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Abstract 

This work addresses a problem of text classification. The research question focuses on 

identifying the optimal workflow to solve the given problem. The dataset consists of 

roughly 430,000 labeled e-mails. The problem is tackled in two steps, namely vectorizing 

the text and applying a classification algorithm. Several algorithms, including Word2vec 

and Tf-idf for vectorization, and Random Forest, Support Vector Machine, Graph Neural 

Network, and Feed-Forward Neural Network for classification, were evaluated. The results 

show that Word2Vec performed well, while Tf-idf had too high memory demands. In terms 

of classification, the Feedforward Neural Network achieved the highest F1 scores of 0.89-

0.90 depending on the trial, followed by Random Forest and Support Vector Machine with 

F1 scores of 0.87-0.89, while the graph neural network achieved F1 scores of 0.80-0.87. 
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1 Introduction 

The company CHECK24 Vergleichsportal Energie GmbH offers customers a platform to 

compare electricity or gas tariffs from different providers. It also offers the service of 

simplifying the conclusion, changes and terminations of contracts. 

Communication with customers and providers takes place primarily via e-mail. However, 

processing all these inquiries involves a great deal of work. In order to reduce this, the e-

mails should be preprocessed automatically. For example, messages can be sorted by 

subject, prioritized, a suitable response template can be specified or they could be 

processed automatically. 

From sorting in different categories of topics, a multiclass classification problem can be 

derived. However, some difficulties exist. First of all, customers' e-mails are very diverse 

and don't follow a given structure. Moreover, most e-mails can not be meaningfully 

assigned to a class. For this reason, there is an "Other" class that includes all data points 

that cannot be reasonably assigned. Almost 75% of the dataset is assigned to that class. 

Also, the remaining dataset is unbalanced, so some classes are over- or under-

represented. In addition, the boundaries between some classes are fluid, so even human 

labeling can have errors. These circumstances add further complexity to the problem. 

1.1 Goal of this work 

The goal of the work is to develop a workflow that solves the classification problem above. 

The problem can be broken down into two main steps. First, the plain text must be 

encoded into a machine-readable form. There are several possible approaches for this. 

After that, the transformed messages have to be classified using a machine learning 

model. In this step, too, there are various models to choose from. In addition, there are 

parameters within a model that can be optimized. Ultimately, the combination of 
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approaches and parameters that has the highest practicability, performance and quality of 

the classification should be determined. Hence the central question, this work aims to 

answer is: Which workflow solves the upper classification problem best? 

1.2 Structure of this work 

The structure of this work is as follows: Firstly related work is mentioned. Thereafter the 

theoretical background is illuminated. For both vectorization and classification, all applied 

algorithms are named and their functionality explained. The next chapter explicates the 

experimental setup. Firstly the dataset and its procession is described. Secondly the 

implementation of the vectorization is depicted. Thirdly the application of the classification 

algorithms are expounded. Thereafter the results are evaluated. Firstly the results of every 

model are depicted. Then the models are compared to each other. In the last chapter 

those results are discussed. 

2 Related work 

Text classification is one of the core problems of natural language processing (Huang et 

al., 2019). It has already been used successfully in many problems (Kowsari et al., 2019). 

Examples include medical texts (Qing et al., 2019) and accident prevention in industry 

(Sanchez-Pi et al., 2014). E-mail data have also been dealt with in the literature. However, 

most research is aimed at spam or phishing detection (Verma et al., 2020). 

As possibilities for vectorization or feature extraction Kowsari et al. name the following 

methods: Bag of Words (BoW), Term Frequency-Inverse Document Frequency (Tf-idf), 

and Word Embedding methods such as Word2Veo, Continuous Bag-of-Words or 

Continuous Skip-Gram algorithms (Kowsari et al., 2019). 
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There are also various approaches for the actual text classification. Well-known machine 

learning models have been successfully applied. Pranckevicius and Marcinkevicius and 

Ikonomakis et al. mention Naive Bayes, Random Forest, Decision Tree, Support Vector 

Machines as well as Logistic Regression Classifiers (Ikonomakis et al., 2005; 

Pranckevicius and Marcinkevicius, 2017). With the support vector machine and the 

random forest Kim et al. and Bouaziz et al. also brought traditional classification algorithms 

to use (Bouaziz et al., 2014; Kim et al., 2005). 

In recent years more sophisticated deep learning models became popular for text 

classification (Minaee et al., 2021). These include graph neural networks from Huang et 

al., convolutional neural networks from Jacovi et al. and Liang et al. 

and attention models from Sun and Lu (Huang et al., 2019; Jacovi et al., 2020; Liang et al., 

2019; Sun and Lu, 2020). This work will deal with machine learning as well as deep 

learning approaches. 

In contrast to most relevant research, the dataset used in this work is in German. Because 

of unique features of the German language like compound words, the data might behave 

differently than expected. 

3 Theoretical background 

This chapter explains the theoretical background of the algorithms and techniques used in 

this work. The first section deals with the vectorization of the data, the second one with the 

actual classification. 

3.1 Vectorization 

In order to train and utilize a machine or deep learning classifier on the e-mail data, the 

natural language must be transformed into a machine readable vector. Therefore two 
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different approaches are applied. Firstly Term Frequency-Inverse Document Frequency 

(Tf-idf), a simple algorithm, and secondly Word2vec, a more sophisticated approach. 

