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Advanced Calibration and Characterization
of a Shack-Hartmann Sensor

Abstract

The main goal of the Master’s thesis is the development of
the software and also of the calibration routine for the Shack-
Hartmann sensor. The principle of the reconstruction was closely
analyzed including the principal limitations. The most effective
reconstruction procedures were chosen from the already existing
methods. These are described in the theoretical part in great detail.

Two reconstruction algorithms and four algorithms for the
detection of the centroids of the intensity spots were implemented,
based on the theoretical basis. Furthermore the novel calibration
routine was also developed including the accompanying algorithm.
It provides compensation for the construction errors of the sensor,
which leads to the high precision of the reconstruction of a
wavefront.

The precision and time effectiveness of the algorithms were
analyzed by experiments and simulations. Results of the
reconstructions were compared to results of the commercial
software. It can be said, that the developed software is equally
precise and in some cases even surpasses the commercial software.

The software was used for the analysis of the results from the
experimental method for an automatic alignment of the multi-lens
optical system. The accuracy of the outcome was confirmed by
comparing the results with the simulations carried out with Zemax.
In addition the experiment showed, that the software can be used
for real-time reconstruction. It was possible to reconstruct the
wavefront of the Structured beam for the first time. The beam
has been patented in the collaboration of the leading scientific
organizations TOPTEC and CERN in the last few years. The
commercial software failed in this task.

Keywords: Shack-Hartmann sensor, calibration, MATLAB,
wavefront



Pokročilá kalibrace a charakterizace Shack-
Hartmannova senzoru

Abstrakt

Hlavńım ćılem práce je vývoj softwaru a kalibračńıho postupu
pro Shack-Hartmann̊uv senzor. Princip rekontrukce byl d̊ukladně
zanalyzován včetně principiálńıch omezeńıch. Z již existuj́ıćıch
postup̊u rekonstrukce vlnoplochy byly vybrány ty nejefektivněǰśı.
Ty jsou v teoretické části práce detailně popsány.

Na základě teoretické rešerše byly implementovány
rekonstrukčńı algoritmy a čtyři algoritmy pro detekci center
intenzitńıch stop. Dále byl vyvinut optimalizovaný postup
kalibrace včetně doprovodného algoritmu. Ten zajǐsťuje
kompenzaci konstrukčńıch chyb senzoru, což vede k vysoké
přesnosti rekonstrukce vlnoplochy.

Přesnost a časová náročnost algoritmů byla analyzována
pomoćı experiment̊u a simulaćı. Výsledky rekonstrukćı byly
porovnány s komerčńım softwarem. Lze konstatovat, že vyvinutý
software dosahuje srovnatelné přesnosti rekonstrukce a v některých
př́ıpadech komerčńı software i předč́ı.

Software byl použit pro analýzu výsledk̊u experimentálńı
metody pro automatckou justaci komplexńıho optického systému s
v́ıce čočkami. Zde se potvrdila jeho přesnost při porovnáńı výsledk̊u
se simulacemi z programu Zemax. Experiment také ukázal, že
je možné použit software pro rekonstrukci v reálném čase. Dále
se podařilo poprvé zrekonstruovat vlnoplochu Strukturovaného
svazku, který byl v posledńıch letech patentován ve spolupráci
špičkových vědeckých pracovǐsť TOPTEC a CERN. Komerčńı
software v tomto úkolu selhal.

Kĺıčová slova: Shack-Hartmann̊uv senzor, kalibrace, MATLAB,
vlnoplocha
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Introduction

The Shack-Hartmann wavefront sensor (SHWS) was developed in the late
1960s by Dr. Roland Shack to improve the images of satellites taken from the
earth [1]. Light has to travel through the atmosphere, however, the atmosphere is
not a homogeneous environment and has perturbations of refractive index caused
by local changes of temperature, pressure and other factors. Therefore, the
wavefront becomes aberrated before it reaches the sensor (CCD, CMOS).

To eliminate the phenomenon, Dr. Aden Mienel proposed the idea of measuring
the optical transfer function (OTF) of the atmosphere with a Hartmann test, at
the same time as the image of the satellite is taken. When the OTF is known, it is
possible to partly correct the aberrations. However, it was not possible to cover the
aperture of the telescope with a Hartmann screen so Dr. Mienel proposed to include
the beam splitter with a Hartmann screen behind the eyepiece. This approach had
also several other issues such as the weak intensity of the projected spots and worse
accuracy of the spot centroid measurements. Therefore Dr. Roland Shack proposed
simple yet powerful innovation by replacing the Hartmann screen with an array of
microlenses.

The invention has opened a whole new field and SHWS is being used in various
disciplines nowadays. Examples of the applications are adaptive optics,
ophthalmology, precise metrology, etc. [2, 3, 4] The sensor is very precise, easy to
use and robust to surrounding conditions.

Many companies are offering solutions for SHWS. However, they are often
so-called black boxes meaning the manufacturer is usually not providing very deep
information about the characteristics of the algorithms or the sensor. This is not
optimal for the experimental applications, where it is useful to know the
parameters of the reconstruction since they usually need to be varied dramatically
based on the task. Another problem is that there is often a need for external
calibration. The leading scientific organization TOPTEC was missing the sensor
that would provide such variability without sacrificing the high precision of the
wavefront reconstruction.

Hence the goal of this thesis is to develop an universal software for the
reconstruction of a wavefront using a SHWS with any given parameters. The
features should include the calibration routine and provide variability in choosing
the reconstruction parameters. The principal limitations and accuracy of the
reconstruction should be analyzed using the simulations and also by experimental
measurements.
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1 Rays and Wavefronts

Light is an electromagnetic wave, that can be according to Maxwell theory
described with the so-called wave equation [5, 6]:

∇2U(r, t) =
1

v2
∂2U(r, t)

∂t2
(2.1)

where v = c
n

is the speed of light in a medium with refractive index n,
c = 3 × 10 8 ms−1 is the speed of light in a vacuum and U (r, t) is a function
characterizing a wave field in space and time t. Every solution of equation 2.1 is a
wave, one of them being a monochromatic plane wave in a homogeneous, isotropic
medium:

U(r, t) = U0e
j(kr−ωt) (2.2)

where U0 is the amplitude, ω the angular frequency, f is the frequency, r(x , y , z )
is the position vector, k = ks = k0 ns is the wave vector parallel to the unit vector
s pointing in the direction of the wave propagation, k0 = 2π

λ
being the wavenumber

in a vacuum and λ is the wavelength. The phase of the wave is φ(r) = (kr− ωt).
We can define surfaces in space with equal φ(r) as wavefronts.

Figure 2.1: Illustration of perfect spherical and plane waves, with rays perpendicular
to the wavefronts (surfaces of constant phase).

To describe the phenomena appearing in this thesis, it is sufficient to use the
lowest level approximation - ray optics, which is the approximation of scalar wave
optics, if we assume that wavelength λ→ 0 [7]. To understand the connection
between the scalar wave and ray optics, lets imagine that a wave is propagating
in the direction of unit vector s, inside an inhomogeneous medium with a slowly
variating refractive index, hence n(r). We assume that the solution of equation 2.1
will take the form [7]:

U(r, t) = U0e
j(k0S(r)−ωt) (2.3)

where S (r) = n(r)sr is the optical path length (OPL), so-called eikonal. By
inserting the form of equation 2.3 into Maxwell equations it is possible to derive the
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eikonal equation [5, 7] :

(∇S)2 = n(r)2 (2.4)

The wavefront can be now defined as the surface in space with a constant value
of eikonal S (r) = const ., hence constant phase. It can be proven, that gradient of
a function is perpendicular to the surfaces of constant value, therefore, ray can be
defined as the normal to the wavefront that defines the propagation direction [5, 7].

