
T
BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

FACULTY OF INFORMATION TECHNOLOGY
FAKULTA INFORMAČNÍCH TECHNOLOGIÍ

DEPARTMENT OF INTELLIGENT SYSTEMS
ÚSTAV INTELIGENTNÍCH SYSTÉMŮ

PERFORMANCE EVALUATION OF DOS RESISTANT
PROOF-OF-STAKE PROTOCOLS
VYHODNOTENIE VÝKONU PROOF-OF-STAKE PROTOKOLOV ODOLNÝCH VOČI DOS

MASTER'S THESIS
DIPLOMOVÁ PRÁCE

AUTHOR Be. TIMOTEJ PONEK
AUTOR PRÁCE

SUPERVISOR Ing. MARTIN PEREŠÍNI
VEDOUCÍ PRÁCE

BRNO 2023

Master's Thesis Assignment
Institut:

Student :

P r o g r a m m e :

Spec ia l i za t ion :

Tit le:

Ca tegory :

Depar tment of Intelligent S y s t e m s (DITS)

P o n e k T i m o t e j , B e .

Information T e c h n o l o g y and Art i f icial Intel l igence

Compu te r Networks

P e r f o r m a n c e E v a l u a t i o n o f D o S R e s i s t a n t P r o o f - o f - S t a k e P r o t o c o l s

Secur i ty

155973

A c a d e m i c year : 2023 /24

Ass ignmen t :

1. G e t famil iar with exist ing Proo f -o f -S take protocols, part icularly C O P O R and L a K S A .

2. M a k e a theoret ical c o m p a r i s o n of these protocols regarding throughput, scalabi l i ty , secur i ty ,
l i veness , safety, finality, etc. A n d m a k e a secur i ty ana lys is cons ider ing genera l vulnerabi l i t ies.

3. Acqua in t yourse l f with anonymiza t ion techn iques used in network traffic, part icularly on ion routing.

4 . A n a l y z e the miss ing functional i ty of the or iginal C O P O R solut ion with and without the anonymiza t ion
layer and ex tend and re implement m iss ing parts.

5. Implement proof-of -concept L a K S A protocol and a d d an anonymiza t ion layer to it.
6. Eva lua te and c o m p a r e the key per fo rmance of the ex tended C O P O R protocol and L a K S A a p p r o a c h .
7. D i s c u s s resul ts, secur i ty, and potential improvements of the p roposed solut ion.

Literature:

• Rychlý, škálovate lný, a DoS-rez is tentní proof-of-stake konsensuáln í protokol za ložen na
anonymizačn í vrs tvě - h t tps : / /www.vut .cz /s tudent i /zav-prace/deta i l /136727

• L a K S A : A Probabi l is t ic Proo f -o f -S take Pro toco l
• A lgo rand

• D a r k F i , an a n o n y m o u s L1 b a s e d on ze ro -know ledge , multi-party computa t ion , and homomorph ic
encrypt ion.

• D o u , H a n y u e , et a l . " A probabi l ist ic Proo f -o f -S take protocol with fast conf i rmat ion." Journal of
Information Security and Applications 68 (2022): 103268.

• Homol iak , Ivan, et a l . " A secur i ty re ference archi tecture for b lockcha ins . " 2 0 7 9 IEEE International
Conference on Blockchain (Blockchain). I E E E , 2 0 1 9 .

• Demyst i fy ing the Dark W e b : A n Introduction to To r and On ion Rout ing

Requ i remen ts for the semes t ra l de fence :
1-3.

Deta i led formal requi rements c a n be found at ht tps: / /www.f i t .vut .cz/study/ theses/

Superv iso r : Pe reš ín i M a r t i n , Ing.

H e a d of Depar tment : Hanáček Petr , doc . Dr. Ing.

Beg inn ing of work: 1.11.2023

S u b m i s s i o n dead l ine : 17.5.2024

Approva l date: 6 .11 .2023

Facu l ty of Information Techno logy , B rno Univers i ty of T e c h n o l o g y / Bože těchova 1/2 / 612 66 / Brno

https://www.vut.cz/studenti/zav-prace/detail/136727
https://www.fit.vut.cz/study/theses/

Abstract
This d ip loma thesis focuses on evaluation of the Proof of Stake protocols Algorand , L a K S A
and C O P O R in terms of properties key to blockchains. The focus is on the theoretical
analysis of the protocols i n terms of security, performance, and abi l i ty to deal w i th DoS
attack on the leaders responsible for block creation i n each round. The ind iv idua l protocols
have been implemented and extended wi th an anonymizat ion layer to thwart DoS attacks
on the leader, and their performance has been tested. Last but not least, we pointed out
another possible direction for the development of the novel C O P O R protocol.

Abstrakt
T á t o p r á c a je z a m e r a n á na vyhodnotenie Proof of Stake protokolov Algorand , L a K S A a
C O P O R z pohľadu v l a s tnos t í kľúčových pre blockchainy. D ô r a z je k l adený na t eo re t i ckú
a n a l ý z u protokolov z pohľadu bezpečnos t i , výkonnos t i a schopnosti vyspo r i adať sa s ú t o k o m
typu DoS na l ídrov, k t o r ý sú z o d p o v e d n ý za tvorbu blokov v j edno t l i vých kolách. J edno t l ivé
protokoly bol i i m p l e m e n t o v a n é a rozš í rené o a n o n y m i z a č n ú vrs tvu pre zmarenie ú t o k o v typu
DoS na l ídra , a ich výkonnosť bola o t e s tovaná . V neposlednom rade sme poukáza l i na dalš í
m o ž n ý smer vývoja nového protokolu C O P O R .

Keywords
blockchain, consensus, P roof of Stake protocols, Algorand , L a K S A , C O P O R , anonymiza
t ion, onion routing, tor, dandelion, V R F , P R F

Klíčová slova
blockchain, konsensus, P roof of Stake protokoly, Algorand , L a K S A , C O P O R , anonymizác i a ,
cibulové smerovanie, tor, dandelion, V R F , P R F

Reference
P O N E K , Timote j . Performance Evaluation of DoS Resistant Proof-of-Stake Protocols.
Brno , 2023. Master 's thesis. Brno Universi ty of Technology, Facul ty of Information Tech
nology. Supervisor Ing. M a r t i n Peresini

Rozšířený abstrakt
Cieľom tejto p r á c e bolo š tudovať v y b r a n é konsensuá lne protokoly typu Proof of Stake

(dôkaz v loženého vkladu , skratka PoS) , k o n k r é t n e Algorand , C O P O R a L a K S A , vykonať
ich porovnanie z pohľadu v l a s t n o s t í kľúčových pre blockchain siete,ako je p r i epus tonosť ,
škálovateľnosť, živosť, konečnosť / f ina l i t a , bezpečnosť a zá roveň sme porovnali aj ich vlast
nos t í t ýka júce sa férovosti a odolnosti voči ú t o k o m typu Denia l of Service (zamedzenie
p r í s t u p u , skratka DoS) .

Algorand je protokol k t o r é h o ú č i n n ý m mechanizmom, k t o r ý znižuje š a n c u DoS ú t o k u ,
je využ i t i e overovateľnej n á h o d n e j funkcie (skratka V R F) , k t o r á v y b e r á nep redv ída teľne
v y b e r á l ídrov (sú z o d p o v e d n ý za v y t v á r a n i e blokov) a voličov (h lasujú za b loky s na jvyššou
priori tou), kde je v k a ž d o m kole zvolený p o č e t rozdielny. P re ú t o č n í k a je ťažké identifikovať
l ídra v danom kole, keďže jeho identi tu sa dozvie až ked zis t í k t o r ý v y t v o r e n ý blok ma l
na jvyšš iu pr ior i tu a obd rž í s a m o t n ý blok (priori ta a blok sa posie la jú v dvoch s a m o s t a t n ý c h
sp rávach) .

Pro tokol Laksa adresuje p r o b l é m y v Algorande, ako sú vysoko kolísajúci p o č e t l ídrov
a voličov v j edno t l i vých kolách. O b m e d z e n í m tohoto p o č t u fixnou hornou hranicou autori
a r g u m e n t u j ú zvýšenie bezpečnos t i protokolu a rýchlos t i finalizácie p r idávaných blokov.

C O P O R bol n a v r h n u t ý a prvotne i m p l e m e n t o v a n ý v diplomovej p rác i Mareka T a m a š k o -
viča s cieľom byť lepšou a l t e r n a t í v o u voči ex i s tu júc im PoS protokolom. O d s t r á n i l potrebu
pre hlasovanie za bloky, p r í t o m n é v Algorande a L a K S e , p o u ž i t í m t a k é h o mechanizmu volby
l ídra, k t o r ý za ruču je v ý b e r r ovnakého l ídra k a ž d ý m uzlom. Ďalej tento mechanizmus v y b e r á
aj a l t e r n a t í v n y c h l ídrov, k t o r ý sú v y p r o d u k u j ú blok v p r í p a d e nedostupnosti h l a v n é h o l ídra
alebo predoš lých l ídrov, a t ý m t o zabezpeču je , že v k a ž d o m kole bude even tuá lne v y t v o r e n ý
nový blok. A k o súčasť tohto protokolu bolo n a v r h n u t é použ ívan ie ident i f iká torov namapo-
vaných na sieťové adresy, k t o r ý c h mapovanie nie je dopredu z n á m e ú točn íkov i a m u s í ho
zistiť aby bo l schopný zamedziť l í d rom vo v y t v á r a n í blokov ú t o k o m typu DoS .

Pre ďalšie znemožnen ie ú točn íkov i získať mapovanie ident i f iká torov na sieťové adresy
bolo n a v r h n u t é použ i t i e anonymizác i e pos ie laných sp ráv . Sem sme sa pozreli na rôzne
možnos t i anonymizác i e ako sú cibuľové smerovanie (onion routing) vysoko využ ívané v
anonymizačne j sieti tor, mixovanie sp ráv (mixing networks) a t ak t i e ž na j e d n o d u c h ý mech
anizmus n a v r h n u t ý ako s p ô s o b z n e m o ž n e n i a ú točn íkov i zistiť p ô v o d c u danej s p r á v y v
blockchaine B i t co in , n a z ý v a n ý dandelion (slovensky p ú p a v a) , a n o n y m i z a č n ú vrs tvu sme
nás l edne implementovali na ideách p o u ž i t ý c h v anonymizačne j sieti tor, a zakomponovali
sme aj ideu dandelionu a s k ú m a l i bezpečnosť t ý c h t o riešení.

Pre porovnanie C O P O R u s o s t a t n ý m i m e n o v a n ý m i protokolmi sme ich t ak t i e ž imple
mentovali v j azyku p y t h o n 3 . 8 s v y u ž i t í m r o v n a k ý c h s t avebných blokov, aby bolo porov
nanie čo naj férovej šie. N a m i i m p l e m e n t o v a n á a n o n y m i z a č n á vrstva je i m p l e m e n t o v a n á tak
aby nebola závis lá od bež iaceho protokolu, a preto bolo jej zakomponovanie do L a K S y
p r i a m o č i a r e . P re Algorand nebola použ i t á , p r e tože sem a n o n y m i z á c i a sp ráv neovplyvňuje
ú točn íkovu schopnosť identif ikácie l ídra a voličov v danom kole.

Testy ukáza l i , že pridanie anonymizačne j vrs tvy v y t v á r a r o z u m m n é spomalenie prie
pustnosti protokolu v kontraste s d o d a t o č n e z í skanou bezpečnosťou . P r i e p u s t n o s ť protokolu
C O P O R bola pr i využ i t í anonymizác i e zn ížená m a x i m á l n e o polovicu, kde v n i ek to rých prí
padoch šlo iba o 20% spomalenie. V p r í p a d e kde sme simulovali ú t o k typu DoS na n iek to ré
uzly v sieti ich n e p r í t o m n o s ť o u sme naviac pozorovali p o d o b n ú p r i epus tonosť pr i využ i t í
anonymizác ie . P re protokol L a K S A p r i d a n á a n o n y m i z á c i a n e m á veľký vp lyv na priepust
nosť, p re tože sem p r e b i e h a j ú kolá vo fixných časových intervaloch, a od ich d ĺžky závisí
p r i epus tnosť . A n o n y m i z á c i a t u nesmie vytvor iť spomalenie dlhšie ako d ĺžka t ý c h t o inter-

valov, inak protokol nebude schopný vy tvá rať rozhodnutia. V naš ich testoch sme z is t i l i , že
pre p o u ž i t é fixné časové intervaly a n o n y m i z á c i a n e v y t v á r a t a k é t o spomalenie. Výs ledky pre
Algorand ukáza l i jeho schopnosť vyspo r i adať sa aj s p r í p a d n ý m i offline l í d r ami , kde tento
fakt nemal vp lyv na p r i epus tonosť .

Performance Evaluation of DoS Resistant Proof-
of-Stake Protocols

Declaration
I hereby declare that this Master 's thesis was prepared as an original work by the author
under the supervision of Ing. M a r t i n Peresini . The supplementary information was provided
by Ing. Ivan Homoliak, P h . D . I have listed a l l the l i terary sources, publications and other
sources, which were used dur ing the preparation of this thesis.

Timotej Ponek
M a y 17, 2024

Acknowledgements
I would like to thank my supervisor Ing. M a r t i n Peresini, for his valuable advice i n compos
ing the text of this thesis and guidance thoughtout the whole work. Next , I would also like
to thank Ing. Ivan Homol iak P h . D . for his consultations on the implementat ion direction.
I would also like to thank Ing. Marek Tamaskovic for his help wi th the creation accunt for
metacentrum tests. Computa t iona l resources were supplied by the project "e-Infrastruktura
C Z " . F ina l ly , I would like to thank my family and my girlfriend for standing beside me
during my studies for their support dur ing the making of this thesis.

Contents

1 Introduction and motivation 3

2 Blockchain structure 4
2.1 Consensus 6
2.2 Proof of Work 7
2.3 Proof of Stake 8
2.4 Prac t i ca l Byzant ine Faul t Tolerance (P B F T) 9

3 Algorand H
3.1 Block structure H
3.2 Algorand model 12
3.3 Sort i t ion 13

4 L a K S A 15
4.1 Block structure 15
4.2 L a K S A model 16
4.3 Leader and voter election 17

5 C O P O R 19
5.1 Block structure 19
5.2 C O P O R model 20
5.3 Leader election 21

6 Comparison 22
6.1 Throughput 22
6.2 Scalabil i ty 23
6.3 Liveness 23
6.4 F ina l i t y 24
6.5 Safety 24
6.6 Fairness 25
6.7 DoS Resistance 25

7 Network anonymization techniques 27
7.1 On ion routing 27
7.2 M i x i n g networks 29
7.3 Dandel ion 30

8 Implementation details 31
8.1 Network layer 32

1

8.2 Structure of messages 32
8.3 Message processing 34
8.4 Anonymiza t ion layer 34

8.4.1 K e y exchage mechanism 35
8.4.2 F i n d i n g a circuit 35
8.4.3 Different anonymizat ion types 36

8.5 Pro toco l bootstrapping 39
8.6 Used libraries 4 0

9 Testing 4 2

9.1 Serialization tests 42
9.2 L o c a l tests 4 3

9.3 Metacentrum tests 4 6

AO

9.4 Discussion ^ °

10 Conclusion 4 ^

Bibl iography ^

A Included C D contents 5 4

2

Chapter 1

Introduction and motivation

The growing interest i n blockchain technology is due to its various features, such as decen
tral izat ion, transparency, and immutabi l i ty . Moreover, its potential extends beyond finan
cial sector. It is revolutionizing supply chain management, intellectual property rights, and
even vot ing systems, proving its versatility. In this fast-paced evolution, the quest for scal
able, secure, and efficient consensus mechanisms has been a dr iv ing force behind numerous
innovations. These mechanisms assure that a l l par t ic ipat ing nodes have the same view of
the blockchain and encourage them to obey the rules of the protocol. One such innovation
are the Proof of Stake (PoS) protocols, which has garnered significant attention for its po
tential to address the scalabili ty and energy consumption issues associated wi th t radi t ional
Proof of Work (P o W) protocols. The pr imary objective of this thesis is to not only ex
plore the fundamental principles and features of chosen PoS protocols - Algorand , Laksa ,
and Copor - but also to extend this exploration by adding an anonymity layer to these
protocols. Th is addi t ional layer introduces a novel element, a iming to enhance security
and privacy of each consensus participant. The main reason for this addi t ion is to reduce
possibili ty of Den ia l of Servise (DoS) attacks on users w i th specific roles i n given round by
replacing their routing address for an anonymous identifier. W i t h this countermeasure in
place, anonymity layer only reveals the identifier of the given user to the attacker when the
message gets decrypted. However, the p ivota l question that arises is what drawbacks this
addi t ional layer of security brings, whether it results in significant throughput decrease and
what other downsides it has.

