classes, for example, classes Pigeon,
Seagull and Standing bird. Difference i n hand-writ ten drawing styles of users made it
difficult to recognize these similar classes. Based on this knowledge, Guo et a l . [3] tr ied to
use K-Nearest Neighbour A l g o r i t h m wi th K-Means-I—|- in i t ia l iza t ion and weighted voting
where they created centroid of sketched points and then weighted the points according to
the distance from the centroid. They compared this technique wi th Convolut ional neural

4

network, only to find out that Convolut ional neural network outperformed their a lgori thm
and stayed the best technique for image classification at the time.

There are other studies done wi th Deep Convolut ional neural networks. A n extensive
dataset created by E i t z et a l . [2], usually mentioned in the studies w i th the name TV-
Berlin, is used a lot as a benchmark across many studies focused on sketch classification.
The TV-Berlin dataset consists not only of full classified sketches, but also of par t ia l ly
drawn sketches.

Seddati et a l . [14] created a system for the sketch classification and s imilar i ty search
using the TV-Berlin dataset. This study proposed a Deep Convolut ional neural network
named ConvNet that classifies the images, and after the classification it also performs
features extraction from the sketch images. O n those features they use k-Nearest neighbours
algori thm for s imilar i ty search i n the sketch image classes. The i r architecture has fewer and
smaller kernels than previous attempts and got 75.42 % accuracy on the TV-Berlin dataset,
overcoming a l l previously tested architectures and also humans which had 73 % accuracy
of classification on this dataset. Seddati et a l . [13] also created a second version of their
architecture where they proposed the multi-task learning of their neural network. New
version of ConvNet is trained for predict ing the object category, but it also predicts the
completeness of the sketch. W i t h this approach they achieved 77.69 % accuracy on the
TV-Berlin dataset, outperforming their previous version of ConvNet. These two networks
developed by Seddati et a l . are also being referred to as DeepSketch and DeepSketch2.

Figure 2.2: Examples of par t ia l ly drawn versions of the sketches classified as a class named
House from tra ining of DeepSketch2 [13].

B y discussing problems wi th classification, which mainly consisted of different hand-
drawing styles and similar looks of complex sketches, I concentrated on the problems that
might occur in my work. The data collected by me w i l l have a wide variety of users from

5

different backgrounds to capture as many hand-drawing styles as possible. Sketches of the
classes used i n my work w i l l a l l be simple and have easily recognizable differences which, it
is hoped, w i l l eliminate the issue of high s imilar i ty of complex sketches.

2.2 Classification Neural Network

Neural network architecture used for this thesis is residual network wi th 18 hidden layers
named ResNet-18 created by He et a l . [5]. Res idual networks were created to ease the
t ra ining of deep networks. Th is network was first to have layers of learning residual func­
tions wi th a reference to the layer inputs, instead of learning unreferenced functions. The
ResNet-18 had smaller error rate than pla in state-of-the-art method at the t ime. W i t h
networks that had more layers, this gap between errors of ResNet architectures and other
architectures got even broader which can be seen in the Figure 2.3.

iter. (le4) iter. (le4)

Figure 2.3: Experiments tr ied wi th ResNet-18 and ResNet-34 by He et a l . [5], while t rain­
ing on ImageNet dataset [1]. T h i n curves denote t ra ining error, and bold curves denote
validat ion error of the centre crops. P l a i n networks of 18 and 34 layers (left). ResNets of 18
and 34 layers (right). In this plot, the residual networks have no extra parameter compared
to their p la in counterparts. Figure is also taken from the work of He et a l . [5].

For t ra ining this neural network I used a Cross-Entropy loss function which originates
from Rubinste in [12]. Loss function of neural network penalizes wrong outputs of neural
network and helps it learn. The Cross Entropy builds upon the idea of entropy from
information theory and calculates the number of bits required to represent or transmit an
average event from one dis t r ibut ion compared to another dis t r ibut ion. The Cross entropy
loss function measures the difference between the discovered probabil i ty dis t r ibut ion of a
machine learning classification model and the predicted dis tr ibut ion. It is usually used for
models where there are three or more classification possibilities, but there is also binary
version of this loss function. For this thesis, I used a multi-class version of this loss.
Calcula t ing the Cross Entropy across mult iple classes is done according to this equation:

N

H(P,Q) = -Y/Px*log(Qx)
x=l

Where:

• H(P, Q) is the Cross Entropy function between the two probabil i ty distributions P
and Q

l.i

• Px is the probabil i ty of the event x i n the d is t r ibut ion P

• Qx is the probabil i ty of the event x i n the dis t r ibut ion Q

• log is the base-2 logari thm, meaning that the results are i n bits

This calculation is for the discrete probabil i ty distributions although a s imilar calcula­
t ion can be used for continuous probabi l i ty distributions using the integral across the events
instead of the sum. The result w i l l be a positive number measured i n bits and w i l l be equal
to the entropy of the dis t r ibut ion i f the two probabil i ty distributions are identical.

To optimize learning of the neural network I used Adam optimizer developed by K i n g m a
and B a [7]. The Adam optimizer is an efficient method of stochastic gradient-based opti­
mizat ion that only requires first-order gradients w i th l i t t le memory requirement. The name
Adam is derived from adaptive moment estimation. The optimizer is used for changing the
attributes of the neural network while learning.

2.3 Segmentation Neural Network

The Segmentation neural network used in this work is firstly used to t ry to recognize the
directions that the strokes i n the sketches have been drawn in , and later this network is
used to classify the lines and the ellipses i n the sketch for recreating of sketched functions.

In the history of working w i t h sketch strokes there is one work that inspired me in
choosing my network. Q i n [9] presented an intelligent method for classifying pen strokes in
an on-line sketching system. This method used linearity and convexity of curves to identify
curves, lines, circles, ellipses, and many other types of curves. I wanted to achieve similar
goal using the neural network.

I chose the segmentation neural network for image segmentation to extract certain
features from my sketches. I used U-net architecture developed by Ronneberger et a l . [10],
originally used for Biomedica l Image Segmentation. Th is network was an improvement of
the original version done by Shelhamer et a l . [15]. The U-net is a convolutional neural
network modified and extended to work wi th fewer t ra ining images in order to reach higher
segmentation accuracy. Its architecture is symmetric and consists of two ma in parts and
it can be seen i n the Figure 2.4. Left part is called a contracting path, consti tuted by the
general convolutional process. Right part is constituted by transposed 2D convolutional
layers. Image is an input and output is a segmentation map.

7

64 64

input
image

tile

1 2 8 64 6 4 2

output
segmentation
map

••conv 3x3, ReLU
copy and crop

f max pool 2x2
^ up-conv 2x2

conv l x l

Figure 2.4: U-net architecture. E a c h blue box corresponds to a multi-channel feature map.
The number of channels is denoted on the top of the box. The x-y-size is provided at the
lower left edge of the box. W h i t e boxes represent copied feature maps. The arrows denote
the different operations. Figure from Ronneberger et a l . [10].

For learning of this neural network I used the multi-class Cross Entropy loss function
wi th weighted classes and Adam optimizer function. B o t h are mentioned and explained in
the Section 2.2.

2.4 Post-processing Functions

The post-processing realised in this thesis is inspired by work of Y u a n and J i n [18] in
which they recognized features of different objects selected for their work. For my work, I
needed to recognize lines and ellipses in the sketches and then i n their positions recreate
the functions these sketches are meant to represent.

2.4.1 D i g i t a l Difference A n a l y z e r l ine a l g o r i t h m

For connecting points that were not directly next to each other, when creating the first
version of the segmentation dataset mentioned i n the Section 3.3.2, I used the Digital
Difference Analyzer (D D A) line a lgori thm as mentioned i n Zara [20]. Th is a lgori thm is
used for an interpolation of variables over an interval between the start and the end point.
It has only one cycle and each new coordinate is calculated based on the last calculated
coordinate. We calculate new values un t i l we reach the end point coordinates.