3.1.1 Tf-idf 

The Tf-idf algorithm assigns weights to each word in a corpus based on its frequency and 

importance in the text (Sparck Jones, 1972). 

The algorithm works by first calculating the term frequency (tf) of each word in a corpus, 

which is simply the number of times the word appears in the text. This is then followed by 

calculating the inverse document frequency (idf) of each word, which is based on the 

number of documents that contain the word. Specifically, the tf-idf value of a word in a 

document is calculated: 

W(d, t) = TF(d, t) * log{N/df(t)\ 

where N is the number of documents and df(t) is the number of documents containing the 

term t in the corpus (Kowsari et al., 2019). 

This formula gives a higher weight to words that are both frequent in the document and 

rare in the corpus. This weight can be used to represent the importance of each word in 

the context of the corpus. 

3.1.2 Word2Vec 

The word2vec algorithm is a neural network-based approach for generating word 

embeddings, which are numerical representations of words that capture their meaning and 

context. It involves training a neural network on a large corpus of text by feeding pairs of 

words or "word contexts" into the network and adjusting the weights of the connections 

between neurons using negative sampling (Kowsari et al., 2019). To this end the models 

Continuous Bag-of-Words and Continuous Skip-Gram are utilized. 

Continuous Bag-of-Words model predicts the current word given its surrounding context. 

For example, given the sentence "I like to cancel my electricity contract", the Continuous 

Bag-of-Words model would predict the word "cancel" based on the surrounding words "I", 

"like", "to", "my", "electricity" and "contract". 
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The Skip-gram model works the opposite way by predicting the surrounding context given 

a current word. For instance, given the word "cancel", the Skip-gram model would predict 

the surrounding context of "I", "like", "to", "my", "electricity" and "contract" (Mikolov et al., 

2013). 

The resulting high-dimensional vectors represent the meaning and context of words in the 

vocabulary. 

3.2 Classification 

After vectorization the data can be processed by classification algorithms. The classifiers 

applied in this work are described in this section. 

3.2.1 Random Forest 

A random forest classifier is an ensemble learning method used for classification tasks. It 

is a collection of decision trees, where each decision tree is trained on a different subset of 

the training data and using a different set of features, selected randomly. 

The following are the basic steps in the random forest algorithm: 

Firstly a subset of the training data is selected at random from the original dataset. 

On this subset of the data a decision tree is created. Therefore the data are recursively 

split based on the most discriminative features, until the tree reaches a stopping criterion. 

The most discriminative feature can be determined by the Gini Index. It is calculated by the 

formula: 

K 

Gini = YJPk{l-Pk\ 
fe=i 

where K is the number of classes and P k is the proportion of samples that belong to class 

k. Considering a highly discriminative feature, P k approximates 1 or 0, which leads to the 
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Gini Index approximating 0. Hence the feature with the lowest Gini Index is chosen for the 

split (James etal., 2013). 

This procedure is repeated multiple times to create several decision trees. 

To classify a new instance, as shown in figure 1, each of the decision trees are used to 

predict the class of the instance. The class with the most votes across all the trees is the 

final predicted class for the instance. 

By randomly selecting subsets of the training data and features, and creating multiple 

decision trees, the random forest algorithm helps to reduce overfitting and increase 

generalization. It also enables the algorithm to handle missing data and noisy features 

(Breiman, 2001; Kowsari etal., 2019). 

X 

Vote for classification 
I 
C 

Figure 1: Classification via Random Forest 

3.2.2 Support Vector Machine 

Support Vector Machines are a class of machine learning algorithms used for both 

classification and regression analysis. Support Vector Machines were originally developed 
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for binary classification problems, but have since been extended to handle multi-class 

classification problems (Boser et al., 1992). 

Support Vector Machines work by finding the hyperplane that best separates the different 

classes of data points. The hyperplane is chosen such that it maximizes the distance 

between the closest data points from each class. These closest data points are called 

support vectors. Formally, let [(xi,yi),(xn,yn)] be a training set of n instances, where 

xi G Rd is a d-dimensional feature vector and y{ e (-1,1) is the corresponding class 

label. The goal of a Support Vector Machine is to find a hyperplane that separates the two 

classes, which can be represented by the equation: 

wx + 6 = 0, 

where w is a weight vector that determines the orientation of the hyperplane, b is a bias 

term that shifts the hyperplane away from the origin, and • denotes the dot product. The 

hyperplane separates the data points into two regions: one region for each class as shown 

in figure 2. 

Figure 2: Linear classification via Support 

vector machine 

To determine the optimal hyperplane, Support Vector Machines solve an optimization 

problem that minimizes a loss function subject to constraints. A common loss function for 

Support Vector Machines is the hinge loss function. It is defined as follows: 

I = max(0,1—t * y) 
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Where t is the expected output which equals ±1 and y is the classification output. 

Consequently, the cost function penalizes misclassification errors relatively to the distance 

to the decision threshold. Furthermore it encourages the hyperplane to have a large 

margin on correct classifications. The constraints ensure that the hyperplane separates the 

data points correctly (Rosasco et al., 2003; Vapnik and Chervonenkis, 1964). 

There are several approaches to achieve multi-class classification. The most common 

ones are One-versus-one, One-versus-all or One-versus-the-rest and Crammer-Singer. 

In the One-versus-one approach, the Support Vector Machine algorithm trains a separate 

binary classifier for each pair of classes. Each classifier separates the data of one class 

from the data of the other class in the pair. 

