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Abstract

This work addresses a problem of text classification. The research question focuses on

identifying  the  optimal  workflow  to  solve  the  given  problem.  The  dataset  consists  of

roughly 430,000 labeled e-mails. The problem is tackled in two steps, namely vectorizing

the text and applying a classification algorithm. Several algorithms, including Word2vec

and Tf-idf for vectorization, and Random Forest, Support Vector Machine, Graph Neural

Network, and Feed-Forward Neural Network for classification, were evaluated. The results

show that Word2Vec performed well, while Tf-idf had too high memory demands. In terms

of classification, the Feedforward Neural Network achieved the highest F1 scores of 0.89-

0.90 depending on the trial, followed by Random Forest and Support Vector Machine with

F1 scores of 0.87-0.89, while the graph neural network achieved F1 scores of 0.80-0.87. 

III



Contents

Abstract............................................................................................................................... III

1 Introduction........................................................................................................................1

1.1 Goal of this work........................................................................................................1

1.2 Structure of this work..................................................................................................2

2 Related work.....................................................................................................................2

3 Theoretical background.....................................................................................................3

3.1 Vectorization...............................................................................................................3

3.1.1 Tf-idf....................................................................................................................4

3.1.2 Word2Vec...........................................................................................................4

3.2 Classification..............................................................................................................5

3.2.1 Random Forest...................................................................................................5

3.2.2 Support Vector Machine......................................................................................6

3.2.3 Neural Networks.................................................................................................8

3.2.4 Graph Neural Networks.....................................................................................11

4 Experimental setup..........................................................................................................12

4.1 Description and preprocessing of the Dataset.........................................................12

4.2 Vectorization.............................................................................................................14

4.2.1 Tf-idf..................................................................................................................14

4.2.2 Word2vec..........................................................................................................15

4.3 Classification............................................................................................................15

4.3.1 Random Forest and Support Vector Machine...................................................15

4.3.2 Graph Neural Network......................................................................................16

4.3.3 Feed Forward Neural Networks........................................................................19

5 Evaluation........................................................................................................................20

5.1 Random Forest........................................................................................................20

5.2 Support Vector Machine...........................................................................................24

5.3 Graph Neural Networks............................................................................................27

5.4 Feed Forward Networks...........................................................................................36

5.5 Comparison..............................................................................................................39

6 Discussion.......................................................................................................................43

IV



Bibliography........................................................................................................................45

Table of figures

Figure 1: Classification via Random Forest..........................................................................6

Figure 2: Linear classification via Support vector machine...................................................7

Figure 3: Fully connected Feed Forward Neural Network....................................................9

Figure 4: Workflow of generating a text graph....................................................................16

Figure 5: Text graph with edge range = 2...........................................................................19

Figure 6: Confusion matrix RDF.........................................................................................22

Figure 7: Confusion Matrix RDF excluding OTHER...........................................................23

Figure 8: Confusion matrix SVM.........................................................................................25

Figure 9: Confusion matrix SVM excluding OTHER...........................................................26

Figure 10: Confusion Matrix GNN 20000 data instances...................................................28

Figure 11: Confusion Matrix GNN 50000 data instances....................................................29

Figure 12: Confusion Matrix GNN 45000 data instances without OTHER class................31

Figure 13: Confusion Matrix GNN 20000 data instances with a vector length of 50...........32

Figure 14: Confusion Matrix GNN 20000 data instances with range of edges = 2.............34

Figure 15 Confusion Matrix GNN 20000 data instances with 4 graph layers.....................35

Figure 16: Confusion matrix Feed Forward Network..........................................................37

Figure 17: Confusion matrix Feed Forward Network excluding OTHER............................38

Figure 18: Best values of every approach including OTHER.............................................39

Figure 19: Weighted average of F1-scores of relevant classes in trials including OTHER.40

Figure 20: Results of Trials excluding OTHER class..........................................................41

Figure 21: Results of GNN Parameter Optimization...........................................................42

V



List of tables

Table 1: Distribution of classes...........................................................................................12

Table 2: Results RDF Classifier..........................................................................................21

Table 3: Results RDF Classifier without OTHER class.......................................................22

Table 4: Results SVM Classifier.........................................................................................24

Table 5: Results SVM Classifier without OTHER class......................................................25

Table 6: Results GNN 20000 data instances......................................................................27

Table 7: Results GNN 50000 data instances......................................................................28

Table 8: Results GNN 45000 data instances without OTHER class...................................30

Table 9: Results GNN 20000 data instances with a vector length of 50.............................31

Table 10: Results GNN 20000 data instances with 4 graph layers.....................................34

VI



1 Introduction

The company CHECK24 Vergleichsportal Energie GmbH offers customers a platform to

compare  electricity  or  gas  tariffs  from different  providers.  It  also  offers  the  service  of

simplifying the conclusion, changes and terminations of contracts.

Communication with customers and providers takes place primarily via e-mail. However,

processing all these inquiries involves a great deal of work. In order to reduce this, the e-

mails should be preprocessed automatically. For example, messages can be sorted by

subject,  prioritized,  a  suitable  response  template  can  be  specified  or  they  could  be

processed automatically.

From sorting in different categories of topics, a multiclass classification problem can be

derived. However, some difficulties exist. First of all, customers’ e-mails are very diverse

and  don’t  follow  a  given  structure.  Moreover,  most  e-mails  can  not  be  meaningfully

assigned to a class. For this reason, there is an "Other" class that includes all data points

that cannot be reasonably assigned. Almost 75% of the dataset is assigned to that class.

Also,  the  remaining  dataset  is  unbalanced,  so  some  classes  are  over-  or  under-

represented. In addition, the boundaries between some classes are fluid, so even human

labeling can have errors. These circumstances add further complexity to the problem.