In the chapters that follow, we start w i t h an overview on the blockchain technology
(Chapter 2), followed by indepth look at Algorand (Chapter 3), L a K S A (Chapter 4) and
Copor (Chapter 5) protocols, explaining the bui ld ing blocks behind them. After that, we
provide comparison of these protocols in Chapter 6. We then embark on journey to find
suitable anonymizat ion of routing information in Chapter 7. Next , we outline a l l important
details of the implementation, giving extra explainat ion on the main contr ibution of this
thesis - the anonymizat ion layer. The question whether addi t ion of anonymizat ion layer
results i n significant throughput decrease is answered i n Chapter 9. F ina l ly , i n Chapter 10,
we discuss of the results and possible future improvements for both the anonymity layer
and proof of concept implementation.

3

Chapter 2

Blockchain structure

Blockchains can be regarded as a result of continous evolution of distr ibuted ledger tech
nologies (D L T) [3]. Its in i t i a l use case was for financial industry (i.e. cryptocurrency), but
it has grown into various other spheres. The i r data structure can be defined as decentral
ized, distr ibuted, and immutable ledger that store information i n a series of interconnected
blocks. E a c h block contains a set of transactions or data, and is l inked to the previous
block v i a hash of the previous block, forming a chain. The transactions are typical ly cre
ated by a set of users to indicate the transfer of tokens from one blockchain user to the
other blockchain user.

Blockchain is usually deployed on a peer-to-peer (P2P) network. Blocks on the chain are
created by nodes, you can imagine them as user runned computers that are interconnected
v i a affiliation to the same network. Unl ike t radi t ional client-server architectures [32], every
node in P 2 P network can be both client (issue transactions) and a server (validate and
execute transactions). Other than that, the nodes in the blockchain do not always have a
strict specific role or a fixed hierarchy. The role may not exist or may change over time
depending on the actual operation i n the blockchain. In general, the typ ica l roles of the
node in the network (depicted i n Figure 2.1) ctre cts follows [15]:

• Consensus node - Such nodes mainta in a local copy of the entire blockchain i n order
to participate in the underlying consensus protocol. They read and validate incoming
blocks (made by other concensus nodes), create new blocks and can prevent malicious
behavior of the adversary, by not appending inval id transactions or blacklist ing mal i
cious nodes. If controlled by the adversary, they may support harmful behavior and
participate i n attacks on the blockchain.

• Val idating node - These nodes have same privileges as consensus nodes, except that
they cannot create new blocks. They are not capable of preventing malicious behavior
of the adversaries, but they can detect them (since they posses copies of the entire
blockchain).

• Lightweight node - These nodes keep only a l imi ted fragments of the blockchain,
typical ly only block headers that concern them, reducing the overall size of the stored
data. Therefore, they can detect only a l imi ted set of attacks, pertaining to their
transactions.

The nodes may also take other roles specific to the underlaying blockchain, but the ones
described above are common for most blockchains.

4

Consensus Nodes

• disseminate transactions and
blocks

• read and write to blockchain
• validate blockchain

Lightweight Nodes

• disseminate own transactions
• read blockchain (partially)
• validate blockchain (partially)

Validating Nodes

• disseminate own transactions
and blocks

• read blockchain
• validate blockchain 0

Figure 2.1: Roles that the node can take i n blockchain [15]

A t the inception of each blockchain there has to be created a genesis block. It states
in i t i a l coin supply and its dis t r ibut ion to the bootstrapping nodes. A s the blockchain starts
to work and produces more blocks, another nodes can j o i n the network and validate the
transactions. For new nodes (or non-node users possesing a blockchain wallet [8]) to create
transactions, they first have to buy crypto coins from the nodes that poss them, exchanging
the coins for other assets they own (could be classical currency or crypto coins from other
blockchain). They can also obtain coins by other ways, such as by val idat ing or producing
blocks or as a reward for honest behavior. Each blockchain protocol specifies different
rewarding mechanism (also refered to as incentives mechanisms when they encourage users
to behave honesty and possibly punish users behaving adversarially) and possibilities to
obtain coins.

Based on how a new node enters a consensus protocol, blockchain can be of a following
type [15]:

• Permissionless - allow anyone to jo in the consensus protocol without permission.

• Permissioned - require a consensus node to obtain permission to j o i n the consensus
protocol from a centralized or federated authority(ies), while nodes usually have equal
consensus power (i.e., one vote per node).

• Semi-Permissionless - require a consensus node to obtain some form of permission
(i.e., stake) before jo ining the protocol; however, such permission can be given by any

5

consensus node. The consensus power of a node is proport ional to the stake that it
has.

2.1 Consensus

Consensus mechanism is a cr i t ica l component that enables nodes to agree on the state of the
chain and validate transactions. These mechanisms replace the need for human verification
and audit ing, automating the process of achieving distr ibuted agreement and ensuring the
integrity and security of the blockchain. Consensus mechanisms ensure that a l l par t ic ipat ing
nodes have a consistent view of the ledger, which is essential for the trustless environment of
blockchains. The choice of consensus mechanism directly impacts the network's parameters
like transaction processing speed, throughput and security.

Standard design goal for concensus mechanisms is to secure properties of C A P theorem
(consistency, availabil i ty and partition-tolerance). In terms of blockchains (as outl ined by
H u d [16]), we refer to consistency as safety, and it ensures that i f an honest node accepts
(or rejects) a transaction, then a l l other honest nodes make the same decision. Liveness
stands for availabil i ty and it ensures that a l l val id transactions are eventually processed
and included i n the blocks. Finaly , finality stands for partition-tolerance and it represents
a sequence of blocks from genesis block to block B which can be assumed to be infeasible
to overturn.

X i a o at a l . [37] define goals that blockchain consensus seeks to achieve a l i t t le differently.
They state these four goals:

• Terminat ion - A t every honest node, an incoming new transaction is either discarded
or accepted into the blockchain (first inserted into the mempool and over t ime picked
and added into the new block).

• Agreement - Every new transaction including the block it is contained wi th in should
be either accepted or discarded by a l l honest nodes. A n accepted block should be
assigned the same sequential block number by every honest node.

• Val idi ty - A val id t ransact ion/block should be accepted accepted into the blockchain
by a l l honest nodes.

• Integrity - A l l accepted transactions at a l l honest nodes should be consistent (no
double spending). A l l accepted blocks must be generated correctly and hash chained
in chronological order.

The termination and validity goals are s imply a more detailed descriptions of the liveness
from our previous definition. The agreement goal intui t ively corresponds to the safety. The
descriptions of the left of terms integrity and finality do not necessarly match, but we can
see the common thought behind them.

A s we strive to find a mechanism that would provide us w i t h better and better proper
ties, many consensus mechanisms have emerged. We further present recent classification by
Singh et a l . [33] (you may find other not enterily matching classifications, as new consensus
protocols are s t i l l emerging), which is as follows:

• Consensus based on P r o o f of X (P o X) - these protocols are based on the proof
of something, which they eleviate to achieve consistency and guarantee safety and
other desired blockchain properties. Examples are Proof of Work (PoW) [24], P roo f

6

of Stake (PoS) [17], P roof of B u r n (PoB) [26], etc., many others were not mentioned
and new ones are s t i l l emerging.

• Consensus based on P A X O S - it is a family of protocols intended for solving
consensus i n a network of unreliable nodes, where par t ia l network or node failures
can happen. Created and first described in paper "The Pa r t -T ime Parl iament" [18]
in 1998 by Leslie Lampor t , Paxos works i n three phases: 1. prepare - establish the
latest Generat ion Clock and gather any already accepted values, 2. accept - propose
a value for this generation for replicas to accept and 3. commit - let a l l replicas know
the chosen value and the fact it was chosen [27, 19]. Here are also many subflavors of
the main Paxos idea, like Mul t i -Paxos , Fast-Paxos, Byzantine-Paxos, etc..

• R A F T algorithm - is a consensus a lgor i thm that is an effective equivalent to
P A X O S . The consensus process i n R A F T is broken into three parts [25]: leader elec
tion, log replication and safety. The basic idea is that a leader is elected in the cluster
who accepts client request and replicates the log to other servers. The server is at
any t ime i n one of the three states: leader, follower, or candidate. A s R A F T is not a
family of protocols, we mention no subflavors.

• Consensus based on byzantine faults - family of protocols that are based on
Byzant ine General P rob lem. Different generals i n different locations wi th their troop
need to attack a mutual enemy. It was proven that to solve this problem more than
2/3 of the generals have to be honest [20]. Th is effectively means that there is no
solution i n case of 3m + 1 generals if more than m of them are adversaries. Examples
of this family members are P rac t i ca l Byzant ine Fault Tolerance (P B F T) , Byzant ine
agreement-based consensus and X R P Ledger consensus protocol [7].

• D A G - b a s e d consensus - These protocols uti l ize to ta l ordering of recieved blocks to
rielieve network consumption [22]. Examples are Dagbase, Jointgraph and B l o c k D A G .

Further we provide closer look at those protocols that are somehow related to our work.

2.2 Proof of Work

In this protocol, the block creator has to prove that it has done some amount of computa
t ional work i n a certain interval of t ime. P o W was first proposed to be used i n peer-to-peer
version of electronic cash system (Bitcoin) , where the online payments occur between two
parties direct ly without any intermediary i n between. It is believed to solve double spending
problem that was caused due to reversible nature of online transactions.

The addi t ion of the block in this system is called as the mining process and the nodes
performing this operation are called as miners. In order to mine (produce) new block,
the miner must choose a random nonce value and calculate the hash value. If this hash
value is less than a certain pre-defined target treshold value, then the block gets added
to the blockchain (the whole described process is i l lustrated i n Figure 2.2). Th is is also
confirmed by the other miners i n the network. In bi tcoin, S H A 2 5 6 hash function is used.
The difficulty for calculat ing a val id hash is maintained by setting the target T value for
every 2016 block It is feasible for a malicious attacker to overthrow one block i n a chain,
but as the val id blocks i n the chain increase, the workload is also accumulated, therefore
overthrowing a long chain requires a huge amount of computat ional power. P o W belongs
to the probabilistic-finality consensus protocols since it guarantees eventual consistency. A t

7

-retry-

Block header
(previous block hash,

nonce.)

Adjust nonce

if no

Create hash

if yes,
broadcast block

Figure 2.2: Flowchart of P o W [39]

times it is possible that two miners create the block at the same time. W h e n this happens,
the block that is the most synchronized i n the network gets the finalization of agreement
by a l l the nodes i n that network.

Analysis of P o W shown that it takes 10 m i n to generate a block and it takes 1 h (60 min)
to confirm one block; the t ime one block takes for confirmation, 6 blocks are generated.
The P o W consensus protocol is used by cryptocurrencies B i t co in , E thereum (which recently
switched to PoS in Ethereum 2.0), etc.. The Ethereum also provides platform for bui lding
smart contracts and other applications over it.

2.3 Proof of Stake

In PoS , the node which creates a new block is selected wi th depending on the held stake
rather than the computat ional power. A l though nodes s t i l l need to solve a S H A 2 5 6 puzzle
- SHA256:(previous block hash, ...) < target x coin, in contract to P o W , the key to solve
this puzzle is the amount of held stake - coin (shown i n Figure 2.3). Hence, PoS is far
more energy-saving protocol compared to P o W . L ike P o W , PoS is also a probabilistic-
finality consensus protocol. P P c o i n [17] was the first cryptocurrency to apply PoS to the
blockchain. In P P c o i n , i n addi t ion to the size of the stake, the coin age is also introduced
i n solving a PoS puzzle. For instance, i f you hold 10 coins for a to ta l of 20 days, then your
coin age is 200. A s the coinage grows, the difficulty for selecting correct nonce lowers. Once
a node creates a new block, her coin age w i l l be reset to 0.

wait for the next round
and possibly stake more

coins to win the competition

if no

Figure 2.3: Flowchart of PoS [39]

8

To decrease the power consumption even more, Delegated P r o o f of Stake (DPoS)
was introduced. It's principle is to let the nodes who hold stake vote to elect the block
creators. Th i s way, the stakeholders give the right to create the blocks to the delegates they
chose instead of creating blocks themselves, thus reducing their energy consumption to 0.
If the delegates are unable to generate blocks i n their turns, they w i l l be dismissed and
the stakeholders w i l l select new nodes to replace them. Cryptocurrencies that adopted this
mechanism are BitShares and E O S , where E O S has turned D P o S to B F T - D P o S (Byzantine
Fault Tolerance-DPoS) i n its newest version.

In this work, we w i l l focus on protocols that are a subtype of PoS protocols, where
block producers (also called leaders) are selected based on the signature from the last block
in a function that selects them proport ional ly based on their actual stake (this process is
called election). Other values like randomness created by each round leader and contained
wi th in the block can also be incorporated to ensure fair and non-predictable selection of the
leaders. If the leaders could be predicted and known before the start of the corresponding
round, a malicious user could use this information to his advantage, and e.g. deny them
to produce the block by DoS attack (which we adress in this work). This subtypes of PoS
protocols are also known as virtual mining protocols [36], as the block producers do not
consume any resources.

Pure proof of Stake (PPoS) is group of PoS protocols where anyone who staked at
least one corresponding coin (in contrast to previous PoS representants, where usually a
certain treshold for staked coin is possed and has to be reached for stakeholder to become
eligible to participate i n the consensus) can be elected as leader. The election process is
secret and utilizes verifiable random function (V R F) , thanks to which anyone can validate
that an incoming block was created by the val id leader, without prior knowledge of h i m [21].
Fi rs t protocol that adopted this idea was Algorand , where after election and block creation
follows rounds of voting for blocks, depending on the prior i ty for each crated block, where
highest pr ior i ty wins. The nodes again find out secretly, u t i l iz ing V R F , whether they are
eligible to vote and then cast their votes. The block that first recieves specified treshold
for votes is considered as val id and appended to the blockchain.

2.4 Practical Byzantine Fault Tolerance (P B F T)

In this consensus protocol, nodes are of two type - pr imary and backup. The client (user)
w i l l issue a request to the pr imary node (which is responsible for block creation). It w i l l be
decided whether the request can be executed or not after the pr imary and backup nodes
have agreed upon the request. P B F T works i n following 5 phases [38] (see Figure 2.4):

• Request - client send a request to the pr imary node

• Pre-prepare - pr imary node assigns a sequence number corresponding to the request.
Then a pre-prepare message is constructed and broadcast to the backup nodes.

• Prepare - after receiving the pre-prepare message, each backup node broadcasts a
prepare message to other backup nodes. A l l backup nodes broadcast messages to each
other.

• C o m m i t - A l l nodes validate the message and broadcast a commit message. The
request w i l l be executed i f verified successfully.

9

Reply - The client waits for responses from different nodes. If the client receives a
correct response from / + 1 identical reply messages (/ is the number of Byzant ine
nodes), it indicates that the nodes i n the network have reached a consensus

Client

Primary
node

Node 1

Node 2

Node 3

Request Pre-preaprei Prepare i Commit • Reply

v
A i i i

Figure 2.4: F low of communicat ion in P B F T . F r o m article [39]

The message complexity of pre-prepare phase is O(n) , upon reception each backup node
has to broadcast the prepare and commit messages, which is of 0 (2 n) complexity, resulting
in 0(2n) x 0(n) = 0 (2 n 2) that belongs to 0 (n 2) complexity. The resulting message
complexity is one of the drawbacks for P B F T consensus.

10

Chapter 3

Algorand

Algorand [13] is a Pure P roof of Stake (PPoS) protocol, and also a digi ta l currency and
transaction platform, that incorporates an innovative consensus a lgor i thm designed to ad
dress scalabili ty issues by el iminat ing min ing inherent to P o W protocols and aims for strong
decentralization by basing decisions on calculations rather than subjective influences. A l
gorand is capable of swiftly confirming transactions, w i th latencies of approximately one
minute, even when it scales to accommodate a large user base. Furthermore, It also ensures
almost immediate recovery from any potential network partit ions, making the l ikel ihood of
forking extremely low, even in asynchronous environments. To achieve strong consistency,
algorand employes a protocol known as B A * , a Byzant ine Agreement protocol that is based
on cryptographic sort i t ion and utilizes Verifiable R a n d o m Functions (V R F s) to ensure high
user security. The concept of Algorand was originally developed by Si lv io M i c a l i , a Tur ing
Award and Gode l Pr ize-winning computer scientist from M I T , and the todays version of
Algorand [1] incorporates a variety of these ideas supported by rigorous proofs from Mica l i ' s
work and the work of others.