Input of the D D A line algorithm:

Starting coordinates = (XQ, YQ)

8

Ending coordinates = (Xn, Yn)

Equations to calculate for each X coordinate:

Xi = Xi_i + 1

Yi = Yi_x + m

Where m is calculated with this equation:

Yend Ysiari
m = x e n d - x s t a r t

2.4.2 K - m e a n s c lus ter ing a n d S i lhouet te analysis

W h e n post-processing the points from the segmentation neural network, i n some classes I
needed to create clusters from the points to recognize ellipses from a l l the points retrieved
from the sketch and to recreate them i n those positions. For this purpose, I used K-means
clustering developed by MacQueen [8]. Th is process is used for s imilar i ty grouping or
clustering. It classifies the points into K number of clusters based on the nearest cluster
centroid, serving as a prototype for the final cluster. For this process to work properly, I
needed to know how many ellipses are in each sketch, since K-means clustering requires an
input of number of clusters to divide the points into which i n my case means, how many
ellipses I want to divide the points into. To find out the number of clusters I used the
Silhoutte analysis developed by Rousseeuw [11]. The silhouette analysis measures of how
close each point in one cluster is to the points in the neighbouring clusters, and thus provides
a way to assess parameters, as, for example, number of clusters, visually. This measure has
a range of [-1, 1]. The name for this measure is silhouette coefficient. The silhouette
coefficient near value of +1 indicates that the sample is far away from the neighbouring
clusters. A value of 0 indicates that the sample is on or very close to the decision boundary
between two neighbouring clusters, and negative values indicate that those samples might
have been assigned to the wrong cluster. To find the best number of clusters from the
points, I calculated the Silhouette coefficient for different number of clusters on the same
points, and the number of clusters w i t h the highest coefficient is then chosen as the final
number of clusters for K-means clustering a lgori thm.

9

Chapter 3

Dataset

3.1 Choosing data

Simple way to represent sketches is by their images, but there are many other features that
might help me to find a new way of sketch classification. I picked these features to gather:

1. Images of sketched area i n .png format

2. Timestamps of when each pixel of the sketch was drawn

3. Colour of each pixel of the sketch

4. Pos i t ion coordinates of each pixel of the sketch

5. Posi t ion of when stroke changed its direction

Then I store the data about users who part icipated i n the data collection process:

1. Age

2. Biological gender

3. Occupat ion

4. Rela t ion to sport

A l l of the data w i l l be stored in JSON format for its easy translating to python dictio­
naries.

3.1.1 Select ing represent ing symbols

Tools that I w i l l t ry to convert into functions w i l l be symbolised by classes, each function
w i l l represent one class w i th the same name. These classes needed their own symbol rep­
resentation that had to be chosen before the beginning of data collection. These symbols
were chosen by 10 participants who a l l created their own ideas for symbol representation of
each function. For the purpose of my work I chose 7 functions, that I w i l l classify and trans­
late. The names of these functions are Arrow, Cursor Light, Cursor Linked, Cursor
Linked Closed, Cursor Player, Light Shaft and Zone Polygon. The i r visual design
representations can be found in Append ix A . After collecting the ideas on symbol repre­
sentations from the participants, I selected one symbol for each tool . I chose the most

10

occurring representations from sketches I gathered from participants i n this collection. E x ­
ample sketches of these symbols can be found in Append ix B .

Figure 3.1: Sketched symbol (left) representing function (right) named Arrow.

3.2 Dataset collection

3.2.1 Subjects

The data was collected from 97 participants from different backgrounds and ages from 6
years to 73 years, to comprehend a big diversity of drawing styles. The participants mainly
consisted of students who contributed to 76 % of a l l the data collected as seen i n Table 3.3,
and they were between the ages 18 and 22 years. A l so 72 % of the participants were sport
oriented as seen i n Table 3.2. Part icipants divided into their biological genders can be seen
in Table 3.1.

Biological gender Count
Male 71
Female 26

Table 3.1: Number of participants in dataset collection by their biological gender.

Rela t ion to sport Count
True 70
False 27

Table 3.2: Number of participants i n dataset collection by their relationship wi th sports.

11

Occupat ion Count
Student 74
Teacher 4
Pension 4
Dr iver 3
Entrepreneur 2
Footba l l player 2
Soldier 1
Officer 1
Footba l l team manager 1
Entrepreneur 1
Headmaster 1
Mechanic 1
Medic 1
Recruiter 1

Table 3.3: Number of participants i n dataset collection by their occupation.

3.3 Sorting datasets

The data collected from participants consists of 1437 images including 7 classes mentioned in
Section 3.1.1. E a c h class contains around 200 images wi th the data about every part icular
image: different strokes, coordinates of points coloured, colour of points and t imestamp
when each of them was coloured. A t the end of the data collection, I created two different
datasets. One dataset for a classification model which w i l l estimate the class of an image
and one dataset for a segmentation model which w i l l estimate the direction of strokes from
an image. The direction of the stroke w i l l be needed for post-processing and recreation of
the tool from the sketch.

3.3.1 Class i f i cat ion dataset

I created the ground t ru th of the classification dataset by classifying a l l images collected
from the participants and augmenting each image by flipping each image on x axis or y axis
or bo th axes randomly. The images, originally without a background, were assigned white
background, since strokes were coloured wi th darker colours, and on white background they
w i l l be easily recognisable. O n original images, different strokes had different colours, but
for the case of the classification I changed a l l strokes to black colour. Then I resized each
image to half of the original size, which is 960 pixels wid th and 540 pixels height, so the
images w i l l take less space and t ra ining w i l l be done faster.

12

Figure 3.2: Cursor Linked Closed sketched symbol before (left) and after (right) colour
correction. Strokes are different colours before the correction, to il lustrate the difference in
strokes i n an image.

The images were divided into three separate folders for t raining, val idat ing and testing
the accuracy of the model . I randomly picked 7 participants whose images were later used
for the validat ion after each t ra ining epoch and 7 for testing of the model . The rest of the
images were used for t raining. The random selection was done by using Python ' s l ibrary
named random w i th function sample that has a uniform dis tr ibut ion. It selected 10 unique
numbers from the list of a l l user identification numbers, I split them into the validat ion
set and the test set, and then saved them i n the a configuration file. The final version of
classification dataset consists of 1437 images before augmentation.

A r r o w Cursor
Light

Cursor
L i n k e d

Cursor
L inked
Closed

Cursor
Player

Light
Shaft

Zone
Polygon

Tra in 187 187 189 184 184 183 183
Val ida t ion 10 10 10 10 10 10 10

Test 10 10 10 10 10 10 10

Table 3.4: Number of images before augmentation in Classification dataset divided into
corresponding classes.

The final version of classification dataset after augmentation consists of 2874 images.

A r r o w Cursor
Light

Cursor
L i n k e d

Cursor
L inked
Closed

Cursor
Player

Light
Shaft

Zone
Polygon

Tra in 374 374 378 368 368 366 366
Val ida t ion 20 20 20 20 20 20 20

Test 20 20 20 20 20 20 20

Table 3.5: Number of images after augmentation i n Classification dataset divided into
corresponding classes.

13

3.3.2 Segmenta t ion dataset — first vers ion

To recreate the functions from original sketches, I needed to recognize some basic objects as
lines and ellipses in the sketch. For this purpose I wanted to t ra in the segmentation neural
network to recognize the directions of the stroke from which I would be able to recognize
directional changes and objects in the sketch. To t ra in this segmentation neural network I
had to create a dataset from the data I collected.

The first version of the Segmentation dataset is created from the collected data about
the points sketched into the image, and timestamps of when they were sketched. The
output of my segmentation model w i l l be a mask i n numpy array format w i t h the same
size as the input image wi th the points on indexes where the points were sketched. E a c h of
these points w i l l be filled w i th 9 classes which represent the direction of the stroke on that
exact point. Directions are represented i n the Table 3.6.

A r r a y index Direc t ion on X axis Direc t ion on Y axis Visua l iza t ion
0 0 0
1 1 0 — >

2 1 -1 \
3 0 -1 I
4 -1 -1
5 -1 0 i—
6 -1 1 \
7 0 1 t
8 1 1

Table 3.6: Directions representation by index in vector. Th is vector is a part of each pixel
i n mask of Segmentation dataset.

Since the data was collected using graphical tablet connected to the computer, and this
tablet had lower resolution, some points were missing because the tablet didn ' t capture
each pixel . The applicat ion draws the lines between two points that it captures on the
tablet, and the tablet captured less points when the sketch was drawn in a short amount
of t ime. I found out about this issue when I tr ied to recreate the images by creating a new
image coloured on a l l points captured and comparing this image to the original image. If
two points following one after another in the collected data were not neighbours, but were
in the same stroke, I filled the line between them to connect them by adding neighbouring
points from the first point un t i l I reached the second point. Positions of the points used to
fill the distance are calculated using the Digital Difference Analyzer line a lgor i thm [20].

After fi l l ing the points and creating the mask for each image saved as numpy array, I
paired images w i t h their masks and augmented them i n the same way as I d id w i t h the
classification dataset mentioned i n Section 3.3.1, by flipping them. Then a l l the images
and masks are resized down from the original size of 1920 times 1080 pixels. F i n a l images
and their masks have 480 pixels w id th and 288 pixels height. The colour of strokes on a l l
images was also changed to only black colour and images colour mode is set to RGB mode.