In the One-versus-all approach however, a distinct binary classifier is trained for every 

class. Each classifier separates the data of one class from the data of all other classes. 

For both approaches the new data point is classified by each binary classifier, and the 

class with the most votes is chosen as the predicted class during the testing phase 

(Kowsari et al., 2019). 

Unlike One-versus-one and One-versus-all the Crammer-Singer algorithm trains a single 

multi-class classifier that directly optimizes a joint objective function. 

Therefore the Support Vector Machine algorithm learns a linear mapping from the feature 

space to a space of dimensionality equal to the number of classes. The decision function 

is then defined as the argmax of the linear scores (Crammer and Singer, 2001). 

3.2.3 Neural Networks 

Neural networks are a type of machine learning algorithm inspired by the structure and 

function of the human brain (Hopfield, 1982). They consist of layers of interconnected 

neurons that receive input data and perform computations on it. 
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The simplest type of neural network is the Feed Forward Neural Network. This type of 

network consists of an input layer, one or more hidden layers, and an output layer, as 

shown in figure 3. Each layer contains a set of neurons, which receive input from the 

previous layer and produce output for the next layer. The connections between neurons 

are represented by weights, which are learned during training. 

Input Layer Hidden Layer Output Layer 

Figure 3: Fully connected Feed Forward Neural Network 

Training a neural network involves adjusting the weights to minimize a cost function, which 

measures the difference between the network's predictions and the true class labels. This 

is typically done using an optimization algorithm such as stochastic gradient descent. 

During training, the network learns to recognize patterns in the input data that are 

predictive of the class labels. 
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One important aspect of neural network training is the activation function. The activation 

function is applied to the output of each neuron, and determines the throughput to the next 

layer. Activation functions used in this work include the softmax function and the rectified 

linear unit (ReLU) function. 

Relu takes the form of 

f(x) = max(0, x) 

Therefore it returns the input value if it is positive and 0 otherwise. The ReLU function is 
computationally efficient and has been shown to be effective in deep neural networks (Nair 
and Hinton, 2010). 

The Softmax activation function is commonly used in the output layer of a neural network 

for multi-class classification tasks. It takes a vector of real-valued inputs and transforms 

them into a vector of probabilities that sum to 1. The Softmax function is given by: 

K 

fe=i 

where i = 1 ,...,K, K is the number of classes and Xi is the input value for class I (Bridle, 
1990). 

Neural networks can also be regularized to prevent overfitting, which occurs when the 

network memorizes the training data rather than learning generalizable patterns. A 

common regularization technique used in this work is called dropout. 

It works by randomly deactivating or so to speak "dropping out" some fraction of the input 

or hidden units during training. The idea behind dropout is to force the network to learn 

redundant representations of the input, which makes it more robust to noise and improves 

generalization performance. 

During training, dropout works by randomly setting some fraction of the input or hidden 

units to 0 with a probability p. The remaining units are then scaled by a factor of 

1 

1 — p 

to maintain their expected value. During testing, all units are used and no scaling is 

applied (Goodfellow et al., 2016; Srivastava et al., 2014). 
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3.2.4 Graph Neural Networks 

Graph Neural Networks are a type of neural network that operate on graph-structured 

data. Graphs are represented by nodes which are connected by edges. Therefore this 

data structure that can represent complex relationships between entities. Graph Neural 

Networks are designed to leverage this structure to learn useful representations of the 

nodes and edges in a graph (Scarselli et al., 2009). 

Natural language can also be represented as a graph. In that case words are represented 

as nodes with edges connecting adjacent ones. Embeddings created with the Word2Vec 

algorithm only carry the meanings of the words themselves, while Text graphs also carry 

the information of the context between words. 

The sentences "The meeting was bad but the dinner was good" and "The meeting was 

good but the dinner was bad" serve as an example. The vector representation of these 

two sentences generated by the Tf-idf or Word2vec algorithm are indistinguishable. A 

Graph representation however preserves the information of which adjective refers to which 

noun. 

The first step in processing graphs with neural networks is to represent the graph data in a 

way that can be easily processed by the network. One approach is to represent the graph 

as an adjacency matrix, where each entry in the matrix indicates whether there is an edge 

between two nodes in the graph. Another approach is to represent the graph as a set of 

node and edge features, where each node feature vector corresponds to the attributes of 

the node, and each edge feature vector corresponds to the attributes of the edge. Since 

the edge attributes contain the nodes, which the edges are connecting, a graph can be 

represented (Huang et al., 2019). 

Once the graph is represented, it can be processed by a neural network using graph 

convolution. Graph convolution is similar to regular convolution, but operates on the graph 

structure instead of the regular grid structure. The basic idea behind graph convolution is 

to define a set of learnable filters that are applied to the node features and their 

neighboring nodes to generate new node features. This process can be repeated multiple 

times to incorporate information from more distant nodes in the graph (Wu et al., 2021). 
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4 Experimental setup 

This chapter describes the experimental setup. First of all the Dataset is described in 

detail. Then the steps of vectorization as well as classification are explained. 

4.1 Description and preprocessing of the Dataset 

The dataset consists of 433,220 E-Mails sent by customers, which were labelled by 

customer support during the processing of each e-main. The labels represent 10 classes 

of e-mails: OTHER, REVOCATION, BONUS, CHANGEJNFO, STATUS_QUESTION, 

ACCOUNT, CANCELLATION, INSPECT_DOCUMENTS, FEEDBACK, and TEST The 

distribution of the Labels is shown in table 1. 