Equation 2.4 implies that in an isotropic inhomogeneous medium will rays curve
in to the areas with higher refractive index, therefore wavefront shape is affected
when traveling through the medium. The practical implication of this phenomenon
was described in the introduction. When rays travel in a homogeneous and isotropic
medium (n = const.), trajectories will be straight lines.

Figure 2.2: Reflection and refraction of the ray incident on to the interface of
materials 1 and 2 with different refractive indices n1 and n2 respectively (n1 < n2 ).

It can be shown with the use of equation 2.4 that the so-called Fermat’s principle
applies. It states that light traveling between two points takes the path that takes the
least time. Furthermore, two fundamental laws of geometrical optics can be derived.
First is the law of refraction, so-called Snell’s law, that describes the relationship
between a ray incident on the interface of two media with different refractive indices
and refracted ray [5, 7]:

n1 sinθi = n2 sinθr (2.5)

Second is the law of reflection, which states that the angle of incidence θi is equal
to the angle of reflection θR:

θi = θR (2.6)

18



1.1 Optical systems

The ideal optical system gathers light from a point source, that radiates perfect
spherical waves, and redirects them that they form a single image point [8].

Figure 2.3: The ideal optical system, that gathers light from a point source and
focuses it perfectly on to a image point.

Real optical systems work with aberrated wavefronts. The deviation between the
wavefront shapes is defined as optical path difference (OPD), which is the difference
in the distance that the aberrated wavefront has to travel compared to the perfectly
spherical wavefront. This implies that the rays will not converge perfectly into the
image point, which leads to a loss in the performance of the system [9].

Figure 2.4: Illustration of the aberrated wavefront on the output of a real optical
system.

1.2 Zernike polynomials

Let us introduce a function W (r , θ) that describes the OPD of a wavefront in
every point on its specific surface in polar coordinates. This allows us to use the
mathematical form of polynomials to describe aberrations of the system. In 1934
Fritz Zernike defined set of so-called Zernike polynomials, which are widely used
as wavefront representation for several reasons. They are defined over a unit circle
x 2 + y2 ≤ 1 , which is useful, since the majority of the optical systems have circular
pupils.

The most important property is orthonomality, hence orthogonality. Two
functions f(x) and g(x) are orthogonal when integration of their dot product is
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equal to zero: ∫
f(x) · g(x)dx = 0 (2.7)

To get an idea about orthonormality, imagine a two-dimensional space. Two
vectors can form a basis if they are linearly independent, meaning that we can
express any given vector in the space using these two basis vectors. An
orthonormal basis is a special case of linearly independent vectors when they are
also perpendicular to each other and have a unit length such as in the case of the
Euclidian plane. If we have a random position vector defined in a plane with an
orthonormal basis and subtract one of the basis vectors from the position vector,
we do not change the position in terms of the second basis vector.

This implies that each Zernike polynomial describes one specific monochromatic
aberration, therefore, we can subtract any given aberration from the wavefront,
without affecting the others, hence we can represent a wavefront as [10]:

W (r, θ) =
∑
n,m

Cm
n Z

m
n (r, θ) =

∑
n,m

Cm
n NnmU

m
n (r, θ) (2.8)

where m and n are nonnegative integers, U m
n (r , θ) are the polynomials, C m

n are
the coefficients and Nnm is the normalization factor, which is defined as:

Nnm =
√

(2− δn,2m)(n+ 1) (2.9)

where δn,2m is the standard Kronecker delta. We can use double index form using
polar coordinates x = r cos θ, y = r sin θ :

Unm(r, θ) =

{
R|n−2m|n (r)sin(n− 2m)θ, for n− 2m > 0

R|n−2m|n (r)cos(n− 2m)θ, for n− 2m ≤ 0
(2.10)

where radial polynomials Rµ
n(r) are defined as:

Rµ
n(r) =

n−µ
2∑

k=0

(−1)k
(n− k)!

k!(n−µ
2
− k)!(n+µ

2
− k)!

rn−2k; n ≥ 0, 0 ≤ µ ≤ n, n− µ even

(2.11)
Note that there is many different indexing schemes, normalizations and

conventions in the literature, more information can be found in [10, 11, 12]. In this
thesis, the Noll [13] single indexing scheme will be used:

j =
n(n+ 1)

2
+ |m′|+


0,m′ > 0 ∧ n ≡ {0, 1} (mod 4)

0,m′ < 0 ∧ n ≡ {2, 3} (mod 4)

1,m′ ≥ 0 ∧ n ≡ {2, 3} (mod 4)

1,m′ ≤ 0 ∧ n ≡ {0, 1} (mod 4)

(2.12)
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Figure 2.5: Surface plots of first 6 Zernike polynomials with names of classical
aberrations, (n - radial order, m - angular frequency), j - Noll single index.

Another practical property of Zernike polynomials is that the root mean square
error (RMSe) of the wavefront, which is equal to its standard deviation, can be
expressed as [11]:

RMSe =

√√√√ J∑
j=4

C2
j (2.13)

The sum starts at j = 4 hence piston and both tilts are excluded.

2 Background for Wavefront Sensing

The Hartmann test was invented by the German astronomer Johannes Franz
Hartmann at the turn of the twentieth-century [14] as a tool to measure aberrations
of mirrors used in telescopes. Let us consider a perfectly spherical mirror and a
Hartmann screen with an array of holes in front of it. The mirror will form a
perfectly spherical wavefront. We let a point source shine on to the mirror through
the Hartmann screen. The light is reflected and forms an image with an array of
spots identical to the screen on to the Hartmann plate (Figure 3.6).
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Figure 3.6: Hartmann mirror test arrangement proposed by Johannes Franz
Hartmann (left). Illustration of relation between rays and wavefront aberrations
(right).

The local slopes of the wavefront will be different from the ideal wavefront when
we use an aberrated mirror. This leads to a deviation of the spots from the ideal
positions on the Hartmann plate. The relation between the function of the aberrated
wavefront W(x,y) and the transverse shifts of the spots in TAx and TAy in x and
y directions, which represent rays of light traveling from the hole in the Hartmann
screen to the spot on the Hartmann plate has been derived by Wayant et. al. [15]
as:

TAx = −R∂W (x, y)

∂x
TAy = −R∂W (x, y)

∂y
(3.14)

where R is the radius of curvature (RoC) of the reference spherical wavefront.
The principle of a SHWS is almost similar to the Hartmann mirror test and it will
be described in the following chapter.

2.1 Operating principle of the Shack-Hartmann wavefront sensor

SHWS is used for characterization of a wavefront incident on a microlens array
consisting of positive lenses each with equal focal length. Light is focused by the
lenses and we can assume that diffraction-limited spots are created on a CCD sensor.
When the plane wave is incident on the array the spots will be in a regular grid
spaced by the distance between the center of lenses (lens pitch). In the case of an
aberrated wavefront, the spots will be shifted in x and y directions by TAx and TAy

based on a wavefront slope in front of each lens. The area of the lens projected onto
the CCD sensor is the so-called region of interest (ROI).
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Figure 3.7: Working principle of a Shack-Hartmann sensor. Spots are projected
onto a CCD sensor by microlenses. Each spot is in a rectangular ROI. The reference
centroid positions are measured using a plane wavefront (left). The aberrated
wavefront shifts the spots from the reference positions (right).

The similarity with the Hartmann sensor can be seen, however, in the case of a
SHWS the reference wavefront is a perfect plane wave incident parallel to the optical
axis of the microlenses, which means, that the slope of the wavefront in front of each
microlens is equal to zero. On the other hand, if an aberrated wavefront hits the
array the slope will be non-zero and will be directly represented by the shifts of the
spots TAx and TAy .