Recreating of images also showed me that early versions of data collecting applicat ion
corrupted some logs about the points, so after blacklist ing those images I got 887 images
in the final dataset before augmentation and 1774 images after the augmentation. The

14

number of images divided by class before the augmentation can be seen i n Table 3.7 and
after the augmentation can be seen i n Table 3.8.

A r r o w Cursor Cursor Cursor Cursor Light Zone
Light L i n k e d L inked Player Shaft Polygon

Closed
Tra in 99 108 109 104 108 107 108

Val ida t ion 10 10 11 12 12 11 12
Test 8 9 10 9 10 10 10

Table 3.7: Number of images before augmentation in Segmentation dataset divided into
corresponding classes.

A r r o w Cursor
Light

Cursor
L i n k e d

Cursor
L inked
Closed

Cursor
Player

Light
Shaft

Zone
Polygon

Tra in 198 216 218 208 216 214 216
Val ida t ion 20 20 22 24 24 22 24

Test 16 18 20 18 20 20 20

Table 3.8: Number of images after augmentation i n Segmentation dataset divided into
corresponding classes.

I also t r ied to cut out only drawn parts of the image, so the drawn part would fi l l the
whole image. I wanted to see i f this option would be better for segmentation t raining. After
some experiments, I found out that it creates more errors i n segmentation training, so this
option was turned off dur ing the final t ra ining of segmentation model and the full image
was used for training.

3.3.3 Segmenta t ion dataset — second vers ion

A s mentioned i n the Section 3.3.2, to recreate the sketches, I needed to recognize some
objects i n the sketches. F i rs t approach I t r ied was teaching the network to recognize the
directions of the strokes. This approach d id not work, so I scraped the idea and started
again. Th is t ime I tr ied to teach a neural network to recognize the lines and ellipses. For
this segmentation neural network I had to create a new version of the segmentation dataset.

The second version of Segmentation dataset is created from the images in the classifi­
cation dataset. Information about these images are i n Section 3.3.1. These images were
resized to 480 pixels wid th and 288 pixels height. The output of my segmentation model
w i l l be a numpy array wi th the same size as the input image wi th the points on coordinates
where points were coloured. E a c h of these points w i l l be filled w i th 3 classes which repre­
sent 3 things I want to differentiate i n an image, which are lines, ellipses and a background.
Each point w i l l fall i n one of these 3 categories, which can be seen i n Table 3.9.

15

Index Name
0 Background
1 L ine
2 El l ipse

Table 3.9: Names of classes and their indexes in vector. Vector w i t h these indexes is a part
of each pixel in mask of Segmentation dataset.

To create the mask, I need to differentiate the lines and the ellipses manually. I took the
images from classification dataset and I used the fact that these images are named according
to their class name, which helped me simplify the creation of their masks. Classes Arrow
and Zone Polygon are only made out of lines. The masks for these classes were created
by selecting class index 1 on each pixel corresponding to drawn pixels i n the image. Class
Cursor Player is only made out of ellipse. W i t h these classes I d id not have to differentiate
lines and ellipses. Mask for this class was created by selecting class index 2 on each pixel
corresponding to drawn pixels in the image. Other classes are made out of both lines and
ellipses, so, to create their masks, I needed to differentiate lines and ellipses i n the image.

To differentiate the lines and the ellipses I saved a l l positions of the pixels that are a part
of the sketch i n the image. F i n d i n g ellipses i n the image is done using OpenCV l ibrary tools.
I found circles i n those images by finding inner contours i n them. To find contours, I loaded
the picture, changed the color scheme to grey-scale and applied thresholds from OpenCV
l ibrary named THRESH_BINARY and THRESH_OTSU. T h e n I used the findContours function
input t ing the thresholded data w i th the Retr ieval mode of the function set to RETR_TREE
and the M e t h o d of the function set to CHAIN_APPROX_SIMPLE. I chose only inner contours
from the hierarchy.

I took the sketched pixels positions and compared them to the contours positions and
then set the mask index to 2 on a l l pixels that were close to the inner contours. A l l the
sketched pixels remaining after that were set to index 1.

Inner contours are outlines of a curving or irregular figure. In class Cursor Linked
Closed there was an issue because the inner outline of the whole sketched function also had
its inner contour. To filter these contours, I compared the w id th and height of the contour
to the wid th and height of the whole sketch. If the contour was above half of the height or
half of the wid th , I filtered it out, since the ellipses i n class Cursor Linked Closed should
not be half the size of the whole sketch.

Since the images in this dataset are a l l from the classification dataset, they are already
augmented. Because of necessity of recognizing of the ellipses in some classes, I had to
manually delete some images from the dataset. The issue wi th these images was, that
they had incomplete ellipses, and therefore d id not have inner contours, so they were not
recognized as ellipses. After manual ly deleting these images, the dataset consists of 2356
images wi th augmented images, and without augmented images it is 1178 images. Number
of images divided by the class without augmentation can be seen in Table 3.10 and after
the augmentation can be seen in Table 3.11.

16

A r r o w Cursor Cursor Cursor Cursor Light Zone
Light L i n k e d L inked Player Shaft Po lygon

Closed
Tra in 187 149 104 105 184 148 183

Val ida t ion 10 8 8 8 10 10 10
Test 10 6 4 5 10 9 10

Table 3.10: Number of images without augmentation i n the second version of Segmentation
dataset d ivided into corresponding classes.

A r r o w Cursor
Light

Cursor
L i n k e d

Cursor
L inked
Closed

Cursor
Player

Light
Shaft

Zone
Polygon

Tra in 374 298 208 210 368 296 366
Val ida t ion 20 16 16 16 20 20 20

Test 20 12 8 10 20 18 20

Table 3.11: Number of images after augmentation i n the second version of Segmentation
dataset d ivided into corresponding classes.

17

Chapter 4

Method

4.1 Annotation tool

4.1.1 F r a m e w o r k

For the collection of the data I created an annotat ion applicat ion which helped me record a l l
the chosen types of the data from Section 3.1. I wanted to replicate real-life usage scenarios
of analysing a sport match, and based on my personal experience, analysis of sport events
is usually done on devices that have some k ind of touch input . I used a graphical tablet,
which made it possible for users to draw by hand, thus replicating the most common usage.
To use this graphical tablet, it had to be connected to a computer device.

I chose to create an applicat ion for a desktop using Python and PyQt framework. I chose
them because they are great for prototyping of any k ind . PyQt is a Python b inding for
Qt, which is a set of C++ libraries and development tools providing platform-independent
abstractions for graphical user interfaces. PyQt offers several widgets, such as buttons or
menus, a l l designed wi th a basic appearance across a l l supported platforms and a l l of them
are well documented. These widgets simplified the whole process of creating a desktop
software which was able to record a l l the data needed, since PyQt already has a drawing
widgets that I was able to use for my applicat ion. Python also has JSON l ibrary which
helped me store recorded data in JSON format.

4.1.2 A p p l i c a t i o n funct ional i t ies

The annotation applicat ion is capable of saving data I picked in Section 3.1 i n their corre­
sponding formats. The applicat ion has a list of a l l 7 sketch representations of the telestration
tools that I want users to draw. It has their visual representation and example sketches
assigned to each telestration tools name.

18

Figure 4.1: Sketching App l i ca t i on used for collection of the data, d ivided to the sections
of the appl icat ion wi th their section labels. R e d border outlines the Menu section. Purple
border outlines the Showcase section and light blue border outlines the Form section. Green
border outlines the Drawing section.

Before the users start to draw each sketch, there is a form used to get information
about the user. Th is form is located in the Form section of the Figure 4.1. Above the
form, there is a but ton named „New user" which calls a program function that prepares
the environment of the appl icat ion for a new user. The program function then saves a l l
the data about the user that was drawing, i f there was anyone drawing before. T h e n the
program function empties the form for a new user and switches the active sketch that is
supposed to be drawn to the beginning of the list of the sketches. In the Showcase section
of the Figure 4.1 is the visualisation of the telestration tool that active sketch is meant
to represent. Name of the telestration too l is wr i t ten above the visual izat ion. Below the
visual izat ion there is an example sketch of the telestration tool . There is also a but ton
named „Save current drawing" that saves the image of the drawing board under the name
corresponding to the telestration tool sketch that was supposed to be drawn. After pressing
the but ton to save the image, program function saves the sketch and switches the active
sketch to the next sketch on the list of a l l 7 sketches. If the current function is at the end
of the list when this but ton is pressed, next active sketch w i l l be the one at the beginning
of the list.

