
Technische Hochschule Deggendorf
Fakultät Angewandte Informatik

Studiengang Master Artificial Intelligence and Data Science

TEXTKLASSIFIZIERUNG VON KUNDENANFRAGEN

VIA E-MAIL

TEXT CLASSIFICATION OF CUSTOMER INQUIRIES

VIA E-MAIL

Masterarbeit zur Erlangung des akademischen Grades:

Master of Science (M.Sc.)

an der Technischen Hochschule Deggendorf

Vorgelegt von: Prüfungsleitung:
Armin Weigold Prof. Dr. Fischer
Matrikelnummer: 00629413

Am: 05. Ma i 2023

I

T E C H N I S C H E — I — I - \
H O C H S C H U L E - \)

Erklärung ^ D E G G E N D O R F I I I I J

Name des Studierenden: Armin Weigold

Name des Betreuenden: Prof. Dr. Fischer

Thema der Abschlussarbeit:

Textklassifizierung von Kundenanfragen via E-Mail .

1. Ich erkläre hiermit, dass ich die Abschlussarbeit gemäß § 35 Abs. 7 RaPO (Rahmenprüf­
ungsordnung für die Fachhochschulen in Bayern, BayRS 2210-4-1-4-1-WFK) selbständig
verfasst, noch nicht anderweitig für Prüfungszwecke vorgelegt, keine anderen als die
angegebenen Quellen oder Hilfsmittel benutzt sowie wörtliche und sinngemäße Zitate
als solche gekennzeichnet habe.

Deggendorf,
Datum Unterschrift des Studierenden

2. Ich bin damit einverstanden, dass die von mir angefertigte Abschlussarbeit über die Bib­
liothek der Hochschule einer breiteren Öffentlichkeit zugänglich gemacht wird:

$J Nein

O Ja, nach Abschluss des Prüfungsverfahrens

O Ja, nach Ablauf einer Sperrfrist von .. Jahren.

Deggendorf, MM:MV
Datum Unterschrift des Studierenden

Bei Einverständnis des Verfassenden vom Betreuenden auszufüllen:

Eine Aufnahme eines Exemplars der Abschlussarbeit in den Bestand der Bibliothek und die
Ausleihe des Exemplars wird:

O Befürwortet

O Nicht befürwortet

Deggendorf,
Datum Unterschrift des Betreuenden

Abstract

This work addresses a problem of text classification. The research question focuses on

identifying the optimal workflow to solve the given problem. The dataset consists of

roughly 430,000 labeled e-mails. The problem is tackled in two steps, namely vectorizing

the text and applying a classification algorithm. Several algorithms, including Word2vec

and Tf-idf for vectorization, and Random Forest, Support Vector Machine, Graph Neural

Network, and Feed-Forward Neural Network for classification, were evaluated. The results

show that Word2Vec performed well, while Tf-idf had too high memory demands. In terms

of classification, the Feedforward Neural Network achieved the highest F1 scores of 0.89-

0.90 depending on the trial, followed by Random Forest and Support Vector Machine with

F1 scores of 0.87-0.89, while the graph neural network achieved F1 scores of 0.80-0.87.

Ill

Contents

Abstract 1 1 1

1 Introduction 1

1.1 Goal of this work 1

1.2 Structure of this work 2

2 Related work 2

3 Theoretical background 3

3.1 Vectorization 3

3.1.1 Tf-idf 4

3.1.2 Word2Vec 4

3.2 Classification 5

3.2.1 Random Forest 5

3.2.2 Support Vector Machine 6

3.2.3 Neural Networks 8

3.2.4 Graph Neural Networks 11

4 Experimental setup 1 2

4.1 Description and preprocessing of the Dataset 1 2

4.2 Vectorization 14

4.2.1 Tf-idf 14

4.2.2 Word2vec 15

4.3 Classification I 5

4.3.1 Random Forest and Support Vector Machine 15

4.3.2 Graph Neural Network 16

4.3.3 Feed Forward Neural Networks 19

5 Evaluation 2 0

5.1 Random Forest 2 0

5.2 Support Vector Machine 2 4

5.3 Graph Neural Networks 2 7

5.4 Feed Forward Networks 3 6

5.5 Comparison 3 9

6 Discussion 43

IV

Bibliography 45

Table of figures

Figure 1: Classification via Random Forest 6

Figure 2: Linear classification via Support vector machine 7

Figure 3: Fully connected Feed Forward Neural Network 9

Figure 4: Workflow of generating a text graph 16

Figure 5: Text graph with edge range = 2 19

Figure 6: Confusion matrix RDF 22

Figure 7: Confusion Matrix RDF excluding OTHER 23

Figure 8: Confusion matrix SVM 25

Figure 9: Confusion matrix SVM excluding OTHER 26

Figure 10: Confusion Matrix GNN 20000 data instances 28

Figure 11: Confusion Matrix GNN 50000 data instances 29

Figure 12: Confusion Matrix GNN 45000 data instances without OTHER class 31

Figure 13: Confusion Matrix GNN 20000 data instances with a vector length of 50 32

Figure 14: Confusion Matrix GNN 20000 data instances with range of edges = 2 34

Figure 15 Confusion Matrix GNN 20000 data instances with 4 graph layers 35

Figure 16: Confusion matrix Feed Forward Network 37

Figure 17: Confusion matrix Feed Forward Network excluding OTHER 38

Figure 18: Best values of every approach including OTHER 39

Figure 19: Weighted average of F1-scores of relevant classes in trials including OTHER.40

Figure 20: Results of Trials excluding OTHER class 41

Figure 21: Results of GNN Parameter Optimization 42

V

List of tables

Table 1: Distribution of classes 12

Table 2: Results RDF Classifier 21

Table 3: Results RDF Classifier without OTHER class 22

Table 4: Results S V M Classifier 24

Table 5: Results S V M Classifier without OTHER class 25

Table 6: Results GNN 20000 data instances 27

Table 7: Results GNN 50000 data instances 28

Table 8: Results GNN 45000 data instances without OTHER class 30

Table 9: Results GNN 20000 data instances with a vector length of 50 31

Table 10: Results GNN 20000 data instances with 4 graph layers 34

VI

1 Introduction

The company CHECK24 Vergleichsportal Energie GmbH offers customers a platform to

compare electricity or gas tariffs from different providers. It also offers the service of

simplifying the conclusion, changes and terminations of contracts.

Communication with customers and providers takes place primarily via e-mail. However,

processing all these inquiries involves a great deal of work. In order to reduce this, the e-

mails should be preprocessed automatically. For example, messages can be sorted by

subject, prioritized, a suitable response template can be specified or they could be

processed automatically.

From sorting in different categories of topics, a multiclass classification problem can be

derived. However, some difficulties exist. First of all, customers' e-mails are very diverse

and don't follow a given structure. Moreover, most e-mails can not be meaningfully

assigned to a class. For this reason, there is an "Other" class that includes all data points

that cannot be reasonably assigned. Almost 75% of the dataset is assigned to that class.