Table 1: Distribution of classes 

OTHER 307,933 

REVOCATION 34,361 

BONUS 32,675 

C H A N G E J N F O 30,017 

STATU S_QUESTI ON 24,626 

A C C O U N T 1,693 

CANCELLATION 795 

INSPECT_DOCUMENTS 610 

F E E D B A C K 505 

TEST 5 
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Only a fraction of e-mails can be labeled unambiguously. All remaining instances are 

therefore labelled OTHER. Furthermore the list of classes is not exhaustive, therefore 

messages that treat a topic without an associated class, are also labeled OTHER. 

Some classes have too little support to be considered in the evaluation. That way the 

relevant classes are REVOCATION, BONUS, CHANGEJNFO and STATUS_QUESTION. 

E-mails in which a client wants to revoke their contract are labeled as REVOCATION. 

Suppliers often offer a bonus for new customers. E-Mails related to this topic fall under the 

class BONUS. In Messages labeled as CHANGEJNFO clients provide Information vital to 

the change of suppliers, for instance their electricity meter reading. The Class 

STATUS_QUESTION contains E-Mails in which customers ask a question about their 

current contract. 

This is an example for an e-main labelled as REVOCATION: 

"Liebes Check 24 Team, 

hiermit mochte ich den Auftrag fur den Stromvertrag stornieren. 

Auftragsnummer: 69481966" 

English translation: 

"Dear Check 24 team, 

I would like to cancel the order for the electricity contract. 

Order number: 69481966" 

This text data has been processed in the following way. The words have been reduced to 

their stems, which means that the endings of the words have been removed to obtain the 

root form of each word. This process is called "stemming" and was executed via ("NLTK:: 

nltk.stem.snowball module," n.d.). For example, the stem of "stornieren" would be "storni". 

Moreover stop words have been removed from the text. Stop words are common words 

that do not convey significant meaning like "ich" and "fur". Punctuation marks such as 

periods, commas, and exclamation points have also been removed. Furthermore all words 
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have been converted to lower case. This is done to ensure that words that are the same 

except for their capitalization are treated as the same word (Kowsari et al., 2019). After this 

preprocessing the example above looks like this: 

"lieb check 24 team hiermit mocht auftrag stromvertrag storni auftragsnumm 69481966" 

4.2 Vectorization 

In the next step the dataset needs to be vectorized. The corpus consists of 433,220 

messages, which consist of a total of 13,645,398 and 529,787 distinct tokens. 

4.2.1 Tf-idf 

For Tf-idf vectorization the Sklearn function is used 

("sklearn.feature_extraction .text.TfidfVectorizer," n.d.).However with the application of the 

Tf-idf algorithm however arouse an issue. One vector representing one e-mail has the 

length of the number of distinct tokens. A vector of this length requires approximately 2.5 

megabytes of memory. Scaled up to the whole corpus, all available data would take up 

approximately 1 terabyte of memory. Due to this impracticability, Tf-idf is no longer 

considered in this work. 

4.2.2 Word2vec 

Word2vec was applied by using the model form the library Gensim ("models.word2vec -

Word2vec embeddings — gensim," n.d.). The entire corpus was used to train the model. 

After training, each token was mapped to a 100-component vector representation. The 

resulting token vectors were then averaged for each e-mail to obtain a fixed-length vector 

representation of each e-main. This representations were used as input features for the 
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Random Forest, the Support Vector Machine and the Feed Forward Neuronal Network 

Models. 

4.3 Classification 

This section describes the application of all classification algorithms used in this work. 

Every classifier setup is trained and tested twice. Firstly with all data in order to test the 

recognition of relevant classes against unclassified Mails falling into the OTHER class. 

Secondly with all data excluding the OTHER class to evaluate the ability to distinguish the 

relevant classes among themselves. Instances of irrelevant classes are included in the 

training and test sets but due to relatively low support they only have negligible impact on 

the results. They are therefore ignored in the upcoming evaluation. 

4.3.1 Random Forest and Support Vector Machine 

For both the Random Forest ("sklearn.ensemble.RandomForestClassifier — scikit-learn 

1.2.0 documentation," n.d.) and Support Vector Machine ("sklearn.svm.LinearSVC," n.d.) 

trial the library Scikit-learn's (Pedregosa et al., n.d.; 

"sklearn.ensemble.RandomForestClassifier — scikit-learn 1.2.0 documentation," n.d.) 

implementation was utilized. 

Hyperparameters were optimized using a half grid search (Bahi, 2021; 

"sklearn.model_selection.HalvingGridSearchCV," n.d.). This resulted in the following 

values: Max_depth = None, min_samples_split = 5, n_estimators = 200 for Random Forest 

and 

max_iter = 5000, tol = 0.01, multi_class = 'crammer_singer' for Support Vector Machine. 
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4.3.2 Graph Neural Network 

Graph Neural Networks require data with a graph structure as input. Such graphs can be 

obtained from text data. Therefore each token is represented by an embedding generated 

by the Word2vec algorithm. These embeddings however are not averaged on the 

message level, but serve as nodes in the text graph. Sequential words are connected by 

edges as depicted in figure 4. 

