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ABSTRACT 

This thesis deals with chaotic circuits of fractional order. First, an overview of fractal 

elements and their approximations is presented. Three fractal element 

approximations are then realized and tested. Next, a short overview of chaotic 

systems is presented and methods of synthesizing such systems into electrical 

circuits is discussed. Two methods are selected, and an example of synthesis with 

both methods is performed. Next, a known system with observed chaotic behavior 

is synthesized into a circuit, simulated, built. and experimentally verified. 
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ABSTRAKT 

Táto semestrálna práca sa zaoberá chaotickými obvodmi s fraktálnymi prvkami. V 

prvej časti sú prezentované fraktálne prvky, ich vlastnosti a spôsob syntézy. Tri 

takéto prvky sú navrhnuté, vyhotovené a merané. V druhej časti je krátky úvod do 

problematiky chaotických obvodov, a spôsobov ich syntézy. Následne sú 

prezentované dve metódy syntézy chaotických obvodov s názorným príkladom. Na 

koniec bol vybraný jeden chaotický system ktorý bol syntetizovaný do obvodu, 

odsimulovaný, zhotovený a experimentálne overený. 
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INTRODUCTION 

Chaos in electrical circuits has been a point of interest for researchers and engineers 

for some time now. Chaotic behavior is special because while deterministic, it is very 

unpredictable. With its many useful properties and promising real-world 

applications, a sizable amount of research is being conducted on studying chaos in 

electronics. 

 Another promising field are fractal elements. They are circuit elements that 

inhibit the properties of partially a capacitor, or inductor, and partially that, of a 

resistor. These elements allow researchers to create more precise models of the real 

world. This thesis aims to study some of the properties of fractal chaotic systems. 

 The first chapter aims to introduce fractal elements and the way they can be 

created. Next, three different fractal elements are designed, built, and simulated and 

their behavior is measured and compared to the mathematical models. The third 

chapter provides an introduction to chaotic systems and discusses the fractal ones. 

Next, two methods of synthesis of chaotic circuits are chosen and each method is 

demonstrated on a simple example. In the fifth chapter of the thesis, a system is 

selected which is then synthesized into an electrical circuit. This circuit is then 

simulated in SPICE program and results are discussed. The last chapter of the thesis 

discusses real realization of the circuit, which is built, measured and the result are 

presented. At last, a complete model of the circuit is created and a numerical analysis 

is performed. 
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1. INTRODUCTION TO FRACTAL ELEMENTS 

Fractional calculus, a more expanded form of traditional calculus has relatively 

recently found it’s practical applications in linear systems and signals [1]. 

Introducing fractional derivatives into linear circuit theory allows for description of 

a new type of component, commonly referred to as a constant phase element (CPE) 

[3]. As of now, the CPE is unfortunately not commercially available as an electrical 

component, despite previous efforts [4]. The behavior of an ideal CPE can however 

be approximated in a limited frequency range. The CPE that will be utilized in this 

thesis - a fractal capacitor, will be an approximation of an ideal one using common 

passive components. 

1.1 Ideal CPE  

Behavior of an ideal CPE in frequency domain can be described by a generalized 

formulas of passive two-terminal elements from linear circuit theory [5]. The 3 basic 

passive elements: resistor, capacitor and an inductor are depicted below, 

complemented with their corresponding impedance functions obtained from the 

Laplace transform. The 4th depicted element is a frequency dependent negative 

resistor (FDNR), which as a real component is only available in synthetic form [6]. 

 

 

   

𝑍𝑅(𝑠) = 𝑅 𝑍𝐶(𝑠) =  
1

𝑠𝐶
 𝑍𝐿(𝑠) = 𝑠𝐿 𝑍𝐷(𝑠) =  

1

𝐷𝑠2
 

a) b) c) d) 

Figure 1.1 – Symbol and impedance function for a) resistor, b) capacitor, c) 
inductor, d) FDNR 

Modifying the impedance function of a capacitor and inductor in the following 

manner will allow us to describe all of the basic passive elements as well as the CPE: 

 𝑌𝐶(𝑠) = 𝑌𝛽 ∙ 𝑠
𝛼                                 𝑍𝐿(𝑠) = 𝑍𝛼 ∙ 𝑠

𝛽   (1.1) 

In case when α and β are 1, these equations yield the original functions for C and L 

respectively. In case when either α or β is 2, the resulting function describes a FDNR, 

and a 0 will yield the resistor impedance function. For β ∈ (0, 1) the function 
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describes a fractal inductor, while α ∈ (0, 1) describes a fractal capacitor [7]. A CPE 

is therefore a component partially exhibiting characteristics of a resistor, and 

partially of a capacitor or an inductor. Figure 1.2 shows the placement of all linear 

passive elements as well as the fractal inductor and capacitor in the frequency 

domain.  

A fractal element is characterized by two parameters, it’s phase shift and impedance. 

The impedance of a CPE is usually referred to as fractance (designated D), expressed 

as  [H ∙ s1−𝛽] in case of fractional inductance, and [F s1−𝛼⁄ ] in case of fractional 

capacitance [8].  Extracting the frequency and phase response for the fractal 

capacitor shows that its impedance decreases with frequency at a slope of 𝛼 ∙ 20 dB 

per decade and its phase shift is constant, precisely 𝛼 ∙  −90  degrees. For the fractal 

inductor the relations are, as expected inverted.  

Figure 1.2 Complex plane with locations of all linear passive elements as well as 
the fractal inductor and capacitor 

Figure 1.3 a) Impedance and b) Phase response for resistor (α = 0), fractal capacitor  
(α = 0,5) and ideal capacitor (α = 1) 
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1.2 CPE Approximation 

A viable method of approximating a CPE is with a network model. Forming a 

network consisting of basic passive components can yield a two-terminal device that 

can in a limited frequency range approximate the behavior of a fractal element. 

Several methods for this type of approximation were proposed in the past, many 

however depend on various numeric iteration methods or optimization algorithms 

[9]. Some methods depend on active elements or negative resistances or form two-

port instead of two-terminal devices, which limit’s their application [10][11]. A very 

straight-forward method for constructing the network is described in [12] which 

will be the one utilized in this thesis.  

This method generates a network with an equidistant distribution (in logarithmic 

measure) of repeating zeroes and poles in left half plane, depicted on Figure 1.4.   

With a finite number of these zeroes and poles it is possible to approximate a CPE in 

a limited frequency range with a steady phase angle of any value a minimum phase 

system can have (-90° to 90°) [13]. The phase response will however never be 

completely straight, a quantifiable ripple will be always present, dependent on the 

distance d. The impedance function for such network can be written as follows 

𝑌𝐶(𝑠) = 𝑌0 

∏(𝑠 − 𝑧𝑖)

𝑚

𝑖=1

 

𝑍𝐿(𝑠) = 𝑍0 

∏(𝑠 − 𝑧𝑖)

𝑚

𝑖=1

 

(1.2) 

∏(𝑠 − 𝑝𝑖)

𝑛

𝑖=1

 ∏(𝑠 − 𝑝𝑖)

𝑛

𝑖=1

 

where m = n. The schematic diagram on Figure 1.5, depicts two circuit realizations 

Figure 1.4 Example of an equidistant zero-pole distribution 
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containing only resistors and capacitors. Such CPE will have characteristics of a  

fractal capacitor, however, a fractal inductor can be created in very much the same 

way using the duality principle. Input impedance for configuration on Figure 1.5a 

can be expressed as 

𝑌𝐶(𝑠) =
1

𝑅𝑃
+ 𝑠𝐶𝑃 +∑

𝑠𝐶𝑖
𝑠𝐶𝑖𝑅𝑖 + 1

.