Also, the remaining dataset is unbalanced, so some classes are over- or under-

represented. In addition, the boundaries between some classes are fluid, so even human

labeling can have errors. These circumstances add further complexity to the problem.

1.1 Goal of this work

The goal of the work is to develop a workflow that solves the classification problem above.

The problem can be broken down into two main steps. First, the plain text must be

encoded into a machine-readable form. There are several possible approaches for this.

After that, the transformed messages have to be classified using a machine learning

model. In this step, too, there are various models to choose from. In addition, there are

parameters within a model that can be optimized. Ultimately, the combination of

1

approaches and parameters that has the highest practicability, performance and quality of

the classification should be determined. Hence the central question, this work aims to

answer is: Which workflow solves the upper classification problem best?

1.2 Structure of this work

The structure of this work is as follows: Firstly related work is mentioned. Thereafter the

theoretical background is illuminated. For both vectorization and classification, all applied

algorithms are named and their functionality explained. The next chapter explicates the

experimental setup. Firstly the dataset and its procession is described. Secondly the

implementation of the vectorization is depicted. Thirdly the application of the classification

algorithms are expounded. Thereafter the results are evaluated. Firstly the results of every

model are depicted. Then the models are compared to each other. In the last chapter

those results are discussed.

2 Related work

Text classification is one of the core problems of natural language processing (Huang et

al., 2019). It has already been used successfully in many problems (Kowsari et al., 2019).

Examples include medical texts (Qing et al., 2019) and accident prevention in industry

(Sanchez-Pi et al., 2014). E-mail data have also been dealt with in the literature. However,

most research is aimed at spam or phishing detection (Verma et al., 2020).

As possibilities for vectorization or feature extraction Kowsari et al. name the following

methods: Bag of Words (BoW), Term Frequency-Inverse Document Frequency (Tf-idf),

and Word Embedding methods such as Word2Veo, Continuous Bag-of-Words or

Continuous Skip-Gram algorithms (Kowsari et al., 2019).

2

There are also various approaches for the actual text classification. Well-known machine

learning models have been successfully applied. Pranckevicius and Marcinkevicius and

Ikonomakis et al. mention Naive Bayes, Random Forest, Decision Tree, Support Vector

Machines as well as Logistic Regression Classifiers (Ikonomakis et al., 2005;

Pranckevicius and Marcinkevicius, 2017). With the support vector machine and the

random forest Kim et al. and Bouaziz et al. also brought traditional classification algorithms

to use (Bouaziz et al., 2014; Kim et al., 2005).

In recent years more sophisticated deep learning models became popular for text

classification (Minaee et al., 2021). These include graph neural networks from Huang et

al., convolutional neural networks from Jacovi et al. and Liang et al.

and attention models from Sun and Lu (Huang et al., 2019; Jacovi et al., 2020; Liang et al.,

2019; Sun and Lu, 2020). This work will deal with machine learning as well as deep

learning approaches.

In contrast to most relevant research, the dataset used in this work is in German. Because

of unique features of the German language like compound words, the data might behave

differently than expected.

3 Theoretical background

This chapter explains the theoretical background of the algorithms and techniques used in

this work. The first section deals with the vectorization of the data, the second one with the

actual classification.

3.1 Vectorization

In order to train and utilize a machine or deep learning classifier on the e-mail data, the

natural language must be transformed into a machine readable vector. Therefore two

3

different approaches are applied. Firstly Term Frequency-Inverse Document Frequency

(Tf-idf), a simple algorithm, and secondly Word2vec, a more sophisticated approach.

3.1.1 Tf-idf

The Tf-idf algorithm assigns weights to each word in a corpus based on its frequency and

importance in the text (Sparck Jones, 1972).

The algorithm works by first calculating the term frequency (tf) of each word in a corpus,

which is simply the number of times the word appears in the text. This is then followed by

calculating the inverse document frequency (idf) of each word, which is based on the

number of documents that contain the word. Specifically, the tf-idf value of a word in a

document is calculated:

W(d, t) = TF(d, t) * log{N/df(t)\

where N is the number of documents and df(t) is the number of documents containing the

term t in the corpus (Kowsari et al., 2019).

This formula gives a higher weight to words that are both frequent in the document and

rare in the corpus. This weight can be used to represent the importance of each word in

the context of the corpus.

3.1.2 Word2Vec

The word2vec algorithm is a neural network-based approach for generating word

embeddings, which are numerical representations of words that capture their meaning and

context. It involves training a neural network on a large corpus of text by feeding pairs of

words or "word contexts" into the network and adjusting the weights of the connections

between neurons using negative sampling (Kowsari et al., 2019). To this end the models

Continuous Bag-of-Words and Continuous Skip-Gram are utilized.

Continuous Bag-of-Words model predicts the current word given its surrounding context.

For example, given the sentence "I like to cancel my electricity contract", the Continuous

Bag-of-Words model would predict the word "cancel" based on the surrounding words "I",

"like", "to", "my", "electricity" and "contract".

4

The Skip-gram model works the opposite way by predicting the surrounding context given

a current word. For instance, given the word "cancel", the Skip-gram model would predict

the surrounding context of "I", "like", "to", "my", "electricity" and "contract" (Mikolov et al.,

2013).

The resulting high-dimensional vectors represent the meaning and context of words in the

vocabulary.

3.2 Classification

After vectorization the data can be processed by classification algorithms. The classifiers

applied in this work are described in this section.

3.2.1 Random Forest

A random forest classifier is an ensemble learning method used for classification tasks. It

is a collection of decision trees, where each decision tree is trained on a different subset of

the training data and using a different set of features, selected randomly.

The following are the basic steps in the random forest algorithm:

Firstly a subset of the training data is selected at random from the original dataset.

On this subset of the data a decision tree is created. Therefore the data are recursively

split based on the most discriminative features, until the tree reaches a stopping criterion.

The most discriminative feature can be determined by the Gini Index. It is calculated by the

formula:

K

Gini = YJPk{l-Pk\
fe=i

where K is the number of classes and P k is the proportion of samples that belong to class

k. Considering a highly discriminative feature, P k approximates 1 or 0, which leads to the

5

Gini Index approximating 0. Hence the feature with the lowest Gini Index is chosen for the

split (James etal., 2013).

This procedure is repeated multiple times to create several decision trees.

To classify a new instance, as shown in figure 1, each of the decision trees are used to

predict the class of the instance. The class with the most votes across all the trees is the

final predicted class for the instance.

By randomly selecting subsets of the training data and features, and creating multiple

decision trees, the random forest algorithm helps to reduce overfitting and increase

generalization. It also enables the algorithm to handle missing data and noisy features

(Breiman, 2001; Kowsari etal., 2019).

X

Vote for classification
I
C

Figure 1: Classification via Random Forest

3.2.2 Support Vector Machine

Support Vector Machines are a class of machine learning algorithms used for both

classification and regression analysis. Support Vector Machines were originally developed

6

for binary classification problems, but have since been extended to handle multi-class

classification problems (Boser et al., 1992).