1.1 Goal of this work

The goal of the work is to develop a workflow that solves the classification problem above.

The  problem can be  broken  down into  two main  steps.  First,  the  plain  text  must  be

encoded into a machine-readable form. There are several possible approaches for this.

After  that,  the  transformed messages  have to  be  classified  using  a  machine learning

model. In this step, too, there are various models to choose from. In addition, there are

parameters  within  a  model  that  can  be  optimized.  Ultimately,  the  combination  of
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approaches and parameters that has the highest practicability, performance and quality of

the classification should be determined. Hence the central  question,  this work aims to

answer is: Which workflow solves the upper classification problem best? 

1.2 Structure of this work

The structure of this work is as follows: Firstly related work is mentioned. Thereafter the

theoretical background is illuminated.  For both vectorization and classification, all applied

algorithms are named and their functionality explained. The next chapter explicates the

experimental  setup.  Firstly  the  dataset  and  its  procession  is  described.  Secondly  the

implementation of the vectorization is depicted. Thirdly the application of the classification

algorithms are expounded. Thereafter the results are evaluated. Firstly the results of every

model are depicted. Then the models are compared to each other.  In the last chapter

those results are discussed. 

2 Related work

Text classification is one of the core problems of natural language processing (Huang et

al., 2019). It has already been used successfully in many problems (Kowsari et al., 2019).

Examples include medical texts  (Qing et al.,  2019) and accident prevention in industry

(Sánchez-Pi et al., 2014). E-mail data have also been dealt with in the literature. However,

most research is aimed at spam or phishing detection (Verma et al., 2020).

As possibilities for vectorization or feature extraction  Kowsari et al. name the following

methods:  Bag of  Words (BoW),  Term Frequency-Inverse Document Frequency (Tf-idf),

and  Word  Embedding  methods  such  as  Word2Vec.,  Continuous  Bag-of-Words  or

Continuous Skip-Gram algorithms (Kowsari et al., 2019).
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 There are also various approaches for the actual text classification.  Well-known machine

learning models have been successfully applied.  Pranckevičius and Marcinkevičius  and

Ikonomakis et al. mention Naive Bayes, Random Forest, Decision Tree, Support Vector

Machines  as  well  as  Logistic  Regression  Classifiers  (Ikonomakis  et  al.,  2005;

Pranckevičius  and  Marcinkevičius,  2017).  With  the  support  vector  machine  and  the

random forest Kim et al. and Bouaziz et al. also brought traditional classification algorithms

to use (Bouaziz et al., 2014; Kim et al., 2005).

In  recent  years  more  sophisticated  deep  learning  models  became  popular  for  text

classification  (Minaee et al., 2021). These include graph neural networks from Huang et

al., convolutional neural networks from Jacovi et al. and Liang et al.

and attention models from Sun and Lu (Huang et al., 2019; Jacovi et al., 2020; Liang et al.,

2019; Sun and Lu, 2020). This work will deal with machine learning as well as deep 

learning approaches. 

In contrast to most relevant research, the dataset used in this work is in German. Because 

of unique features of the German language like compound words, the data might behave 

differently than expected. 

3 Theoretical background 

This chapter explains the theoretical background of the algorithms and techniques used in 

this work. The first section deals with the vectorization of the data, the second one with the

actual classification.

3.1 Vectorization

In order to train and utilize a machine or deep learning classifier on the e-mail data, the 

natural language must be transformed into a machine readable vector. Therefore two 
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different approaches are applied. Firstly Term Frequency-Inverse Document Frequency 

(Tf-idf), a simple algorithm, and secondly Word2vec, a more sophisticated approach.  

3.1.1 Tf-idf

The Tf-idf algorithm assigns weights to each word in a corpus based on its frequency and 

importance in the text (Sparck Jones, 1972). 

The algorithm works by first calculating the term frequency (tf) of each word in a corpus,

which is simply the number of times the word appears in the text. This is then followed by

calculating the inverse document frequency (idf)  of  each word,  which is  based on the

number of documents that contain the word. Specifically, the tf-idf value of a word in a

document is calculated:

,

where N is the number of documents and df(t) is the number of documents containing the 

term t in the corpus (Kowsari et al., 2019).

This formula gives a higher weight to words that are both frequent in the document and

rare in the corpus. This weight can be used to represent the importance of each word in

the context of the corpus. 

3.1.2 Word2Vec

The  word2vec  algorithm  is  a  neural  network-based  approach  for  generating  word

embeddings, which are numerical representations of words that capture their meaning and

context. It involves training a neural network on a large corpus of text by feeding pairs of

words or "word contexts" into the network and adjusting the weights of the connections

between neurons using negative sampling (Kowsari et al., 2019). To this end the models

Continuous Bag-of-Words and Continuous Skip-Gram are utilized. 

Continuous Bag-of-Words model predicts the current word given its surrounding context.

For example, given the sentence "I like to cancel my electricity contract", the Continuous

Bag-of-Words model would predict the word "cancel" based on the surrounding words "I",

"like", "to", "my", "electricity" and "contract".
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The Skip-gram model works the opposite way by predicting the surrounding context given 

a current word. For instance, given the word "cancel", the Skip-gram model would predict 

the surrounding context of "I", "like", "to", "my", "electricity" and "contract" (Mikolov et al., 

2013).

The resulting high-dimensional vectors represent the meaning and context of words in the

vocabulary. 

3.2 Classification

After vectorization the data can be processed by classification algorithms. The classifiers 

applied in this work are described in this section. 

3.2.1 Random Forest 

A random forest classifier is an ensemble learning method used for classification tasks. It

is a collection of decision trees, where each decision tree is trained on a different subset of

the training data and using a different set of features, selected randomly.

