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Abstract

This thesis works on classifications of sketch representations of telestration tool. This clas-
sification is being developed for telestration application as part of the free-hand drawing
section. After choosing the sketch representations, collecting data with specifically created
application I created two datasets. First dataset was used to train a convolutional neural
network to classify the sketches. Second dataset was used to train segmentation neural
network to classify lines and ellipses in sketches. Both networks was then implemented into
application to showcase their usage in real-time and experiment on their accuracy. This
application also contains post-processing process to recreate the telestration tool represen-
tations from the sketches.

Abstrakt

Tato praca je zamerand na klasifikdciu skic reprezentujicich telestracné nastroje. Téato
klasifikdcia bola vytvorena pre telestracni aplikaciu ako sucast sekcie na kreslenie vol-
nou rukou. Po vybrati skic reprezentujtucich nastroje, zozberani dat za pomoci aplikacie,
ktord som vytvoril na tento ucel, som vytvoril dva datasety. Prvy dataset bol pouzity na
trénovanie konvolu¢nej neurénovej siete na klasifikaciu skic. Druhy dataset bol pouzity na
trénovanie segmentacnej neurénovej siete pre rozlisenie linif a elips v skici. Obe siete boli
implementované do aplikacie na ukazku ich funkcionality v redlnom Case a zaroven pre ex-
perimentovanie a zistovanie ich presnosti. Tato aplikécie tiez obsahuje proces dodatoéného
spracovania, vdaka ktorému vie reprodukovat reprezentacie telestra¢nych nastrojov zo skic.
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Rozsireny abstrakt

Tato praca sa zaobera vytvorenim automatického nastroja na spracovanie skic telestrac¢nych
nastrojov. Tento nastroj je implementovany pre telestracni aplikdciu, ktora slizi na Spor-
tové analyzy pre Sportovych analytikov a trénerov. Tato aplikdcia obsahuje priestor na
kreslenie do Sportovych zdznamov volnou rukou, v ktorom neurénova siet bude rozoznavat
urcité skice uzivatelov a néasledne ich bude aplikicia menit na funkcie naimplementované v
aplikacii. ktoré tieto skice reprezentuju.

Konvoluéna neurénové sief bude rozoznavat skice reprezentujice telestra¢né nastroje.
Tieto skice boli vybrané po zozbierani navrhov od malej skupiny uzivatelov, podla zhody
viacerych uzivatelov. Nasledne pomocou mnou vytvorenej aplikacie na zbieranie dat boli
zozbierané data od 97 ticastnikov zberu dat. Data obsahovali nakreslené skice, aj informacie
o ich kresleni. Tieto data sa nasledne pouzili na vytvorenie dvoch datasetou.

Prvy dataset bol vytvoreny na trénovanie konvoluc¢nej neurénovej siete pre rozoznavanie
ktora telestrac¢nu funkciu skica reprezentuje. Druhy dataset slizi na trénovanie segmen-
tacnej neurénovej siete, ktora je potrebnd pre spravne vytvorenie funkcie zo skice.

Segmentacna neurénova siet sa pouziva na ziskanie pozicii a velkosti objektov tvoriacich
skicu, pre replikovanie funkcie na rovnakych poziciach. V prvej verzii segmentacnej siete,
bol pokus o ziskanie tychto informéacii pomocou segmentacnej masky obsahujicej smery
tahu na kreslenych pixeloch v obrazku. Tato siet bola trénovand na datasete vytvorenom
z0 zozbieranych dat.

Pre experimentovanie a ukdzku funkénosti natrénovanych modelov oboch neurénovych
sieti som vytvoril druha aplikdciu. Po nakresleni skice reprezentujicej jednu zo 7 funkcii
vybranych pre tiato pracu v danej aplikécii, model konvolu¢nej neurénovej siete klasifikuje
danu skicu a uréi ktoru funkciu ma tato skica reprezentovat. Nasledne model segmentacnej
siete vytvori masku, ktord prejde procesom dodatoéného spracovania a nasledne aplikacia
podla tychto spracovanych dat pretvori reprezenticiu klasifikovanej funkcie na rovnakej
pozicii ako sa nachadzala skica.

Po prvej sérii experimentov som zistil, ze segmentacna siet nevytvara dostatoéne presné
masky, na to aby sa dali spracovat. Na porovnanie som zapisoval body v aplikacii a vytvaral
tieto smerové masky v aplikacii. V pripade masiek vytvorenych aplikdciou, proces spraco-
vania bol funk¢ny a aplikdcia dokazala zreprodukovat funkcie zo skic.

Nasledne som vytvoril druhi verziu segmenta¢ného datasetu, ktory rozoznaval elipsy a
linie v skice. Po natrénovani tejto siete na novom datasete, som model tejto siete vlozil do
aplikdcie namiesto starého nefunkéného modelu a pomocou malych dprav procesu doda-
to¢ného spracovania bola aplikacia schopna zreprodukovat funkcie zo skic pomocou oboch
neurénovych sieti.

V tejto aplikacii boli nasledne zreprodukované experimenty, ktoré ukazali, ze druha
verzia segmentacnej neurénovej siete vytvorila dostatocne presné masky na zreprodukovanie
funkcii vo vsetkych pripadoch a konvolu¢na neurénova siet klasifikovala skice s tspesnostou
99.64 %.

Aktualne ma aplikdcia moznost spracovania skic dvoma sp6sobmi. Prvy je pomo-
cou smerovych masiek vytvorenych aplikdciou a druhy je pomocou modelu segmentacnej
neurdénove;j siete.
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Chapter 1

Introduction

Hand-drawn sketches have long been used as a method of conveying ideas and concepts
in various fields, including architecture, engineering, and design. However, the process of
converting these sketches into digital forms, such as CAD drawings or 3D models, can be
time-consuming and error-prone. In recent years, advances in machine learning, particularly
neural networks, have led to the development of tools that can automatically interpret and
convert hand-drawn sketches into digital forms.

My work will focus on sketches of sports analysts and coaches and convert them to basic
telestration tools needed for sport analysis. This tool is planned to be used as an input
method for the telestration software created by ChyronHego Corporation, which will ease
the work for users, because they will not need to activate the functions manually. Usual
users of these tools are coaches and sports analysts, so I will try to incorporate as many
users from sporting background as possible for both data collection and testing.

This thesis will focus on the use of machine learning techniques for the automatic selec-
tion of the most appropriate graphical tool based on the interpreted hand-drawn sketches.
The thesis will investigate current state of the art in sketch recognition and graphical tool
selection, and will propose the best method for automatic selecting the most appropriate
tool for a given sketch.

The goal of this thesis is to develop a prototype of a system which will be able to
convert hand-drawn sketch representation of telestration tools chosen for this thesis, into
telestration tools. The thesis will start by picking neural network architecture that will
provide sketch recognition as accurate as possible.

Creation of the dataset will also be an important part of completing this task, since
the sketched representations of the telestration tools will be picked, and there are not any
datasets with these specifically picked sketches in existence. Different types of data will be
collected from users who then will go through the pipeline to create a dataset for training
a chosen neural network.



Chapter 2

Related work

2.1 Sketch Classification

Works on sketch recognition and classifications date back to the development of Sketch-
Pad [16], a device that made it possible to transfer hand-made drawings from a computing
device, thus recording the first sketches. Since then, there have been a lot of different
approaches to recognize different types of sketches.

Some sketch classification projects focused on hand-written words, others on sketches
or doodles of real-life objects. Khatri et al. [6] focused on creating a neural network able
to recognizing hand-written numbers via learning vector quantization abbreviated. They
deconstructed their input images into vectors and trained the neural network to recognize
the numbers based on these vectors. They found out the problems with recognition of this
type is usually due to different hand-writing styles of users.

Yuan and Jin [18] created an Intelligent Whiteboard used as a tool for Computer Sup-
ported Cooperative Learning and measured an efficiency of sketching in the learning process
and total usability of this type of communication with a device. They mainly used detection
of strokes and post-processing features to recreate sketches into UML class diagrams, dig-
ital circuits, chemical diagrams and many other things. For post-processing process, they
detected certain feature points in strokes and from these points they recognized primary
symbols they chose, which inspired me in training my Stroke recognition neural network in
the Section 4.2.2 and Section 4.3 and my post-processing in Section 4.6.

