BAKALÁŘSKÁ PRÁCE

Milan Ošťádal

TEPELNÉ ZPRACOVÁNÍ KOVŮ – ŽÍHÁNÍ,
ZPŮSOB PRÁCE S UČEBNICÍ
NA SIGMUNDOVÉ STŘEDNÍ ŠKOLE STROJÍRENSKÉ,
LUTÍN

OLOMOUC 2014

Vedoucí práce: Doc. PaedDr. Jiří Kropáč, CSc.
Prohlášení

Prohlašuji, že jsem bakalářskou prací na téma „Tepelné zpracování kovů – žíhání, způsob práce s učebnicí na Sigmundově střední škole strojirenské, Lutín“, vypracoval samostatně s použitím odborné literatury a pramenů, uvedených na seznamu, který tvoří přílohu této práce.

V Olomouci dne 16. 4. 2014

…………………………

Milan Ošťádal
Poděkování

Děkuji vedoucímu bakalářské práce doc. PaedDr. Jiřímu Kropáčovi, CSc., za veškerou pomoc, svědomitě a trpělivě vedení i za řadu cenných rad a připomínek.
Obsah

Úvod ... 6

TEORETICKÁ ČÁST – Didaktická ... 7

1 Vymezení pojmů .. 7
 1.1 Vzdělávání .. 7
 1.2 Učební text - učebnice .. 7

TEORETICKÁ ČÁST – Technická ... 10

2 Tepelné zpracování kovů a didaktické problémy ... 10
 2.1 Krystalové mřížky .. 11
 2.1.1 Krychlová prostorově centrovaná mřížka .. 12
 2.1.2 Krychlová plošně centrovaná mřížka .. 13
 2.2 Diagram železo-uhlík – Fe-Fe₃C .. 13
 2.3 Transformační diagramy .. 16
 2.3.1 IRA diagram ... 17
 2.3.2 ARA diagram ... 18

3 Žíhání .. 19
 3.1 Vymezení podstaty a průběhu žíhání obecně .. 19
 3.2 Žíhání bez překrystalizace .. 21
 3.2.1 Žíhání na měkko ... 21
 3.2.2 Žíhání ke snížení pnutí .. 22
 3.2.3 Rekrystalizační žíhání .. 22
 3.2.4 Protivločkové žíhání ... 23
 3.3 Žíhání s překrystalizací ... 23
 3.3.1 Normalizační žíhání .. 23
 3.3.2 Homogenizační žíhání (difúzní) .. 24
 3.3.3 Izotermické žíhání ... 24
3.3.4 Žíhání s částečnou austenitizací ... 25
3.3.5 Žíhání ke stabilizaci rozměrů ... 25
3.3.6 Žíhání ke zvětšení zrna ... 25
4 Inovace v žíhání .. 26
EMPIRICKÁ ČÁST ... 30
5 Způsob používání učebnic – průzkum .. 30
 5.1 Písemné dotazování na učebnice u učitelů Sigmundovy SŠs, Lutín 30
 5.2 Výsledky průzkumu na Sigmundově SŠs, Lutín 32
 5.3 Interview s technologem žíhání .. 34
 5.4 Písemný záznam rozhovoru s technologem .. 35
 5.5 Výsledky průzkumu na SOŠ průmyslové a SOU strojirenském, Prostějov 37
6 Výsledky průzkumu – shrnutí .. 39
Závěr ... 42

Seznam pramenů a literatury

Přílohy

Anotace
Úvod

Bakalářská práce s názvem „Tepelné zpracování kovů – žihání, způsob práce s učebnicí na Sigmundově střední škole strojírenské, Lutín“ podává přehled o problematice výuky tepelného zpracování kovů se zaměřením na způsob práce s učebními texty, které jsou v současné době využívány k výuce na této poměrně úspěšné střední škole. Vzhledem k tomu, že v této oblasti nedošlo k žádným významnějším změnám a převratnému vývoji, které by od základu ovlivnily obsah výuky, vybral jsem si toto téma, abych zjistil problémy při jeho výuce.

Prioritním cílem práce je provést zhodnocení textů v učebnicích, ověřit zda jsou aktuální a úplné a zda předávají žákům potřebné vědomosti, které pro svůj obor v praxi potřebují. Dále pak zjistit nedostatky učebních textů, které v nich vidí nejen učitelé, ale i odborníci v praxi a poukázat na inovace, které ve vzdělávacích materiálech scházejí. Návazně budu zjišťovat, jaké učebnice učitelé využívají u různých učebních oborů a jak reagují na případné nedostatky učebnic.

Obsah práce se dělí na část teoretickou a část empirickou. Teoretická část je rozdělena na dva okruhy. První okruh pod názvem pedagogická část je zaměřen na vysvětlení funkcí vzdělávání a učebnice. Druhý okruh teoretické části je zaměřen technicky a je zde kladen důraz na přiblížení podstaty tepelného zpracování kovů z hlediska výuky.

Součástí empirické části je průzkum s otevřenými otázkami, v němž zjišťuji od učitelů Sigmundovy SŠs, Lutín, jaké učební texty využívají právě oni k výuce žihání, a jak je hodnotí. Dále práce obsahuje rozhovor s technologem z průmyslové praxe, jehož smyslem je zjistit jeho názor na správnost literatury zabývající se žiháním a požadavky dnešních firem na znalosti žáků středních škol, tedy svých potencionálních zaměstnanců. V závěru tohoto průzkumu budou uvedeny případné odlišnosti v jejich názorech.

Po získání potřebných informací z učebnic od učitelů a od technologa zjistím, zda učebnice přináší dostatek potřebných informací.
TEORETICKÁ ČÁST – Didaktická

1 Vymezení pojmů

Pro bližší pochopení probíraného tématu, je vhodné uvést definice pojmů týkajících se vzdělávacích textů. Následující kapitola proto přibližuje pojem vzdělávání a učební text.

1.1 Vzdělávání

Vzdělávání představuje podpůrný proces, který podněcuje i zplnomocňuje člověka k získání všech vědomostí, dovedností, postojů a hodnot, které potřebuje v průběhu svého života (1, s. 11).

Vzdělávání v ČR je veřejná služba, která je řízena zákonem č. 561/2004 Sb., o předškolním, základním, středním, vyšším odborném a jiném vzdělávání (2, online). V souladu s Jarmilou Skalkovou předpokládám, že spolu s osvojením systému určitých vědomostí a dovedností chápe vzdělaný člověk vztahy mezi poznatky, získal dovednosti používat svých vědomostí při řešení nových úkolů, dovedností dalšího sebevzdělávání. Vzdělávání zahrnuje i osvojení hodnot estetických a morálních, vytváření určitého postoje ke světu, společnosti a sobě samému (3, s. 28).

Za tímto účelem musí vzdělávání plnit funkce informativní, formativní, profesionalizační, integrační, kulturní a instrumentální. Blíže se budu zabývat informativní, instrumentální a profesionalizační funkcí. Aby mohlo vzdělání plnit tyto funkce, je důležitý jeho obsah, který je dán především učebními texty.

1.2 Učební text - učebnice

Učební text neboli didaktický text je souhrnné označení pro různé druhy učebnic, skript a další druhy tištěných materiálů, které jsou určeny učícím se subjektům (4, s. 258). Učební text je nosičem didaktické informace. Nejrozšířenějším didaktickým textem je učebnice.