Figure 3.8: The shift of the spot from the reference position, which is caused by
the change of the wavefront slope.

A simple and intuitive explanation based on trigonometry is illustrated on figure 3.8.
We obtain a geometrical term which describes the slope of the wavefront:

tan(α) =
∆z

∆y
=
TAy
f

(3.15)

where f is the focal length of the microlenses. This leads to almost similar
equations as in the case of a Hartmann sensor (equation 3.14). Only difference is
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that the radius of curvature is replaced by the focal length:

TAx
f

=
∂W (x, y)

∂x

TAy
f

=
∂W (x, y)

∂y
(3.16)

These are the basic equations, that describe the relationship between the
wavefront slope and the shifts of the spots. They lead to the reconstruction of the
entire wavefront. The process will be described in the following chapters. Note,
that a detailed derivation of equation 3.16 based on Fourier optics can be found
in [3] by Novak et. al.

2.2 Detection of the spot centroids

In order to find the shifts of the spots, it is necessary to determine their centroids.
This has to be done with subpixel accuracy if we want to achieve a highly accurate
model of the incident wavefront. The problem is, that each lens will create diffracted
spot, the so-called Airy disk with a diameter Dairy given by [3]:

Dairy =
2.44λf

d
(3.17)

Figure 3.9: Intensity distribution of the diffracted spot imaged on to the CCD
sensor.

where d is the microlens diameter. Each microlens can also introduce some
aberration, caused by manufacturing imperfection. This means, that each spot
will have a complex intensity distribution (Figure 3.9). If we assume, that the
image sensor is a grid of pixels with rows and columns with indicies row and col
respectively, we can determine centroid coordinates x̄ and ȳ of arbitrary intensity
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pattern by finding its first moment (center of gravity - CoG) [3]:

x̄ =

∑colmax
col=0

∑rowmax
row=0 I(row, col)spixcol∑colmax

col=0

∑rowmax
row=0 I(row, col)

ȳ =

∑colmax
col=0

∑rowmax
row=0 I(row, col)spixrow∑colmax

col=0

∑rowmax
row=0 I(row, col)

(3.18)
where I(row,col) is the measured intensity and spix is the pixel size.

2.3 Wavefront reconstruction methods

To reconstruct the wavefront, we have to compute the local slopes at the given
position c, r on the grid:

SXrow,col =
TAx
f

=
x̄row,col(ref)− x̄row,col(aberr)

f
(3.19)

SYrow,col =
TAy
f

=
ȳrow,col(ref)− ȳrow,col(aberr)

f
(3.20)

Afterward, it is possible to tackle the reconstruction problem with so-called zonal
and modal methods, which are traditionally and widely used and will be described
in the following chapters. Note that there are also alternative methods for wavefront
reconstruction [16, 17], however, they will not be discussed in this thesis, because
they are not implemented in the presented software.

2.3.1 Modal wavefront reconstruction

In the case of the modal reconstruction is a wavefront described as a set of
smoothly varying modes [18], in our case, it is represented with a set of Zernike
polynomials Zj :

W (x, y) =
∑
j=0

CjZj(x, y) (3.21)

where Cj are approximated coefficients of the polynomials. When we substitute
in to equation 3.16 we obtain:

TAx
f

=
∂W (x, y)

∂x
=

J∑
j=0

Cj
∂Zj(x, y)

∂x
(3.22)

TAy
f

=
∂W (x, y)

∂y
=

J∑
j=0

Cj
∂Zj(x, y)

∂y
(3.23)

which can be written in matrix form as:

s = Dc (3.24)
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where s is the column vector of the slopes, D is the matrix containing the partial
derivatives of the polynomials and c is the column vector of the coefficients:



SXrow1,col1

SXrow2,col1

.

.

.
SXrowmax,colmax
SYrow1,col1

SYrow2,col1

.

.

.
SYrowmax,colmax



=



∂Z1(row1,col1)
∂x

∂Z2(row1,col1)
∂x

... ∂ZK(row1,col1)
∂x

∂Z1(row2,col1)
∂x

∂Z2(row2,col1)
∂x

... ∂ZK(row2,col1)
∂x

.

.

.
∂Z1(rowmax,colmax)

∂x
∂Z2(rowmax,colmax)

∂x
... ∂ZK(rowmax,colmax)

∂x
∂Z1(row1,col1)

∂y
∂Z2(row1,col1)

∂y
... ∂ZK(row1,col1)

∂y
∂Z1(row2,col1)

∂y
∂Z2(row2,col1)

∂y
... ∂ZK(row2,col1)

∂y

.

.

.
∂Z1(rowmax,colmax)

∂y
∂Z2(rowmax,colmax)

∂y
... ∂ZK(rowmax,colmax)

∂y




C1

C2

.

.

.
CK



(3.25)
The matrix D is usually a non-square matrix, hence has no inverse. We can use

the least squares method to obtain the solution:

c = (DTD−1)−1DT s (3.26)

However, DT D−1 is usually singular. We have to use a singular value
decomposition to obtain a solution [4]. Decomposing matrix D we obtain
D = USV T where S is the diagonal matrix containing the singular values of the
matrix D and solution of equation 3.24 is:

c = V S−1UT s (3.27)

Another way to make sure the equation can be solved with a least squares
method, without affecting the result, is to remove the piston row. It is also
possible to add a row with zero at the end of vector s and also a row full of ones at
the end of matrix D. Both of these methods change the matrix in a way that it is
not singular anymore.

2.3.2 Zonal wavefront reconstruction

The term zonal reconstruction refers to the fact, that we determine the
wavefront only in local zones. The zones in the case of a Shack-Hartmann sensor
are chosen such that they match the microlens array grid [18]. Geometry
developed by Southwell [19] is ideal for a Shack-Hartmann sensor because it offers
the lowest error propagation compared to other geometries [20]. Therefore, it is
implemented in the presented software.
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Figure 3.10: Southwell geometry for wavefront estimation scheme. The dots
represent phase points (height of the wavefront) and arrows the slope measurements.

Southwell has derived a relation between the local slope measurements and two
neighboring phase points with separation length P, which is the lens pitch, as [19]:

SXcol+1,row + SXrow,col
2

=
Wcol+1,row −Wrow,col

P
; (c = 1, N − 1; r = 1, N) (3.28)

SYcol+1,row + SYrow,col
2

=
Wcol+1,row −Wrow,col

P
; (c = 1, N − 1; r = 1, N) (3.29)

Eqations 3.28 and 3.29 can be solved using the least-squares method. Matrix
form can be written as [4, 19]:

Cs = Ew (3.30)

where s is the column vector of the slope measurements, w is the column vector
of the incident wavefront phase values and C and E are sparse rectangular matrices.
For the reasons stated in chapter 2.3.1 equation 3.30 can be solved with singular
value decomposition of matrix E = USV T , obtaining the column vector w with
values of wavefront heights:

w = V S−1UTCs (3.31)

To represent the wavefront obtained by zonal reconstruction with Zernike
polynomials, one more computational step is needed. Equation 3.31 can be
represented in matrix form as:

w = cZ (3.32)

where c is the column vector of coefficients containing Zernike coefficeints, Z is
the matrix containing sampled values of the Zernike coeffiecients for phase points.
Note that column vector w has to contain only values inside the defined circular
aperture for reasons explained in chapter 1.2. We can solve the equation with the
least squares method [21]:

c = (ZTZ−1)−1ZTw (3.33)
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2.4 Principal limitations of the sensor

It is necessary to have only one spot in each ROI, otherwise, we are not able to
link the reference point to the displaced one. The focal length of the microlenses
determines by how far is the spot displaced, therefore, the dynamic range but also
the sensitivity of the sensor is affected [3, 22]:

(
∂W (x, y)

∂x

)
max

=

(
∂W (x, y)

∂y

)
max

=
TAmaxx

f
=
TAmaxy

f
=
Dairy

2f
(3.34)

Equation 3.34 tells us that the lower the focal length higher the maximum
displacement of the spot hence dynamic range. In other words, the equal slope
creates a less displaced spot when the focal length is lower. Hence we can detect
higher slopes of the wavefront without having two spots in one ROI.