Support Vector Machines work by finding the hyperplane that best separates the different

classes of data points. The hyperplane is chosen such that it maximizes the distance

between the closest data points from each class. These closest data points are called

support vectors. Formally, let [(xi,yi),(xn,yn)] be a training set of n instances, where

xi G Rd is a d-dimensional feature vector and y{ e (-1,1) is the corresponding class

label. The goal of a Support Vector Machine is to find a hyperplane that separates the two

classes, which can be represented by the equation:

wx + 6 = 0,

where w is a weight vector that determines the orientation of the hyperplane, b is a bias

term that shifts the hyperplane away from the origin, and • denotes the dot product. The

hyperplane separates the data points into two regions: one region for each class as shown

in figure 2.

Figure 2: Linear classification via Support

vector machine

To determine the optimal hyperplane, Support Vector Machines solve an optimization

problem that minimizes a loss function subject to constraints. A common loss function for

Support Vector Machines is the hinge loss function. It is defined as follows:

I = max(0,1—t * y)

7

Where t is the expected output which equals ±1 and y is the classification output.

Consequently, the cost function penalizes misclassification errors relatively to the distance

to the decision threshold. Furthermore it encourages the hyperplane to have a large

margin on correct classifications. The constraints ensure that the hyperplane separates the

data points correctly (Rosasco et al., 2003; Vapnik and Chervonenkis, 1964).

There are several approaches to achieve multi-class classification. The most common

ones are One-versus-one, One-versus-all or One-versus-the-rest and Crammer-Singer.

In the One-versus-one approach, the Support Vector Machine algorithm trains a separate

binary classifier for each pair of classes. Each classifier separates the data of one class

from the data of the other class in the pair.

In the One-versus-all approach however, a distinct binary classifier is trained for every

class. Each classifier separates the data of one class from the data of all other classes.

For both approaches the new data point is classified by each binary classifier, and the

class with the most votes is chosen as the predicted class during the testing phase

(Kowsari et al., 2019).

Unlike One-versus-one and One-versus-all the Crammer-Singer algorithm trains a single

multi-class classifier that directly optimizes a joint objective function.

Therefore the Support Vector Machine algorithm learns a linear mapping from the feature

space to a space of dimensionality equal to the number of classes. The decision function

is then defined as the argmax of the linear scores (Crammer and Singer, 2001).

3.2.3 Neural Networks

Neural networks are a type of machine learning algorithm inspired by the structure and

function of the human brain (Hopfield, 1982). They consist of layers of interconnected

neurons that receive input data and perform computations on it.

8

The simplest type of neural network is the Feed Forward Neural Network. This type of

network consists of an input layer, one or more hidden layers, and an output layer, as

shown in figure 3. Each layer contains a set of neurons, which receive input from the

previous layer and produce output for the next layer. The connections between neurons

are represented by weights, which are learned during training.

Input Layer Hidden Layer Output Layer

Figure 3: Fully connected Feed Forward Neural Network

Training a neural network involves adjusting the weights to minimize a cost function, which

measures the difference between the network's predictions and the true class labels. This

is typically done using an optimization algorithm such as stochastic gradient descent.

During training, the network learns to recognize patterns in the input data that are

predictive of the class labels.

9

One important aspect of neural network training is the activation function. The activation

function is applied to the output of each neuron, and determines the throughput to the next

layer. Activation functions used in this work include the softmax function and the rectified

linear unit (ReLU) function.

Relu takes the form of

f(x) = max(0, x)

Therefore it returns the input value if it is positive and 0 otherwise. The ReLU function is
computationally efficient and has been shown to be effective in deep neural networks (Nair
and Hinton, 2010).

The Softmax activation function is commonly used in the output layer of a neural network

for multi-class classification tasks. It takes a vector of real-valued inputs and transforms

them into a vector of probabilities that sum to 1. The Softmax function is given by:

K

fe=i

where i = 1 ,...,K, K is the number of classes and Xi is the input value for class I (Bridle,
1990).

Neural networks can also be regularized to prevent overfitting, which occurs when the

network memorizes the training data rather than learning generalizable patterns. A

common regularization technique used in this work is called dropout.

It works by randomly deactivating or so to speak "dropping out" some fraction of the input

or hidden units during training. The idea behind dropout is to force the network to learn

redundant representations of the input, which makes it more robust to noise and improves

generalization performance.

During training, dropout works by randomly setting some fraction of the input or hidden

units to 0 with a probability p. The remaining units are then scaled by a factor of

1

1 — p

to maintain their expected value. During testing, all units are used and no scaling is

applied (Goodfellow et al., 2016; Srivastava et al., 2014).

10

3.2.4 Graph Neural Networks

Graph Neural Networks are a type of neural network that operate on graph-structured

data. Graphs are represented by nodes which are connected by edges. Therefore this

data structure that can represent complex relationships between entities. Graph Neural

Networks are designed to leverage this structure to learn useful representations of the

nodes and edges in a graph (Scarselli et al., 2009).

Natural language can also be represented as a graph. In that case words are represented

as nodes with edges connecting adjacent ones. Embeddings created with the Word2Vec

algorithm only carry the meanings of the words themselves, while Text graphs also carry

the information of the context between words.

The sentences "The meeting was bad but the dinner was good" and "The meeting was

good but the dinner was bad" serve as an example. The vector representation of these

two sentences generated by the Tf-idf or Word2vec algorithm are indistinguishable. A

Graph representation however preserves the information of which adjective refers to which

noun.

The first step in processing graphs with neural networks is to represent the graph data in a

way that can be easily processed by the network. One approach is to represent the graph

as an adjacency matrix, where each entry in the matrix indicates whether there is an edge

between two nodes in the graph. Another approach is to represent the graph as a set of

node and edge features, where each node feature vector corresponds to the attributes of

the node, and each edge feature vector corresponds to the attributes of the edge. Since

the edge attributes contain the nodes, which the edges are connecting, a graph can be

represented (Huang et al., 2019).

Once the graph is represented, it can be processed by a neural network using graph

convolution. Graph convolution is similar to regular convolution, but operates on the graph

structure instead of the regular grid structure. The basic idea behind graph convolution is

to define a set of learnable filters that are applied to the node features and their

neighboring nodes to generate new node features. This process can be repeated multiple

times to incorporate information from more distant nodes in the graph (Wu et al., 2021).

11

4 Experimental setup

This chapter describes the experimental setup. First of all the Dataset is described in

detail. Then the steps of vectorization as well as classification are explained.

4.1 Description and preprocessing of the Dataset

The dataset consists of 433,220 E-Mails sent by customers, which were labelled by

customer support during the processing of each e-main. The labels represent 10 classes

of e-mails: OTHER, REVOCATION, BONUS, CHANGEJNFO, STATUS_QUESTION,

ACCOUNT, CANCELLATION, INSPECT_DOCUMENTS, FEEDBACK, and TEST The

distribution of the Labels is shown in table 1.

