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ANOTATION 

 

Glaciers are considered fundamental natural features as they provide services like 

water provision, flow regulation, flood mitigation, and biodiversity conservation. 

Furthermore, due to their complex nature, they provide crucial insights into the ongoing 

climate change dynamics as they respond to temperature and precipitation variations. 

Even though this has promoted the increase of glaciology research in the last few years, 

glacierized regions, such as the Patagonian Andes, are still barely studied due to their 

harsh environmental conditions and the general lack of interest from international 

scientific communities. Specifically, the Patagonian Andes, which is an important water 

supplier and economic driver in South America, is still poorly known, even though it is 

the largest glacierized area in the region, with more than 20000 km² distributed in the 

Northern and Southern Patagonian Icefields. Therefore, this research aimed to explore 

the potential of remote sensing data and techniques, cloud computing, and 3D 

visualization methods to overcome the lack of studies in the Patagonian Andes and to 

promote public interest in these natural ecosystems. For this purpose, a Google Earth 

Engine web application was developed to allow the creation, visualization, and export of 

remote-sensing and time series products for the Patagonian region. Moreover, with this 

application, a time-series analysis was performed to estimate the glacier area, Land 

Surface Temperature, and air temperature changes for 83 Patagonian glaciers, using 

Landsat 8-9, Sentinel-2, and ERA5-Land Imagery for the summer periods between 2018 

and 2023. In addition, a 3D web application was developed using CesiumJS to compare 

and visualize the outputs from the Google Earth Engine application interactively with a 

full 3D perspective. As a result of the time-series analysis, with 1245 summer composites 

and 249 time-series charts generated, an overall retreat of the glaciers and increased 

temperature were observed. Furthermore, the developed web applications proved to be 

efficient, attractive, and user-friendly for creating and visualizing glacier remote sensing 

products. This study is a step toward improving the glaciology knowledge of the Patagonia 

region by providing insight into the current Patagonian glacier status, delivering 

customizable open-source web applications, and promoting glaciers' public interest 

through 3D experiences. 
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INTRODUCTION 

Glaciers, defined as “perennial mass of ice, and possibly firn and snow, originating on 

the land surface by the recrystallization of snow or other forms of solid precipitation and 

showing evidence of past or present flow” (Cogley et al., 2010, p. 45) are highly valuable 

as they provided ecosystem services which include water provision, sediment, nutrient 

inputs, flow regulation, flood mitigation, and biodiversity conservation (Rivera et al., 

2023). As complex natural ecosystems, they are sensitive to climate change, reducing or 

increasing their extent in response to temperature and precipitation variation, making 

them crucial climate change indicators (Manquehual-Cheuque & Somos-Valenzuela, 

2021). Due to these factors, glaciers are being studied more, with recent studies revealing 

that most glaciers worldwide are disappearing at an exponential rate due to warming 

temperatures, contributing to world sea level rise by 27 millimeters since 1961 (Bates, 

2020). 

Despite the increase in glacier analyses, glaciers in mountain regions are still poorly 

known due to difficult access and challenging environmental conditions (Carrasco-Escaff 

et al., 2023). This is the case for the Patagonian Andes, which is the largest glacierized 

area in South America with over 20000 km² of glaciers, concentrated mainly in the 

Northern Patagonian Icefield (NPI) and Southern Patagonian Icefield (SPI) (Pellicciotti et 

al., 2014). Studying this region is essential not only as most of the glaciers have been 

shrinking in recent decades, contributing a significant proportion of meltwater to the sea 

level rise in the 20th century (Rignot et al., 2003), but also because some of them are 

evidencing anomalous advancing (Rivera et al., 2012). 

In this context, remote sensing technologies and Earth Observation (EO) data have 

been widely used since the 1990s to monitor global environmental dynamics and glacier 

changes in hard-to-reach areas (Yu et al., 2023). This includes EO satellite programs 

such as Landsat, Sentinel, and the European Centre for Medium-Range Weather 

Forecasts (ECMWF), with the ERA5-Land dataset for climate analyses. These technologies 

have introduced advantages such as global coverage, multi-spectral data, and high 

spatial-temporal resolution (Genzano et al., 2020). However, due to the increasing volume 

of EO data, known as “big data,” it is not feasible to access, collect, and analyze data 

using traditional methods (Di Tullio et al., 2018). Therefore, cloud computing platforms, 

such as Google Earth Engine (GEE), have gained popularity as efficient ways for storing, 

accessing, and analyzing petabytes of EO data, offering free access to fast computations 

via the internet (Amani et al., 2020). 

Although GEE provides a solid framework for glacier analyses and visualization in 2D, 

having a 3D perspective is fundamental as glacier processes are highly determined by 

their altitude (Manquehual-Cheuque & Somos-Valenzuela, 2021). Currently, with the rise 

of Web Graphics Library (WebGL) and JavaScript (JS) libraries like CesiumJS, which 

enable the creation of 3D online environments (Schanche, 2020), 3D applications can be 

developed to enhance data analysis and visualization, providing deeper insights into 

environmental changes (Van Ackere et al., 2016).  

This diploma thesis aims to develop a GEE web application for the creation, 

visualization, and export of remote-sensing and time-series products that allow 

quantitative and qualitative estimation of glacier area, Land Surface Temperature (LST), 

and air temperature changes in the NPI and SPI glaciers, for the summer periods between 

2018 and 2023. Additionally, it aims to provide a 3D application that lets users add, 

visualize, interact, and compare the remote-sensing and time-series products obtained 

from the GEE web application.  
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1 OBJECTIVES 

This diploma thesis aims to address the lack of studies and 3D visualizations of NPI 

and SPI glaciers by developing a GEE web application for the creation, visualization, and 

export of remote-sensing and time-series products that permit the quantitative and 

qualitative estimation of glacier area, LST, and air temperature changes of Patagonian 

glaciers, in the summer periods between 2018 and 2023, using Landsat 8-9, Sentinel-2, 

and ERA5-Land imagery. Moreover, it aims to provide a 3D web application that allows 

users to add, visualize, interact, and compare the remote-sensing and time-series 

products obtained from the GEE web application. The specific goals of the study are: 

i. Conduct a time-series analysis to estimate changes and identify trends in 

glacier area, LST, and air temperature. 

ii. Design and publish an interactive, user-friendly GEE application where users 

can create, visualize, and export remote sensing and time-series products for 

the NPI and SPI glaciers and custom Areas of Interest (AOI). 

iii. Develop and publish a 3D web application using CesiumJS that allows users 

to dynamically visualize and compare the remote sensing and time-series 

products derived from the GEE web application using widgets such as swipe, 

sidebar, and display controls. 

iv. Evaluate the user’s reception of the GEE and 3D web applications by 

implementing an online questionnaire. 

The results of this work will be open-source, ready-to-use applications that scientific 

and general communities can use and customize. These applications will allow users to 

visualize glaciers interactively and innovatively, and generate EO outputs that can be 

used in user-specific analyses. Such accessibility and customizability will significantly 

enhance understanding of the Patagonian glacier processes and promote interest in these 

natural features. 
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2 STATE OF ART 

This chapter reviews the use of EO data and techniques in recent Patagonian Glaciers 

analyses, the implementation of the GEE platform in glaciological research, and the 

development of GEE apps. Additionally, it explores the current state of 3D web mapping 

and available CesiumJS apps. 

 

Patagonian glaciers studies with EO data  

The NPI and SPI are considered the most extensive ice bodies in the Andes Cordillera 

(Carrasco-Escaff et al., 2023), constituting the largest temperate glacier complex in the 

Southern Hemisphere (Meier et al., 2018). Because of their extent, they play an essential 

role as providers of natural and cultural services, including water provision, biodiversity 

conservation, flow regulation, flood mitigation, and tourism, a fundamental source of 

economic revenue in this region (Rivera et al., 2023). The Patagonian climate is highly 

influenced by climatic and weather changes, associated with temperature, precipitation, 

wind strength (Carrasco-Escaff et al., 2023; Coronato, 2020; Florath et al., 2021), and 

altitude (Manquehual-Cheuque & Somos-Valenzuela, 2021) variations. As a result, 

temperature increases, snow line rises, decreasing precipitation, and weak winds (Bravo 

Lechuga, 2020; Coronato, 2020; Rivera et al., 2023) have had a direct impact on the 

glaciological surface processes (Carrasco-Escaff et al., 2023) resulting in glacier area and 

volume loss, frontal ablation, mass loss, and glacier lakes increase (Davies et al., 2023; 

De Vries et al., 2023; Minowa et al., 2021; Sáez et al., 2019; Shugar et al., 2020). 

Regardless of the importance of Patagonian glaciers and the impact of climatic 

changing factors on their processes, there is still a lack of knowledge, inadequate 

research, and insufficient in-situ measurements of this area. This situation is attributed 

to its extreme environment, harsh access conditions (Florath et al., 2021), sparse 

population (Carrasco-Escaff et al., 2023), and lack of interest from North American and 

European glaciologists (Aniya et al., 1997). EO data and techniques have been 

implemented to overcome these challenges as they provide more information on 

inaccessible glacier areas than terrestrial methods (Florath et al., 2021). Moreover, 

because of the high spatiotemporal variability of snow and glacier processes, remote 

sensing imagery, such as optical, synthetic aperture radar, and microwave, can offer 

insights into snow properties by taking advantage of the electromagnetic spectrum 

(Beltramone et al., 2020). 

Regarding studies of glacier area and frontal ablation, defined as the combination of 

submarine melt and mechanical calving (Truffer & Roman, 2016), of Patagonian Glaciers, 

Rivera et al. (2004) estimated the frontal and areal changes of SPI glaciers from 1945 to 

1975 by comparing existing cartography with Global Positioning System and satellite 

imagery data. Specifically, they used two Landsat Thematic Mapper images acquired on 

January 14, 1986, two Landsat ETM+ images acquired on October 27, 2000, and one 

Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) image 

acquired on January 12, 2003. After mosaicking and georeferencing the images, the 

authors performed a land classification for glacier, ice-free areas, and lake covers, using 

color image composites (Figure 1) with bands 1, 4, and 5 and the bands 4-5 ratio proposed 

by Paul et al. (2002). As a result, the study observed significant glacier thinning and 

retreat with a total area loss of 62.2 km², equivalent to 8% of the glacier area of the studied 

region in 1945. This was associated with the increasing temperature but could not fully 

explain the phenomena, concluding that further measurements and research would have 

to be done. 
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Figure 1 ASTER and Landsat ETM+ composite images showing frontal variations of selected 

Patagonian glaciers with UTM coordinates expressed in meters: 3) Glaciers Dickson, Frías, 

and Cubo 4) Glaciers Olvidado, Los Perros, Ohnet, and U-2. 5) Glaciers Grey, Pingo, and 

Zapata. 6) Glacier Tyndall. 7) Glacier Tyndall Calving Ice Fronts (Rivera et al., 2004). 
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Sáez et al. (2019) also conducted a temporal study on the area and volume changes 

of the Grey, Tyndall, and Dickson glaciers in the SPI and southeastern Patagonian 

icefield. The changes were estimated between 1998 and 2017 by combining Digital 

Terrain Models with Landsat 5, 7, and 8 satellite imagery from December to April, as that 

period is characterized by low cloud presence and critical glacier melting (Sáez et al., 

2019). After performing radiometric corrections and pan-sharpening on Landsat imagery, 

Sáez et al. (2019) calculated the Normalized Difference Snow Index (NDSI) and applied 

thresholds of 0.4 and 0.42 to identify snow and ice, respectively (Copé de los Mozos, 2014; 

Dozier, 1989). This process resulted in the creation of delimitation polygons that identified 

the surface and area variations of the glaciers, which, when combined with available 

Digital Elevation Models (DEM), generated Triangulated Irregular Networks for volume 

calculation. Using this methodology, Sáez et al. (2019) estimated losses of 10.87 km² and 

2.6 km³ for the Grey Glacier, 13.68 km² and 6.8 km³ for the Tyndall glacier, and 3.94 km² 

and 0.6 km³ for the Dickson glacier, associating these losses with decreases in average 

annual rainfall and temperature increases. 

Focusing on glacier areas not only in the Patagonian region but worldwide, Windnagel 

et al. (2022) presented the first systematic answer to the question of which glaciers are 

the largest in the world by reviewing data from two glacier inventories: Global Land Ice 

Measurements from Space (GLIMS) and the Randolph Glacier Inventory (RGI) 6.0. 

Initially, they highlighted the impact of glacier definition and mapping on area analyses 

and emphasized distinguishing between individual glaciers and glacier complexes. 

According to Windnagel et al. (2002), glacier complexes are preferred when carrying out 

land-cover classifications, while individual glaciers should be used when evaluating 

meltwater input to individual hydrological drainage basins. Considering this, the study 

queried the GLIMS and RGI databases to extract the glacier area attribute, selecting the 

most recent measurement in case the glacier's size differed in both databases and 

averaging them if the measurement year was the same. Then, glacier complexes were 

identified by merging glaciers with shared boundaries and calculating their areas using 

a Python planar area function in an equal-area projection (Windnagel et al., 2002). The 

findings revealed that the most extensive glacier complex (Figure 2) was on the Antarctic 

Peninsula, with an area of 80852 km². Moreover, the biggest glacier was the Seller Glacier, 

with an extent of 7018 km². Additionally, the SPI evidenced an area of 13326 km², with 

PIO XI glacier being the largest in this icefield, with an extent of 1345 km². The study 

concluded that although the question is simple, ranking the glaciers by area is a big 

challenge as the current inventories are inconsistent, presenting different years and 

measurement methodologies, complicating the development of accurate analyses.  

De Vries et al. (2023) studied the Patagonian icefield volume loss, as Sáez et al. (2019). 

In this research, the authors calculated the rate of volume loss for eleven sub-basins 

between 2006 and 2019 by combining runoff data, river discharge data from gauging 

stations, precipitation data derived from the Tropical Rainfall Measuring Mission and the 

Global Precipitation Measuring Mission, and evapotranspiration data from Terra 

Moderate Resolution Imaging Spectroradiometer (MODIS) MOD16A2. After calculating 

the annual relative glacier volume loss, De Vries et al. (2023) evidenced a significant 

increase in ice volume loss for seven glacierized sub-basins, with a total rate anomaly of 

135 ± 50 km³, ranging from 7.06 ± 1.69 ma⁻¹ increase in ice loss to a 3.18 ± 1.48 ma⁻¹ 

decrease in ice loss, supporting the rapid volume loss of Patagonia’s lake-terminating 

glaciers. 
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Figure 2 Largest glacier complexes for the 19 first-order regions, from highest to lowest 

area (Windnagel et al., 2022). 

 

In the last few years, the mass loss of the Patagonian icefields has been researched, 

particularly for calving glaciers, which present a more complex reaction to climate 

variability than land-terminating glaciers (Minowa et al., 2021). Patagonian glaciers are 

experiencing rapid ice mass loss, contributing 3 mm to sea-level rise between 1961 and 

2016 (Zemp et al., 2019). Consequently, addressing the mass loss of this region is critical 

for understanding the regional drivers, variability, and climate interactions promoting 

these changes (Davies et al., 2023).  

Minowa et al. (2021) developed a frontal ablation and ice mass change study for 38 

calving Patagonian glaciers, larger than 40 km² in the NPI and 100 km² in the SPI, 

respectively, from 2000 to 2019. This study was based on elevation changes, surface 

speeds, modeled ice thickness, and ice-front positions derived from EO data. Specifically, 

DEMs provided the elevation change rate necessary for calculating the ice thickness over 

time, and orthorectified imagery from Landsat 4,5,7 and 8, Japanese Earth Resources 

Satellite, and Satellite pour l'Observation de la Terre (SPOT) 1-5 were utilized to manually 

delineate the frontal glacier and map 3969 ice front positions. Additionally, having as 

reference the RGI 6.0 glacier boundaries, annual ice surface flow speeds were retrieved. 

As a result, Minowa et al. (2021) estimated a mean frontal ablation of both NPI and SPI 

of -24.1±1.7 Gt a⁻¹, with the SPI experiencing a significantly larger ablation of -21.6±1.7 

Gt a⁻¹, compared to the NPI, which had ablation of -2.5±0.5 Gt a⁻¹. Moreover, a total mass 

loss of 15.2±3.5 Gt a⁻¹ was measured, resulting from 10.73±2.7 Gt a⁻¹ for the SPI and 

4.5±0.8 Gt a⁻¹ for the NPI. The study concluded that frontal ablation increases were the 

primary contributors to mass loss in most glaciers of the SPI. In contrast, the negative 

surface mass balance was the main driver of mass loss in NPI glaciers.  
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McDonell et al. (2022), motivated by the unknowns of the mass budgets in the NPI 

and SPI, along with unique characteristics and phenomena associated with this region, 

including glaciers that interact with lakes and fjords at their termini and small tidewater 

glaciers with high thinning rates, studied the mass balance, defined as the difference 

between total snow and ice accumulation and total snow and ice loss from a glacier (Pelto 

& Riedel, 2001), in NPI and SPI since 1970. Using declassified Hexagon imagery and 

remote sensing data such as DEMs, Landsat 8, and ASTER imagery, the authors 

evidenced a negative geodetic mass balance that increased by a factor of 1.2 and 2.4 for 

the NPI and SPI, correspondingly, possibly associated with feedback processes influenced 

by climate change. 

Most of the studies presented until now have developed Patagonian glacier extent, 

volume, mass balance, and frontal ablation analyses. However, remote sensing 

techniques have also been used to map areas with different land cover types. Florath et 

al. (2021) evaluated the possibility of using multispectral and hyperspectral imagery with 

various classification algorithms to identify five different snow and ice types in the Torres 

del Paine National Park, constituted by the Grey, Tyndall, and Dickson glaciers of the 

SPI. For this purpose, the authors defined the following classes to be identified: 

• Glacier ice: ice that is formed in glaciers' lower areas, where snow 

accumulation exceeds ablation 

• Refreezing ice: superimposed and blue ice resulting from new snow falling over 

already existing glaciers 

• Dirty ice: glacier ice mixed with debris such as rock materials from the glacier 

surroundings, affecting its spectral reflectance 

• Aged snow: snow that has been melted and refrozen due to solar and 

temperature changes, resulting in lower reflectance 

• Fresh snow: snow with lower water content and fewer impurities, showing 

higher reflectance. 