There was one work that tried to develop a sketch feature representation named Sketch-
Net [19], which tried to recognise sketches based on their real web images as seen in the
Figure 2.1.
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Figure 2.1: Examples of correctly classified sketches on a test case with real images as
references. The first column shows the test sketch, and the top 5 category predictions are
displayed from the top row to the bottom, in sequence. Specifically, each row of real images
represents the nearest visually similar images in its category. This Figure is from SketchNet
thesis [19].

This was not applicable to my thesis because the tools that I will classify will have only
a symbolic representation, and it is not a sketch mirroring the exact look of real-life figure.

One of the biggest open-source datasets created in sketch recognition history was done
by Google Inc. named Quick, Draw! consisting of more than 50 million sketches divided
into 345 categories with size of 28 by 28 pixels, contributed by players playing a game with
the same name. Many works have been done with this dataset. One of them was focused
on training the Recurrent neural network to learn sketch abstractions for reconstruction,
expanding and finishing sketches based on input unfinished sketch images [4]. There were
other works interested in sketch classification and since sketch classification is my main
goal, I was interested in those.

One of image classification works realised on Quick, Draw! dataset was done by Tran
and Lu [17] who architected Deep Convolutional neural network for sketch classification
based on residual neural network architecture, also known as ResNet. They found an
issue with hard recognition with similarly looking classes, for example, classes Pigeon,
Seagull and Standing bird. Difference in hand-written drawing styles of users made it
difficult to recognize these similar classes. Based on this knowledge, Guo et al. [3] tried to
use K-Nearest Neighbour Algorithm with K-Means++ initialization and weighted voting
where they created centroid of sketched points and then weighted the points according to
the distance from the centroid. They compared this technique with Convolutional neural



network, only to find out that Convolutional neural network outperformed their algorithm
and stayed the best technique for image classification at the time.

There are other studies done with Deep Convolutional neural networks. An extensive
dataset created by Eitz et al. [2], usually mentioned in the studies with the name TU-
Berlin, is used a lot as a benchmark across many studies focused on sketch classification.
The TU-Berlin dataset consists not only of full classified sketches, but also of partially
drawn sketches.

Seddati et al. [14] created a system for the sketch classification and similarity search
using the T'U-Berlin dataset. This study proposed a Deep Convolutional neural network
named ConvNet that classifies the images, and after the classification it also performs
features extraction from the sketch images. On those features they use k-Nearest neighbours
algorithm for similarity search in the sketch image classes. Their architecture has fewer and
smaller kernels than previous attempts and got 75.42 % accuracy on the TU-Berlin dataset,
overcoming all previously tested architectures and also humans which had 73 % accuracy
of classification on this dataset. Seddati et al. [13] also created a second version of their
architecture where they proposed the multi-task learning of their neural network. New
version of ConuvNet is trained for predicting the object category, but it also predicts the
completeness of the sketch. With this approach they achieved 77.69 % accuracy on the
TU-Berlin dataset, outperforming their previous version of ConvNet. These two networks
developed by Seddati et al. are also being referred to as DeepSketch and DeepSketch?.

Figure 2.2: Examples of partially drawn versions of the sketches classified as a class named
House from training of DeepSketch2 [13].

By discussing problems with classification, which mainly consisted of different hand-
drawing styles and similar looks of complex sketches, I concentrated on the problems that
might occur in my work. The data collected by me will have a wide variety of users from



different backgrounds to capture as many hand-drawing styles as possible. Sketches of the
classes used in my work will all be simple and have easily recognizable differences which, it
is hoped, will eliminate the issue of high similarity of complex sketches.

2.2 Classification Neural Network

Neural network architecture used for this thesis is residual network with 18 hidden layers
named ResNet-18 created by He et al. [5]. Residual networks were created to ease the
training of deep networks. This network was first to have layers of learning residual func-
tions with a reference to the layer inputs, instead of learning unreferenced functions. The
ResNet-18 had smaller error rate than plain state-of-the-art method at the time. With
networks that had more layers, this gap between errors of ResNet architectures and other
architectures got even broader which can be seen in the Figure 2.3.

L e it L O - - ———————————————————-——-

i
=

ffffffffffffffffffffffff 50 o------------------

e
=

error (%)
error (%)

34-layer
£ S e s L £l) SRS e ke
plain-18 ResNet-18 ‘MM\;’V\A_WNAV
—plain-34 —ResNet-34 34-layer
% 10 20 30 a0 30 20y 10 20 30 a0 30
iter. (led) iter. (led)

Figure 2.3: Experiments tried with ResNet-18 and ResNet-34 by He et al. [5], while train-
ing on ImageNet dataset [1]. Thin curves denote training error, and bold curves denote
validation error of the centre crops. Plain networks of 18 and 34 layers (left). ResNets of 18
and 34 layers (right). In this plot, the residual networks have no extra parameter compared
to their plain counterparts. Figure is also taken from the work of He et al. [5].

For training this neural network I used a Cross-Entropy loss function which originates
from Rubinstein [12]. Loss function of neural network penalizes wrong outputs of neural
network and helps it learn. The Cross Entropy builds upon the idea of entropy from
information theory and calculates the number of bits required to represent or transmit an
average event from one distribution compared to another distribution. The Cross entropy
loss function measures the difference between the discovered probability distribution of a
machine learning classification model and the predicted distribution. It is usually used for
models where there are three or more classification possibilities, but there is also binary
version of this loss function. For this thesis, I used a multi-class version of this loss.
Calculating the Cross Entropy across multiple classes is done according to this equation:

N
H(PaQ):_ZPm*IOg(Qm)

r=1

Where:

e H(P,Q) is the Cross Entropy function between the two probability distributions P
and @



e P, is the probability of the event x in the distribution P
e (. is the probability of the event x in the distribution @
e log is the base-2 logarithm, meaning that the results are in bits

This calculation is for the discrete probability distributions although a similar calcula-
tion can be used for continuous probability distributions using the integral across the events
instead of the sum. The result will be a positive number measured in bits and will be equal
to the entropy of the distribution if the two probability distributions are identical.

To optimize learning of the neural network I used Adam optimizer developed by Kingma
and Ba [7]. The Adam optimizer is an efficient method of stochastic gradient-based opti-
mization that only requires first-order gradients with little memory requirement. The name
Adam is derived from adaptive moment estimation. The optimizer is used for changing the
attributes of the neural network while learning.

2.3 Segmentation Neural Network

The Segmentation neural network used in this work is firstly used to try to recognize the
directions that the strokes in the sketches have been drawn in, and later this network is
used to classify the lines and the ellipses in the sketch for recreating of sketched functions.

In the history of working with sketch strokes there is one work that inspired me in
choosing my network. Qin [9] presented an intelligent method for classifying pen strokes in
an on-line sketching system. This method used linearity and convexity of curves to identify
curves, lines, circles, ellipses, and many other types of curves. I wanted to achieve similar
goal using the neural network.

I chose the segmentation neural network for image segmentation to extract certain
features from my sketches. I used U-net architecture developed by Ronneberger et al. [10],
originally used for Biomedical Image Segmentation. This network was an improvement of
the original version done by Shelhamer et al. [15]. The U-net is a convolutional neural
network modified and extended to work with fewer training images in order to reach higher
segmentation accuracy. Its architecture is symmetric and consists of two main parts and
it can be seen in the Figure 2.4. Left part is called a contracting path, constituted by the
general convolutional process. Right part is constituted by transposed 2D convolutional
layers. Image is an input and output is a segmentation map.
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Figure 2.4: U-net architecture. Each blue box corresponds to a multi-channel feature map.
The number of channels is denoted on the top of the box. The x-y-size is provided at the
lower left edge of the box. White boxes represent copied feature maps. The arrows denote
the different operations. Figure from Ronneberger et al. [10].

For learning of this neural network I used the multi-class Cross Entropy loss function
with weighted classes and Adam optimizer function. Both are mentioned and explained in
the Section 2.2.