On the other hand, the sensitivity is affected in the opposite way. The minimum
detectable displacement depends on the accuracy of the algorithms for the spot
centroids detection. When the focal length is long, a small change in a wavefront
gradient causes a relatively big displacement of the spot, which we are able to detect
by the algorithms. Therefore, there is always a trade-off between dynamic range
and sensitivity. Note that there are specialized algorithms that use spot sorting
to increase the dynamic range [21, 23, 24], however, it was not the purpose of this
thesis to implement them.

Figure 3.11: We are unable to link the spots inside the circle with the specific
ROI hence reference spots. Therefore, it is impossible to reconstruct the wavefront
properly with the classical algorithms presented in this thesis.

The microlens array is acting as a low pass filter in terms of spatial resolution.
The wavefront is discretized and the aberrations of high spatial frequencies are
smoothed out. When the diameter d of the microlenses is smaller, we can fit more of
them into the same area, hence the discretization effect is reduced. However, looking
at equations 3.34 and 3.17, decreasing the microlens diameter d also decreases the
lens pitch P and increases the diameter of an Airy disk Dairy , therefore, the dynamic
range is reduced. There is again a trade-off between dynamic range and spatial
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resolution. More about the design of the SHWS and its limitations can be found
in [22, 23].

Figure 3.12: Illustration of the smoothing effect of a wavefront with high spatial
frequency.

3 Implementation of the Wavefront Reconstruction
in MATLAB

The following chapters will outline the principles of the most important
algorithms used in the software implementation of the wavefront reconstruction
which is the main topic of this thesis. The process will be described step by step
and go more deeply into the topics of previous chapters. The software was
implemented in MATLAB version R2018b, because it offers several advantages for
scientific and engineering projects, due to multiple built-in functions and
toolboxes. It is also optimized for matrix operations hence well-written code is
efficient and fast.

The structure of the software can be broken down into two steps, we have to
determine sensor reference centroids and perform parameter correction first, then
we can perform the wavefront reconstruction accurately.
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Figure 4.13: Basic structure of the software.

3.1 Algorithms for the detection of the spot centroids

As explained in chapter 2.2 it is necessary to determine the spot centroids with
subpixel accuracy. However, the simplest CoG method (equation 3.18) is not
accurate enough when the signal-to-noise ratio (SNR) of a spot image is low. The
SNR is defined as [25]:

SNR =
Smean
Nstd

(4.35)

where the Smean is the mean intensity value of all pixels. Nstd is the standard
deviation of the intensity value of all pixels and it says how much the overall intensity
varies from the Smean , hence it describes the noise. Due to the wide dynamic range
the SNR value is often expressed using logaritmic decibel scale:

SNRdb = 10 log10 SNR [dB] (4.36)

SNR is affected by background light, dark noise of the camera sensor and other
factors, hence it was necessary to implement algorithms to increase the robustness of
the reconstruction. The software allows the user to choose the optimal spot centroids
detection algorithm based on his requirements. It will be shown in chapter 4.1.1 that
each of the algorithms is useful in different conditions.
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Figure 4.14: Examples of spot images generated with the simulation environment
with SNRdB = 100 dB (right) and SNRdB = 20 dB (left). The spots have perfect
Gaussian intensity distribution.

3.1.1 Thresholding

We can reduce the noise by introducing thresholding function T(row,col) which
sets the pixel value to zero when its intensity is lower than the threshold level t,
therefore:

T (row, col) =

{
1, I(row, col) > t

0, I(row, col) < t
(4.37)

The equation 3.18 for the CoG calculation becomes:

x̄ =

∑colmax
col=0

∑rowmax
row=0 I(row, col)spixT (row, col)c∑colmax
col=0

∑rowmax
row=0 I(row, col)

(4.38)

ȳ =

∑colmax
col=0

∑rowmax
row=0 I(row, col)spixT (row, col)r∑colmax
col=0

∑rowmax
row=0 I(row, col)

(4.39)

3.1.2 Gamma correction

Another way to reduce the noise is to use a gamma correction which leads to
non-linear relationship between the intensity levels. The correted intensity value is
calculated as:

Icorr(row, col) = Imax(
I(row, col)

Imax
)γ (4.40)

The equation 3.18 for the CoG calculation becomes:

x̄ =

∑colmax
col=0

∑rowmax
row=0 Icorr(row, col)spixcol∑colmax

col=0

∑rowmax
row=0 I(row, col)

(4.41)

31



ȳ =

∑colmax
col=0

∑rowmax
row=0 Icorr(row, col)spixrow∑colmax

col=0

∑rowmax
row=0 I(row, col)

(4.42)

The low intensity pixels become much lower relative to the high intensity ones
after the calculation. This means that the noise is reduced and the intensity of the
spots is enhanced.

As the value of γ increases, higher the upward-sloping of the function, hence
bigger the relative difference between the intensity levels. Experiments and
simulations have shown that the optimal value for most of the applications is
γ = 2.

Figure 4.15: The non-linear output of intensity using the gamma correction with γ
= 2.

3.1.3 Windowing

Windowing is a simple technique used for improvement of the accuracy of the
CoG methods. We define a rectangular window with a certain width, with center at
the pixel of maximum intensity, and set the pixels outside the rectangle to zero [21].

Figure 4.16: Example of windowing used in a noisy ROI.
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3.1.4 Correlation

Both of the algorithms above are based on the modification of the CoG method.
The correlation algorithm uses a different principle. It calculates a cross-correlation
function between a model of the light spot and the sub-image, corresponding to the
ROI. The best matching pixel is found.

Figure 4.17: In the left there is a template of the perfectly gaussian spot used to
find the centroid of the noisy image on the left side in figure 4.16. We can see that
the correlation function has its peak in the middle, where the spot in figure 4.16 is
located.

To get the sub-pixel accuracy it is necessary to apply a parabolic or gaussian
interpolation using the neighbouring pixels. A detailed explanation can be found in
the literature [21, 26, 27].

3.2 Calibration of the reference centroids

In order to measure the wavefront shape, it is necessary to know the equally
spaced reference positions of the centroids, which are generated by a planar
wavefront, as stated in chapter 2.1. Theoretically, it is possible to generate a
perfect plane wave incident perpendicular to the optical axis of the microlenses by
for example taking a single-mode fiber and placing it into the focus of the convex
lens.

In reality, the reference centroids will not be equally spaced because the wavefront
will be deformed by the fiber and lens imperfections, perturbations of a refractive
index, or by having the fiber not precisely in the focus. Another problem is, that the
centroiding algorithms work only with a certain precision. Therefore, the calibration
process that compensates for the problems mentioned above was implemented.
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Figure 4.18: Logic of the reference spot position algorithm calibration.

First, the position of the centroids is approximated by analyzing a spot image,
generated by a close-to planar wavefront, using the MATLAB functions for
thresholding and centroiding gives us approximate centroids. Approximate ROIs
are computed based on the size of microlenses, which is known as a manufacturing
parameter of a sensor (figure 3.7). Afterward, the centroiding algorithms are used
in the approximate ROIs for higher accuracy of the centroids detection.
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Figure 4.19: Illustration of the reference calibration process.