Table 1: Distribution of classes

OTHER 307,933

REVOCATION 34,361

BONUS 32,675

C H A N G E J N F O 30,017

STATU S_QUESTI ON 24,626

A C C O U N T 1,693

CANCELLATION 795

INSPECT_DOCUMENTS 610

F E E D B A C K 505

TEST 5

12

Only a fraction of e-mails can be labeled unambiguously. All remaining instances are

therefore labelled OTHER. Furthermore the list of classes is not exhaustive, therefore

messages that treat a topic without an associated class, are also labeled OTHER.

Some classes have too little support to be considered in the evaluation. That way the

relevant classes are REVOCATION, BONUS, CHANGEJNFO and STATUS_QUESTION.

E-mails in which a client wants to revoke their contract are labeled as REVOCATION.

Suppliers often offer a bonus for new customers. E-Mails related to this topic fall under the

class BONUS. In Messages labeled as CHANGEJNFO clients provide Information vital to

the change of suppliers, for instance their electricity meter reading. The Class

STATUS_QUESTION contains E-Mails in which customers ask a question about their

current contract.

This is an example for an e-main labelled as REVOCATION:

"Liebes Check 24 Team,

hiermit mochte ich den Auftrag fur den Stromvertrag stornieren.

Auftragsnummer: 69481966"

English translation:

"Dear Check 24 team,

I would like to cancel the order for the electricity contract.

Order number: 69481966"

This text data has been processed in the following way. The words have been reduced to

their stems, which means that the endings of the words have been removed to obtain the

root form of each word. This process is called "stemming" and was executed via ("NLTK::

nltk.stem.snowball module," n.d.). For example, the stem of "stornieren" would be "storni".

Moreover stop words have been removed from the text. Stop words are common words

that do not convey significant meaning like "ich" and "fur". Punctuation marks such as

periods, commas, and exclamation points have also been removed. Furthermore all words

13

have been converted to lower case. This is done to ensure that words that are the same

except for their capitalization are treated as the same word (Kowsari et al., 2019). After this

preprocessing the example above looks like this:

"lieb check 24 team hiermit mocht auftrag stromvertrag storni auftragsnumm 69481966"

4.2 Vectorization

In the next step the dataset needs to be vectorized. The corpus consists of 433,220

messages, which consist of a total of 13,645,398 and 529,787 distinct tokens.

4.2.1 Tf-idf

For Tf-idf vectorization the Sklearn function is used

("sklearn.feature_extraction .text.TfidfVectorizer," n.d.).However with the application of the

Tf-idf algorithm however arouse an issue. One vector representing one e-mail has the

length of the number of distinct tokens. A vector of this length requires approximately 2.5

megabytes of memory. Scaled up to the whole corpus, all available data would take up

approximately 1 terabyte of memory. Due to this impracticability, Tf-idf is no longer

considered in this work.

4.2.2 Word2vec

Word2vec was applied by using the model form the library Gensim ("models.word2vec -

Word2vec embeddings — gensim," n.d.). The entire corpus was used to train the model.

After training, each token was mapped to a 100-component vector representation. The

resulting token vectors were then averaged for each e-mail to obtain a fixed-length vector

representation of each e-main. This representations were used as input features for the

14

Random Forest, the Support Vector Machine and the Feed Forward Neuronal Network

Models.

4.3 Classification

This section describes the application of all classification algorithms used in this work.

Every classifier setup is trained and tested twice. Firstly with all data in order to test the

recognition of relevant classes against unclassified Mails falling into the OTHER class.

Secondly with all data excluding the OTHER class to evaluate the ability to distinguish the

relevant classes among themselves. Instances of irrelevant classes are included in the

training and test sets but due to relatively low support they only have negligible impact on

the results. They are therefore ignored in the upcoming evaluation.

4.3.1 Random Forest and Support Vector Machine

For both the Random Forest ("sklearn.ensemble.RandomForestClassifier — scikit-learn

1.2.0 documentation," n.d.) and Support Vector Machine ("sklearn.svm.LinearSVC," n.d.)

trial the library Scikit-learn's (Pedregosa et al., n.d.;

"sklearn.ensemble.RandomForestClassifier — scikit-learn 1.2.0 documentation," n.d.)

implementation was utilized.

Hyperparameters were optimized using a half grid search (Bahi, 2021;

"sklearn.model_selection.HalvingGridSearchCV," n.d.). This resulted in the following

values: Max_depth = None, min_samples_split = 5, n_estimators = 200 for Random Forest

and

max_iter = 5000, tol = 0.01, multi_class = 'crammer_singer' for Support Vector Machine.

15

4.3.2 Graph Neural Network

Graph Neural Networks require data with a graph structure as input. Such graphs can be

obtained from text data. Therefore each token is represented by an embedding generated

by the Word2vec algorithm. These embeddings however are not averaged on the

message level, but serve as nodes in the text graph. Sequential words are connected by

edges as depicted in figure 4.

Tokens hiermit mocht auftrag stromvertrag Storni

i
Embeddings

0.2
0.1
0.2

0.3
0.9
0.2

0.6
0.4
0.1

0.5
0.0
0.1

0.1
0.8
0.7

i
Text Graph

0.2 0.3 0.6 0.5 0.1
0.1 0.9 0.4 0.0 0.8 0.1 w 0.9 w 0.4 w 0.0 0.8
0.2 0.2 0.1 0.1 0.7

Figure 4: Workflow of generating a text graph

To implement the Graph Neural Network, the library StellarGraph was utilized (CSIRO's

Data61, 2018). The Graph Neural Network consists of two Graph Convolution Layers, with

16

the tanh activation function and the first one having a size of 32 the last one of 1. For one

specific trial two more Graph Convolution layers with a size of 32 are added.

After the message passing process the Text Graphs are fed into a 1D Convolutional

Neural Network. It consists of a 1D convolutional layer with 16 filters and a kernel size and

strides equal to the sum of the layer sizes of the Graph Convolution Layers, a 1D max

pooling layer with a pool size of 2, a second 1D convolutional layer with 32 filters and a

kernel size of 5, with strides of 1, a flatten layer, a fully connected layer with 128 units and

a ReLU activation function, a dropout layer with a rate of 0.5 and a final dense layer with

number of classes units and a softmax activation function. This architecture was inspired

by Zhang etal. , 2018.

4.3.2.1 Limitations

Due to the larger size of text graphs compared to averaged embedding and their more

complex architecture, the Graph Neural Network algorithm requires significantly more

computation resources.

Table 2: duration of computations

Computation Number of Data Instances Duration (min)

Building Text Graphs 20000 3:05

Training the Graph Network

and Predicting

20000 10:55

Building Text Graphs 50000 7:19

Training the Graph Network

and Predicting

50000 33:37

17

Training the Random Forest

and Predicting

433220 11:53

Training the Support Vector

Machine and Predicting

433220 14:35

Training the Feed Forward

Network and Predicting

433220 3:10

Table 2 shows that the Graph Neural Network processes less data in the same amount of

time than other algorithms considered. Therefore a smaller Dataset is used for Graph

Neural Networks in the upcoming evaluation.