Učebnice je druh knižní publikace, která svým obsahem a strukturou slouží k didaktické komunikaci. Je vhodné poznamenat, že se dříve neprováděla evaluace učebnic a nebyla zkoumána jejich kvalita. Změna nastala až v 60. – 70. letech, kdy se začaly vytvářet teorie učebnic a začali se provádět empirické výzkumy ověřující jejich fungování. Podle Průchy je možné učebnici považovat za prostředek vyučování a učení v knižní formě, ve které
jsou určitá odborná témata a okruhy daného předmětu metodicky uspořádány a didakticky ztvárněny takovým způsobem, že umožňuje učení (5, s. 13).

Učebnice je součástí každého systému materiálně didaktických prostředků a v daném systému plní také hlavní roli. Je základní učební pomůckou žáka (studenta) a pro učitele představuje důležitý zdroj plánovací, řídící a kontrolní činnosti (stejně jako metodické příručky) (6, s. 16).

Podle Průchy má učebnice dvě funkce:

1) slouží jako didaktický prostředek, tedy je informačním zdrojem pro žáky (studenty) a učitele (pedagogy) a také řídí a stimuluje učení žáků (studentů),

2) funguje jako prvek kurikula, tedy prezentuje výsek plánovaného obsahu vzdělání (4, s. 258).

Toto rozdělení je stručné a nezahrnuje všechny oblasti. Dosud nejpodrobnější klasifikaci funkcí učebnic zpracoval D. D. Zujev. Na následujících řádcích je uveden podrobný přehled hlavních funkcí učebnic:

1) **informační funkce:** učebnice vymezuje obsah vzdělávání v určitém předmětu nebo oboru vzdělávání, a to i s ohledem na rozsah a dávkování informací určených k osvojování pro žáky (studenty),

2) **transformační funkce:** učebnice představuje přeměnu, didaktickou transformaci odborných informací z určitého vědního oboru, určité technické a jiné oblasti tak, aby transformované informace byly přístupné žákům (studentům),

3) **systematizační funkce:** učebnice rozčleňuje učivo podle určitého systému do jednotlivých ročníků, stupňů školy a vymezuje posloupnost jednotlivých částí učiva,

4) **zpevňovací a kontrolní funkce:** učebnice umožňuje žákům (studentům) pod vedením pedagoga osvojovat si poznatky a dovednosti, procvičovat je (upevňovat) a případně i kontrolovat (pomoci úkolů atd.) jejich osvojení,

5) **sebevzdělávací funkce:** učebnice stimuluje žáky (studenty) k samostatné práci s učebnicí a vytváří v nich učební motivaci a potřeby poznávání nového,
6) **integrační funkce**: učebnice poskytuje základ pro pochopení a integraci těch informací, které žáci (studenti) získávají z různých dalších pramenů,

7) **koordinační funkce**: učebnice koordinuje využívání dalších didaktických prostředků, které na ni navazují,

8) **rozvojově výchovná funkce**: učebnice přispívá vytvářet různé rysy „harmonicky rozvinuté osobnosti“ žáků (studentů) (5, s. 19 - 20).

Zastoupení všech těchto funkcí je pak důležité pro výslednou kvalitu učebnice. Zaměřím se především na funkci informační, transformační, zpevňovací, integrační a koordinační. Zda učebnice mají funkci informační a obsahují dostatečné množství informací, budu zjišťovat v druhé části této práce, jejíž součástí je výzkum, v němž jsem oslovil učitele a techniky, kteří v tomto oboru pracují. Cílem průzkumu je rovněž ověřit, zda učebnice plní funkci transformační, tedy zda jsou informace v učebnicích aktuální s průmyslovou praxí a zda jsou za účelem koordinační funkce využívány informační technologie a internet.

Mezi mnoha pedagogy-teoretiky stále přetrvává nerealistické mínění, že učebnice jsou hlavně (nebo výlučně) určeny pro žáky. Jako by učitelé příliš nepoužívali učebnice přímo pro realizaci svých profesních potřeb. Skutečnost je však jiná: Jak to prokazují výzkumy u nás, stejně jako v zahraničí, učebnice jsou zřejmě hlavním zdrojem, který učitelé používají pro plánování výuky (7, s. 293). Toto tvrzení rovněž poukazuje na nutnost integrační funkce. A právě to, jestli jsou učebnice základem informací i při výuce tepelného zpracování, bych také chtěl ověřit.
TEORETICKÁ ČÁST – Technická

2 Tepelné zpracování kovů a didaktické problémy

Nyní proberu teorii, která souvisí s tepelným zpracováním kovů spolu s její didaktickou interpretací. Pro pochopení obecné báze tepelného zpracování je nutné, aby žák znal jak širší souvislosti, tak i vlastní jádro problematiky.

K popisu průběhu tepelného zpracování kovů, je nutné spojit 2 související pohledy:

1. Pohled v makroměřítku – pohled, který zahrnuje popis postupů, k nimž je současně používána formalizace, tedy jsou využívány diagramy, grafy, normy.
2. Pohled v mikroměřítku – pohled na děje v materiálu.

Z pohledu makroměřítka lze o tepelném zpracování říci, že spočívá v ohřevu na požadovanou teplotu, výdrži na této teplotě a ochlazování určitou rychlostí. Jedná se o cílevědomé využívání fázových a strukturních přeměn v tuhém stavu s cílem získat požadovaně mechanické nebo technologické vlastnosti. Požadované změny struktury a tím i vlastností oceli jsou dosaženy změnami teploty. Jedná se tedy o proces, při kterém je dané těleso v tuhém stavu podrobeno jednomu či více tepelným cyklům k dosažení požadovaných vlastností. Tepelným cyklem se rozumí změna teploty kovu v určitém rozmezí v závislosti na čase (8, s. 41).

Jak již bylo řečeno, režim tepelného zpracování je možné obecně rozdělit do tří částí:

a) ohřev na požadovanou teplotu,
b) výdrž na dané teplotě,
c) ochlazování určitou rychlostí.

Na obrázku č. 1 je pomocí jednoduchého grafu znázorněno tepelného zpracování s vyznačením jednotlivých etap (ohřev, výdrž, ochlazování).

Obrázek č. 1 - obecný režim tepelného zpracování kovů (9, online)
Ohřev materiálu a doba výdrže na dané teplotě určuje výsledné vlastnosti materiálu způsobené přeměnou krystalových mřížek, což je základem tepelného zpracování, proto se na to zaměřuje další kapitola. Rychlost ohřevu závisí na schopnosti tepelné absorbce materiálu limitované teplotní vodivostí. Např. u ocelí s dobrou tepelnou vodivostí (uhlíkové, nízkolegované) a malými průřezy probíhá ohřev plynulým vzestupem teploty. U uhlíkových a nízkolegovaných ocelí, které mají nízkou teplotní vodivost a u větších tloušťek, se před dosažením teploty ohřevu volí jedna a více prodlev k vyrovnání teplot na povrchu a ve středu materiálu, tím se vyrovnávají i napěťové gradienty, které mohou vyvolat vznik trhlin. Ohřev je ukončen poté, co dojde k prohřátí celého materiálu (na povrchu i uvnitř) (10, s. 83).