𝑛

𝑖=1

 (1.3) 

Each of the R-C pairs generates one of the pole-zero pairs in the polar plot, while the 

CP and RP  are referred to in the paper as correction elements. They define the corner 

frequencies and help to extend the usable frequency range of the approximation. 

The following can be written about the amplitude and phase response of the Figure 

1.5a  network: 

lim
ω→0 

arg 𝑍𝐶( 𝑠 = 𝑗𝜔) = 0, lim
ω→∞ 

arg 𝑍𝐶(𝑠 = 𝑗𝜔) = −
𝜋

2
, (1.4) 

lim
ω→0 

|𝑍𝐶(𝑠 = 𝑗𝜔)| = 𝑅𝑃, lim
ω→∞ 

|𝑍𝐶(𝑠 = 𝑗𝜔)| = 0 . (1.5) 

Similarly, the Figure 1.5b network can be described 

𝑍𝐶(𝑠) = 𝑅𝑠 +
1

𝑠𝐶𝑠
+∑

𝑅𝑖
𝑠𝐶𝑖 + 1

,

𝑛

𝑖=1

 (1.6) 

lim
ω→0 

arg 𝑍𝐶(𝑠 = 𝑗𝜔) = −
𝜋

2
, lim

ω→∞ 
arg 𝑍𝐶(𝑠 = 𝑗𝜔) = 0, (1.7) 

lim
ω→0 

|𝑍𝐶(𝑠 = 𝑗𝜔)| = ∞, lim
ω→∞ 

|𝑍𝐶(𝑠 = 𝑗𝜔)| = 𝑅𝑆 . (1.8) 

Figure 1.5 Schematic diagram of two CPE networks 
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2. BUILDING THE FRACTAL CAPACITORS 

The CPE approximations were designed using network models created by an 

algorithm described in [14]. We start by selecting design parameters of the CPE 

model. These are the corner frequencies fmin and fmax calculated from the time 

constant τ1 = R1C1, phase ripple Δφ, desired phase angle φ, number of RC sections in 

the network, and the fractance D. From description of the design method in Chapter 

1.2 it is clear that some input parameters lead to contradicting results. For example, 

the desired frequency range cannot be obtained if insufficient number of sections, 

too low phase angle or too small of a phase ripple is chosen.  

    The constructed fractal capacitors are to be used in a chaotic oscillator. These are 

wideband circuits, therefore a steady phase angle over a large frequency range is 

desired. The range of 10 Hz to 1 MHz was decided as sufficient for this application. 

Another important parameter is the phase ripple. It was decided that Δφ < 1° is 

acceptable, however because we must use commercially available components, 

which have values dictated by the E series of preferred values and manufacturing 

tolerances the calculation will be performed for lower value of Δφ to make up for 

these limitations. Under these conditions a number of sections sufficient for a good 

approximation is 9. More sections could lead to wider range or smaller ripple; 

however, it was discovered that more than 10 sections will end up hindering, rather 

than improving the model accuracy because manufacturing tolerances with such 

large number of devices become unmanageable. 3 fractal capacitors were designed, 

with α = ¼, ½ and ¾. The structure a) from Figure 1.5 was chosen as more fitting 

with the chosen parameters. The design variables are as summarized in Table 2.1. 

α  

[-] 

φ 

 [°] 

Δφ  

[°] 

n  

[-] 

D 

 [F s1−α⁄ ] 

¼ 22,5 0,1 9 13,11k 

½ 45 0,22 9 174,08k 

¾ 67,5 0,35 9 2,297M 

Table 2.1 Input parameters of the 3 fractal capacitors. 
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The modulus of the ideal fractal capacitor at a given frequency can be derived from 

formula (1.1) (now denoting fractance with D instead of YC for clarity) this way: 

|𝑍| =
𝐷

(2𝜋 ∙ 𝑓)𝛼
 [Ω] (2.1) 

The values for D in Table 2.1 are calculated such, that a 1 kΩ resistor, a 33 nF 

capacitor and all of the fractal capacitors will have the same modulus at  frequency 

f  = 4,823  kHz. This is also a design requirement for the chaotic system. 

After all the component values are calculated, it is necessary to adjust them so that 

real components can be used for construction. This was accomplished by simulating 

all of the fractal capacitors in ORCAD PSpice and adjusting all the values one by one 

to fit into the desired Δφ < 1°. In several instances it was necessary to cascade 

multiple components in parallel or series to achieve the desired phase ripple. Table 

2.2 – Table 2.4 contain all the calculated and selected component values as well as 

the % error. The || notation is used for parallel combination of multiple components, 

while & is used for series combination. Component designated R0 and C0 are the 

parallel correction elements.  Final component values are in rows marked with ’. 

n 

[-] 

Rn 

[Ω] 

Rn’ 

[Ω] 

ΔR 

[%] 

Cn 

[F] 

Cn’ 

[F] 

ΔC 

[%] 

0 7,2631 k 7,5 k 3,16 96,777 p 82 p 18,0 

1 15,681 k 15 k 4,54 1,9131 µ 1 µ || 1 µ 4,34 

2 10,717 k 11 k 2,57 610,74 n 680 n 10,2 

3 7,3247 k 7,15 k 1,73 194,97 n 220 n 11,4 

4 5,0060 k 5 k 0,12 62,242 n 68 n 8,47 

5 3,4214 k 3,3 k 3,68 19,870 n 18 n || 5,6 n 18,77 

6 2,3383 k 2,2 k 6,29 6,342 n 6,8 n 6,74 

7 1,5981 k 1,5 k 6,54 2,0250 n 2,2 n 7,95 

8 1,0922 k 1 k 9,22 646,46 p 680 p 4,93 

9 746,476 680 9,78 206,37 p 220 p 6,20 

Table 2.2 Component values for the fractal capacitor network for α = ¼. 
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n 

[-] 

Rn 

[Ω] 

Rn’ 

[Ω] 

ΔR 

[%] 

Cn 

[F] 

Cn’ 

[F] 

ΔC 

[%] 

0 84,076 k 82 k 2,53 534,39 p 560 p 4,57 

1 67,013 k 68 k 8,09 447,67 n 1 µ & 1 µ 4,75 

2 29,722 k 30 k 2,49 198,56 n 100 n || 100 n 0,72 

3 13,183 k 13 k 1,41 88,067 n 82 n || 8,2 n 0,15 

4 5,8470 k 6,2 k 5,69 39,061 n 68 n & 82 n 5,07 

5 2,5934 k 2,7 k 4,12 17,325 n 18 n 3,75 

6 1,1502 k 1,2 k 4,15 7,6841 n 8,2 n 6,29 

7 510,167 510 0,03 3,4081 n 3,6 n 5,33 

8 226,276 240 5,72 1,5116 n 1,6 n 5,55 

9 100,361 100 0,36 670,45 p 680 p 1,40 

Table 2.3 Component values for the fractal capacitor network for α = ½. 