 

Having these classes defined, Sentinel-2 imagery was pre-processed, and atmospheric 

corrections were applied using the Sen2Cor software. Afterward, hyperspectral data was 

transferred to these images to create synthetic labeled Sentinel-2 images as reference 

data for snow and ice cover types. For the classification, the NDSI, the Normalized 

Difference Glacier Index, and the Normalized Difference Snow Ice Index were used with 

thresholds based on Keshri et al. (2009). The classification algorithms implemented by 

the authors included two unsupervised approaches, k-means clustering and a rule-based 

classification, and two supervised approaches, Linear Discriminant Analysis and Random 

Forest. As a result, the authors provided evidence of a good classification of all the tested 

algorithms in the Tyndall glacier, with the Random Forests algorithm being the most 

accurate (Figure 3). The research carried out by Florath et al. (2021) is an excellent 

example of the usage of EO data and techniques for mapping ice and snow in remote 

areas. It highlights the importance of differentiating between different ice and snow cover 

types, as they influence the glaciers melting or refreezing process differently. Moreover, it 

evidences the complexity of defining and identifying ice and snow land covers and 

provides helpful information on snow wetness and water resource management, which is 

critical for understanding melting and water run-off events (Florath et al., 2021) 
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Figure 3 Ice and snow classification using the Random Forest algorithm in Torre del Paine 

National Park (Florath et al., 2021).  

 

The impact of climate dynamics on glaciers has also been studied in recent years as 

a response to the increasing melting, frontal ablation, and loss of glacier area and volume, 

discussed previously in this section. Understanding the climate variability of the 

Patagonian region is a big challenge, as glaciers are complex natural ecosystems 

determined by water content, rock material, and sediments (Rivera et al., 2023). 

Additionally, although glaciers are highly influenced by air temperature, precipitation, 

wind, and regional and local climate (Bravo Lechuga, 2020), they respond differently to 

the same climate perturbation (Sagredo & Lowell, 2021). In the Patagonian Glaciers case, 

it has been observed that high precipitation dominates glacier processes on the western 

side. In contrast, the eastern side is more sensitive to air temperature, wind speed, and 

humidity changes (Cook et al., 2003). Considering the glaciers' fluctuations and 

environmental disturbances (Rivera et al., 2023), it is necessary to improve the 

meteorological and glaciological monitoring of Patagonian ice fields through the 

implementation of onsite measuring networks and remote sensing campaigns. This will 

enhance the knowledge and data availability to boost confidence in models that aim to 

simulate future climate in this region (Rivera et al., 2023; Bravo Lechuga, 2020). 

Based on the current Patagonian climate scenario and the need to understand the 

climate change impact in this area, Manquehual-Cheuque & Somos-Valenzuela (2021) 
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performed a study to identify resilient areas against climate variability that can potentially 

act as Climate Change Refugia (CCR). CCRs are characterized because they provide 

physical, ecological, and socio-cultural services over time under changing climate 

conditions (Morelli et al., 2016). In this research, the authors implemented the Maxent 

machine learning method to estimate the probability of CCRs based on glacier 

delimitation and environmental variables such as temperature, precipitation, and 

altitude. The data were gathered from the Chilean glacier cover inventory and the ERA-

Interim atmospheric reanalysis, with a resolution of 1 km² at the equator (Manquehual-

Cheuque & Somos-Valenzuela, 2021). As a result, for an AOI of 189000 km² in the 

Patagonian region, the research observed that temperature and altitude were the most 

significant variables for determining CCRs. Moreover, they evidenced that most CCRs 

were present at high altitudes, while small glaciers at low altitudes were likely to 

disappear (Manquehual-Cheuque & Somos-Valenzuela, 2021). This research adequately 

shows the importance of considering temperature and altitude variables when analyzing 

the impact of climate change on glaciological processes, as they are critical drivers of 

ongoing and future glacier changes. 

 

Glaciers Research using Google Earth Engine 

GEE is currently the most popular free cloud computing platform for large-scale 

geospatial analysis due to the availability of vast amounts of EO data, image processing 

tools, and machine learning algorithms (Tamiminia et al., 2020). This platform has been 

widely used for different purposes, such as vegetation analyses, land cover classifications, 

natural hazards identification, and hydrology studies, resulting in a significant popularity 

increase, especially since 2017, based on the number of published papers (Kumar & 

Mutanga, 2018). After reviewing 443 GEE journal articles between January 2010 and 

mid-May 2020, Amani et al. (2020) observed contributions (Figure 4) of 90 papers on 

vegetation, 77 on agriculture, and 68 on hydrology, with only 7.5% of the total reviewed 

papers corresponding to South America. Moreover, Tamiminia et al. (2020) evidenced that 

over a total of 349 GEE articles analyzed from 2010 to 2019, 74 papers were associated 

with crop mapping and agricultural monitoring, followed by 62 water studies and 56 land 

use/land cover research, with correspondence of 8% for South America. Regarding the 

most used data, Kumar & Mutanga (2018) observed that over 300 GEE journal papers 

published between 2011 and June 2017, 159 used Landsat, 80 MODIS, 24 SPOT, and 

19 Sentinel. 

Within hydrology and water studies, topics such as surface water, lakes, snow, and 

river mapping are discussed, along with glaciological analyses (Amani et al., 2020; 

Tamiminia et al., 2020). Specifically, in the glaciers´ context, GEE has been used for 

addressing and measuring glacier area and snow cover changes (Ali et al., 2023; Arif et 

al., 2021; Turpo Cayo et al., 2022; Zhang et al., 2021;), mapping and estimating glacier 

lake changes over time (Bazilova et al., 2022; Sun et al., 2022;), detecting glacier snow 

line altitude (Li et al., 2022) and landslides (Lindsay et al., 2022), and developing glacier 

surface velocity analyses (Di Tullio et al., 2018). Overall, GEE is nowadays one of the 

most important cloud computing platforms that allows users to perform analyses on a 

wide range of topics using EO data and techniques. However, even though it has already 

been used for glacier monitoring, the lack of studies carried out in South America, 

evidenced by Amani et al. (2020) and Tamiminia et al. (2020), is a gap that must be 

addressed. 
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Figure 4 Distribution of GEE usage categories across 443 papers (Amani et al., 2020). 

 

In detail, Zhang et al. (2021) carried out extensive glaciological research, which 

developed a methodology with GEE to understand the anomalous positive mass budgets 

and relative stability exhibited by the glaciers in West Kunlun and Pamir. For this 

purpose, the authors utilized MODIS, Landsat 5-8, DEMs, and meteorological data. They 

applied the NDSI and Normalized Difference Water Index (NDWI) to MODIS reflectance 

data between 2000 and 2021 to extract glacier areas and seasonal snow cover. Even 

though the NDSI accurately distinguishes between glacier/snow, clouds, and shadows, 

identifying glacier and snow independently is complex due to their similar spectral 

properties (Zhang et al., 2021). As a result, Zhang et al. (2021) implemented two parallel 

workflows. The first one to extract and delimit the glacier area by retrieving MODIS data 

for the summer period (July to September), when snow that does not contribute to glacier 

mass balance melts, being an optimal season for separating glaciers and snow cover 

(Huang et al., 2021). The second workflow focused on extracting snow cover using 

MODIS-8-day interval images. In detail, the glacier extraction workflow involved the 

following steps: 

1. creating annual summer median composite images from summer MODIS data 

using the GEE reducer function, 

2. calculating NDSI and the Near Infrared (NIR) for the annual summer median 

composites, identifying glacier pixels as those with values of NDSI≥0.4 and 

NIR≥0.11,  

3. generating a water mask for the annual summer median composites using the 

NDWI, identifying and removing water pixels with NDWI≥0.2 and NIR< 0.2,  

4. delimiting glacier areas based on the NDSI, NDWI, and NIR values for each 

pixel. 

The resulting glacier areas were compared with those extracted from Landsat 5-8 

satellite imagery. Zhang et al. (2021) estimated the glacier change rate by fitting a linear 

regression to the annual glacier area values and evaluating its accuracy with the Root 

Mean Square Deviation (RMSD) and Relative Root Mean Square Deviation (RRMSD) 

statistical errors. As a result, the authors estimated a glacier area decrease in the Tarim 

Basin of 7975.71 km² with an annual decrease of 0.94%/year. The workflow proposed by 

Zhang et al. (2021) takes advantage of GEE’s processing capabilities with EO data. 

However, its accuracy is reduced by limitations such as the misclassification of water and 

glacier pixels and the impossibility of detecting glacier areas in summer periods for high-

altitude glaciers with long-duration perennial snow.  
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Turpo Cayo et al. (2022) developed a study to retrieve the area of tropical Andean 

glaciers by performing a time-series analysis with Landsat 5,7,8 imagery from 1985 to 

2020. The methodology is similar to the one presented by Zhang et al. (2021) but differs 

in some key aspects. It consists of six steps: 

1. selecting all Landsat images with cloud cover equal to or less than 70% 

available between 1985-2020 and masking clouds and cloud shadows, 

2. calculating NDSI for all the retrieved images,  

3. creating annual image composites, reducing NDSI, RED, and NIR bands,  

4. implementing an empirical decision tree to classify glaciers in the annual 

image composites, 

5. applying post-classification filters, 

6. conducting accuracy assessment. 

Regarding clouds and cloud shadow masking, Turpo Cayo et al. (2022) used the 

CloudScore technique for masking clouds and the Temporal Dark Outlier Mask algorithm 

and Band Quality Assessment for masking cloud shadows. In step 3, the NDSI was 

reduced using the minimum reducer, while RED and NIR used the median reducer with 

the 25th NDSI percentile. Finally, after implementing the empirical decision tree based 

on 9800 samples, Turpo Cayo et al. (2022) applied several post-classification filters, such 

as gap fill, frequency filter, and temporal filter, to remove noise and gaps associated with 

cloud presence. With this methodology, the conducted study evidenced a reduction of 

tropical Andean glaciers area from 2439.38 km² to 1409.11 km² between 1990 and 2020, 

with the smallest areas being the most affected, experiencing more than 90% reduction 

in the same period (Figure 5). Turpo Cayo et al. (2022) research is another example of 

how glacier areas can be estimated by combining annual composites, reducers, remote 

sensing indices such as NDSI, and the analysis capabilities provided by GEE. 

 

Figure 5 Glacier retreat between 1990 to 2020 in Vilcanota Cordillera (Turbo Cayo et al., 

2020).  
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The research carried out by Zhang et al. (2021) and Turpo Cayo et al. (2022) analyzed 

glacier area changes from a pixel-based perspective. However, GEE also supports object-

based image analyses for classifying imagery, which includes non-iterative clustering, k-

means, and G-means techniques (Liu et al., 2018). The implementation of this approach 

increases accuracy by incorporating surrounding pixels into single objects and 

considering variables such as texture and shape (Blaschke, 2010). Ali et al. (2023) applied 

the object-based image approach to Landsat imagery to quantify glacier recession in the 

Novaya Zemlya region between 1986-89 and 2019-21. Specifically, they used a non-

iterative clustering algorithm, which includes seeds, compactness, connectivity, and 

neighborhood size parameters, to segment the image. Then, with the random forest 

classifier and 728 samples, they detected glacier and non-glacier objects. With this 

methodology, Ali et al. (2023) demonstrated a total reduction of 5.8% in the glacier area 

between 1986-89 and 2019-21. The research proves GEE’s ability to integrate machine 

learning algorithms and object-based image analysis techniques with EO data to retrieve 

glacier areas. 

The studies conducted by Zhang et al. (2021), Turpo Cayo et al. (2022), and Liu et al. 

(2018), discussed in this section, demonstrate the ongoing and increasing usage and 

applicability of the GEE platform for mapping glacier areas over time through the usage 

of various EO data, including Landsat, ASTER, and DEMs. GEE enables users to access 

and manage remote sensing data faster and create annual or monthly image composites 

(Arif et al., 2021). This is done through image reduction operations and calculating 

different remote sensing indexes, such as NDSI and NDWI, with pixel and object-based 

perspectives. Nevertheless, GEE is mostly utilized in Asia, Europe, and North America, 

leading to a significant opportunity for expansion in South America, particularly in 

regions like Patagonia. Also, there is a chance to work with EO data that has not been 

extensively used, such as Sentinel Imagery. 

 

Google Earth Engine Apps 

Until now, only the GEE advantages have been mentioned and discussed. However, 

because of the complex nature of remote sensing analyses, specifically in terms of the 

required knowledge, there is a barrier that limits the usage of this platform to people 

without advanced training (Scheip & Wegmann, 2021). Indeed, using GEE for geospatial 

analyses requires familiarity with EO data and techniques and programming languages 

such as JS and Python, whose learning is time-consuming and a big challenge for users 

without a computational background (Zhang et al., 2020). To address this limitation, GEE 

provides a JS client library, accessed through the GEE Code Editor, that enables users 

to create GEE-enabled web applications and publish them through the Earth Engine 

Apps platform (Zhang et al., 2020). As a result, the public-facing applications created 

with GEE not only enhance scientists' accessibility to EO data and remote sensing 

analyses but also provide user-friendly experiences to the non-scientific public (Scheip & 

Wegmann, 2021). Among the main capabilities of GEE web applications is the possibility 

of creating a graphical user interface (GUI) by combining standard Hypertext Markup 

Language (HTML) and native widgets such as buttons, labels, and sliders. Additionally, it 

allows users to modify variables and visualization parameters in real-time (Scheip & 

Wegmann, 2021). The currently available GEE web applications cover a wide range of 

topics and functionalities, including natural hazards mapping (Scheip & Wegmann, 

2021), agricultural modeling (Zhang et al., 2020), volcanoes analysis (Genzano et al., 

2020), and supraglacial landslide monitoring (Smith et al., 2020), with the possibility to 

visualize data, create time-series charts, and export results. 
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For example, HazMapper, or Hazard Mapper, is an open-access GEE web application 

(Figure 6) that provides a map, Geographical Information Systems (GIS) products from 

Sentinel and Landsat imagery, including the relative difference NDVI, to visualize, 

characterize, and monitor landscape changes, in vegetated environments, caused by 

human activities or natural dynamics (Scheip & Wegmann, 2021). In the interface of 

HazMapper, users have access to examples that showcase the capabilities of the 

application, a parameters panel where date, cloud cover, and slope values can be 

modified, along with two buttons to update the visualization and download the available 

imagery (NDVI, pre-image, post-image, and elevation data). This GEE web application 

aims to democratize access to multispectral satellite imagery analyses, specifically 

providing researchers, emergency responders, and the non-scientific community a tool 

for addressing natural hazard impact (Scheip & Wegmann, 2021).  

 

Figure 6 The user interface of the Hazmapper GEE Application (Scheip & Wegmann, 2021). 

 

AgKit4EE is another open-source toolkit that users can work with, modify, and distribute 

without restriction (Zhang et al., 2020). It contains two GEE web applications and various 

JS functions for modeling and performing land use analysis with the Cropland Data Layer 

of the United States. The Cropland Explorer (Figure 7) and Crop Frequency Explorer 

(Figure 8) GEE web applications developed by Zhang et al. (2020) were designed to 

visualize, explore, and export cropland products by demand through a GUI that includes 

a map explorer and configuration panel with charts, labels, and buttons. Specifically, in 

the Cropland Explorer, users can filter the displayed data and calculate crop area 

statistics based on layer, year, crop types, and boundary parameters. In comparison, the 

Crop Frequency Explorer creates a crop frequency map based on the user's crop type and 

year selection (Zhang et al., 2020). These GEE web applications facilitate access to EO 

data and provide a custom, fully extensible structure that can be expanded by creating 

new JS functions (Zhang et al., 2020). Therefore, the public and scientific community 

benefit from the accessibility to their functionalities and the less time it takes to improve 

them. 
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Figure 7 AgKit4EE Cropland Explorer GUI (Zhang et al., 2020). 

 

 

Figure 8 AgKit4EE Crop Frequency Explorer GUI (Zhang et al., 2020). 

 

When creating a GEE web application, receiving feedback from the end-users is 

crucial to understand areas for improvement or find possible bugs. Genzano et al. (2020) 

considered this aspect. They developed the Normalized Hot Spot Indices tool (Figure 9), 

which combines Sentinel and Landsat imagery to map and monitor the thermal volcanic 

anomalies of more than 1400 volcanoes. The GUI comprises a selector for the volcanoes, 

a filter for the date and buffer distance selector, and a link that redirects the user to a 

feedback survey. The authors used the comments from the survey to improve the 

available information and add functionalities. The research demonstrates the scalability 

of GEE web applications as new data and tools can be added by modifying the existing 

code according to user and scientific needs. Additionally, by applying minor changes to 

the current code, new GEE web applications can be implemented to address similar 

problems (Genzano et al., 2020). 
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Figure 9 The thermal activity of the Tolbachik volcano in Russia, monitored by the 

Normalized Hot Spot Indices GEE tool (Genzano et al., 2020). 

 

The GEE platform can be challenging to users unfamiliar with remote sensing and 

programming languages, limiting its reach to wider audiences, and motivating the users 

to continue using traditional processing and visualization methods for EO data. However, 

the design and development of GEE web applications with a user-friendly GUI, interactive 

widgets such as buttons, labels, and charts, and dynamic operations improve the 

accessibility to scientific analyses for specialists and the non-scientific community, 

converting the GEE web applications into a novel in remote sensing. There are still some 

limitations that restrict the scale of the analyses and applications, which include a 

maximum of 32 MB for external user downloads, or 400 km² using a 10 m pixel size with 

Sentinel-2 (Scheip & Wegmann, 2021), a maximum number of pixels of 10 million for 

each process (Zhang et al., 2020) and reduce numbers of simultaneous requests per user 

and duration of them (Genzano et al., 2020). With all of this, GEE and GEE web 

applications are powerful tools that will drive future analyses for hazard management, 

environmental resources, glacier monitoring, and more. 