Výdrž na dané teplotě má za cíl zajistit po časové stránce průběh všech očekávaných strukturních změn, např. přeměnu krystalové mřížky, rozpouštění nebo precipitaci minoritních fázi, difúzi apod. Délka výdrže se odvíjí od druhu aplikované technologie (viz niže), druhu použitého materiálu a jeho tloušťky. Vyjadřuje se v časových hodnotách na 1 mm tloušťky pro daný typ materiálu (oceli) (10, s. 83).

Ochlazování je fází nejdůležitější. Rozhoduje totiž o konečných užitných vlastnostech materiálu. Podstatou této fáze je ochlazení z teploty, ve které byl materiál udržován na teplotu okolí. Právě rychlost jakou k tomuto ochlazení dojde, ovlivňuje samotnou strukturu materiálu (10, s. 84).

Otázku je, jestli je toto základní vysvětlení 3 fází dostatečná jak pro studijní, tak pro učební obory a zda musí žáci na těchto oborech zvládnout podrobněji vysvětlení krystalových mřížek a diagramů. Následující kapitoly pojednávají o širších souvislostech problematiky v mikroměřítku.

2.1 Krystalové mřížky

Pro pochopení staveb atomu je nutné, aby jednak měli žáci prostorovou představivost a jednak také věděli co to vlastně atom je. Existují dva základní stavy látek: amorfní a krystalický. Amorfní stav se vyznačuje náhodným uspořádáním atomů a molekul v prostoru. U krystalického stavu jsou atomy pravidelně uspořádány v krystalových mřížkách (11, s. 11).

Krystalický stav je u kovů přirozeným stavem, neboť energie pravidelně uspořádaných atomů je nižší než energie nepravidelně uspořádaných atomů, což je energeticky výhodné. Kovy tedy mají pravidelné a periodické uspořádání atomů v prostoru. Toto uspořádání může
být u různých kovů různé a je charakterizováno krystalovou buňkou, která je nejmenším úsekkem krystalické mřížky (12, s. 5).

Všechny základní buňky jsou v prostorové mřížce identické rozměrově, tvarově i podle vzájemné orientace. Rozměry těchto buněk jsou stanoveny tzv. mřížkovými parametry, které lze definovat jako nejkratší vzdálenosti atomů v daných směrech. Mřížkové parametry jsou označeny a, b, c. Uspořádání atomů ve struktuře je obvykle dáno jejich souřadnicemi vzhledem k systému souřadných os (x, y, z) a meziosními úhly (α, β, γ), které souřadnice svírají (12, s. 5).

Jednotlivé krystalové mřížky mají různý stupeň symetrie, jenž je dán poměrem velikosti mřížkových parametrů a meziosních úhlů (12, s. 6 - 9).

Železo krystalizuje v krychlové prostorově centrované mřížce a krychlové plošně centrované mřížce, proto jsou na následujících řádcích tyto dvě mřížky bližším popsány. Domnívám se, že zabývat se ostatními druhy krystalových mřížek je pro žáky středních škol strojírenských zbytečné, proto je zde nerozvádím.

2.1.1 Krychlová prostorově centrovaná mřížka

Krychlová prostorově centrovaná mřížka, také se jí říká stereocentrická (KSC) nebo bcc z anglického body centred cubic, má ve svém středu umístěn jeden atom, ostatní atomy jsou umístěny ve vrcholů elementární buňky. Atomy jsou uspořádány tak, že se vzájemně dotýkají v tělesné úhlopříčce krychle. V kubické prostorově centrované mřížce krystalizuje např. železo α, železo δ, molybden, wolfram, vanad, chrom atd. Na obrázku č. 2 je uvedena elementární buňka mřížky kubické prostorově centrované (11, s. 13).

Pro snadnější znázornění této mřížky je vhodné provést vysvětlení pomocí obrázků nebo 3D modelů ze stavebnice. Nevýhodou těchto modelů je znázornění atomů jako pravidelných kuliček, jelikož atomy nemají pravidelné tvary na což je třeba žáky upozornit, aby o nich později nemluvili jako o „kuličkách“.
2.1.2 Krychlová plošně centrovaná mřížka

Této plošně centrované mřížce se někdy také říká planicentrická (KPC), nebo fcc z anglického face centred cubic. Má ve své elementární buňce kromě 8 rohových atomů ještě dalších 6, které jsou umístěny ve středu každé stěny buňky. Na obrázku č. 3 je uvedena elementární buňka mřížky krychlové plošně centrované (11, s. 13).

V krychlové plošně centrované mřížce krystalizuje např. železo γ, hliník, cín, nikl, zlato, stříbro, olovo atd. Také zde přikládám pro představu obrázek č. 3, na němž je možné názorně vysvětlit stavbu této mřížky.

Obrázek č. 3- Elementární buňka mřížky krychlové plošně centrované.

2.2 Diagram železo-uhlík – Fe-Fe₃C

Binární soustava železo-uhlík je jednou z nejdůležitějších dvousložkových soustav v technické praxi, která do značné míry spojuje mikro a makro měřítko. Diagram podává základní informace o chování dvou velmi důležitých skupin technických materiálů – oceli a litin.
Pro pochopení dějů, které při tepelném zpracování probíhají v závislosti na teplotě a množství uhlíku v oceli, je uveden obrázek č. 4, který podrobně popisuje diagram železo-uhlík, jenž představuje základ a podstatu vztahu mezi žíhaným materiálem (ocel, litina) a samotným žíháním. Je nezbytné jej uvést, neboť každý žák mu musí rozumět, aby pochopil podstatu probíraného tepelného zpracování kovů. Domnívám se, že po žácích na učebních oborech se nevyžaduje tak podrobné vysvětlení, jako po žácích na studijních oborech, což později potvrzuje dotazník vyplněný s učiteli střední školy, který je uveden v empirické části.

Obrázek č. 4 – Metastabilní diagram Fe-Fe₃C (9, online).

Tento obrázek je zjednodušený a není v něm znázorněný peritektický bod. Železo se vyskytuje ve třech rozdílných krystalových modifikacích: železo δ (KSC) je stabilní v intervalu teplot 1536–1392 °C, železo γ (KPC) je stabilní v rozmezí teplot 1392–911 °C a železo α (KSC) je stabilní pod teplotou 911 °C (13, s. 131). V řadě diagramů jsou včlenovány fotografie přeměněné struktury, což je vhodné pro vytvoření představy o probíhaných změnách. Někdy jsou součástí diagramu nakreslené obrázky struktury, ty však považuji za hodně skreslující, proto je příliš nedoporučuji.
Co se týče uhlíku, tak ten se rozpouští v každé modifikaci železa, ovšem v malém množství a v železe vytváří tzv. intersticiální tuhý roztok, což znamená, že atomy uhlíku jsou umístěny v dutinách krystalové mřížky jednotlivých modifikací železa. V železe δ se rozpustí max. 0,1 hm. % uhlíku při teplotě 1499 °C (příslušný tuhý roztok se označuje jako δ-ferit), v železe γ je jeho maximální rozpustnost 2,14 hm.% při teplotě 1147 °C (příslušný tuhý roztok má označení γ a nazývá se austenit) a v železe α je pak maximální rozpustnost uhlíku pouze 0,02 hm.% při teplotě 717 °C (příslušný tuhý roztok je nazván ferit a označuje se α) (13, s. 133).