4.3.2.2 Adaptations

Graph Neural Networks are more complex, i.e. have more adaptable parameters than the

other classifiers applied in this work. Therefore several trials will be conducted with Graph

Neuronal Networks to look into the effect of adapting this parameters.

Firstly the Data available to the Graph Neural Network algorithm is increased. The Graph

Network has access to less data than the other classifiers, owed to the high computational

cost. Hence the impact of the amount of data is a useful information to gain.

An approach to reduce the computation effort is to reduce the length of the enbeddings in

the text graph. The impact of this measure on the classification is tested in the next trial.

In order to optimize the input, the text graphs are augmented for the next trial. Therefore

edges connect not just the next but the next but one token as shown in figure 5.

18

To further examine the impact of the graph convolution, the amount of graph convolution

layers is doubled for the last trial involving Graph Neuronal Networks.

4.3.3 Feed Forward Neural Networks

The Feed Forward Network is designed to mimic the Graph Network without the graph

convolution. Therefore the Graph Convolution as well as the 1D Convolution layers are

replaced with another fully connected and a dropout layer.

So the network consists of a fully connected layer with 128 units and a ReLU activation

function a dropout layer with a rate of 0.5, another pair of dense and dropout layers with

the same parameters and a dense layer with number of classes units and a softmax

activation function.

19

5 Evaluation

For the evaluation a test set of 20% was utilized. Therefore every data instance had a 20%

chance to go in the test set and an 80% chance to be used in training. That way test data

tend to be spread equally among the dataset. For the evaluation of the classification the

following metrics are considered: The precision measures the proportion of true positive

predictions out of all positive predictions, the recall is calculated by dividing the number of

true positive predictions by the amount of all actual positive observations, the F1 score

combines precision and recall. It is calculated according to this formula (Lever et al.,

2016):
^ 2 * precision * recall

precision + recall

Those metrics only evaluate the classification of a single class. In order to depict the Multi-

class problem as a whole, further metrics are considered: The accuracy measures the

proportion of correct predictions out of all predictions and the weighted average F1 score,

which is calculated as follows:

. . . . y j FIC\ * supportCi + FIC2 * supportC2 + ...
Weighteaaverager Iscore = — —

*supportC\ + *supportC2---

The calculation of the metrics is automated by the function

("sklearn.metrics.classification_report," n.d.)

5.1 Random Forest

The Random Forest Classifier (RDF) achieves an accuracy of 0.85 and a weighted F1

average of 0.87 on a test set of 86526 instances. The OTHER class is best recognized

with an F1 score of 0.90. The F1 Score of other relevant classes is between 0.53 and 0.77.

20

The confusion Matrix (figure 6) shows most false classification resolving around the

OTHER class. A lot of OTHER messages are falsely classified in relevant classes which

takes the relevant classes precision down. Messages labeled as OTHER end up

misclassified relatively rarely. Hence OTHERS precision and relevant classes recall are

comparably high. The classes CHANGEJNFO and STATUS_QUESTION are most

affected. Hence their precision falls under 0.5. This accumulation of misclassifications

could be explained by fuzzy separation between classes. An e-mail labeled OTHER could

easily be misclassified as a relevant class if its contents are similar to e-mail labeled as

said class.

Table 2: Results RDF Classifier

Class Precision Recall F1-score Support

BONUS 0.63 0.89 0.74 4664

C H A N G E J N F O 0.46 0.87 0.60 3194

OTHER 0.98 0.84 0.90 71413

REVOCATION 0.67 0.91 0.77 5067

STATUS_QUES
TION

0.38 0.86 0.53 2171

Weighted
average

0.91 0,85 0.87 86526

Accuracy 0.85 86526

21

Predicted Labe!

sN* \ \ \
CHANGE INFO

OTHER

REVOCATION

STATUS_QUESTION

4155 10 434 10 32

13 306 74 17

67 60.1k

0 119 332 4606 16

39 11 220 19

Support
6000

5000

14000

3 DOC

2000

1000

Figure 6: Confusion matrix RDF

If the OTHER class is excluded from the dataset, the accuracy amounts to 0.88 and the

weighted F1 average to 0.89. The F1 scores of the relevant classes increase to the range

of 0.87 and 0.92. According to the confusion matrix (figure 7), the classes REVOCATION

and CHANGEJNFO are most frequently confused with each other. A possible reason for

this observation is, the semantic proximity of the two classes. Both REVOCATION and

CHANGEJNFO involve the termination of a contract. STATUS_QUESTION has the worst

F1 score but the misclassified data is equally divided between the classes.

Table 3: Results RDF Classifier without OTHER class

Class Precision Recall F1-score Support

BONUS 0.91 0.93 0.92 6360

22

C H A N G E J N F O 0.89 0.86 0.88 6222

REVOCATION 0.92 0.86 0.89 7258

STATUS_QUES
TION

0.89 0.86 0.87 5197

Weighted
average

0.90 0.88 0.89 25081

Accuracy 0.88 25081

Predicted Label

Figure 7: Confusion Matrix RDF excluding OTHER

23

5.2 Support Vector Machine

The Support Vector Machine (SVM) scores an accuracy of 0.85 and an F1 weighted

average of 0.87 on the same test. The OTHER class was recognized best with the highest

F1 score of 0.91, while the F1 measure for other relevant classes ranged from 0.58 to

0.80.

The confusion matrix (figure 8) yields similar information as in the previous trial. Again

many instances labeled OTHER are classified as relevant classes.

Table 4: Results SVM Classifier

Class Precision Recall F1-score Support

BONUS 0.73 0.85 0.79 5598

C H A N G E J N F O 0.45 0.84 0.58 3170

OTHER 0.96 0.86 0.91 68911

REVOCATION 0.74 0.87 0.80 5983

STATUS_QUES
TION

0.46 0.78 0.58 2857

Weighted
average

0.90 0.85 0.87 86524

Accuracy 0.85 86524

24

Predicted Label

Figure 8: Confusion matrix SVM

In a trial under exclusion of the OTHER class, the accuracy and F1 weighted average is

0.89. The F1 scores of the relevant classes are then between 0.86 and 0.94, which is a

slightly large spread between classes compared to the Random Forests results. In the

confusion matrix (figure 9) similar observations as in the corresponding Random Forest

trial can be made.

Table 5: Results SVM Classifier without OTHER class

Class Precision Recall F1-score Support

BONUS 0.93 0.94 0.94 6896

C H A N G E J N F O 0.87 0.89 0.88 5901

REVOCATION 0.91 0.91 0.91 6810

25

STATUS_QUES
TION

0.91 0.81 0.86 5113

Weighted
average

0.90 0.89 0.89 25081

Accuracy 0.89 25081

Predicted Label

Figure 9: Confusion matrix SVM excluding OTHER

26

5.3 Graph Neural Networks

The Graph Neural Network (GNN) achieves an accuracy of 0.78 and a weighted F1

average of 0.79 on a data set of 16000 training and 4000 test instances. The OTHER

class is best recognized with an F1 score of 0.85. The F1 Score of other relevant classes

is between 0.56 and 0.76. As with other algorithms, misclassifications involve the OTHER

class for the most part. In contrast to previous trials, this confusion goes both ways. As

depicted in Figure 10, instances of OTHER are misclassified as relevant classes as well

as the other way around.