 

3D Web Mapping and CesiumJS Apps 

Over the last decades, the availability and consumption of geospatial information have 

increased tremendously, leading to the development of GIS software to access, manage, 

and perform analyses (Potnis & Durbha, 2016; Scianna & La Guardia, 2018). 

Additionally, visualization techniques have been created to present geospatial data in a 

way that can be explored, a concept known as geovisualization (Schanche, 2020). 

Visualizing scientific information, including geospatial data, is essential as it can improve 

people's understanding of a complex phenomenon by communicating and presenting it 

more straightforwardly and attractively (Flückiger, 2022). In this context, associated with 

the significant improvement of computer graphics (Schanche, 2020) and the development 

of WebGL technologies (Mete et al., 2018), there is an ongoing discussion on the current 

necessity of transitioning from 2D to 3D visualization, using web applications instead of 

traditional desktop software (Jedlička & Hájek, 2020; Shivam & Narayan, 2023). This 

scenario has motivated the creation of several JS libraries, such as ThreeJS, and 

CesiumJS, for creating 3D visualization products. 
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Historically, geospatial data has been visualized and represented within GIS desktop 

software using a 2D map visualization in various fields, including urban planning, 

agriculture, and environmental management (Shivam & Narayan, 2023). However, 2D 

perspectives cannot accurately represent 3D characteristics such as scale and elevation 

due to the lack of depth perception. This limits the data analysis possibilities and the 

understanding of spatial relationships (Shivam & Narayan, 2023). In contrast, 3D has 

been demonstrated to improve data readability, visualization, and comparison by 

enabling access to the Z-axis (He et al., 2016), which is crucial for altitude-dependent 

data such as air pressure or wind speed (Potnis & Durbha, 2016). Moreover, 3D 

visualization has added value compared to 2D visualization as it can represent real-world 

locations in a more realistic and detailed way, which helps to better understand natural 

phenomena like floods in less time (Leskens et al., 2017). Even though the 3D perspective 

provides tangible advantages, it is necessary to evaluate which tasks benefit from it, as it 

requires the consideration of new design aspects (e.g., perspective, camera settings, 

graphical map load) compared with traditional 2D approaches (Hajek et al., 2016; Hajerk 

et al., 2018). 

The capability of visualizing 3D content on a web browser started in 2012 with the 

launch of WebGL (Parisi, 2012). It is an open web standard JS Application Programming 

Interface (API) used to render 3D content within HTML that extends the traditional web 

pages' client-side components (Figure 10) and functionalities (Farkas, 2017; Parisi, 2012). 

Recently, it has gained such popularity that it is supported in most web browsers and is 

constantly updated (Kang et al., 2018). With WebGL, new geospatial standards to share 

and access data online, and the increasing capabilities of web browsers (Farkas, 2017), 

visualization of 3D geospatial data on the web has been possible (La Guardia et al., 2022). 

As a result, 3D Web GIS, which is characterized by its flexibility, expansibility, and the 

lack of need for installing software, has been popularized (Kang et al., 2018; Mete et al., 

2018) through the development of JS libraries and 3D web applications that can be 

accessed at any time (Mete et al., 2018; Qu et al., 2023). 

 

Figure 10 Comparison between components of traditional web pages with WebGL 

implementation (Kang et al., 2018). 
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Some of the current JS libraries used for rendering 3D graphics are WebGL Earth, 

ArcGIS API for JavaScript, Tangra, OSM Buildings GL, ThreeJS, and CesiumJS (Gede, 

2018; Mete et al., 2018). Of these JS libraries, CesiumJS has become one of the most 

important since the deprecation and retirement of the Google Earth plugin in 2016 (Gede, 

2018; Zhang et al., 2021). CesiumJS is defined as a JS open-source library that allows 

the creation of 2D and 3D scenes in web browsers (He et al., 2016), characterized by its 

lightweight, cross-platform, and extensive capabilities, along with constant support by 

the community and detailed documentation (Schanche, 2020; Zhang et al., 2021). The 

main advantages of CesiumJS over other JS libraries are its capability to interact with 

3D entities with just one click, its ability to display information through popups, zoom, 

and pan around these, and the availability of a timeline feature to visualize real-time 

animations or entity changes over time (Potnis & Durbha, 2016). In consequence, even 

though CesiumJS has the steepest learning curve (Farkas, 2017), it is the main JS library 

when creating 3D web applications for visualizing data such as temperature, air pressure, 

or wind speed (Potnis & Durbha, 2016).  

For example, Mete et al. (2018) developed a 3D CesiumJS web application to render 

vector data with global, country, and city-scale population and income attributes in the 

virtual globe (Figure 11). With this application, the authors demonstrated the capabilities 

of CesiumJS to retrieve, query, and visualize GeoJSON data format fluently in 3D, entirely 

in a web environment, without installing any plugin. 

 

Figure 11 Turkey's population by province in 2010, visualized in 3D with CesiumJS (Mete 

et al., 2018) 

 

Cho et al. (2023) also created a 3D web application (Figure 12) using CesiumJS for 

visualizing agricultural data and 3D models of agricultural infrastructure such as 

irrigation systems, culverts, and drainage facilities. This was possible by combining BIM 

concepts, aerial imagery collected with a drone, and the capabilities of Cesium JS to 

create digital twins (Cho et al., 2023). The result is an interactive web application that 

provides farmers with real-time information on irrigation and drainage flow rates and 

allows the assessment of current agricultural infrastructure in a virtual environment (Cho 

et al., 2023). Tools like this empower farmers and whole communities to become 

important decision-makers as they have access to data in a simple and user-friendly way. 
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Figure 12 3D visualization of a channel and its attributes (Cho et al., 2023). 

 

Regarding temperature data and visualization, Wang et al. (2017) developed the 

“PolarGlobe” web application (Figure 13) that allows the visualization in 3D of climate 

data such as air temperature. The application aims to reduce the learning curve of other 

climate simulation software by providing a GUI that allows users to filter, interact and 

create vertical profiles for temperature data (Wang et al., 2017).  

 

Figure 13 PolarGlobe 3D Cesium web application GUI (Wang et al., 2017). 

 

In this chapter, it was reviewed and discussed the most recent glacier studies carried 

out in the Patagonian region using EO data, along with the implementation and 

advantages of the GEE cloud computing platform for glacier research. Moreover, the GEE 

Apps and CesiumJS API were introduced as trending tools for creating interactive and 

user-friendly 2D and 3D web products in the last few years. Finally, several examples 

demonstrated their capabilities and scientific applications. 
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3 METHODOLOGY 

This chapter introduces the study area, the selection criteria, and the data used in 

this thesis, including satellite imagery, terrain, and vector data. Moreover, it defines the 

software, remote sensing indexes, and statistical validation methods employed. Finally, 

it briefly describes the implemented workflow, emphasizing the data acquisition, 

processing, analysis, and creation of web applications. 

3.1 Study Area 

The study area for this research is the Patagonian Andes, considered the largest 

glacierized area in South America, with a total glacier extent of 20000 km², spread over 

46°S and 52°S latitudes (Carrasco-Escaff et al., 2023). Specifically, this research focuses 

on the NPI and SPI (Figure 14), where most glaciers are concentrated, with an extent of 

4200 km² and 13000 km², respectively (Pelliccioti et al., 2014). For these icefields, based 

on the RGI 7.0 inventory, glaciers with an area greater or equal to 10 km² were filtered 

and selected, resulting in 27 NPI and 56 SPI glaciers. 

 

Figure 14 Map with the Location of the NPI and SPI study areas, Projection: WGS 1984 UTM 

Zone 18S. 
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For the NPI, the biggest glaciers selected were “San Quintin” (Figure 15A) and San 

Rafael, with areas of 815.29 km² and 684.55 km², respectively.  Meanwhile, for the SPI, 

the largest were “PIO XI” and “Viedma” (Figure 15B), with extents of 1233.08 km² and 

896.36 km². Regarding the glaciers' median height, it goes from 690 m to 2040 m. The 

NPI and SPI are constituted mainly by calving glaciers that terminate into fjords or lakes 

(Aniya et al., 1997), which are sensitive to temperature, wind speed, precipitation, and 

altitude variations. Consequently, climatic changes have a direct impact on their area, 

volume, and glaciological processes (Carrasco-Escaff et al., 2023; Florath et al., 2021; 

Sáez et al., 2019). In the last few years, NPI and SPI glaciers have been experiencing a 

dramatic glacier retreat, area, and volume loss due to climate variability (Bates, 2020), 

leading to increased scientific studies that aim to understand their status and ongoing 

climatic dynamics. However, glaciers in NPI and SPI react differently to the same climate 

perturbation (Rivera et al., 2012; Sagredo & Lowell, 2021), which makes it difficult to 

develop regional studies. 

 

Figure 15 A) Map for San Quintin Glacier, Projection: WGS 1984 UTM Zone 18S, Scale: 

1:350,000; B) Map for Viedma Glacier, Projection: WGS 1984 UTM Zone 18S, Scale: 

1:250,000. 

3.2 Data 

This thesis used several data (types and sources) for different purposes. In GEE, 

Optical Satellite Data, including Sentinel-2, Landsat 8-9 imagery, and ERA5-Land 

Monthly Aggregated dataset, was retrieved and used to conduct a time-series analysis 

and generate EO outputs. Additionally, Bing imagery was implemented as a base map for 

the 3D web application. The Cesium World Terrain was selected for terrain data, and 

vector data with the NPI and SPI glaciers footprints were collected from the RGI 7.0 

database. 
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3.2.1 Optical Satellite Data 

The satellite data introduced in this section was acquired through the GEE API, except 

for the Bing Maps Aerial Imagery. Sentinel-2, Landsat 8-9, and ERA5-Land Monthly 

Aggregated imagery were collected for the period between 01. 10. 2018 and 03. 31. 2023, 

the Patagonian summer (Carrasco-Escaff et al., 2023). Sentinel-2 and Landsat 8-9 were 

used for time-series analysis and estimation of glacier area changes. Moreover, with 

Landsat 8-9 and ERA5-Land Monthly Aggregated imagery, temperature time-series 

analyses were carried out, specifically for LST and air temperature, respectively. 

Sentinel-2 mission is part of the European Commission’s Copernicus programme, in 

charge of monitoring climate change impacts on the Earth. It started in 2015 and consists 

of a two-satellite constellation with a wide-swath high-resolution multispectral imager 

with 13 spectral bands and a combined revisit time of 5 days that provide high-resolution 

optical imagery for monitoring agriculture, forests, water, and land cover changes 

(European Space Agency, n.d). In GEE, six spectral bands (Table 1) of Sentinel-2 imagery 

were accessed through the Image Collection: “COPERNICUS/S2_SR_HARMONIZED”. 

 

Table 1 Sentinel-2 selected spectral bands. 

Band Name Pixel Size (m) Central 

Wavelength (nm) 

B2 (blue) 10 490 

B3 (green) 10 560 

B4 (red) 10 665 

B8 (NIR) 10 842 

B11 (SWIR 1) 20 1610 

Scene Classification Layer (SCL) 20 N/A 

 

Landsat 8 is part of the historical Landsat programme developed by the National 

Aeronautics and Space Administration (NASA) and the United States Geological Survey 

(USGS). This satellite was launched on February 11, 2013, to collect multispectral images 

of the global land mass. It delivers imagery on a revisit time of 16 days and with 

resolutions from 15 m to 100 m (NASA, n.d). In GEE, Landsat 8 imagery was retrieved 

from the definition of a custom Image Collection with LST values based on the Ermida et 

al. (2020) algorithm. Table 2 present in detail the chosen bands. 

 

Table 2 Landsat 8-9 selected spectral bands. 

Band Name Pixel Size (m) Central 

Wavelength (nm) 

SR_B2 (blue) 30 482 

SR_B3 (green) 30 562 

SR_B4 (red) 30 655 

SR_B5 (NIR) 30 865 

SR_B6 (SWIR 1) 30 1610 

LST 30 N/A 
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Landsat 9 is the most recent Landsat mission, launched on September 27, 2021, as 

a collaboration between NASA and USGS. The spectral (Table 2) and temporal resolutions 

of the Landsat 9 satellite are similar to those of the Landsat 8 mission. However, it has a 

higher radiometric resolution, which provides more accurate surface temperature 

measurements and enhances atmospheric corrections (USGS, n.d). As for Landsat 8, 

Landsat 9 imagery with the LST custom band was retrieved in GEE based on the Ermida 

et al. (2020) algorithm.  

ERA5-Land is a reanalysis dataset that combines the HTESSEL surface model with 

observations from various sources to create a global dataset with climate variables such 

as air temperature, precipitation, pressure, and runoff. The data is available from 1950 

with a minimum spatial resolution of ~9km (ECMWF, n.d; Google, n.d). In GEE, the 

ERA5-Land Monthly Aggregated Dataset imagery, specifically the “temperature_2m” 

band, was accessed through the “ECMWF/ERA5_LAND/MONTHLY_AGGR” Image 

Collection. This band provides air temperature measured at 2m above the surface.  

Bing Maps Aerial Imagery with pixel resolutions from 15 cm to 30 cm (Cesium, n.d), 

hosted in the Cesium ion’s cloud architecture, was selected as the basemap for the 3D 

CesiumJS web application. 

3.2.2 Terrain Data 

High-resolution global 3D terrain from Cesium was implemented in the 3D web 

application. It combines different data sources into a single terrain tileset designed for 

efficient 3D visualization, with a spatial resolution for the Patagonian region between 30 

m and 90 m (Cesium, n.d). 

3.2.3 Vector Data 

The RGI is a global inventory of glacier outlines derived from the GLIMS multi-

temporal database, developed in 2010 by glaciologists worldwide, that aims to provide a 

snapshot of the world’s glaciers as close to the year 2000. RGI is not designed to be an 

accurate source of measurements of glacier areas. However, the glacier outlines that it 

delivers can be used as AOIs or delimitation areas for scientific analyses (Maussion et al., 

2023), which is the case of this thesis. In this research, from the RGI 7.0, released on 

September 2023, the outlines for the total (83) NPI and SPI glaciers were extracted from 

the global dataset downloaded as shapefile format, with attributes such as glacier name, 

area, year of measurement, and median elevation. These outlines were used to filter the 

study glaciers, to clip the described optical satellite imagery in GEE for every selected 

glacier, and to filter the data to be visualized in the CesiumJS application. 

3.3 Software 

GEE is a cloud computing platform that gives access to a multi-petabyte catalog of 

satellite imagery and planetary-scale analysis capabilities. Researchers use it to map 

trends, detect changes, and perform time-series analyses on the Earth’s surface without 

downloading any data locally. This thesis used the JS API v0.1.395 through the GEE 

Code Editor to perform time-series analyses for glacier area and temperature changes 

and create the GUI of the GEE web application. 

ArcGIS Pro is a desktop GIS application developed by Esri that allows users to 

explore, visualize, and analyze geospatial information in 2D and 3D and create 

cartographic products. In this study, ArcGIS Pro 3.1.3 was used to filter and export the 

RGI 7.0 glacier outlines and process the GEE composites exported from the GEE 
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application before being uploaded into the Cesium ion cloud platform. Additionally, it was 

used to create the maps included in this research. 

CesiumJS is an open-source JS library used by different industries to create 

interactive 3D globes and maps that can be shared on the web. It is characterized by 

outstanding performance, precision, visual quality, and ease of use. CesiumJS 1.116, 

along with HTML and Cascading Style Sheets (CSS), was used to create the 3D web 

application. 

Cesium ion is a robust cloud platform for hosting 3D geospatial data. It provides 

access to global 3D content and the possibility to upload custom 3D models, terrain, and 

imagery. It was used as the hosting and streaming platform for the EO outputs from GEE 

to be added to the CesiumJS 3D web application. 

ArcGIS Survey123 is a form-centric solution developed by Esri to create forms that 

allow data collection and posterior analysis. In this research, it was utilized to gather 

feedback from users about the GEE and 3D web applications. 

GitHub is a developer platform for sharing code and contributing to open-source 

projects. Furthermore, it provides hosting services for various data types and web pages. 

In this thesis, GitHub served as the hosting platform for both the time-series chart 

outputs generated by the GEE application and the web page of the 3D web application. 

Visual Studio Code is a standalone source code editor that supports developer 

tooling, such as debugging, task running, and version control. Visual Studio Code version 

1.87.2 was used to coding the 3D CesiumJS web application code. 

Microsoft Excel is a spreadsheet editor for data visualization and analysis. It was 

used to enhance the GEE time-series charts by plotting trend lines and calculating RMSD 

and RRMSD. 

3.4 Remote Sensing Indices 

The NDSI and NDWI were calculated in GEE to identify and quantify glacier areas and 

mask glacier lakes. 

3.4.1 NDSI 

The NDSI (1) was coined by Hall et al. (1995). It is used for mapping snow cover based 

on the ratio of the green and Short-Wave Infrared (SWIR) channels. Additionally, 

considering snow is highly reflective and absorptive in the NIR and SWIR part of the 

spectrum, NDSI can distinguish between clouds and snow (Kääb, 2011). It is defined as: 

 

𝑁𝐷𝑆𝐼 =
𝐺𝑅𝐸𝐸𝑁 − 𝑆𝑊𝐼𝑅1

𝐺𝑅𝐸𝐸𝑁 + 𝑆𝑊𝐼𝑅1
  (1) 

3.4.2 NDWI 

The NDWI (2), developed by McFeeters (1996), takes advantage of the high reflectance 

of water features in the green wavelength and the low reflectance in NIR wavelength to 

efficiently delineate open water features, removing soil and terrestrial vegetation features 

(McFeeters, 1996). It is defined as: 

 

𝑁𝐷𝑊𝐼 =
𝐺𝑅𝐸𝐸𝑁 − 𝑁𝐼𝑅

𝐺𝑅𝐸𝐸𝑁 + NIR
  (2) 
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3.5 Statistical Errors 

Even though for this thesis, a detailed accuracy assessment was not carried out, for 

estimating the rate of change of glacier area, LST, and air temperature over time, a linear 

relationship was fitted to the summer values, and RMSD and RRMSD were used as 

accuracy measurements for the observed trends. 