Uhlík, který je nad mezi rozpustnosti může být přítomen ve formě karbidu železa Fe₃C a je nazýván cementit (metastabilní soustava železo-uhlík) nebo jako čistý uhlík ve formě grafitu (stabilní soustava železo-uhlík). Cementit obsahuje 6,687 hm.% uhlíku.

Je důležité se také zmínit, že slitiny železa a uhlíku je možné rozdělit na dvě základní skupiny (oceli a litiny) v závislosti na obsahu uhlíku. Oceli je tedy možné definovat jako slitiny železa s uhlíkem a dalšími prvky, které obsahují méně než 2,14 hm. % uhlíku. Podle příslušné reakce (eutektoidní), která v diagramu železo-uhlík probíhá, je možné oceli rozdělit na podeutektoidní< 0,765 hm. % uhlíku, eutektoidní = 0,765 hm. % uhlíku a nadeutektoidní> 0,765 hm.% uhlíku. Litiny jsou naproti tomu slitiny železa s uhlíkem, které obsahují více než 2,14 hm. % uhlíku. Podle probíhající reakce (eutektická) v diagramu železo-uhlík se litiny dělí na podeutektické< 4,3 hm. % uhlíku, eutektické = 4,3 hm. % uhlíku a nadeutektické> 4,3 hm. % uhlíku (13, s. 133–137).

Vzhledem k tomu, že výše jsou zmíněny reakce, které v diagramu železo-uhlík probíhají, bylo by vhodné tyto reakce bliží vysvětlit. V metastabilním diagramu železo-uhlík probíhají 3 typy reakcí:

1) **peritektická** – probíhá při teplotě 1499 °C. Při této reakci dochází k přeměně taveniny o obsahu uhlíku 0,51 hm.% a tuhého roztoku δ (δ-ferit) o obsahu uhlíku 0,10 hm.% na tuhý roztok γ (austenit) o obsahu uhlíku 0,16 hm.%.

2) **eutektická** – probíhá při teplotě 1147 °C. Při této reakci utuhne tavenina o obsahu uhlíku 4,3 hm.% na směs tuhého roztoku γ (austenit) o obsahu uhlíku 2,14 hm.% a karbidu železa Fe₃C (cementit). Tato směs austenitu a cementitu se nazývá ledeburit.
3) **eutektoidní** – probíhá při teplotě 727 °C. Při této reakci se tuhý roztok γ (austenit) o obsahu uhlíku 0,765 hm. % přemění na směs dvou fází, tedy tuhého roztoku α (ferit) o obsahu uhlíku 0,02 hm.% a karbidu železa Fe₃C (cementit). Tato směs feritu a cementitu se nazývá perlit (13, s. 137).

2.3 Transformační diagramy

Na základě vlastní zkušenosti vím, že se jedná o problematiku poměrně obtížnou pro pochopení, proto se ji učí jen na některých oborech. Poněvadž ale nelze toto téma při zaměření této práce opomenout, jsou mu věnovány následující dvě podkapitoly.

Transformační diagramy se týkají především přechlazeného austenitu při ochlazování. Transformace se uskutečňuje v intervalu určitých teplot nebo při konstantní teplotě. Daný diagram platí vždy jen pro jednu konkrétní ocel. Kreslí se v souřadnicích teplota–čas nebo teplota–log času (11, s. 158). Diagramy obsahují údaje o počátku a konci jednotlivých přeměn austenitu, často se uvádějí také údaje o podílech produktů dané přeměny, hodnoty tvrdosti příslušející výsledné struktuře atd. (8, s. 37).

„Tyto diagramy dynamickým způsobem zachycují a racionálně vyjadřují vzájemné vztahy teploty, času a vznikajících struktur v průběhu transformačních procesů při tepelné zpracování kovů a jejích slitin. Konstrukce transformačních diagramů je i dnes při dokonalosti přístrojové techniky a rozsáhlé automatizaci a regulaci procesů tepelného zpracování velmi nákladná, avšak jejich přínos vynaložené náklady mnohonásobně převyšuje“ (14, s. 30).

Transformační diagramy se dělí na:

A. IRA diagramy, které vyjadřují izotermický rozpad přechlazeného austenitu,

B. ARA diagramy, které vyjadřují anizotermický rozpad přechlazeného austenitu.

V následujících kapitolách jsou tyto diagramy blíže popsány.
2.3.1 IRA diagram

Princip sestrojování IRA diagramu spočívá v ohřevu stejně velkých vzorků dané oceli na austenitizační teplotu a v jejich následném ochlazení na různé teploty pod teplotou A_1 (popř. A_3 nebo A_{cm}). Jednotlivé ocelové vzorky setrvávají na dané teplotě (izotermická výdrž), přičemž se zaznamenávají změny délkové roztažnosti, které jsou vyvolány probíhající fázovou transformací až do jejího ukončení. Každá fázová přeměna, tedy vznik nové fáze, je doprovázena změnou objemu, která je tím větší, čím větší je objemový podíl nově vzniklé fáze. Do transformačního diagramu teplota–čas se vyznačí začátek přeměny austenitu (bod S – start) a konec této přeměny (bod F – finish). Tímto způsobem se postupuje v celém rozsahu transformačních teplot pro danou ocel. Spojením počátečních a koncových bodů přeměn vzniknou křivky, které vytvoří transformační diagramy izotermického rozpadu austenitu (14, s. 35).

Pomocí IRA diagramů je možné tepelně zpracovávat součásti menších rozměrů na předem zvolenou strukturu, tedy je možno tepelně zpracovávat určitou ocel na předem stanovené hodnoty mechanických vlastností. Poloha a tvar křivek IRA diagramů jsou závislé na chemickém složení austenitu, na velikosti jeho zrna a na austenitizační teplotě. Důležité jsou také legury, které posouvají IRA křivky různými směry a mění tak i tvar diagramu (11, s. 159).

Na obrázku č. 5 je uveden příklad IRA diagramu pro ocel ČSN 14331 o chemickém složení: 0,28–0,35 hm. % C, 0,80–1,10 hm.% Mn, 0,90–1,20 hm.% Si, 0,80–1,10 hm.% Cr, max. 0,035 hm.% P, max. 0,035 hm.% S.

Obrázek č. 5 – IRA diagram oceli ČSN 14331 (14, s. 31).
2.3.2 ARA diagram

V technické praxi se mnohem více vyskytují případy, kdy dochází k postupnému ochlazování z teploty austenitizace. „Princip anizotermického rozpadu austenitu spočívá v jeho plynulém ochlazování různou rychlostí na teplotu okolí. Nová struktura vzniká v závislosti na teplotě okolí anizotermicky. Pro každou rychlost se zjišťuje průběh rozpadu, tj. začátky (body S) a konce (body F) jednotlivých přeměn. Spojením bodů počátků a konců přeměn opět vznikne diagram, tentokrát označovaný jako ARA“ (14, s. 32).

Je vhodné poznamenat, že ARA diagramy oceli s různým obsahem uhlíku se liší tvarem křivek, tedy ARA diagramy eutektoidních ocelí se budou lišit od ocelí podeutektoidních i nadeutektoidních.

ARA diagramů lze využít při tepelném zpracování ocelových součástí tehdy, kdy je známa rychlost ochlazování součástí určitých rozměrů z oblasti austenitu. Znalost ARA diagramů konkrétních ocelí se využívá i při svařování, neboť při ochlazování svaru probíhají transformace austenitu atermicky. Co se týče legur, pak stejně jako u IRA diagramů posouvají legury křivky diagramů k nižším teplotám a časům (11, s. 159).