Tokens hiermit mocht auftrag stromvertrag Storni 

i 
Embeddings 

0.2 
0.1 
0.2 

0.3 
0.9 
0.2 

0.6 
0.4 
0.1 

0.5 
0.0 
0.1 

0.1 
0.8 
0.7 

i 
Text Graph 

0.2 0.3 0.6 0.5 0.1 
0.1 0.9 0.4 0.0 0.8 0.1 w 0.9 w 0.4 w 0.0 0.8 
0.2 0.2 0.1 0.1 0.7 

Figure 4: Workflow of generating a text graph 

To implement the Graph Neural Network, the library StellarGraph was utilized (CSIRO's 

Data61, 2018). The Graph Neural Network consists of two Graph Convolution Layers, with 
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the tanh activation function and the first one having a size of 32 the last one of 1. For one 

specific trial two more Graph Convolution layers with a size of 32 are added. 

After the message passing process the Text Graphs are fed into a 1D Convolutional 

Neural Network. It consists of a 1D convolutional layer with 16 filters and a kernel size and 

strides equal to the sum of the layer sizes of the Graph Convolution Layers, a 1D max 

pooling layer with a pool size of 2, a second 1D convolutional layer with 32 filters and a 

kernel size of 5, with strides of 1, a flatten layer, a fully connected layer with 128 units and 

a ReLU activation function, a dropout layer with a rate of 0.5 and a final dense layer with 

number of classes units and a softmax activation function. This architecture was inspired 

by Zhang etal. , 2018. 

4.3.2.1 Limitations 

Due to the larger size of text graphs compared to averaged embedding and their more 

complex architecture, the Graph Neural Network algorithm requires significantly more 

computation resources. 

Table 2: duration of computations 

Computation Number of Data Instances Duration (min) 

Building Text Graphs 20000 3:05 

Training the Graph Network 

and Predicting 

20000 10:55 

Building Text Graphs 50000 7:19 

Training the Graph Network 

and Predicting 

50000 33:37 

17 



Training the Random Forest 

and Predicting 

433220 11:53 

Training the Support Vector 

Machine and Predicting 

433220 14:35 

Training the Feed Forward 

Network and Predicting 

433220 3:10 

Table 2 shows that the Graph Neural Network processes less data in the same amount of 

time than other algorithms considered. Therefore a smaller Dataset is used for Graph 

Neural Networks in the upcoming evaluation. 

4.3.2.2 Adaptations 

Graph Neural Networks are more complex, i.e. have more adaptable parameters than the 

other classifiers applied in this work. Therefore several trials will be conducted with Graph 

Neuronal Networks to look into the effect of adapting this parameters. 

Firstly the Data available to the Graph Neural Network algorithm is increased. The Graph 

Network has access to less data than the other classifiers, owed to the high computational 

cost. Hence the impact of the amount of data is a useful information to gain. 

An approach to reduce the computation effort is to reduce the length of the enbeddings in 

the text graph. The impact of this measure on the classification is tested in the next trial. 

In order to optimize the input, the text graphs are augmented for the next trial. Therefore 

edges connect not just the next but the next but one token as shown in figure 5. 

18 



To further examine the impact of the graph convolution, the amount of graph convolution 

layers is doubled for the last trial involving Graph Neuronal Networks. 

4.3.3 Feed Forward Neural Networks 

The Feed Forward Network is designed to mimic the Graph Network without the graph 

convolution. Therefore the Graph Convolution as well as the 1D Convolution layers are 

replaced with another fully connected and a dropout layer. 

So the network consists of a fully connected layer with 128 units and a ReLU activation 

function a dropout layer with a rate of 0.5, another pair of dense and dropout layers with 

the same parameters and a dense layer with number of classes units and a softmax 

activation function. 
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5 Evaluation 

For the evaluation a test set of 20% was utilized. Therefore every data instance had a 20% 

chance to go in the test set and an 80% chance to be used in training. That way test data 

tend to be spread equally among the dataset. For the evaluation of the classification the 

following metrics are considered: The precision measures the proportion of true positive 

predictions out of all positive predictions, the recall is calculated by dividing the number of 

true positive predictions by the amount of all actual positive observations, the F1 score 

combines precision and recall. It is calculated according to this formula (Lever et al., 

2016): 
^ 2 * precision * recall 

precision + recall 

Those metrics only evaluate the classification of a single class. In order to depict the Multi-

class problem as a whole, further metrics are considered: The accuracy measures the 

proportion of correct predictions out of all predictions and the weighted average F1 score, 

which is calculated as follows: 

. . . . y j FIC\ * supportCi + FIC2 * supportC2 + ... 
Weighteaaverager Iscore = — — 

*supportC\ + *supportC2---

The calculation of the metrics is automated by the function 

("sklearn.metrics.classification_report," n.d.) 

5.1 Random Forest 

The Random Forest Classifier (RDF) achieves an accuracy of 0.85 and a weighted F1 

average of 0.87 on a test set of 86526 instances. The OTHER class is best recognized 

with an F1 score of 0.90. The F1 Score of other relevant classes is between 0.53 and 0.77. 
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The confusion Matrix (figure 6) shows most false classification resolving around the 

OTHER class. A lot of OTHER messages are falsely classified in relevant classes which 

takes the relevant classes precision down. Messages labeled as OTHER end up 

misclassified relatively rarely. Hence OTHERS precision and relevant classes recall are 

comparably high. The classes CHANGEJNFO and STATUS_QUESTION are most 

affected. Hence their precision falls under 0.5. This accumulation of misclassifications 

could be explained by fuzzy separation between classes. An e-mail labeled OTHER could 

easily be misclassified as a relevant class if its contents are similar to e-mail labeled as 

said class. 