The following are the basic steps in the random forest algorithm:

Firstly a subset of the training data is selected at random from the original dataset. 

On this subset of the data a decision tree is created. Therefore the data are recursively

split based on the most discriminative features, until the tree reaches a stopping criterion. 

The most discriminative feature can be determined by the Gini Index. It is calculated by the

formula:

,

where K is the number of classes and Pk is the proportion of samples that belong to class 

k. Considering a highly discriminative feature, Pk approximates 1 or 0, which leads to the 
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Gini Index approximating 0. Hence the feature with the lowest Gini Index is chosen for the 

split (James et al., 2013).

This procedure is repeated multiple times to create several decision trees.

To classify a new instance, as shown in figure 1, each of the decision trees are used to

predict the class of the instance. The class with the most votes across all the trees is the

final predicted class for the instance.

By randomly selecting subsets of  the training data and features,  and creating multiple

decision  trees,  the  random  forest  algorithm  helps  to  reduce  overfitting  and  increase

generalization. It also enables the algorithm to handle missing data and noisy features

(Breiman, 2001; Kowsari et al., 2019).

 

3.2.2 Support Vector Machine

Support  Vector  Machines  are  a  class  of  machine  learning  algorithms  used  for  both

classification and regression analysis. Support Vector Machines were originally developed
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for  binary classification problems, but  have since been extended to handle multi-class

classification problems (Boser et al., 1992).

Support Vector Machines work by finding the hyperplane that best separates the different

classes of data points.  The hyperplane is  chosen such that  it  maximizes the distance

between the closest data points from each class. These closest data points are called

support vectors. Formally, let    be a training set of n instances, where

 is a d-dimensional feature vector and   is the corresponding class

label. The goal of a Support Vector Machine is to find a hyperplane that separates the two

classes, which can be represented by the equation:

,

where w is a weight vector that determines the orientation of the hyperplane, b is a bias

term that shifts the hyperplane away from the origin, and · denotes the dot product. The

hyperplane separates the data points into two regions: one region for each class as shown

in figure 2.

 

To  determine  the  optimal  hyperplane,  Support  Vector  Machines  solve  an  optimization

problem that minimizes a loss function subject to constraints. A common loss function for

Support Vector Machines is the hinge loss function. It is defined as follows:
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Where t is the expected output which equals ±1 and y is the classification output. 

Consequently, the cost function penalizes misclassification errors relatively to the distance 

to the decision threshold. Furthermore it encourages the hyperplane to have a large 

margin on correct classifications. The constraints ensure that the hyperplane separates the

data points correctly (Rosasco et al., 2003; Vapnik and Chervonenkis, 1964).

There are several  approaches to achieve multi-class classification.  The most  common

ones are One-versus-one, One-versus-all or One-versus-the-rest and Crammer-Singer.

In the One-versus-one approach, the Support Vector Machine algorithm trains a separate

binary classifier for each pair of classes. Each classifier separates the data of one class

from the data of the other class in the pair. 

In the One-versus-all approach however, a distinct binary classifier is trained for every 

class. Each classifier separates the data of one class from the data of all other classes. 

For both approaches the new data point is classified by each binary classifier, and the 

class with the most votes is chosen as the predicted class during the testing phase 

(Kowsari et al., 2019).

Unlike One-versus-one and One-versus-all the Crammer-Singer algorithm trains a single

multi-class classifier that directly optimizes a joint objective function.

Therefore the Support Vector Machine algorithm learns a linear mapping from the feature

space to a space of dimensionality equal to the number of classes. The decision function

is then defined as the argmax of the linear scores (Crammer and Singer, 2001).

3.2.3 Neural Networks 

Neural networks are a type of machine learning algorithm inspired by the structure and

function of the human brain  (Hopfield,  1982). They consist  of  layers of  interconnected

neurons that receive input data and perform computations on it. 
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The simplest type of neural network is the Feed Forward Neural Network. This type of

network consists of an input layer, one or more hidden layers, and an output layer, as

shown in figure 3. Each layer contains a set of  neurons, which receive input from the

previous layer and produce output for the next layer. The connections between neurons

are represented by weights, which are learned during training.

Training a neural network involves adjusting the weights to minimize a cost function, which

measures the difference between the network's predictions and the true class labels. This

is  typically  done using  an optimization algorithm such as  stochastic  gradient  descent.

During  training,  the  network  learns  to  recognize  patterns  in  the  input  data  that  are

predictive of the class labels.

9
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One important aspect of neural network training is the activation function. The activation

function is applied to the output of each neuron, and determines the throughput to the next

layer.  Activation functions used in this work include the softmax function and the rectified

linear unit (ReLU) function.

Relu takes the form of 

Therefore it returns the input value if it is positive and 0 otherwise. The ReLU function is
computationally efficient and has been shown to be effective in deep neural networks (Nair
and Hinton, 2010).

The Softmax activation function is commonly used in the output layer of a neural network

for multi-class classification tasks. It takes a vector of real-valued inputs and transforms

them into a vector of probabilities that sum to 1. The Softmax function is given by:

where i = 1,...,K, K is the number of classes and x i is the input value for class I  (Bridle,
1990).

Neural networks can also be regularized to prevent overfitting, which occurs when the

network  memorizes  the  training  data  rather  than  learning  generalizable  patterns.  A

common regularization technique used in this work is called dropout. 

 It works by randomly deactivating or so to speak "dropping out" some fraction of the input

or hidden units during training. The idea behind dropout is to force the network to learn

redundant representations of the input, which makes it more robust to noise and improves

generalization performance.