2.4 Post-processing Functions

The post-processing realised in this thesis is inspired by work of Yuan and Jin [18] in
which they recognized features of different objects selected for their work. For my work, I
needed to recognize lines and ellipses in the sketches and then in their positions recreate
the functions these sketches are meant to represent.

2.4.1 Digital Difference Analyzer line algorithm

For connecting points that were not directly next to each other, when creating the first
version of the segmentation dataset mentioned in the Section 3.3.2, I used the Digital
Difference Analyzer (DDA) line algorithm as mentioned in Zara [20]. This algorithm is
used for an interpolation of variables over an interval between the start and the end point.
It has only one cycle and each new coordinate is calculated based on the last calculated
coordinate. We calculate new values until we reach the end point coordinates.

Input of the DDA line algorithm:

Starting coordinates = (Xo, Yp)



Ending coordinates = (X, Yy)

Equations to calculate for each X coordinate:
Xi=Xi1+1

Yi=Yii+m
Where m is calculated with this equation:

. Yend — Ystart
Xend - Xstart

2.4.2 K-means clustering and Silhouette analysis

When post-processing the points from the segmentation neural network, in some classes I
needed to create clusters from the points to recognize ellipses from all the points retrieved
from the sketch and to recreate them in those positions. For this purpose, I used K-means
clustering developed by MacQueen [8]. This process is used for similarity grouping or
clustering. It classifies the points into K number of clusters based on the nearest cluster
centroid, serving as a prototype for the final cluster. For this process to work properly, 1
needed to know how many ellipses are in each sketch, since K-means clustering requires an
input of number of clusters to divide the points into which in my case means, how many
ellipses I want to divide the points into. To find out the number of clusters I used the
Silhoutte analysis developed by Rousseeuw [11]. The silhouette analysis measures of how
close each point in one cluster is to the points in the neighbouring clusters, and thus provides
a way to assess parameters, as, for example, number of clusters, visually. This measure has
a range of [-1, 1]. The name for this measure is silhouette coefficient. The silhouette
coefficient near value of +1 indicates that the sample is far away from the neighbouring
clusters. A value of 0 indicates that the sample is on or very close to the decision boundary
between two neighbouring clusters, and negative values indicate that those samples might
have been assigned to the wrong cluster. To find the best number of clusters from the
points, I calculated the Silhouette coefficient for different number of clusters on the same
points, and the number of clusters with the highest coefficient is then chosen as the final
number of clusters for K-means clustering algorithm.



Chapter 3

Dataset

3.1 Choosing data

Simple way to represent sketches is by their images, but there are many other features that
might help me to find a new way of sketch classification. I picked these features to gather:

1. Images of sketched area in .png format

2. Timestamps of when each pixel of the sketch was drawn
3. Colour of each pixel of the sketch

4. Position coordinates of each pixel of the sketch

5. Position of when stroke changed its direction

Then I store the data about users who participated in the data collection process:
1. Age

2. Biological gender

3. Occupation

4. Relation to sport

All of the data will be stored in JSON format for its easy translating to python dictio-
naries.

3.1.1 Selecting representing symbols

Tools that I will try to convert into functions will be symbolised by classes, each function
will represent one class with the same name. These classes needed their own symbol rep-
resentation that had to be chosen before the beginning of data collection. These symbols
were chosen by 10 participants who all created their own ideas for symbol representation of
each function. For the purpose of my work I chose 7 functions, that I will classify and trans-
late. The names of these functions are Arrow, Cursor Light, Cursor Linked, Cursor
Linked Closed, Cursor Player, Light Shaft and Zone Polygon. Their visual design
representations can be found in Appendix A. After collecting the ideas on symbol repre-
sentations from the participants, I selected one symbol for each tool. I chose the most

10



occurring representations from sketches I gathered from participants in this collection. Ex-
ample sketches of these symbols can be found in Appendix B.

Figure 3.1: Sketched symbol (left) representing function (right) named Arrow.

3.2 Dataset collection

3.2.1 Subjects

The data was collected from 97 participants from different backgrounds and ages from 6
years to 73 years, to comprehend a big diversity of drawing styles. The participants mainly
consisted of students who contributed to 76 % of all the data collected as seen in Table 3.3,
and they were between the ages 18 and 22 years. Also 72 % of the participants were sport
oriented as seen in Table 3.2. Participants divided into their biological genders can be seen
in Table 3.1.

Biological gender | Count
Male 71
Female 26

Table 3.1: Number of participants in dataset collection by their biological gender.

Relation to sport | Count
True 70
False 27

Table 3.2: Number of participants in dataset collection by their relationship with sports.

11



Occupation Count
Student
Teacher

\]
N

Pension

Driver

Entrepreneur

Football player

Soldier

Officer

Football team manager

Entrepreneur

Headmaster

Mechanic
Medic
Recruiter
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Table 3.3: Number of participants in dataset collection by their occupation.

3.3 Sorting datasets

The data collected from participants consists of 1437 images including 7 classes mentioned in
Section 3.1.1. Each class contains around 200 images with the data about every particular
image: different strokes, coordinates of points coloured, colour of points and timestamp
when each of them was coloured. At the end of the data collection, I created two different
datasets. One dataset for a classification model which will estimate the class of an image
and one dataset for a segmentation model which will estimate the direction of strokes from
an image. The direction of the stroke will be needed for post-processing and recreation of
the tool from the sketch.

3.3.1 Classification dataset

I created the ground truth of the classification dataset by classifying all images collected
from the participants and augmenting each image by flipping each image on x axis or y axis
or both axes randomly. The images, originally without a background, were assigned white
background, since strokes were coloured with darker colours, and on white background they
will be easily recognisable. On original images, different strokes had different colours, but
for the case of the classification I changed all strokes to black colour. Then I resized each
image to half of the original size, which is 960 pixels width and 540 pixels height, so the
images will take less space and training will be done faster.
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Figure 3.2: Cursor Linked Closed sketched symbol before (left) and after (right) colour
correction. Strokes are different colours before the correction, to illustrate the difference in
strokes in an image.

The images were divided into three separate folders for training, validating and testing
the accuracy of the model. I randomly picked 7 participants whose images were later used
for the validation after each training epoch and 7 for testing of the model. The rest of the
images were used for training. The random selection was done by using Python’s library
named random with function sample that has a uniform distribution. It selected 10 unique
numbers from the list of all user identification numbers, I split them into the validation
set and the test set, and then saved them in the a configuration file. The final version of
classification dataset consists of 1437 images before augmentation.

Arrow | Cursor Cursor Cursor Cursor Light Zone
Light Linked Linked Player Shaft Polygon
Closed
Train 187 187 189 184 184 183 183
Validation 10 10 10 10 10 10 10
Test 10 10 10 10 10 10 10

Table 3.4: Number of images before augmentation in Classification dataset divided into
corresponding classes.

The final version of classification dataset after augmentation consists of 2874 images.

Arrow | Cursor Cursor Cursor Cursor Light Zone
Light Linked Linked Player Shaft Polygon
Closed
Train 374 374 378 368 368 366 366
Validation 20 20 20 20 20 20 20
Test 20 20 20 20 20 20 20

Table 3.5: Number of images after augmentation in Classification dataset divided into
corresponding classes.
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3.3.2 Segmentation dataset — first version

To recreate the functions from original sketches, I needed to recognize some basic objects as
lines and ellipses in the sketch. For this purpose I wanted to train the segmentation neural
network to recognize the directions of the stroke from which I would be able to recognize
directional changes and objects in the sketch. To train this segmentation neural network I
had to create a dataset from the data I collected.

The first version of the Segmentation dataset is created from the collected data about
the points sketched into the image, and timestamps of when they were sketched. The
output of my segmentation model will be a mask in numpy array format with the same
size as the input image with the points on indexes where the points were sketched. Fach of
these points will be filled with 9 classes which represent the direction of the stroke on that
exact point. Directions are represented in the Table 3.6.

Array index | Direction on X axis | Direction on Y axis | Visualization

0 0 0 :

1 1 0 —
2 1 -1 Ny
3 0 -1 +

4 -1 -1 v
5 -1 0 —
6 -1 1 N
7 0 1 T

8 1 1 Ve

Table 3.6: Directions representation by index in vector. This vector is a part of each pixel
in mask of Segmentation dataset.