n 

[-] 

Rn 

[Ω] 

Rn’ 

[Ω] 

ΔR 

[%] 

Cn 

[F] 

Cn’ 

[F] 

ΔC 

[%] 

0 1,1450 M 1,2 M 4,58 4,0672 n 3,9 n 4,29 

1 431,67 k 470 k 8,16 69,497 n 68 n 2,20 

2 118,19 k 120 k 1,51 45,127 n 12 n || 33 n 0,28 

3 32,357 k 33 k 1,95 29,302 n 18 n || 12 n 1,74 

4 8,8589 k 9,1 k 2,65 19,027 n 18 n 5,70 

5 2,4254 k 2,7 k 10,2 12,355 n 12 n 2,96 

6 664,043 680 2,35 8,0226 n 8,2 n 2,16 

7 181,804 180 1,02 5,2093 n 5,1 n 2,14 

8 49,7751 51 2,40 3,3826 n 3,3 n 2,50 

9 13,6276 15 9,15 2,1964 n 2,2 n 0,16 

Table 2.4 Component values for the fractal capacitor network for α = ¾. 
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Figure 2.2 Spread of the phase response with 100 runs of Monte Carlo for 
the α = ½ fractal capacitor 

Figure 2.1 Spread of the phase response with 100 runs of Monte Carlo for 
the α =  ¼ fractal capacitor 

Despite some values deviating by more than 10% it does not necessarily mean the 

approximation will be significantly off. If other elements around were also adjusted. 

This must be done experimentally because the overall phase response is dependent 

at any point on the values of most other components.   Components chosen for the 

construction were of SMD type, size 0603. Resistors had 1% tolerance and 

capacitors had 5% tolerance. With the final component values a 100 run Monte Carlo 

analysis was performed to evaluate   how manufacturing tolerances would impact 

the phase response. Figure 2.2 – Figure 2.3 show the results of the Monte Carlo 

analysis.  It is obvious that the spread of the phase ripple is large.  More than 4 

degrees, which is not acceptable for this application. It is therefore necessary to 

hand-pick the components that will be used, by measuring multiple units and 

picking the one closest to the nominal value. 
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Figure 2.4 Modulus of impedance plotted for all fractal capacitors as well as a 33 nF 
capacitor and a 1 kΩ resistor 

Figure 2.4 shows the impedance modulus of all of the simulated fractal elements, as 

well as a 1 kΩ resistor and a 33 nF capacitor. It is clear that all of the components 

have the same impedance at the same frequency and the slope of the fractal 
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Figure 2.3 Spread of the phase response with 100 runs of Monte Carlo for 
the α = ¾ fractal capacitor 
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elements is more moderate than that of a capacitor and corresponds to the α 

exponent. 

 

The 3 fractal elements were constructed each on their own universal PCB. Next, 

AD844 [15] amplifier was set up in a fractional integrator configuration with the 

CPE and a single resistor setting the gain. The measurement was performer on the 

Keysight DSOX3022T digital oscilloscope, using the bode plot function. Figure 2.5 

shows the phase relations for all 3 fractal elements.  

From the measured results several observations can be made. First, the AD844’s 

limited bandwidth makes the measured data valid only up to 1 MHz. Second, the 

impedance norm of the CPE’s with α = ½ and ¾ is too high, making measurements 

difficult. The parasitic capacitances in the measurement circuit create additional 

phase shift which is visible in the results. The approximation with α = ¼ is pretty 

accurate, with phase ripple corresponding to the simulated results, from this 

observation, and by looking at the results in the first two decades of the 

measurement for the other two CPE’s, it could be assumed that the other two 

fractional capacitors also have phase responses similar to the simulated data. These 

fractal elements were therefore deemed suitable for use with the chaotic circuit. 

Figure 2.5 Measured phase angle response of all 3 constructed fractal capacitors 
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3.  CHAOTIC CIRUITS 

Chaotic behavior, while lending itself similar to randomness is not at all related. 

While random behavior can be described by statistics and probability, chaos is 

unpredictable and deterministic, Chaotic circuits are of interest because of their 

potential in cryptography and communications [16][17]. The most known chaotic 

circuit to this day is the Chua’s oscillator [18], discovered in 1983 and named after 

its creator L. O. Chua, which sparked a large interest in the search for more chaotic 

circuits, namely because of its simplicity. The circuit is a 3rd order system containing 

only 5 passive components and an active nonlinear component in form of a synthetic 

negative resistor, referred to as a Chua diode. Over the years countless modifications 

of this circuit have been a subject of scientific publications, adding more attractors, 

or using different nonlinearities [19]. This was however not the first chaotic system 

discovered. Credit for the first confirmed chaotic system goes to Edward Lorenz who 

discovered the system of 3 equations bearing his name in 1963. 

3.1 Description  

What causes a system to behave in a chaotic manner is the presence of more than 

two state variables and presence of some nonlinearity [20]. Dynamic systems have 

Figure 3.1 Double scroll attractor generated by the Lorenz system using numerical 
integration in MATLAB. 
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attractors, which determine their behavior in time. The trajectory of chaotic systems 

around the attractors is chaotic, highly sensitive on initial conditions and 

unpredictable.  Attractors of chaotic systems can be very diverse and can take many 

visually enticing shapes. Signals created by chaotic circuits are often noise-like both 

in time and frequency domain, creating wide-band spectra rich with harmonic 

content [21]. Chaotic circuits must contain active elements and be at least of the 3rd 

order for autonomous circuits and of the 2nd for driven ones. Chaotic circuits come 

to existence in many ways. Accidental discovery of chaotic behavior is common. If 

the system meets the above-mentioned conditions, then under the right 

circumstances chaotic behavior can occur. Intentional design of chaotic circuits is 

possible by modifying existing circuits by adding non-linearities and additional 

degrees of freedom [22]. A more systematic approach can however be used to 

synthesize chaotic circuits. Starting with mathematical model; a set of differential 

equations which describe a known chaotic system a standard process of linear 

synthesis can be used to create a chaotic circuit [23]. This thesis will use the last of 

the mentioned approaches.  

3.2 Fractional order chaotic circuits 

Fractional order circuits can exhibit chaotic behavior same as integer order ones. 

One advantage of constructing with fractional elements is that the final circuit can 

be of less than 3rd order which is normally required for chaotic behavior to occur. It 

is however important to note that this is not the case for every single chaotic circuit. 

Fractional order chaotic circuits can be constructed either by synthesis from an 

already known set of fractional order differential equations [24] or by swapping 

capacitors or inductors in an already designed chaotic circuit for their fractional 

counterparts [25]. The latter method will be used in this thesis to construct the final 

chaotic oscillator. In this thesis an attempt will be made to experimentally prove a 

hypothesis, that swapping a fractal element with sufficiently small  α in the place of 

its integer order counterpart, the chaotic behavior of the circuit will disappear and 

only harmonic oscillation will remain. 
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4. SYNTHESIS OF THE CHAOTIC CIRCUIT 

The procedure of synthesizing chaotic circuits from a mathematical model is 

described in this chapter. Two approaches are presented, both of which are 

described in [26]. For simplicity the Chua’s oscillator will be used as an example 

[27]. Suppose a known chaotic system described by a set of 3 differential equations 

 𝑑𝑥

𝑑𝑡
= 𝛼(𝑦 − 𝑥 − 𝑓(𝑥)),

𝑑𝑦

𝑑𝑡
= 𝑥 − 𝑦 + 𝑧,

𝑑𝑧

𝑑𝑡
= −𝛽(𝑦 + 𝛾𝑧).