Table 6: Results GNN 20000 data instances

Class Precision Recall F1-score Support

BONUS 0.63 0.81 0.71 313

C H A N G E J N F O 0.51 0.63 0.56 240

OTHER 0.90 0.80 0.85 2922

REVOCATION 0.74 0.78 0.76 296

STATUS_QUES
TION

0.52 0.73 0.61 273

Weighted
average

0.80 0.78 0.79 4121

Accuracy 0.78 4121

27

The next trial consisted of about 40000 trainings and 10000 test instances. The results

showed an accuracy of 0.77 and a weighted average F1 score of 0.79. The F1 score of the

relevant classes ranged from 0.63 to 0.79 when the OTHER class scored highest again.

The confusion matrix (figure 11) shows a familiar picture. Similar as in previous Trials

instances labeled OTHER are again often classified as one of the relevant classes.

Misclassifying members of relevant classes as OTHER is not as common as in previous

trials.

Table 7: Results GNN 50000 data instances

Class Precision Recall F1-score Support

BONUS 0.57 0.82 0.67 749

C H A N G E J N F O 0.60 0.79 0.69 853

28

OTHER 0.92 0.76 0.83 6920

REVOCATION 0.67 0.84 0.74 587

STATUS_QUES
TION

0.57 0.71 0.63 812

Weighted
average

0.81 0.77 0.79 9923

Accuracy 0.77 9923

Predicted Labe!

Figure 11: Confusion Matrix GNN 50000 data instances

The next trial excluded the class OTHER and involved approximately 30000 trainings and

7500 test instances. The results indicated an accuracy of 0.86 and a weighted average F1

score of 0.87. The F1 score of the relevant classes ranged from 0.85 to 0.90. In contrast to

29

other trials the confusion matrix (figure 12) shows a more equal spread of

misclassifications between classes.

Table 8: Results GNN 45000 data instances without OTHER class

Class Precision Recall F1-score Support

BONUS 0.92 0.85 0.89 1844

C H A N G E J N F O 0.87 0.86 0.87 1980

REVOCATION 0.87 0.92 0.90 1335

STATUS_QUES
TION

0.86 0.84 0.85 1621

Weighted
average

0.88 0.86 0.87 6924

Accuracy 0.86 6924

30

Predicted Label

Figure 12: Confusion Matrix GNN 45000 data

instances without OTHER class

The following trial used a reduced vector length of 50 and involved 20000 data instances.

The findings showed an accuracy of 0.79 and a weighted average F1 score of 0.79. The

F1 score of the relevant classes varied from 0.50 to 0.73. The confusion matrix (figure 13)

turns out as expected.

Table 9: Results GNN 20000 data instances with a vector length of 50

Class Precision Recall F1-score Support

BONUS 0.52 0.83 0.63 254

C H A N G E J N F O 0.42 0.63 0.50 183

OTHER 0.93 0.77 0.84 3122

REVOCATION 0.66 0.82 0.73 228

31

STATUS_QUES
TION

0.37 0.74 0.49 175

Weighted
average

0.83 0.77 0.79 4022

Accuracy 0.79 4022

Predacted Labe!

Figure 13: Confusion Matrix GNN 20000 data instances with a vector length

of 50

In the next trial, the parameters were adjusted to increase the range of graph edges to 2.

The results of this trial showed an accuracy of 0.79, a weighted average F1 score of 0.79,

and F1 scores for the relevant classes ranging from 0.60 to 0.79. Except a higher portion

32

of as OTHER misclassified instances compared to the previous trial, the confusion matrix

(figure 14) yields no additional information.

Table 10: Results GNN 20000 data instances with range of edges = 2

Class Precision Recall F1-score Support

BONUS 0.64 0.78 0.70 312

C H A N G E J N F O 0.57 0.64 0.60 276

OTHER 0.89 0.82 0.85 2827

REVOCATION 0.76 0.83 0.79 270

STATUS_QUES
TION

0.57 0.68 0.62 309

Weighted
average

0.80 0.79 0.79 4079

Accuracy 0.79 4079

33

Predicted Labe!

Figure 14: Confusion Matrix GNN 20000 data instances with range of edges = 2

The next trial will be increasing the number of graph layers to 4 and using 20000 data

instances. The results of this trial yielded an accuracy of 0.80 and a weighted average F1

score of 0.80. The F1 score for the relevant classes were between 0.57 and 0.77

Table 10: Results GNN 20000 data instances with 4 graph layers

Class Precision Recall F1-score Support

BONUS 0.53 0.82 0.64 238

C H A N G E J N F O 0.46 0.75 0.57 177

OTHER 0.93 0.78 0.85 2958

REVOCATION 0.75 0.80 0.77 289

STATUS_QUES
TION

0.53 0.81 0.64 250

34

Weighted
average

0.84 0.79 0.80 3949

Accuracy 0.80 3949

Predicted Label

Figure 15 Confusion Matrix GNN 20000 data instances with 4 graph layers

35

5.4 Feed Forward Networks

In the subsequent trial, the Feed Forward Neural Network is utilized. The results of this

trial yielded an accuracy of 0.88 and a weighted average F1 score of 0.89. The F1 score

for the relevant classes ranged from 0.65 to 0.84. According to the confusion matrix (figure

16), similar to previous trials, a lot of OTHER messages are falsely classified in relevant

classes. This observation however is less pronounced for the classes REVOCATION and

BONUS in this trial.

Table 12: Results feed forward network 430000 data instances

Class Precision Recall F1-score Support

BONUS 0.77 0.88 0.82 5709

C H A N G E J N F O 0.52 0.86 0.65 3656

OTHER 0.97 0.88 0.92 67540

REVOCATION 0.80 0.89 0.84 6163

STATUS_QUES
TION

0.56 0.80 0.66 3458

Weighted
average

0.91 0.88 0.89 86526

Accuracy 0.88 86526

36

Predicted Label

Figure 16: Confusion matrix Feed Forward Network

In the last experiment all Data except the OTHER class are considered. This test found

that both the accuracy and the weighted average F1 score amounted to 0.90.

The F1 scores for the relevant classes spanned from 0.89 to 0.94. The confusion between

C H A N G E J N F O and REVOCATION was notably higher than between other classes. This

observation however is not as strong in this trial.