During training, dropout works by randomly setting some fraction of the input or hidden

units to 0 with a probability p. The remaining units are then scaled by a factor of

  

to  maintain  their  expected value.  During  testing,  all  units  are  used and no scaling  is

applied (Goodfellow et al., 2016; Srivastava et al., 2014).
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3.2.4 Graph Neural Networks

Graph Neural Networks are a type of neural network that operate on graph-structured

data. Graphs are represented by nodes which are connected by edges. Therefore this

data structure that can represent complex relationships between entities. Graph Neural

Networks are designed to leverage this structure to learn useful representations of the

nodes and edges in a graph (Scarselli et al., 2009).

Natural language can also be represented as a graph. In that case words are represented

as nodes with edges connecting adjacent ones. Embeddings created with the Word2Vec

algorithm only carry the meanings of the words themselves, while Text graphs also carry

the information of the context between words.

The sentences “The meeting was bad but the dinner was good” and “The meeting was

good but the dinner was bad” serve as an example.  The vector representation of these

two sentences generated by  the  Tf-idf  or  Word2vec algorithm are indistinguishable.  A

Graph representation however preserves the information of which adjective refers to which

noun. 

The first step in processing graphs with neural networks is to represent the graph data in a

way that can be easily processed by the network. One approach is to represent the graph 

as an adjacency matrix, where each entry in the matrix indicates whether there is an edge 

between two nodes in the graph. Another approach is to represent the graph as a set of 

node and edge features, where each node feature vector corresponds to the attributes of 

the node, and each edge feature vector corresponds to the attributes of the edge. Since 

the edge attributes contain the nodes, which the edges are connecting, a graph can be 

represented (Huang et al., 2019). 

Once the graph is represented, it  can be processed by a neural  network using graph

convolution. Graph convolution is similar to regular convolution, but operates on the graph

structure instead of the regular grid structure. The basic idea behind graph convolution is

to  define  a  set  of  learnable  filters  that  are  applied  to  the  node  features  and  their

neighboring nodes to generate new node features. This process can be repeated multiple

times to incorporate information from more distant nodes in the graph (Wu et al., 2021).
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4 Experimental setup

This chapter describes the experimental setup. First of all the Dataset is described in 

detail.  Then the steps of vectorization as well as classification are explained. 

4.1 Description and preprocessing of the Dataset

The  dataset  consists  of  433,220  E-Mails  sent  by  customers,  which  were  labelled  by

customer support during the processing of each e-main. The labels represent 10 classes

of  e-mails:  OTHER,  REVOCATION,  BONUS,  CHANGE_INFO,  STATUS_QUESTION,

ACCOUNT,  CANCELLATION,  INSPECT_DOCUMENTS,  FEEDBACK,  and TEST. The

distribution of the Labels is shown in table 1.

Table 1: Distribution of classes

OTHER 307,933

REVOCATION 34,361

BONUS 32,675

CHANGE_INFO 30,017

STATUS_QUESTION 24,626

ACCOUNT 1,693

CANCELLATION 795

INSPECT_DOCUMENTS 610

FEEDBACK 505

TEST 5
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Only  a  fraction  of  e-mails  can be labeled unambiguously.  All  remaining  instances are

therefore labelled OTHER. Furthermore the list  of  classes is  not  exhaustive,  therefore

messages that treat a topic without an associated class, are also labeled OTHER.  

Some classes have too little support to be considered in the evaluation. That way the

relevant classes are REVOCATION, BONUS, CHANGE_INFO and STATUS_QUESTION.

E-mails in which a client wants to revoke their contract are labeled as REVOCATION. 

Suppliers often offer a bonus for new customers. E-Mails related to this topic fall under the

class BONUS. In Messages labeled as CHANGE_INFO clients provide Information vital to

the  change  of  suppliers,  for  instance  their  electricity  meter  reading.  The  Class

STATUS_QUESTION  contains  E-Mails  in  which  customers  ask  a  question  about  their

current contract. 

This is an example for an e-main labelled as REVOCATION:

“Liebes Check 24 Team, 

hiermit möchte ich den Auftrag für den Stromvertrag stornieren.

Auftragsnummer: 69481966”

English translation:

“Dear Check 24 team,

I would like to cancel the order for the electricity contract.

Order number: 69481966”

This text data has been processed in the following way. The words have been reduced to 

their stems, which means that the endings of the words have been removed to obtain the 

root form of each word. This process is called “stemming” and was executed via (“NLTK :: 

nltk.stem.snowball module,” n.d.).  For example, the stem of "stornieren" would be "storni".

Moreover stop words have been removed from the text. Stop words are common words 

that do not convey significant meaning like “ich” and ”für”. Punctuation marks such as 

periods, commas, and exclamation points have also been removed. Furthermore all words
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have been converted to lower case. This is done to ensure that words that are the same 

except for their capitalization are treated as the same word (Kowsari et al., 2019). After this

preprocessing the example above looks like this: 

“lieb check 24 team hiermit mocht auftrag  stromvertrag storni auftragsnumm  69481966”

4.2 Vectorization

In  the  next  step the  dataset  needs to  be  vectorized.  The corpus consists  of  433,220

messages, which consist of a total of 13,645,398 and 529,787 distinct tokens.

4.2.1 Tf-idf

For Tf-idf vectorization the Sklearn function is used 

(“sklearn.feature_extraction .text.TfidfVectorizer,” n.d.).However with the application of the 

Tf-idf algorithm however arouse an issue. One vector representing one e-mail has the 

length of the number of distinct tokens. A vector of this length requires approximately 2.5 

megabytes of memory.  Scaled up to the whole corpus, all available data would take up 

approximately 1 terabyte of memory. Due to this impracticability, Tf-idf is no longer 

considered in this work. 