Since the data was collected using graphical tablet connected to the computer, and this
tablet had lower resolution, some points were missing because the tablet didn’t capture
each pixel. The application draws the lines between two points that it captures on the
tablet, and the tablet captured less points when the sketch was drawn in a short amount
of time. I found out about this issue when I tried to recreate the images by creating a new
image coloured on all points captured and comparing this image to the original image. If
two points following one after another in the collected data were not neighbours, but were
in the same stroke, I filled the line between them to connect them by adding neighbouring
points from the first point until I reached the second point. Positions of the points used to
fill the distance are calculated using the Digital Difference Analyzer line algorithm [20].

After filling the points and creating the mask for each image saved as numpy array, 1
paired images with their masks and augmented them in the same way as I did with the
classification dataset mentioned in Section 3.3.1, by flipping them. Then all the images
and masks are resized down from the original size of 1920 times 1080 pixels. Final images
and their masks have 480 pixels width and 288 pixels height. The colour of strokes on all
images was also changed to only black colour and images colour mode is set to RGB mode.

Recreating of images also showed me that early versions of data collecting application
corrupted some logs about the points, so after blacklisting those images I got 887 images
in the final dataset before augmentation and 1774 images after the augmentation. The
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number of images divided by class before the augmentation can be seen in Table 3.7 and
after the augmentation can be seen in Table 3.8.

Arrow | Cursor Cursor Cursor Cursor Light Zone
Light Linked Linked Player Shaft Polygon
Closed
Train 99 108 109 104 108 107 108
Validation 10 10 11 12 12 11 12
Test 8 9 10 9 10 10 10

Table 3.7: Number of images before augmentation in Segmentation dataset divided into
corresponding classes.

Arrow | Cursor Cursor Cursor Cursor Light Zone
Light Linked Linked Player Shaft Polygon
Closed
Train 198 216 218 208 216 214 216
Validation 20 20 22 24 24 22 24
Test 16 18 20 18 20 20 20

Table 3.8: Number of images after augmentation in Segmentation dataset divided into
corresponding classes.

I also tried to cut out only drawn parts of the image, so the drawn part would fill the
whole image. I wanted to see if this option would be better for segmentation training. After
some experiments, I found out that it creates more errors in segmentation training, so this
option was turned off during the final training of segmentation model and the full image
was used for training.

3.3.3 Segmentation dataset — second version

As mentioned in the Section 3.3.2, to recreate the sketches, I needed to recognize some
objects in the sketches. First approach I tried was teaching the network to recognize the
directions of the strokes. This approach did not work, so I scraped the idea and started
again. This time I tried to teach a neural network to recognize the lines and ellipses. For
this segmentation neural network I had to create a new version of the segmentation dataset.

The second version of Segmentation dataset is created from the images in the classifi-
cation dataset. Information about these images are in Section 3.3.1. These images were
resized to 480 pixels width and 288 pixels height. The output of my segmentation model
will be a numpy array with the same size as the input image with the points on coordinates
where points were coloured. Each of these points will be filled with 3 classes which repre-
sent 3 things I want to differentiate in an image, which are lines, ellipses and a background.
Each point will fall in one of these 3 categories, which can be seen in Table 3.9.
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Index Name
0 Background
1 Line
2 Ellipse

Table 3.9: Names of classes and their indexes in vector. Vector with these indexes is a part
of each pixel in mask of Segmentation dataset.

To create the mask, I need to differentiate the lines and the ellipses manually. I took the
images from classification dataset and I used the fact that these images are named according
to their class name, which helped me simplify the creation of their masks. Classes Arrow
and Zone Polygon are only made out of lines. The masks for these classes were created
by selecting class index 1 on each pixel corresponding to drawn pixels in the image. Class
Cursor Player is only made out of ellipse. With these classes I did not have to differentiate
lines and ellipses. Mask for this class was created by selecting class index 2 on each pixel
corresponding to drawn pixels in the image. Other classes are made out of both lines and
ellipses, so, to create their masks, I needed to differentiate lines and ellipses in the image.

To differentiate the lines and the ellipses I saved all positions of the pixels that are a part
of the sketch in the image. Finding ellipses in the image is done using OpenC'V library tools.
I found circles in those images by finding inner contours in them. To find contours, I loaded
the picture, changed the color scheme to grey-scale and applied thresholds from OpenCV
library named THRESH_BINARY and THRESH_OTSU. Then I used the findContours function
inputting the thresholded data with the Retrieval mode of the function set to RETR_TREE
and the Method of the function set to CHAIN_APPROX_SIMPLE. I chose only inner contours
from the hierarchy.

I took the sketched pixels positions and compared them to the contours positions and
then set the mask index to 2 on all pixels that were close to the inner contours. All the
sketched pixels remaining after that were set to index 1.

Inner contours are outlines of a curving or irregular figure. In class Cursor Linked
Closed there was an issue because the inner outline of the whole sketched function also had
its inner contour. To filter these contours, I compared the width and height of the contour
to the width and height of the whole sketch. If the contour was above half of the height or
half of the width, I filtered it out, since the ellipses in class Cursor Linked Closed should
not be half the size of the whole sketch.

Since the images in this dataset are all from the classification dataset, they are already
augmented. Because of necessity of recognizing of the ellipses in some classes, I had to
manually delete some images from the dataset. The issue with these images was, that
they had incomplete ellipses, and therefore did not have inner contours, so they were not
recognized as ellipses. After manually deleting these images, the dataset consists of 2356
images with augmented images, and without augmented images it is 1178 images. Number
of images divided by the class without augmentation can be seen in Table 3.10 and after
the augmentation can be seen in Table 3.11.
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Arrow | Cursor Cursor Cursor Cursor Light Zone
Light Linked Linked Player Shaft Polygon
Closed
Train 187 149 104 105 184 148 183
Validation 10 8 8 8 10 10 10
Test 10 6 4 5 10 9 10

Table 3.10: Number of images without augmentation in the second version of Segmentation
dataset divided into corresponding classes.

Arrow | Cursor Cursor Cursor Cursor Light Zone
Light Linked Linked Player Shaft Polygon
Closed
Train 374 298 208 210 368 296 366
Validation 20 16 16 16 20 20 20
Test 20 12 8 10 20 18 20

Table 3.11: Number of images after augmentation in the second version of Segmentation
dataset divided into corresponding classes.
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Chapter 4

Method

4.1 Annotation tool

4.1.1 Framework

For the collection of the data I created an annotation application which helped me record all
the chosen types of the data from Section 3.1. I wanted to replicate real-life usage scenarios
of analysing a sport match, and based on my personal experience, analysis of sport events
is usually done on devices that have some kind of touch input. I used a graphical tablet,
which made it possible for users to draw by hand, thus replicating the most common usage.
To use this graphical tablet, it had to be connected to a computer device.

I chose to create an application for a desktop using Python and PyQt framework. I chose
them because they are great for prototyping of any kind. PyQt is a Python binding for
Qt, which is a set of C++ libraries and development tools providing platform-independent
abstractions for graphical user interfaces. PyQt offers several widgets, such as buttons or
menus, all designed with a basic appearance across all supported platforms and all of them
are well documented. These widgets simplified the whole process of creating a desktop
software which was able to record all the data needed, since Py@Qt already has a drawing
widgets that I was able to use for my application. Python also has JSON library which
helped me store recorded data in JSON format.

4.1.2 Application functionalities

The annotation application is capable of saving data I picked in Section 3.1 in their corre-
sponding formats. The application has a list of all 7 sketch representations of the telestration
tools that I want users to draw. It has their visual representation and example sketches
assigned to each telestration tools name.
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Figure 4.1: Sketching Application used for collection of the data, divided to the sections
of the application with their section labels. Red border outlines the Menu section. Purple
border outlines the Showcase section and light blue border outlines the Form section. Green
border outlines the Drawing section.