To simulate behavior of a perfectly plane wavefront, the x and y position of
the first reference centroid is calculated by taking the mean centroid position of all
spots in the first row and column. Afterward, a mean value of all distances between
neighboring centroids in x and y directions is taken, hence mean lens pitch. We add
the x and y mean lens pitch values to the position of the reference spot and generate
create two new centroid positions in x and y directions. We repeat the process by
adding the mean lens pitch values to the new spots until the spot image with equally
spaced centroids in x and y directions is generated. The error caused by averaging
the values is neglectable, compared to the accuracy of the reconstruction algorithms.

It is necessary to use wavefront as close to perfect plane as possible, therefore,
wavefront generated by He-Ne laser in QED’s ASI(Q) interferometer with the
reference lens diameter of 550 mm was used. The field of view of used
Shack-Hartmann sensor with the resolution 1024x1024 is 6 x 6 mm, hence only the
small area of the generated wavefront has been analyzed, therefore, we can assume
that the RMSe is close to zero. The complete characterization of the sensor can be
found in chapter 4.2.

3.3 Calibration of the normalization factors

Experiments have shown, that the reconstruction wavefront algorithms are
behaving differently than expected. It was observed while reconstructing the
spherical wavefront with known RoC, that they work properly only when we
introduce the normalization factors Nmodal and Nzonal into the calculations. In the
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case of modal reconstruction equations 3.22 and 3.23 become:

TAx
f

Nmodal =
∂W (x, y)

∂x
=

J∑
j=0

Cj
∂Zj(x, y)

∂x
(4.43)

TAy
f

Nmodal =
∂W (x, y)

∂y
=

J∑
j=0

Cj
∂Zj(x, y)

∂y
(4.44)

For the zonal reconstruction, the vector w in equation 3.31 has to be modified:

wnormalized =
w

Nzonal

(4.45)

The normalization factors do not have equal values and in the case of modal
routine it is linearly changing with aperture diameter as illustrated in figure 4.20.

Figure 4.20: The illustration of the normalization factor dependence on the aperture
size. The data were obtained by measuring a spherical wavefront with known
RoC. The way of obtaining the normalization coefficient is explained further in
this chapter.

Even though extensive research, no explanation of these phenomena has been
found in the literature. Further mathematical analysis of the algorithms has to be
done to find the explanation.

To overcome the problem we introduce one more calibration routine. The idea
behind it is based on the literature [28, 29, 30], where the actual parameters of
the sensor, such as focal length or pixel size, are determined. These parameters
are affected by manufacturing errors and knowing them accurately increases the
accuracy of the sensor.
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Figure 4.21: Spots created by perfectly spherical wavefront.

This is done by measuring multiple almost perfectly spherical wavefronts,
generated by a single-mode fiber, in different distances from the sensor. Note that
ρ is so-called wavefront curvature and it can be calculated using the radius of
curvature R as:

ρ =
1

R
(4.46)

It is obvious that longer the spherical wavefronts travels, lower the ρ. When it
reaches the sensor it creates a regural grid of spots with separation distance Q, which
is constant for specific range and therefore the wavefront can be approximated by a
parabola. Note that lower the ρ the distance Q between the spots gets shorter. If
the spherical wavefront travels far enough, due to the divergence and because only
a small area of it is analyzed, the wavefront will become almost planar.

When we know the Q, lens pitch P and focal length f, it is possible to calculate
the wavefront curvature as:

ρcalc = (
Q

P
− 1)

1

f
(4.47)

However, we do not know the exact values of f and P and it is impossible to
measure the distance from the single-mode fiber to the sensor accurately enough.
Therefore, we create a reference mark on the sensor and measure the distance, in
other words RoC, Rref from the single-mode fiber to the mark and save the spot
image. Afterward, we move the sensor away from the fiber, which changes the RoC
hence Q, and we repeat the process.
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Figure 4.22: Photo of the calibration process.

This gives us multiple values of ρcalc and ρref . We calculate δρ = ρref − ρcalc,
plot the data and fit them with a second-order polynomial. It is possible to get the
values of δR, δf and δspix from the fitted coefficients using the equation 4.48, which
has the form of the second-order polynomial.

δρ = ρ2refδR− ρref
δf

f
− 1

f
(
δP

P
− δspix

spix
) (4.48)
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Figure 4.23: Set of measurements of the spherical wavefronts with different radii
and the fit of the second-order polynomial.

For the calibration routine, presented in this thesis, it is not necessary to
correct for the pixel size or focal length because the correction is included in the
normalization factors. When we know the exact value of the RoC of the spherical
wavefront, it is possible to find the Nmodal and Nzonal for different aperture
diameters Daper by calculating the value of the fourth Zernike spherical coefficient,
which is directly connected to the RoC by [31]:

C4 =
Daper

8
√

3R
(4.49)

We can use merit functions to find such values of Nmodal and Nzonal that the
reconstructed value of the coefficeint corresponds to the one calculated using the
equation 4.49. Because the Nmodal is changing linearly with aperture, we fit the data
with a first-degree polynomial to get the coefficients of the polynomial, which can
be used later for the calculation of Nmodal for every possible aperture diameter. On
the other hand, the Nzonal oscillates around one number hence we take the mean to
get the final value for all aperture diameters.
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Figure 4.24: Logic of the algorithm for normalization factor calibration.

3.4 Algorithms for the wavefront fitting

With the sensor calibrated by both of the routines, we are able to reconstruct
the wavefront using a modal or zonal method. The outputs of both presented
fitting algorithms are the Zernike coefficients because of the advantages they provide
as explained in chapter 1.2. First, it is necessary to define a circular aperture
with a certain diameter and change the coordinate system to polar normalized on
unit disk for calculations with Zernike polynomials. User is also allowed to define
the orientation of the xyz axis, such as swapping x and y or changing the positive
direction of z, which can be useful when the sensor is rotated in space.

3.4.1 Modal fitting routine

As explained in chapter 2.3.1 it is necessary to calculate the derivatives of the
Zernike polynomials. It is not recommended to use explicit expressions due to
increasing cancellation error. This can be solved by using recurrence relations
between the polynomials to calculate the values of higher orders derivatives. For
this reason, the robust and stable algorithm presented in [10] is used in the
software.

The derivatives are calculated in the x and y coordinates of the reference centroids
given by calibration procedure, hence in case the aperture diameter does not change,
the computation of all the steps above is done only once. This means that we can
effectively reconstruct the wavefront in real-time because the following routine is not
time-consuming and we can loop it as illustrated in figure 4.25. The routine includes
analysis of the spot image of the distorted wavefront, calculation of the wavefront
slopes and using least squares fit to get the Zernike coefficients.
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Figure 4.25: Logic of the routine for modal (left) and zonal (right) fitting algorithms.
It is possible to loop the part of the fitting and reconstruct the wavefront in real-time
if the aperture diameter does not change.

3.4.2 Zonal fitting routine

Zonal fitting requires us to calculate the Southwell matrix using x and y
coordinates of the reference centroids. The function getSouthwellMatrix.m
presented in [21] is utilized for this purpose. The wavefront is reconstructed over
the whole spot image by the least squares fit of the slopes and Southwell matrices.
Then we calculate the values of Zernike polynomials inside a defined aperture,
utilizing the function [32] available in MATLAB Central File Exchange, and by
using the least squares fit we get the coefficients, as explained in chapter 2.3.2. It
is possible to loop the part of the routine again for a real-time reconstruction.
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Figure 4.26: Wavefront reconstructed over a whole microlens array and the same
wavefront reconstructed inside a 3 mm aperture in diameter using a least squares
fit of Zernike polynomials.