 (4.1) 

Where α, β and γ are dimensionless parameters and function f(x) is a nonlinear 

function, in this case a PWL function described as  

 

𝑓(𝑥) = { 

𝑏𝑥 + 𝑎 − 𝑏, for 𝑥 ≥ 1,

𝑎𝑥, for |𝑥| < 1,

𝑏𝑥 − 𝑎 + 𝑏 for 𝑥 ≤ −1.

 (4.2) 

4.1 Classical circuit synthesis 

First, we fold the system of 3 ordinary differential equations into a single third order 

function, by the process described in [28]. We express y from the third equation:  

 
𝑦 =

𝑧′ + 𝛽𝛾𝑧

−𝛽
. (4.3) 

Then raise the order of the third equation and substitute for y which yields 

 
𝑧′′ = −𝛽(𝑦′ + 𝛾𝑧′) = −𝛽 (𝑥 −

𝑧′ + 𝛽𝛾𝑧

−𝛽
+ 𝑧) − 𝛽𝛾𝑧′. (4.4) 

We then express x from (4.4) which yields 

 
𝑥 =

𝑧′′ + 𝛽(𝑦′ + 𝛾𝑧′) + 𝛽𝛾𝑧′

−𝑧′ − 𝛽𝛾𝑧
− 𝑧. (4.5) 

We then raise (4.4) again, to obtain 

 𝑧′′′ = −𝛽(𝑦′′ + 𝛾𝑧′′) = −𝛽(𝑥 − 𝑦 + 𝑧) + 𝛽2𝛾(𝑦′ + 𝛾𝑧′). (4.6) 

When we substitute x and y we get our third order function for system (4.2) 
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 𝑧′′′ + 𝑧′′(𝛽𝛾 + 𝑎 + 1) + 𝑧′(𝛽 + 𝛽𝛾 + 𝑎𝛽𝛾) + 𝑎𝛽𝑧

= 𝑎𝛽𝑓 (−
𝑧′′ + 𝑧′′(𝛽𝛾 + 1) + 𝑧(𝛽 + 𝛽𝛾)

𝛽
) .

  (4.7) 

   

Next we set  

 

 
𝑢(𝑡) =

𝑧′′ + 𝑧′(𝛽𝛾 + 1) + 𝑧(𝛽 + 𝛽𝛾)

𝛽
,

𝑖(𝑡) =
𝑧′′′ + 𝑧′′(𝛽𝛾 + 𝑎 + 1) + 𝑧′(𝛽 + 𝛽𝛾 + 𝑎𝛽𝛾) + 𝑎𝛽𝑧

𝑎𝛽

  (4.8) 

   

and write the admittance function and apply the Laplace transform as follows: 

 
𝑌(𝑠) =

ℒ{𝑖(𝑡)}

ℒ{𝑢(𝑡)}
. (4.9) 

The obtained admittance function in s domain can now be written as 

 
𝑌(𝑠) =

𝑠3 + 𝑠2(𝛽𝛾 + 𝑎 + 1) + 𝑠(𝛽 + 𝛽𝛾 + 𝑎𝛽𝛾) + 𝑎𝛽

𝑎(𝑠2 + 𝑠(𝛽𝛾 + 1) + 𝛽 + 𝛽𝛾)
. (4.10) 

We can now rewrite this function into a form that can be directly realized as an 

electrical circuit. In this example expansion into a continued fraction will yield 

 
𝑌(𝑠) =

𝑠

𝑎
+

1

1 +
1

𝑠 +
1

𝑠
𝛽
+ 𝛾

, 

(4.11a) 

 

 
𝑌(𝑠) =

𝑠𝐶1
𝑎
+

1

𝑅1 +
1

𝑠𝐶2 +
1

𝑠𝐿
𝛽
+ 𝛾𝑅2

. 

(4.11b) 

In this form, the admittance function can be realized. There are more than one 

possible circuit realizations for a given admittance function, depending on what 

mathematical operations are performed during the synthesis. This creates an 

opportunity to pick the most practical one, be it by number of components, their 
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values or another design requirement. It might be possible that a solution does not 

exist at all, and a different method would have to be used such as separation into 

partial fractions, or other discussed in [23] .  Negative component values cannot be 

realized in a passive circuit, so it may be necessary to use active components. 

In the next step the non-linear function (4.2) is synthesized. Unfortunately, we 

cannot use linear circuit synthesis here and no other universal design process exists. 

If however a non-linear circuit realization with properties that fit the function 

description is known, we can directly connect it to the linear part of the system. To 

realize (4.2) we can for example use two synthetic negative resistors connected in 

parallel. The final chaotic circuit is depicted on Figure 4.1. Mathematical description 

of the non-linear part, assuming rail to rail operational amplifiers is as follows: 

 

𝑓(𝑢) =

{
 
 
 
 
 
 

 
 
 
 
 
 

 

𝑢

𝑅3||𝑅6
, for    𝑢 ≥

𝑈+
𝐴1
,

𝑢

−𝑅5||𝑅6
, for    

𝑈+
𝐴1

> 𝑢 ≥
𝑈+
𝐴2
,

𝑢

−𝑅5||−𝑅8
, for    

𝑈+
𝐴2

> 𝑢 >  
𝑈−
𝐴2
,

𝑢

−𝑅5||𝑅6
, for    

𝑈−
𝐴2
 ≥ 𝑢 >

𝑈−
𝐴1
,

𝑢

𝑅3||𝑅6
, for    𝑢 ≤

𝑈−
𝐴1
,

 (4.12) 

Figure 4.1 Schematic diagram of the Chua chaotic oscillator. 
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where  

 
𝑅3 = 𝑅4,  𝑅6 = 𝑅7,  𝐴1 = 1 +

𝑅4
𝑅5
,  𝐴2 = 1 +

𝑅7
𝑅8
,  𝐴1 < 𝐴2. (4.13) 

For U+ / A1 < u < U- / A1 with a correct selection of gain for both amplifiers this circuit 

behaves like the nonlinear function described by (4.2). The starting set of 

differential equations (4.1) can be re-written using the circuit variables gained after 

the synthesis process into a dimensional form. This is useful when we want to check 

if our realization corresponds with the mathematical model. Let u1 be the voltage 

across capacitor C1, u2 the voltage across C2 and i the current through L. Using the 

standard method of modal voltages and junction currents the following can be 

written: 

 
𝐶1 ∙

𝑑𝑢1
𝑑𝑡

=
𝑢2 − 𝑢1
𝑅1

− 𝑓(𝑢1),

𝐶2 ∙
𝑑𝑢2
𝑑𝑡

=
𝑢1 − 𝑢2
𝑅1

− 𝑖,

𝐿 ∙
𝑑𝑖

𝑑𝑡
= 𝑢2 − 𝑖𝑅2.