Before the users start to draw each sketch, there is a form used to get information
about the user. This form is located in the Form section of the Figure 4.1. Above the
form, there is a button named ,,New user® which calls a program function that prepares
the environment of the application for a new user. The program function then saves all
the data about the user that was drawing, if there was anyone drawing before. Then the
program function empties the form for a new user and switches the active sketch that is
supposed to be drawn to the beginning of the list of the sketches. In the Showcase section
of the Figure 4.1 is the visualisation of the telestration tool that active sketch is meant
to represent. Name of the telestration tool is written above the visualization. Below the
visualization there is an example sketch of the telestration tool. There is also a button
named ,Save current drawing® that saves the image of the drawing board under the name
corresponding to the telestration tool sketch that was supposed to be drawn. After pressing
the button to save the image, program function saves the sketch and switches the active
sketch to the next sketch on the list of all 7 sketches. If the current function is at the end
of the list when this button is pressed, next active sketch will be the one at the beginning
of the list.

The Drawing section of the Figure 4.1 is the drawing area where users draw using the
graphical tablet connected to the computer while the application is on. It is also possible
to draw on it with a computer mouse by holding the left button of the mouse and moving
around in the wanted shape. The Drawing section has by default a white background, but
this can be changed to an image background, which is a screenshot from the football match.
Background can be changed in drop-down menu named ,,Background“ located in the Menu
section of Figure 4.1. Colour of strokes while drawing is automatically changed for each
new stroke. There are 5 colours on a list which are always in the same order. This is used
to recognize different strokes in an image even if the strokes are drawn over each other,
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because when two strokes overlay, you end up with only the last one drawn on top. These
colours are easily changeable, since the final image does not keep background when saving
the image. Images are saved with transparent background in .png format and therefore
stroke colours could be easily changed to any colour desired.

The Menu section in the Figure 4.1 is made out of drop-down menus which contains
features for changing the width of the pen for drawing, changing background, manually
saving an image or clearing the drawing area. Then there is also drop-down menu named
»Points* which gives an option to a user to draw out any important point it finds. Important
points are the points where there is a directional change of stroke, or where the stroke starts
or ends. They are important for recreating functions from their positions and recognizing
lines and circles in the drawings.

4.2 Neural networks

4.2.1 Tool classification

The main part of this thesis was a classification of hand drawn sketches. After creating
the Classification dataset mentioned in Subsection 3.3.1, I trained a convolutional neural
network with it. I chose Residual Network architecture (ResNet) which is a deep learning
model used for computer vision applications. This network architecture is described in the
Section 2.2.

The loss function used for training is CrossEntropyLoss function with base settings and
as an optimizer I used Adam optimizer. Both the loss function and optimizer were from
the PyTorch library.

The dataset is split into 3 sets of data: validations set, testing set and training set as
mentioned in the Subsection 3.3.1. After each training epoch, the model is validated on
the validation set and has its accuracy checked on class predictions. The highest accuracy
model is then saved and checked on testing data at the end of the training. Training ends
after 50 epochs because, during the testing I found out that around that number, validation
loss is only growing and the model starts to be over-fitted.

Every time I check the accuracy of the model on any set of data, I also print out the
confusion matrix of this model. Some of these confusion matrices are visualized. The
visualization is done at the beginning of the training if I found any saved model and at the
end of the training, when checking accuracy of the most accurate model, chosen from the
whole training. Example of visualized confusion matrix is seen in Figure 4.2.
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Figure 4.2: Confusion matrix on training set of images at the end of training, computed with
the most accurate model of the convolutional neural network for classification. Percentages
under the number of times the class has been chosen are the percentages from the total
number of all predictions, based on the number of images in the set. Blue column and blue
row are sums of that column or row they are part of. In this sums columns and rows, right
guesses percentages are written in green color and wrong guesses percentages are written
in red color. Blank cells means 0 guesses in that particular combination of predicted and
actual class.

4.2.2 Strokes segmentation

Image classification was the first step of translating hand-drawn sketches into the applica-
tion functions. To be able to properly transform a sketch into the function, I need to locate
all parts of the sketch and filter through them, to be able to pinpoint the function in the
same positions it was drawn at. I can record each point drawn with timestamps and then
use post-processing based on the class from my classification network. The problem that
might come up is that in the telestration application, that this work is being developed
for, might not store this data or it might be unable to store so much data in such a short
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amount of time or it might be unable to capture this data, which is something I can not
control. While developing the new approach, I tried to find a way of how to use the images
used for the image classification mentioned in the Subsection 4.2.1 and to be able to gather
more information about the drawn sketch from them, for post-processing purposes. This
approach will also use less memory, since both neural network will have the same image
used as the input.

Locating and recreating tools just from sketches is possible only if I know the direction
of the stroke and where the stroke started. I can estimate the stroke direction only if I have
the order of drawn points based on the time it was drawn. Then from the data gathered I
created the system of masks of each image, containing the stroke direction of each drawn
pixel. The pixel in mask is filled with nine possible directions which can be seen in Table 3.6
in the Section 3.3.2.

In this case, I used an image segmentation to generate image masks containing the
directions of the strokes in the image. For the image segmentation I used U-Net algorithm
which encodes the image data to find features in the image, and then decodes the image
data to generate the segmentation from the features found.

Training of segmentation model starts with checking if there is any model saved from
the training before. If it exists, we save its accuracy on validation data for comparison.
Each epoch is finished with checking accuracy on validation data and then comparing the
accuracy to the last most accurate model to find the new most accurate model. After
comparing, I visualize first two masks from the validation set and compare them to the
visualizations of masks that came out of the neural network side by side as seen in the
Figure 4.3.
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Figure 4.3: Visualization of masks, masks from the dataset (right) and segmentation neural
networks estimations (left). These visualizations are created after each training epoch.

For training I used CrossEntropyLoss function with specified weights for each class to
prevent the model from focusing on the background, since the majority of every picture
does not contain any stroke or drawn pixel, and therefore the majority of the picture has
no direction, which is the first class from Table 3.6. The Tensor array containing weights
is represented in the Table 4.1.

= N W= N A
Weight [ 1 | 50 [ 50 [ 50 | 50 [ 50 | 50 | 50 | 50

Table 4.1: Numbers representing weights for CrossEntropyLoss function.

At the end of the training, I check accuracy on the training set, validation set and
testing set. After that I visualized the training loss and validation loss in one graph as
seen in Figure 4.4. This visualization helped me set the maximum number of epochs to 25
because in the graph I can clearly see from which point the validation loss is only growing
and therefore the model is over-fitted.
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Figure 4.4: Graph of losses throughout the training of segmentation neural network.

4.3 Segmentation of lines and ellipses

After the first phase of experiments as seen in the Section 5.1, I found out that the approach
of the first segmentation network described in 4.2.2 was not working. I developed a new
approach with a new dataset described in the Section 3.3.3 and needed to train the segmen-
tation neural network with this dataset. This segmentation neural network is completely
based on segmentation neural network described in the Section 4.2.2, so I will only mention
the differences between these networks.

This segmentation neural network divides the sketch image into three classes: Back-
ground, Lines, Ellipses. Output of this network is a mask with the same dimensions as
input image, and each pixel is made out of vector representing 3 different classes. Which
class the pixel belongs to is based on index in the vector. Indexes for each class are in the
Table 3.9. Only one of these classes is set to number 1 on each pixel, representing which
class this pixel belongs to. Other indexes are set to number 0. Visualizations done when
checking the accuracy of the network are shown in Figure 4.5.
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Plot 0
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Figure 4.5: The visualization of masks, the target mask (right) and the segmentation neural
networks estimations (left), pixels coloured with yellow are representing the pixels belonging
to the class Ellipse, pixels coloured with green belong to the class Line, purple colour

represents the class Background.

Targets

The CrossEntropy loss function Tensor is changed to one in Table 4.2.

Background

Line

Ellipse

Weight 1

50

50

Table 4.2: Numbers representing weights for CrossEntropyLoss function based on classes

in the second version of segmentation network.

The network is trained on a new dataset described in the Section 3.3.3. The number of
epochs in configuration of this network was changed from 25 epochs to 100 epochs. Training

and Validation losses by epoch are visualized in Figure 4.6.
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Figure 4.6: Graph of losses throughout the training of segmentation neural network. Tested
while training for 300 epochs to find the best estimation of epoch to stop training the model.
Validation loss is slowly declining from 0.76 to around 0.74 and training loss is declining
from around 0.78 to around 0.69.