4 Analysis of the Algorithms

The following chapters present the analysis of the software in terms of time
effectiveness and accuracy via simulation environment and real-world measurements,
which are compared with the socertified commercial software by Thorlabs using
the WFS30-7AR sensor [31]. The Zernike coefficients reconstructed by Thorlabs
software were saved and visualized in MATLAB for an easier comparassion of the
results.

4.1 Simulation environment

The simulation environment was developed as the part of this thesis for the
further analysis of the algorithm. It takes a set of Zernike polynomial coefficients
as an input and generates a corresponding spot image. This is done by reversing
the process of the wavefront reconstruction. First, we compute the derivatives of
a wavefront characterized by input coefficients inside a defined aperture. Using
equations 3.22 we can compute the TAx and TAy and simulate the corresponding
spot image.

The generated spots have perfect Gaussian intensity distribution. This is done
using function customgauss.m available in MATLAB Central File Exchange [33].
Analyzing various simulated spot images and performing the reconstruction gives
us an idea about the accuracy of the algorithms.

4.1.1 Comparison of the algorithms for the detection of spot centroids via
simulation

The accuracy of spot centroid detection algorithms was tested by calculating
the absolute difference between the reference centroids and the detected ones for
simulated spot images with different SNRs. The generated images had a resolution
of 400x400 pixels. The number of generated spots is 400.
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The absolute error is the sum of absolute values of differences between the known
generated centroid positions and the detected ones. It is expressed in a pixel unit.
The SNR of the image is controlled by the MATLAB function awgn() which adds a
Gaussian noise to the image based on the input, which is a scalar value of SNRdB ,
which has been calculated using the equation 4.36.

Figure 5.27: Comparison of the algorithms for the detection of spot centroids
without and with windowing in terms of absolute error for different values of SNRdB .

We can see in figure 5.27 that all of the methods work perfectly when the SNR is
large enough. Even though thresholding improves the simple CoG algorithm, both
of them start to fall off relatively soon. The gamma correction and correlation start
to introduce error for much lower SNR, than two of the previous methods, and they
are even up until the SNRdB ≈ 20 dB where the gamma correction falls off. To get
the idea, the spot image with SNRdB = 20 dB can be seen in figure 4.14.

The correlation algorithm is best in terms of accuracy and beneficial for situations
where the strong background illumination is present while measuring. Windowing
significantely improves the accuracy of CoG algorithms as we can see if we compare
pictures in the figure 5.27, on the other hand, it is not surprising that the correlation
algorithm is not affected by it.

To compare the algorithms in terms of time efficiency we analyzed 1640 ROIs
and measured the time it takes to find the centroids:

Table 5.3: Time efficiency of the centroiding algorithms after analyzing 1640 ROIs.

Algorithm Time [s]
Simple CoG 0.048
Thresholding 0.096

Gamma correction 0.091
Gamma correction + windowing 0.146

Correlation 1.729

The CoG algorithms are very time efficient compared to the correlation
method, however, windowing prolongs the time taken approx. 1.6x. In the
majority of the situations in a lab is the SNRdB much higher than 20 dB, therefore,
it is recommended to use the gamma correction algorithm with windowing which
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allows us to reconstruct the wavefront in real-time with approx. 4 fps assuming the
equal number of spots. In situations with very low SNR, or when the time of the
reconstruction is not an issue, it is recommended to use the correlation algorithm.

4.1.2 Comparison of the algorithms for wavefront fitting via simulation

To get the idea of the noise introduced only by the modal and zonal fitting
algorithms, without being affected by centroiding noise, 10 000 different spot images
were generated via simulation and reconstructed.

We were mostly interested in the fitting accuracy of the first fourteen Zernike
coefficients. Hence the reference inputs of the simulation were created in such a
way, that the first fourteen coefficients are always predominant, coefficients from
the fourteenth to twenty-second are all present but lower and coefficients left up
until sixty-sixth one are mostly zero, however, few of them are randomly present to
simulate a noise introduced by variations in the refractive index.

Difference between the reference C ref
j , which are the coefficients used as an

input for the simulation of the spot images, and the fitted coefficients C fit
j of each

reconstruction for both of the fitting algorithms were calculated and expressed in
terms of RMSediff :

RMSediff =

√ ∑
Cjinterval

(Cref
j − Cfit

j )2 (5.50)

The mean RMSediff of all 10 000 simulations was computed afterward for different
sum intervals:

Table 5.4: The RMSe computed from the difference between the input coefficients
and the fitted ones.

Cj interval Modal RMSediff [nm] Zonal RMSediff [nm]
4 ≤ j ≤14 8.729 16.300
4 ≤ j ≤ 66 13.041 18.520
2 ≤ j ≤ 3 18.427 13.919

The fit of the first fourteen coefficients excluding piston and tilts is almost twice
more accurate for modal routine compared to zonal. When we analyze results up
until sixty-sixth coefficient, we can see that the RMSe is larger, even though modal
fitting is affected more than zonal it is still more precise. Therefore, the modal fitting
seems to be superior to the zonal one. This can be caused by the calibration routine
presented in chapter 3.3, where we take only the mean of the zonal normalization
factor. More experiments need to be done to increase the accuracy of the zonal
fitting.

On the other hand, the zonal routine is more accurate in tilt fitting. This can
be caused by the fact, that the modal routine works with derivatives of Zernike
polynomials, which are not orthogonal, therefore, the coupling between the
coefficients can occur [34].
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Note that the RMSediff values can not be taken as absolute error values of the
algorithms, because they slightly change with aperture size, hence with the number
of spots inside. In our case, the aperture including 812 spots was analyzed.

Figure 5.28: Example of a reference and reconstructed coefficients used in
simulations.

The reconstruction time of a single wavefront is:

Table 5.5: Time efficiency of the fitting algorithms.

Algorithm Time [s]
Modal 0.008
Zonal 0.248

The ineffectivness of the zonal algorithm is caused by the least squares fit of
Southwell matrices and slopes, which takes around three-quarters of the time spent.
The results lead to the conclusion that the modal fitting is superior to the zonal one
in terms of accuracy and speed.

4.2 Comparison of the presented reconstruction software with
the commercial software

In order to test the accuracy and noise of the modal and zonal algorithms in real-
world condition, we reconstruct almost perfectly planar, spherical and also various
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wavefronts. The results are compared with the Thorlabs commercial software that
uses calibration data obtained by an unknown method and also uses unknown fitting
algorithm.

The sensor (WFS30-7AR) by Thorlabs was used for the reconstructions [31]:

Table 5.6: Specifications of the wavefront sensor used and hardware limitations of
the wavefront reconstruction.
1) Resolution is software-changeable, hence the number of used microlenses also
differes based on it. In our case resolution of 1024x1024 pixels was used.
2) Thorlabs documentation states that accuracy was tested by measuring a spherical
wavefront with known RoC generated by a single-mode fiber using a HeNe laser
(λ = 633 nm). Accuracy is measured using the commercial software.

Hardware parameters
Microlenses Camera

Focal length 5.6 mm Sensor CMOS

Lens pitch 0.15 mm Resolution1 ) 1936 x 1216
Array size 11.5 x 7.5 mm Pixel size 0.00583 mm
Lens size 0.146 mm

Number of microlenses 73 x 45

Limitations of the wavefront reconstruction

Wavefront accuracy2 ) RMSe = λ/40 = 15.83 nm

Note that for practical reasons, presented figures contain only first twenty-two
Zernike coefficients, but the RMSe is calculated from fourth to sixty-sixth Zernike
coefficient. In every presented chapter a single spot image, that characterizes the
wavefront, is taken and analyzed using modal, zonal and Thorlabs reconstruction
algorithms. The difference in results is compared.