4.2.2 Word2vec

Word2vec was applied by using the model form the library Gensim (“models.word2vec –

Word2vec embeddings — gensim,” n.d.). The entire corpus was used to train the model.

After training, each token was mapped to a 100-component vector representation. The

resulting token vectors were then averaged for each e-mail to obtain a fixed-length vector

representation of each e-main. This representations were used as input features for the
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Random Forest, the Support Vector Machine and the Feed Forward Neuronal Network

Models.

4.3 Classification 

This section describes the application of all  classification algorithms used in this work.

Every classifier setup is trained and tested twice. Firstly with all data in order to test the

recognition of relevant classes against unclassified Mails falling into the  OTHER class.

Secondly with all data excluding the OTHER class to evaluate the ability to distinguish the

relevant classes among themselves. Instances of irrelevant classes are included in the

training and test sets but due to relatively low support they only have negligible impact on

the results. They are therefore ignored in the upcoming evaluation.

4.3.1 Random Forest and Support Vector Machine

For both the Random Forest  (“sklearn.ensemble.RandomForestClassifier  — scikit-learn

1.2.0 documentation,” n.d.) and Support Vector Machine  (“sklearn.svm.LinearSVC,” n.d.)

trial  the  library  Scikit-learn’s  (Pedregosa  et  al.,  n.d.;

“sklearn.ensemble.RandomForestClassifier  —  scikit-learn  1.2.0  documentation,”  n.d.)

implementation was utilized.   

Hyperparameters  were  optimized  using  a  half  grid  search  (Bahi,  2021;

“sklearn.model_selection.HalvingGridSearchCV,”  n.d.).  This resulted  in  the  following

values: Max_depth = None, min_samples_split = 5, n_estimators = 200 for Random Forest

and

 max_iter = 5000, tol = 0.01, multi_class = 'crammer_singer' for Support Vector Machine. 
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4.3.2 Graph Neural Network

Graph Neural Networks require data with a graph structure as input. Such graphs can be

obtained from text data. Therefore each token is represented by an embedding generated

by  the  Word2vec  algorithm.  These  embeddings  however  are  not  averaged  on  the

message level, but serve as nodes in the text graph. Sequential words are connected by

edges as depicted in figure 4.

   

Figure 4: Workflow of generating a text graph 

                  

To implement the Graph Neural Network, the library StellarGraph was utilized (CSIRO’s 

Data61, 2018). The Graph Neural Network consists of two Graph Convolution Layers, with
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the tanh activation function and the first one having a size of 32 the last one of 1. For one 

specific trial two more Graph Convolution layers with a size of 32 are added. 

After  the  message passing  process  the  Text  Graphs  are  fed  into  a  1D Convolutional

Neural Network. It consists of a 1D convolutional layer with 16 filters and a kernel size and

strides equal to the sum of the layer sizes of the Graph Convolution Layers, a 1D max

pooling layer with a pool size of 2, a second 1D convolutional layer with 32 filters and a

kernel size of 5, with strides of 1, a flatten layer, a fully connected layer with 128 units and

a ReLU activation function, a dropout layer with a rate of 0.5 and a final dense layer with

number of classes units and a softmax activation function. This architecture was inspired

by Zhang et al., 2018.

4.3.2.1 Limitations

Due to the larger size of text graphs compared to averaged embedding and their more

complex  architecture,  the  Graph  Neural  Network  algorithm requires  significantly  more

computation resources.    

Table 2: duration of computations

Computation Number of Data Instances Duration (min)

Building Text Graphs 20000 3:05

Training the Graph Network 

and Predicting 

20000 10:55

Building Text Graphs 50000 7:19

Training the Graph Network 

and Predicting 

50000 33:37
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Training the Random Forest 

and Predicting 

433220 11:53

Training the Support Vector 

Machine and Predicting 

433220 14:35

Training the Feed Forward 

Network and Predicting 

433220 3:10

Table 2 shows that the Graph Neural Network processes less data in the same amount of

time than other  algorithms considered.  Therefore a smaller  Dataset is used for Graph

Neural Networks in the upcoming evaluation.

4.3.2.2 Adaptations

Graph Neural Networks are more complex, i.e. have more adaptable parameters than the

other classifiers applied in this work. Therefore several trials will be conducted with Graph

Neuronal Networks to look into the effect of adapting this parameters. 

Firstly the Data available to the Graph Neural Network algorithm is increased. The Graph

Network has access to less data than the other classifiers, owed to the high computational

cost. Hence the impact of the amount of data is a useful information to gain. 

An approach to reduce the computation effort is to reduce the length of the enbeddings in

the text graph. The impact of this measure on the classification is tested in the next trial. 

In order to optimize the input, the text graphs are augmented for the next trial. Therefore

edges connect not just the next but the next but one token as shown in figure 5.
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Figure 5: Text graph with edge range = 2

To further examine the impact of the graph convolution, the amount of graph convolution 

layers is doubled for the last trial involving Graph Neuronal Networks.

4.3.3 Feed Forward Neural Networks

The Feed Forward Network is designed to mimic the Graph Network without the graph

convolution. Therefore the Graph Convolution as well as the 1D Convolution layers are

replaced with another fully connected and a dropout layer.