 (4.14) 

This form of description is also widely used, especially for chaotic systems that did 

not come first from a purely mathematical model. 

Figure 4.2 Simulated attractor of the Chua circuit. Plotting u1 vs i. 
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 Simulating the circuit on Figure 1.1 using component ORCAD PSpice, a chaotic 

behavior can be observed with the following values: R1 = 100 Ω , R2 = 100 Ω, R3 = 1 

kΩ, R4 = 22 kΩ, R5 = 22 kΩ, R6 = 1 kΩ, R7 = 900 Ω , R8 = 1 Ω , C1 = 680 pF, C2 = 6,8 nF,  

L = 1 mH. The chaotic attractors are depicted on Figure 4.2 and Figure 4.3 and have 

the pattern of a double scroll, typical of  the Chua circuit. 

4.2 Integrator block diagrams 

Another method of synthesizing circuits from differential equations is by using block 

diagrams. This method was historically used in great extent to simulate dynamic 

systems using analog computers [29]. This method will in general create more 

complex circuit realizations than classical synthesis but will always lead to a 

solution. Figure 4.4 shows how (4.1) can be drawn as a block diagram. Turning the 

diagram into an electrical circuit can be done in multiple ways, depending on what 

components we have available. In this case a summing inverting integrator and 

summing inverter will be used. 

The block diagram on Figure 4.4  can be the re-drawn into Figure 4.5, from which 

the electrical circuit can be synthesized, using the mentioned building blocks, which  

 

Figure 4.3 Simulated attractor of the Chua circuit. Plotting u1 vs u2. 
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Figure 4.4 Block diagram of the Chua circuit. 

Figure 4.5  Modified block diagram of the Chua circuit. 

are also displayed on Figure 4.6. The non-linear function f(x) can be realized by two 

pairs of biased diode limiters and several summing inverters. 
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Figure 4.6 Schematic diagram and function equation of a) summing inverter 
 b) summing integrator. 

The final circuit is displayed on Figure 4.7. In comparison to the previous method 

this realization is, as predicted, much more complex and contains a large number of 

active elements. In this circuit integration of dx/dt is performer by B1, where the  

 
 

 
constant α is set by the value of capacitors C1 and C2 and their accompanying 

resistors. The integration constant of dy/dt  is 1, however can be scaled with the rest 

of the circuit to obtain practical signal variable values. The 𝛽 variable is set by 

  

𝑧 = −
𝑅3
𝑅1
∙ 𝑥 −

𝑅3
𝑅2
∙ 𝑦 𝑧 = −∫(

1

𝑅1𝐶
∙ 𝑥 +

1

𝑅2𝐶
∙ 𝑦)

𝑡

0

𝑑𝑡 

a) b) 

Figure 4.7 Schematic diagram of the synthesized Chua chaotic circuit  
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capacitors  C5 and C6 and their accompanying resistors. The γ constant is then 

realized by the gain of amplifier B4. Both inverting and non-inverting summing is 

performed to minimalize the needed number of active elements. The non-linear 

function (4.2) is realized by the amplifiers B5 and B6, with diodes D1 to D4. The 

breakpoints of the PWL function are determined by the threshold voltage of the 

diodes, plus the connected reference voltages. If this circuit was to be built and 

tested, simple voltage dividers from the supply voltages would most likely be best 

suited for this task. The constants a and b are determined by gain of the amplifiers 

B5 and B6. The voltage transfer function is depicted on Figure 4.8, obtained from  

PSpice simulation. 

 
  

Figure 4.8 Transfer characteristic of the non-linear PWL function. 
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5. FRACTAL CHAOTIC CIRCUIT 

This chapter describes design and simulation of the fractal chaotic system. As 

mentioned, first, an integer order chaotic system will be synthesized and then, by 

substituting some of the capacitors by fractal capacitors, a fractal chaotic system will 

be created. The integer order system chosen is of the 4th order and is described as  

 
𝐶1 ∙

𝑑𝑢1
𝑑𝑡

= (−𝑖1 − 𝑔𝑚2(𝑢2)),

𝐿1 ∙
𝑑𝑖1
𝑑𝑡

= 𝑢1,

𝐶2 ∙
𝑑𝑢2
𝑑𝑡

= (−𝑖2 − 𝑔𝑚1(𝑢1)),

𝐿2 ∙
𝑑𝑖2
𝑑𝑡

= 𝑢2.

 (5.1) 

Where gm1 and gm2 are two non-linear cubic polynomial functions  

 𝑔𝑚2 =  𝑎1 ∙ 𝑢2
3 − 𝑏1 ∙ 𝑢2,                    𝑔𝑚1 = 𝑎2 ∙ 𝑢1

3 − 𝑏2 ∙ 𝑢1.   (5.2) 

5.1 Circuit design 

A circuit realization of the system described by (5.1) is depicted on Figure 5.1. The 

circuit consists of two resonant LC circuits cross-coupled by two non-linear 

transconductances. 

The two non-linear transconductances were realized using a combination of AD633 

analog multipliers [30] and TL072 operational amplifiers [31].  The schematic 

Figure 5.1 Simplified schematic diagram of the 4th order chaotic circuit.  
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representation of these two transconductances is depicted on Figure 5.2 and Figure 

5.3. 

Figure 5.2 Schematic diagram of the non-linear transconductance gm1. 

 

Figure 5.3 Schematic diagram of the non-linear transconductance gm2. 

The AD633 is a 4-quadrant analog multiplier and it’s behavior is described by  

 𝑈𝑊 = 0,1 ∙ (𝑈𝑋1 − 𝑈𝑋2) ∙ (𝑈𝑌1 − 𝑈𝑌2) + 𝑈𝑍. (5.3) 

In the circuit on Figure 5.3 Schematic diagram of the non-linear transconductance 

gm2. and Figure 5.3, the B1 is used as a buffer, the two voltage dividers are used for 

scaling, and to increase the dynamic range of the system. Next, the analog multiplier 

B2 realizes the function x2, which is further multiplied by the next AD633 to realize 

the cubic function. The last AD633 is used as a summing amplifier and provides 

voltage to current conversion. 

Simulating the above circuit in PSpice, it can be observed that the circuit closely 

resembles the precise mathematical function, with some offset error present. 

Notable is the fact that the circuit saturates at around 3 V on one node and 4,5 V on 

the other one. For the system equations to stay valid, the attractor must fit within 

this voltage range.  Values for a and b constants were selected for gm1 and gm2, 

according to available mathematical model in which chaos was observed. The 

transfer functions  gm1 and gm2  are plotted on Figure 5.4 and Figure 5.5. 
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Figure 5.4 Transfer characteristic of the non-linear transconductance gm1. 

Figure 5.5 Transfer characteristic of the non-linear transconductance gm2. 