The Drawing section of the Figure 4.1 is the drawing area where users draw using the
graphical tablet connected to the computer while the appl icat ion is on. It is also possible
to draw on it w i th a computer mouse by holding the left but ton of the mouse and moving
around in the wanted shape. The Drawing section has by default a white background, but
this can be changed to an image background, which is a screenshot from the football match.
Background can be changed i n drop-down menu named „Background" located i n the Menu
section of Figure 4.1. Colour of strokes while drawing is automatical ly changed for each
new stroke. There are 5 colours on a list which are always i n the same order. Th is is used
to recognize different strokes in an image even i f the strokes are drawn over each other,

19

because when two strokes overlay, you end up wi th only the last one drawn on top. These
colours are easily changeable, since the final image does not keep background when saving
the image. Images are saved wi th transparent background i n .png format and therefore
stroke colours could be easily changed to any colour desired.

The Menu section i n the Figure 4.1 is made out of drop-down menus which contains
features for changing the wid th of the pen for drawing, changing background, manually
saving an image or clearing the drawing area. Then there is also drop-down menu named
„Poin t s" which gives an option to a user to draw out any important point it finds. Important
points are the points where there is a directional change of stroke, or where the stroke starts
or ends. They are important for recreating functions from their positions and recognizing
lines and circles in the drawings.

4.2 Neural networks

4.2.1 T o o l classif ication

The main part of this thesis was a classification of hand drawn sketches. After creating
the Classification dataset mentioned i n Subsection 3.3.1, I trained a convolutional neural
network wi th i t . I chose Residual Network architecture (ResNet) which is a deep learning
model used for computer vision applications. Th is network architecture is described i n the
Section 2.2.

The loss function used for t ra ining is CrossEntropyLoss function wi th base settings and
as an optimizer I used Adam optimizer. B o t h the loss function and optimizer were from
the Py Torch l ibrary.

The dataset is split into 3 sets of data: validations set, testing set and t ra ining set as
mentioned i n the Subsection 3.3.1. After each t ra ining epoch, the model is validated on
the validat ion set and has its accuracy checked on class predictions. The highest accuracy
model is then saved and checked on testing data at the end of the t raining. Tra in ing ends
after 50 epochs because, dur ing the testing I found out that around that number, val idat ion
loss is only growing and the model starts to be over-fitted.

Every t ime I check the accuracy of the model on any set of data, I also print out the
confusion mat r ix of this model . Some of these confusion matrices are visualized. The
visual izat ion is done at the beginning of the t ra ining i f I found any saved model and at the
end of the training, when checking accuracy of the most accurate model, chosen from the
whole training. Example of visualized confusion mat r ix is seen i n Figure 4.2.

20

Confusion matrix

370.0
14.26% 100%

0.00%

4.0
0.15%

374.0
14.42%

2.0
0.08%

2.0
0.08% 97.91%

2.09%

37B.0
14.57% 100%

0.00%

368.0
14.19% 100%

0.00%

366.0
14.11% 100%

0.00%

366.0
14.11% 100%

0.00%

100%.
0.00%

98.93% 100% 100% 100% 99.46% 100% 99.45% 99.69%
1.07% 0.00% 0.00% 0.00% 0.54% 0.00% 0.55% 0.31%

> #

f

P J?

/
Actual

Figure 4.2: Confusion mat r ix on t ra ining set of images at the end of t raining, computed wi th
the most accurate model of the convolutional neural network for classification. Percentages
under the number of times the class has been chosen are the percentages from the total
number of a l l predictions, based on the number of images i n the set. Blue column and blue
row are sums of that column or row they are part of. In this sums columns and rows, right
guesses percentages are wri t ten in green color and wrong guesses percentages are wri t ten
i n red color. B lank cells means 0 guesses in that part icular combination of predicted and
actual class.

4.2.2 Strokes segmentat ion

Image classification was the first step of translat ing hand-drawn sketches into the applica­
t ion functions. To be able to properly transform a sketch into the function, I need to locate
al l parts of the sketch and filter through them, to be able to pinpoint the function i n the
same positions it was drawn at. I can record each point drawn w i t h timestamps and then
use post-processing based on the class from my classification network. The problem that
might come up is that i n the telestration application, that this work is being developed
for, might not store this data or it might be unable to store so much data i n such a short

21

amount of t ime or it might be unable to capture this data, which is something I can not
control. W h i l e developing the new approach, I t r ied to find a way of how to use the images
used for the image classification mentioned i n the Subsection 4.2.1 and to be able to gather
more information about the drawn sketch from them, for post-processing purposes. Th is
approach w i l l also use less memory, since both neural network w i l l have the same image
used as the input.

Locat ing and recreating tools just from sketches is possible only if I know the direction
of the stroke and where the stroke started. I can estimate the stroke direction only if I have
the order of drawn points based on the t ime it was drawn. Then from the data gathered I
created the system of masks of each image, containing the stroke direction of each drawn
pixel . The pixel i n mask is filled w i th nine possible directions which can be seen i n Table 3.6
in the Section 3.3.2.

In this case, I used an image segmentation to generate image masks containing the
directions of the strokes i n the image. For the image segmentation I used U-Net a lgori thm
which encodes the image data to find features in the image, and then decodes the image
data to generate the segmentation from the features found.

Tra in ing of segmentation model starts w i t h checking if there is any model saved from
the t ra ining before. If it exists, we save its accuracy on validat ion data for comparison.
Each epoch is finished wi th checking accuracy on val idat ion data and then comparing the
accuracy to the last most accurate model to find the new most accurate model . After
comparing, I visualize first two masks from the val idat ion set and compare them to the
visualizations of masks that came out of the neural network side by side as seen i n the
Figure 4.3.

22

0 ICC 200 300 400 500 0 100 20O 300 400 500

Figure 4.3: Visua l iza t ion of masks, masks from the dataset (right) and segmentation neural
networks estimations (left). These visualizations are created after each t ra ining epoch.

For t ra ining I used CrossEntropyLoss function wi th specified weights for each class to
prevent the model from focusing on the background, since the majority of every picture
does not contain any stroke or drawn pixel , and therefore the majority of the picture has
no direction, which is the first class from Table 3.6. The Tensor array containing weights
is represented i n the Table 4.1.

— • \ I <— \ t
Weight 1 50 50 50 50 50 50 50 50

Table 4.1: Numbers representing weights for CrossEntropyLoss function.

A t the end of the training, I check accuracy on the t ra ining set, val idat ion set and
testing set. After that I visualized the t ra ining loss and val idat ion loss i n one graph as
seen i n Figure 4.4. Th is visual izat ion helped me set the m a x i m u m number of epochs to 25
because i n the graph I can clearly see from which point the val idat ion loss is only growing
and therefore the model is over-fitted.

23

Training and Validation Loss

L.85

1.80

1.75

1.70
IM
LH

J 1.65

1.60

1.55

1.50

0 2 4 6 8 10121416182022 2426283032 343638 40 42 44 4648
Epochs

Figure 4.4: G r a p h of losses throughout the t ra ining of segmentation neural network.

4.3 Segmentation of lines and ellipses

After the first phase of experiments as seen in the Section 5.1,1 found out that the approach
of the first segmentation network described i n 4.2.2 was not working. I developed a new
approach wi th a new dataset described i n the Section 3.3.3 and needed to t ra in the segmen­
tat ion neural network wi th this dataset. Th is segmentation neural network is completely
based on segmentation neural network described i n the Section 4.2.2, so I w i l l only mention
the differences between these networks.

This segmentation neural network divides the sketch image into three classes: Back­
ground, Lines, Ell ipses. Output of this network is a mask wi th the same dimensions as
input image, and each pixel is made out of vector representing 3 different classes. W h i c h
class the pixel belongs to is based on index in the vector. Indexes for each class are i n the
Table 3.9. O n l y one of these classes is set to number 1 on each pixel , representing which
class this p ixel belongs to. Other indexes are set to number 0. Visual izat ions done when
checking the accuracy of the network are shown i n Figure 4.5.

24

S c o r e s T a r g e t s

0 100 200 300 400 500 0 100 200 300 400 500

Figure 4.5: The visualizat ion of masks, the target mask (right) and the segmentation neural
networks estimations (left), pixels coloured wi th yellow are representing the pixels belonging
to the class E l l i p s e , pixels coloured wi th green belong to the class Line, purple colour
represents the class Background.