 So the network consists of a fully connected layer with 128 units and a ReLU activation

function a dropout layer with a rate of 0.5, another pair of dense and dropout layers with

the same parameters and a dense layer  with  number of  classes units  and a softmax

activation function.
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5 Evaluation

For the evaluation a test set of 20% was utilized. Therefore every data instance had a 20%

chance to go in the test set and an 80% chance to be used in training. That way test data 

tend to be spread equally among the dataset. For the evaluation of the classification the

following metrics are considered: The precision measures the proportion of true positive

predictions out of all positive predictions, the recall is calculated by dividing the number of

true positive predictions by the amount of all actual positive observations, the F1 score

combines precision  and recall.  It  is  calculated  according  to  this  formula  (Lever  et  al.,

2016):

Those metrics only evaluate the classification of a single class. In order to depict the Multi-

class problem as a whole, further metrics are considered: The accuracy measures the

proportion of correct predictions out of all predictions and the weighted average F1 score,

which is calculated as follows:

The calculation of the metrics is automated by the function 

(“sklearn.metrics.classification_report,” n.d.)

5.1 Random Forest

The Random Forest Classifier (RDF) achieves an accuracy of 0.85 and a weighted F1

average of 0.87 on a test set of 86526 instances. The  OTHER class is best recognized

with an F1 score of 0.90. The F1 Score of other relevant classes is between 0.53 and 0.77.
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The  confusion  Matrix  (figure  6)  shows  most  false  classification  resolving  around  the

OTHER class. A lot of  OTHER messages are falsely classified in relevant classes which

takes  the  relevant  classes  precision  down.   Messages  labeled  as  OTHER  end  up

misclassified relatively rarely. Hence  OTHERs  precision and relevant classes recall are

comparably  high.  The  classes  CHANGE_INFO  and  STATUS_QUESTION  are  most

affected.  Hence their  precision  falls  under  0.5.  This  accumulation  of  misclassifications

could be explained by fuzzy separation between classes. An e-mail labeled OTHER could

easily be misclassified as a relevant class if its contents are similar to e-mail labeled as

said class. 

Table 2: Results RDF Classifier

Class Precision Recall F1-score Support

BONUS 0.63 0.89 0.74 4664

CHANGE_INFO 0.46 0.87 0.60 3194

OTHER 0.98 0.84 0.90 71413

REVOCATION 0.67 0.91 0.77 5067

STATUS_QUES
TION

0.38 0.86 0.53 2171

Weighted 
average 

0.91 0,85 0.87 86526

Accuracy 0.85 86526
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If the OTHER class is excluded from the dataset, the accuracy amounts to 0.88 and the

weighted F1 average to 0.89. The F1 scores of the relevant classes increase to the range

of 0.87 and 0.92. According to the confusion matrix (figure 7), the classes REVOCATION

and CHANGE_INFO are most frequently confused with each other. A possible reason for

this observation is, the semantic proximity of the two classes. Both  REVOCATION  and

CHANGE_INFO involve the termination of a contract.  STATUS_QUESTION has the worst

F1 score but the misclassified data is equally divided between the classes. 

Table 3: Results RDF Classifier without OTHER class

Class Precision Recall F1-score Support

BONUS 0.91 0.93 0.92 6360
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Figure 6: Confusion matrix RDF 



CHANGE_INFO 0.89 0.86 0.88 6222

REVOCATION 0.92 0.86 0.89 7258

STATUS_QUES
TION

0.89 0.86 0.87 5197

Weighted 
average 

0.90 0.88 0.89 25081

Accuracy 0.88 25081
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Figure 7: Confusion Matrix RDF excluding OTHER



5.2 Support Vector Machine

The Support Vector Machine (SVM) scores an accuracy of 0.85 and an F1 weighted 

average of 0.87 on the same test. The OTHER class was recognized best with the highest 

F1 score of 0.91, while the F1 measure for other relevant classes ranged from 0.58 to 

0.80.

The confusion matrix (figure 8) yields similar information as in the previous trial. Again 

many instances labeled OTHER are classified as relevant classes.

Table 4: Results SVM Classifier

Class Precision Recall F1-score Support

BONUS 0.73 0.85 0.79 5598

CHANGE_INFO 0.45 0.84 0.58 3170

OTHER 0.96 0.86 0.91 68911

REVOCATION 0.74 0.87 0.80 5983

STATUS_QUES
TION

0.46 0.78 0.58 2857

Weighted 
average 

0.90 0.85 0.87 86524

Accuracy 0.85 86524
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In a trial under exclusion of the OTHER class, the accuracy and F1 weighted average is

0.89. The F1 scores of the relevant classes are then between 0.86 and 0.94, which is a

slightly large spread between classes compared to the Random Forests results. In the

confusion matrix (figure 9) similar observations as in the corresponding Random Forest

trial can be made. 

Table 5: Results SVM Classifier without OTHER class

Class Precision Recall F1-score Support

BONUS 0.93 0.94 0.94 6896

CHANGE_INFO 0.87 0.89 0.88 5901

REVOCATION 0.91 0.91 0.91 6810
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Figure 8: Confusion matrix SVM 



STATUS_QUES
TION

0.91 0.81 0.86 5113

Weighted 
average 

0.90 0.89 0.89 25081

Accuracy 0.89 25081
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Figure 9: Confusion matrix SVM excluding OTHER



5.3 Graph Neural Networks

The Graph  Neural  Network  (GNN)  achieves  an  accuracy  of  0.78  and a  weighted  F1

average of 0.79 on a data set of 16000 training and 4000 test instances. The  OTHER

class is best recognized with an F1 score of 0.85. The F1 Score of other relevant classes

is between 0.56 and 0.76. As with other algorithms, misclassifications involve the  OTHER

class for the most part. In contrast to previous trials, this confusion goes both ways.  As

depicted in Figure 10,  instances of OTHER are misclassified as relevant classes as well

as the other way around. 