Realizing the dynamic system as an electrical circuit requires the time-dependent 

variables to be scaled down to levels, which the circuit can handle without 

distortion. The time constant must also be multiplied so that attractors can be 

measured in a timely manner and also so the fractal capacitors designed in the 

previous chapter can be used. In the chaotic system described by (5.1) and (5.2), 

chaos was observed with constants C1 = C2 = 1, L1 = L2 = 1, a1 = 0,1, a2 = 1 and b1 = b2 

= 1 with the time constant equal to 1. The time variable constants are to be 

transformed according to  

 
𝐿 =

𝐿𝑛 ∙ 𝜁𝑛
𝜔𝑛

 𝐶 =
𝐶𝑛

𝜔𝑛 ∙ 𝜁𝑛
,  (5.4) 

where L and C are the transformed inductance and capacitance, Ln and Cn are the 

normalized values, ωn is the frequency scaling factor, given as  𝜔𝑛 = 𝜔0 Ω⁄  where  
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ω0 is the desired angular frequency and Ω is the frequency norm, and ζn is the 

impedance scaling factor, given as 𝜁𝑛 = 𝑍0 𝜁⁄  where Z0 is the desired impedance and 

𝜁 is the impedance norm.  

 Scaling the impedance up will decrease the currents in the circuit and scaling the 

frequency up will change the values of capacitors and inductors to more reasonable 

values. To be able to use all 3 of the fractal capacitors designed in the first chapter, 

it is necessary to set the scaling factors so that the circuit will operate in the 

intersection point visible in Figure 2.4. The impedance norm was therefore set to 1 

kΩ and the frequency norm was set to 4,823  kHz. This yields L = 33 mH and C = 33 

nF, which are reasonable values for these components, and the impedance norm will 

decrease the currents in the circuit by a factor of 1000, down to milliamperes. 

Verifying the resonance in SPICE simulation shows, that both the integer order 

resonant circuit and the fractional ones operate at the correct frequency.  

The inductor that is to be  used in the circuit is from the RL8010 series by the 

manufacturer MATSUTA with nominal DC resistance of 70 Ω, which was measured 

at 65 Ω for the purchased units. This value will have impact on operation of the 

chaotic circuit and must be compensated for. That is why in the Figure 5.3 Schematic 

diagram of the non-linear transconductance gm2. and Figure 5.3, the scaling 

resistors R9 and R18 are made variable. The mathematical model of the chaotic circuit 

can also be modified to reflect the DC resistance of the inductors, for more accurate 

numerical analysis. This modified system of differential equations is as follows: 

Figure 5.6 Simulation of the resonant frequency of the integer and fractal 

order circuit. 
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𝐶1 ∙

𝑑𝑢1
𝑑𝑡

= −𝑖𝐿1 − 𝑔𝑚2(𝑢2),

𝐿1 ∙
𝑑𝑖1
𝑑𝑡

= 𝑢1 − 𝑅𝐿1 ∙ 𝑖1,

𝐶2 ∙
𝑑𝑢2
𝑑𝑡

= −𝑖𝐿2 − 𝑔𝑚1(𝑢1),

𝐿2 ∙
𝑑𝑖2
𝑑𝑡

= 𝑢2 − 𝑅𝐿2 ∙ 𝑖2.

 

 

(5.5) 

5.2 Simulation of the integer order system 

As with all other circuits in this thesis, the chaotic system was simulated in PSpice. 

With a lossless inductor, chaotic behavior depicted on Figure 5.7 was observed. 

Looking at the spectral data, a clear peak at the resonant frequency of the LC 

network is visible, as well as few more at 5 kHz and near 14 kHz.  

Figure 5.7 Chaotic behavior of the circuit with lossless inductor.  Plotted is the 

relationship between U1, I1 and I2. 
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Now, that chaos is confirmed in the circuit, the next step is to evaluate the behavior 

when lossy inductors are present. When simulating the circuit with lossy inductors, 

the chaotic behavior disappears. However, if the gain of the two non-linear 

 

transconductances is adjusted, to compensate for the now finite Q factor, the chaos 

will re-appear and we can observe further. Figure 5.8 and Figure 5.11 depict  

attractors obtained from the new, modified circuit. The newly obtained attractors  

Figure 5.8 Chaotic behavior of the circuit with lossy inductor. Plotted is the 
relationship between U1, I1 and I2.   

 

Figure 5.9 Spectral analysis of the voltage at U1 of the circuit with the ideal inductor. 
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have a different shape from the ones with the lossy inductor, this circuit can be 

however actually verified with real world measurements, which will also be done 

later. Looking at the spectral data it is richer in harmonic content, both odd and even. 

The fundamental frequency of the resonant circuit is not present anymore, instead 

the most dominant peak is at 6,4 kHz with one below, and many above. 

 

Figure 5.11 Chaotic behavior of the circuit with lossy inductor. Plotted is the 

relationship between U1, U2 and I2. 

 

Figure 5.10 Spectral analysis of the voltage at U1 of the circuit with lossy inductors. 
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5.3 Simulation of the fractal order system 

The circuit on Figure 5.1 can be made into fractal order by substituting one of the 

capacitors C1 or C2 by a fractal capacitor approximation, one that was synthesized in 

the Chapter 2. This circuit will be the subject of interest for testing properties of 

fractal order chaotic circuits. It is displayed on Figure 5.12. 

Without any modifications to the circuit, the chaotic behavior disappears. This is 

with accordance with the hypothesis presented in Chapter 3.2, for decreasing value 

of α it is necessary to increase the gain further to facilitate the chaotic behavior. 

Increasing the gain for each individual circuit variation accordingly, the chaos will 

re-appear, and a different set of attractors can be observed. Looking at the spectral 

Figure 5.13 Chaotic behavior of the circuit with lossy inductor and C2 fractal 

capacitor with α = ¾ . Plotted is the relationship between U1, U2 and I2. 

 

Figure 5.12 Simplified diagram of the fractal chaotic circuit.   
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data we again can observe unique behavior for each of the circuit variations, with 

varying spectral content. Both capacitors, C1 and C2 can be substituted, and the 

resulting attractors are different in each case. Only when C1 being fractal with α = ¾ 

chaos didn’t appear. 

  

Figure 5.14 Chaotic behavior of the circuit with lossy inductor and C2 fractal 

capacitor with α =½ . Plotted is the relationship between U1, U2 and I2. 

 

Figure 5.15 chaotic behavior of the circuit with lossy inductor and C2 fractal 

capacitor with α = ¼. Plotted is the relationship between U1, U2 and I2. 
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Figure 5.16 Spectral analysis of the voltage at U1 of the circuit with the lossy inductor 

and fractal capacitor with α = ¼. 

Figure 5.17 Spectral analysis of the voltage at U1 of the circuit with the lossy inductor 

and fractal capacitor with α = ½. 

Figure 5.18 Spectral analysis of the voltage at U1 of the circuit with the lossy inductor 

and fractal capacitor with α = ¾. 
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Figure 5.19 Chaotic behavior of the circuit with lossy inductor and C1 fractal 

capacitor with α =½. Plotted is the relationship between U1, U2 and I2. 

 

Figure 5.20 Chaotic behavior of the circuit with lossy inductor and C1 fractal 

capacitor with α =¼. Plotted is the relationship between U1, U2 and I2. 
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6. VERIFICATION 

This chapter deals with verification of the simulated attractors observed in the 

designed circuit. The constructed prototype of the circuit, utilizing the prepared CPE 

elements will be measured  and the results discussed. Finally, a mathematical model 

of the circuit will be constructed, and numerical analysis will be performed. 