3.1 Block structure

For our explanation of Algorand , we w i l l assume following structure of the block

B = (i , H(B_i),Txs_root,Txs, seed,pk, a),

where:

• i is the round number

• H(B—i) is the hash of the previous val id block

• Txs root a set of transactions included i n the block

• Txs a set of transactions included in the block

• pk is a leaders public key

• a is a signature created by the leader over a l l previous fields except pk

Other than the messages containing blocks, also the messages containing votes and
priorities are broadcasted v i a network. The vote is structure v = (i , H(B-i), s,pk, a) w i th
the folowing fields:

11

• i is the round number

• H(B—i) is the hash of the previous val id block

• phase is the number of the phase the vote was created i n

• proof is the proof generated by the ProveVRF function

• proof hash is the the hash of the proof

• pk is the voter's public key

• a is a signature, created by the voter over a l l previous fields except pk

3.2 Algorand model

Further, we describe how Algorand works on achieving consensus. It works i n 5 phases [1, 2]
each lasting for different amount of t ime and consisting of different amount of steps:

• Phase 0 - Proposal (lasts for 2A seconds)

In this phase, each node first runs S o r t i t i o n function (Algor i thm 1) w i th her public
key, number of expected leaders - parameter expectedLeader and role leader. W h e n the
obtained number of subllsers is positive, the node then proceeds to calculates its prior
ity, by consencutively hashing her proof_hash concatenated wi th index value, starting
from 0 to obtained number of subllsers. After that, the node sends to her peers two
different messages - one containing the block together w i th proof and proof_hash ob
tained from sort i t ion and other one wi th her highest calculated priority, proof and
hash of the block. The message wi th pr ior i ty is broadcasted i n order to make other
nodes aware of the proposed block and be able to vote for obtained block hash if it
was the one wi th the highest priority. E a c h node stores received priorities and the
highest recieved prior i ty is voted for i n the next phase. The received blocks are for
now only cached and broadcasted further by the nodes, but not validated, as the
nodes have yet to decide on the block that w i l l be appended

• Phase 1 - Fi l tering (last for max A seconds)

Each node here again first runs S o r t i t i o n function to determine whether she should
vote for her highest recieved prior i ty block hash. This time, the S o r t i t i o n is runned
wi th arguments expectedFilter and role voter_Jiltering. Nodes that are eligible to
vote broadcast a message containing the received hash of the block wi th highest
priori ty and a number of obtained subllsers from the aforerunned S o r t i t i o n (which
are used as a number of votes for given block hash), together w i th proof, proof__hash,
their public key and the number of the phase (so the other nodes can determine
which expectedUsers and role values were used in S o r t i t i o n without t ransmit t ing the
underlaying values, which reduces the message size). U p o n reception of the message
wi th vote, each node verifies it , checking the vote signature and running V e r i f y -
Sor t i t i on function (Algor i thm 2) to check i f the vote was created by the eligible
node. If that 's the case, the number of subllsers w i th the vote are appended to the
corresponding counter w i th votes for the given block hash. W i t h each increase of
votes for the given block hash, it is checked i f the resulting number of votes exceeded
the threshold_Jilter, and i n such case the block hash won this round and the node

12

proceed to the next phase voting for this block hash if eligible. If no block hash
recieves enough votes to exceed the threshold_Jilter after A seconds, it is voted for
empty block i n the next round.

• Phase 2 - Certifying (last for max A seconds)

Now when the nodes found out the winner of the filtering phase (or it resulted i n the
empty block), they vote once again. They run S o r t i t i o n function wi th arguments
expectedCert and role voter_certifying to find out whether they are eligible to vote,
and when yes, they create and broadcast a message containing the winning block
hash (or no hash i f vot ing for empty block) and a number of obtained sub Users from
the aforerunned S o r t i t i o n together w i t h proof, proof_hash, their public key and the
number of the phase. The first block hash wi th votes exceeding the threshold__filter
is then appended to the blockchain (empty block is appended in case the empty
block hash was he first to exceed threshold_Jilter), the round number is increased
and consensus start again at the phase 1. If no such block hash exists after lambda
seconds, protocol continues wi th recovery i n next phase.

• Phase 3 - Recovery (can be repeated 249 times and each t ime it lasts for A-2A
seconds)

Here the nodes periodicaly run the steps from certifying phase, hoping that some
blockhash w i l l exceed the specified threshold. Reason for why this phase can find
such block hash is because the possibil i ty that some of the nodes not yet recieved the
block hash wi th overall highest pr ior i ty (which they can s t i l l recieve i n these rounds)
and therefore this block could not recieve enough votes. If such block hash is found,
the round number is increased and consensus goes back at the phase 1

• Phase 4 - Fast recovery (can be repeated 2 times and each t ime it lasts for A
seconds)

This phase is responsible for making the final decision for block commitment. It is
highly unlikely that the consensus reaches this phase, but if it happens, the nodes
vote i n this phase wi th higher probabil i ty for an empty block, so the next round can
start.

3.3 Sortition

Algorand uses sort i t ion to determine roles for nodes in given phase of the round. W i t h help
of the sort i t ion a smal l group of nodes is found, which can be easily verified by any other
node of their status as verifier or proposer using the proofs outputted by the algori thm.
The sorti t ion ensures that only a smal l amount of nodes are selected based on their weight
that depends on their account balance. It is also completely objective, meaning that the
entire process is conducted purely through computat ion, thus adversary is unable to sway
the process.

To determine the role in the given round, the node runs the S o r t i t i o n function Algo
r i thm 1 wi th corresponding inputs. A t first, the ProveVRF function is called wi th node's
private key, to obtain the proof and proof_hash. Then , the number of subllsers is computed
in a way that ensures the node is selected for the role w i th probabil i ty corresponding to
her weight (weight is equal to the stake the node currently holds). The subllsers are either

13

used as tries to obtain the highest pr ior i ty for the proposed block or as number of votes the
node casts for some block hash, as was described in Section 3.2

A l g o r i t h m 1: Sort i t ion
Function

Sort i t ion (pr iva teKey , seed, expectedUsers, role, weight, totalCurrency):
< proof, proof_hash ><— ProveVRF(privateKey, seed\\role)
probability <- ^CuZlZ
subUsers <— 0

u : i proof_hash 4
w m l e MAX_HASH ¥

Y^Sk=oSerS Binom(A;, weight, probability), J2k^oSers+1 Binom(k, weight, probability)^

do
I subU sers + +

return < proof, proof _hash, subU sers >

To verify the truthfullnes of the obtained block or vote broadcasted by some node
A , other nodes can run V e r i f y S o r t i t i o n function A l g o r i t h m 2. This function first runs
V e r i f y S o r t i t i o n where only public key of the node A is needed to verify that the proof
and proof_hash were created by the holder of the private key corresponding to the given
public key. After success in this step, a lgori thm follows wi th the same steps as i n S o r t i t i o n
function, but it instead returns only the number of subllsers as that is the only value that
was computed during this process.

A l g o r i t h m 2: VerifySort i t ion
Function Verif ySort±t±on(publicKey,proof,proof_hash, seed, expectedU sers,-

role, weight, totalCurrency):
if not Veri±yVRF(publicKey, proof', proof _hash, seed\\role) then

I return 0
T 7 - 7 , expectedUsers

probability <- J a l C u r r e n c y

subU sers <— 0
wVi i lp proof_hash a
w m l e MAX_HASH ^

YlSk=QSerS Binom(A;, weight, probability), ^2s

k^QSers+1 Binom(k, weight, probability)

do
I subU sers + +

return subllsers

14

Chapter 4

L a K S A

L a K S A (Large-scale Known-commit tee Stake-based Agreement protocol) [28] is a PoS pro
tocol that addresses downsides of Algorand [13], mainly the too much varying number of
leaders and voters i n given rounds. It also promises to br ing better security, throughput,
higher lightweightness and D O S resistance compared to Algorand .

4.1 Block structure

L a K S A works on a blockchain, such that each block contains a set of transactions, a l ink
to the previous block, and various metadata. The structure of a block is as following

B = (i,ri,H(B_x),F,V,Txs,pk,(T),

where:

• i is the round number

• r is a random value generated by the leader

• H(B—i) is the hash of the previous val id block

• V is a set of votes that support the previous block (-B- i)

• F is a set of known, to the leader, forked blocks that have not been reported i n any
previous known blocks

• Txs a set of transactions included in the block

• pk is a leaders public key

• a is a signature created by the leader over a l l previous fields except pk

Every block B supports its predecessor by including votes of nodes who were elected
to vote i n 5 's round and who vouched for B-\ as the last block on their preffered chain.

L a K S A does not assume any specific structure of transactions. This means that models
used in various systems should be easy to implement w i th L a K S A .

15

Vo t i ng s tep (A s e c o n d s) \

Virtual Block:
votes, append(v)

B l o c k p r o d u c i n g s t e p (A s e c o n d s) :

VoterStakeQ - i s not voter—•< Nodes

T

v = (£, H(B_i), s, pk, a)

votes- supporting
block B

-vote broadcasted

LeaderStakeQ

1
is leader

- i s not l eader - ^< Nodes

New Block:

B = (i, rt, F, V.Txs, pk, a)
-propagate block

Figure 4.1: R o u n d consisting of two steps i n L a K S A

4.2 L a K S A model

Protocol model is based on two-step rounds (Figure 4.1), each lasting A seconds. In first
step of round i, each node checks whether it can vote in round i by cal l ing VoterStakeQ.
This function returns positive number, if a node has some stake that can be used in round
i for voting. In such case, the node is called a voter i n round i and is eligible to vote for
the last block of what it believes to be the main chain, in order to support this
chain. For voting procedure, the node creates a structure

v = (i,H(B_i),s,pk,<r),

representing a vote wi th folowing fields:

• i is the round number

• H(B—i) is the hash of the previous val id block

• s is the stake that the voter was selected wi th for the round i

• pk is the voter's public key

• a is a signature, created by the voter over a l l previous fields except pk

The process of voting is as follows: Node creates a vote v and broadcasts the vote immedi
ately to the network. Other nodes validate each recieved vote by checking whether:

a) it is authentic, formatted correctly and not w i t h round number exceeding i (not from
the future)

b) it points to a val id previous block

c) voter is legitimate (eligible to vote by VoterStakeQ function)

If verification is successful, the vote is added to the pending list of votes, also called v irtual
block, that directly support its predecessor block.

16

After A seconds of the first step of round i (during which voters vote for their oppinions
and votes are validated), nodes proceed to the second step. A t first, the node determines
whether she is the leader by cal l ing LeaderStake(), and if it returns a positive value, the
node is a leader in that round. Next node determines the main chain, then creates and
propagates a new block that has the main chain's last block as its predecessor and which
includes a l l collected votes and the generated random value r^. Nodes that recieve a new
block check whether:

a) it is authentic, formatted correctly and not w i t h round number exceeding i (not from
the future)

b) it points to a val id previous block

c) its votes are correct

d) leader is legitimate (eligible to be a leader by LeaderStake() function)

After successful block validation, it is appended to its corresponding chain.

4.3 Leader and voter election

Elect ion i n L a K S A (Algor i thm 3) is based on a cryptographic sampling method (further
reffered to as Sample()), which creates an array of a l l stake units and pseudorandomly
samples a fraction from it . It uses uniquely generated P R F outputs to sample stake units.
The sampling method returns a list of sampled public keys, each corresponding to a stake
unit . Thanks to the sampling method, the number of voters and leaders in each round is
fixed (instead of highly varying as i n Algorand [13]).

A l g o r i t h m 3: Leader/voter election v ia cryptographic sampling

Function Voter Stake (pk, r):
trap <— Sample^, r, 'vote')
return trap.Count(pk)

Function Leader St ake (pk, r) :
trap <— Sample(/, r, 'lead')
return trap.Count (pk)

Function Sample (size, r, role):
tmp <— []
res <— []
foreach pk £ stake do

for s 4- 1 to stake\pk] do
tmp.Append(pk)

for i 4— 1 to size do
k <— P R F (i , r || role) m o d Len(tmp)
res .Append(tmp[k])
tmp.T)elete(k)

return res

Nodes then find out thier roles by cal l ing VoterStake() and LeaderStake(), functions,
that run Sample() and return how many times the given public key is present in

17

the sampled stake. Sample() takes role as a parameter/seed, i n order to provide different
results for leader/voter election, as a lgori thm remains the same for each election. It also
takes parameter size, which represents number of stakes to be sampled. If we seek to achieve
highest performance, we may set size to 1 i n ca l l to LeaderStake().

Limitations of this approach are that an adversary may t ry to launch an adaptive
attack (DOS) , as elected nodes are known before they broadcasts their messages. L a K S A
proposes usage of network anonymization, namely Dandel ion [5, 11], to mitigate this issue.
Another approach it suggests is to elect nodes using cryptographic primit ives w i t h secret
inputs (similarly as V R F s i n Algorand , or unique signatures).

Pseudorandom sampling function used i n Sample () is dependant on the value called
random beacon. R a n d o m value r, included wi th in each created block, is used i n procces
of random beacon creation. For security reasons, it is important for these beacons to be
difficult to bias by adversaries. If the adversary is able to manipulate random beacon, then
she can change outputs of VoterStake() and LeaderStake(), which can result i n selection of
nodes controlled by the adversary for voting and block creation. Furthermore, if the beacon
is too predictable, such blockchain network is vulnerable to adaptive network-level attacks
(e.g., DoS) , as voters and leaders can for some round rd can be calculated ahead of the rd
start.

L a K S A in its implementat ion uses approach by D a i n el a l . [9] (who used this principle
in their Snow W h i t e consensus protocol), where beacons are generated purely from the
random values aggregated over the main chain blocks. B u t this approach is not strict and
other approaches can be used for implementat ion of random beacon creation.

18

Chapter 5

C O P O R

C O P O R (Consensus Pro toco l w i th Nat ive Onion Rout ing) [35] is also belongs to the family
of PoS protocols. It tries to achieve DoS resistace by anonymizat ion of messages containing
blocks v i a onion routing, to prevent the adversary able to intercept network traffic from
indentifying the leader i n the given round.

5.1 Block structure

C O P O R assumes the blockchain, i n which each block,

B = (BH,Txs),

contains header (BH), the list of contained transactions (Txs) and the signature of the
header made by the round leader (er, contained i n the header). The header,

BH = (id, H(BH_i),txsRoot,mptRoot,pk,rand, altldx,a),

consists of fields:

• id - the incrementing counter of a l l created blocks (starting from 0)

• H(BH—\) - the hash of the previous val id block header

• txsRoot - the root of a l l transactions included in the block

• mptRoot - the root hash of Merkle Pa t r i c ia trie aggregating a l l account states

• pk (also reffered to as coinbase) - the pk of the node that is the leader of the block
(and created the block). It is used for signature verification.

• rand - randomness of the current round. It is created from a signature made by the
leader of the current round on the randomness from the previous round (i.e., block).

• altldx - index of the alternative leader who created the current block i n the case
higher responsible leader was not available, altldx = 0 for the main leader, altldx =
1, 2, 3 , . . . for alternative leaders.

• a - the signature of a l l above fields i n the header made by the creator of the block.

19

C O P O R assumes following transaction structure for s implic i ty (it can be easily ex-
teneded):

Tx = (src, dst, val, fee, a)

where src is the address of the sender of transaction, dst is the address of the recipient of
the transaction, val is the value sent from the sender to recipient, fee is the amount that
is payed to the leader who creates the block and er is the signature of the transaction made
by the sender.

5.2 C O P O R model

->< Nodes

node is not leader

leader, altLeaders

if node is leader

No block recieved

within t b

altLeaders[R]

New Block:
S = (BH, T xs)

propagate block

J f node is alternative_
leader at index R

Figure 5.1: R o u n d i n C O P O R . Each node first sets timeout for block reception R to 0,
and if she does not recieve the new block wi th in T B seconds, it checks whether she is not
the round alternative round leader. If yes, it proceeds wi th block creation, otherwise it
increments R and waits for another T B seconds for a new block.

Pro toco l model is single round wi th single leader. A t the round start, node resets the
counter R of round-timeout expirations. T h e n a node checks whether it is the leader of
the round based on the randomness from the previous round. This randomness is obtained
from the block created i n the last round, stored i n rand field, and passed to function Elect(),
which determines index of the leader and indexes of alternative leaders. If node is the
leader, it creates and gossips new block, including a subset of transactions collected in the
mempool (subset because we select as many txs as we can, but we cannot degrade difficulty
of the block). In case node is not the leader, node sets the synchronous timeout T B

and waits for the reception of the block. W h e n node recieves a block, it checks whether:

a) it points to a val id previous block

b) the signature of header is val id (using the coinbase field as public key for signature
verification)

20

c) the node that produced block is t ru ly the elected leader (comparison of ElectQ func
t ion w i t h coinbase field)

W h e n a l l checks pass, the protocol proceeds wi th rewarding of the leader and a l l alternative
leaders. Afterwards, the block is appended to the last block of main chain.