3.5.1 RMSD 

RMSD (3) is an absolute error measure used in time series analysis for model 

validation and fitting (Karunasingha, 2022). It is defined as: 

 

𝑅𝑀𝑆𝐷 = √
∑ (𝑥𝑖 − 𝑥�̅�)

2𝑛
𝐼=1

𝑁
 (3) 

 

where the actual value is 𝑥𝑖, the linear regression value is 𝑥�̅� and 𝑁 is the total number 

of measurements. The RMDS was used in this thesis as an error measurement for LST 

and air temperature rate of change linear relationships. 

3.5.2 RRMSD 

RRMSD (4) is calculated by dividing RMSD by the average value of 𝑥𝑖, the linear 

regression values (Despotovic et al., 2016). In this research, it was used particularly as a 

statistical measurement for the linear regression fitted to the glacier area values to 

provide more insight into the magnitude of the error compared to the corresponding 

glacier area.  

 

𝑅𝑅𝑀𝑆𝐷 = |
𝑅𝑀𝑆𝐷

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 (𝑥�̅�)
∗ 100|  (4) 

3.6 General Procedure  

The workflow developed in this thesis (Figure 16) starts with retrieving the NPI and 

SPI glacier outlines from RGI 7.0. The data was filtered and exported as shapefiles using 

ArcGIS Pro.  Then, in GEE, the feature collection for the glacier outlines, and the image 

collections for Landsat 8,9, Sentinel-2, and ERA5-Land imagery were created. 

Furthermore, inspired by Zhang et al. (2021), Turpo Cayo et al. (2022), and Arif et al. 

(2021) methodologies, glacier area estimations, median temperature composites, and 

time series charts for each summer period were generated by the combination of several 

processing functions. After the time series analysis, a GUI was designed and launched 

with three principal panels (Main, Map, and Charts) and different widgets. With this GEE 

web application, the summer median temperature composites and glacier area 

delimitation images were exported in TIFF format. Then, in ArcGIS Pro, the images were 

processed to have comparable symbology and be uploaded to Cesium ion. The Comma-

separated Values (CSV) files exported from the GEE application were used to create line 

charts within Microsoft Excel by fitting a linear regression to the values, estimating R², 

RMSD, and RRMSD, and then uploading them to GitHub. With the required data hosted 

in the cloud, the 3D CesiumJS web application was developed using Visual Studio Code. 

Finally, user evaluation for both web applications was performed by collecting feedback 

from an online ArcGIS Survey123 form. 
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Figure 16 Thesis Workflow Overview. 
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4 TIME-SERIES ANALYSIS 

This chapter presents the methodology, detailed steps, and code implementation for 

the Time-Series analysis of NPI and SPI glaciers area and temperature changes within the 

GEE platform. As observed in Figure 17, the workflow is constituted by the definition of 

required features and image collections based on the summer period and cloud cover 

percentages.  Moreover, functions such as temperature conversion, image clipping, band 

renaming, spectral indices, and glacier area calculations were created and implemented. 

Furthermore, iterative processes were developed to create median composites and include 

them as images in new image collections. As a result, temperature summer median 

composites, glacier area delineation, and the corresponding time-series charts were 

generated. The complete GEE code implementation can be accessed at 

https://code.earthengine.google.com/10c459a1dbd9e00b364bcc9278d43fe9. 

 

 

Figure 17 Time-Series Analysis workflow in GEE. 

https://code.earthengine.google.com/10c459a1dbd9e00b364bcc9278d43fe9
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4.1 Initial Feature and Image Collections 

Feature collections store related features with their geometries and attributes, while 

Image collections store a set of images. In GEE, it is possible to work with existing features 

and image collections or create new ones using custom vector and optical imagery 

previously uploaded. 

For this time-series analysis, a Feature Collection containing NPI and SPI glaciers 

with an area greater than 10 km² was created from shapefiles exported in ArcGIS Pro 

based on the RGI 7.0 (Figure 18). This was used mainly as the clipping AOI for the Image 

Collections, functions, and processes that required the AOI as a parameter. 

 

Figure 18 GEE Code – Creation of the NPI and SPI glaciers Feature Collection. 

 

In the case of the Image Collections for Landsat 8 and Landsat 9, the first step was 

to import the LST JavaScript module developed by Ermida et al. (2020) and define the 

initial parameters (Figure 19), including satellite, initial, and final date. Then, both Image 

Collections were constructed using the collection() method of the LST JavaScript module. 

Furthermore, filtering methods were used to retrieve satellite images with a cloud cover 

of less than 60% within the AOI selected by the user from the Feature Collection, along 

with the required spectral bands (Figure 20). 

 

 

Figure 19 GEE Code – Import of the LST JavaScript Module and definition of creation 

parameters. 

 

 

Figure 20 GEE Code – Image Collection definition for Landsat 9. 

 

For Sentinel-2, the Image Collection was defined similarly to the Landsat 8-9 process 

but without requiring the import of an external JavaScript module. Instead, it was defined 

from the existing “COPERNICUS/S2_SR_HARMONIZED” GEE asset with filtering 

methods, including bounds, date, cloud cover percentage, and spectral bands (Figure 21). 

It must be mentioned that the “selectedGlacier” parameter used in the filterBounds() GEE 

method, applied in the definition of all the Image Collections, corresponds to the user’s 

glacier selection from the Feature Collection through a select widget in the GEE web 

application. 

 

 

Figure 21 GEE Code – Image Collection definition for Sentinel-2. 
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Finally, the definition of the Image Collection for the ERA5-Land involved the filtering 

of the existing GEE asset “ECMWF/ERA5_LAND/MONTHLY_AGGR” based on the study 

period and the selection of the “temperature_2m” spectral band (Figure 22).  

 

 

Figure 22 GEE Code – Image Collection definition for ERA5-Land dataset. 

4.2 Functions 

Since Image collections comprise multiple images from various sources, functional 

programming techniques are necessary to perform operations on each image within the 

collections. In this context, JS functions were developed and used for multiple purposes, 

such as masking clouds and shadows, converting temperature units, renaming bands, 

and calculating spectral indices. After the functions were defined, they were applied to 

every image of the corresponding Image Collection using the map() GEE method. 

4.2.1 Image Clipping 

The ImageClip() function (Figure 23) was used to clip the images within an Image 

Collection to the Patagonian glacier selected by the end-user. Although this function is 

simple, it plays a crucial role as it ensures that only the required area is considered for 

processing. This reduces the need for computational resources as it performs the glacier 

area and temperature calculations only for the selected glacier. 

 

 

Figure 23. GEE Code – Image Clipping Function. 

4.2.2 Temperature Conversion 

Landsat and ERA5-Land temperature values are in Kelvin. However, to ensure 

consistency with the units used in South America, where Patagonia is located, and with 

the units commonly employed in temperature analyses, two functions were created to 

convert the temperature to Celsius (Figure 24 & Figure 25). 

 

 

Figure 24 GEE Code – Function to convert LST for all the images within the Landsat Image 

Collections to Celsius. 

 

 

Figure 25 GEE Code – Function to convert the air temperature for all the images within the 

ERA5-Land Image Collection to Celsius. 
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4.2.3 Clouds and Shadows Masking 

To mitigate the influence of clouds and shadow pixels in the time-series analyses and 

the summer median composites, the sentinel2_clouds_shadows_masking() function was 

applied to images within the Sentinel-2 Image collection. This function identified and 

masked out cloud and shadow pixels using the SCL. Within this layer, pixels identified 

as high-probability clouds and cloud shadows were combined into a single mask. 

Subsequently, the eq(0) method was employed to assign a value of 1 (TRUE) to non-clouds 

or non-shadow pixels, while cloud and shadow pixels were assigned a value of 0 (FALSE). 

Finally, the updateMask() method removed pixels marked as 0, corresponding to clouds 

and shadows (Figure 26). Regarding clouds and shadow masking for Landsat Image 

Collections, it was not implemented, as the Ermida et al. (2020) algorithm masked clouds 

and shadows before the LST calculations. 

 

 

Figure 26 GEE Code – Clouds and Shadows masking function for Sentinel-2 Image 

Collection. 

 

4.2.4 Spectral Bands Renaming 

The sentinel2_bands_renaming() and landsat_bands_renaming() functions (Figure 27 

& Figure 28) were developed to standardize the naming conventions for the optical, NIR, 

and SWIR1 spectral bands across Sentinel-2 and Landsat Image Collections and to 

remove the LST band from the Landsat Image Collections. Specifically, for Sentinel-2 

images, the spectral bands B2, B3, B4, B8, and B11 were renamed as BLUE, GREEN, 

RED, NIR, and SWIR1, respectively. For the Landsat images, the spectral bands SR_B2, 

SR_B3, SR_B4, SR_B5, and SR_B6 were correspondingly renamed as BLUE, GREEN, 

RED, NIR, AND SWIR1. This standardization was necessary to ensure that the calculation 

of the NDSI and NDWI for the Landsat 8, 9, and Sentinel-2 merged Image Collection was 

conducted using the same spectral bands, whether for a Sentinel-2 or Landsat image. 

Moreover, it allowed the visualization of a true color composite using the optical bands. 

 

 

Figure 27 GEE Code – Renaming function for Sentinel-2 Image Collection spectral bands. 

 

 

Figure 28 GEE Code – Renaming function for Landsat Image Collections spectral bands. 
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4.2.5 Spectral Indices Calculation 

For calculating the NDSI and NDWI indexes, the ndsi_index() and ndwi_index() 

functions were created (Figure 29 & Figure 30). Both used the normalizedDifference() 

method with the respective bands to calculate the index value. Furthermore, the 

addBands() method added the indices calculations as new bands to the corresponding 

image. 

 

 

Figure 29 GEE Code – NDSI calculation function. 

 

Figure 30 GEE Code – NDWI calculation function. 

4.2.6 Glacier Area Delineation 

According to Zhang et al. (2021), in areas with snow presence, pixels with NDSI≥0.4 

and NDWI≥0.2 can be identified as glacier and water classes, correspondingly. Based on 

this, after testing different thresholds, pixels with NDSI≥0.4 and NDWI≤0.6 were chosen 

to define the glacier class, using the NDWI threshold to exclude water bodies such as 

glacier lakes. Consequently, the Glacier_Area_Delineation() function (Figure 31) was 

created to identify the glacier pixels and append their individual pixel area in km² as a 

new band to each summer median composite. First, the function generated a mask for 

glacier pixels based on the mentioned NDSI and NDWI thresholds. Then, for each pixel, 

it multiplied the mask value (1 for the glacier pixels and 0 for the non-glacier pixels) by 

the pixel area and divided it by 1000000 to convert m² into km². The pixel area was 

calculated using the ee.Image.pixelArea() method, which employs an equal area map 

projection to ensure accurate measurements. As a result, in the new “Glacier_Area” band 

added to the summer median composites, pixels identified as glaciers were assigned a 

value corresponding to the pixel area in km², while non-glacier pixels were assigned a 

value of 0.  

 

 

Figure 31 GEE Code – Glacier Area Delineation function for glacier pixel identification and 

area calculation. 

4.3 Workflow and Processes 

After defining the Feature and Image Collections, the JS functions were applied. This 

section will explain the additional processes and the sequence of the functions that 

allowed the creation of glacier area and temperature time-series outputs, including 

summer median composites and time-series charts. 
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4.3.1 Glacier Area Composites and Time-Series Chart 

For the delineation of glacier areas and the creation of time-series charts, Landsat 8, 

9, and Sentinel-2 Image Collections were utilized. Regarding Landsat 8 and 9, after 

defining and filtering both collections based on cloud cover percentage, dates, and the 

bands described in section 4.1, the Celsius() and ImageClip() functions were applied to 

each Image Collection. These functions converted the LST to Celsius and clipped the 

images to the glacier selected by the user. Subsequently, both Image Collections were 

merged to create the “landsat8_9_collection”, to which the landsat_bands_renaming() 

function was applied, resulting in an Image Collection with Landsat 8, 9 imagery and with 

the spectral bands renamed, called “landsat8_9_collection_Renamed”. 

For the Sentinel-2 Image Collection, similar filtering was applied, followed by the 

ImageClip() function. Additionally, the sentinel2_clouds_shadows_masking() and 

sentinel2_bands_renaming() functions were implemented to remove clouds and shadow 

pixels and standardize the band names. 

At this point, the “landsat8_9_collection_Renamed” and “sentinel2_collection” Image 

Collections were prepared for merging. Combining Landsat and Sentinel Imagery can be 

challenging due to the geographic misregistration caused by the different global reference 

systems and orientation measurements used (Xu et al., 2020). However, it has been 

observed that combining these datasets not only increases the number of observations 

but also provides more accurate classification results than working with both sensors 

separately (Xu et al., 2020). Considering this, both Image Collections were merged to 

create the “landsat8_9_and_sentinel2_collection” Image Collection. Then, the NDSI and 

NDWI were calculated for each pixel of the images within this Image collection using the 

ndsi_index() and ndwi_index() functions. 

The next step was to create a new Image Collection (“SummerMedianCollection”), to 

store the summer median composites, and an iterative function (Figure 32). This function 

received by parameter the previously defined “startYear” (2018) and the “endYear” (2022) 

variables to iterate through each summer period between these years. For each year, the 

function defined a summer period from October 1st of the current year to March 31st of 

the following year and then filtered the “Landsat8_9_and_sentinel2_collection” Image 

collection for that period. Then, the median() function was used to create a summer 

median composite, representing the median NDSI and NDWI conditions during the 

summer period for each year. Subsequently, the resulting median composite was added 

to the “SummerMedianCollection” Image Collection, including, as a system property, the 

starting and ending year of the associated summer period. 

 

 

Figure 32 GEE Code – Iterative function used to create the summer median composites.  
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As a result, five summer median composites, each corresponding to a summer period 

between 2018 and 2023, were created and added to the “SummerMedianCollection” 

Image Collection through the mentioned iterative function. For this Image Collection, the 

Glacier_Area_Delineation() function was applied to identify glacier pixels and assign the 

pixel area as glacier area. This allowed the visualization of glacier and non-glacier areas 

predominant during each summer and the creation of a time-series chart. The chart was 

generated by summing the “Glacier_Area” band for each summer median composite using 

the ui.Chart.image.series() and ee.Reducer.sum() methods, with a pixel size of 30 m (Figure 

33). 

 

 

Figure 33 GEE Code – Code implementation for creating the time-series chart for the 

glacier area, using a pixel size of 30 m. 

 

 It is important to consider that despite the pixel size differences between the Sentinel-

2 and Landsat bands used, in GEE, the scale of the analysis is determined by the outputs 

rather than the inputs (Google, n.d). Consequently, for this thesis, a pixel size of 30 m 

was selected as the resolution to create the time-series charts and to export the median 

composites through the GEE web application.  

4.3.2 LST Composites and Time-Series Chart 

The creation of LST summer median composites and the time-series chart involved 

merging Landsat 8 and Landsat 9 Image Collections after being filtered, clipped, and 

having converted the LST to Celsius, a process already followed to create the glacier area 

composites. However, an iterative function was implemented directly instead of applying 

the landsat_bands_renaming() function to the “landsat8_9_collection” Image Collection. 

This function was the same as the one implemented in the glacier area composites, with 

the only difference being that the “SummerLSTComposites” Image Collection was defined 

to store the LST summer median composites created by applying the median() method to 

the summer selection of the “landsat8_9_collection” Image Collection (Figure 34). 

 

 

Figure 34 GEE Code – Iterative function for the creation of LST summer median 

composites. 
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With this function, the LST summer median composites were created and later 

visualized in the GEE web app. Moreover, the ui.Chart.image.series() method was applied 

with a pixel size of 30 m  but using the ee.Reducer.median() method to create a time-

series chart with the median LST value of each summer median composite (Figure 35). 

 

 

Figure 35 GEE Code – Creation of the time-series chart for the LST, using a pixel size of 30 

m. 

4.3.3 Air Temperature Composites and Time-Series Chart 

Using a similar procedure to the one performed in section 4.3.2, the air temperature 

summer median composites were created by applying an iterative function (Figure 36) to 

the filtered, clipped, and Celsius converted “ERA5dataset” Image Collection. In this case, 

the “SummerAIRComposites” Image collection was defined to store the median summer 

composites created from the median() method. The time-series chart was generated using 

the ui.Chart.image.series() and ee.Reducer.median() methods to retrieve the median value 

of the “temperature_2m” band for the pixels of each median composite, using the native 

resolution of ERA5-Land, which is 11132 m (Figure 37). 

 

Figure 36 GEE Code – Iterative function for the creation of Air Temperature summer 

median composites. 

 

Figure 37 GEE Code – Creation of the time-series chart for the Air Temperature, using a 

pixel size of 11132 m. 
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5 GEE WEB APPLICATION DEVELOPMENT 

This section will describe the components (Figure 38) of the “Patagonian Glaciers 

Monitoring Application” GEE Web application, including the different widgets and 

elements used in the GUI design. 

 

Figure 38 Schematic Representation of the GEE Web Application GUI. 
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GEE Web Applications are used to share interactive analyses through a powerful UI 

API that allows the creation of GUIs with panels and widgets such as labels, buttons, 

charts, and maps. Additionally, it can be combined with traditional CSS techniques to 

provide styling.  These GUIs reduce the need for coding as users can analyze, visualize, 

and export EO data products directly in an interface. For this thesis, within the GEE 

code, three panel elements were defined using the .ui.Panel() constructor function as the 

principal containers of auxiliary UI panels and widgets (Figure 39). Each panel was 

designed to make the execution of the time-series code, visualization of the summer 

median composites, and time-series charts interactive, user-friendly, and intuitive. 