Na obrázku č. 6 je uveden příklad ARA diagramu pro ocel 12050 o chemickém složení: 0,44 hm. % C, 0,66 hm.% Mn, 0,22 hm.% Si, 0,15 hm.% Cr, 0,02 hm.% V. Austenitizační teplota: 880 °C, velikost zrna: 9, výchozí stav: normalizačně žíháno. Patrně není reálné, aby žáci středních škol byli schopni tyto diagramy nakreslit a detailně popsat, ale myslím že, je vhodné jim je pro představu ukázat. Je potřeba ověřit v empirické části zda se tohle učí žáci ze všech oborů.

Obrázek č. 6 – ARA diagram oceli 12050 (14, s. 35).
3 Žíhání

3.1 Vymezení podstaty a průběhu žíhání obecně

Dosud jsme se zabývali širšími souvislostmi, které bývají považovány za potřebné k tomu, aby žák mohl být s problematikou žíhání přiměřeně (užitečným způsobem) seznámen. Nyní se zaměříme na samotné jádro práce, tedy vysvětlení samotného žíhání.

Žíhání je ohřev materiálu a setrvání na dané teplotě s následným ochlazením takovou rychlostí, která zaručí konečnou strukturu materiálu, co nejvíce blízkou rovnovážné struktuře. Žíhání může být součástí technologického postupu nebo konečnou operací. Tzv. mezioperační žíhání má významný vliv na eliminaci deformací a vznik trhlin vlivem vnitřních pnutí.

Proces žíhání je energeticky náročný, tudíž také ekonomicky náročný, je proto nutné vždy brát ohled na opodstatnění požadavku toto tepelné zpracování použít.

Žíhání se nejčastěji používá k:

- odstranění vlivu jiných operací na strukturu materiálu, např. tuhnutí, plastické deformace, jiného tepelného zpracování, svařování atd.,

- vyvolání vzniku takových struktur, které budou vhodné k obrábění nebo tváření za studena,

- vyvolání vzniku struktur, které budou vhodné pro další tepelné zpracování,

- snížení tvrdosti materiálu,

- snížení vnitřních pnutí v materiálu,

- zmenšení nehomogenity chemického složení atd. (8, s. 44).

Pokud je teplota žíhání nižší než teplota Ac₁, jedná se o žíhání bez překrystalizace. V případě, že je vyšší, tak jde o žíhání s překrystalizací (15, s. 92).

Pro lepší orientaci v daném tématu je uveden obrázek č. 7, který znázorňuje oblasti vybraných druhů žíhání v diagramu železo-uhlík. Pro úplnost tématu jsou v dalších kapitolách blíže popsány jednotlivé druhy žíhání.

Obrázek č. 7 – Schéma průběhu vybraných druhů žíhání (9, online).

Otázkou zůstává, zda se všichni žáci strojírenských škol učí i dělení a popis jednotlivých druhů žíhání. Je zcela zřejmé, že ne všichni žáci mají stejné předpoklady ke studiu studijních oborů, kde jsou kladeny větší požadavky na jejich vědomosti. Ze zkušenosti vím, že žáci učebních oborů mají naopak více výuky zaměřené na praxi. Na následujících stránkách bych rád přesněji uvedl dělení i popis jednotlivých druhů žíhání, určený především žákům studijních oborů. Po žádosti z učebních oborů patrně nebude ve škole ani toto dělení požadováno, a zda to v praxi potřebuji bych rád ověřil v empirické části.
3.2 Žíhání bez překrystalizace

„Při žíhání bez překrystalizace teplota žíhání nepřekročí teplotu \(A_{c1} \) (výjimku tvoří žíhání na měkko u nadeutektoidních ocelí). Rozsah fázových přeměn je v tomto případě nevýznamný. Poměr feritu a cementitu (mimo terciárního) se v oceli nemění. Mění se však tvar a velikost zrn, koncentrace a rozdělení mřížkových poruch a velikost vnitřního pnutí“ (14, s. 47).

3.2.1 Žíhání na měkko

Smyslem žíhání na měkko je snížení tvrdosti a zejména zlepšení obrobitelnosti oceli. „Strukturní změna v oceli probíhá s feroidizací lamelárního perlitu (resp. perlitického cementitu) a sekundárního cementitu v těsném okolí teploty \(A_{c1} \) (pozn. sferoidizace je sbalovaní lamel do globuli).“ Využívá se u eutektoidních a nadeutektoidních ocelí.

U nízkolegovaných konstrukčních ocelí se žíhá na teplotě 600-720°C po dobu 4–8 hod s následným pomalým ochlazením v peci.

U nástrojových ocelí (nadeutektoidních ocelí) je sferoidizace lamelárního perlitu komplikovanější, a proto se tyto oceli žíhají na měkko nad teplotou \(A_{c1} \). Po několikahodinové výdrži na teplotě se opět pomalu ochlazují v peci rychlostí asi 10–15°C/hod, a pak na vzduchu.

Výsledná struktura se nazývá zrnitý (lobulární, sferoidizovaný) perlit, který je měkčí a lépe obrobitelný než lamelární perlit (14, s. 51). Žákovi, který se o žíhání učí pouze teoreticky, je dobré pro přibližení mikropohledu ukázať obrázky, aby viděl, k jakým změnám struktury konkrétne dochází.

Obrázek č. 8 – Před žíháním – lamelární perlit; Po žíhání – sferoidizovaný perlit (14, s. 52).
3.2.2 Žíhání ke snížení pnutí

Hlavním cílem je zmenšení vnitřního pnutí v materiálu, které je způsobeno předchozími obráběcími operacemi, nebo tvářením za studena. Při žíhacích teplotách dochází k redukci vnitřních pnutí na minimální hodnoty (16, s. 24). „Podstata snížení vnitřního pnutí spočívá v přeměně pružné deformace na plastickou. Vnitřní napětí se sníží mikroplastickými deformacemi, protože mez kluzu oceli při teplotě žíhání je poměrně nízká a její plasticita zvýšená“ (14, s. 48).

Teplota žíhání se pohybuje v rozmezí 450 až 650 °C u konstrukčních ocelí. U litin se teplota žíhání pohybuje do teplot 550 °C. Nízkolegované svařitelné oceli se žíhají v rozmezí teplot 530 až 580 °C. Ochlazování z žíhací teploty se děje rychlostí mezi 50 až 100 °C/hod (15, s. 94-95).

3.2.3 Rekrystalizační žíhání

Postup je obdobný jako u žíhání ke snížení pnutí. Teplota žíhání je však poněkud vyšší (leží nad rekrystalizační teplotou – pro ocel v rozmezí 550 až 700 °C), výdrž na dané teplotě nepřesahuje 5 hodin. Při rekrystalizačním žíhání dojde k odstranění zpevnění a částečně i textury, obnoví se schopnost plastické deformace, která je potřebná pro další zpracování. Tohoto žíhání se používá především jako mezioperační (17, s. 294). Na obrázku č. 9 jsou znázorněny jednotlivé etapy rekrystalizačního žíhání a také proces zpevňování kovového materiálu při tomto žíhání (14, s. 50).