In contrast to L a K S A , C O P O R takes into account a case when the leader might be
offline. In such case, a node does not recieve a new block wi th in timeout T B, and therefore
an alternative leader is selected and the round is restarted (as can be seen in Figure 5.1).
L a K S A somewhat tackles this issue by allowance of mult iple leaders i n a round, but even in
such case, it can s t i l l happen that a l l round leaders are offline and no new block is produced.

5.3 Leader election

Leader election in C O P O R (Algor i thm 4) is done v ia i teration over ids of a l l the present
nodes. Leader is selected i n the first i teration, in accordance to the rand field from the
previous created block. Al ternat ive leaders are selected in the following iterations, where
each t ime currentRand is updated by hashing its current value and other leaders are chosen
based on this new value. This procedure ensures that a l l the nodes select the same leaders
in the given round.

A l g o r i t h m 4 : Elect

Declaration of Types and Constants:
MAX: the size of interval used for election
ALT: the desired number of alternative leaders
rand: randomness for the current round
stakesum: sum of a l l stakes in blockchain

Function Elect (rand, altldx):
slider <— 0
for node in sortBylds(nodes) do

intervalSize <- mkMfexMAK
stakesum

slider <— slider + intervalSize
intervalEnds\node.lD] <— slider

leaders <— []
leftToPick <- A L T +1
currentRand <— rand
while leftToPick > 0 do

for node, intervalEnd in intervalEnds do
if currentRand < intervalEnd then

selectedNode <— node
break

if selectedNode £ leaders then
leader s.append(selectedN ode)
leftToPick - -

currentRand <— h(currentRand) m o d MAX
return (leaders[0],leaders[1 :])

21

Chapter 6

Comparison

In addi t ion to comprehensive look at the mechanisms behind Algorand Chapter 3, L a K S A
Chapter 4 and C O P O R Chapter 5 protocols, we also provide their comparison by by pa
rameters that are crucial for blockchains i n the following sections.

6.1 Throughput

Algorand commits the new block in the best case i n less than 4A seconds. The exact time
cannot be predetermined, as t ime spent in each phase of the protocol (except the block
proposal phase, that exactly last for 2A seconds) depends on when the threshold for given
phase is reached. The sooner the threshold is reached, the more quicker the block get
commited and transactions executed. So the throughput is dependant on the A value and
thresholds values (threshold_Jilter and threshold_cert), that affect how long it w i l l take
to commit the block, where the it w i l l take is between (2A,4A) seconds. The theoretical
throughput of Algorand is 7500 txs per second, w i t h the actual value being somewhere
betweeen 10-20 txs per second as of t ime of the wr i t ing 1 .

L a K S A throughput is highly dependant on A value of round steps. Throughput is
l ikely to be high i f the network is synchronous - which can be achieved by choosing a
sufficiently high value for A . However, transaction throughput can only be high i f A is low.
So a sensible A value has to be choosen i n order to achieve opt imal high throughput. A s
experiments proved, it is better to choose different A values - A i for wai t ing for votes and
A 2 for wai t ing for blocks, where A i < A 2 .

C O P O R throughput should be slowed down by anonymizat ion layer, but as the experi
ments showed, it has l i t t le to no effect on throughput. Another thing that should influence
throughput is timeout T B. It is analogous as in L a K S A - i f it is too high, we might end
up wait ing too long for an offline leader to produce the block before switching to the next
alternative leader, and if it is too low, we might belit t le network lattencies and end up
switching between round leaders too much before finally recieving the block.

So from my deduction, throughput of a l l protocols should be the closest to each other
if A i + A 2 = T B = 4A. If we want one protocol to outperform the other in terms of
throughput, we need to break relationship defined above. However, we have to take in
account that C O P O R does not involve voting and is more lightweight in this sense, which
can result i n significant throughput increase compared to other mentioned protocols.

x h t t p s : //chainspect.app/dashboard?sort=name&order=asc&range=30d

22

6.2 Scalability

The higher the number of par t ic ipat ing nodes i n the consensus, the higher the probabil i ty
for some of them being chosen to produce block or vote by S o r t i t i o n function. This
helps Algorand to make decision i n every phase of the round. Furthermore, authors of
the Algorand argue that w i th increasing number of users, the t ime it takes for message to
be gossiped to every present node does not increase significantly, as the peers are chosen
randomly and it is advised to replace them frequently to prevent the problem of some of
them becoming offline.

Thanks to probabil ist ic definition of safety, L a K S A can scale to systems w i t h thousands
of active nodes. For running of its protocol, it just needs q nodes from n present nodes to
achieve consensus i n voting and then I leaders (also from n present nodes) to produce a
new block. This means that the protocol needs to pass messages only betweeen q + l nodes,
which is only a subset of a l l participating/present nodes. Thanks to this, the protocol can
scale to large quantity of nodes without significant impact on throughput.

C O P O R consensus protocol removes need for voting, and leader is determined wi th
usage of probabil ist ic function. Thanks to this, there is no need for any message passing
except for propagation of newly created block by the leader. Because of this message
lightweightness, protocol can scale without any l imitat ions.

6.3 Liveness

Algorand relies on the assumption of strongly synchronous network, which i f fulfilled esures
that a l l users w i l l eventually reach consensus on a block and proceed to a next round. The
issue is that, i f the network is not strongly synchronous, forks can be created and the nodes
may split into smaller groups on different forks. If the groups are too small , they may have
problems wi th the new blocks commitments, as they w i l l not have enough participants to
cross the predefined thresholds. To tackle this problem, Algorand can issue special recovery
phase, where the nodes w i l l vote for one of the existing forks as the fork that everyone should
continue wi th .

L a K S A prooves that it achieves liveness after t = 2t' rounds, because after those rounds
at least one honest node appends a block to the main chain and the block is commit ted
by every honest node. They argue, that for adversary to overthrown the chain, she has to
be elected for leader m! times, where m! < t'. The adversary is elected as round leader
wi th probabil i ty proport ional to her stake possession a < ^ . Therefore, the probabi l i ty
that at least one honest node adds a block i n those m! rounds is 1 — am', which they prove
that w i t h increasing t goes to 1. Furthermore, they say that for some t', at which p-value
(representing threshold probabi l i ty for transaction rejection) is below user specified p*, user
can commit her transaction, which proves liveness. P ro toco l also rewards nodes not only
for creating blocks (leading), but also for vot ing for blocks, which also supports liveness of
blockchain.

C O P O R supports liveness by rewarding the alternative leaders w i th par t ia l reward and
the ma in leader w i th leader reward and transaction fees. P a r t i a l rewarding incentives the
alternative leaders to spread newly created blocks across the network even i f they do not
created them, because they recieve some reward for being active and honest.

23

6.4 Finali ty

The low possibil i ty of forks results i n strong finality i n Algorand protocol. W h e n no forks
are observed, we can assume that the block w i l l never be reverted. If there are some forks,
we have to wait for consensus on the fork to continue on to see if block was reverted or not.
However, mechanism behind Algorand highly prevent such si tuation from heppening.

F rom my understanding, L a K S A assumes finality w i th some probabili ty. User can be
pretty sure that her block won't be overturned w i t h meaningful p* value after about a
hundred rounds, which is for the protocol that assumes high throughput reasonably short
t ime (for 1 M B blocks, it can around 2 minutes). In conclusion, L a K S A assumes chain is
final and won't be overturned wi th some probability, believing that the adversary is not
able to control enough nodes to create chain fork stronger than the main chain.

C O P O R incorporates finality w i th usage of concepts from C A S P E R [6] protocol. It uses
concept of check-pointing after each C blocks. Thanks to this, the main chain cannot be
overturned after a checkpoint ck by the other stronger chain, because this stronger chain
would include blocks created before checkpoint ck, i n order to be stronger than the main
chain. The above described case could happen when a node that was offline during its
leader role returns online and tries to create a block, which could then accomodate other
blocks and create chain that is stronger (has higher quality, because it is made by more
responsible leaders).

6.5 Safety

W i t h overwhelming probabili ty, a l l nodes agree on the same transactions in Algorand pro
tocol . Authors of the Algorand also argue, that safety is assured even i n times of a „weak
synchrony", meaning that the network can be asynchronous for a variably long period of
t ime after which it becomes again synchronous for a reasonably long period of t ime. W i t h
this assumption holding true, the network can start the recovery phase and bounce back
from possible forks. To put it more formal, the weak synchrony assumption is that i n every
period of length b (a day or a week), there must be a strongly synchronous period of length
s < b (an s of a few hours suffices).

L a K S A seeks probabil ist ic safety. It assumes probabil i ty for the block to be overturned
in the future, and i f it is low enough (lower than user defined p*), voters might vote for
this block. In other case, voter does not vote for the newly produced block Bi, and wi th
high probabili ty, if there comes to live a new fork of the main chain wi th more supporting
votes that does not include transaction i n block Bi, transactions i n this block w i l l not be
considered and node w i l l lose it 's reward for producing of this block.

To achieve safety, C O P O R again uses concept of check-pointing from C A S P E R [6] pro
tocol . There is one case i n C O P O R when safety can be violated, and that is when the main
leader of the round is offline. She might come online and t ry to produce block, that would
produce stronger chain than the main chain accepted so far. B u t w i th check-pointing, she
is only able to overturn the main chain i f newly produced block is created after last made
checkpoint ck. Blocks that are to produce stronger chain than the ma in chain created
before checkpoint ck won't be considered. Therefore safety is assured for the main chain
after each checkpoint wi th in C rounds.

24

6.6 Fairness

The fairness of Algorand 's consensus protocol is highlighted by its usage of V R F function,
that enables any user holding even a smal l number of stake to participate i n the consensus
protocol. Furthermore, nodes are incentivized to not forge votes, as such vote w i l l be
disclosed after verification by P r o v e V R F function, and vote honesty, as dishonest voting
only slows down the process of block commitment . A p a r t from this, there is no collateral
incet ivizat ion for voters and leaders mentioned,

L a K S A minimizes the reward variance by rewarding nodes for voting as well as for
leading every round. Rewards are given uniformly at random and proport ional to stake
possesion. Authors of the protocol c la im that even for a node wi th smal l stake possesion
P = 1, i n a setting where n = 10000, q = 200 and I = 1, she would recieve voter reward
every 50 rounds and a leader reward every 10 4 . W i t h frequent rewards for active nodes
that are honest about their views, L a K S A achieves fairness.

Fairness in C O P O R is achieved by usage of a weighted pseudo-random function for
leader selection, where the weight is proport ional to the node's stake. So in other words,
a node is selected for a leader x times, where x is proport ional to por t ion of node's stake
in the sum of a l l stakes. C O P O R also rewards alternative leaders w i th par t ia l reward,
which diminishes variance in rewarding of the part ic ipat ing nodes. A l l nodes are rewarded
for being honest and spreading new blocks across the network which supports fairness of
protocol.

6.7 DoS Resistance

The decision of Algorand to use V R F function to randomly and unpredictably determine
leaders and voter is the ma in dr iv ing force behind its DoS resistance. Because it is im
possible for the attacker to identify the leader w i th the highest pr ior i ty or the voter w i th
the most significant number of votes, he is unable to disrupt the concensus, as even if he
manages to DoS some port ion of the network, there w i l l be wi th high probabil i ty select
leaders and voters amongst not DoS-ed nodes who w i l l continue and reach a consensus.

L a K S A authors c la im, that DoS resistance can be achieved wi th usage of network
anonymizat ion techniques such as onion routing[10] or Dandelion[5, 11]. These techniques
would hide leader identity i n the current round and make it more difficult for the adver
sary to prevent the leader from creating a new block. However protocol in default setting
assumes no anonymizat ion of messages and therefore does not provide DoS resistace from
scratch.

DoS resistace i n C O P O R is achieved by native node anonymizat ion. Id of the leader of
the round r is known at the end of the round r — 1, but it is not possible to obtain network
address of the leader from her i d . Similar ly, it is unfeasible for the adversary to DoS a l l the
peering nodes of the leader since the adversary does not know the role of peering nodes in
the anonymizat ion layer. Therefore C O P O R provides i n its concept robust mechanisms for
assurance of DoS resistance.

In the Table 6.1 is the summary of the comparison provided i n sections above.

25

Algorand L a K S A Copor
Throughput (the 7500 t x / s 450 - 1300 tx / s 760 tx / s
oretical)
Scalabil i ty scales well scales less well scales wel l
Liveness proven proven proven
F ina l i t y instant in the case probabil ist ic fi periodical check

of strongly syn nal i ty point ing to final
chronous network ize blocks

DoS resistace inherent to usage suggestion to add achieved by the
of the V R F Dandel ion as mit

igation
ut i l iza t ion of the
anonymizat ion
layer

Table 6.1: Table containing results of different serialization methods

26

Chapter 7

Network anonymization techniques

There exists a number of approaches to anonymizat ion of network identifiers (IPs). User
can for example use proxies or V P N s to hide its real source address or use internet service
providers (ISP) based solutions [23] that provide faster access to web services, but these
solutions put some k ind of trust into infrastucuture runned by ISP, which implies other
security risks. Th is section w i l l focus on onion routing based services as they are the
bui lding block for DoS resistace of C O P O R .

7.1 Onion routing

Focus of onion routing is to protect network from traffic analysis, eavesdropping and other
attacks both by users inside and outside onion protected network. It also tries to tackle
a problem w i t h censorship blocking access to certain sites or services. F i rs t idea of onion
routing emerged i n 1996. Since then 3 generations [34] have been developed, generation 0
in U S testbed, generation 1 was abandoned because it was deemed as clumsy and crufty by
the t ime it came into implementat ion phase, and some of its ideas were transformed into
Tor [10, 12] (short for The onion router) network. Tor is a second generation onion routing
protocol. We w i l l further assume onion routing as proposed by Tor protocol, and describe
its features.

Circui t establishment

Each node i n Tor network, that wants to communicate anonymously, first establishes circuit
(depicted in Figure 7.1) throught which messages w i l l be send. Tor typical ly uses one circuit
w i th 3 nodes i n this circuit . Generally, a node can extablish m circuits w i th n nodes i n it.
Tor uses directory service to provide a list of trustfull nodes, which serve as an entry point
for process of circuit establishment. Now, let us assume a node A , which wishes to create
a new circuit . F i r s t it selects a node (OR1) from this directory, and sends to it a message
Create cl, E(gxl) where E(gxl) stands for a nodes part of Difne-Hellman symetric key
encrypted by A ' s public key and c l stands for A ' s internal designation of circuit from A
to O R 1 . O R 1 then responds wi th Created cl, g y l , H(K1), where g y l is O R l ' s part of
Difne-Hellman symetric key and H(K1) is the hash of the key Kl = g x l y l .

Once the circuit is established, the node A can communicate wi th O R 1 using symetric
encryption by key Kl created before. In order to extend circuit further, A sends a Re
lay cl (Extend, OR2, E(gx2)) to O R 1 . O R 1 unwraps the message and sends Create
c2, E(gx2) to O R 2 , where c l is O R l ' s internal designation of circuit from R l to O R 2 .

27

Create c l , E(g x 1)

Created d , g y 1 , H(K1)

Relay d (Extend, OR2, ECg*2))

Relay d (Extended, g y 2 , H(K2))

Create c2, Efo*2)

Created c2, g y 2 , H(K2)

Figure 7.1: C i rcu i t establishment

0 R 2 decrypts the message, creates her part of symetric Diffie-Hellman key and send mes
sage Created c2, gy2, H(K2) to 0 R 1 . O R 1 then responds to A wi th message Relay
cl (Extended, gy2, H(K2)).

To extend the circuit to a th i rd O R or beyond, the node proceeds the same as above,
always tel l ing the last O R in the circuit to extend one hop further.

This protocol for circuit creation achieves unilateral entity authentication (A knows she
is sending message to the O R , but the O R doesn't care who she is communicat ing wi th , as
A sends no public key to O R and remains anonymous) and unilateral key authentication
(A and the O R agree on a key, and A knows only the O R learns i t) .

Message sending/recieving (relaying)

U p o n reception of a relay message, O R looks up the corresponding circuit (by identifier c,
that is i n message header), and then decrypts the relay header and payload w i t h the session
key for that circuit . If the message is headed from the node, O R then checks whether the
decrypted message has a val id digest, and if yes, she proceeds as described above. In case
message is headed to the node, O R looks up the c identifier of the next circuit and O R c ,
and sends the decrypted relay message to the next O R c .