4.2.1 Reconstruction of the plane wavefront

The close-to planar wavefront generated by ASI(Q) interferometer is used again.
We presume, that the wavefront aberrations should be close to zero for reasons
explained in chapter 3.2, hence the reconstructed Zernike coefficients should be also
close to zero. The accuracy will be affected by the noise introduced by centroiding,
fitting algorithms and also by the hardware imperfections of the sensor, such as
microlens array aberrations. The aperture diameter was set to 6 mm.
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Figure 5.29: Results of the almost perfectly plane wavefront reconstruction.

The difference in reference centroids can also have a major effect on the difference
in tilts, which can be seen in figure 5.29 when looking at the values of C2 and
C3 . The modal reconstruction is again superior to zonal, which correlates with the
results of the simulations, and it even seems to be slightly better than the Thorlabs
reconstruction.

Table 5.7: The RMSe, hence the noise of the algorithms used to reconstruct almost
perfectly plane wavefront.

Algorithm RMSe [nm]
Modal 13.304
Zonal 15.199

Thorlabs 14.353

4.2.2 Reconstruction of the spherical wavefront

The spherical wavefront with known RoC was generated by a single-mode fiber,
therefore, we can assume that all of the aberrations except the defocus are close to
zero. To test the noise again, we calculate the RMSe without the defocus coefficient
C4 , hence starting the sum at j = 5 in equation 2.13. The defocus coefficient was
equal for all of the reconstruction routines and it corresponded with the known RoC,
hence it did not affect the RMSe calculation. The aperture diameter was set to 3.5
mm.
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Figure 5.30: Reconstructed Zernike coefficients of the almost perfectly spherical
wavefront.

The total RMSe is significantely lower compared to the reconstruction of a plane
wavefront in the previous chapter. This is caused by the smaller diameter of the
aperture. The relative difference in the RMSe follows the same trend, hence the
modal reconstruction is superior to zonal and even Thorlabs reconstructions. The
difference in tilt is probably again caused by the difference in reference.

Table 5.8: The RMSe, hence the noise of the algorithms used to reconstruct almost
perfectly spherical wavefront.

Algorithm RMSe [nm]
Modal 6.083
Zonal 7.000

Thorlabs 6.633

4.2.3 Reconstruction of the wavefront A

The following chapter presents the reconstructions of various wavefronts A and
B generated by the experimental optical system which can be seen in figure 6.36.
The aperture diameter was set to be equal as in the previous chapter - 3.5 mm.
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Figure 5.31: Reconstruction of the wavefront A generated by a experimental optical
system.

The modal and zonal reconstructions were again compared to the commercial
software by calculating the difference in Zernike coefficients and then computing
the RMSediff , however, now we calculate the difference between the reconstruction

algorithms, therefore in equation 5.50 we replace the variables C ref
j and C ft

j with
values of the coefficients obtained by the fitting algorithms. The interval of the
coefficients used for the calculaton of the sum is 4 ≤ j ≤ 66 .

Table 5.9: The RMSediff of the algorithms calculated from the difference of the fitted
coeffiecients when reconstructing wavefront A.

Algorithms RMSediff [nm]
Thorlabs - Modal 16.643
Thorlabs - Zonal 16.031

Modal - Zonal 16.673
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The RMSediff between the algorithms is higher than the RMSe, in other words,
noise of the reconstruction of the spherical wavefront with the same aperture size,
that has been analyzed in the previous chapter. This points to the fact, that when if
there is more than one dominant aberration present in the wavefront, the accuracy
of the reconstruction is worse.

Note that the difference in results between the presented algorithms and the
commercial one can be up to a certain degree caused by slightly different size and
position of the aperture. Other factors that can affect this are the different
reference data or centroid detection methods. However, the important fact is that
the relative contribution of Zernike coefficients is almost similar for each
reconstruction algorithm.

4.2.4 Reconstruction of the wavefront B

The wavefront B was again generated by the optical system described in
chapter 5. Different aberrations than in the previous chapter were purposefully
introduced.
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Figure 5.32: Reconstruction of the wavefront B generated by the experimental
optical system with induced defocus.

The RMSediff difference between the algorithms is slightly different, however,
close to the values of the reconstruction of the wavefront A. The relative contribution
of the Zernike coefficients is again almost similar for each reconstruction algorithm.

Table 5.10: The RMSediff of the algorithms calculated from the difference of the
fitted coeffiecients when reconstructing wavefront B.

Algorithms RMSediff [nm]
Thorlabs - Modal 17.321
Thorlabs - Zonal 15.165

Modal - Zonal 15.460

It was observed by measuring almost perfectly planar and spherical wavefronts,
that the modal reconstruction is superior in terms of noise to the zonal and
Thorlabs routines. The simulations in chapter 4.1.2 showed that the modal routine
is more accurate than the zonal reconstruction with first 14 Zernike coefficients
pre-dominantly present and even when we reconstruct all of the 66 coefficients.

It is not obvious, whether is the modal reconstruction superior to the Thorlabs
reconstruction algorithm because the exact properties of measured wavefronts are
not known. However, by analyzing the results we can say, that the presented software
is a solid alternative to the commercial one.

5 Application of the Algorithm for Alignment of the
Complex Optical System

When we consider an optical system with multiple optical elements, it is crucial
to align all of them properly to minimize the aberrations, otherwise, the overall
performance of the system will be degraded. Consider a perfectly aligned optical
system in Fig. 6.33, the input and output of the system is a plane wave.
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Figure 6.33: Perfectly aligned optical system.

On the other hand, if the lenses are misaligned (Fig. 6.34) the output wavefront
is aberrated, therefore the image is distorted and the performance of the system is
degraded. The shape of the wavefront can be measured using a SHWS. Based on
the aberrations present, it is possible to use the so-called sensitivity matrices to map
the link between the misalignments and Zernike coefficients. It is not purpose of
this thesis to present the detailed principle, more information can be found in [35].

Note that the complex sensitivity matrix algorithms, that were used for the
alignment, were not programmed by the author of this thesis. Author took part in
this project by generating a .NET library of the presented SHWS software using the
MATLAB Compiler SDK, by programmng a part of the application used for the
alignment in C# and assisiting when performing the experiments.

Figure 6.34: Examples of misaligned optical systems - decenter (top) and defocus
(bottom).

5.1 Description of the adjusted complex optical system

To test the principle of the alignment with the use of SHWS, the experimental
optical system was designed which we can see in figure 6.35. The components are
motorized so it is possible to introduce a defined misalignment. The single mode
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fiber a) can move in x direction, biconvex lens b) can move in x and y directions,
biconcave lens d) in z direction and SHWS e) in x direction.

Figure 6.35: The model of the experimental multi-lens optical system generated in
Zemax software used for the testing of the alignment algorithms. a) Single mode
fiber, b) Biconvex lens, c) Biconvex lens, d) Biconcave lens, e) Shack-Hartmann
sensor.

The adjustment algorithm uses information about the wavefront obtained from
the Zemax model of the system and information about the wavefront shape
reconstructed with SHWS. These are than analyzed using sensitivity matrices.

5.2 .NET library for C# application

There was a need to develop a application that can read raw spot images in
real time using the SHWS from Thorlabs and processes them with the presented
MATLAB software for a wavefront reconstruction. It was also necessary to control
the motors that are moving the lenses in the experimental optical system to introduce
a defined missalignment.
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Figure 6.36: Photo of the experimental multi-lens complex optical system.

Thorlabs provides .NET libraries that can be used to connect and control their
devices. Hence we decided to develop a C# application which controls the SHWS,
the motors and also reconstructs a wavefront using the presetned MATLAB software.
Therefore a .NET library of the wavefront reconstruction software was generated
using the MATLAB Compiler SDK. The application provides functionality of all
three libraries and it can be used as a tool for the alignment of the experimental
optical system.