Moreover, the panels and corresponding widgets were distributed harmonically in the 

layout of the GEE web application. 

 

Figure 39 Layout distribution for the principal panels used in the GUI design. 

5.1 Main Panel 

The main panel, arranged on the left side of the page layout, was designed to introduce 

the application to the user and allow the selection, through widgets such as selectors and 

buttons, of glacier and summer periods of interest for running the time-series analysis. 

Moreover, it contains the download functionalities for the remote sensing outputs. 

5.1.1 Introduction Panel 

The introduction panel consists of three auxiliary panels and three label widgets 

created using the ui.Label() constructor function. Within the label widgets, there are the 

application name, a detailed description of the application purpose and data used, and 

the “Supported by” text. Regarding the auxiliary panels, the Informative Links panel 

was created to horizontally arrange the complementary links for accessing a YouTube 

tutorial and the 3D CesiumJS web application. Within the Universities Logos panel, two 

thumbnail widgets, defined using the ui.Thumbnail() constructor function, were used to 

display horizontally the logos of the supporting institutions. Finally, on the Credits panel, 

the author's name and the current GEE Web application version are displayed. 
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5.1.2 Glacier Geometry Panel 

The Glacier Geometry panel was defined to display widgets that allow users to select 

a desired glacier, create custom geometries, or introduce a GeoJSON geometry. First, a 

label widget was added to this panel to inform users that selecting a glacier is the first 

requirement before executing the time-series code. Then, the ui.Select() constructor 

function was used to create a select widget with the “glacier_list” Feature Collection to 

filter the AOI for the time-series analysis. Moreover, the centerObject() function ensures 

that every time the selection changes, the map automatically zooms to the new selection. 

Following the selection widget, an additional label widget was added to inform users 

about the options for drawing custom geometries or importing GeoJSON geometry text as 

an alternative AOI for the time-series analysis. Subsequently, three buttons were defined 

using the ui.Button() constructor function to enable these functionalities. 

The “Draw Geometry” button allows the creation of custom geometries through a 

rectangular area using the drawingTools() function. The “GEOJSON” button triggers a 

dialog box where users can paste the geometry definition from a GeoJSON file (Figure 40) 

to create a custom geometry. Finally, the “Clear” button removes any created custom 

geometries. 

 

 

Figure 40 Dialog box created when clicking the “GEOJSON” button. 

 

5.1.3 Summer Period Selection Panel 

The main purpose of the Summer Period Selection panel was to guide the user to the 

second input required to execute the time-series analysis code, which was selecting the 

summer period of interest. As a result, this panel consists of a label widget indicating 

that indeed is the second step and a selector widget that the user can use to select 

summer periods from 2018/19 to 2022/23. The time-series code implementation will use 

this selection to create the summer median composites just for that summer. However, 

the time-series charts will not be influenced by it, as they will consider all the summers 

from 2018 to 2023. 

5.1.4 Execution Panel 

The Execution panel contains a label widget indicating a third step for the user, which 

is code execution. Next to it, a button widget was added that, when clicked, will run the 

time-series analysis code presented in Section 4 with the current glacier and summer 

period selection. In detail, when clicked, the resulting summer median composites and 

the true color image will be added to the map, along with the corresponding legend created 



49 

with thumbnail widgets. Moreover, the time-series charts will be displayed and added to 

the Time-Series Charts panel, and the visualization of the Export panel will be enabled. 

5.1.5 Export Panel 

As mentioned in section 5.1.4, the Export panel is displayed after executing the time-

series analysis. This panel was designed to allow the user to download any of the resulting 

summer median composites directly. It is composed of a label widget that states it is the 

fourth step, a select widget for allowing the selection of the desired imagery, and an export 

button that will create a downloadable link or start the download task for exporting the 

imagery into Google Drive. 

5.1.6 Download Panel 

The Download panel is the last secondary panel within the main panel. It was created 

to display the resulting download URL generated using the export button.   

5.2 Map Panel 

Next to the main panel is the Map panel, constituted by a map instance, created with 

the ui.Map() widget, and various Legend panels used to create and display the 

corresponding legend for each summer median composite. 

5.2.1 Map 

The Map (Figure 41) provides visualization of the imagery outputs from the time-series 

analysis, as well as the RGI 7.0 Patagonian glaciers outlines. It allows users to draw 

custom geometries, zoom, pan, and control the layer’s visibility. 

 

 

Figure 41 Interactive Map used to visualize input and output data. 
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5.2.2 Legend Panels 

To dynamically provide the corresponding symbology (Figure 42) for the glacier area, 

LST temperature, and air temperature summer median composites visualized in the map 

area, three-panel widgets were used. 

For glacier area outputs, a categorical symbology with two distinct colors was 

implemented: blue for “Presence” and red for “Absence”. This symbology was combined 

with label widgets to create the Glacier Area legend panel, located in the lower left area. 

The outputs for LST and air temperature were represented using a graduated color 

symbology, which utilized a continuous color scheme. For LST, a plasma palette was 

utilized, with purple representing the lowest values and yellow the highest ones. The air 

temperature output, on the other hand, utilized a palette that ranged from dark blue to 

light yellow. The resulting LST panel was positioned in the right upper corner, while the 

air panel was positioned in the right lower corner.  

 

Figure 42 Example of the symbology for the Amalia glacier summer median composites for 

2018/19 summer. 

5.3 Charts Panel 

The final panel in the GEE application layout is the Charts panel. It is placed 

vertically next to the map panel and consists of a label widget that acts as a title and the 

Time-Series Charts panel. This panel contains all three time-series charts, with text 

descriptions for the title, horizontal, and vertical axis (Figure 43), generated after 

executing the time-series analysis code described in section 4.3.  

 

Figure 43 Example of the Glacier Area time-series chart for Amalia Glacier. 
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6 3D WEB APPLICATION DEVELOPMENT 

After finishing the development of the “Patagonian Glaciers Monitoring Application” 

GEE web application, the summer median composites and time-series charts for all 83 

glaciers were exported using the interactive interface. However, due to the maximum pixel 

number limitation when exporting, the composites were not exported using the download 

link but instead through a task that saved them directly in Google Drive. The composites 

exporting parameters included the TIFF format, a scale parameter of 30 m, and the 

WGS84 projection. As a result, 1245 summer median composites and 249 time-series 

charts, exported as CSV files, were generated. 

Accordingly, this section will detail the processing workflow carried out for the GEE 

application outputs and the cloud hosting. Furthermore, it will outline the code 

implementation for the 3D CesiumJS application that enabled the retrieval and 3D 

visualization of the cloud-hosted summer median composites and time-series charts via 

an interactive interface with functionalities such as sidebar, swipe, and others. 

6.1 GEE Web Application Outputs Processing 

The summer median composites were processed to remove unwanted footprints, 

match the symbology, and ensure the best performance before being cloud-hosted. 

Similarly, the time-series charts exported from GEE were improved by fitting a linear 

regression and calculating R², RMSD, and RRMSD. 

6.1.1 Summer Median Composites 

Glacier Area Summer Median Composites 

As established in section 4.2.6, the Glacier_Area_Delineation() function was used to 

delineate glacier and non-glacier areas by applying a mask, where values of 1 

corresponded to the glacier, and 0 for non-glacier. However, when exporting the glacier 

area summer composites and adding them to ArcGIS Pro, it was observed that the image 

included the complete footprint with pixel values of 0, the same pixel value assigned for 

non-glacier areas. Because of this, new mask values were applied in GEE before exporting 

the composites: -1 corresponds to non-glacier areas, 0 to the footprint, and 1 to glacier 

areas (Figure 44). 

 

Figure 44 Glacier Area 2022/23 Summer Median Composite for Viedma glacier, exported 

from GEE, added to ArcGIS Pro. 
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With all the glacier area summer composites exported, in ArcGIS Pro, the pixels with 

a value of 0 were removed, and the symbology was updated to match the colors presented 

in section 5.2.2. The processed composites were then exported locally as TIFF files, using 

the “Export Raster” tool with the “Force RGB” and “Use Rendered” options checked on, to 

be exported as three-band rasters, maintaining the current color settings (Figure 45). 

Moreover, to reduce the size as much as possible, the LZW compression type was used. 

 

Figure 45 Processed three-band Glacier Area 2022/23 Summer Median Composited for 

Viedma Glacier, with permanent color settings. 

 

LST and Air Temperature Summer Median Composites 

With the LST and air temperature summer median composites exported from GEE, 

the main goal was to create comparable TIFF files. This means finding the minimum and 

maximum possible values for LST and air temperature composites to apply the same 

stretch values in the symbology of each image. 

 For this purpose, the exported composites were added to ArcGIS Pro, observing that 

the footprint was also included. However, instead of having pixel values of 0, they had 

“NoData” values. Therefore, to remove the “NoData” footprint pixels, a model (Figure 46) 

created with Model Builder was implemented.  

 

Figure 46 Model Builder workflow used to convert pixels with “NoData” values into pixels 

with a value of 0. 

 

The model was applied separately to the LST and air temperature summer median 

composites. It consisted of iterating through each raster, converting the 'NoData' pixels 

to a value of 0 by multiplying the raster by 1 using the 'Raster Calculator' tool, and 

ultimately exporting it as a new TIFF file. 
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Then, the minimum and maximum pixel values were retrieved by comparing all the 

pixel values of the exported TIFF files using a Python script (Figure 47). As a result, the 

LST summer median composites had a minimum pixel value of -32.85 and a maximum 

pixel value of 34.45. On the other hand, the minimum and maximum pixel values for the 

air temperature summer median composites were -2.64 and 11.05, respectively. 

 

Figure 47 Python Code – Retrieval of the minimum and maximum pixel values for the LST 

and air temperature summer median composites. 

 

With these values, the symbology type for all the rasters was defined as “Stretch”, using 

the corresponding minimum and maximum pixel values (Figure 48A & Figure 48B) 

 

Figure 48 A) Symbology applied for the LST Summer Median Composites. B) Symbology 

applied for the Air Temperature Summer Median Composites. 

 

Finally, as for the glacier area composites, the processed LST (Figure 49A) and air 

temperature (Figure 49B) composites were then exported locally as TIFF files, with the 

“Export Raster” tool and the “Force RGB” and “Use Rendered” options checked, using the 

LZW compression type as well. 
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6.1.2 Time-Series Charts 

After exporting the 249 time-series charts from the GEE Web application (Figure 50), 

a linear regression was fitted to each, using Microsoft Excel, to estimate the rate of change 

for the glacier area, LST, and air temperature. From this linear regression, the mean 

regression value, R², RMSD, and RRMSD were derived. Specifically, RMSD was calculated 

for the LST and air temperature linear regressions (Figure 51B & Figure 51C), while 

RRMSD was estimated for the glacier area linear regressions (Figure 51A). The purpose 

of these statistical measures was to assess the accuracy of the linear regression, enabling 

users to determine whether the estimated rate changes were significant. 

 

Figure 50 Original Glacier Area time-series chart generated in GEE web application. 

Figure 49 A) Processed 2022/23 LST Summer Median Composite for Viedma Glacier. 

Projection: WGS 1984 UTM Zone 18S, Scale: 1:250,000. B) Processed 2022/23 Air 

Temperature Summer Median Composite for Viedma Glacier. Projection: WGS 1984 UTM 

Zone 18S, Scale: 1:250,000. 
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Figure 51 A) Processed glacier area time-series chart for Viedma glacier. B) Processed LST 

time-series chart for Viedma glacier. C) Processed air temperature time-series chart for 

Viedma glacier. 
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6.2 Cloud Hosting  

In the case of the summer median composites, once they were exported locally as TIFF 

files, they were individually uploaded to Cesium Ion (Figure 52), where they were 

automatically tiled, projected to WGS84 Web Mercator (Auxiliary Sphere), and given a 

unique identifier, latter used to retrieve specific images in the 3D CesiumJS application.  

 

Figure 52 Preliminary view of the imagery uploaded and hosted in Cesium Ion. 

 

Regarding the processed time-series charts, they were exported from Microsoft Excel 

as Portable Network Graphic (PNG) files and then uploaded to GitHub: 

https://github.com/felipecamachoh/PatagonianGlaciers/tree/main/Charts_Processed. 

 

6.3 CesiumJS Implementation 

With the required summer median composites and time-series charts available in the 

respective cloud hosting platforms, using Visual Studio Code, CesiumJS library, HTML, 

and CSS, the 3D CesiumJS application was developed. The workflow (Figure 53) initially 

consisted of instantiating a new cesium viewer, with the Cesium World Terrain as the 

terrain provider and Bing Maps Aerial Imagery as the basemap. Posteriorly, the RGI 7.0 

NPI and SPI GeoJSON was preloaded, along with each of the summer median composites 

and time-series charts. For dynamically retrieving these summer median composites, four 

buttons were designed to allow the selection of glacier, composite type, and summer 

period of interest, filtering the summer median composite to be displayed. Furthermore, 

to enable the comparison side to side of the summer median composites, a swipe 

functionality was implemented, as well as a sidebar to interactively display the time-series 

charts for the selected glaciers, with additional information on the change rate. Finally, 

the application was complemented by creating widgets such as a legend panel, distance 

scale, introduction screen, display controls, and more. The application source code is 

hosted in GitHub and can be accessed at: 

https://github.com/felipecamachoh/PatagonianGlaciers/blob/main/3DMonitoringApp.

html. 

 

 

https://github.com/felipecamachoh/PatagonianGlaciers/tree/main/Charts_Processed
https://github.com/felipecamachoh/PatagonianGlaciers/blob/main/3DMonitoringApp.html
https://github.com/felipecamachoh/PatagonianGlaciers/blob/main/3DMonitoringApp.html
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Figure 53 3D CesiumJS Web Application development steps. 

6.3.1 Cesium Viewer Setup 

The first step when working with the CesiumJS library is to create a new instance of 

the Cesium Viewer class and define its initial properties. Specifically, in this CesiumJS 

implementation, a new viewer was created (Figure 54), with the Cesium World Terrain as 

the terrain provider and disabling properties such as animation, timeline, and base layer 

picker. These properties were not enabled to reduce unnecessary complexity and 

streamline user interaction with the application. Additionally, after creating the viewer, 

the Bing Maps Aerial Imagery was added as the default basemap (Figure 55). 

 

Figure 54 Cesium Code – Instantiation of the new Cesium Viewer. 

 

 

Figure 55 Cesium Code – Definition of the Bing Maps Aerial Imagery (Asset 2) as default 

basemap. 
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6.3.2 Data Preloading 

In this step, the GeoJSON containing the outlines of the NPI and SPI glaciers, along 

with the summer median composites and the time-series charts, were preloaded. 

Regarding the GeoJSON, the loadGeoJson() function (Figure 56) was created to load the 

corresponding Cesium Ion asset and add it to the Cesium viewer, with the 

'clampToGround' property set to true. This property ensured the GeoJSON was properly 

aligned with the terrain's surface (Figure 57). 

 

Figure 56 Cesium Code – Loading of GeoJSON asset corresponding to the NPI and SPI 

glacier outlines. 

 

 

Figure 57. Visualization of NPI and SPI glaciers clamped to the ground with CesiumJS. 

 

In the case of the summer median composites, an object was created within a 

function with a set of keys based on combinations of glacier name, year, and type of 

imagery (Figure 58). Each key was then associated with the corresponding Cesium Ion 

asset ID. This function and the object facilitated the management and display of multiple 

assets, allowing the imagery to be added on demand according to user selection. 
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Figure 58. Cesium Code – Simplified version of the getAssetId() function and object keys 

and values. 

 

Finally, for the time-series charts, the preloadImages() function was created and 

implemented (Figure 59) to initiate the loading process for each image immediately after 

the web application starts. 

 

Figure 59 Cesium Code – Function for loading the time-series charts PNG images in 

advance. 

6.3.3 Data Visualization 

As mentioned in the previous section (6.3.2), the summer median composites 

visualization is based on the user selections for glacier, summer period, and imagery type 

parameters. To collect and store this information, four buttons were created: 

• Select Glacier: used for selecting any of the 83 Patagonian glaciers 

• Select Summer Period: allows selecting between six different summer periods 

• Select Imagery Type: enable selecting which type of summer composite to be 

added, including: “GLACIER AREA”, “LAND SURFACE TEMPERATURE”, and 

“AIR TEMPERATURE” 

• Add Imagery: used to retrieve the specific asset ID with the getAssedId() 

function and add it to the Cesium viewer. 

 

Once the parameters are correct and the “Add Imagery” button is clicked, it was 

configured that the glacier area summer composites will be added with a transparency of 

0.5, while the temperature summer composites will use a transparency of 0.8. These 

transparency values were selected to permit the visualization of the underlying Bing 

Imagery when adding the glacier area composites but reduce its visibility when adding 

the temperature composites.  

6.3.4 Data Interactivity 

A fundamental part of the 3D CesiumJS web application is the possibility of 

comparing different imagery side by side. To achieve this, swipe functionality was 

implemented through the creation of a divisor and a handle, using HTML and CSS, and 

the usage of the scene.splitPosition() and SplitDirection() methods. The scene.splitPosition() 

method allowed the splitting of the viewer into two parts, while with the SplitDirection() 
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method, it was possible to define the side on which the summer composites would be 

added. In addition to the swipe functionality, checkboxes were created to dynamically 

enable or disable the visualization of the imagery on any of the split sides (Figure 60). 

 

Figure 60 Cesium Code – Split direction based on the checkbox status. 

 

Another interactive feature is the sidebar, which is enabled by the InfoBox class in 

Cesium. To populate it dynamically based on the glacier selection, predefined descriptions 

for each glacier were designed. These include information such as the time-series charts 

for the glacier area, LST, and air temperature, as well as the change rates and area loss 

relative to the RGI 7.0.  