Table 2: Results RDF Classifier 

Class Precision Recall F1-score Support 

BONUS 0.63 0.89 0.74 4664 

C H A N G E J N F O 0.46 0.87 0.60 3194 

OTHER 0.98 0.84 0.90 71413 

REVOCATION 0.67 0.91 0.77 5067 

STATUS_QUES 
TION 

0.38 0.86 0.53 2171 

Weighted 
average 

0.91 0,85 0.87 86526 

Accuracy 0.85 86526 

21 



Predicted Labe! 
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Figure 6: Confusion matrix RDF 

If the OTHER class is excluded from the dataset, the accuracy amounts to 0.88 and the 

weighted F1 average to 0.89. The F1 scores of the relevant classes increase to the range 

of 0.87 and 0.92. According to the confusion matrix (figure 7), the classes REVOCATION 

and CHANGEJNFO are most frequently confused with each other. A possible reason for 

this observation is, the semantic proximity of the two classes. Both REVOCATION and 

CHANGEJNFO involve the termination of a contract. STATUS_QUESTION has the worst 

F1 score but the misclassified data is equally divided between the classes. 

Table 3: Results RDF Classifier without OTHER class 

Class Precision Recall F1-score Support 

BONUS 0.91 0.93 0.92 6360 
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C H A N G E J N F O 0.89 0.86 0.88 6222 

REVOCATION 0.92 0.86 0.89 7258 

STATUS_QUES 
TION 

0.89 0.86 0.87 5197 

Weighted 
average 

0.90 0.88 0.89 25081 

Accuracy 0.88 25081 

Predicted Label 

Figure 7: Confusion Matrix RDF excluding OTHER 
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5.2 Support Vector Machine 

The Support Vector Machine (SVM) scores an accuracy of 0.85 and an F1 weighted 

average of 0.87 on the same test. The OTHER class was recognized best with the highest 

F1 score of 0.91, while the F1 measure for other relevant classes ranged from 0.58 to 

0.80. 

The confusion matrix (figure 8) yields similar information as in the previous trial. Again 

many instances labeled OTHER are classified as relevant classes. 

Table 4: Results SVM Classifier 

Class Precision Recall F1-score Support 

BONUS 0.73 0.85 0.79 5598 

C H A N G E J N F O 0.45 0.84 0.58 3170 

OTHER 0.96 0.86 0.91 68911 

REVOCATION 0.74 0.87 0.80 5983 

STATUS_QUES 
TION 

0.46 0.78 0.58 2857 

Weighted 
average 

0.90 0.85 0.87 86524 

Accuracy 0.85 86524 

24 



Predicted Label 

Figure 8: Confusion matrix SVM 

In a trial under exclusion of the OTHER class, the accuracy and F1 weighted average is 

0.89. The F1 scores of the relevant classes are then between 0.86 and 0.94, which is a 

slightly large spread between classes compared to the Random Forests results. In the 

confusion matrix (figure 9) similar observations as in the corresponding Random Forest 

trial can be made. 

Table 5: Results SVM Classifier without OTHER class 

Class Precision Recall F1-score Support 

BONUS 0.93 0.94 0.94 6896 

C H A N G E J N F O 0.87 0.89 0.88 5901 

REVOCATION 0.91 0.91 0.91 6810 
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STATUS_QUES 
TION 

0.91 0.81 0.86 5113 

Weighted 
average 

0.90 0.89 0.89 25081 

Accuracy 0.89 25081 

Predicted Label 

Figure 9: Confusion matrix SVM excluding OTHER 
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5.3 Graph Neural Networks 

The Graph Neural Network (GNN) achieves an accuracy of 0.78 and a weighted F1 

average of 0.79 on a data set of 16000 training and 4000 test instances. The OTHER 

class is best recognized with an F1 score of 0.85. The F1 Score of other relevant classes 

is between 0.56 and 0.76. As with other algorithms, misclassifications involve the OTHER 

class for the most part. In contrast to previous trials, this confusion goes both ways. As 

depicted in Figure 10, instances of OTHER are misclassified as relevant classes as well 

as the other way around. 

Table 6: Results GNN 20000 data instances 

Class Precision Recall F1-score Support 

BONUS 0.63 0.81 0.71 313 

C H A N G E J N F O 0.51 0.63 0.56 240 

OTHER 0.90 0.80 0.85 2922 

REVOCATION 0.74 0.78 0.76 296 

STATUS_QUES 
TION 

0.52 0.73 0.61 273 

Weighted 
average 

0.80 0.78 0.79 4121 

Accuracy 0.78 4121 
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The next trial consisted of about 40000 trainings and 10000 test instances. The results 

showed an accuracy of 0.77 and a weighted average F1 score of 0.79. The F1 score of the 

relevant classes ranged from 0.63 to 0.79 when the OTHER class scored highest again. 

The confusion matrix (figure 11) shows a familiar picture. Similar as in previous Trials 

instances labeled OTHER are again often classified as one of the relevant classes. 

Misclassifying members of relevant classes as OTHER is not as common as in previous 

trials. 