Table 6:  Results GNN 20000 data instances 

Class Precision Recall F1-score Support

BONUS 0.63 0.81 0.71 313

CHANGE_INFO 0.51 0.63 0.56 240

OTHER 0.90 0.80 0.85 2922

REVOCATION 0.74 0.78 0.76 296

STATUS_QUES
TION

0.52 0.73 0.61 273

Weighted 
average 

0.80 0.78 0.79 4121

Accuracy 0.78 4121
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The next trial consisted of about 40000 trainings and 10000 test instances. The results

showed an accuracy of 0.77 and a weighted average F1 score of 0.79. The F1 score of the

relevant classes ranged from 0.63 to 0.79 when the OTHER class scored highest again.

The confusion matrix (figure 11) shows a familiar  picture. Similar as in previous Trials

instances  labeled  OTHER  are  again  often  classified  as  one  of  the  relevant  classes.

Misclassifying members of relevant classes as OTHER is not as common as in previous

trials.

Table 7: Results GNN 50000 data instances 

Class Precision Recall F1-score Support

BONUS 0.57 0.82 0.67 749

CHANGE_INFO 0.60 0.79 0.69 853
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Figure 10: Confusion Matrix GNN 20000 data instances 



OTHER 0.92 0.76 0.83 6920

REVOCATION 0.67 0.84 0.74 587

STATUS_QUES
TION

0.57 0.71 0.63 812

Weighted 
average 

0.81 0.77 0.79 9923

Accuracy 0.77 9923

The next trial excluded the class OTHER and involved approximately 30000 trainings and

7500 test instances. The results indicated an accuracy of 0.86 and a weighted average F1

score of 0.87. The F1 score of the relevant classes ranged from 0.85 to 0.90. In contrast to
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Figure 11: Confusion Matrix GNN 50000 data instances 



other  trials  the  confusion  matrix  (figure  12)   shows  a  more  equal  spread  of

misclassifications between classes.

Table 8: Results GNN 45000 data instances without OTHER class

Class Precision Recall F1-score Support

BONUS 0.92 0.85 0.89 1844

CHANGE_INFO 0.87 0.86 0.87 1980

REVOCATION 0.87 0.92 0.90 1335

STATUS_QUES
TION

0.86 0.84 0.85 1621

Weighted 
average 

0.88 0.86 0.87 6924

Accuracy 0.86 6924

30



The following trial used a reduced vector length of 50 and involved 20000 data instances.

The findings showed an accuracy of 0.79 and a weighted average F1 score of 0.79. The

F1 score of the relevant classes varied from 0.50 to 0.73. The confusion matrix (figure 13)

turns out as expected.

Table 9: Results GNN 20000 data instances with a vector length of 50 

Class Precision Recall F1-score Support

BONUS 0.52 0.83 0.63 254

CHANGE_INFO 0.42 0.63 0.50 183

OTHER 0.93 0.77 0.84 3122

REVOCATION 0.66 0.82 0.73 228
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Figure 12: Confusion Matrix GNN 45000 data 

instances without OTHER class



STATUS_QUES
TION

0.37 0.74 0.49 175

Weighted 
average 

0.83 0.77 0.79 4022

Accuracy 0.79 4022

In the next trial, the parameters were adjusted to increase the range of graph edges to 2.

The results of this trial showed an accuracy of 0.79, a weighted average F1 score of 0.79,

and F1 scores for the relevant classes ranging from 0.60 to 0.79. Except a higher portion
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Figure 13: Confusion Matrix GNN 20000 data instances with a vector length 

of 50 



of as OTHER misclassified instances compared to the previous trial, the confusion matrix

(figure 14)  yields no additional information.

Table 10: Results GNN 20000 data instances with range of edges = 2 

Class Precision Recall F1-score Support

BONUS 0.64 0.78 0.70 312

CHANGE_INFO 0.57 0.64 0.60 276

OTHER 0.89 0.82 0.85 2827

REVOCATION 0.76 0.83 0.79 270

STATUS_QUES
TION

0.57 0.68 0.62 309

Weighted 
average 

0.80 0.79 0.79 4079

Accuracy 0.79 4079
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The next trial will be increasing the number of graph layers to 4 and using 20000 data

instances. The results of this trial yielded an accuracy of 0.80 and a weighted average F1

score of 0.80. The F1 score for the relevant classes were between 0.57 and 0.77

Table 10: Results GNN 20000 data instances with 4 graph layers

Class Precision Recall F1-score Support

BONUS 0.53 0.82 0.64 238

CHANGE_INFO 0.46 0.75 0.57 177

OTHER 0.93 0.78 0.85 2958

REVOCATION 0.75 0.80 0.77 289

STATUS_QUES
TION

0.53 0.81 0.64 250
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Figure 14: Confusion Matrix GNN 20000 data instances with range of edges = 2 



Weighted 
average 

0.84 0.79 0.80 3949

Accuracy 0.80 3949
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Figure 15 Confusion Matrix GNN 20000 data instances with 4 graph layers



5.4 Feed Forward Networks

In the subsequent trial, the Feed Forward Neural Network is utilized.   The results of this

trial yielded an accuracy of 0.88 and a weighted average F1 score of 0.89. The F1 score

for the relevant classes ranged from 0.65 to 0.84. According to the confusion matrix (figure

16), similar to previous trials, a lot of  OTHER messages are falsely classified in relevant

classes. This observation however is less pronounced for the classes REVOCATION and

BONUS in this trial. 

Table 12: Results feed forward network 430000 data instances

Class Precision Recall F1-score Support

BONUS 0.77 0.88 0.82 5709

CHANGE_INFO 0.52 0.86 0.65 3656

OTHER 0.97 0.88 0.92 67540

REVOCATION 0.80 0.89 0.84 6163

STATUS_QUES
TION

0.56 0.80 0.66 3458

Weighted 
average 

0.91 0.88 0.89 86526

Accuracy 0.88 86526
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In the last experiment all Data except the  OTHER class are considered. This test  found

that both the accuracy and the weighted average F1 score amounted to 0.90.