The CrossEntropy loss function Tensor is changed to one i n Table 4.2.

Background Line El l ipse
Weight 1 50 50

Table 4.2: Numbers representing weights for CrossEntropyLoss function based on classes
in the second version of segmentation network.

The network is t rained on a new dataset described in the Section 3.3.3. The number of
epochs in configuration of this network was changed from 25 epochs to 100 epochs. Tra in ing
and Val ida t ion losses by epoch are visualized in Figure 4.6.

25

Training and Validation Loss

o.so -

0.78 -

0.76 -

0.74

0.72

0.70

Training Loss
Validation Loss

II II I II II I II II I II II II I II II I II II I II II II I II II I II II I II II II I II II I II I II II I II II II I II II I II II I II II II I II II I II II I II II II I II II I II MIM II I II II I II II I II II II I II II I II I
0 15; 3Ö0

Epochs

Figure 4.6: G r a p h of losses throughout the t ra ining of segmentation neural network. Tested
while t ra ining for 300 epochs to find the best estimation of epoch to stop t ra ining the model.
Val ida t ion loss is slowly declining from 0.76 to around 0.74 and t ra ining loss is declining
from around 0.78 to around 0.69.

4.4 Technical details

The neural networks trained i n this work were trained on the computer w i th NVIDIA RTX
3060Ti graphics card wi th 8 G B of memory and Intel Core i5-12400F 2.5 GHz Pro­
cessor. I chose Python as my main programming language for this thesis, since it is r ich
w i th many libraries for working w i t h art if icial intelligence, sorting and visualizing data and
mathematical computing. For these, I main ly used libraries Numpy, PyTorch, MatPlotLib
and pandas. The convolutional neural network and segmentation neural network were both
trained in CUDA device format.

4.4.1 H y p e r - p a r a m e t e r s of classif ication network

Hyper-parameters for t ra ining of the tool classification network consists of number of classes
that network w i l l recognize, which is one for each telestration tool sketch to recognize, so
7 classes together. Then a learning rate of l - 3 and a batch size of 8 images. Number of
epochs that model w i l l t ra in for is 50.

26

4.4.2 H y p e r - p a r a m e t e r s of first vers ion of segmentat ion network

Hyper-parameters for t ra ining of the segmentation neural network consists of number of
classes, which in this case is 9, for each direction a pixel can have. These directions can
be seen i n the Table 3.6. The learning rate was set to 1 and batch size to 4 images i n a
batch.

4.4.3 H y p e r - p a r a m e t e r s of second vers ion of segmentat ion network

Hyper-parameters for the t ra ining of this segmentation neural network are the same as
hyper-parameters from the first version of the segmentation neural network, mentioned in
the Subsection 4.4.2. O n l y change is in the number of classes, which i n this case is 3, and
number of epochs increased to 200 epochs. The 3 classes can be seen i n the Table 3.9.

4.5 Showcasing tool

To show how the neural network models trained in this work w i l l be used, I developed an
application similar to the appl icat ion I created for the data collecting. B o t h applications
are created using the same technologies which are described in the Section 4.1.

C u r s o r L i n k e d

Figure 4.7: Showcase App l i ca t ion used to show the real-life usage of neural network models
trained i n this work. This applicat ion is d ivided to sections wi th their section labels. The
R e d border outlines the Info section. The blue border outlines the Menu section and the
green border outlines the Drawing section. In the Drawing section, we can see a recreated
telestration tool named Cursor Linked i n black colour, and important points used for the
recreation of this tool , selected by the Showcase applicat ion, in cyan.

4.5.1 A p p l i c a t i o n funct ional i t ies

The Showcase applicat ion records the sketch of the user drawn i n the Drawing section of the
application from the Figure 4.7, and after the point is drawn in this section, the applicat ion

27

starts a t ime counter that is 1.5 second long. After this t imer runs out of time, the drawn
sketch is temporal ly saved as an image and this image is then used as an input for the
classification neural network and also the segmentation neural network. The t ime of 1.5
second was chosen after going through the collected data and finding out the average times
it took users to draw a new stroke in the sketch after finishing a previous stroke.

The image that is temporari ly saved goes through the process of resizing and colour
changing mentioned i n the Section 3.3.1, the same process each image from the classification
dataset went through. The modified image is then passed to the classification network. This
network predicts which telestration tool the sketch is supposed to represent. The name of
the predicted tool is then printed out in the Info section from the Figure 4.7.

The same image is then passed through the segmentation neural network which outputs
the mask of the input image as mentioned in the Section 3.3.3. Th is mask then goes through
the post-processing explained i n the Section 4.6.

Post-processing is finished wi th pr int ing of the representation of the telestration tool
that sketch is meant to represent. W h e n this process is finished, the applicat ion waits
for the user to start drawing a new sketch. W h e n user starts to draw a new sketch, the
application clears the Drawing section from the Figure 4.7, which becomes empty.

The Showcase applicat ion also includes a Menu section which enables user to change
the brush size, clear the drawing manually, tu rn off the pr int ing of recognized points which
are being printed in cyan as seen i n the Figure 1.7. The applicat ion also enables users
to change i f the segmentation model is used for tool recreating process, or, instead the
application records the points and recreates the tool w i th the mask the applicat ion creates
itself from recorded points based on the first version of segmentation dataset explained in
the Section 3.3.2. Post-processing then changes, based on, i f the model was used or not.
If the model was used, the applicat ion uses a new version of post-processing. If a points
recorder from the applicat ion was used and the applicat ion created the direction mask from
the points recorded while drawing, we use the o ld version of post-processing.

The information about what the applicat ion is doing at the moment is being printed
out in the Info section from the Figure 4.7.

4.6 Post-processing

Post-processing of points has two versions based on two versions of the segmentation neural
network. The second version has smal l adjustments to fit the changes in the masks. These
adjustments are explained i n the Subsection 4.6.3.

4.6.1 F i r s t vers ion of post -process ing

A direction mask outputted from the segmentation neural network contains points from
the whole sketch. To recreate the telestration tool that the sketch is meant to represent, I
need to filter out only the features from the image. These features w i l l help me recognize
the positions and sizes of the parts of the sketches which I w i l l then reconstruct and print
in the Showcase applicat ion I created. This appl icat ion records sketches drawn by the user
and uses both neural network models trained in this work, to reconstruct the telestration
tool that sketch is meant to represent.

The direction mask, which we can see i n the Figure 4.3, needs to be processed for each
class of the tool differently, to retrieve needed information about the positions from the
mask. Nevertheless, beginning of the post-processing process is the same for each class.

28

Pseudo-code for sorting algori thm created by me can be seen in the A l g o r i t h m 1. This
process starts by taking a l l the points from the mask which is in numpy array format,
excluding points where the direction is represented by class zero, also symbolised as „•" in
the Table 3.6. I need to find a point, where any of the strokes in the image starts. To
find this start ing point, I take the sides of the sketch, because I assume that points on the
side w i l l either be the end or the beginning of a stroke. I check the leftmost point and see
if the direction of this point is to the right side on X axis. If it is, it means that it is a
starting point for the stroke and i n that case, it is my start ing point and the first active
point for recognizing the strokes. If the direction is different, it means the stroke d id not
start at that point and I check the direction of the rightmost point i n the sketch and that
w i l l be the start ing point. Then I search for neighbouring points to the start ing point and
also the active point. Those are the points that are one pixel away from the active point.
The neighbouring point becomes the new active point. The point, that became inactive, is
removed from the list of a l l points and labeled as sorted. If there are more neighbouring
points for one point, then I pick the one that is in the direction of the active point, assuming
they were a part of the same stroke. If there is no neighbouring point left, I assume it is
the end of the stroke and after removing this end point, I again search for the rightmost
and leftmost points, repeating the whole process. Th is creates an ordered list of points,
divided to strokes. The end of the stroke is added to the list by adding the point on X and
Y positions [0, 0] w i th direction class 0.

Program filters important points from the ordered list. Important are the points where
the direction is changed, or the start points and ending points of the strokes. These points
w i l l help us split apart lines and circles and also reconstruct the telestration functions
representation. A list of important points in assumed order they were drawn is then returned
to finish post-processing based on the class of telestration tool they are meant to represent.

W h e n the function which purpose is to print out the visual representations of the
telestration tool into the applicat ion receives the list of important points, it creates an­
other copy of this list without the points which represent the end of strokes. Th is list is
used in part icular cases for some reasons which w i l l be explained i n the Subsection 4.6.2.