Obrázek č. 9 – Zjednodušené znázornění etap rekrystalizačního žíhání a proces zpevňování materiálu.
Pro názornou ukázku změny textury žíhaného materiálu je na obrázku č. 10 uvedena fotografie tvářené oceli 12 020 za studena s patrnou řádkovitostí a pro srovnání stejná ocel po rekrytizačním žíhání při teplotě 550 °C.

Obrázek č. 10 – Ocel 12 020 před a po rekrytizačním žíhání (18, online).

3.2.4 Protivločkové žíhání

Hlavním účelem tohoto žíhání je snížit obsah vodíku, který při vylučování způsobuje napětí a tím vznikají v oceli trhliny nebo-li vločky. Aby se tomuto předešlo tak se tento proces provádí ihned po odlití nebo tváření a to především u chromových a chromnickových ocelí, které jsou náchylné ke vzniku vloček (18, s. 9 - 10).

3.3 Žíhání s překrystalizací

„Při žíhání s překrystalizací dochází k úplné nebo téměř úplné přeměně výchozí feriticko-cementitické struktury na austenit. Podeutektoidní oceli se žíhají většinou nad teplotou A\textsubscript{c3}, nadeutektoidní nad A\textsubscript{cm} nebo mezi teplotami A\textsubscript{c1} a A\textsubscript{cm}. Získá se větší rovnoměrnost struktury a odstraní se chemická nehomogenita oceli“ (14, s. 48). Stejně jako předchozí kapitola zahrnuje i část práce dělení žíhání. Domnívám se, že žáci učebních oborů by měli umět při nejmenším rozdělení právě na žíhání s překrystalizací a bez překrystalizace a vyjmenovat, do které skupiny který druh žíhání patří.

3.3.1 Normalizační žíhání

Jedná se o základní druh překrystalizačního žíhání, které se skládá z ohřevu v rozmezí 30 až 50 °C nad teplotou A\textsubscript{c3} a v ochlazování na vzduchu, případně v olejové lázni (velké předměty). Toto žíhání se provádí k odstranění nestejnoměrné struktury, která vzniká následkem předchozího zpracování. Je vhodné zejména pro podeutektoidní a eutektoidní oceli
a nízkouhlikové oceli. Používá se pro výkovky, svařované předměty apod. Využívá se také jako přípravná operace před kalením složitějších součástí i před tvářením různých polotovarů (plechy, tyčový materiál atd.) za studena (19, s. 244).

Pro názornou ukázku změny velikosti zrna při normalizačním žíhání je uveden obrázek č. 11, kde je možné vidět strukturu oceli 12 040 před normalizačním žíháním a stejnou ocel po daném žíhání na teplotě 850 °C. Takto jemnozrnný materiál vykazuje vyšší mez kluzu a pevnosti a zároveň dobré plastické vlastnosti.

Obrázek č. 11 – Vliv normalizačního žíhání na velikost zrna (18, online).

3.3.2 Homogenizační žíhání (difúzní)

Jedná se o žíhání při vysokých teplotách, kdy je dostatečná rychlost difúze uhlíku i přísadových prvků. Teploty se pohybují vysoko nad Ac3 (1000 až 1200 °C), u vysokolegovaných ocelí mohou být teploty v těsné blízkosti solidu. Výdrž na teplotě musí být dostatečně dlouhá, většinou 4 hodiny, u velkých odlitků i několik desítek hodin. Ochlazování se nejčastěji děje pomalu v peci. Nevýhodou tohoto tepelného zpracování je silné zhrubnutí austenitického zrna při vysokých teplotách, proto po homogenizačním žíhání musí vždy následovat normalizační žíhání, které zrno zjemní (vyjma speciálních ocelí) (17, s. 296–297).

3.3.3 Izotermické žíhání

Izotermické žíhání se používá u menších výrobků za použití 2 pecí, z čehož jedna je určena pro ohřev a druhá pro výdrž na teplotě rozpadu austenitu. Speciálním případem tohoto žíhání je tzv. patentování. Cílem patentování je získání struktury nejjemnějšího lamelárního perlitu, díky čemuž má materiál výhodné mechanické vlastnosti, tj. vysokou pevnost i tažnost, které jsou důležité pro tváření za studena (14, s. 53–54).

Obrázek č. 12 – Schéma izotermického žíhání (14, online)

3.3.4 Žíhání s částečnou austenitizací

Cílem tohoto žíhání je zvýšit houževnatost materiálu. Provádí se ohřev v rozmezí teplot A_{C1} a A_{C3}, výdrž na dané teplotě, aby se dosáhlo heterogenní směsi austenitu a feritu. Následuje ochlazování v peci nebo na vzduchu (9, online).

3.3.5 Žíhání ke stabilizaci rozměrů

Provádí se především u měřidel a kalibrů. Spočívá v ohřevu materiálu na teplotu obvykle kolem 120 °C a výdrži na této teplotě po dobu několika týdnů. Následně se materiál ochlazuje (9, online).

3.3.6 Žíhání ke zvětšení zrna

Cílem tohoto tepelného zpracování je zvětšit austenitické zrno. Používá se u ocelí s nízkým obsahem uhlíku nebo u plechů pro elektrotechniku (9, online). Oceli se žíhají nejčastěji při teplotě 950 až 1100 °C po dobu několika hodin (17, s. 297).

Aby žáci znali přesně konkrétní teploty žíhání pro různé druhy materiálů a průběhy, museli by patrně studovat rozsáhle tuto problematiku. Dělení, které je zde uvedeno, je pouze základní a jeho cílem je jen nastínit průběhy popísovaných druhů žíhání. V empirické části zjistíme, co z uvedených způsobů žíhání je probíráno, i to zda výběr odpovídá potřebám místní praxe.
4 Inovace v žíhání

Převážná část této kapitoly je znázorněna pomocí fotografií i s popisky na nichž jsou popsány rozdíly mezi technikou, která se používala k žíhání dříve a technikou, která se využívá v dnešní době, kdy se i při žíhání využívají informační technologie. Cílem kapitoly je doplnit obrazovou část, která v učebnicích využívaných na školách patrně schází. S pozice studenta vím, že mne vždy nejvíce zajímal, jak daná věc o které se učím vypadá a právě při výuce o žíhání, jsem se nesetkal nikdy s žádnou ukázkou fotografii nebo obrázků žíhání v praxi. Znázornění pomocí téhoto fotek jsem zvolil také z důvodu, že převážná většina inovací je hmotná a lze je proto dobře znázornit.

Fotografie a informace byly pořízeny ve firmě SIGMA GROUP a.s, kterou jsem osobně navštívil. Mají zde 3 odporové žíhací pice:

Fotografie č. 1 - Malá žíhací pec o délce 500mm, šířce 5000mm a výšce 600mm – příkon 16kWh – EKP 015+

Fotografie č. 2 - Střední žíhací pec o délce 2500mm, šířce 1400mm a výšce 1150mm – příkon 130 kWh - CAN 14.25.12, výrobce Realistic, a.s. Karlovy Vary
Tyto pece byly původně již v 80-tých letech minulého století zkonstruovány s manuálním řízením průběhu žíhání, ale v roce 2010 byli 2 z 3 z nich inovovány a předělány na digitálně řízené.

Fotografie č. 4, 5 – Analogové ovládání žíhací pece a digitální ovládání žíhací pece

U malé pece toto řízení předěláno nebylo, protože je méně využívána a investice do ní by se nevrátila. Celkový upgrade proběhl v oblasti záznamu, řízení a dálkového monitoringu. Byl proveden z důvodu zvyšujících se požadavků legislativy a zákazníků a z důvodů úspor.