If the node wishes to send relay message to a given OR«, it assigns the digest and then
iteratively encrypts the message relay header together w i th payload wi th symmetric key of
each O R i n the circuit up to O R i Because the digest is encrypted to a different value at
each step, only at the recipient O R i w i l l it have a meaningful value after decryption. This
leaky pipe circuit topology allows the node to to choose different O R s as exit points for
message transmission.

W h e n an O R i sends a reply to the node wi th a relay message, it encrypts relay header
together w i t h payload w i t h a single symmetric key it shares w i t h the node and send it
to the next ORi-1 in the circuit . Subsequent O R s encrypt the message further w i th the
symmetric keys they share w i t h the recieving node. U p o n message reception, the node
decrypts the message wi th the keys she shares wi th O R s i n the circuit , i n a manner that
the last decryption is done wi th key Ki shared w i t h O R i .

28

How the node A can communicate anonymously wi th a distant service (server) using
the established circuit is depicted i n Figure 7.2.

Figure 7.2: Anonymous communicat ion i n Tor network.

7.2 M i x i n g networks

M i x i n g of network traffic is another popular technique for network anonymization, some
times used in conjunction wi th tor [29]. The first notion of mixnets was by D a v i d C h a u m
in 1981. These mixnets are based on public key infrastucuture (P K I) [31], where the user
that wants to send an anonymous message m through chosen set of mixers X of size i has to
first encrypt it w i th public key of each mixer i n a manner similar to the onion routing. The
resulting message is first encrypted by the last mixer i n the chosen set, then by the previous
one etc., un t i l it is finally encrypted by the first mixer (the resuting message is of struc
ture m e n c = Epkxl(Epkxx2 • • • (Epkxxi{rn)))). Each mixer than decrypts the message w i t h its
private key and when enough messages intened for the same next mixer are accumulated,
they are randomly reordered to make adversary unable to l ink ind iv idua l messages w i t h one
traffic flow. This type of mixnets is called decryption mixnets. If there would be no wait
for certain number of messages, this anonymizat ion would be equal to tor anonymization,
w i th one crucial difference, which is that the adress of the next mixers have to be send
together w i th the encrypted message, because there is no circuit like in tor, and messages
can be send to arbi t rary chosen mixers.

Re-encryption mixnets, based on properties of E l G a m a l encryption, were developed
to address the following problems wi th previous model [30]:

a) The onion layer gets thinner at each mixer.

b) The sender is able to trace its onion encrypted message as it traverses through the
mixers.

c) The sender is required to encrypt as many times as the number of chosen mixers.

d) The decription is performed in a predetermined sequence.

In these mixnets, the senders first derive the public key of the chosen set of mixers, and then
encrypts the whole message w i t h this key. Each mixer s t i l l needs to decrypt the message
wi th its private key, but but its then reencrypted wi th together w i th random str ing to
address the b issue. These mixnets, in contrast to decryption mixnets, do not transmit

29

routing information and therefore the set of mixer thought which the sender passes his
messages need to be fixed and known before.

The described models are just one of too many developed mixnets models. Furthermore,
these models also uti l ize sending of dummy messages when low traffic, to send messages
wi th low delays and also to not undermine the security of message reordering, as reordering
wi th less than predefined treshold of messages makes it easier for the adversary to identify
the traffic flow of each of the messages.

7.3 Dandelion

Dandel ion [5, 11] was specificly created as a lightweight mechanism to adress problem wi th
bitcoins transaction spreading. The way it spreads without dandelion, the attacker can
learn graph paths and patterns, and traceback transactions to their origin. Dandel ion
adresess this isssue by alternation of transaction spreading (Figure 7.3), where transaction
is in i t ia l ly sent only to one peer i n stem phase. A t each peer, the coin is flipped (meaning
some random value is generated), and based on its result, the peer continues i n stem phase,
or starts the fluff phase, where transaction is "diffused" to mult iple peering nodes [4]. It is
important to note that dandelion does not add any encryption of message content, it only
makes it harder for the network traffic watching adversary to traceback transaction to its
originator.

Figure 7.3: Stem and fluff phases of transaction passing in dandelion [14].

30

Chapter 8

Implementation details

The python 3 . 8 was as the programing language used for implementation.Some of the cre
ated python modules and primitives are shared among a l l of the protocols, like transaction,
mempool and global state structure along wi th network primitives for processing incoming
and outgoing messages and encryption util i t ies. A s transaction structure is shared, we can
refer back to transaction structure of C O P O R . We uti l ize both symmetric and asymmetric
encryption in our implementat ion. For signing of transactions and blocks, we use ecdsa al
gor i thm on eliptic curve secp256kl . R S A wi th key size of 4096 bytes is used for encrypting
messages during circuit establishment phase (which is needed i n order to use anonymiza-
t ion). A n d at last, A E S 2 5 6 is used for symmetric encryption when anonymizat ion is turned
on.

The existing implementat ion of C O P O R was only slightly adjusted, fixing minor bugs
and changing the way of how certain values are stored in memory to relief its usage, storing
them as bytes instead of hexadecimal strings.

To implement P R F used i n L a K S A , we used hmac function provided by the standard
python l ibrary (as it turned out to be faster than implementations from external libraries
by our tests). L a K S A assumes the stake is of integer type, but we allowed for the stake
to have a floating point value. Because of this, the stake value of the node has to be
rounded to nearest integer value, and then sampled to array wi th the lenght equal to
the stake i n the Sample function. We also had to create the vote class representing the
vote and implement the corresponding functions to process and validate votes in order to
make complete L a K S A implementation. A l l the other primitives were handily reused from
previous C O P O R implementation.

In order to implement A lgorand implementation, we had to look for V R F function that
would work wi th keys and signatures created on secp256kl eliptic curve, as we used this in
previous protocol implementations and d id not want to change it for Algorand . We found
l ibrary wri t ten in C that supports secp256kl keys. We had to compile this l ibrary and create
python module that would abstract work wi th i t . To convert python data to C compatible
data and cal l functions from the precompiled, we used the c f f i l ibrary. Next thing to
implement was the S o r t i t i o n a lgori thm. Here we ut i l ized scipy l ibrary that provided
us w i t h function to calculate b inomia l probabili ty. To implement a l l the phases present
in Algorand , we took advantage of synchronization primitives from threading libraries to
prevent errors that could happen by accesing variables crucial for consensus progression
concurently.

31

8.1 Network layer

We use U D P raw sockets for passing of messages, like most of the blockchains do. We allow
for m a x i m u m size of pay load to be 65, 000 bytes (note that m a x i m u m allowed size for U D P
packets is 65,507), and do not support larger messages. If message is larger than 65,000
bytes, t ra i l ing bytes are str ipped and not transmitted. This results i n unabi l i ty to process
the message by the adressee.

8.2 Structure of messages

Structure of messages is the same for a l l implemented protocols, w i th minor differences.
In this section, we describe each type of message that can be passed among the nodes,
and it use case. E a c h of the messages is a dictionary, where the first key type contains a
numeric value representing a type of the message (e.g. value 11 corresponds to message
CircuitCreate, etc.).

• CircuitCreate(type, circuit id , key) - sent by the nodes (let's ca l l them A nodes)
which want to establish a new onion circuit . Circuit_id is the proposed designation
for the new circuit , key is the A node's part of the shared secret used to create the
shared symmetric key.

• AlreadyUsed(type, used circuit id, proposed circuit id) - sent by the nodes
that received the message CircuitCreate but were unable to create the circuit due to
circuit i d coll ision. used_circuit_id is the i d which caused collision (and is sent back
to make it possible for the other node to identify the circuit which failed to be cre
ated), proposed_circuit_id is the i d which is collision free on the node and is send
back to the other node as a proposal for possible new circuit i d (this value is sent to
possibly speed up the process of selection of the collision free circuit id) .

• CircuitCreated(type, circuit id , key, hash) - sent by the nodes (let's cal l them
B nodes) that derived a shared symmetric key and established the onion circuit after
receiving the CircuitCreate message to the node that sent this message. Circuit_id is
the designation for the established circuit on both nodes, key is the B node's part of
the shared secret used to create the shared symmetric key and hash is the hash of the
derived shared symmetric key, generated by the B node. The hash is used to check
that indeed both nodes derived the same shared symmetric key.

• Relay(type, circuit id, msg) - this message is sent to the nodes in onion circuit .
F i e ld msg contains a message encrypted in onion manner by the symmetric keys
shared wi th a l l nodes i n the circuit , and circuit_id is the idetifier for the circuit .
W h e n the first node i n the circuit recieves this message, it decrypts field msg w i t h the
shared symmetric key and replaces the circuit_id w i th i d that is used as identifier for
the route between first and second node in the circuit .

• Extend(type, next node, key) - a node (called A node) that wishes to extend
the lenght of the so far established onion circuit sends this type of message to the
last node in her circuit . Next_node is the address of the node wi th whom the A node
wishes to establish a new shared symmetric key and by that extend the circuit , and
key is the A node's part of the shared secret used to create the shared symmetric key.
The last node i n the circuit than takes care of choosing colision free circuit i d between

32

her and next_node, and after success she obtains message CircuitCreated, which is
relayed way back to the A node as the message Extended, which finalizes the circuit
extension and new symmetric key establishment.

• Extended(type, key, hash) - this message is the response for Extend message in
case of success, otherwise no message is send at a l l (the A node that wishes to extend
the circuit has to keep track of whether she recieved the response and established
the shared key or not by herself, and take the corresponding action). S imi lar ly as in
message CircuitCreated, key is the B node's (newly added node to the circuit) part
of the shared secret used to create the shared symmetric key and hash is the hash of
the derived shared symmetric key, generated by the B node.

• Wrapped (type, to addr, msg) - this k ind of message indicates that the message
in msg field is unencrypted message, that is intended to be sent to the to_addr node.
Used by the Relay messages (typically field msg i n Relay messages contains a Wrapped
message).

• KeyExchange(type, key) - sent by the node (let's ca l l her A) that wishes to es
tablish a shared symmetric key wi th the other node (usually her peer). Key is the
A node's part of the shared secret used to create the shared symmetric key. This
message usage is different from the CircuitCreate usage.

• KeyExchanged(type, key, hash) - sent by the node (let's ca l l her B) that success-
fuly derived the shared symmetric key. Key is the B node's part of the shared secret
used to create the shared symmetric key and hash is the hash of the derived shared
symmetric key, that is used to check that indeed both nodes derived the same shared
symmetric key.

• SymmetricEncrypted(type, msg) - field msg contains a message encrypted by the
symmetric key shared between two peering nodes.

• i?Zoefc(type, blk) - field blk contains a block (used by both copor and laksa proto
cols).

• BlockAlgorand(type, blk, proof, proof hash) - field blk contains a block, proof
contains a proof generated by the V R F function and proof_hash contains a hash of
the proof. Th is message is specific to Algorand protocol.

• Priority {type, i , priority, proof, blk hash) - field i identifies the round (con
secutive block number start ing from 0), priority is the computed pr ior i ty of the given
blk_hash (hash of the block created in the current round i) and proof is the proof of
the V R F output.

• Vbie(type, vote) - this message contains in field vote a vote, used by L a K S A and
Algorand consensus.

• Initialized(type) - sent by the nodes to a l l the other nodes to make them aware that
they are ready to start the blockchain. Used only i n the beginning, to synchronize
the nodes (so they at least start at the same time).

Some messsage types were omit ted i n this description, as they are not currently used
in the implementation. A l l of the messages have to be serialized (transformed) to bytes

33

i n order to be transmitable v ia network. We implemented different serialization strategies
in order to find how they would impact the throughput of the protocols, and also i n an
attempt to find serialization that results i n the smallest payload size. We present these
serialization types and conducted experiments later.

8.3 Message processing

Each incoming message is received by the server thread, which only task is to listen for
incoming messages, and pass them further to thread (or threads) which w i l l process it .
W h e n using json serialization, server can deal w i th mult iple concatenated messages (e.g. we
recieve two messages wi th blocks and accidentaly read them at once, without separation),
in a manner that it w i l l first replace a l l " } { " w i t h " } } , { { " in order to split it by " } , { "
characters. Resul t ing spli t ted array is then iterated over and each string is checked for
whether it starts w i th "" and ends wi th "" (note that this check would help us to implemen
processing of messages larger than specified max of 65, 000 bytes, but it could not be ut i l ized
wi th other serialization types, and we would be also dependant on message order, which
cannot be assured). If yes, we know that we have a val id json string and can process it
further, if no, we can either save the str ing as unprocessed part and then append it to
the front of the new recieved message, or discard i t . Current ly we append it to the new
message.

So after recieving a message, it is deserialized back into the python dictionary, whose
structure was described before Section 8.2. Based on the type field of the message, the
corresponding action is taken. If the given type does not match to any of the defined types,
error is raised.

8.4 Anonymization layer

Anonymiza t ion layer is also shared amongst a l l of the protocols. It takes care of circuit
establishment for anonymization, encryption of messages that are to be send v ia established
circuits, handl ing of encrypted messages, and establishment of shared keys for symmetric
encryption. Each node which uses anonymizat ion layer keeps 3 dictionaries (if you are not
familiar w i t h dictionaries i n python, you can think of them as mapping of keys to values,
which is known i n other languages as map) that store circuit ids, namely in circuits -
keeps track of circuits established by the node wi th other nodes, out circuits - keeps track
of circuits established by other nodes wi th the given node and relay circuits - manages
circuits that were established for other nodes (the ones we have i n out_circui ts) w i t h the
given node, as the result of the command to extend the circuit .

To assure that no colision happens when establishing the circuit , meaning that the se
lected circuit i d won't be used twice as the key in any of the aforementioned dictionaries, a
following mechanism is used (in source code, it can be found in function createCircuitID ())
Firs t , a lock named create_circuit_id_mutex must be obtained (this lock allows only one
thread to generate new circuit i d at a t ime), and only then, a new circuit i d of size 32 bits
is created. Then, newly generated circuit i d is searched for i n the dictionaries out_circuits,
in_circuits and relay_circuits, and if the match is found in any of the dictionaries, circuit
id is regenerated un t i l it no match is found. Then , the new circuit i d is returned. We must
add, that release of the create_circuit_id_mutex lock happens outside of outside of the
createCircuitID () right after the newly obtained circuit i d is inserted into the one of the

34

3 dictionaries. This is needed to prevent other thread from unintentionaly obtaining the
same circuit i d , because otherwise it would not yet be inserted into one of the 3 dictionaries
and so marked as unused. We also implemented a mechanism to deal w i th colisions when
a node creating the circuit picks a circuit i d and this id is already used i n one of the 3
dictionaries on the other node. In this case, the other node generates a new circuit i d which
is not yet used in her 3 dictionaries, and sends a message, where she notes that proposed
circuit i d was already used and proposes a new one. The node which receives this message
can then accept the proposed circuit i d i f it is not present in her 3 dictionaries, or gener
ate a new one t ry to establish circuit w i t h i t . A g a i n c r e a t e C i r c u i t l D O function takes
care of checking whether the proposed circuit i d is not present in the node's 3 dictionaries,
returning the proposed circuit i d if it satisfies given conditions, or a new one i f not.

8.4.1 K e y exchage m e c h a n i s m

Exchange of the key is conducted in the same manner as in the tor protocol. The A node
first creates a public-private key pair using secp384rl eliptic curve. P u b l i c key is then
encrypted by the B node's R S A public key (this key is known and obtained from some
shared directory), and sent i n message CircuitCreate to the B node. U p o n reception of
this message, the B node decrypts encrypted A ' s public key, generates her public-private
keypair and uses it together w i th the A ' s public key to establish a shared key. This key
is then passed to H K D F derivation function, to derive a more secure shared symmetric
key. After success of a l l previous operations, she generates a hash of the shared symmetric
key (using sha3_256) and sends it back together w i th the B ' s public key i n the message
CircuitCreated. Note that B ' s public key is sent unencrypted - this is because the B node
does not know the identity and address of A (and such feature is also unwanted), as the
sender of the message could be some node in the A ' s circuit , not the A node. W h e n A
recieves the message, she establishes the shared key and then passes it to H K D F function
to derive a more secure shared symmetric key, s imilar ly like the B node. Then she generates
a hash of the newly created symmetric key and compares it to the hash obtained from the
B node. If they are the same, shared symmetric key was successfuly established, otherwise
key establishment failed. Current ly in the implementation, when key establishment fails on
the comparison of key hashes, whole circuit is discarded and the A node picks a new one,
which she tries to establish.