Table 7: Results GNN 50000 data instances 

Class Precision Recall F1-score Support 

BONUS 0.57 0.82 0.67 749 

C H A N G E J N F O 0.60 0.79 0.69 853 
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OTHER 0.92 0.76 0.83 6920 

REVOCATION 0.67 0.84 0.74 587 

STATUS_QUES 
TION 

0.57 0.71 0.63 812 

Weighted 
average 

0.81 0.77 0.79 9923 

Accuracy 0.77 9923 

Predicted Labe! 

Figure 11: Confusion Matrix GNN 50000 data instances 

The next trial excluded the class OTHER and involved approximately 30000 trainings and 

7500 test instances. The results indicated an accuracy of 0.86 and a weighted average F1 

score of 0.87. The F1 score of the relevant classes ranged from 0.85 to 0.90. In contrast to 
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other trials the confusion matrix (figure 12) shows a more equal spread of 

misclassifications between classes. 

Table 8: Results GNN 45000 data instances without OTHER class 

Class Precision Recall F1-score Support 

BONUS 0.92 0.85 0.89 1844 

C H A N G E J N F O 0.87 0.86 0.87 1980 

REVOCATION 0.87 0.92 0.90 1335 

STATUS_QUES 
TION 

0.86 0.84 0.85 1621 

Weighted 
average 

0.88 0.86 0.87 6924 

Accuracy 0.86 6924 

30 



Predicted Label 

Figure 12: Confusion Matrix GNN 45000 data 

instances without OTHER class 

The following trial used a reduced vector length of 50 and involved 20000 data instances. 

The findings showed an accuracy of 0.79 and a weighted average F1 score of 0.79. The 

F1 score of the relevant classes varied from 0.50 to 0.73. The confusion matrix (figure 13) 

turns out as expected. 

Table 9: Results GNN 20000 data instances with a vector length of 50 

Class Precision Recall F1-score Support 

BONUS 0.52 0.83 0.63 254 

C H A N G E J N F O 0.42 0.63 0.50 183 

OTHER 0.93 0.77 0.84 3122 

REVOCATION 0.66 0.82 0.73 228 
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STATUS_QUES 
TION 

0.37 0.74 0.49 175 

Weighted 
average 

0.83 0.77 0.79 4022 

Accuracy 0.79 4022 

Predacted Labe! 

Figure 13: Confusion Matrix GNN 20000 data instances with a vector length 

of 50 

In the next trial, the parameters were adjusted to increase the range of graph edges to 2. 

The results of this trial showed an accuracy of 0.79, a weighted average F1 score of 0.79, 

and F1 scores for the relevant classes ranging from 0.60 to 0.79. Except a higher portion 
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of as OTHER misclassified instances compared to the previous trial, the confusion matrix 

(figure 14) yields no additional information. 

Table 10: Results GNN 20000 data instances with range of edges = 2 

Class Precision Recall F1-score Support 

BONUS 0.64 0.78 0.70 312 

C H A N G E J N F O 0.57 0.64 0.60 276 

OTHER 0.89 0.82 0.85 2827 

REVOCATION 0.76 0.83 0.79 270 

STATUS_QUES 
TION 

0.57 0.68 0.62 309 

Weighted 
average 

0.80 0.79 0.79 4079 

Accuracy 0.79 4079 
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Predicted Labe! 

Figure 14: Confusion Matrix GNN 20000 data instances with range of edges = 2 

The next trial will be increasing the number of graph layers to 4 and using 20000 data 

instances. The results of this trial yielded an accuracy of 0.80 and a weighted average F1 

score of 0.80. The F1 score for the relevant classes were between 0.57 and 0.77 

Table 10: Results GNN 20000 data instances with 4 graph layers 

Class Precision Recall F1-score Support 

BONUS 0.53 0.82 0.64 238 

C H A N G E J N F O 0.46 0.75 0.57 177 

OTHER 0.93 0.78 0.85 2958 

REVOCATION 0.75 0.80 0.77 289 

STATUS_QUES 
TION 

0.53 0.81 0.64 250 

34 



Weighted 
average 

0.84 0.79 0.80 3949 

Accuracy 0.80 3949 

Predicted Label 

Figure 15 Confusion Matrix GNN 20000 data instances with 4 graph layers 
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5.4 Feed Forward Networks 

In the subsequent trial, the Feed Forward Neural Network is utilized. The results of this 

trial yielded an accuracy of 0.88 and a weighted average F1 score of 0.89. The F1 score 

for the relevant classes ranged from 0.65 to 0.84. According to the confusion matrix (figure 

16), similar to previous trials, a lot of OTHER messages are falsely classified in relevant 

classes. This observation however is less pronounced for the classes REVOCATION and 

BONUS in this trial. 

Table 12: Results feed forward network 430000 data instances 

Class Precision Recall F1-score Support 

BONUS 0.77 0.88 0.82 5709 

C H A N G E J N F O 0.52 0.86 0.65 3656 

OTHER 0.97 0.88 0.92 67540 

REVOCATION 0.80 0.89 0.84 6163 

STATUS_QUES 
TION 

0.56 0.80 0.66 3458 

Weighted 
average 

0.91 0.88 0.89 86526 

Accuracy 0.88 86526 
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Predicted Label 

Figure 16: Confusion matrix Feed Forward Network 

In the last experiment all Data except the OTHER class are considered. This test found 

that both the accuracy and the weighted average F1 score amounted to 0.90. 

The F1 scores for the relevant classes spanned from 0.89 to 0.94. The confusion between 

C H A N G E J N F O and REVOCATION was notably higher than between other classes. This 

observation however is not as strong in this trial. 