29

A l g o r i t h m 1 A n algori thm to sort points by strokes
points_l is t <— numpy.nonzero(segment_mask) > Lis t of drawn pixels from the image
act ive_point <— star t ing_point > Star t ing point is chosen by a function
neighbours <— empty list
empty_poin t <— [0, 0, 0]
while length of points_l i s t 7̂ 0 do

for point B i n points_l i s t do > Create a list of neighbouring points
if point B is neighbour of act ive_point and point B 7̂ ac t ive_point then

neighbours.append (point B)
end if

end for
sorted_points.append(active_point) > L a b e l active point as sorted
points_list .delete(active_point) > Delete the active point from the list
if length of neighbours 7̂ 0 then > If any neighbour has been found

Chose <— False
for point C i n neighbours do > Compare the directions

if point C direction = = last sorted_points direction then
act ive_point <— point C
Chose <— True

end if
end for
if Chose 7̂ True then > If we d id not found point w i th the same direction

act ive_point <— closest point by [X, Y] posit ion from neighbours
end if

else > Found end of the stroke
sorted_points .append(empty_point) > A p p e n d end of stroke representation
act ive_point <— new starting point > Choose a new start ing point w i th function

end if
end while

4.6.2 Pos t -process ing for different classes

Class A r r o w

If the class of tool that the sketch represents is Arrow, I connect the important points from
the list w i th lines. If I find the end of the stroke i n the list of points, which is represented
wi th point on positions [0, 0] and direction of class 0 from the Table 3.6, I skip this point
and create new line from the next point, which means it is a beginning of a new stroke.
Recreated tool of class Arrow can be seen i n the Figure 4.8.

30

Figure 4.8: Recreated function of class Arrow w i th highlighted important points using cyan
circles in the Showcase applicat ion.

Class Cursor Light

For the representation of telestration tool of class Cursor Light the only part needed for
recreation are the points of the ellipses i n the image, since the direction of the light i n the
final tool representation w i l l always be vert ical ly up. For this part icular reason, I use the
list of important points without nu l l points which represents end of the strokes. Th is list
is sent to the function which deletes outlier points from the list, which i n this case are the
points of the lines coming out of the circle. The function deletes them out w i t h an intention
to only have the points of sketched ellipse, without the end of the lines coming from the
ellipse. The points at the end of the lines which are coming up from ellipse can be seen as
two blue circles at the top of the image in the Figure 4.9.

Figure 4.9: Recreated telestration tool of class Cursor Light w i th highlighted important
points using cyan circles i n the Showcase application.

After receiving the list without outlier points, I find the sides of the drawing by locating
the most left, right, top and bo t tom coordinates i n the list. W i t h those coordinates, I
calculate the locat ion and size of the ellipse and draw it out. Then I draw two lines from
the sides of the ellipse upward, representing the light in the original tool .

Classes Cursor Linked and Cursor Linked Closed

Recreation of these two classes of telestration tools can be seen in the Figure 4.10 and
Figure 4.11. These are the most complicated to recreate, but their recreation is based on
the same principle of recognizing ellipses and lines i n the image. For this task of recognizing

31

and d iv id ing points into the different lines and circles I used K-means clustering method.
Theory behind this a lgori thm can be found in Subsection 2.4.2. Since points have much
less direction changes than circles, I used K-means to divide a l l the important points to
clusters and deleted outlier points, which were directional changes i n lines that connected
circles, therefore leaving me wi th clusters of ellipse points.

K-means needs a number of clusters inputted, to cluster the points properly. For this,
I used a silhouette score which is explained in the Subection 2.4.2. The index number of
cluster which the point belongs to is then appended on the end of the data of each point,
right after its direction index. These clusters are passed through the similar process as
mentioned i n the Subsection 4.6.2, where firstly I cut out the outlier points, and after that
I assume that each cluster is just the representation of a circle from the original sketch.

The ellipses are drawn after getting their locat ion and size from those clustered points.
Size is calculated by getting the furthest points from each direction of X and Y coordinates.
I save the information about the centre of the cluster to be able to connect a l l ellipses wi th
the lines. There is the only difference between the classes Cursor Linked and Cursor
Linked Closed, where i n the class Cursor Linked Closed I connect a l l the centers and
in the class Cursor Linked I do not connect the last ellipse wi th the first ellipse.

Figure 4.10: Recreated telestration tool of class Cursor Linked w i th highlighted important
points using cyan circles i n the Showcase application.

32

Figure 4.11: Recreated telestration tool of class Cursor Linked Closed w i t h highlighted
important points using cyan circles in the Showcase applicat ion.

Class Cursor Player

The recreation of telestration tool of class Cursor Player is drawn after calculating the
size of the ellipse and locating the centre based on the important points list without the
representation of ends of strokes i n the list.

Figure 4.12: Recreated telestration tool of class Cursor Player w i th highlighted important
points using cyan circles i n the Showcase application.

Class Light Shaft

W i t h this class of telestration tool recreation as seen in the Figure 4.13, I use K-means
algori thm wi th 2 clusters to identify the ellipse and the line. El l ipse is the cluster w i th more
points, since it has more direction changes than straight line. After identifying the ellipse
and calculat ing its size, I draw the ellipse and make the light in upward direction, without
considering its drawn direction, since the light i n the function w i l l always go upward.

33

o
Figure 4.13: Recreated telestration tool of class Light Shaft w i th highlighted important
points using cyan circles i n the Showcase application.

Class Zone Polygon

In the Zone Polygon telestration tool class recreation, as seen i n the Figure 4.14, I identify
the rightmost, leftmost, highest and lowest coordinate. Then I identify the point that is
the closest to each corner. These corners are created by combining the furthest coordinates
for bo th X and Y axes and getting 4 corner coordinates: [Rightmost X coordinate, Low­
est Y coordinate], [Leftmost X coordinate, Highest Y coordinate], [Rightmost X coordi­
nate, Lowest Y coordinate], [Leftmost X coordinate, Lowest Y coordinate]. After finding
the 4 closest points to those corners, I connect them wi th the lines to create a polygon.

Figure 4.14: Recreated telestration tool of class Zone Polygon w i th highlighted important
points using cyan circles i n the Showcase application.

34

4.6.3 Pos t -process ing changes w i t h the second segmentat ion network

Mask array from the second version of the segmentation network consists of three classes
described i n the Subsection 3.3.3. To recreate the function we only need the lines and
ellipses, so I create two lists of points divided into the points identified as the class Line
and points identified as the class E l l i p s e .

The list of points identified as class E l l i p s e is passed to the function that prints out
the points as they are, without filtering any points. Th is new version makes clustering
for K-Means a lgori thm much easier and more efficient. W i t h this list of points identified
as the class E l l i p s e , there is also no necessity to cut out outlier points, because the
accuracy of this neural network is adequate to exclude any out lying points. This list is used
to recreate the classes Cursor Light, Cursor Linked, Cursor Linked Closed, Cursor
Player and Light Shaft w i th the same processes as mentioned in the Subsection 4.6.2.

The list of points identified as the class Line is sorted by finding neighbours of the points
using the A l g o r i t h m 2. Th is a lgori thm sorts the points i n order by their neighbours i n the
list. Neighbouring points are the points closest to each other from the whole list. Then
wi th the sorted points, I t ry to find any direction changes and the ends and the beginnings
of the lines. Th is sorted and filtered list of points identified as the class Line is then sent
to the pr int ing function. I use this approach only for recreating of the classes Arrow and
Zone Polygon.

A l g o r i t h m 2 A n algori thm to put line points in order
l ine_poin t s_ l i s t array of line points
sorted_list <— empty list
ac t ive_poin t_ index <— 0 > Star t ing point is the beginning of the list
while length of l ine_po in t s_ l i s t 7̂ 0 do

sorted_list .append(l ine_points_l is t [active_point_index])
l ine_points list .delete(l ine_points_list [active_point_index])
if length of l ine_po in t s_ l i s t 7̂ 0 then > To find new active point, function is called

which finds the closest point to the last active point which is now in sorted_list
ac t ive_poin t_ index <— Closest point to the last point in sorted_list

end if
end while

35

Chapter 5

Experiments

Experiments were done to identify the accuracy of the final version of both networks were
done by drawing each class 20 times by 5 different participants of the study and collecting
how correct the outcome was. I selected 5 different mistakes that could impact the whole
process of classification and recreation of the telestration tool from its sketched represen­
tat ion and create an unsatisfactory outcome. These mistakes were:

1. Incorrect classification of image

2. Incorrect directions of segmented points from segmentation network

3. Incorrectly deleted out lying points

4. Incorrect K-means cluster classification

5.1 First phase of testing

Firs t testing was split into two versions of creation of directional masks. Creat ion of the
direction mask is explained i n the Section 4.2.2. One was computed from the recorded
points when the image was drawn. The other one was outputted from the segmentation
neural network mentioned i n the Section 4.2.2. F i n a l scores of the experiments are i n the
Table 5.1.