8.4.2 F i n d i n g a c ircui t

Circui ts are picked randomly before the attempt to establish them. Each t ime a given circuit
fails to be established, it is added to the array called invalid_routes. If is is established
successfuly, it is added to array initialized_routes. U p o n a l l picked circuits were tr ied to
be established, for those that failed we pick a replacement routes that are not present in
both the invalid_routes and initialized_routes. If no such routes could be found (meaning
that we tr ied a l l possible routes), runtime error is raised, resulting i n failure of node start.
Remark that we pick the nodes in the circuit randomly and we raise runtime error i f we
fail to pick such a random circuit , that is not present i n both aforementioned array after
at tempting it for 10 times.

35

8.4.3 Different a n o n y m i z a t i o n types

In search of the fastest block gossiping, we implemented different anonymizat ion schemas.
Each of them provides different DoS resistance. We named them tor, gossip-node and
dandelion and describe the i n this subsection.

To better explain to you these schemas, let us first state these preconditions:

. We have 5 nodes named N l , N 2 , N 3 , N4, N 5 .

• Each of the nodes has 2 peers. For our examples, we just need to know that N l has
peers (N4, N5) and N 3 has peers (N2, N5) .

• Each node has exactly one onion route (circuit) with 2 nodes in the route
(meaning that n = l , m=2) . For our examples, it is only important to know that N l
has onion route through (N2, N3) and N 5 has onion route through (N4, N2) .

• Fol lowing conditions are descriptions of symbols used i n the figures. For two nodes N l
and N2 let k l 2 denote a shared symmetric key between these two nodes. Consencu-
tively k l 3 denotes the shared symmetric key between nodes N l and N 3 . These keys
are used by the N l node when she wants to send an onion encrypted message v ia her
circuit through nodes (N2, N3) .

• For two peering nodes N 3 and N 5 let Sk35 denote a shared symmetric key between
them. Note that this key is different from the previously described key as it is not
used i n the onion circuits. Even i f the lenght of the onion circuit is one (m = l) , this
key is not to be interchanged wi th k35 (that is not present in our examples, but we can
imagine it 's existance). Keys prefixed w i t h k are used for encrypt ion/decrypt ion in
onion circuits, and keys prefixed w i t h Sk are used for encrypt ion/decrypt ion between
two peers i n gossip-node anonymizat ion mode.

• Expression Eki2(Eki3(N3, blk)) means that the message (N3, blk) was encrypted first
by symmetric key A:13 and then by symmetric key A:12. E here stands for encryption.
K e y A:12 could also be reffered to as k21, but the prior better express that N l is the
node that iniciated the circuit .

• Expression Esk^iplk) means that the message (blk) was encrypted by symmetric key
Sk35. Th is key could also be reffered to as Sk53.

In each of our examples, we are at the start of the round i n Copor protocol and the
leader is node N l . She wants to gossip its block to her peering nodes (N4, N5) .

Tor anonymization type

In tor anonymizat ion type, each node that wants to gossip the block first randomly picks
one of her circuits, and then send the message to her peer through the chosen circuit . The
peering node that receives the message again gossips it to her peers v ia one of her randomly
selected circuits.

A l l this process is depicted in Figure 8.1, where the node N l first has to encrypt the mes
sage i n onion manner. Her onion circuit goes through nodes (N2, N3) , so she first encrypt
her message wi th key A:13 and then w i t h key kl2. Resul t ing message ^ 1 2 (^ 1 3 (- ^ 5 , blk))
is then send to the node N2 together w i th the circuit designation (which is ommited to

36

Figure 8.1: B lock gossiping in the tor anonymizat ion type

simplify the figure). Based on the circuit designation, the node N2 knows what key she
has to use i n order to decrypt the message (each circuit i d has a unique corresponding
shared key, you can imagine it as a mapping) and then she looks for a next hop i n the given
circuit . Here she finds that the next hop is N 3 , and sends to her the message str ipped of
one encryption - Eki3(N5,blk), together w i t h circuit designation between (N2, N3) . The
node N 3 looks at the circuit designation and finds the corresponding key, then decrypts
the message wi th i t . Then she looks at the next hop for the given circuit , finds out that
next hop does not exists and proceeds to further procces the message. The message (N3,
blk) states that the blk is intended to be sent to the node N 5 , and so the node N 3 sends
the unencrypted blk message to the node N 5 (this effectively looks like for the attacker
that intercepts the traffic as the leader node in this round was N 3 , as he does not know
the content of encrypted messages passed between nodes (N l , N2) and (N2, N3)) . The
node N 5 which received the block first process it , and after verifying that it is val id, she
gossip it to her peers through onion circuit . In the figue Figure 8.1, she sends the message
Ek5i(Ek52(N2, blk)) to her peer N 2 . We know how the message w i l l be processed on the
node N 4 from previous descriptions. Let us j ump at the node N2 , when she decrypts the
message and finds no next hop exists. She finds out that the message is intended for her
and so processes it further by herself (no need to send it to herself v i a U D P socket), and
then gossips it to her peers v ia the onion circuit .

Gossip-node anonymization type

Gossip-node anonymizat ion type differs from tor anonymizat ion type a l i t t le bi t . A t first,
round leader that created a block gossips it only to the last nodes i n her onion circuit .
These nodes then gossip the block to a l l their peers encrypted by the shared symmetric key
they have exchanged before. B o t h gossip-node and dandelion anonymizat ion type reseble
the dandelion proposed i n bi tcoin by first sending the block through the pre-established
circuit (similar to stem phase) and only upon reception by last node i n the circuit , the
block is gossiped to a l l peering node (fluff phase). A d d i t i o n a l security could be added by
randomly deciding at each circuit end-node whether to continue i n the stem phase or start
the fluff phase.

A g a i n i n the figure Figure 8.2, N l sends message E^^E^i^N'S, blk)) through her onion
circuit , but this t ime, the recipient is the last node in her circuit - N 3 . U p o n the node N 3
finds out that the message is intened for her, she processes the block and gossip it to

37

E S k 3 2 (b l k)

Figure 8.2: B lock gossiping in the gossip-node anonymizat ion type

her peers (N2, N5) encrypted by the shared symmetric key - messages Esk32(blk) and
Esk3b(blk). Nodes N2 and N 5 look at the messages type (which w i l l be SymmetricEn-
crypted) and by selecting the address of the message sender, they idenitify the key they
need to use to decrypt the message (in this case, address of the peer is mapped to the shared
symmetric key). After decryption, they proceed to process the message, verifying the block
the block and gossiping it to their peers encrypted by the symmetric keys shared between
them (these keys were agreed upon during the bootstrap process of the consensus).

Dandel ion anonymization type

Dandelion anonymizat ion type can be described as gossip-node anonymizat ion type stripped
of the encryption by symmetric keys shared between peers.

blk

Figure 8.3: Block gossiping i n the dandelion anonymizat ion type

Y o u can see it in action i n Figure 8.3. Here, s imilar ly as i n previous figures, N l sends
message ^ 1 2 (^ 1 3 (^ 3 , 6 ^)) through her onion circuit . The N 3 node upon reception of

38

the message, its decryption and identification that it is intended for her processes the block
contained i n it and after successful block verification, she gossips it to her peers unencrypted.
The peers that verify and procces the block send it to their peers again unencrypted. A s
we mentioned wi th tor anonymizat ion type, this w i l l for the attacker able to intercept the
traffic look like the node N 3 created the block, and w i l l wrongly consider the node N 3 as
the leader w i th the i d present in the block, althought the i d w i l l belong to the node N l . We
w i l l discuss possible attacks and vulnerabili t ies of the implemented anonymizat ion types
later i n chapter Discussion.

8.5 Protocol bootstrapping

The exact process wi th a l l the necessary steps is described i n the Readme.md file of the
submitted repository. Here we describe the steps only to give you some insight into the
bootstrapping process.

Before the consensus simulation can be runned, a l l nodes specified in corresponding con-
fig files (each consensus type has its own config file because some variables are consensus
specific, al though most of them are shared, like the array wi th nodes addresses, we decided
to go this way to make configs more readable) must first have created their ecdsa (for trans
action signing) and rsa (for encryption during onion circuit establishment) keypairs. Th is
effectively means running the main program wi th the node's i d and argument —gen-keypair.
After a l l nodes have their key generated, the genesis blockchain configuration has to be cre
ated. This is again done by running the main program wi th any of the presents node's ids
and argument —gen-genesis. Th is w i l l create 2 configuration files named blockchain. config
and tx. config. A s we d id not implemented gossiping of the transactions, a l l nodes generate
the number of transaction specified by the G E N M E M P O O L S I Z E configuration variable
by themselves. To make a l l nodes start w i t h the same set of transactions, we provide an
option to first generate the transactions by running the gen_txs.py python script, which
generates transactions and stores them to the specified file (we store them i n pickle serial
izat ion format). Then you can start a l l the node passing them the file w i th pre-generated
transactions v ia the argument.

Previous paragraph was about config generation etc., now we move onto what actually
happens when you run the main program and when the nodes start to work under the
terms of the selected consensus. Each of the nodes starts w i th 5 threads: reciever, block
consumer, message consumer(optional), node and shell. The reciever thread listens for
incoming messages on the node's U D P socket, deserializes them and passes them to the
message consumer thread (if message consumer is not present, it w i l l create a new thread for
each message, which w i l l take care of given message processing). The message consumer
thread picks messages from a blocking queue named msg_queue, and process them one
by one. How are incoming messages processed was described i n more detail i n section
Section 8.3. W h e n the message consumer encounters a message containing a block, it w i l l
serialize the block into the underlaying block object and put it into the blk_queue only i f the
hash of the obtained block is not yet present in the array w i t h recieved block hashes. The
block consumer thread picks blocks from the blk_queue as they are added and processes
them i n the UponRecvBlkO. B y having a separate thread for block processing, we allow
for fast processing of the other incoming messages, as we know that processing of the block
takes a significantly larger por t ion of t ime (all t ransaction signatures have to be checked
together w i th block signature, which is costly operation).

39

The node thread is usage is different in copor and other protocols implementions. The
common usage of this thread is the wait for the start ing lock. Further, i n copor, it is used
to start the first block creation round and after that the thread exits. Fol lowing rounds are
started when new val id block is received from the round leader or peers, or i f not received
wi th in r t imeout, round is restarted by the timer. In other protocols, this thread runs
for the whole lifetime of the program, un t i l the exit event is set. Copor could probably
be refactored to work wi th in the node for the whole lifetime, but we d id not do it as it
would probably not result noticable performance gain. The shell thread fills mempool w i th
transactions, i f anonymizat ion is turned on it also finds and initializes configured number
of onion routes and then notifies other nodes that the node is ready to start the consensus
protocol. U p o n recieving the confirmation of in i t ia l izat ion from a l l the nodes present in
the configuration file, the starting lock is released and the node thread can continue in its
work.

8.6 Used libraries

Here are listed a l l external libraries (the ones that are not packed wi th python3.8) that
were used and for what their were used.

• r i ch 1 - was used for prettier pr int ing of responses to commands when user interface
is turned on (only implemented for copor protocol). It was also used as an adapter
for standard logging, when logging is set to be outputted to standard output, it
is colorized by rich. Also elements like progress bar for displaying the progress of
transaction creat ion/mempool fill ing were used.

• secp256kl-py 2 - is a wrapper to the higly opt imalized implementat ion of E C D S A
cryptography on curve secp256kl in C language. It was used for creating block and
transaction signatures and its verification.

• sortedcontainers 3 - was used for sorted storage of transactions in the mempools, so
that the transactions wi th higher fees are placed as first.

• eth-mpt - this l ibrary is used to store global state of the blockchain.

• cryptography 0 - functions for performing shared key derivation (H K D F) , symmetric
encrypt ion/decrypt ion (AES256 i n C T R mode) and asymmetric encryption/decryp
t ion (R S A) and more were used from this library.

• bson 6 - another serialization l ibrary used because compared to json, it supports
serialization of bytes values without prior conversion to hexadecimal string.

• msgpack' - is one of serialization libraries used. S imi lar ly as bson, it supports
serialization of bytes values.

x h t t p s : //github.com/Textualize/rich
2 h t t p s : //github.com/ludbb/secp256kl-py
3 h t t p s : //github. com/grant j enks/python- sortedcontainers
https: //github.com/popzxc/merkle-patricia-trie

5 h t t p s : //github.com/pyca/cryptography
6 h t t p s : //github.com/py-bson/bson
7 h t t p s : //github.com/msgpack/msgpack-python/

40

• cfiTs - l ibrary that allows you to ca l l C code from precompiled libraries. Used to cal l
V R F implemented in C (from l ibsecp256kl-vrf libraries).

• scipy 9 - well known scientific l ibrary. We used the binom.cdf () function from its
module scipy.stats to implement sort i t ion used in algorand.

• l ibsecp256kl-vrf 1 0 - l ibrary that provided us w i t h V R F implementat ion supporting
secp256kl, wr i t ten i n C language.

https://github.com/python-cffi/cffi
'https: //github.com/scipy/scipy
'https : //github.com/aergoio/secp256kl-vrf/tree/master

11

https://github.com/python-cffi/cffi

Chapter 9

Testing

Serialization tests and localhost tests were runned on a machine w i t h Windows 10 operating
system ut i l iz ing U b u n t u 22.04 on W S L 1 . Hardware specifications of the machine:

• processor(CPU): Intel Core i5 9600KF, 3 .70GHz, 6 cores, 6 threads

. m e m o r y (R A M) : 2x Kings ton K H X 2 6 6 6 C 1 3 , 2401MHz, 1 6 G B

. motherboard: A S U S R O G S T R I X B 3 6 0 - H G A M I N G

. storage: 1 T B S S D Intel 665p, 2 T B Seagate B a r r a C u d a (256MB cache)

Graphic card on this machine is N v i d i a GeForce R T X 3060 T i , but we consider it
unused by our implemented program. However, it could be used by external libraries, such
as secp256kl-py, but we d id searched for whether it is true, and whether any of the used
libraries significantly utilizes G P U .

9.1 Serialization tests

In an attempt to decrease the size of the transmit ted block, we tested 4 serialization libraries:
pickle, msgpack, bson and json. The old implementat ion used json for serialization, but it
was unsuitable as a l l bytes values had to be encoded to hexadecimal strings. So we looked
for other options.

Serialization libraries were tested on how fast they perform serialization of the Block
message send when dur ing Copor consensus, and also what is the size of the resulting se
rialized message. The block contained 10 transaction, each of the transactions had size of
aproximately 258 bytes (discarding string names of the transaction fields from the size). In
each tests, blocks were first serialized, then t ransmit ted v ia U D P socket and deserialized
back into the block object. Results are shown in Table 9.1 (where serialization/deserializa
t ion t ime is the rounded average of measured values.)

pickle msgpack bson json
message size (in bytes) 654 2103 2464 7954
serialization t ime 0.08 s 0.1 s 0.25 s 0.16 s
deserialization t ime 0.04 s 0.06 s 0.15 s 0.08 s

Table 9.1: Table containing results of different serialization methods

42

Pickle l ibrary clearly performs the fastest serialization/deserialization and also results
in smallest packet size, but is uportable, i n a sense that we cannot create another implemen
tat ion of copor i n other language, because it would be unable to perform serialization/dese
rial izat ion, because pickle is a python specific l ibrary. Thanks to that, it is able to pack the
object into message of the smallest possible size. B u t such message can only be processed
by another python program.Another reason why pickle is unsuitable i n our case is because
we use secp256kl-py, that effectively allows us to use opt imalized C code i n our python
program. F i e l d coinbase i n block header is a public key created by aforementioned library,
and therefore stored i n memory as a C d a t a variable. P ickle is unable to serialize Cda ta ,
and we have to convert this C d a t a to bytes by using a method bound to the public key -
coinbase.serialize(), as is done i n a l l other tested serializations.

Fi rs t l ibrary behind pickle is msgpack. In terms of speed, the slowdown is unsignificant,
lacking only by 0.02s margin behind pickle. B u t size is almost Ax times the size of pickle
serialized message. Bson differs slightly to msgpack i n terms of size of the resulting serial
ized message, but speedwise it is slower by more than 0.1s second margin, which can pose a
real problem i n our case where we want to achieve high throughput. Last ly, json serialized
message has a huge size, 12x times the size of the result from pickle and almost 4x times
larger that result from msgpack. B u t speedwise it keeps the pace wi th pickle and msgpack,
lacking 0.08s, 0.04s on pickle and only 0.06s, 0.02s on msgpack i n serialization/deserializa
t ion respectively. T h i s would make json a viable option i f we were not also searching for
the smallest possible serialization size, which json does not provides us wi th .

9.2 Local tests

We first tested our implementat ion on local machine, where we conducted a series of tests
wi th 3, 5 and 10 active nodes. We tested each of the implemented protocols and observed
how different serialization types and enabled anonymizat ion affect the throughput (number
of executed transactions).