4.4 Technical details

The neural networks trained in this work were trained on the computer with NVIDIA RTX
3060Ti graphics card with 8 GB of memory and Intel Core i5-12400F 2.5 GHz Pro-
cessor. I chose Python as my main programming language for this thesis, since it is rich
with many libraries for working with artificial intelligence, sorting and visualizing data and
mathematical computing. For these, I mainly used libraries Numpy, PyTorch, MatPlotLib
and pandas. The convolutional neural network and segmentation neural network were both
trained in CUDA device format.

4.4.1 Hyper-parameters of classification network

Hyper-parameters for training of the tool classification network consists of number of classes
that network will recognize, which is one for each telestration tool sketch to recognize, so
7 classes together. Then a learning rate of 173 and a batch size of 8 images. Number of
epochs that model will train for is 50.
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4.4.2 Hyper-parameters of first version of segmentation network

Hyper-parameters for training of the segmentation neural network consists of number of
classes, which in this case is 9, for each direction a pixel can have. These directions can
be seen in the Table 3.6. The learning rate was set to 174 and batch size to 4 images in a
batch.

4.4.3 Hyper-parameters of second version of segmentation network

Hyper-parameters for the training of this segmentation neural network are the same as
hyper-parameters from the first version of the segmentation neural network, mentioned in
the Subsection 4.4.2. Only change is in the number of classes, which in this case is 3, and
number of epochs increased to 200 epochs. The 3 classes can be seen in the Table 3.9.

4.5 Showcasing tool

To show how the neural network models trained in this work will be used, I developed an
application similar to the application I created for the data collecting. Both applications
are created using the same technologies which are described in the Section 4.1.

Cursor Linked

Waiting for new image.

g

S

Figure 4.7: Showcase Application used to show the real-life usage of neural network models
trained in this work. This application is divided to sections with their section labels. The
Red border outlines the Info section. The blue border outlines the Menu section and the
green border outlines the Drawing section. In the Drawing section, we can see a recreated
telestration tool named Cursor Linked in black colour, and important points used for the
recreation of this tool, selected by the Showcase application, in cyan.

4.5.1 Application functionalities

The Showcase application records the sketch of the user drawn in the Drawing section of the
application from the Figure 4.7, and after the point is drawn in this section, the application
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starts a time counter that is 1.5 second long. After this timer runs out of time, the drawn
sketch is temporally saved as an image and this image is then used as an input for the
classification neural network and also the segmentation neural network. The time of 1.5
second was chosen after going through the collected data and finding out the average times
it took users to draw a new stroke in the sketch after finishing a previous stroke.

The image that is temporarily saved goes through the process of resizing and colour
changing mentioned in the Section 3.3.1, the same process each image from the classification
dataset went through. The modified image is then passed to the classification network. This
network predicts which telestration tool the sketch is supposed to represent. The name of
the predicted tool is then printed out in the Info section from the Figure 4.7.

The same image is then passed through the segmentation neural network which outputs
the mask of the input image as mentioned in the Section 3.3.3. This mask then goes through
the post-processing explained in the Section 4.6.

Post-processing is finished with printing of the representation of the telestration tool
that sketch is meant to represent. When this process is finished, the application waits
for the user to start drawing a new sketch. When user starts to draw a new sketch, the
application clears the Drawing section from the Figure 4.7, which becomes empty.

The Showcase application also includes a Menu section which enables user to change
the brush size, clear the drawing manually, turn off the printing of recognized points which
are being printed in cyan as seen in the Figure 4.7. The application also enables users
to change if the segmentation model is used for tool recreating process, or, instead the
application records the points and recreates the tool with the mask the application creates
itself from recorded points based on the first version of segmentation dataset explained in
the Section 3.3.2. Post-processing then changes, based on, if the model was used or not.
If the model was used, the application uses a new version of post-processing. If a points
recorder from the application was used and the application created the direction mask from
the points recorded while drawing, we use the old version of post-processing.

The information about what the application is doing at the moment is being printed
out in the Info section from the Figure 4.7.

4.6 Post-processing

Post-processing of points has two versions based on two versions of the segmentation neural
network. The second version has small adjustments to fit the changes in the masks. These
adjustments are explained in the Subsection 4.6.3.

4.6.1 First version of post-processing

A direction mask outputted from the segmentation neural network contains points from
the whole sketch. To recreate the telestration tool that the sketch is meant to represent, I
need to filter out only the features from the image. These features will help me recognize
the positions and sizes of the parts of the sketches which I will then reconstruct and print
in the Showcase application I created. This application records sketches drawn by the user
and uses both neural network models trained in this work, to reconstruct the telestration
tool that sketch is meant to represent.

The direction mask, which we can see in the Figure 4.3, needs to be processed for each
class of the tool differently, to retrieve needed information about the positions from the
mask. Nevertheless, beginning of the post-processing process is the same for each class.
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Pseudo-code for sorting algorithm created by me can be seen in the Algorithm 1. This
process starts by taking all the points from the mask which is in numpy array format,
excluding points where the direction is represented by class zero, also symbolised as ., in
the Table 3.6. I need to find a point, where any of the strokes in the image starts. To
find this starting point, I take the sides of the sketch, because I assume that points on the
side will either be the end or the beginning of a stroke. I check the leftmost point and see
if the direction of this point is to the right side on X axis. If it is, it means that it is a
starting point for the stroke and in that case, it is my starting point and the first active
point for recognizing the strokes. If the direction is different, it means the stroke did not
start at that point and I check the direction of the rightmost point in the sketch and that
will be the starting point. Then I search for neighbouring points to the starting point and
also the active point. Those are the points that are one pixel away from the active point.
The neighbouring point becomes the new active point. The point, that became inactive, is
removed from the list of all points and labeled as sorted. If there are more neighbouring
points for one point, then I pick the one that is in the direction of the active point, assuming
they were a part of the same stroke. If there is no neighbouring point left, I assume it is
the end of the stroke and after removing this end point, I again search for the rightmost
and leftmost points, repeating the whole process. This creates an ordered list of points,
divided to strokes. The end of the stroke is added to the list by adding the point on X and
Y positions [0, 0] with direction class 0.

Program filters important points from the ordered list. Important are the points where
the direction is changed, or the start points and ending points of the strokes. These points
will help us split apart lines and circles and also reconstruct the telestration functions
representation. A list of important points in assumed order they were drawn is then returned
to finish post-processing based on the class of telestration tool they are meant to represent.

When the function which purpose is to print out the visual representations of the
telestration tool into the application receives the list of important points, it creates an-
other copy of this list without the points which represent the end of strokes. This list is
used in particular cases for some reasons which will be explained in the Subsection 4.6.2.
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Algorithm 1 An algorithm to sort points by strokes

points_ list <~ numpy.nonzero(segment__mask) > List of drawn pixels from the image
active_ point < starting point > Starting point is chosen by a function
neighbours < empty list
empty__point < [0,0, 0]
while length of points_list # 0 do

for point B in points_ list do > Create a list of neighbouring points

if point B is neighbour of active_point and point B # active_ point then
neighbours.append(point B)

end if
end for
sorted__points.append(active_ point) > Label active point as sorted
points__list.delete(active__point) > Delete the active point from the list
if length of neighbours # 0 then > If any neighbour has been found
Chose < False
for point C in neighbours do > Compare the directions
if point C direction == last sorted_ points direction then
active_point < point C
Chose < True
end if
end for
if Chose # True then > If we did not found point with the same direction
active__point < closest point by [X, Y] position from neighbours
end if
else > Found end of the stroke
sorted__points.append (empty__point) > Append end of stroke representation
active_point < new starting point > Choose a new starting point with function
end if
end while

4.6.2 Post-processing for different classes
Class Arrow

If the class of tool that the sketch represents is Arrow, I connect the important points from
the list with lines. If I find the end of the stroke in the list of points, which is represented
with point on positions [0, 0] and direction of class 0 from the Table 3.6, I skip this point
and create new line from the next point, which means it is a beginning of a new stroke.
Recreated tool of class Arrow can be seen in the Figure 4.8.