Table 13: Results feed forward network OTHER class excluded 

Class Precision Recall F1 -score Support 

BONUS 0.93 0.95 0.94 6375 

C H A N G E J N F O 0.90 0.89 0.89 6037 

REVOCATION 0.94 0.88 0.91 7383 

STATUS_QUES 0.89 0.90 0.90 4957 
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TION 

Weighted 
average 

0.91 0.90 0.90 25085 

Accuracy 0.90 25085 

Figure 17: Confusion matrix Feed Forward Network excluding OTHER 
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5.5 Comparison 

In this section the approaches are compared with each other. Considering the trials 

including the OTHER class (figure 18), the Feed Forward Neural Network achieves, with a 

F1-score of 0.89 and an accuracy of 0.88, the best results. Random Forest and Support 

Vector Machine score with a F1 score of 0.87 and an accuracy of 0.85 slightly worse. The 

Graph Neural Networks performance was with a F1 score of 0.80 and an accuracy of 0.80 

notably worse. 

0,95 

0,9 

RDF S V M GNN FFNN 

Figure 18: Best values of every approach including OTHER 
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In Figure 19 the detection of relevant classes in trials including the class OTHER is 

compared. For Graph Neural Networks the trial featuring an increased number of data 

instances (table 7) is considered, since it yielded the best results in that regard. The 

random forest algorithm achieved a weighted average F1 score of 0.69, while the Support 

Vector Machine had an F1 score of 0.72. The graph neural network had a slightly worse 

performance with an F1 score of 0.68. The feed forward neural network performed the 

best out of the four algorithms, with an F1 score of 0.76. Although the Graph Neural 

Network performed distinctively worse in general classification, its results connect to the 

other algorithms in detecting relevant classes. 

F l 

0,95 

0,9 

0,85 

0,8 

0,75 

0,7 

0,65 

0,6 

0,55 

0,5 
RDF S V M GNN FFNN 

Figure 19: Weighted average of F1-scores of relevant classes in trials including OTHER 

When comparing the trials excluding the OTHER class, the Feed Forward Neural Network 

performed the best, with a F1-score and an accuracy of 0.90. The Random Forest and 

Support Vector Machine scored slightly lower, with a F1-score of 0.89. The Graph Neural 

Network had again a slightly worse performance, with a F1-score of 0.87 and an accuracy 
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of 0.86. Compared with Trials including the OTHER class (Figure 20), the overall 

performance increased for all algorithms. This improvement was expected, since by 

excluding the OTHER class, the differences between classes become better defined. 

Therefore the data is easier to classify. 

RDF S V M GNN FFNN 

Figure 20: Results of Trials excluding OTHER class 

Optimization attempts using Graph Neural Networks have only resulted in marginal 

improvement in performance. However, the addition of two more graph convolution layers 

has had the greatest impact on accuracy. Increasing the amount of training data resulted 
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in the best improved detection of relevant classes. Despite these efforts, the overall 

performance of the Graph Neural Networks model is still notably worse compared to the 

other algorithms. 
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6 Discussion 

As far as vectorization is concerned, the Word2vec algorithm was applied successfully. 

The Tf-idf algorithms implementation resulted in excessively long vectors that required too 

much memory, making it impractical to be used in this work. Hence only data processed by 

Word2vec was classified. During the classification no issues regarding the Word2vec 

embeddings arose. Therefore Word2vec can be considered a fitting vectorization 

algorithm in this specific and similar problems. 

Regarding the classification, the best performance was achieved by the Feed Forward 

Neural Network, while the Random Forest and Support Vector Machine showed slightly 

inferior performance. The Graph Neural Network however under performed compared to 

the other evaluated algorithms. This suggests that the text graph and the convolution 

layers processing it, do not only not improve, but hinder the classification. It is possible that 

the additional information contained within the text graph could lead to confusion for the 

model, thus causing a reduction in performance. Derived from this observation, the context 

between the words may only carry marginal information indicating the class of an e-mail, 

compared to the words themselves. Therefore Graph Neural Networks process a lot of 

meaningless information. 

Furthermore, it is worth noting that the use of a text graphs significantly increases the 

computational cost of the classification task. This is an important consideration, as it may 

not be practical to use a Graph Neural Network in situations where computational 

resources are limited. The smaller amount of training data, that was available to the Graph 

Neural Network owed to said greater computation cost, could also explain the algorithm's 

underperformance. However, the fact that increasing the available data from 20000 to 

50000 instances did not yield significant improvement does not support this explanation. 

The other classification algorithms had significantly lower computation cost. The duration 

of the calculation for Random Forest, Support Vector Machine and Feed Forward Neural 

Network are comparable with the latter being the shortest (table 2). 

It is also important to note that the conclusions of this study are limited by data only from a 

specific domain. While the results of this study may be meaningful in the context of this 
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data set, it is unclear how well they would generalize to other data sets or other real-world 

scenarios. 

To return to the goal of this work, the optimal workflow to solve the said classification 

problem was to be determined. Concerning the vectorization, the Word2vec algorithm 

yielded a working base for the classification. For classification the Feed Forward Neural 

Network appeared to be the optimal choice. This algorithm yielded the best classification 

results while maintaining low computational cost. 

Therefore according to this work, Word2vec for vectorization and the Feed Forward Neural 

Network solve this classification problem best. 
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