Table 5.1: Exper iment outputs

Class Mask creation Output of experiment Number
Incorrect Class 0
Incorrect Directions 100

Segmentation Incorrect Outliers 0
Incorrect K-means 0

A r r o w
Correct 0

A r r o w
Incorrect Class 0
Incorrect Directions 3

Point Recording Incorrect Outliers 0
Incorrect K-means 0
Correct 97

Cont inued on next page

36

Table 5.1 - continued from previous page
Class Mask creation Output of experiment Number

Incorrect Class 0
Incorrect Directions 100

Segmentation Incorrect Outliers 0
Incorrect K-means 0

Cursor Light
Correct 0

Cursor Light
Incorrect Class 0
Incorrect Directions 0

Point Recording Incorrect Outliers 17
Incorrect K-means 0
Correct 83
Incorrect Class 0
Incorrect Directions 100

Segmentation Incorrect Outliers 0
Incorrect K-means 0

Cursor L inked
Correct 0

Cursor L inked
Incorrect Class 0
Incorrect Directions 0

Point Recording Incorrect Outliers 12
Incorrect K-means 15
Correct 73
Incorrect Class 2
Incorrect Directions 98

Segmentation Incorrect Outliers 0
Incorrect K-means 0

Cursor L inked Closed
Correct 0

Cursor L inked Closed
Incorrect Class 0
Incorrect Directions 0

Point Recording Incorrect Outliers 10
Incorrect K-means 16
Correct 71
Incorrect Class 1
Incorrect Directions 99

Segmentation Incorrect Outliers 0
Incorrect K-means 0

Cursor Player
Correct 0

Cursor Player
Incorrect Class 0
Incorrect Directions 0

Point Recording Incorrect Outliers 0
Incorrect K-means 0
Correct 100

Cont inued on next page

37

Table 5.1 - continued from previous page
Class Mask creation Output of experiment Number

Incorrect Class 0
Incorrect Directions 100

Segmentation Incorrect Outliers 0
Incorrect K-means 0

Light Shaft
Correct 0

Light Shaft
Incorrect Class 0
Incorrect Directions 0

Point Recording Incorrect Outliers 6
Incorrect K-means 0
Correct 94
Incorrect Class 0
Incorrect Directions 100

Segmentation Incorrect Outliers 0
Incorrect K-means 0

Zone Polygon
Correct 0

Zone Polygon
Incorrect Class 0
Incorrect Directions 0

Point Recording Incorrect Outliers 0
Incorrect K-means 0
Correct 100

After this phase of testing I found out that the output of segmentation neural network
was incorrect and I was unable to identify important points i n the arrays it outputted. This
problem is shown i n the Table 5.1 i n each class where segmentation was used, nearly 100
% of the images had incorrect mask.

5.2 Second phase of testing

After this I created a new version of segmentation network which recognises 3 different parts
of a sketch, which are lines, ellipses and a background. Creat ion of a new dataset is described
in the Section 3.3.3 and the new segmentation network is described in the Section 4.3.
Since the whole segmentation network was reworked, I repeated the experiments using
newly trained network implemented wi th slightly changed post-processing described i n the
Subsection 4.6.3. The results can be found i n the Table 5.2. In this phase I was looking
for the same mistakes as in the first phase of testing. These mistakes are described i n 5.1.
On ly change was that instead of incorrect directions of segmented points from segmentation
neural network, this t ime I was looking for incorrect segmentation of lines and ellipses by
segmentation neural network.

38

Table 5.2: Exper iment outputs

Class Mask creation Output of experiment Number
Incorrect Class 0
Incorrect Segmentation 0

A r r o w Segmentation Incorrect Outliers 0
Incorrect K-means 0
Correct 100
Incorrect Class 0
Incorrect Segmentation 0

Cursor Light Segmentation Incorrect Outliers 0
Incorrect K-means 0
Correct 100
Incorrect Class 0
Incorrect Segmentation 0

Cursor L inked Segmentation Incorrect Outliers 0
Incorrect K-means 2
Correct 98
Incorrect Class 1
Incorrect Segmentation 0

Cursor L inked Closed Segmentation Incorrect Outliers 0
Incorrect K-means 4
Correct 95
Incorrect Class 0
Incorrect Segmentation 0

Cursor Player Segmentation Incorrect Outliers 0
Incorrect K-means 0
Correct 100
Incorrect Class 1
Incorrect Segmentation 0

Light Shaft Segmentation Incorrect Outliers 0
Incorrect K-means 0
Correct 99
Incorrect Class 0
Incorrect Segmentation 0

Zone Polygon Segmentation Incorrect Outliers 0
Incorrect K-means 0
Correct 100

From data I gathered i n the second phase of experiments, as seen i n the Table 5.2, the
second version of segmentation neural network brought an excellent outcome since a l l of
the masks outputted from the segmentation neural network were usable enough to recreate
the telestration too l visualizations from them.

W h i l e doing the experiments, I recorded the t ime it took for each class to segment
and post-process the whole image. Average t ime for each class i n milliseconds are i n the
Table 5.3.

39

A r r o w Cursor Cursor Cursor Cursor Light Zone
Light L inked L inked Player Shaft Po ly ­

Closed gon
Average t ime (ms) 275.9 284.75 516.6 536.4 286.5 278.4 312.1

Table 5.3: Average t ime i n milliseconds that it took to classify a sketch, create a mask
using segmentation model and post-process the mask, d ivided by the class of the image.
The t ime was measured while doing the second phase of the experiments.

In the two phases of experiments done in the Showcase applicat ion I tested the classifica­
t ion neural network and two version of segmentation neural network. The experiments were
done in real-time wi th different participants. Average times it took the applicat ion to go
through the whole process, d ivided by different classes, are recorded i n the Table 5.3. These
experiments show that the two neural networks used in the final version of the Showcase
application are functional and usable i n real-time.

40

Chapter 6

Conclusion

This thesis was mainly focused on t ra ining a neural network to classify a hand-drawn sketch
into one of seven tools portrayed by its specific symbols, which were specified after the
testing wi th a smal l group of users. Since this classification is planned to be implemented
into an applicat ion for coaches and sport analysts, who w i l l be drawing these sketches of
symbols in free-hand drawing environment, I created an applicat ion to collect the data in
a real-life scenario.

After collecting the data from 97 different users, I was able to use this data to create a
dataset for an image classification. I used supervised t ra ining for the convolutional neural
network using the dataset of collected images divided into seven classes. The 2100 sketches
drawn i n the experiments done wi th this neural network in the Showcase applicat ion de­
scribed i n the Section 4.5 showed 99.64 % accuracy of the classification network, which we
can see i n the Table 5.1 and the Table 5.2. Th is therefore means that I successfully trained
a convolutional neural network to classify the 7 telestration tool sketch representations seen
in the Append ix B .

In the second part of this thesis, I recreated the classified sketch into a telestration
tool representation. For this purpose I proposed an a lgor i thm to find some features and
important parts of each sketch, based on its class. I trained a segmentation neural network
for creating the masks for each sketch. These masks consisted of the directions i n which the
strokes in an image were painted. I trained it on the dataset that I created from the collected
data mentioned in the Section 3.3.2. P rob lem occurred when, after 1400 experiments seen
in the Table 5.1 and done i n the Showcase application, I found out that this approach was
not working and 0 % of the created masks were usable for recreation of the functions based
on the sketches. The segmentation neural network was unable to identify the directions of
the strokes properly.

For evaluation purposes, i n the Showcase applicat ion I recorded each point drawn and
created these masks manually. F r o m these manual ly created masks, I was able to use post­
processing described i n the Section 4.6 on manually created masks to recreate the final
functions from the original sketches.

Then I created the second version of the segmentation neural network wi th its own
dataset described in the Section 3.3.3. This segmentation neural network is able to recognize
lines, ellipses and a background i n a sketched image. The outputted masks of this neural
network were used for recreating the functions from the sketches. The non-functional
segmentation neural network was replaced i n the Showcase appl icat ion w i t h the second
version of the segmentation neural network and after subtle changes i n post-processing

41

process I d id some more experiments w i th the new network. The experiments showed that
the masks created by this neural network were a l l usable to recreate the original functions.