Note, that the raw MATLAB code is used to analyze a single spot image. The
C# application allows user to reconstruct a wavefront in a real time.

5.3 Alignment of the complex optical system

When the system was modeled the wavefront on the output of the system can
be seen on figure 6.37. The most dominant one is the spherical aberration which is
manifested by C11 - primary spherical aberration. It is introduced by the nature of
the lenses in the system and can not be compensated for without the use of advanced
methods of optical design.
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Figure 6.37: The wavefront on the output of the modeled optical system, generated
by Zemax.

The wavefront on the output of the aligned optical system measured in the
laboratory can be seen in figure 6.38. The value of the coefficient is slightly different
compared to the Zemax model, however, this can be caused by a slightly different
definition of the aperture. The real system is not as perfectly aligned as the computer
model, hence another source of error is introduced. On top of that, there is a noise
of the reconstruction algorithm present. Lenses used in the system also have some
aberration, which is affecting the output wavefront.

Figure 6.38: The wavefront on the output of the real optical system measured in
the laboratory.

Important fact is that the shape of the real wavefront on the output of the system
is almost similar to the simulated one. The most dominant coefficient is C11 -
primary spherical aberration in both cases. The algorithm for alignment of the
complex optical systems was in early stage of developement, therefore, there are
no further results presented in this thesis. However, the wavefront sensor is giving
promising results and it should play a major role in the further developement.
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6 Application of the Algorithm for Wavefront
Reconstruction of the Structured Beam

Non-diffractive beams are the solutions to the Helmholtz equation, that have
different properties compared to well-known Gaussian beams. As the name suggests,
their transverse profile does not change as they propagate, hence they have a very
low divergence. Another interesting property is the self-regeneration effect behind
the obstacle. This is due to the fact, that non-diffractive beams are interference
fields [36].

Figure 7.39: Generation of a Bessel beam using an axicon (left) and its transversal
intensity profile [37] (right). We can see, that there is a limited distance, where the
plane waves intersect hence interfere and form the Bessel beam.

The problem with Bessel beams is their limited propagation distance, due to the
principle of their generation using axicon. The Structured beam is a novel type of
non-diffractive, that has been patented in the last years in collaboration between
TOPTEC and CERN by Miroslav Šulc and Jean-Christophe Gayde.

Figure 7.40: Illustration of a self-regenerating ability of Bessel beams. There is a
small grey ”shadow” behind the circular obstacle, where the beam is not generated,
however, the beam regenerates when the overcomes it, due to the fact that the plane
waves are tilted with respect to the direction of propagation.

The Structured beam is again an interference field with the transversal intensity
profile almost similar to a Bessel beam. However, it can be generated using the
optical aberrations of thick and thin convex lenses, namely spherical aberration
and defocus. This allows it to overcome the propagation distance limitation while
maintaining its transversal profile and low divergence. These properties gives it
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the potential to be used in various applications. More about the principle of the
generation and other information about the Structured beam can be found in [37,
38, 39, 40].

6.1 Wavefront reconstruction of the Structured beam

Structured beams are still the subject of intensive research. Numerical
simulations that predict the wavefront shape (figure 7.41) have been presented
in [37], backed up with the reconstruction using a SHWS WFS-150-5C by
Thorlabs. However, the results of the reconstruction were suboptimal. Therefore,
we decided to redo the experiment.

First, we used the SHWS WFS30-7AR and software by Thorlabs. We were
not able to reconstruct the wavefront properly, as we can see in figure 7.42. We
believe this is due to the complex spotimage of the Structured beam (figure 7.43).
The software by Thorlabs uses an unknown algorithm for the detection of the spot
centroids and reconstruction.

Figure 7.41: Simulation of a wavefront of a Structured beam using VirtualLab
Fusion [37].
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Figure 7.42: The reconstructed wavefront of the Structured beam using the
Thorlabs software. The reconstruction is very noisy and the wavefront does not
match the simulation.

Therefore, we used the presented software to reconstruct the wavefront using the
correlation centroiding algorithm (chapter 3.1.4). It was able to suppress the noise
and locate the proper centroids of the actual spots.

Figure 7.43: Spotimage generated by a Structured beam. A lot of noise and pseudo
spots can be seen.

If we compare the reconstructed wavefront in figure 7.44 and the simulated
wavefront in figure 7.41, we can say, that the shape and transversal profile are
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similar. As stated in the previous chapter, the generator of a Structured beam
utilizes defocus and spherical aberration. If we look at results of the
reconstruction, the most dominant Zernike coefficients are C4 , C11 and C22 which
are defocus, primary spherical aberration and secondary spherical aberration
respectively. This fact also backs up the results.

Reconstructing the wavefront of the Structured beam opens new possibilities in
the research of this topic.

Figure 7.44: If we compare the results with figure 7.41, the shape of the
reconstructed wavefront is matching the simulations. The most dominant Zernike
coefficients are C4 , C11 and C22 which are defocus, primary spherical aberration
and secondary spherical aberration respectively.
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7 Conclusions

The theoretical part is briefly describing the necessary background and principle
of SHWS wavefront reconstruction to make it easier for the reader to understand
the experimental part. The principal limitations of the sensor are also presented.

Afterward, the developed algorithms for the wavefront reconstruction are
described in great detail. One of the implemented features is the novel calibration
routine that also includes the process for the compensation of the manufacturing
errors of the sensor, which leads to the extremely high precision of the
reconstructions. The calibration process makes it possible to calibrate any SHWS
with any given parameters, making the software versatile. This is a very important
fact for TOPTEC, because there will be a possibility to manufacture various
sensors indoors, based on the needs of the different experimental applications.

Four centroiding algorithms, two fitting algorithms and other features are
included in the software. Therefore, it is possible to choose the exact parameters of
the reconstruction depending on the nature of the experiment.

All of the algorithms were analyzed in terms of time efficiency and reconstruction
accuracy. Simulation routines were developed for this task. The results of the
simulations show that the gamma algorithm seems to be the best choice for the
detection of the spot centroids in the majority of cases. Analysis of the fitting
algorithms shows the superiority of the modal routine to the zonal one.

Experimental measurements of five various wavefronts were done and compared
with the results from certified commercial software by Thorlabs. The difference
between the reconstructed wavefronts is usually around 15 nm RMSe depending on
the aperture size. This means that the presented software is a solid alternative to
the commercial one.

The software was also used as a part of the experimental algorithm for the
alignment of the complex optical systems. The MATLAB code was compiled into
.NET library to make it possible to use it in C#. This enabled new functionality
such as real-time wavefront reconstruction. There was also a need for the variability
of the axis orientation, hence it was implemented. The commercial software does
not offer this feature. The outcomes of the reconstructions were compared to the
simulations carried out with Zemax software and the similarity in results proves the
high accuracy of the sensor.

Lastly, the software was able to reconstruct the wavefront of the Structured beam
using the correlation centroiding algorithm. The shape of the wavefront correlates
with the simulations and theoretical assumptions about the Structured beam. This
has never been done before because the commercial software failed in this task.
Reconstructing the wavefront of the Structured beam opens new possibilities in the
research of this topic.

The software offers tremendous potential in various experimental applications in
TOPTEC, thanks to the variability of the wavefront reconstruction parameters while
maintaining the high accuracy of the reconstruction. The developed calibration
routine opens a possibility for manufacturing sensors indoors. The software has been
and will be used for the alignment of the complex optical systems and reconstruction
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of the wavefront of the Structured beam. The literature shows [23, 24] that there
is a possibility to increase the dynamic range of the sensor using the specialized
algorithms. Therefore, future implementation of this feature can offer lead to even
better performance of the software compared to the commercial alternatives.
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