6.3.5 Complementary Widgets 

With the main functionalities already covered, the 3D Cesium JS Web application was 

completed through the creation of new widgets or assignment of custom functionalities 

for the existing ones. 

For example, a series of introductory screens (or splash screens) were created using 

different HTML tags to display information on how to use the application. In detail, on 

four introductory screens, informative text, links, images, and interactive buttons were 

displayed. 

Another widget is the display controls panel, designed to store the layer visibility 

controls, including the checkboxes for turning on or off the layers and a slider for 

modifying the transparency.  

For the legend, a div container with three rows and one column was used to store 

and show the corresponding symbology for the different types of imagery added. 

Moreover, a button was designed to allow the panel to be closed and opened. 

The last widget implemented was the distance scale, which uses kilometer units. 

Additionally, the functionalities of the existing default extent button and navigation 

help button were modified to zoom to the Patagonian region and display the introductory 

screens, respectively, when activated. 

 

 

 

 

 

 

 

 

 



61 

7 USERS EVALUATION 

The last step of the methodology presented in this study is the evaluation of the web 

applications by the end-users. For this purpose, a form was created using ArcGIS 

Survey123 (Figure 61) with questions regarding the scientific background of the 

contestants, their experience with the GEE and 3D CesiumJS web applications, and their 

personal perspectives concerning the usage and impact of ready-to-use applications. 

Once the form design was finished, it was shared through LinkedIn. The survey was not 

focused on assigning specific tasks but on assessing the overall user experience by 

reproducing the steps outlined in the tutorials. The online survey is available at: 

https://survey123.arcgis.com/share/f81642724caf45bc8053c291a1d440a5 

 

 

Figure 61 Initial screen of the ArcGIS Survey 123 form. 

 

User Profile Section 

This section was the initial part of the form, where respondents were asked about 

their age range and their level of familiarity with terms such as Glaciology, Remote 

Sensing, Time-Series Analysis, GEE, and CesiumJS. The options available for indicating 

familiarity were “Not at all familiar”, “Slightly Familiar”, “Moderately Familiar”, “Very 

Familiar”, and “Extremely Familiar”. 

GEE Web Application Section 

To evaluate the user experience with the GEE web application, a link to a video tutorial 

was provided in this form section, available at 

https://www.youtube.com/watch?v=oGDtU-05zLg. Then, users were asked to replicate 

the steps and rate the interface considering the attractiveness, intuitiveness, and user-

friendliness, and performance based on their experience by choosing from “Very poor”, 

“Poor”, “Fair”, “Good”, and “Excellent” options. Moreover, they were asked, if applicable, 

to report any experienced bug. 

 

https://survey123.arcgis.com/share/f81642724caf45bc8053c291a1d440a5
https://www.youtube.com/watch?v=oGDtU-05zLg
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3D CesiumJS Web Application Section 

Similarly to the GEE Web Application section, the users were requested to rate the 

interface and performance of the 3D CesiumJS Web application after following a video 

tutorial, available at https://www.youtube.com/watch?v=m7tQ8Tt5EJk. Additionally, 

they were asked if the 3D perspective facilitated understanding the glacier area and 

temperature changes. 

Overall Experience Section 

In the last section of the form, users were asked to select the application that made 

the visualization of glacier areas and temperature changes more attractive. They were 

also asked about their level of agreement regarding the role of ready-to-use applications 

in providing useful scientific information and promoting scientific interest among the 

general population (Figure 62). The available options for the level of agreement were 

“Strongly disagree”, “Disagree”, “Neutral”, “Agree”, and “Strongly agree”. 

 

 

Figure 62 GEE and CesiumJS Web Applications survey - Overall experience section. 

 

 

https://www.youtube.com/watch?v=m7tQ8Tt5EJk
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8 RESULTS 

This chapter presents the results of the study, including the outputs from the time-

series analysis, the GEE and 3D CesiumJS web applications, and the findings from the 

ArcGIS Survey123 form.  

8.1 Time-Series Analysis Outputs 

With the time-series analysis performed within the GEE cloud platform described in 

Chapter 4, 1245 summer median composites and 249 time-series charts, equivalent to 

the 83 analyzed glaciers, were generated through the GEE web application GUI. This data 

can be accessed through the application itself and the “PatagonianGlacier” GitHub 

repository, which includes the pre-processed and processed datasets for the summer 

median composites and time-series charts. The repository is available online at 

https://github.com/felipecamachoh/PatagonianGlaciers. 

With the processed time-series charts, fitted a linear regression and having calculated 

R², RMSD, and RRMSD, as described in subchapter 6.1.2, it was compared the rate of 

change in glacier area, LST, and air temperature across all studied glaciers, identifying 

those with the most significant changes. Additionally, with the RGI 7.0 glacier area 

values, the year of measurement, and the glacier area for the summer period of 2022/23, 

the total area loss between this period of time was estimated as a complementary output. 

The complete consolidated tables can be accessed in the Appendix section or at 

https://github.com/felipecamachoh/PatagonianGlaciers/tree/main/RateChanges_Tabl

es. 

Specifically, for glacier area changes (Table 3), PIO XI, Tempano, and Bernardo 

glaciers showed the highest rates of area increase since summer 2018/19, at 1.95, 1.90, 

and 0.89 square kilometers per summer, respectively. Conversely, HPS 38, O’Higgins, 

and Viedma experienced the most significant losses, with rates of -0.95, -1.09, and -1.14 

square kilometers per summer, respectively. 

Table 3 Glaciers with the most significant glacier area rate of change. 

GLACIER 

RGI 7.0 

AREA 

(Km²) 

YEAR 

2022-

2023 

AREA 

(Km²) 

GAIN/ 

LOSE 

(Km²) 

RATE  
OF 

CHANGE 

Km²/ 

summer 

R² RRMSD 

PIO XI 1233.08 2001 1223.32 -9.76 1.95 0.1734 0.49% 

TEMPANO 433.91 2001 410.92 -22.99 1.90 0.0805 2.19% 

BERNARDO 565.14 2001 551.52 -13.62 0.89 0.063 0.89% 

HPS38 69.81 2001 61.082 -8.73 -0.95 0.6415 1.63% 

O'HIGGINS 780.49 2001 767.112 -13.38 -1.09 0.5549 0.18% 

VIEDMA 896.36 2001 864.112 -32.25 -1.14 0.2458 0.33% 

 

Moreover, regarding the glacier area loss (Table 4) from the RGI 7.0 year of 

measurement to the summer of 2022/23. Upsala, Viedma, and Colonia were the glaciers 

that lost more area, with area losses of -37.14, -32.25, and -23.22 square kilometers. On 

the other hand, HPS27, HPS33, and Calvo glaciers lost less glacier area, showing a loss 

of -0.13, -0.1, and -0.07 square kilometers. 

 

https://github.com/felipecamachoh/PatagonianGlaciers
https://github.com/felipecamachoh/PatagonianGlaciers/tree/main/RateChanges_Tables
https://github.com/felipecamachoh/PatagonianGlaciers/tree/main/RateChanges_Tables
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Table 4 Glaciers with the highest and lowest glacier area loss. 

GLACIER 

RGI 7.0 

AREA 

(Km²) 

YEAR 

2022-

2023 

AREA 

(Km²) 

AREA 

LOSE 

(Km²) 

RATE  

OF 

CHANGE 

Km²/ 

summer 

R² RRMSD 

UPSALA 778.97 2005 741.83 -37.14 -0.28 0.0037 0.89% 

VIEDMA 896.36 2001 864.112 -32.25 -1.14 0.2458 0.33% 

COLONIA 282.07 2001 258.854 -23.22 -0.73 0.7385 0.24% 

HPS27 31.84 2001 31.71 -0.13 -0.02 0.0526 0.44% 

HPS33 19.12 2001 19.023 -0.1 -0.03 0.6085 0.17% 

CALVO 99.06 2001 98.99 -0.07 0.39 0.6405 0.42% 

 

Regarding the LST (Table 5), it was determined that HPS28, HPS22, and Ameghino 

glaciers showed the highest summer temperature increases, with 1.71, 1.42, and 0.85 

degrees Celsius, respectively. Conversely, Snowy, Balmaceda, and HPS41 exhibited the 

largest summer temperature decreases, with -1.39, -1.69, and -1.83 degrees Celsius. 

Table 5 Glaciers with the most significant LST rate of change. 

GLACIER 
RATE OF 
CHANGE 

°C/summer 

R² RMSD 

HPS28 1.71 0.7157 1.52 

HPS22 1.42 0.5177 1.93 

AMEGHINO 0.85 0.79 0.62 

SNOWY -1.39 0.4526 2.17 

BALMACEDA -1.69 0.8336 1.07 

HPS41 -1.83 0.9275 0.72 

 

Finally, for the air temperature time series (Table 6), it was evidenced that the glaciers 

experiencing the highest increase in air temperature per summer were HPS30, Cachet, 

and Pared Sur, with increases of 0.24, 0.21, and 0.21 degrees Celsius, respectively. On 

the other hand, Snowy, HPS38, and HPS39 exhibited the greatest decreases, with 

reductions of -0.01, -0.04, and -0.08 degrees Celsius per summer. 

Table 6 Glaciers with the most significant air temperature rate of change. 

GLACIER 

RATE OF 

CHANGE 

°C/summer 

R² 

 

RMSD 

HPS30 0.24 0.4033  0.41 

CACHET 0.21 0.4871  0.31 

PARED SUR 0.21 0.2773  0.47 

SNOWY -0.01 0.0013  0.34 

HPS38 -0.04 0.0382  0.3 

HPS39 -0.08 0.0916  0.34 
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8.2 Patagonian Glaciers Monitoring Application (GEE App) 

After designing the GUI for the GEE code implementation, using widgets such as 

panels, buttons, and charts, as described in section 5, the “Patagonian Glaciers 

Monitoring Application” GEE web application was launched and publicly shared. It is 

accessible online at https://felipecamachoh.users.earthengine.app/view/patagonian-

glaciers-monitoring. The layout for the web application (Figure 63) consists of three 

panels. The Main panel provides the user with general information, interactive buttons, 

and selectors for running the time series analysis, and creating the summer median 

composites and time-series charts. The Map panel provides an interactive map element 

for visualizing the Patagonian glaciers and the remote sensing outputs. Lastly, the time 

series chart panel displays the time series charts. 

 

Figure 63 Patagonian Glaciers Monitoring Application – Layout distribution including Main 

panel (A), Map panel (B), and Time Series Chart panel (C). 

 

In the Main panel, a series of labels guide the user through each step required to 

interact with the application. The step-by-step process is presented in Figure 64.  

 

Figure 64 Operational Flowchart for Patagonian Glaciers Monitoring Application. 

 

It first involves defining the glacier geometry that will be used to generate the time-

series outputs. This could be a predefined glacier or a custom geometry. Specifically, the 

user can draw a rectangular geometry or import a GeoJSON geometry, such as this: 

https://github.com/felipecamachoh/PatagonianGlaciers/blob/main/GeoJSON_Import_

Example.txt. The second step is to select the summer period of interest from 2018/19 to 

A B 

C 

https://felipecamachoh.users.earthengine.app/view/patagonian-glaciers-monitoring
https://felipecamachoh.users.earthengine.app/view/patagonian-glaciers-monitoring
https://github.com/felipecamachoh/PatagonianGlaciers/blob/main/GeoJSON_Import_Example.txt
https://github.com/felipecamachoh/PatagonianGlaciers/blob/main/GeoJSON_Import_Example.txt
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2022/23. Upon setting these parameters, the third step is to execute or run the time-

series analysis. At this step, GEE performs the code implementation described in Chapter 

4 in the background. Once complete, the Run button will turn green, and in the Map 

panel, the corresponding imagery and legend will be displayed, along with the time-series 

charts in the Time Series Chart panel. The optional fourth step involves selecting any 

displayed imagery for download and clicking the Export button. If successful, the button 

will turn green and generate a URL, which, when clicked, starts the image bands' 

download process. Figure 65 presents an example of the final layout with the time-series 

analysis products added after completing the step-by-step. 

 

 

Figure 65 Patagonian Glaciers Monitoring Application – Layout distribution after 

completing the operational step-by-step. 

 

Regarding the imagery added in the Map panel, it will correspond to the glacier area 

delimitation (Figure 66A), the median LST (Figure 66B) and air temperature composites 

(Figure 67A), and a true color image (Figure 67B) for a visual inspection and comparison 

with the glacier area delimitation composite. 

 

Figure 66 Patagonian Glaciers Monitoring Application – Example of imagery outputs for a 

custom geometry. A) Glacier Area Delineation. B) LST Median Composite. 

A B 



67 

 

Figure 67 Patagonian Glaciers Monitoring Application – Example of imagery outputs for a 

custom geometry. A) Air Temperature Median Composite. B) True Color Composite. 

 

The resulting Patagonian Glaciers Monitoring Application GEE web application 

allows users to create, visualize, and export remote sensing and time-series products for 

83 Patagonian glaciers and custom geometries. This is done with a user-friendly GUI that 

guides the user through the required step-by-step process to generate and export the 

glacier area delineations, temperature median composites, and time-series charts for the 

different summers of interest.  

8.3 3D Patagonian Glaciers Viewer (CesiumJS App) 

The result of the CesiumJS web application development methodology, explained in 

Chapter 6, is the “3D Patagonian Glaciers Viewer” web application (Figure 68), available 

at https://felipecamachoh.github.io/PatagonianGlaciers/3DMonitoringApp.html. This 

application allows the user to visualize and compare the remote sensing outputs from the 

GEE web application fully in 3D and to access the time-series charts and rate of change 

for the glacier area, LST, and air temperature variables. 

 

Figure 68 3D Patagonian Glaciers Viewer – Initial Screen. 

A B 

https://felipecamachoh.github.io/PatagonianGlaciers/3DMonitoringApp.html
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The application first presents the user with a series of interactive panels that describe 

its purpose, capabilities, and methods of interaction. Once the users have familiarized 

themselves with it, they must follow a few simple steps (Figure 69) to visualize and 

compare the summer median composites. 

 

Figure 69 Operational Flowchart for 3D Patagonian Glaciers Viewer. 

 

The first step is to click the “START” button, which will zoom the web map to the 

Patagonian NPI and SPI regions. Then, similar to the GEE web application, users will 

need to select the glacier, imagery type, and summer period of interest via the buttons in 

the upper left corner of the layout. Once the parameters are correctly set, by clicking the 

“SUBMIT” button, the corresponding imagery will be requested and added to the map. 

Finally, users can utilize the “SWIPE” button in the upper right corner to enable the swipe 

functionality and compare any of the imagery side-by-side using the divisor. 

Specifically, after the user selects any of the 83 available glaciers, the application will 

highlight it, zoom into it, and display a sidebar (Figure 70) with the resulting time-series 

charts and related rate of change, as detailed in subsection 8.1. Each chart can be clicked 

to open in a new browser tab. Additionally, the sidebar can be closed and reopened by 

clicking the highlighted glacier.  

 

Figure 70 3D Patagonian Glaciers Viewer – Benito glacier selection. Features and buttons: 

Select Glacier (A), Select Imagery Type (B), Select Summer Period (C), Submit (D), and 

Sidebar (E). 

Regarding the “SUBMIT" button functionality, it not only requests and adds the 

corresponding imagery based on the selected parameters but also retrieves its legend 

(Figure 71). For this purpose, a panel in the lower left part will dynamically display the 

legend for the type of imagery requested. If required, this panel can be closed or reopened 

by clicking the show/hide legend button. 

A B C D E 
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Figure 71 Patagonian Glaciers Viewer – Benito glacier area summer median composite for 

the 2018 – 2019 summer period. Features and buttons: Legend Panel (A) and hide-show 

Legend button (B). 

 

As mentioned, the main capability of this application is the possibility to use the swipe 

to compare the imagery. In detail, once the user clicks on the 'SWIPE' button, it activates 

a divisor that can be dragged to compare the images on each side. The user can modify 

the layer's visibility and transparency using the display control panels in the upper right 

corner, which include checkboxes and sliders to visualize only the layers intended for 

comparison on each side. The described elements can be visualized in Figure 72. 

 

Figure 72 Patagonian Glaciers Viewer – Visualization of Benito glacier area (left side) and 

LST (right side) for the 2022-2023 summer period using the swipe feature. Features and 

Buttons: Enable Swipe (A), Swipe Divisor (B), and Display controls for the right panel (C).  

 

Finally, the application provides a distance scale in kilometer units and the default 

Cesium home and navigation instructions buttons as complementary features (Figure 

73). These buttons allow users to return the map view to the NPI and SPI quickly, reopen 

the instructive panels, and view the application controls. 

A 

B 

A 

B 
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Figure 73 Patagonian Glaciers Viewer – Visualization of Benito air temperature composite 

for the 2022-2023 summer period. Features and Buttons: Distance Scale (A), View Home 

(B), and Navigation Instructions C). 

8.4 Survey Review 

As detailed in Section 7, a Survey123 form was created to evaluate the user experience 

with the GEE and CesiumJS web applications. In total, 12 anonymous responses were 

received, with 11 participants aged between 25 and 34 and one aged over 45.  

Regarding the users' familiarity with the main topics introduced in this study, it was 

found that most were very familiar with Remote Sensing, Time-Series Analysis, and 

Google Earth Engine. Specifically, more than 50% reported being very familiar with 

Remote Sensing (Figure 74A) over 80% with Time-Series Analysis (Figure 74B), and 50% 

with Google Earth Engine (Figure 74C).  

  

Figure 74 Users familiarity with: A) Remote Sensing. B) Time-Series Analysis. C) GEE. 

A 

B 

C 
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In contrast, over 50% of the users were not at all familiar with Glaciology (Figure 75A) 

and 75% with CesiumJS (Figure 75B). 

 

Figure 75 Users familiarity with: A) Glaciology. B) CesiumJS. 