42

Bibliography

[1] D E N G , J . , D O N G , W . , S O C H E R , R . , L I , L . - J . , L I , K . et a l . ImageNet: A large-scale

hierarchical image database. In: 2009 IEEE Conference on Computer Vision and
Pattern Recognition. 2009, p. 248-255. D O I : 10.1109/CVPR.2009.5206848.

[2] E I T Z , M . , H A Y S , J . and A L E X A , M . H O W D O Humans Sketch Objects? ACM Trans.
Graph. (Proc. SIGGRAPH). 2012, vol . 31, no. 4, p. 44:1-44:10.

[3] G u o , K . , W O M A , J . and X u , E . Quick, Draw! Doodle Recognition. Stanford
University, 2018. Available at: https://cs229.stanford.edu/proj2018/report/98.pdf.

[4] H A , D . and E C K , D . A Neura l Representation of Sketch Drawings. In: International
Conference on Learning Representations. 2018. Available at:
https: / / openreview.net/f orum?id=Hy6GHpkCW.

[5] H E , K . , Z H A N G , X . , R E N , S. and S U N , J . Deep Residual Learning for Image
Recognit ion. 2016 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR). 2015, p. 770-778.

[6] K H A T R I , S. K . , D U T T A , S. and J O H R I , P . Recognizing images of handwri t ten digits
using learning vector quantizat ion artif icial neural network. In: 2015 4th International
Conference on Reliability, Infocom Technologies and Optimization (ICRITO) (Trends
and Future Directions). 2015, p. 1-4. D O I : 10.1109/ICRITO.2015.7359307.

[7] K I N G M A , D . P . and B A , J . A d a m : A M e t h o d for Stochastic Opt imiza t ion . CoRR.
2014, abs/1412.6980.

[8] M A C Q U E E N , J . Some methods for classification and analysis of multivariate
observations. In:. 1967.

[9] Q I N , S. Intelligent Classification of Sketch Strokes. In: EUROCON 2005 - The
International Conference on „Computer as a Tool". 2005, vol . 2, p. 1374-1377. D O I :
10.1109/EURCON.2005.1630216.

[10] R O N N E B E R G E R , O. , F I S C H E R , P . and B R O X , T . U-Net : Convolut ional Networks for
Biomedica l Image Segmentation. CoRR. 2015, abs/1505.04597. Available at:
http://arxiv.org/abs/1505.04597.

[11] R O U S S E E U W , P . J . Silhouettes: A graphical a id to the interpretation and validat ion
of cluster analysis. Journal of Computational and Applied Mathematics. 1987,
vol . 20, p. 53-65. D O I : https://doi.org/10.1016/0377-0427(87)90125-7. I S S N
0377-0427. Available at:
https: //www. sciencedirect.com/science/article/pii/0377042787901257.

43

https://cs229.stanford.edu/proj2018/report/98.pdf
http://arxiv.org/abs/1505.04597
https://doi.org/10.1016/0377-0427(87)90125-7
http://sciencedirect.com/science/article/pii/0377042787901257

[12] R U B I N S T E I N , R . The Cross-Entropy M e t h o d for Combina tor ia l and Continuous
Opt imiza t ion . Method. Comput. Appl. Prob. U S A : Kluwer Academic Publishers, sep
1999, vol . 1, no. 2, p. 127-190. D O I : 10.1023/A:1010091220143. I S S N 1387-5841.
Available at: https://doi.org/10.1023/A: 1010091220143.

[13] S E D D A T I , O. , D U P O N T , S. and M A H M O U D I , S. DeepSketch 2: Deep convolutional

neural networks for par t ia l sketch recognition. In: 2016 14th International Workshop
on Content-Based Multimedia Indexing (CBMI). 2016, p. 1-6. D O I :
10.1109/CBMI.2016.7500261.

[14] S E D D A T I , O. , D U P O N T , S. and M A H M O U D I , S. DeepSketch: Deep convolutional

neural networks for sketch recognition and similar i ty search. In: 2015 13th
International Workshop on Content-Based Multimedia Indexing (CBMI). 2015,
p. 1-6. D O I : 10.1109/CBMI.2015.7153606.

[15] S H E L H A M E R , E . , L O N G , J . and D A R R E L L , T . Fu l ly Convolut ional Networks for

Semantic Segmentation. IEEE Transactions on Pattern Analysis and Machine
Intelligence. 2017, vol . 39, no. 4, p. 640-651. D O I : 10.1109/TPAMI.2016.2572683.

[16] S U T H E R L A N D , I. E . Sketch P a d a Man-Mach ine Graph ica l Communica t ion System.
In: Proceedings of the SHARE Design Automation Workshop. New York , N Y , U S A :
Associat ion for Comput ing Machinery, 1964, p. 6.329-6.346. D A C '64. D O I :
10.1145/800265.810742. I S B N 9781450379328. Available at:
https://doi.org/10.1145/800265.810742.

[17] T R A N , E . and L u , W . Free-hand Sketch Recognition Classification. Stanford
University, 2017. Available at:
http://cs231n.stanford.edu/reports/2017/pdfs/420.pdf.

[18] Y U A N , Z . and J I N , G . Sketch Recognit ion Based Intelligent Whi teboard Teaching
System. 2008 International Conference on Computer Science and Software
Engineering. 2008, vol . 5, p. 867-870.

[19] Z H A N G , H . , L I U , S., Z H A N G , C , R E N , W . , W A N G , R . et a l . SketchNet: Sketch

Classification w i th Web Images. In: 2016 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR). 2016, p. 1105-1113.

[20] Ž Á R A , J . , B E N E Š , B . , S O C H O R , J . and F E L K E L , P . Moderní počítačová grafika. 2.th

ed. Praha : Computer Press, 2005. 80-82 p. I S B N 80-251-0454-0.

44

https://doi.org/10.1023/A
https://doi.org/10.1145/800265.810742
http://cs231n.stanford.edu/reports/2017/pdfs/420.pdf

Appendix A

Tools visualizations

45

46

of ChyronHego.

47

Appendix B

Tools sketch representations

Figure B . l : Sketch representation of the function Ar row.

Figure B .2 : Sketch representation of the function Cursor Light .

18

Figure B . 3 : Sketch representation of the function Cursor L inked .

Figure B .4 : Sketch representation of the function Cursor L inked Closed.

o
Figure B .5 : Sketch representation of the function Cursor Player.

49

Figure B.6 : Sketch representation of the function Light Shaft.

Figure B .7 : Sketch representation of the function Zone Polygon.

50

Appendix C

Scientific Poster

Chyron
AUTOMATIC GRAPHICS TOOL SELECTION

USING FREE-HAND S K E T C H E S

Consul: .HI:;,: Ine Jan Brojdva "'h .:<

INTRODUCTION

THIS WORK FOCUSES ON

CONVERTING SKETCHES OF

SPORTS ANALYSTS AND COACHES

TO TELESTRATION TOOL

REPRESENTATIONS NEEDED FOR

SPORT ANALYSIS.

IT'S PLANNED TO BE IMPLEMENTED

TO RECOGNIZE SKETCHES IN FREE

HAND DRAWING SECTION OF

SPORT ANALYSIS APPLICATION.

OBJECTIVE

tools from ChyronHego Corp. Apples

METHODOLOGY

• Selected a symbol as a representation of each function
• Created an application in Python using PyQT framework to collect

data needed to create a dolose I. Jolo were split in these sections:
3 Images of sketches in .png format
•• Timestarrps cl sketched Pixels
a Colour of sketched pixel
^ Position of sketched pixel
•' Change of stroke drawing direction

• Collected data from 97 participants - each class sketched on the
white background and on the image from football match to
recreate real-life usoge

• Created a dataset for training a CNN for classification and another
dataset for irraqc segmentation that c.oss I cs . i c s and ellipses in
the image for recreating of the telestration tools

• Trained b c l i neural networks
• Implemented another app to showcase usage cl Irained networks

SELECTED SYMBOLS FOR EACH CLASS iss XTi

o
or Flays", "LkfitStiafT, "Zone Polygon'

USED TECHNOLOGIES

. PYTHON
• PYQT
. PYTORCH
• NUMPY
• PIL

RELATED PAST WORK

00.« m :
= =

»»•»*'

™

= *****
100*

•

/ / / .

CONCLUSION

• Created data collecting application
• Created two datasets from collected data
• Succesfully trainee c o o p t i o n a l neural network on own dataset to recognize 7 classes with 96% accuracy
• Succesfully trained segmentation neural network to recognize lines and ellipses
• Created showcasing application with usage of both neural networks and post-processing to recreate functions from sketches

51