Table 13: Results feed forward network OTHER class excluded

Class Precision Recall F1 -score Support

BONUS 0.93 0.95 0.94 6375

C H A N G E J N F O 0.90 0.89 0.89 6037

REVOCATION 0.94 0.88 0.91 7383

STATUS_QUES 0.89 0.90 0.90 4957

37

TION

Weighted
average

0.91 0.90 0.90 25085

Accuracy 0.90 25085

Figure 17: Confusion matrix Feed Forward Network excluding OTHER

38

5.5 Comparison

In this section the approaches are compared with each other. Considering the trials

including the OTHER class (figure 18), the Feed Forward Neural Network achieves, with a

F1-score of 0.89 and an accuracy of 0.88, the best results. Random Forest and Support

Vector Machine score with a F1 score of 0.87 and an accuracy of 0.85 slightly worse. The

Graph Neural Networks performance was with a F1 score of 0.80 and an accuracy of 0.80

notably worse.

0,95

0,9

RDF S V M GNN FFNN

Figure 18: Best values of every approach including OTHER

39

In Figure 19 the detection of relevant classes in trials including the class OTHER is

compared. For Graph Neural Networks the trial featuring an increased number of data

instances (table 7) is considered, since it yielded the best results in that regard. The

random forest algorithm achieved a weighted average F1 score of 0.69, while the Support

Vector Machine had an F1 score of 0.72. The graph neural network had a slightly worse

performance with an F1 score of 0.68. The feed forward neural network performed the

best out of the four algorithms, with an F1 score of 0.76. Although the Graph Neural

Network performed distinctively worse in general classification, its results connect to the

other algorithms in detecting relevant classes.

F l

0,95

0,9

0,85

0,8

0,75

0,7

0,65

0,6

0,55

0,5
RDF S V M GNN FFNN

Figure 19: Weighted average of F1-scores of relevant classes in trials including OTHER

When comparing the trials excluding the OTHER class, the Feed Forward Neural Network

performed the best, with a F1-score and an accuracy of 0.90. The Random Forest and

Support Vector Machine scored slightly lower, with a F1-score of 0.89. The Graph Neural

Network had again a slightly worse performance, with a F1-score of 0.87 and an accuracy

40

of 0.86. Compared with Trials including the OTHER class (Figure 20), the overall

performance increased for all algorithms. This improvement was expected, since by

excluding the OTHER class, the differences between classes become better defined.

Therefore the data is easier to classify.

RDF S V M GNN FFNN

Figure 20: Results of Trials excluding OTHER class

Optimization attempts using Graph Neural Networks have only resulted in marginal

improvement in performance. However, the addition of two more graph convolution layers

has had the greatest impact on accuracy. Increasing the amount of training data resulted

41

in the best improved detection of relevant classes. Despite these efforts, the overall

performance of the Graph Neural Networks model is still notably worse compared to the

other algorithms.

42

6 Discussion

As far as vectorization is concerned, the Word2vec algorithm was applied successfully.

The Tf-idf algorithms implementation resulted in excessively long vectors that required too

much memory, making it impractical to be used in this work. Hence only data processed by

Word2vec was classified. During the classification no issues regarding the Word2vec

embeddings arose. Therefore Word2vec can be considered a fitting vectorization

algorithm in this specific and similar problems.

Regarding the classification, the best performance was achieved by the Feed Forward

Neural Network, while the Random Forest and Support Vector Machine showed slightly

inferior performance. The Graph Neural Network however under performed compared to

the other evaluated algorithms. This suggests that the text graph and the convolution

layers processing it, do not only not improve, but hinder the classification. It is possible that

the additional information contained within the text graph could lead to confusion for the

model, thus causing a reduction in performance. Derived from this observation, the context

between the words may only carry marginal information indicating the class of an e-mail,

compared to the words themselves. Therefore Graph Neural Networks process a lot of

meaningless information.

Furthermore, it is worth noting that the use of a text graphs significantly increases the

computational cost of the classification task. This is an important consideration, as it may

not be practical to use a Graph Neural Network in situations where computational

resources are limited. The smaller amount of training data, that was available to the Graph

Neural Network owed to said greater computation cost, could also explain the algorithm's

underperformance. However, the fact that increasing the available data from 20000 to

50000 instances did not yield significant improvement does not support this explanation.

The other classification algorithms had significantly lower computation cost. The duration

of the calculation for Random Forest, Support Vector Machine and Feed Forward Neural

Network are comparable with the latter being the shortest (table 2).

It is also important to note that the conclusions of this study are limited by data only from a

specific domain. While the results of this study may be meaningful in the context of this

43

data set, it is unclear how well they would generalize to other data sets or other real-world

scenarios.

To return to the goal of this work, the optimal workflow to solve the said classification

problem was to be determined. Concerning the vectorization, the Word2vec algorithm

yielded a working base for the classification. For classification the Feed Forward Neural

Network appeared to be the optimal choice. This algorithm yielded the best classification

results while maintaining low computational cost.

Therefore according to this work, Word2vec for vectorization and the Feed Forward Neural

Network solve this classification problem best.

44

Bibliography

Bahi, H.A.A., 2021. Master Thesis Optimization of hyperparameters of ANNs - Application
to the second Virial coefficient (B) of fluid mixtures.

Böser, B.E., Guyon, I.M., Vapnik, V.N., 1992. A training algorithm for optimal margin
classifiers, in: Proceedings of the Fifth Annual Workshop on Computational
Learning Theory, COLT '92. Association for Computing Machinery, New York, NY,
USA, pp. 144-152. https://doi.org/10.1145/130385.130401

Bouaziz, A., Dartigues-Pallez, C , da Costa Pereira, C , Precioso, F, Lloret, P., 2014. Short
Text Classification Using Semantic Random Forest, https://doi.org/10.1007/978-3-
319-10160-6_26

Breiman, L., 2001. Random Forests. Machine Learning 45, 5-32.
https://doi.Org/10.1023/A: 1010933404324

Bridle, J.S., 1990. Probabilistic Interpretation of Feedforward Classification Network
Outputs, with Relationships to Statistical Pattern Recognition, in: Soulie, F.F.,
Herault, J . (Eds.), Neurocomputing, NATOASI Series. Springer, Berlin, Heidelberg,
pp. 227-236. https://doi.org/10.1007/978-3-642-76153-9_28

Crammer, K., Singer, Y , 2001. On the Algorithmic Implementation of Multiclass Kernel-
based Vector Machines.

CSIRO's Data61, 2018. StellarGraph Machine Learning Library. GitHub Repository.
Goodfellow, I., Bengio, Y , Courville, A., 2016. Deep learning, Adaptive computation and

machine learning. The MIT Press, Cambridge, Massachusetts; London, England.
Hopfield, J .J . , 1982. Neural networks and physical systems with emergent collective

computational abilities. Proc Natl Acad Sei U S A 79, 2554-2558.
Huang, L , Ma, D., Li, S., Zhang, X., WANG, H., 2019. Text Level Graph Neural Network

for Text Classification.
Ikonomakis, M., Kotsiantis, S., Tampakas, V , 2005. Text Classification Using Machine

Learning Techniques.
Jacovi, A., Shalom, O.S., Goldberg, Y , 2020. Understanding Convolutional Neural

Networks for Text Classification.
James, G., Witten, D., Hastie, T, Tibshirani, R., 2013. An introduction to statistical learning

with applications in R. Statistical Theory and Related Fields.
https://doi.Org/10.1080/24754269.2021.1980261

Kim, H., Howland, P., Park, H., 2005. Dimension Reduction in Text Classification with
Support Vector Machines 17.