 

With respect to users' experience with the “Patagonian Glacier Monitoring 

Application” in terms of interface attractiveness, intuitiveness, and general performance, 

it was found that most of the users were highly satisfied with the interface, as seven rated 

it as excellent, and five as good (Figure 76A). However, for performance, although most 

rated it as good or excellent, two users rated it as fair (Figure 76B). 

 

Figure 76 Patagonian Glaciers Monitoring Application. A) Interface Rating. B) Performance 

Rating. 

 

Additionally, only two of the total participants reported experiencing bugs. The 

comments included the impossibility of generating the glacier area composite for Amalia 

Glacier in the 2020/21 summer period and a slow performance when generating the time-

series charts. However, after testing these behaviors, it was not possible to replicate the 

issues. 

Concerning the user's experience with the “3D Patagonian Glaciers Viewer” Cesium 

JS application, the ratings for the user interface and performance were better than those 

of the “Patagonian Glaciers Monitoring Application”. The participants rated the interface 

and performance as either good or excellent, with the interface receiving excellent 

responses from 75% of users (Figure 77A) and performance garnering more than 50% 

excellent ratings (Figure 77B). Moreover, compared with the GEE web application that 

received two bug reports, none of the participants evidenced unexpected behaviors in the 

3D CesiumJS web application. Finally, all the contestants agreed that the 3D perspective 

provided by the “3D Patagonian Glaciers Viewer” application facilitated the understanding 

of glacier area and temperature changes in the Patagonian glaciers (Figure 77C). 

 

A B 

A B 
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Figure 77 3D Patagonian Glaciers Viewer. A) Interface Rating. B) Performance Rating. 

 C) Positive Influence of 3D perspective for understanding glacier changes. 

 

Finally, from the last section of the survey, where users were asked which application 

they preferred for visualizing glacier area and temperature changes, as well as their level 

of agreement regarding the importance of ready-to-use applications as tools for scientific 

dissemination, it was observed that over 90% of the users tested preferred the “3D 

Patagonian Glaciers Viewer” CesiumJS web application over the “Patagonian Glaciers 

Monitoring Application” GEE web application (Figure 78).  

 

 

Figure 78 Preferred web application for visualizing the glacier area and temperature 

changes. 

 

Furthermore, 75% of participants strongly agreed that ready-to-use applications like 

the ones tested provide useful tools and information for both scientific and non-scientific 

communities (Figure 79A) and can increase the general population's interest in Earth's 

dynamics, such as glacier area and temperature changes (Figure 79B). 
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Figure 79 A) User Agreement on the Utility of Ready-to-Use Applications for Scientific and 

Non-Scientific Communities. B) User Agreement on the Potential of Ready-to-Use 

Applications to Engage the General Public in Earth Dynamics 
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9 DISCUSSION 

This chapter will present and discuss the potential of cloud computing platforms, 

specifically GEE, for environmental research using EO data and the limitations of the 

time-series analysis methodology. Moreover, it will discuss the main challenges, 

advantages, and limitations of the GEE and CesiumJS web applications and the 

contribution of this study to the knowledge of glacier dynamics in the Patagonian Region.  

 

Potential of GEE for Environmental Research 

Over the past few decades, EO data and remote sensing techniques have been widely 

used for various topics, including water management, disaster risk assessment, land use 

mapping, and climate monitoring. The traditional approach involved searching for, 

finding, and downloading the data locally, which required significant storage space. 

Moreover, once the data was downloaded, only a few images could be processed 

simultaneously due to the high computational demands, leading end-users to spend 

hundreds of hours analyzing a limited amount of data. To overcome these limitations, 

cloud computing platforms, such as GEE, have started to be used as they provide high 

processing power and the possibility of accessing EO data in the cloud without requiring 

downloading any data locally.  

In this study, GEE proved to be a crucial cloud computing platform for environmental 

research and time-series analysis, as it allowed the collection and integration of hundreds 

of satellite images from different satellite missions, such as Sentinel and Landsat, into 

processing workflows involving the creation of median composites and calculations of 

remote sensing indices such as NDSI and NDWI. These same processing operations can 

be done in ArcGIS, ENVI, and PCI Geomatic software. However, with a few lines of code 

in GEE, it was possible to rapidly retrieve the mentioned imagery, perform the indices 

and median operations, and visualize the results. Even though users are becoming more 

familiar with this cloud computing platform, as evidenced in the survey results, its full 

potential has not been uncovered due to the required JS coding skills, which are seen as 

an impediment for non-coding users. Nevertheless, plenty of official information and 

tutorials can guide the user in the initial approach to GEE, and even more, with trending 

AI platforms such as ChatGPT, users can get customized support to be introduced to 

GEE and take advantage of its capabilities. 

In synthesis, GEE is currently one of the most important cloud computing platforms 

for EO studies, leading the development of time-series analyses that were impossible 

before. It has opened the possibility of taking 20, 30, or more years of satellite data into 

consideration for scientific analysis, which will be important for identifying trends and 

addressing upcoming environmental challenges, such as climate change, water scarcity, 

and glacier retreats. 

 

Limitations and Error Sources of the Time-Series Analysis Methodology 

The methodology used for the Time Series Analysis within GEE, utilizing Sentinel 2, 

Landsat 8 and 9, and ERA5 Land imagery, has a strong theoretical background. It was 

designed based on existing, well-proven methodologies implemented to identify glacier 

area and temperature changes, considering the widely used NDSI and NDWI as main 

classifiers of glacier and non-glacier pixels. Given that the referenced studies primarily 

utilized Landsat imagery, this study aimed to take advantage of the higher pixel resolution 

of Sentinel and available Landsat imagery by working in conjunction with data from both 
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satellite missions. This approach, which has been previously validated, increased data 

availability for the summer periods of interest. However, it might have introduced 

overestimations and underestimations of the obtained values due to differences in 

spectral resolution and sensor calibrations. Moreover, even though the clouds were 

masked, as usual in remote sensing data and studies, glacier area and temperature 

values may have been influenced by remnant cloud and shadow pixels. Furthermore, the 

misclassification of snow or water pixels by the applied thresholds for the NDSI and NDWI 

could also have influenced the results. 

From the time-series analysis, the main contribution was estimating glacier area and 

temperature changes and generating median composites and time-series charts. 

However, due to time limitations, the lack of ground stations and in-situ data, the 

extensive number of glaciers studied, and a project focus on visualization over analysis 

of results, a comprehensive accuracy assessment was not conducted for the obtained 

values, except for the time-series charts. As a result, even though the findings indicate a 

significant retreat of glacier areas and show the changes in LST and air temperature, 

these values cannot be considered accurate without further validation, which limits their 

usage and discussion in current glaciology research. Regarding the accuracy assessment 

for the rate of change, it was evident that the values obtained for some glaciers are not 

representative, as they exhibit low R² and high RMSD or RRMSD. 

Despite these limitations, the methodology implemented provides valuable insights 

into the current and recent changes in glacier areas and temperatures and ready-to-use 

products that can be incorporated into further research after validation. 

 

Insights and Challenges of the GEE Web Application 

When developing the “Patagonian Glaciers Monitoring Application” within GEE, the 

goal was not only to design a tool capable of creating, visualizing, and exporting summer 

median composites and time-series charts for the Patagonian glaciers but also to make it 

attractive, user-friendly, and as simple as possible. This was motivated by the fact that 

most of the available GEE web applications lack an attractive and modern design and are 

unnecessarily complex, expecting the user to perform a series of steps without guidance. 

As a result, significant resources were dedicated to creating the best GUI, including 

testing different layouts and familiarizing with widgets and CSS concepts. This 

represented a major challenge, as there was no perfect solution for the layout design but 

rather trial and error, which resulted in constant layout modifications to adapt new 

capabilities or enhance user interactivity. The amount of effort can be evidenced not only 

in the GEE web application itself but also in the results from the survey, where more than 

50% of the users rated the interface as excellent. 

Compared with code implementations without a GUI, the main advantage of this 

application is that the user does not need to be familiar with JS, as all functionalities are 

performed interactively using buttons or selectors. In this way, the barriers between 

scientific and non-scientific communities are removed, as all users, regardless of their 

expertise, can interact with the application and gain insights into the status of Patagonian 

glaciers. Another advantage is that the code implementation is publicly available, 

meaning anyone can customize it by adding new widgets and image collections, modifying 

the NDSI or NDWI thresholds, or changing the AOI. In summary, the application has 

great potential to provide time-series outputs for glacier analysis but can be modified to 

address land cover changes, flood mapping, or additional topics where time-series can be 

generated. 
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Regarding the current limitations of the application, the download of the summer 

median composites is restricted due to GEE's design to a maximum of 32 MB or an extent 

of 400 km² using a 10 m pixel size. This limitation specifically affects the download 

process through the GUI when accessing the application via the public link and not 

through the code editor, which, in that case, allows the imagery to be downloaded to the 

user's Google Drive account without size restrictions. Moreover, as it is a cloud-hosted 

application, it requires an internet connection to be used, and its performance will depend 

on the user's internet speed. However, regardless of the connection, the application 

proved to perform well, as evidenced by the survey. 

 

Achievements and Challenges of 3D Web Development with CesiumJS 

The objective of providing a 3D visualization for the Patagonian glaciers was to attract 

the casual public and introduce them to the ongoing glacier changes by generating a 

visual impact through an interactive high-resolution experience. Moreover, for the 

scientific community, the goal was to allow the comparison of glacier areas and 

temperature changes over time. and provide visual information on the height of each 

glacier, which is important as it influences area retreat and temperature changes. Having 

the objectives defined, selecting the 3D visualization methods was not straightforward; 

different software, platforms, and JS libraries were considered for creating a 3D 

visualization, including ArcGIS Online, Blender, and ThreeJS. Indeed, CesiumJS was not 

an option, mainly due to unfamiliarity with it, supported by the survey results, in which 

it was observed that 75% of the users were not familiar at all with this JS library. 

CesiumJS and Cesium Ion proved to be outstanding tools for storing and visualizing 

3D data on the web. With them, the “3D Patagonian Glaciers Viewer” application was 

developed, providing an interactive 3D visualization with high-resolution terrain of the 

glacier area and temperature data for the NPI and SPI glaciers. As with the GEE 

application, considerable resources were dedicated to creating an attractive user interface 

and ensuring good performance. Since the imagery was compressed before being 

uploaded to Cesium Ion, the application can run at more than 30 FPS. 

The main challenge of working with CesiumJS was the steep learning curve, as it 

required becoming familiar with the viewer and entity concepts. Moreover, the inability to 

modify the symbology of the imagery after it was uploaded required adjusting the imagery 

processing steps. Nevertheless, the official documentation and available sandcastles 

provided enough information and coding examples to develop the application. It must be 

mentioned that the code implementation was constantly debugged using ChatGPT 4.   

 

Contribution to glaciological knowledge and future research 

This study contributed to glaciological knowledge by generating time-series outputs, 

estimating glacier areas and temperature changes for the NPI and SPI glaciers, and 

promoting interest in glaciers for the general population. It is expected that the developed 

web applications, specifically the 3D CesiumJS, will grab the attention of multiple users, 

encouraging them to continue studying these natural features. Furthermore, the open-

source nature of the applications and the possibility of adding new functionalities and 

datasets over the existing ones will incentivize the improvement of such tools. In future 

research, the main goal will be to assess the accuracy of the time-series results and 

extend the usability of the applications for more glacier regions worldwide. 
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10 CONCLUSION 

Glaciers are considered among the most important natural features as they provide 

ecosystem services such as water provision, flood mitigation, and biodiversity 

conservation. Moreover, as complex ecosystems, they are accurate indicators of climate 

variability. Glaciers worldwide have shown significant area retreats and temperature 

increases in the last few years, which has motivated research on ongoing glacier 

dynamics. Despite the increase in glaciology research, glacierized regions such as the 

Patagonian Andes are still poorly known due to harsh access conditions and disinterest 

from international scientific communities. In particular, the Patagonian Andes is a critical 

region, as it is the largest glacierized area in South America, with over 20000 km², 

distributed mainly between the NPI and SPI. In this context, EO data and techniques, 

including satellite imagery, cloud computing platforms, and 3D visualization methods, 

have great potential to overcome the lack of studies and promote interest in these natural 

ecosystems for both scientific and non-scientific communities. 

Motivated by the mentioned context, this diploma thesis focused on developing a GEE 

web application that allows the creation, visualization, and export of remote-sensing and 

time series products for the Patagonian region. Moreover, using this application, the goal 

was to conduct a time-series analysis of glacier area, LST, and air temperature changes 

for the NPI and SPI glaciers between the 2018 and 2023 summer periods, using Landsat 

8-9, Sentinel-2, and ERA5-Land Imagery. Furthermore, the thesis aimed to develop a 3D 

web application to visualize, interact, and compare the remote sensing and time-series 

products obtained from the GEE web application. Lastly, it evaluated the user experience 

with both web applications. 

The resulting GEE web application proved to serve its purpose, as it allows users to 

generate time-series outputs and median summer composites for 83 Patagonian glaciers 

through an attractive and user-friendly GUI. From this application, 1245 summer 

composites and 249 time-series charts were generated to evaluate the rate of change of 

glacier area, LST, and air temperature for the mentioned glaciers, evidencing a significant 

glacier area retreat and temperature increases overall while also providing detailed 

information for each glacier independently. 

Regarding the 3D web application developed using CesiumJS, it provides a fully 3D 

interactive and high-resolution experience where users can use the swipe and sidebar 

widgets to visualize, compare, and assess the ongoing Patagonian glacier changes. 

Moreover, it demonstrated the potential and advantages of a 3D perspective over the 

classic 2D web approach to generate impact and grab the general population's attention 

in scientific discussions. 

In conclusion, the time-series methodology and web applications proposed and 

developed in this study are a major step toward improving the glaciology knowledge of 

the Patagonian region. They evidenced the hidden potential of GEE and 3D visualizations 

for scientific dissemination and the importance of GUI design when creating attractive 

web experiences. Furthermore, as the source code for both GEE and CesiumJS web 

applications is publicly available, the users will be able to extend their functionalities by 

introducing new data, adding widgets, or changing the AOI. It is expected that with the 

outputs generated from this study, scientific and non-scientific communities will gain 

awareness of the importance of the glaciers and their ongoing changes. The next steps 

will be to validate the accuracy of the time-series outputs and to continue updating the 

application considering the upcoming summer periods. 
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Appendix A: Consolidated table with the glacier area changes for all studied glaciers. 

GLACIER 

RGI 

7.0 

AREA 
(Km²) 

YEAR 

2022-

2023 

AREA 
(Km²) 

AREA 

LOSE 
(Km²) 

RATE  OF 

CHANGE 
Km²/summer 

ȳ  R² RRMSD ICEFIELD 

HEIGHT 

(MEDIAN) 
m 

AGASSIZ-BOLADOS 50.76 2005 50.1 -0.66 -0.0447 50.17 0.6893 0.08% SPI 1723.07 

AMALIA 162.29 2001 159.05 -3.24 0.3125 158.3 0.0705 1.01% SPI 1314.58 

AMEGHINO 67.74 2001 63.25 -4.49 -0.2683 63.4 0.1184 1.63% SPI 1063.92 

ANTE-CUMBRE BERTRAND SUR 12 2005 11.43 -0.57 -0.0344 11.29 0.0276 2.56% SPI 1501.83 

ARCO 20.48 2001 19.14 -1.34 -0.116 19.31 0.7788 0.45% NPI 1475.21 

ASIA 115.66 2001 114.86 -0.8 -0.0438 114.32 0.0078 0.61% SPI 1133.64 

BALMACEDA 59.4 2001 56.52 -2.88 -0.2778 57.1 0.2334 1.25% SPI 898.8 

BAYO 12.92 2000 6.93 -5.99 -0.1151 7.26 0.4 2.75% NPI 697.44 

BENITO 164.06 2001 155.75 -8.31 -0.0849 155.31 0.0148 0.63% NPI 916.15 

BERNARDO 565.14 2001 551.52 -13.62 0.8909 547.35 0.063 0.89% SPI 1483.15 

BRAVO 98.12 2001 93.16 -4.96 -0.2417 93.58 0.5464 0.33% NPI 1663.99 

CACHET 37.62 2001 36.42 -1.2 -0.0648 36.55 0.7506 0.15% NPI 1513.41 

CAGLIERO (SUR) 11.48 2005 10.98 -0.5 -0.0112 10.93 0.0746 0.51% SPI 1930.81 

CALVO 99.06 2001 98.99 -0.07 0.3884 98.41 0.6405 0.42% SPI 1812.72 

CERRO DE MAYO NORTE 21.83 2005 21.464 -0.366 -0.026 21.48 0.3841 0.22% SPI 1491.27 

CHICO 311.79 2001 303.442 -8.348 0.2443 301.34 0.0303 0.65% SPI 1518.74 

COLONIA 282.07 2001 258.854 -23.216 -0.7292 260 0.7385 0.24% NPI 1483.84 

EUROPA 433.7 2001 433.399 -0.301 -0.0332 433.33 0.1318 0.03% SPI 1461.55 

EXPLORADORES 83.53 2000 69.071 -14.459 0.2632 68.59 0.2263 1% NPI 1683.56 

FIERO 36.89 2000 32.118 -4.772 0.0072 32.27 0.0003 1.71% NPI 1692.06 

FRAENKEL 30.67 2001 28.713 -1.957 0.0276 28.62 0.0656 0.52% NPI 1292.74 

FRIAS Y GRANDE 47.42 2005 42.9 -4.52 -0.4194 44.18 0.4566 1.44% SPI 1000.48 

GREY 228.48 2001 223.304 -5.176 -0.4762 224.6 0.6518 0.22% SPI 1279.64 

GUALAS 116.47 2000 106.183 -10.287 -0.2484 106.65 0.2818 0.53% NPI 1183.24 



 