Dur ing preparation of the tests we noticed that we can set low delays (meaning variables
tau, delta_l, delta_2) when anonymizat ion is turned off, but as we turn anonymizat ion
on, these low delays are unmaintainable. Sometimes some node picks an alternative lead
er/starts new round, because she d id not yet received a block i n the given round, but i f
the anonymizat ion would be turned off, she would have received it . Because of this phe
nomenon!, we introduced a slight increase to a l l delay variables (of 0.25 s) when anonymiza
t ion is turned on to tackle this problem, as when we increase the delay, overall throughput
of protocols also increases (because no unnecessary alternative leader p ick /new round start
happens and the node can recieve the block faster).

Specifications for tests w i th 3 node (Table 9.2) are:

• 1000 transactions, block size of 25 transactions, n_routes = 1, m_nodes = 1

• C o p o r - tau = 0.5

• Laksa - q = 3, I = 1, delta_l = 0.5, delta_2 = 0.75

• A lgorand - expected_leader = 26, expected_filter = 100, expected_cert = 200, tresh-
old_filter = 6, treshold_cert = 12, lambda = 0.65

The first set of tests (Table 9.2) is there to showcase the potential throughput of the
protocols when the number of nodes is low. In these tests we see that tor anonymizat ion

43

pickle msgpack bson json
Algorand no anonymizat ion 18.072 tx / s 18.098 tx / s 18.299 tx / s 18.039 tx / s

L a K S A

no anonymizat ion 20.210 tx / s 20.259 tx / s 20.344 tx / s 20.196 tx / s

L a K S A
tor 14.485 tx / s 14.493 tx / s 14.487 tx / s 14.484 tx / s

L a K S A
gossip-node 14.486 tx / s 14.486 tx / s 14.485 tx / s 14.471 tx / s

L a K S A

dandelion 14.518 tx / s 14.501 tx / s 14.486 tx / s 14.503 tx / s

C O P O R

no anonymizat ion 122.436 tx / s 118.903 tx / s 120.708 tx / s 117.7 t x / s

C O P O R
tor 120.216 tx / s 120.989 tx / s 119.458 tx / s 117.11 tx / s

C O P O R
gossip-node 87.809 tx / s 94.273 tx / s 87.925 tx / s 91.038 tx / s

C O P O R

dandelion 92.072 tx / s 93.926 tx / s 92.392 tx / s 93.5 t x / s

Table 9.2: Table wi th results for 3 nodes

type does not significantly influence the throughput of the C O P O R protocol. However, the
other two anonymizat ion types, gossip-node and dandelion, that were designed to be more
lightweight than tor have decreased throughput by a noticable margin (but s t i l l relatively
negligible). The reason for this is the smal l number of present nodes, where it is unsuitable
to run these anonymizat ion type. The number of established onion routes highly influences
throughput i n these anonymizat ion types as messages containing blocks or votes are in i t ia ly
only send to endpoint nodes in these routes. O n l y after val idat ion and execution by the
endpoint node (which takes noticable por t ion of time, roughly 300 ms for block of 25
transactions i n our implementation), the block is broadcasted to a l l her peers. Th is fact
significantly reduces throughput when number of established routes is less than number of
peering nodes. One way to eradicate this issue is to gossip incoming blocks/votes regardles
of their validity. However, this can secondary cause network congestion. It is important
to choose which issue is more important to us and decide accordingly to either implement
"instant gossiping" or not.

Further we can see that usage of different anonymizat ion types does not have a major
impact on the throughput of L a K S A , as it depends mainly on the parameters delta_l and
delta_2.

Specifications for tests w i th 5 nodes (Table 9.3, Table 9.4) are:

• 1000 transactions, block size of 25 transactions, n_routes = 1, m_nodes = 1

• C o p o r - tau = 0.5

• Laksa - q = 3, I = 1, delta_l = 0.5, delta_2 = 0.75

• A lgorand - expected_leader = 26, expected_filter = 100, expected_cert = 200, tresh-
old_filter = 6, treshold_cert = 12, lambda = 0.65

The second set of tests shows the same throughput as before when a l l the nodes are
online (Table 9.3). The si tuat ion gets worse when 2 nodes are offline (Table 9.4), where
throughput of C O P O R reduces by roughly a half i n each anonymizat ion type. Throughput
of L a K S A also changes similarly. We notice that for dandelion anonymizat ion type, we get
better results than w i t h the others anonymizat ion type, but this can be purely due to the
different load on the local machine caused by other processes for each running test, which
also affects the results obtained and we are not able to completely ensure the fair conditions
for each test (so the side workload on the local machine would not affect i t) .

44

pickle msgpack bson json
Algorand no anonymizat ion 18.092 tx / s 18.102 tx / s 18.179 t x / s 18.126 tx / s

no anonymizat ion 20.232 tx / s 20.367 tx / s 20.323 t x / s 20.216 tx / s

L a K S A
tor 14.495 tx / s 14.459 tx / s 14.482 t x / s 14.483 tx / s

L a K S A
gossip-node 14.479 tx / s 14.411 tx / s 14.431 t x / s 14.424 tx / s
dandelion 14.612 tx / s 14.503 tx / s 14.492 t x / s 14.472 tx / s
no anonymizat ion 116.516 tx / s 116.603 tx / s 114.07 t x / s 112.023 tx / s

C O P O R
tor 111.21 tx / s 112.352 tx / s 110.381 t x / s 109.953 tx / s

C O P O R
gossip-node 68.129 tx / s 67.972 tx / s 65.903 t x / s 66.158 tx / s
dandelion 66.923 tx / s 66.324 tx / s 65.324 t x / s 64.778 tx / s

Table 9.3: Table wi th results for 5 nodes

pickle msgpack bson json
Algorand no anonymizat ion 18.323 tx / s 18.423 tx / s 18.413 tx / s 18.418 t x / s

no anonymizat ion 13.256 tx / s 13.855 tx / s 13.367 tx / s 12.211 t x / s

L a K S A
tor 7.646 tx / s 8.197 tx / s 9.059 tx / s 8.98 t x / s

L a K S A
gossip-node 7.519 tx / s 9.362 tx / s 9.748 tx / s 8.424 t x / s
dandelion 9.533 tx / s 8.276 tx / s 8.459 tx / s 10.037 t x / s
no anonymizat ion 65.513 tx / s 65.723 tx / s 65.636 t x / s 64.823 t x / s

C O P O R
tor 51.431 tx / s 42.431 tx / s 45.637 tx / s 31.574 t x / s

C O P O R
gossip-node 25.633 tx / s 26.162 tx / s 25.002 tx / s 23.11 t x / s
dandelion 25.486 tx / s 27.034 tx / s 26.955 tx / s 26.318 t x / s

Table 9.4: Table wi th results for 5 nodes where 2 of them are offline

Specifications for tests w i th 10 nodes (Table 9.5, Table 9.6, Table 9.7) are:

• 1000 transactions, block size of 25 transactions, n_routes = 2, m_nodes = 3

• C o p o r - tau = 0.75

• Laksa - q = 3, I = 1, delta_l = 0.75, delta_2 = 1

• A lgorand - expected_leader = 26, expected_Jilter = 100, expected_cert = 200, tresh-
old_filter = 6, treshold_cert = 12, lambda = 0.65

pickle msgpack bson json
Algorand no anonymizat ion 18.093 tx / s 18.113 tx / s 18.084 tx / s 18.04 t x / s

L a K S A

no anonymizat ion 5.232 tx / s 5.407 tx / s 6.018 tx / s 5.211 t x / s

L a K S A
tor 5.143 tx / s 5.312 tx / s 5.923 tx / s 5.989 t x / s

L a K S A
gossip-node 5.076 tx / s 5.178 tx / s 5.102 tx / s 4.992 t x / s

L a K S A

dandelion 5.164 tx / s 5.265 tx / s 5.174 tx / s 5.013 t x / s

C O P O R

no anonymizat ion 68.033 tx / s 64.126 tx / s 75.346 tx / s 78.188 t x / s

C O P O R
tor 69.011 tx / s 62.446 tx / s 55.437 tx / s 44.493 t x / s

C O P O R
gossip-node 60.882 tx / s 59.672 tx / s 57.703 tx / s 46.238 t x / s

C O P O R

dandelion 61.913 tx / s 60.021 tx / s 58.904 tx / s 60.312 t x / s

Table 9.5: Table wi th results for 10 nodes

45

pickle msgpack bson json
Algorand no anonymizat ion 16.983 tx / s 17.003 tx / s 18.173 tx / s 17.112 t x / s

L a K S A

no anonymizat ion 4.032 tx / s 3.901 tx / s 3.976 tx / s 3.932 t x / s

L a K S A
tor 3.93 tx / s 3.891 tx / s 3.913 tx / s 3.781 t x / s

L a K S A
gossip-node 3.979 tx / s 4.017 tx / s 3.922 tx / s 3.892 t x / s

L a K S A

dandelion 3.894 tx / s 3.885 tx / s 3.974 tx / s 3.895 t x / s

C O P O R

no anonymizat ion 50.143 tx / s 51.218 tx / s 50.437 tx / s 47.268 t x / s

C O P O R
tor 32.341 tx / s 37.287 tx / s 35.408 tx / s 34.974 t x / s

C O P O R
gossip-node 30.412 tx / s 33.03 tx / s 31.204 tx / s 29.176 t x / s

C O P O R

dandelion 31.03 tx / s 31.419 tx / s 30.871 tx / s 30.342 t x / s

Table 9.6: Table wi th results for 10 nodes where 3 of them are offline

pickle msgpack bson json
Algorand no anonymizat ion 18.167 tx / s 18.623 tx / s 18.703 tx / s 18.660 t x / s

L a K S A

no anonymizat ion 4.542 tx / s 5.59 tx / s 6.021 tx / s 8.109 t x / s

L a K S A
tor 3.93 tx / s 3.391 tx / s 3.421 tx / s 3.375 t x / s

L a K S A
gossip-node 3.383 tx / s 3.389 tx / s 2.917 tx / s 2.895 t x / s

L a K S A

dandelion 3.011 tx / s 2.971 tx / s 3.712 tx / s 4.646 t x / s

C O P O R

no anonymizat ion 23.934 tx / s 25.353 tx / s 23.197 tx / s 22.287 t x / s

C O P O R
tor 4.874 tx / s 5.03 tx / s 4.928 tx / s 3.973 t x / s

C O P O R
gossip-node 5.312 tx / s 6.107 tx / s 4.726 tx / s 4.937 t x / s

C O P O R

dandelion 6.733 tx / s 6.774 tx / s 6.217 tx / s 6.016 t x / s

Table 9.7: Table wi th results for 10 nodes where 5 of them are offline

The th i rd set of tests shows mixed results (Table 9.5, Table 9.6, Table 9.7). A g a i n , the
usage of anonymizat ion layer has no inflence on throughput of L a K S A protocol. However,
we can finaly see gossip-node and dandelion be on pair w i t h tor anonymization, and even
sometimes outperforming i t . A lgorand has displayed i n a l l of the locally performed tests
its abi l i ty to produce and commit new blocks even when large por t ion of nodes is offline.

9.3 Metacentrum tests

To find out how our implementation handles more present nodes i n the protocol, we tested
it on cloud machine consisting of 18 v i r tua l C P U s i n M u n i metacentrum. We further
decided to run tests only wi th pickle and msgpack serialization types, as these provided
the smallest final message size and therefore were the most suitable to use in case of real
network deployment. Tests were done using 10 nodes (Table 9.8, Table 9.9, Table 9.10)
and their specifications are:

• 1000 transactions, block size of 25 transactions, n_routes = 3, m_nodes = 3

• C o p o r - tau = 3.75

• Laksa - q = 3, I = 1, delta_l = 1.5, delta_2 = 2.75

• A lgorand - expected_leader = 26, expected_filter = 100, expected_cert = 200, tresh-
old filter = 6, treshold_cert = 12, lambda = 1.5

46

Tests of Algorand implemention sadly d id not produce any meaningful results and so are
not included in the resulting tables.

One thing to notice is that the throughput of L a K S A was not much influenced by the
number of offline nodes. Th i s can be due to cryptographic sampling, which select leader
and voters, selecting the nodes that are online most of the time. C O P O R shows decrease in
performance wi th each increase of the number of offline nodes. However, when we tr ied to
run C O P O R wi th lower tau delay, messages containing blocks often d id not reached some
nodes, which resulted i n even worse throughput.

pickle msgpack

L a K S A

no anonymizat ion 6.802 t x / s 6.121 t x / s

L a K S A
tor 5.163 t x / s 5.152 t x / s

L a K S A
gossip-node 5.236 t x / s 5.517 t x / s

L a K S A

dandelion 5.271 t x / s 5.618 t x / s

C O P O R

no anonymizat ion 74.872 t x / s 86.172 t x / s

C O P O R
tor 57.095 t x / s 62.15 t x / s

C O P O R
gossip-node 47.937 t x / s 52.595 t x / s

C O P O R

dandelion 60.064 t x / s 56.392 t x / s

Table 9.8: Table wi th results for 16 nodes

pickle msgpack

L a K S A

no anonymizat ion 5.804 t x / s 5.982 t x / s

L a K S A
tor 5.172 t x / s 5.164 t x / s

L a K S A
gossip-node 5.264 t x / s 5.347 t x / s

L a K S A

dandelion 5.324 t x / s 5.611 t x / s

C O P O R

no anonymizat ion 55.347 t x / s 56.825 t x / s

C O P O R
tor 36.176 t x / s 35.927 t x / s

C O P O R
gossip-node 37.802 t x / s 37.612 t x / s

C O P O R

dandelion 38.015 t x / s 38.212 t x / s

Table 9.9: Table wi th results for 16 nodes where 2 of them are offline

pickle msgpack

L a K S A

no anonymizat ion 4.829 t x / s 4.922 t x / s

L a K S A
tor 4.172 t x / s 4.175 t x / s

L a K S A
gossip-node 4.204 t x / s 4.173 t x / s

L a K S A

dandelion 4.342 t x / s 4.372 t x / s

C O P O R

no anonymizat ion 37.209 t x / s 38.011 t x / s

C O P O R
tor 23.163 t x / s 23.953 t x / s

C O P O R
gossip-node 23.724 t x / s 23.065 t x / s

C O P O R

dandelion 24.511 t x / s 24.236 t x / s

Table 9.10: Table wi th results for 16 nodes where 5 of them are offline

47

9.4 Discussion

A t first, we need to give strong emphasis on the fact that many of the tests we inteded to
run have failed, and only results from those that executed to the end and produced files
w i th statistics were presented. The ma in reason for their failure is the congestion of sockets
belonging to the ind iv idua l nodes, which prevented them from obtaining blocks wi th in the
boundary of the round they were created in , and sometimes not recieving them at a l l . Th is
problem could be rectified by creating a mechanism for periodic resending of the messages
containing blocks, votes, etc. Further increase of delay timeouts would only be meaningful
w i t h the proposed mechanism i n place.

The performed tests proven that the implemented addi t ional anonymizat ion layer in
troduces moderate delays that are negligible for some testing scenarios. Further testing is
needed to obtain results that more closely match real-world conditions. Such testing needs
to be performed on mult iple machines where each machine w i l l represent only one node and
messages wi th blocks, votes, etc., w i l l be sent v i a real physical component in the network
(routers, switches) instead of local interface (which was the subject of tests).

Look ing back at our implementat ion we w i l l analyse its risks and intrist ic problems. For
the anonymizat ion layer, it is necessary to periodical ly rotate the circuits, due to the pos
sibi l i ty of tracing the patters of anonymous messages sent i n the network by the adversary,
given a sufficiently large amount of captured communicat ion. In our implementation, the
only countermeasure implemented so far that adresses this issue is to always send message
over a randomly selected circuit from a l l the established circuits. However, i f the number
of established circuits is too low, the added security of this measure decreases.

Another point of interest is to study how nodes are encouraged to forward anonymous
messages over the network. The content of such messages is only revealed during final
decryption by the end node, and the other nodes do not know whether they are forwarding
a message that really belongs to the protocol (a message containing a block, voice, etc.)
or whether it is some completely unrelated message. Such messages w i l l be discarded by
end nodes and pointlessly wasted network bandwidth . A l so , nodes are not rewarded i n any
way for forwarding anonymous messages (the only incentive is that they want to commit a
new block), which may lead to a decision not to forward such messages and halt protocol
progression.

Some primitives were abstracted i n our implementation, such as construction of round
beacon in L a K S A , other were not implemented at a l l , like mechanism that prevent creation
of forks. Thei r implementat ion and testing is another possible direction for future work. It
would also be interesting to see how the use of different transmission protocols (U D P , T C P
and others) affects throughput, network load and message dropping.