Kowsari, K , Jafari Meimandi, K , Heidarysafa, M., Mendu, S., Barnes, L., Brown, D., 2019.
Text Classification Algorithms: A Survey.

Lever, J . , Krzywinski, M., Altman, N., 2016. Classification evaluation. Nat Methods 13,
603-604. https://doi.Org/10.1038/nmeth.3945

Liang, Y , Chengsheng, M., Yuan, L., 2019. Graph Convolutional Networks for Text
Classification. The Thirty-Third AAA I Conference on Artificial Intelligence 7370-
7377.

45

https://doi.org/10.1145/130385.130401
https://doi.org/10.1007/978-3-
https://doi.Org/1
https://doi.org/10.1007/978-3-642-76153-9_28
https://doi.Org/1
https://doi.Org/1

Mikolov, T., Chen, K., Corrado, G., Dean, J . , 2013. Efficient Estimation of Word
Representations in Vector Space. https://doi.org/10.48550/arXiv.1301.3781

Minaee, S., Kalchbrenner, N., Cambria, E., Nikzad, N., Chenaghlu, M., Gao, J . , 2021.
Deep Learning Based Text Classification: A Comprehensive Review.

models.word2vec - Word2vec embeddings — gensim [WWW Document], n.d. URL
https://radimrehurek.com/gensim/models/word2vec.html (accessed 1.10.23).

Nair, V , Hinton, G.E., 2010. Rectified Linear Units Improve Restricted Boltzmann
Machines.

NLTK:: nltk.stem.snowball module [WWW Document], n.d. URL
https://www.nltk.org/api/nltk.stem.snowball.html (accessed 2.6.23).

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V , Thirion, B., Grisel, 0., Blondel, M.,
Prettenhofer, P., Weiss, R., Dubourg, V , Vanderplas, J . , Passos, A., Cournapeau,
D., n.d. Scikit-learn: Machine Learning in Python. MACHINE LEARNING IN
PYTHON.

Pranckevicius, T, Marcinkevicius, V , 2017. Comparison of Naive Bayes, Random Forest,
Decision Tree, Support Vector Machines, and Logistic Regression Classifiers for
Text Reviews Classification. BJMC 5. https://doi.Org/10.22364/bjmc.2017.5.2.05

Qing, L, Linhong, W , Xuehai, D., 2019. A Novel Neural Network-Based Method for
Medical Text Classification. Future Internet 11, 255.
https://doi.Org/10.3390/fi11120255

Rosasco, L , Vito, E.D., Caponnetto, A., Piana, M., Verri, A., 2003. Are Loss Functions All
the Same? Neural Computation 16, 1063-1076.
https://doi.Org/10.1162/089976604773135104

Sänchez-Pi, N., Marti, L , Garcia, A.C. , 2014. Text Classification Techniques in Oil Industry
Applications, pp. 211-220. https://doi.org/10.1007/978-3-319-01854-6_22

Scarselli, F., Gori, M., Ah Chung Tsoi, Hagenbuchner, M., Monfardini, G., 2009. The Graph
Neural Network Model. IEEE Trans. Neural Netw. 20, 61-80.
https://doi.Org/10.1109/TNN.2008.2005605

sklearn.ensemble.RandomForestClassifier — scikit-learn 1.2.0 documentation [WWW
Document], n.d. URL
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestC
lassifier.html (accessed 1.12.23).

sklearn.feature_extraction.text.TfidfVectorizer [WWW Document], n.d. . scikit-learn. URL
https://scikit-learn/stable/modules/generated/sklearn.feature_extraction.text.TfidfVec
torizer.html (accessed 4.3.23).sklearn.metrics.classification_report [WWW
Document], n.d. . scikit-learn. URL
https://scikit-learn/stable/modules/generated/sklearn.metrics.classification_report.ht
ml (accessed 1.27.23).

sklearn.model_selection.HalvingGridSearchCV [WWW Document], n.d. . scikit-learn. URL
https://scikit-learn/stable/modules/generated/sklearn.model_selection.HalvingGridS
earchCV.html (accessed 1.12.23).

sklearn.svm.LinearSVC [WWW Document], n.d. . scikit-learn. URL
https://scikit-learn/stable/modules/generated/sklearn.svm.LinearSVC.html
(accessed 1.13.23).

Sparck Jones, K., 1972. A statistical interpretation of term specificity and its application in
retrieval. Journal of Documentation 28, 11-21. https://doi.org/10.1108/eb026526

Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R., 2014. Dropout:
A Simple Way to Prevent Neural Networks from Overfitting.

Sun, X., Lu, W , 2020. Understanding Attention for Text Classification, in: Proceedings of
the 58th Annual Meeting of the Association for Computational Linguistics. Presented

46

https://doi.org/10.48550/arXiv.1301.3781
https://radimrehurek.com/gensim/models/word2vec.html
https://www.nltk.org/api/nltk.stem.snowball.html
https://doi.Org/10.22364/bjmc.2017.5.2.05
https://doi.Org/1
https://doi.Org/1
https://doi.org/10.1007/978-3-319-01854-6_22
https://doi.Org/1
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestC
https://scikit-learn/stable/modules/generated/sklearn.feature_extraction.text.TfidfVec
https://scikit-learn/stable/modules/generated/sklearn.metrics.classification_report.ht
https://scikit-learn/stable/modules/generated/sklearn.model_selection.HalvingGridS
https://scikit-learn/stable/modules/generated/sklearn.svm.LinearSVC.html
https://doi.org/10.1108/eb026526

at the A C L 2020, Association for Computational Linguistics, Online, pp. 3418-3428.
https://doi.Org/10.18653/v1 /2020.acl-main.312

Vapnik, V.N., Chervonenkis, A.Ya., 1964. A class of algorithms for pattern recognition
learning.

Verma, P., Goyal, A., Gigras, Y , 2020. Email phishing: text classification using natural
language processing. Comput. Sei. Inf. Technol. 1, 1-12.
https://doi.Org/10.11591 /csit.vl i1 .p1 -12

Wu, Z., Pan, S., Chen, F., Long, G., Zhang, C , Yu, P.S., 2021. A Comprehensive Survey
on Graph Neural Networks. IEEE Trans. Neural Netw. Learning Syst. 32, 4-24.
https://doi.Org/10.1109/TNNLS.2020.2978386

Zhang, M., Cui, Z., Neumann, M., Chen, Y , 2018. An End-to-End Deep Learning
Architecture for Graph Classification. Proceedings of the AAAI Conference on
Artificial Intelligence 32. https://doi.org/10.1609/aaai.v32i1.11782

47

https://doi.Org/1
https://doi.Org/1
https://doi.Org/1
https://doi.org/10.1609/aaai.v32i1.11782