Řízení pecí je prováděno pomocí řídících regulátorů JUMO Imago 500, které jsou připojeny k PC komunikační linkou EIA 485. Tyto regulátory řídí spínání odporových topných spirál při ohřevu a otvírání klapek při ochlazování pomocí servomotorů BELIMO. Dříve bylo toto ovládání prováděno manuálně, proto bylo nutné setrvání obsluhy na pracovišti po celou dobu žíhání.
Fotografie č. 6 – Servomotor, který zajišťuje otevírání klapky při chladnutí

Pomoci softwaru Promotic je na počítači umožňována vizualizace celého procesu, vč. evidence a archivace parametrů jednotlivých vsázků. Na základě těchto podkladů jsou vystavovány záznamy o tepelné zpracování jako výstupy z procesu.

Fotografie č. 7, 8 – Digitální grafické znázornění průběhu žihání, Záznam na svitkový papír

Monitoring procesu žihání je dnes již prováděn pomocí aplikace GSM modulu. V případě poruchy jsou zasílána prostřednictvím SMS poruchová hlášení na mobilní telefon službu konajícího pracovníka mimo pracoviště žihání. Ten je schopen pomocí notebooku a vzdáleného přístupu zajistit nápravu v žihacím procesu ovládáním pecí pomocí VPN klienta a vzdálené plochy. V případě neodstranitelné poruchy je nutný výjezd pracovníka na pracoviště žihání (20, online).

Z výše uvedených hodnot příkonu u těchto pecí vyplývá, že spotřeba není zanedbatelná, proto se musí před započetím žihání čekat, než bude jejich kapacita plně využita. Zpravidla se jedná o sloučení i více druhů materiálů a zakázek, které lze žíhat současně.
Vše se zaznamenává v knize žíhání, která se dříve psala ručně, ale dnes je již vedena v elektronické podobě v PC. V elektronické knize je uvedeno datum a čas, zakázka, číslo výkresu, název výrobku, počet kusů, evidenční číslo, druh tepelného zpracování a jeho postup, předpis, podle kterého se žíhání provedlo, kdo žíhání prováděl a kdo ho kontroloval. Tento systém uchovávání dat usnadňuje nejen jejich zaznamenávání a i vyhledání dat.

Právě tyto inovace kladou větší požadavky nejen na schopnosti žáků pracovat na počítači, ale také na nutnost umět pracovat s grafy a tabulkami. V rozhovoru s technologem zjistím, jestli s tím u nich žáci na praxi nemají problém.
Za účelem zodpovězení otázek, ke kterým jsem dospěl během zpracování teoretické části, jsem provedl šetření, při němž jsem aplikoval teorii spojenou s metodami – dotazník a interview. Šetření jsem provedl ve třech částech, které jsou popsány v následujících podkapitolách. Jednalo se o případovou studii, během které podle Hendla důkladným zkoumáním jednoho případu porozumíme jiným podobným případům (21, s. 108).

5.1 Písemné dotazování na učebnice u učitelů Sigmundovy SŠs, Lutín

Pro oslovení učitelů středních škol jsem zvolil metodu písemného dotazování, poněvadž byla v daných podmínkách nejvhodnější. Je to způsob písemného kladení otázek a získávání písemných odpovědí, který vychází z pravidel dotazníku. Přestože se metoda jeví, jako nejsnadnější je nutné dodržovat jisté zásady při tvorbě a stanovit si cíl za jakým je dotazník vytvářen. (22, s. 98).

Abych ověřil funkce učebnice a způsob jejího používání, požádal jsem o vyplnění dotazníku učitele Sigmundovy střední školy strojírenské, Lutín. Tato škola je součástí výchovně vzdělávací soustavy a je zařazena do sítě škol a školských zařízení ČR. Je specifická svojí spolupráci s řadou desítek firem sídlícími nejen v Lutíně, ale i v celém Olomouckém kraji. Spolupracuje například s firmami SIGMA GROUP a.s., John Crane Sigma, a.s., Honeywell Aerospace Olomouc, s.r.o., Edwards, s.r.o. a s řadou dalších. Díky tomu mají žáci možnost zjistit jak stroje a zařízení, o kterých se učí teoreticky, vypadají v praxi a vyzkoušet si přímo i práci s nimi. Z toho důvodu jsem se rozhodl pro spolupráci s právě touto střední odbornou školou.

Škola připravuje žáky pro výkon dělnických povolání a odborných činností v oblasti strojírenství v odpovídajících učebních oborech, které jsou ukončeny závěrečnou zkouškou a ve studijních oborech, kde je studium ukončeno maturitní zkouškou. Studium ve studijních oborech je tříleté a ve studijních oborech čtyřleté, tudíž budou patrně mezi absolventy odlišnosti, v tom do jaké hloubky se žáci tepelné zpracování kovů učí. Zda mezi nimi nějaké rozdíly jsou, ověřím přímo u učitelů.
Zaměření oborů

<table>
<thead>
<tr>
<th>Studijní obory</th>
<th>Učební obory</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mechanik seřizovač CNC</td>
<td>Karosář</td>
</tr>
<tr>
<td></td>
<td>Nástrojař</td>
</tr>
<tr>
<td>Provozní technika</td>
<td>Obráběč kovů CNC</td>
</tr>
<tr>
<td></td>
<td>Strojní mechanik</td>
</tr>
</tbody>
</table>

Mechanik seřizovač CNC

Absolvent tohoto oboru umí v praxi samostatně pracovat s technickou dokumentací, seřizovat, obsluhovat, kontrolovat a udržovat běžné i programově řízené obráběcí stroje. Mimo to se učí studenti měřit měřidly a sestavovat programy pro CNC stroje.

Provozní technika

Cílem je naučit absolventy: „Samostatně pracovat s technickou dokumentací, navrhovat a volit pracovní postupy při výrobě, montáži, údržbě a opravách, prakticky využívat výpočetní techniku v oblasti technologické, i v oblasti ekonomické.“

Karosář

Žáci se učí při karosářských pracích využívat rovnací stolici s odměřováním, provádět údržbu a drobné opravy motorových vozidel a používat diagnostická zařízení. Rovněž žáci absolvují kurz svařování a řezání plamenem.

Nástrojař

Během studia se žáci učí vyrábět a opravovat jednoduché řezné a tvářecí nástroje, speciální měřidla. Učební obor je zakončen maturitní zkouškou.

Obráběč kovů CNC

Stejně jako u mechanika seřizovače CNC je hlavním cílem naučit žáky pracovat s CNC stroji, číst technickou dokumentaci a používat měřidla a měřicí techniku.
Strojní mechanik

Musí znát základy strojního obrábění a ručního opravování strojních součástí, montáž, demontáž, opravy a zkoušení strojů, zhotovení a sestavování nástrojů včetně povrchové úpravy, orientovat se a pracovat podle technické dokumentace (23, online).

Z tohoto dělení vyplývá, že každý absolvent se patrně učí o žíhání trochu jinak, protože jeho požadované výstupní schopnosti a vědomosti se liší.

Cílem písemného dotazování je se informovat u učitelů Sigmundovy SŠs, Lutín, jak je konkrétně toto téma probíráno na jejich škole, z jakých materiálů čerpají a vzdělávají se učitelé a žáci.