The F1 scores for the relevant classes spanned from 0.89 to 0.94.  The confusion between

CHANGE_INFO and REVOCATION was notably higher than between other classes. This

observation however is not as strong in this trial.     

Table 13: Results feed forward network OTHER class excluded

Class Precision Recall F1-score Support

BONUS 0.93 0.95 0.94 6375

CHANGE_INFO 0.90 0.89 0.89 6037

REVOCATION 0.94 0.88 0.91 7383

STATUS_QUES 0.89 0.90 0.90 4957
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Figure 16: Confusion matrix Feed Forward Network 



TION

Weighted 
average 

0.91 0.90 0.90 25085

Accuracy 0.90 25085
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Figure 17: Confusion matrix  Feed Forward Network excluding OTHER



5.5 Comparison 

In  this  section  the  approaches  are  compared  with  each  other.  Considering  the  trials

including the OTHER class (figure 18), the Feed Forward Neural Network achieves, with a

F1-score of 0.89 and an accuracy of 0.88, the best results. Random Forest and Support

Vector Machine score with a F1 score of 0.87 and an accuracy of 0.85 slightly worse. The

Graph Neural Networks performance was with a F1 score of 0.80 and an accuracy of 0.80

notably worse.

39

Figure 18: Best values of every approach including OTHER
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In  Figure  19 the  detection  of  relevant  classes  in  trials  including  the  class  OTHER is

compared. For Graph Neural Networks the trial featuring an increased number of data

instances (table 7)  is  considered,  since it  yielded the best  results  in  that  regard.  The

random forest algorithm achieved a weighted average F1 score of 0.69, while the Support

Vector Machine had an F1 score of 0.72. The graph neural network had a slightly worse

performance with an F1 score of 0.68. The feed forward neural network performed the

best  out  of  the four  algorithms,  with  an F1 score of  0.76.  Although the  Graph Neural

Network performed distinctively worse in general classification, its results connect to the

other algorithms in detecting relevant classes.

When comparing the trials excluding the OTHER class, the Feed Forward Neural Network

performed the best, with a F1-score and an accuracy of 0.90. The Random Forest and

Support Vector Machine scored slightly lower, with a F1-score of 0.89. The Graph Neural

Network had again a slightly worse performance, with a F1-score of 0.87 and an accuracy
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Figure 19: Weighted average of F1-scores of relevant classes in trials including OTHER
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of  0.86.  Compared  with  Trials  including  the  OTHER class  (Figure  20),  the  overall

performance  increased  for  all  algorithms.  This  improvement  was  expected,  since  by

excluding  the  OTHER class,  the  differences  between  classes  become  better  defined.

Therefore the data is easier to classify.

Optimization  attempts  using  Graph  Neural  Networks  have  only  resulted  in  marginal

improvement in performance. However, the addition of two more graph convolution layers

has had the greatest impact on accuracy. Increasing the amount of training data resulted
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Figure 20: Results of Trials excluding OTHER class
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in  the  best  improved  detection  of  relevant  classes.  Despite  these  efforts,  the  overall

performance of the Graph Neural Networks model is still notably worse compared to the

other algorithms.
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Figure 21: Results of GNN Parameter Optimization
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6 Discussion

As far as vectorization is concerned, the Word2vec algorithm was applied successfully.

The Tf-idf algorithms implementation resulted in excessively long vectors that required too

much memory, making it impractical to be used in this work. Hence only data processed by

Word2vec  was  classified.  During  the  classification  no  issues  regarding  the  Word2vec

embeddings  arose.   Therefore  Word2vec  can  be  considered  a  fitting  vectorization

algorithm in this specific and similar problems. 

Regarding the classification, the best performance was achieved by the Feed Forward

Neural Network, while the Random Forest and Support Vector Machine showed slightly

inferior performance. The Graph Neural Network however under performed compared to

the other  evaluated algorithms.  This  suggests  that  the text  graph and the convolution

layers processing it, do not only not improve, but hinder the classification. It is possible that

the additional information contained within the text graph could lead to confusion for the

model, thus causing a reduction in performance. Derived from this observation, the context

between the words may only carry marginal information indicating  the class of an e-mail,

compared to the words themselves. Therefore Graph Neural Networks process a lot of

meaningless information. 

Furthermore, it  is worth noting that the use of a text graphs significantly increases the

computational cost of the classification task.  This is an important consideration, as it may

not  be  practical  to  use  a  Graph  Neural  Network  in  situations  where  computational

resources are limited. The smaller amount of training data, that was available to the Graph

Neural Network owed to said greater computation cost, could also explain the algorithm’s

underperformance. However,  the fact that increasing the available  data from 20000 to

50000 instances did not yield significant improvement does not support this explanation.

The other classification algorithms had significantly lower computation cost. The duration

of the calculation for Random Forest, Support Vector Machine and Feed Forward Neural

Network are comparable with the latter being the shortest (table 2).    

It is also important to note that the conclusions of this study are limited by data only from a

specific domain. While the results of this study may be meaningful in the context of this
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data set, it is unclear how well they would generalize to other data sets or other real-world

scenarios.

To return to the goal of this work, the optimal workflow to solve the said classification

problem was to  be  determined.  Concerning the  vectorization,  the  Word2vec algorithm

yielded a working base for the classification. For classification the Feed Forward Neural

Network appeared to be the optimal choice. This algorithm yielded the best classification

results while maintaining low computational cost. 

Therefore according to this work, Word2vec for vectorization and the Feed Forward Neural

Network solve this classification problem best. 
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