6.1 Real life measurements 

The designed circuit was first manufactured in form of a printed circuit board, with 

THT components. The section containing the frequency dependent passive elements 

was made with sockets, so the fractal elements can be swapped-in for regular 

capacitors and vice versa according to need. The PCB layout and component list is 

available in the appendix section. The resistors setting the current gain of B4 and B8 

were made variable as multi-turn trimmers. The measurement was performed as 

follows: First, the desired combination of passive time-variant elements was 

inserted into the circuit, then with the help of the two trimmers gain was adjusted, 

so that chaos was present in the circuit. Those values were then written down, so 

that the circuit could be accurately analyzed numerically. Waveforms were 

displayed in the XY mode of a digital oscilloscope, voltage variables directly, while 

the current through the inductor was measured with a small shunt resistor. 

Waveforms were captured using a HP 54624A oscilloscope. Despite the fact that the 

sampling rate of the oscilloscope is low, the attractors are well visible, and 

comparisons can be made with the graphs obtained through simulation. Figure 6.1 

and Figure 6.2 shows the captured attractor of the circuit of integer order with foil 

capacitors, the shunt value of the resistor was 4,7 Ω, so the y axis displays the current 

with about 5 times magnification in respect to the oscilloscope scale. This value was 

chosen as a good compromise between how much the added resistance changes the 

properties of the circuit and the amount of detail that can be captured, before noise 

starts to interfere with the attractor pattern. 
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Figure 6.1 a) Measured chaotic attractor U1 vs. U2 and b) I1 vs U2 from the integer 

order system. 

 

Figure 6.2 a) Measured chaotic attractor U1 vs. U2 and b) I1 vs U2 from the fractal 

order system with C2 fractal capacitor and α = ¼. 

 

Figure 6.3 a) Measured chaotic attractor U1 vs. U2 and b) I1 vs U2 from the fractal 

order system with C2 fractal capacitor and α =½. 
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Figure 6.4 a) Measured chaotic attractor U1 vs. U2 and b) I1 vs U2 from the fractal 

order system with C2 fractal capacitor and α=¾. 

 

Figure 6.5 a) Measured chaotic attractor U1 vs. U2 and b) I1 vs U2 from the fractal 

order system with C1 fractal capacitor and α = ¼. 

 

Figure 6.6 a) Measured chaotic attractor U1 vs. U2 and b) I1 vs U2 from the fractal 

order system with C1 fractal capacitor and α = ½. 
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From the measured data, a few observations can be made. The integer order chaotic 

system matches the simulated results quite precisely.  It can therefore be claimed 

that the simulated circuit represents the physical realization accurately. There is a 

close resemblance between the measured attractors of the fractional order systems 

and the simulated ones, namely Figure 6.5 and Figure 5.20 which show the same 

situation are very close match. Figure 6.2 to Figure 6.4 also match the change in 

shape that can be observed on Figure 5.15 to Figure 5.12. There are, however, some 

differences clearly visible from the oscilloscope screenshots, namely Figure 6.4 

being perhaps the least accurate. Furthermore, the circuit variation when the 

capacitor C1 is fractal with α = ¾ it was possible to detect chaotic behavior, but 

proven not possible to simulate, due to the transition from harmonic oscillation to 

instability being too sensitive. The described discrepancies can be attributed to non-

precise setting of the gain, as this was done by hand, and to inaccuracies in the 

manufactured fractal elements, as well as tolerances of other circuit components, 

such as capacitors C1 and C2.  

Figure 6.7 a) Measured chaotic attractor U1 vs. U2 and b) I1 vs U2 from the fractal 

order system with C1 fractal capacitor and α = ¾. 
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6.2 Numerical analysis 

In order to be able to perform a numerical analysis, the circuit has to be converted 

into a system of differential equations. To get the most accurate results, the complete 

circuit including all of the discrete sections of the CPE network will be accounted for. 

Figure 6.8 shows a generalized circuit that can accommodate the CPE on both sides.  

We start by defining the relations between circuit variables. Current flowing 

through a capacitor is defined as 

 
𝑖(𝑡) =

𝑑𝑄

𝑑𝑡
. (6.1) 

In  our case, voltage is of more interest to us than charge. Substituting the definition 

of electric charge into the first equation we can get a formula 

 
𝑖(𝑡) =

𝑑(𝐶 ∙ 𝑢)

𝑑𝑡
= 𝐶 ∙

𝑑𝑢

𝑑𝑡
. (6.2) 

Voltage across an inductor is defined as 

 
𝑢(𝑡) = 𝐿 ∙

𝑑𝑖

𝑑𝑡
, (6.3) 

and the voltage across a resistor is simply 

 𝑢(𝑡) = 𝑅 ∙ 𝑖(𝑡). 
(6.4) 

Using Kirchhoff laws, the circuit on Figure 6.8 can be analyzed, respecting the 

directions of all currents in the circuit. Starting with the network containing L1: 

 𝑢𝐿1 = 𝑢1 − 𝑢𝑅1 (6.5) 

 𝑑𝑖𝐿1
𝑑𝑡

∙ 𝐿1 = 𝑢1 − 𝑅𝐿1 ∙ 𝑖𝐿1. (6.6) 

Figure 6.8 Generalized schematic diagram of the approximated fractal order. 
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This is then repeated for all time-dependent variables in the system, yielding the 

following system of differential equations: 

 
𝐶𝑝1 ∙

𝑑𝑢1
𝑑𝑡

= −𝑖𝐿1 − 𝑔𝑚2(𝑢2) −
𝑢1
𝑅𝑝1

−∑
𝑢1 − 𝑢𝑠𝑖
𝑅𝑠𝑖

9

i=1
,

𝐿1 ∙
𝑑𝑖1
𝑑𝑡

= 𝑢1 − 𝑅𝐿1 ∙ 𝑖1,

𝐶𝑠1 ∙
𝑑𝑢𝑠1
𝑑𝑡

=
𝑢1 − 𝑢𝑠1
𝑅1

,

                      ⋮

𝐶𝑠9 ∙
𝑑𝑢𝑠9
𝑑𝑡

=
𝑢1 − 𝑢𝑠9
𝑅9

,

𝐶𝑝2 ∙
𝑑𝑢2
𝑑𝑡

= −𝑖𝐿2 − 𝑔𝑚1(𝑢1) −
𝑢2
𝑅𝑝2

−∑
𝑢2 − 𝑢𝑠𝑖
𝑅𝑠𝑖

18

i=10
,

𝐿2 ∙
𝑑𝑖2
𝑑𝑡

= 𝑢2 − 𝑅𝐿2 ∙ 𝑖2,

𝐶𝑠10 ∙
𝑑𝑢𝑠10
𝑑𝑡

=
𝑢2 − 𝑢𝑠10
𝑅10

,

                      ⋮

𝐶𝑠18 ∙
𝑑𝑢𝑠18
𝑑𝑡

=
𝑢2 − 𝑢𝑠18
𝑅18

.