18

Chapter 10

Conclusion

In this thesis, P roof of Stake protocols Algorand , L a K S A and C O P O R were studied and
their underlying bui ld ing blocks were thoroughly described. They were compared wi th
w i th each other i n terms of blockchain crucial properties - throughput, scalability, liveness,
finality and safety - w i th addi t ional look at their fairness and DoS resistace. Possibili t ies
of h iding the messsage originator i n the network were also studied and described, mainly
onion routing and mix ing networks. In addi t ion to these techniques, technique for un
predictable message spreading proposed for B i t co in was presented for its lightweightness.
Miss ing real onion rout ing i n C O P O R was implemented and added to the source code as
a separate anonymity_layer module. Th i s makes it reusable for future consensus protocol
implementations. L a K S A protocol was implemented together w i th Algorand , to compare
them against each other, as L a K S A was created to adress issues i n Algorand . A l l of the im
plemented protocols underwent a series of tests i n order to evaulate their performance and
impact of addi t ional anonymity layer on transaction throughput. Results were discussed
together w i th issues of the implementation.

The moderate and sometimes negligible impact of the anonymizat ion layer on through
put that was demonstrated during the tests indicates that the research effort was put in
the right direction. Compar ison of our proof of concept results shows promissing higher
throughput of C O P O R protocol. However, implementat ion i n other more opt imalized lan
guage is encouraged, together w i t h usage of some established protocol for messages like
Google's protobuf, to further reduce message size.

The enhanced implementat ion of C O P O R can be extended wi th other algorithms for
leader election, like homomorphic sorti t ion, that could remove the need for anonymity
layer. Other existing protocols can also be implemented, enhanced by anonymity layer and
evaulate on how they perform w i t h i t . Another possible direction of future research could
be to search for more reliable transmission protocol to replace the used U D P protocol,
e.g. Q U I C (which is not yet implemented i n the used python language). Mechanism that
prevent responsible for finality and safety (i.e. prevent forks) i n C O P O R are not currently
implemented and it would be interesting to study different existing techniques used to test
these mechanisms and t ry them out in some future work.

49

Bibliography

[1] A L G O R A N D F O U N D A T I O N . Algorand Blockchain Features Specification Version 1.0
[online], [cit. 2024-05-09]. Available at: https://github.com/algorandfoundation/
specs/blob/master/overview/Algorand_vl_spec-2.pdf.

[2] A N O N Y M O U S A U T H O R . A Guide To The Algorand Consensus Protocol [online], [cit.
2024-05-09]. Available at:
https: //github.com/onplanetnowhere/AlgorandConsensusProtocolMD.

[3] B E L O T T I , M . , B o ž i e , N . , P U J O L L E , G . and S E C C I , S. A Vademecum on Blockchain

Technologies: W h e n , W h i c h , and How. IEEE Communications Surveys & Tutorials.
2019, vol . 21, no. 4, p. 3796-3838. D O L 10.1109/COMST.2019.2928178.

[4] B I T C O I N W I K I . BIP 0156 [online]. September 2017 [cit. 2024-05-12] . Available at:

https: //en.bitcoin.it/wiki/BIP_0156.

[5] B O J J A V E N K A T A K R I S H N A N , S., F A N T I , G . and V I S W A N A T H , P . Dandel ion:

Redesigning the B i t co in Network for Anonymi ty . Proc. ACM Meas. Anal. Comput.
Syst. New York , N Y , U S A : Associat ion for Comput ing Machinery. June 2017, vol. 1,
no. 1. D O I : 10.1145/3084459. Available at: https://doi.org/10.1145/3084459.

[6] B U T E R I N , V . and G R I F F I T H , V . Casper the Friendly Finality Gadget. 2019.

[7] C H A S E , B . and M A C B R O U G H , E . Analys is of the X R P Ledger Consensus Pro tocol .
ArXiv. 2018, abs/1802.07242. Available at:
https: / / api.semanticscholar.org/CorpusID: 3440860.

[8] C H E N , P . - W . , J I A N G , B . - S . and W A N G , C . - H . Blockchain-based payment collection
supervision system using pervasive B i t co in digi ta l wallet. In: 2017 IEEE 13th
International Conference on Wireless and Mobile Computing, Networking and
Communications (WiMob). 2017, p. 139-146. D O L 10 .1109 /WÍMOB.2017 .8115844 .

[9] D A I A N , P. , P A S S , R . and S H I , E . Snow Whi te : Robus t ly Reconfigurable Consensus
and Appl ica t ions to Provably Secure Proof of Stake. In: G O L D B E R G , I. and M O O R E ,
T . , ed. Financial Cryptography and Data Security. C h a m : Springer International
Publ ish ing, 2019, p. 23-41. I S B N 978-3-030-32101-7.

[10] D I N G L E D I N E , R . , M A T H E W S O N , N . and S Y V E R S O N , P . Tor: The Second-Generation

Onion Router . In: 13th USENIX Security Symposium (USENIX Security 04). San
Diego, C A : U S E N I X Associat ion, August 2004. Available at:
https://www.usenix.org/conference/13th-usenix-security-symposium/tor-second-
generation-onion-router.

50

https://github.com/algorandfoundation/
https://doi.org/10.1145/3084459
http://api.semanticscholar.org/
https://www.usenix.org/conference/13th-usenix-security-symposium/tor-second-

[11] F A N T I , G . , V E N K A T A K R I S H N A N , S. B . , B A K S H I , S., D E N B Y , B . , B H A R G A V A , S. et a l .

Dandel ion++: Lightweight Cryptocurrency Networking wi th Formal A n o n y m i t y
Guarantees. Proc. ACM Meas. Anal. Comput. Syst. New York , N Y , U S A :
Associat ion for Comput ing Machinery. June 2018, vol . 2, no. 2. D O I :
10.1145/3224424. Available at: https://doi.org/10.1145/3224424.

[12] F E I G E N B A U M , J., J O H N S O N , A . and S Y V E R S O N , P . A M o d e l of On ion Rou t ing wi th

Provable Anonymi ty . In: Proceedings of the 11th International Conference on
Financial Cryptography and 1st International Conference on Usable Security. Ber l in ,
Heidelberg: Springer-Verlag, 2007, p. 57-71. F C ' 0 7 / U S E C ' 0 7 . I S B N 3540773657.

[13] G I L A D , Y . , H E M O , R . , M I C A L I , S., V L A C H O S , G . and Z E L D O V I C H , N . Algorand:

Scaling Byzant ine Agreements for Cryptocurrencies. In: Proceedings of the 26th
Symposium on Operating Systems Principles. New York , N Y , U S A : Associa t ion for
Comput ing Machinery, October 2017, p. 51-68. S O S P '17. D O I :
10.1145/3132747.3132757. I S B N 9781450350853. Available at:
https://doi.org/10.1145/3132747.3132757.

[14] G R I N F O U N D A T I O N . Dandelion++ in Grin: Privacy-Preserving Transaction
Aggregation and Propagation [online], [cit. 2024-05-09]. Available at:
https://docs.grin.mw/wiki/miscellaneous/dandelion/.

[15] H O M O L I A K , I., V E N U G O P A L A N , S., R E I J S B E R G E N , D . , H U M , Q., S C H U M I , R . et al .

The Security Reference Archi tecture for Blockchains: Toward a Standardized M o d e l
for S tudying Vulnerabil i t ies, Threats, and Defenses. IEEE Communications Surveys
& Tutorials. 2021, vol . 23, no. 1, p. 341-390. D O I : 10.1109/COMST.2020.3033665.

[16] H U D , J . Security and Performance Testbed for Simulation of Proof-of-Stake
Protocols. Brno , C Z , 2022. Master 's thesis. Brno Universi ty of Technology, Facul ty of
Information Technology. Available at:
https://www. vut.cz/en/students/final-thesis/detail/145471.

[17] K I N G , S. and N A D A L , S. P P C o i n : Peer-to-Peer Cryp to-Cur rency w i t h
Proof-of-Stake. august 2012. Available at:
https: //www.peer coin.net/read/papers/peer coin-paper.pdf.

[18] L A M P O R T , L . The part-t ime parliament. ACM Trans. Comput. Syst. New York , N Y ,
U S A : Associat ion for Comput ing Machinery, may 1998, vol . 16, no. 2, p. 133-169.
D O I : 10.1145/279227.279229. I S S N 0734-2071. Available at:
https://doi.org/10.1145/279227.279229.

[19] L A M P O R T , L . Paxos Made Simple. In:. 2001. Available at:
https: / / api.semanticscholar.org/CorpusID: 1936192.

[20] L A M P O R T , L . , S H O S T A K , R . and P E A S E , M . The Byzant ine generals problem.

In: Concurrency: The Works of Leslie Lamport. New York , N Y , U S A : Associat ion for
Comput ing Machinery, 2019, p. 203-226. I S B N 9781450372701. Available at:
https://doi.org/10.1145/3335772.3335936.

[21] L E P O R E , C , C E R I A , M . , V I S C O N T I , A . , R A O , U . P. , S H A H , K . A . et a l . A Survey on

Blockchain Consensus wi th a Performance Compar ison of P o W , PoS and Pure PoS.

51

https://doi.org/10.1145/3224424
https://doi.org/10.1145/3132747.3132757
https://docs.grin.mw/wiki/miscellaneous/dandelion/
https://www
http://vut.cz/
http://www.peer
http://coin.net
https://doi.org/10.1145/279227.279229
http://api.semanticscholar.org/
https://doi.org/10.1145/3335772.3335936

Mathematics. 2020, vol . 8, no. 10. D O I : 10.3390/math8101782. I S S N 2227-7390.
Available at: https://www.mdpi.eom/2227-7390/8/10/1782.

[22] M A L K H I , D . BFT on a DAG [online]. 2022 [cit. 2024-09-05] . Available at:

https: //blog. chain, li n k / b f t-on-a-dag/.

[23] M E N D O N C A , M . , S E E T H A R A M A N , S. and O B R A C Z K A , K . A flexible in-network IP

anonymizat ion service. In: 2012 IEEE International Conference on Communications
(ICC). June 2012, p. 6651-6656. D O I : 10.1109/ICC.2012.6364931. I S B N
978-1-4577-2052-9.

[24] N A K A M O T O , S. B i t co in : A Peer-to-Peer Electronic Cash System, march 2009.
Available at: https://bitcoin.org/bitcoin.pdf.

[25] O N G A R O , D . and O U S T E R H O U T , J . In Search of an Understandable Consensus

A l g o r i t h m . In: 2014 USENIX Annual Technical Conference (USENIX ATC 14).
Phi ladelphia , P A : U S E N I X Associat ion, June 2014, p. 305-319. I S B N
978-1-931971-10-2. Available at:
https://www.usenix.org/conference/atcl4/technical-sessions/presentation/ongaro.

[26] P 4 T I T A N . Sl imcoin: A Peer-to-Peer Cryp to-Cur rency wi th Proof-of-Burn. may 2014.
Available at: https: //github.com/slimcoin-project/slimcoin-project.github.io/
blob/master/whitepaperSLM.pdf.

[27] P R I S C O , R . D . , L A M P S O N , B . and L Y N C H , N . Revis i t ing the paxos algori thm.

Theoretical Computer Science. 2000, vol . 243, no. 1, p. 35-91. D O I :
https://doi.org/10.1016/S0304-3975(00)00042-6. I S S N 0304-3975. Available at:
https: //www. sciencedirect.com/science/article/pii/S0304397500000426.

[28] R E I J S B E R G E N , D . , S Z A L A C H O W S K I , P. , K E , J . , L i , Z . and Z H O U , J . L a K S A : A

Probabi l is t ic Proof-of-Stake Pro tocol . 2021. Available at:
https: //arxiv.org/abs/2006.01427.

[29] R E N , J . and W u , J . Survey on anonymous communications in computer networks.

Computer Communications. 2010, vol. 33, no. 4, p. 420-431. D O I :
https: / /doi.Org /10.1016/j .comcom.2009.l l .009. I S S N 0140-3664. Available at:
https: //www. sciencedirect.com/science/article/pii/S0140366409002989.

[30] R I B A R S K I , P . and A N T O V S K I , L . Mixne ts : Implementation and performance

evaluation of decryption and re-encryption types. In: Proceedings of the ITI 2012
34th International Conference on Information Technology Interfaces. 2012,
p. 493-498. D O I : 10.2498/iti.2012.0432.

[31] S A M P I G E T H A Y A , K . and P O O V E N D R A N , R . A Survey on M i x Networks and Their

Secure Appl ica t ions . Proceedings of the IEEE. 2006, vol . 94, no. 12, p. 2142-2181.
D O I : 10.1109/JPROC.2006.889687.

[32] S C H O L L M E I E R , R . A definition of peer-to-peer networking for the classification of
peer-to-peer architectures and applications. In: Proceedings First International
Conference on Peer-to-Peer Computing. 2001, p. 101-102. D O I :
10.1109/P2P.2001.990434.

52

https://www.mdpi.eom/2227-7390/8/10/1782
https://bitcoin.org/bitcoin.pdf
https://www.usenix.org/conference/atcl4/technical-sessions/presentation/ongaro
http://slimcoin-project.github.io/
https://doi.org/10.1016/S0304-3975(00)00042-6
http://sciencedirect.com/science/article/pii/S0304397500000426
https://doi.Org/10.1016/j.comcom.2009.ll.009
http://sciencedirect.com/science/article/pii/S0140366409002989

[33] S I N G H , A . , K U M A R , G . , S A H A , R . , C O N T I , M . , A L A Z A B , M . et a l . A survey and

taxonomy of consensus protocols for blockchains. Journal of Systems Architecture.
2022, vol . 127, p. 102503. D O I : https://doi.Org/10.1016/j.sysarc.2022.102503. I S S N
1383-7621. Available at:
h t tp s : //www. sciencedirect .com/science/axt icle/pi i/S1383762122000777.

[34] S Y V E R S O N , P . and C O N T R I B U T O R S collective of On ion routing. Onion Routing
[online]. 2013 [cit. 2023-12-27]. Available at: https://www.onion-router.net/.

[35] T A M A S K O V I C , M . Fast, Scalable and DoS-Resistant Proof-of-Stake Consensus
Protocol Based on an Anonymization Layer. Brno , C Z , 2021. Master 's thesis. B rno
Universi ty of Technology, Facul ty of Information Technology. Available at:
https://www.vut.cz/en/students/f i n a l - t h e s i s / d e t a i l /136727.

[36] W A N G , W . , H O A N G , D . T. , H U , P. , X I O N G , Z . , N I Y A T O , D . et a l . A Survey on

Consensus Mechanisms and M i n i n g Strategy Management i n Blockchain Networks.
IEEE Access. 2019, vol . 7, p. 22328-22370. D O I : 10.1109/ACCESS.2019.2896108.

[37] X I A O , Y . , Z H A N G , N . , L O U , W . and Hou, Y . T . A Survey of Dis t r ibuted Consensus
Protocols for Blockchain Networks. IEEE Communications Surveys & Tutorials.
2020, vol . 22, no. 2, p. 1432-1465. D O I : 10.1109/COMST.2020.2969706.

[38] X I E , M . , Liu, J . , C H E N , S. and L I N , M . A survey on blockchain consensus
mechanism: research overview, current advances and future directions. International
Journal of Intelligent Computing and Cybernetics. January 2023, vol . 16, p. 314-340.
D O I : 10.1108/IJICC-05-2022-0126.

[39] Z H A N G , S. and L E E , J.-H. Analys is of the ma in consensus protocols of blockchain.
ICT Express. 2020, vol . 6, no. 2, p. 93-97. D O I :
https://doi.Org/10.1016/j.icte.2019.08.001. I S S N 2405-9595. Available at:
h t tp s : //www. sciencedirect .com/science/ar t ic le/pi i/S240595951930164X.

53

https://doi.Org/10.1016/j.sysarc.2022.102503
http://sciencedirect.com/science/axticle/pii/S1383762122000777
https://www.onion-router.net/
https://www.vut.cz/en/students/f
https://doi.Org/10.1016/j.icte.2019.08.001
http://sciencedirect.com/science/article/pii/S240595951930164X

Appendix A

Included C D contents

In the attached C D there is located source code for the implementation, this source code
and its compiled pdf version. Structure of directories:

• src - contain source code of the implementat ion wri t ten i n python3.8

— .vscode - configuration files for tasks and debugging inside VScode editor.

— chain - cointains mudules copor, laksa and algorand w i th primitives specific
to them. Shared primitives are in module shared.

— docs - tutorials for usage of terminal user interface (implemented only for C O
P O R protocol)

— etc.

• thesis - contains source code for this thesis wri t ten i n latex

• thesis.pdf - this thesis i n pdf format

54