30



/

Figure 4.8: Recreated function of class Arrow with highlighted important points using cyan
circles in the Showcase application.

Class Cursor Light

For the representation of telestration tool of class Cursor Light the only part needed for
recreation are the points of the ellipses in the image, since the direction of the light in the
final tool representation will always be vertically up. For this particular reason, I use the
list of important points without null points which represents end of the strokes. This list
is sent to the function which deletes outlier points from the list, which in this case are the
points of the lines coming out of the circle. The function deletes them out with an intention
to only have the points of sketched ellipse, without the end of the lines coming from the
ellipse. The points at the end of the lines which are coming up from ellipse can be seen as
two blue circles at the top of the image in the Figure 4.9.

Figure 4.9: Recreated telestration tool of class Cursor Light with highlighted important
points using cyan circles in the Showcase application.

After receiving the list without outlier points, I find the sides of the drawing by locating
the most left, right, top and bottom coordinates in the list. With those coordinates, I
calculate the location and size of the ellipse and draw it out. Then I draw two lines from
the sides of the ellipse upward, representing the light in the original tool.

Classes Cursor Linked and Cursor Linked Closed

Recreation of these two classes of telestration tools can be seen in the Figure 4.10 and
Figure 4.11. These are the most complicated to recreate, but their recreation is based on
the same principle of recognizing ellipses and lines in the image. For this task of recognizing
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and dividing points into the different lines and circles I used K-means clustering method.
Theory behind this algorithm can be found in Subsection 2.4.2. Since points have much
less direction changes than circles, I used K-means to divide all the important points to
clusters and deleted outlier points, which were directional changes in lines that connected
circles, therefore leaving me with clusters of ellipse points.

K-means needs a number of clusters inputted, to cluster the points properly. For this,
I used a silhouette score which is explained in the Subection 2.4.2. The index number of
cluster which the point belongs to is then appended on the end of the data of each point,
right after its direction index. These clusters are passed through the similar process as
mentioned in the Subsection 4.6.2, where firstly I cut out the outlier points, and after that
I assume that each cluster is just the representation of a circle from the original sketch.

The ellipses are drawn after getting their location and size from those clustered points.
Size is calculated by getting the furthest points from each direction of X and Y coordinates.
I save the information about the centre of the cluster to be able to connect all ellipses with
the lines. There is the only difference between the classes Cursor Linked and Cursor
Linked Closed, where in the class Cursor Linked Closed I connect all the centers and
in the class Cursor Linked I do not connect the last ellipse with the first ellipse.

()
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/

Figure 4.10: Recreated telestration tool of class Cursor Linked with highlighted important
points using cyan circles in the Showcase application.
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Figure 4.11: Recreated telestration tool of class Cursor Linked Closed with highlighted
important points using cyan circles in the Showcase application.

Class Cursor Player

The recreation of telestration tool of class Cursor Player is drawn after calculating the
size of the ellipse and locating the centre based on the important points list without the
representation of ends of strokes in the list.

2

-

Figure 4.12: Recreated telestration tool of class Cursor Player with highlighted important
points using cyan circles in the Showcase application.

Class Light Shaft

With this class of telestration tool recreation as seen in the Figure 4.13, I use K-means
algorithm with 2 clusters to identify the ellipse and the line. Ellipse is the cluster with more
points, since it has more direction changes than straight line. After identifying the ellipse
and calculating its size, I draw the ellipse and make the light in upward direction, without
considering its drawn direction, since the light in the function will always go upward.
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Figure 4.13: Recreated telestration tool of class Light Shaft with highlighted important
points using cyan circles in the Showcase application.

Class Zone Polygon

In the Zone Polygon telestration tool class recreation, as seen in the Figure 4.14, I identify
the rightmost, leftmost, highest and lowest coordinate. Then I identify the point that is
the closest to each corner. These corners are created by combining the furthest coordinates
for both X and Y axes and getting 4 corner coordinates: [Rightmost X coordinate, Low-
est Y coordinate], [Leftmost X coordinate, Highest Y coordinate], [Rightmost X coordi-
nate, Lowest Y coordinate], [Leftmost X coordinate, Lowest Y coordinate]. After finding
the 4 closest points to those corners, I connect them with the lines to create a polygon.

Figure 4.14: Recreated telestration tool of class Zone Polygon with highlighted important
points using cyan circles in the Showcase application.
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4.6.3 Post-processing changes with the second segmentation network

Mask array from the second version of the segmentation network consists of three classes
described in the Subsection 3.3.3. To recreate the function we only need the lines and
ellipses, so I create two lists of points divided into the points identified as the class Line
and points identified as the class Ellipse.

The list of points identified as class Ellipse is passed to the function that prints out
the points as they are, without filtering any points. This new version makes clustering
for K-Means algorithm much easier and more efficient. With this list of points identified
as the class Ellipse, there is also no necessity to cut out outlier points, because the
accuracy of this neural network is adequate to exclude any outlying points. This list is used
to recreate the classes Cursor Light, Cursor Linked, Cursor Linked Closed, Cursor
Player and Light Shaft with the same processes as mentioned in the Subsection 4.6.2.

The list of points identified as the class Line is sorted by finding neighbours of the points
using the Algorithm 2. This algorithm sorts the points in order by their neighbours in the
list. Neighbouring points are the points closest to each other from the whole list. Then
with the sorted points, I try to find any direction changes and the ends and the beginnings
of the lines. This sorted and filtered list of points identified as the class Line is then sent
to the printing function. I use this approach only for recreating of the classes Arrow and
Zone Polygon.

Algorithm 2 An algorithm to put line points in order
line_ points_ list < array of line points
sorted_ list <— empty list
active_ point__index < 0 > Starting point is the beginning of the list
while length of line_ points_ list # 0 do
sorted_ list.append(line_points_ list[active_point_index])
line_ points_ list.delete(line_points_ list[active_point_ index])
if length of line_ points_ list # 0 then © To find new active point, function is called
which finds the closest point to the last active point which is now in sorted_ list
active_point__index <+ Closest point to the last point in sorted_ list
end if
end while
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Chapter 5

Experiments

Experiments were done to identify the accuracy of the final version of both networks were
done by drawing each class 20 times by 5 different participants of the study and collecting
how correct the outcome was. I selected 5 different mistakes that could impact the whole
process of classification and recreation of the telestration tool from its sketched represen-
tation and create an unsatisfactory outcome. These mistakes were:

1. Incorrect classification of image
2. Incorrect directions of segmented points from segmentation network
3. Incorrectly deleted outlying points

4. Incorrect K-means cluster classification

5.1 First phase of testing

First testing was split into two versions of creation of directional masks. Creation of the
direction mask is explained in the Section 4.2.2. One was computed from the recorded
points when the image was drawn. The other one was outputted from the segmentation
neural network mentioned in the Section 4.2.2. Final scores of the experiments are in the
Table 5.1.