 (6.7) 

 

In order to get a more accurate system model, the non-linear transconductances 

were modeled including the non-linearities of the system caused by limitation by 

supply rail voltages, which can be seen on on Figure 5.4 Figure 5.5. This yields wo 

non-linear transfer functions 

 

𝑔𝑚1(𝑢1) =

{
 
 

 
 
6 ∙ 10−3, for    𝑢1

3 − 𝑢1 > 97,

(𝑢1
3 − 𝑢1) ∙

1

𝑐1
, for    97 ≥ 𝑢1

3 − 𝑢1 ≥ −97,

6 ∙ 10−3, for    𝑢1
3 − 𝑢1 < −97,
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𝑔𝑚2(𝑢2) =

{
 
 

 
 
30 ∙ 10−3, for    𝑢2

3 − 𝑢2 > 24,

(𝑢2
3 − 𝑢2) ∙

1

𝑐1
, for    24 ≥ 0.1 ∙ 𝑢2

3 − 𝑢1 ≥ −24,

30 ∙ 10−3, for    𝑢2
3 − 𝑢2 < −24.

 

 

The values of c1 and c2 will be set equal with those in circuit simulations, as follows: 

Table 6.1 Values of gain for transconductances gm1 and gm2 

c1 c2 Configuration 

1100 1100 Integer order system 

270 270 C1 fractal with α = ¼ 

310 310 C1 fractal with α = ½ 

340 340 C1 fractal with α = ¾ 

240 240 C2 fractal with α = ¼ 

290 290 C2 fractal with α = ½ 

340 340 C2 fractal with α = ¾ 

Figure 6.9 Chaotic attractor obtained from numerical analysis of the integer 
order system. 
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Numerical analysis was performed using MathCad software, utilizing a fixed step 

solver. The integer order system generated interesting attractors, comparable to the 

ones obtained from the SPICE simulations and real measurements. The results with 

fractal element approximations were less accurate. While chaotic behavior can be 

observed, it only lasts for a while, before stabilizing on a fixed point located at 0. The 

chaotic attractor from the integer order system is depicted on Figure 6.9. while other 

results are available in the appendix section.  

Discrepancies in the numerical data can be attributed to many factors. While 

significant effort was made to ensure accurate representation of the real circuit, 

there are numerous factors still not accounted for. The modified transfer functions 

are more representative of the simulated circuit, they are still not entirely 

representative of reality. Other non-idealities in the circuit are present which the 

circuit model accounts for, but the numerical model does not. The rather simple type 

of solver used will also have effect on the results. PSpice uses a more advanced 

numerical integration method. This combined with more accurate circuit model will 

yield results closer to reality.  
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CONCLUSION 

In this thesis, a study of fractional order chaotic system was performed. Multiple 

constant phase elements were designed, simulated, manufactured, and verified by 

measurements. Next, a chaotic system was synthesized from a set of differential 

equations, which as well was simulated, manufactured, and verified by 

measurements. This system was then converted into a fractional order system by 

substituting capacitors in the circuit by fractional order approximations. The chaotic 

order fractional system was then verified both by measurements and by numerical 

analysis.  

 The method used to synthesize fractal elements proved very capable and the 

process of creating them was very straightforward. The manufactured fractal 

elements were accurate enough to be used in the fractional order chaotic system. It 

was however discovered that measurement of fractal elements with the impedance 

norm set high is difficult. Parasitic properties of the measuring setup and the device 

itself have negative influence on the results. If not application critical, it is desirable 

to use fractal elements with low impedance norm. 

The synthesis of the chaotic system was also successful, yielding  a working circuit. 

However, a large number of active elements were used in the realized circuit. The 

AD633 is a rather exotic component and very costly. Another solution of the 

synthesis was later discovered that contained only 4 analog multipliers, which 

would have been preferred. The dynamic range of the non-linear transconductances 

was sufficient for chaos to manifest in the circuit, however multiple of the measured 

attractors show, that the circuit would benefit from a greater dynamic range. This 

could be achieved by further optimizing the synthesized circuit. There are 

noticeable discrepancies between the obtained data from all realizations of the 

dynamic system, the circuit simulation, the measurement and the numerical 

analysis. While this is inevitable when working with chaotic systems, which are 

inherently sensitive to even the most subtle changes in parameters, a greater 

correlation between the data could have been achieved given more time spend 

optimizing and more accurate models. 
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LIST OF SYMBOLS AND ABBREVIATIONS 

Abbreviations: 

CPE   constant phase element 

SMD    surface mount device 

THT       through hole technology 

PCB    printed circuit board 

Symbols: 

U  voltage    [V] 

I  current    [A] 

R  resistance    [Ω] 

C  capacitance   [F] 

L  inductance   [H] 

Z  impedance   [Ω] 

Y  admittance   [S] 

D  fractance    [F s1−α⁄ ] 

G  conductance   [S] 

Q  quality factor   [-] 

Ω  frequency norm  [Hz] 

ω  angular frequency  [rad/s] 

𝜁  impedance norm  [Ω] 

φ  phase angle   [°] 

s  Laplace variable  [rad/s] 

f  frequency    [Hz] 

T  time     [s] 

gm  transconductance [A/V] 

||  parallel combination 

&  series combination 
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Appendix A - Pictures 

A.1 Top view on the chaotic system PCB 

A.2 Bottom view on the chaotic system PCB 

A.3 View of the 3 CPE PCB’s 
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Appendix B - Documentation of the chaotic 
circuit PCB 

B.1 Top assembly 

B.2 Bottom assembly 
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B.3 PCB layout 

B.4 List of components 
Name Value Type Tolerance Name Value Type Tolerance 

R1 8.2 kΩ TR191 ±5% R16 1 kΩ TP095 ±5% 

R2 820 Ω TR191 ±5% MP1 AD633 DIP-8 - 

R3 8.2 kΩ TR191 ±5% MP2 AD633 DIP-8 - 

R4 820 Ω TR191 ±5% MP3 AD633 DIP-8 - 

R5 3.3 kΩ TR191 ±5% MP4 AD633 DIP-8 - 

R6 47 kΩ TR191 ±5% MP5 AD633 DIP-8 - 

R7 820 Ω TR191 ±5% MP6 AD633 DIP-8 - 

R8 8.2 kΩ TR191 ±5% IC1 TL072 DIP-8 - 

R9 8.2 kΩ TR191 ±5% C1 100 nF 0603 ±5% 

R10 820 Ω TR191 ±5% C2 100 nF 0603 ±5% 

R11 8.2 kΩ TR191 ±5% C3 100 nF 0603 ±5% 

R12 820 Ω TR191 ±5% C4 100 nF 0603 ±5% 

R13 3.3 kΩ TR191 ±5% C5 100 nF 0603 ±5% 

R14 47 kΩ TR191 ±5% La 33 mH RL8010 ±5% 

R15 1 kΩ TP095 ±5% Lb 33 mH RL8010 ±5% 
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B.5 Schematic diagram of the chaotic circuit 
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Appendix C - Attractors obtained from 
numerical analysis. Plotted are the values 
of U1, U2 and I2. 

C.1 Attractor with C2 fractal and α = ¼ 

C.2 Attractor with C2 fractal and α = ½ 
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C.3 Attractor with C2 fractal and α = ¾ 

C.4 Attractor with C1 fractal and α = ¼ 
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C.5 Attractor with C1 fractal and α = ½ 

C.6 Attractor with C1 fractal and α = ¾ 