GUILARDI 138.21 2001 135.931 -2.279 -0.1844 136.1 0.3879 0.24% SPI 1035.37 

HPN1 155.14 2001 141.494 -13.646 -0.6869 141.41 0.1372 1.72% NPI 812.45 

HPN4 62.5 2001 58.718 -3.782 -0.2096 59.44 0.3278 0.71% NPI 1265.39 

HPS10 55.59 2001 53.844 -1.746 -0.1379 54.09 0.5173 0.35% SPI 1342.5 

HPS12 168 2001 156.028 -11.972 -0.6889 155.45 0.1142 1.75% SPI 1459.29 

HPS13 219.37 2001 219.131 -0.239 -0.0222 218.91 0.0248 0.09% SPI 1775.61 

HPS17 60.01 2001 59.762 -0.248 -0.0523 59.64 0.114 0.35% SPI 1351.12 

HPS18 37.49 2001 37.079 -0.411 -0.0429 37.08 0.2357 0.29% SPI 1472.4 

HPS19 172.6 2001 172.457 -0.143 -0.0088 172.42 0.0197 0.06% SPI 1569.21 

HPS20 12.78 2001 12.376 -0.404 -0.028 12.36 0.282 0.51% SPI 1180.22 

HPS22 21.38 2001 21.15 -0.23 -0.021 21.13 0.2517 0.24% SPI 1133.94 

HPS24 41.3 2001 39.009 -2.291 -0.2569 38.96 0.2911 1.45% SPI 972.84 

HPS25 11.36 2001 11.045 -0.315 -0.0466 11.08 0.5251 0.57% SPI 973.92 

HPS27 31.84 2001 31.71 -0.13 -0.0233 31.62 0.0526 0.44% SPI 1677.11 

HPS28 60.11 2001 56.422 -3.688 -0.175 56.58 0.5076 0.43% SPI 1614.03 

HPS29 82.05 2001 81.913 -0.137 -0.0107 81.83 0.0303 0.11% SPI 1539.27 

HPS30 19.68 2001 19.193 -0.487 -0.08 19.18 0.3757 0.76% SPI 1113.5 

HPS31 155.33 2001 154.789 -0.541 0.0072 154.6 0.002 0.15% SPI 1469.65 

HPS33 19.12 2001 19.023 -0.097 -0.0279 19.04 0.6085 0.17% SPI 1157.93 

HPS34 153.78 2001 153.511 -0.269 -0.0535 153.45 0.2486 0.09% SPI 1644.35 

HPS35 27.29 2001 26.879 -0.411 -0.0391 26.91 0.2635 0.34% SPI 949.93 

HPS38 69.81 2001 61.082 -8.728 -0.9506 61.78 0.6415 1.63% SPI 970 

HPS39 49.85 2001 44.505 -5.345 -0.3934 44.33 0.3089 1.88% SPI 858.13 

HPS41 68.13 2001 64.873 -3.257 -0.433 65.43 0.5198 0.90% SPI 1221.71 

HPS9 51.07 2001 47.848 -3.222 -0.0702 48.48 0.0264 1.24% SPI 1541.63 

JORGE MONTT 463.42 2001 440.224 -23.196 -0.4271 434.34 0.0091 1.45% SPI 1366.44 

LEONES 63.42 2000 59.628 -3.792 -0.2293 60.11 0.3597 0.72% NPI 1742.72 

LUCIA 160.33 2001 151.584 -8.746 -0.2852 151.72 0.1702 0.59% SPI 1392.03 



 

MARCONI 16.67 2005 14.108 -2.562 -0.1846 14.29 0.5831 1.54% SPI 1353.24 

MELLIZO SUR 36.85 2001 36.14 -0.71 -0.0514 36.26 0.2223 0.38% SPI 2038.55 

NEF 131.3 2001 118.432 -12.868 -0.2668 118.77 0.3594 0.42% NPI 1452.22 

OFHIDRO 76.51 2001 74.408 -2.102 0.274 73.29 0.186 1.11% SPI 1196.12 

O'HIGGINS 780.49 2001 767.112 -13.378 -1.0898 767.61 0.5549 0.18% SPI 1402.56 

ONELLI 41.8 2005 37.615 -4.185 -0.2701 37.94 0.6011 0.82% SPI 1519.71 

ORIENTAL 70.22 2001 67.838 -2.382 -0.1179 67.94 0.3117 0.37% SPI 1630.3 

PARED NORTE 77.13 2001 66.519 -10.611 -0.339 67.03 0.3624 0.95% NPI 1033.29 

PARED SUR 31.52 2001 21.837 -9.683 -0.451 22.11 0.4343 3.30% NPI 848.38 

PASCUA 78.6 2001 73.202 -5.398 -0.353 73.2 0.2381 1.22% SPI 1059.34 

PENGUIN 457.98 2001 457.728 -0.252 -0.0006 457.62 0.00008 0.02% SPI 1714.16 

PINGO 59.54 2001 58.977 -0.563 -0.0495 59.08 0.2326 0.22% SPI 1300.88 

PIO XI 1233.08 2001 1223.32 -9.76 1.9495 1220.65 0.1734 0.49% SPI 1294.38 

PISCIS 12.18 2001 11.122 -1.058 -0.075 11.21 0.77 0.51% NPI 1208.23 

REICHER 66.79 2000 60.505 -6.285 0.0289 60.36 0.0015 1.72% NPI 1482.35 

SAN QUINTIN 815.29 2001 802.856 -12.434 -0.5552 803.98 0.5851 0.08% NPI 1300.28 

SAN RAFAEL 684.55 2000 676.397 -8.153 -0.1774 676.46 0.0908 0.12% NPI 1327.67 

SNOWY 18.22 2001 16.984 -1.236 0.006 16.84 0.0003 3.15% SPI 975.33 

SOLER 49.28 2001 44.482 -4.798 0.033 44.34 0.0437 0.49% NPI 1732.78 

STEFFEN 547.59 2001 527.533 -20.057 -0.7419 527.23 0.157 0.46% NPI 1249.04 

STRINDBERG 16.33 2001 14.874 -1.456 -0.0411 14.96 0.4693 0.41% NPI 1113.52 

TEMPANO 433.91 2001 410.92 -22.99 1.8988 413.43 0.0805 2.19% SPI 1239.65 

TORRE ADELA GRANDE 24.22 2005 19.82 -4.4 -0.0715 19.81 0.2541 0.87% SPI 1490.36 

TUNEL 17 2005 15.911 -1.089 -0.0438 15.91 0.4579 0.42% SPI 1518.59 

TYNDALL 319.6 2001 309.5 -10.1 -0.7631 311.14 0.3918 0.43% SPI 1018.81 

U2 15.02 2001 13.874 -1.146 -0.0649 13.92 0.3941 0.82% NPI 1408.82 

U3 17.6 2001 16.957 -0.643 -0.0733 17.03 0.5721 0.53% NPI 1419.29 

U-4 11.89 2001 9.725 -2.165 -0.3323 10.16 0.8865 1.66% NPI 1408.97 

U6 13.32 2000 10.476 -2.844 -0.0251 10.55 0.0544 1.40% NPI 1433.71 

UPSALA 778.97 2005 741.83 -37.14 -0.2795 733.74 0.0037 0.89% SPI 1299.46 

VIEDMA 896.36 2001 864.112 -32.248 -1.144 863.83 0.2458 0.33% SPI 1323.83 



 

Appendix B: Consolidated table of LST rate changes for all studied glaciers. 

GLACIER 
RATE OF CHANGE 

°C/summer 
ȳ  R² RMSD 

AGASSIZ-BOLADOS 0.7562 -1.45 0.8038 0.53 

AMALIA 0.3174 -1.59 0.1763 0.97 

AMEGHINO 0.8491 -0.62 0.79 0.62 

ANTE-CUMBRE BERTRAND SUR 0.684 -0.36 0.6629 0.69 

ARCO -0.0357 -0.41 0.0236 0.33 

ASIA 0.3244 -0.91 0.7957 0.23 

BALMACEDA -1.6938 -0.99 0.8336 1.07 

BAYO 0.7417 0.61 0.4653 1.12 

BENITO -0.1452 -0.27 0.1817 0.44 

BERNARDO 0.6754 -1.4 0.6466 0.71 

BRAVO 0.227 -1.22 0.2792 0.52 

CACHET -0.2268 -0.53 0.1883 0.67 

CAGLIERO (SUR) 0.2997 -1.1 0.1486 1.01 

CALVO -1.0306 -3.53 0.75 0.83 

CERRO DE MAYO NORTE 0.6876 -1.24 0.5078 0.96 

CHICO 0.051 -0.89 0.0306 0.41 

COLONIA -0.0753 -0.22 0.1015 0.32 

EUROPA 0.0619 -1.55 0.0497 0.38 

EXPLORADORES 0.5231 -0.8 0.2235 1.38 

FIERO -0.2304 -0.81 0.0568 1.33 

FRAENKEL -0.3266 -1.54 0.1751 1 

FRIAS Y GRANDE -0.1115 0.14 0.0863 0.51 

GREY -0.6684 -1.74 0.3673 1.24 

GUALAS -0.4421 -0.05 0.7491 0.36 

GUILARDI 0.7559 -1.2 0.4818 1.11 

HPN1 -0.1603 0.06 0.283 0.36 

HPN4 0.1077 -0.41 0.0392 0.75 

HPS10 0.1823 -0.49 0.2273 0.48 

HPS12 0.1753 -0.77 0.1924 0.51 

HPS13 -0.4295 -2.59 0.3298 0.87 

HPS17 0.0261 -0.46 0.0025 0.74 

HPS18 0.1266 -1.51 0.0517 0.77 

HPS19 -0.0506 -1.52 0.0106 0.69 

HPS20 0.1005 -0.24 0.0561 0.58 

HPS22 1.4173 -2.26 0.5177 1.93 

HPS24 0.4633 -0.62 0.4287 0.76 

HPS25 0.2739 -0.49 0.3251 0.56 

HPS27 0.8247 -1.76 0.8874 0.42 

HPS28 1.7073 -2.86 0.7157 1.52 

HPS29 0.6365 -2.17 0.567 0.79 

HPS30 0.5008 -0.81 0.7747 0.38 



 

HPS31 0.1124 -1.77 0.0426 0.745 

HPS33 0.7317 -0.9 0.0426 1.07 

HPS34 0.469 -2.22 0.7441 0.39 

HPS35 0.2874 -0.49 0.3622 0.54 

HPS38 0.2318 -0.79 0.3622 0.86 

HPS39 -0.7203 0.11 0.6048 0.82 

HPS41 -1.8255 -1.36 0.9275 0.72 

HPS9 -0.0987 -1.52 0.0174 1.05 

JORGE MONTT 0.1213 -0.53 0.2677 0.28 

LEONES -0.3691 -0.9 0.3712 0.68 

LUCIA 0.0022 -0.53 0.0003 0.2 

MARCONI -0.4999 -0.25 0.2276 1.3 

MELLIZO SUR 0.0824 -2.29 0.0096 1.18 

NEF -0.2738 -0.48 0.2649 0.65 

OFHIDRO 0.4474 -0.88 0.4923 0.64 

O'HIGGINS 0.0261 -1.02 0.0051 0.51 

ONELLI 0.6273 -1.27 0.6204 0.69 

ORIENTAL 0.126 -0.33 0.2925 0.28 

PARED NORTE 0.1029 0.1 0.2062 0.29 

PARED SUR 0.1467 0.4 0.4143 0.25 

PASCUA 0.1801 0.05 0.5433 0.23 

PENGUIN -0.2843 -2.38 0.225 0.75 

PINGO -0.1744 -1.73 0.0242 1.56 

PIO XI -0.2508 -0.97 0.143 0.87 

PISCIS 0.2195 0.36 0.4224 0.36 

REICHER -0.6086 -0.62 0.7289 0.45 

SAN QUINTIN -0.3328 -0.55 0.4222 0.55 

SAN RAFAEL -0.0744 -0.23 0.069 0.39 

SNOWY -1.39 -0.51 0.4526 2.17 

SOLER -0.1629 -1.39 0.0557 0.95 

STEFFEN -0.1761 -0.21 0.2298 0.46 

STRINDBERG -0.3406 -0.77 0.225 0.89 

TEMPANO -0.0305 -1.03 0.0029 0.81 

TORRE ADELA GRANDE 0.2179 -0.07 0.0813 1.04 

TUNEL 0.2621 -0.3 0.2322 0.67 

TYNDALL -0.299 -1.02 0.0851 1.39 

U2 0.6058 -0.87 0.3942 1.06 

U3 0.3328 -0.74 0.3385 0.66 

U-4 0.2251 -0.18 0.4593 0.35 

U6 0.1235 -0.43 0.0239 1.12 

UPSALA 0.2258 -0.77 0.4771 0.33 

VIEDMA 0.1995 -0.82 0.5804 0.24 

 

 



 

Appendix C: Consolidated table of air temperature rate changes for all studied glaciers. 

GLACIER 
RATE OF CHANGE 

°C/Summer 
ȳ  R² RMSD 

AGASSIZ-BOLADOS 0.0269 -1.57 0.025 0.24 

AMALIA 0.0481 1.8 0.0488 0.3 

AMEGHINO 0.1699 0.83 0.4164 0.28 

ANTE-CUMBRE BERTRAND 
SUR 

0.0178 -2.08 0.0168 0.19 

ARCO 0.1369 2.71 0.2411 0.34 

ASIA 0.0348 3.69 0.0239 0.32 

BALMACEDA -0.0088 4.72 0.0013 0.34 

BAYO 0.128 1.59 0.327 0.26 

BENITO 0.1319 2.67 0.3677 0.25 

BERNARDO 0.1435 0.52 0.378 0.26 

BRAVO 0.1064 0.02 0.2787 0.24 

CACHET 0.2115 1.01 0.4871 0.31 

CAGLIERO (SUR) 0.0739 1.69 0.107 0.3 

CALVO 0.0719 -0.018 0.0765 0.35 

CERRO DE MAYO NORTE 0.1276 1.33 0.3872 0.23 

CHICO 0.1472 -0.58 0.3654 0.27 

COLONIA 0.1467 1.73 0.3239 0.3 

EUROPA 0.0551 0.88 0.085 0.26 

EXPLORADORES 0.0827 1.91 0.1755 0.25 

FIERO 0.128 1.59 0.327 0.26 

FRAENKEL 0.1652 3.48 0.3085 0.35 

FRIAS Y GRANDE 0.0728 1.77 0.0769 0.36 

GREY 0.0904 0.52 0.1172 0.35 

GUALAS 0.138 2.6 0.3833 0.25 

GUILARDI 0.0926 3.2 0.2112 0.25 

HPN1 0.1702 5.63 0.2971 0.37 

HPN4 0.1707 5.75 0.1815 0.51 

HPS10 0.0364 2.25 0.056 0.21 

HPS12 0.0691 0.98 0.1601 0.22 

HPS13 0.0882 -0.75 0.2047 0.25 

HPS17 0.0417 1.48 0.0384 0.3 

HPS18 0.0539 1.42 0.069 0.28 

HPS19 0.0355 -1.11 0.04 0.25 

HPS20 0.0555 2.76 0.0625 0.3 

HPS22 0.0713 2.99 0.167 0.23 

HPS24 0.1405 3.88 0.325 0.29 

HPS25 0.0786 3 0.1612 0.25 

HPS27 0.0549 2.62 0.0951 0.24 

HPS28 0.1897 2.37 0.4415 0.3 

HPS29 0.182 1.85 0.3425 0.36 

HPS30 0.2397 4.71 0.4033 0.41 

HPS31 0.0952 1.49 0.1564 0.31 



 

HPS33 0.0639 0.5 0.0677 0.34 

HPS34 0.0639 0.5 0.0677 0.34 

HPS35 0.0827 3.1 0.1426 0.29 

HPS38 -0.0424 3.44 0.0382 0.3 

HPS39 -0.0752 4.37 0.0916 0.34 

HPS41 0.0122 3.94 0.0032 0.31 

HPS9 0.0334 2.19 0.0576 0.19 

JORGE MONTT 0.1221 0.59 0.2894 0.27 

LEONES 0.1509 1.76 0.4047 0.26 

LUCIA 0.112 0.17 0.2902 0.25 

MARCONI 0.0871 0.063 0.1679 0.27 

MELLIZO SUR 0.1555 0.63 0.4613 0.24 

NEF 0.1652 2.09 0.4022 0.29 

OFHIDRO 0.0886 2.68 0.1389 0.31 

O'HIGGINS 0.0457 -0.18 0.0793 0.22 

ONELLI 0.0418 -0.77 0.0641 0.23 

ORIENTAL 0.1555 0.63 0.4613 0.24 

PARED NORTE 0.1347 3.67 0.1825 0.4 

PARED SUR 0.2078 4.71 0.2773 0.47 

PASCUA 0.1279 0.25 0.3645 0.24 

PENGUIN 0.0204 -1.06 0.0138 0.23 

PINGO 0.0714 1.55 0.0976 0.31 

PIO XI 0.0571 0.93 0.1154 0.22 

PISCIS 0.1731 4.6055 0.2182 0.46 

REICHER 0.117 1.59 0.3445 0.23 

SAN QUINTIN 0.1783 2.17 0.4506 0.28 

SAN RAFAEL 0.1645 2.26 0.4425 0.26 

SNOWY -0.0088 4.72 0.0013 0.34 

SOLER 0.1401 2.09 0.3336 0.28 

STEFFEN 0.1262 3.17 0.2878 0.28 

STRINDBERG 0.1652 3.48 0.3085 0.35 

TEMPANO 0.0635 1.8 0.1564 0.21 

TORRE ADELA GRANDE 
0.0654 2.49 0.0793 0.32 

TUNEL 0.0654 2.49 0.0793 0.32 

TYNDALL 0.0407 2.3 0.0467 0.26 

U2 0.1707 5.75 0.1815 0.51 

U3 0.1731 5.13 0.2182 0.46 

U-4 0.1347 3.67 0.1825 0.4 

U6 0.128 1.59 0.327 0.26 

UPSALA 0.1075 -0.2 0.2811 0.24 

VIEDMA 0.0906 -0.43 0.1776 0.28 

 

 

 