Table 5.1: Experiment outputs

Class Mask creation Output of experiment Number
Incorrect Class 0
Incorrect Directions 100
Segmentation Incorrect Outliers 0
Incorrect K-means 0
Arrow Correct 0
Incorrect Class 0
Incorrect Directions 3
Point Recording Incorrect Outliers 0
Incorrect K-means 0
Correct 97
Continued on next page
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Table 5.1 — continued from previous page

Class Mask creation Output of experiment Number
Incorrect Class 0
Incorrect Directions 100
Segmentation Incorrect Outliers 0
Incorrect K-means 0
. Correct 0
Cursor Light Incorrect Class 0
Incorrect Directions 0
Point Recording Incorrect Outliers 17
Incorrect K-means 0
Correct 83
Incorrect Class 0
Incorrect Directions 100
Segmentation Incorrect Outliers 0
Incorrect K-means 0
. Correct 0
Cursor Linked Incorrect Class 0
Incorrect Directions 0
Point Recording Incorrect Outliers 12
Incorrect K-means 15
Correct 73
Incorrect Class 2
Incorrect Directions 98
Segmentation Incorrect Outliers 0
Incorrect K-means 0
Cursor Linked Closed Correct 0
Incorrect Class 0
Incorrect Directions 0
Point Recording Incorrect Outliers 10
Incorrect K-means 16
Correct 71
Incorrect Class 1
Incorrect Directions 99
Segmentation Incorrect Outliers 0
Incorrect K-means 0
Correct 0
Cursor Player Incorrect Class 0
Incorrect Directions 0
Point Recording Incorrect Outliers 0
Incorrect K-means 0
Correct 100

Continued on next page
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Table 5.1 — continued from previous page
Class Mask creation Output of experiment Number
Incorrect Class 0
Incorrect Directions 100
Segmentation Incorrect Outliers
Incorrect K-means
Correct
Incorrect Class
Incorrect Directions
Point Recording Incorrect Outliers
Incorrect K-means
Correct 94
Incorrect Class
Incorrect Directions 100
Segmentation Incorrect Outliers
Incorrect K-means
Correct
Incorrect Class
Incorrect Directions
Point Recording Incorrect Outliers
Incorrect K-means
Correct 100

Light Shaft

[en] o> Hen) Nev] Nen] Nev] Nan]

o

Zone Polygon
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After this phase of testing I found out that the output of segmentation neural network
was incorrect and I was unable to identify important points in the arrays it outputted. This
problem is shown in the Table 5.1 in each class where segmentation was used, nearly 100
% of the images had incorrect mask.

5.2 Second phase of testing

After this I created a new version of segmentation network which recognises 3 different parts
of a sketch, which are lines, ellipses and a background. Creation of a new dataset is described
in the Section 3.3.3 and the new segmentation network is described in the Section 4.3.
Since the whole segmentation network was reworked, I repeated the experiments using
newly trained network implemented with slightly changed post-processing described in the
Subsection 4.6.3. The results can be found in the Table 5.2. In this phase I was looking
for the same mistakes as in the first phase of testing. These mistakes are described in 5.1.
Only change was that instead of incorrect directions of segmented points from segmentation
neural network, this time I was looking for incorrect segmentation of lines and ellipses by
segmentation neural network.
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Table 5.2: Experiment outputs

Class Mask creation Output of experiment Number
Incorrect Class 0
Incorrect Segmentation 0
Arrow Segmentation Incorrect Outliers 0
Incorrect K-means 0
Correct 100
Incorrect Class 0
Incorrect Segmentation 0
Cursor Light Segmentation Incorrect Outliers 0
Incorrect K-means 0
Correct 100
Incorrect Class 0
Incorrect Segmentation 0
Cursor Linked Segmentation Incorrect Outliers 0
Incorrect K-means 2
Correct 98
Incorrect Class 1
Incorrect Segmentation 0
Cursor Linked Closed Segmentation Incorrect Outliers 0
Incorrect K-means 4
Correct 95
Incorrect Class 0
Incorrect Segmentation 0
Cursor Player Segmentation Incorrect Outliers 0
Incorrect K-means 0
Correct 100
Incorrect Class 1
Incorrect Segmentation 0
Light Shaft Segmentation Incorrect Outliers 0
Incorrect K-means 0
Correct 99
Incorrect Class 0
Incorrect Segmentation 0
Zone Polygon Segmentation Incorrect Outliers 0
Incorrect K-means 0
Correct 100

From data I gathered in the second phase of experiments, as seen in the Table 5.2, the
second version of segmentation neural network brought an excellent outcome since all of
the masks outputted from the segmentation neural network were usable enough to recreate
the telestration tool visualizations from them.

While doing the experiments, I recorded the time it took for each class to segment
and post-process the whole image. Average time for each class in milliseconds are in the

Table 5.3.
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Arrow | Cursor | Cursor | Cursor | Cursor | Light Zone

Light Linked | Linked | Player Shaft Poly-

Closed gon

Average time (ms) | 275.9 | 284.75 | 516.6 536.4 286.5 278.4 312.1

Table 5.3: Average time in milliseconds that it took to classify a sketch, create a mask
using segmentation model and post-process the mask, divided by the class of the image.
The time was measured while doing the second phase of the experiments.

In the two phases of experiments done in the Showcase application I tested the classifica-
tion neural network and two version of segmentation neural network. The experiments were
done in real-time with different participants. Average times it took the application to go
through the whole process, divided by different classes, are recorded in the Table 5.3. These
experiments show that the two neural networks used in the final version of the Showcase
application are functional and usable in real-time.
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Chapter 6

Conclusion

This thesis was mainly focused on training a neural network to classify a hand-drawn sketch
into one of seven tools portrayed by its specific symbols, which were specified after the
testing with a small group of users. Since this classification is planned to be implemented
into an application for coaches and sport analysts, who will be drawing these sketches of
symbols in free-hand drawing environment, I created an application to collect the data in
a real-life scenario.

After collecting the data from 97 different users, I was able to use this data to create a
dataset for an image classification. I used supervised training for the convolutional neural
network using the dataset of collected images divided into seven classes. The 2100 sketches
drawn in the experiments done with this neural network in the Showcase application de-
scribed in the Section 4.5 showed 99.64 % accuracy of the classification network, which we
can see in the Table 5.1 and the Table 5.2. This therefore means that I successfully trained
a convolutional neural network to classify the 7 telestration tool sketch representations seen
in the Appendix B.

In the second part of this thesis, I recreated the classified sketch into a telestration
tool representation. For this purpose I proposed an algorithm to find some features and
important parts of each sketch, based on its class. I trained a segmentation neural network
for creating the masks for each sketch. These masks consisted of the directions in which the
strokes in an image were painted. I trained it on the dataset that I created from the collected
data mentioned in the Section 3.3.2. Problem occurred when, after 1400 experiments seen
in the Table 5.1 and done in the Showcase application, I found out that this approach was
not working and 0 % of the created masks were usable for recreation of the functions based
on the sketches. The segmentation neural network was unable to identify the directions of
the strokes properly.

For evaluation purposes, in the Showcase application I recorded each point drawn and
created these masks manually. From these manually created masks, I was able to use post-
processing described in the Section 4.6 on manually created masks to recreate the final
functions from the original sketches.

Then I created the second version of the segmentation neural network with its own
dataset described in the Section 3.3.3. This segmentation neural network is able to recognize
lines, ellipses and a background in a sketched image. The outputted masks of this neural
network were used for recreating the functions from the sketches. The non-functional
segmentation neural network was replaced in the Showcase application with the second
version of the segmentation neural network and after subtle changes in post-processing
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process I did some more experiments with the new network. The experiments showed that
the masks created by this neural network were all usable to recreate the original functions.
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Appendix A

Tools visualizations

Figure A.1: Arrow tool visualization.!

Figure A.2: Cursor Light tool visualization.!

!Courtesy of ChyronHego.
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Figure A.3: Cursor Linked tool visualization.!

Figure A.4: Cursor Linked Closed tool visualization.’

=)

Figure A.5: Cursor Player tool visualization.!

!Courtesy of ChyronHego.
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Figure A.6: Light Shaft tool visualization.!

Figure A.7: Zone Polygon tool visualization.!

!Courtesy of ChyronHego.
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Appendix B

Tools sketch representations

—

Figure B.1: Sketch representation of the function Arrow.

Figure B.2: Sketch representation of the function Cursor Light.
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Figure B.3: Sketch representation of the function Cursor Linked.

Figure B.4: Sketch representation of the function Cursor Linked Closed.

Figure B.5: Sketch representation of the function Cursor Player.
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Figure B.6: Sketch representation of the function Light Shaft.

Figure B.7: Sketch representation of the function Zone Polygon.
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Appendix C

Scientific Poster
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[CAPTION] AND ITS ACCURACY ON TRAINING SET (RIGHT) AND VALIDATING SET (LEFT)

CONCLUSION

« Created data collecting application
« Created two datasets from collected data

« Succesfully trained convolutional neural network on own dataset to recognize 7 classes with 96% accuracy

« Succesfully trained segmentation neural network to recognize lines and ellipses

« Created showcasing application with usage of both neural networks and post-processing to recreate functions from sketches
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