5.2 Výsledky průzkumu na Sigmundově SŠs, Lutín

O vyplnění dotazníku jsem požádal v březnu roku 2014 dva učitele, kteří na škole tepelné zpracování kovů a žíhání, již několik let učí a jejich odpovědi bych rád uvedl v této práci. V některých otázkách se jejich názory liší, proto uvádím názor každého z nich zvlášť, v bodech kde se shodují, uvádím společnou odpověď, aby se neopakovala.

1. Z jakých učebnic se učí žáci ve Vaší škole tepelné zpracování kovů - žíhání? (Jaký je autor, název učebnice, rok vydání?)

P a V:

Technologie zpracování kovů I - Frischherz, Skop, Knourek-2007- učební obory“

2. Připravují se žáci doma na vyučování ze sešitů nebo přímo z učebnic?

P: „Zatímco žáci na studijních oborech se učí z učebnice i ze sešitů, tak na učebních oborech pouze ze sešit. “

V: „Snažím se věst žáky k samostatnému vyhledávání informací pomocí internetu, k tomu využívám portál www.dum.rvp.cz obsahující digitální učební materiály a rovněž děláme zápisy do sešitu. “

32
3. Texty podle kterých žáky dané téma učíte, si tvoříte sami, nebo jen upravujete texty od jiných autorů? (Jaké materiály konkrétně využíváte?)

P: „Materiály si tvořím sama, jako zdroj využívám kromě učebnic i vysokoškolská skripta VUT v Brně - Fakulty strojní od Dorazila - Nauka o materiálu 1. Z nich mám zpracované zápisy, které poté žákům diktuji a pouštím v prezentaci na dataprojektoru.“

V: „V poslední době začínáme jako škola využívat čím dál více digitální učební materiály ze serveru www.dum.rvp.cz, kam také jako škola přispíváme a samozřejmě již zmíněné učebnice. Z nich zpracované zápisy poskytuji žákům v elektronické podobě.“

4. Jak využíváte při výuce výpočetní techniku?

P a V: „Ve všech hodinách využíváme dataprojektory nebo interaktivní tabule, které má škola nyní již ve všech učebnách.“

5. Považujete texty v učebnicích dostupných pro žáky za dostatečně aktuální a úplné, nebo v nich pozorujete nějaké informace, které se liší od průmyslové praxe? (Pokud jsou v nich nějaké odlišnosti, tak jaké?)

P: „Materiály jsou dostatečně pro základní pochopení principu, což se žáci na naší škole učí. Myslím si, však že pro průmyslové střední školy nejsou materiály dostatečně úplné. Dříve se k určení většiny teplot tepelného zpracování používal především Fe₃C diagram, dnes je to z ekonomického důvodu trochu jiné. Samozřejmě se stále vychází z principu Fe₃C diagramu, ale dnes většinou má každý materiál již určenou konkrétní dobu a teplotu, při které se žíhá a trendem je co nejvíce toto dobu zkrátit. Domnívám se, že to však není vždy dobré pro výslednou kvalitu materiálu.“

V: „Jak které, některé starší materiály jsou v praxi nepatrně odlišné.“

6. Odlišují se studijní materiály pro studenty podle konkrétního zaměření jednotlivých oborů? (např. pro karosáře, nástrojaře, mechaniky seřizovače… Pokud ano, tak v čem se liší?)

P: „Ne, není důvod.“

V: „Ne, dokonce jsou někdy třídy při výuce spojené.“
7. Liší se množství informací předávaných v této oblasti žákům na učebních oborech a na studijních oborech? V následující tabulce zatrhněte, které témata se na zminěných oborech vyučují.

P a V: „Studijní i učební obory se učí všechna témata uvedená v tabulce, kromě IRA a ARA diagramů, které se učí pouze studijní obory. Největším rozdílem mezi studijními a učebními obory je v tom, že studenti ze studijních oborů musí umět vysvětlit tato témata podrobněji.“

8. Učí se žáci na vaší škole pracovat s materiálovými listy (normami)?

P a V: „Ne ve výuce je nevyužíváme.“

Z průzkumu u učitelů vyplývá, že se snaží jak prostřednictvím internetu, tak pomocí dataprojektorů využívat veškeré dnes dostupné pokrokové metody. Přestože pomocí internetu i vysokoškolských skript získávají aktuální informace, nejsou patrně v kontaktu s technologií z odborné praxe. V druhé části průzkumu zjistíme, jaký je názor technologa.

5.3 Interview s technologem žíhání

Jelikož je mimo jiné záměrem této bakalářské práce porovnat soudobé vzdělávací texty o tepelném zpracování kovů – žíhání s realitou průmyslové praxe rozhodl jsem se za tímto účelem oslovit technologa společnosti SIGMA GROUP a.s. Tuto společnost jsem zvolil, protože sem chodí žáci ze Sigmundovy SŠs, Lutín na praxi a využívají zde mimo jiné odporové žíhací pece. Společnost SIGMA GROUP a.s. vyrábí střední, těžká a unikátní čerpadla a čerpačí soustroje pro průmyslové využití. Čerpadla zde vyráběná jsou využívána v oblastech průmyslu, energetiky, zemědělství a vodního hospodářství (20, online).

Od technologa bych rád během rozhovoru o textech o tepelném zpracování kovů zjistil, jestli učebnice, z nichž se žáci učí, jsou podle nich dostatečně aktuální, nebo zda dochází k rozporům ve chvíli, kdy žáci přijdou ze školy do praxe.

Slovo interview je z angličtiny, inter znamená mezi a view znamená názor nebo pohled. Již z názvu je patrno, že se jedná o interpersonální kontakt, nejčastěji o kontakt tváři v tvář. Interview je možné považovat za výzkumnou metodu, která umožňuje zachytit nejen fakta, ale i hlouběji proniknout do postojů a motivů daného respondenta. Obsahem interview jsou otázky a odpovědi. V interview se využívá otevřených, uzavřených i polouzavřených otázek. Interview umožňuje volnost a pružnost oproti dotazníku, proto se v něm upřednostňují otevřené otázky před těmi uzavřenými (22, s. 136). „Otevřená otázka je zcela svobodná,
umožňuje výpověď respondenta jen tím, že stanoví problém, ke kterému se má vyjádřit, ale ponechává mu volnost, co se týče obsahu i formy, odpovědi se kategorizují dodatečně“ (22, s. 47).

V průběhu interview může také tazatel otázku přeformulovat, doplnit další, požádat o doplňující vysvětlení apod., což je velmi výhodné, nebo lze takto interview usměrňovat.

5.4 Písemný záznam rozhovoru s technologem

Součástí kapitoly je samotný interview s technologem, který má ve výše uvedené firmě na starost žíhání. Interview shrnuje rozdíly v žíhání v technickém provozu a v učebnících s důrazem na názor dotyčného na používané vzdělávací texty, především jejich nedostatky, zastaralost, neúplnost apod.

Před tím než jsem provedl rozhovor s technologem, který pracuje u žíhací pece, jsem mu zapůjčil učebnice s texty o tepelném zpracování kovů, které na Sigmundově škole užívají, a požádal jsem ho, aby se podíval na to, jaké informace obsahují.

J: Považujete materiály v učebnicích za dostatečně aktuální a úplné?

T: „Ne je v ní několik nesrovnalostí. Materiály v těchto učebnicích jsou dle mého názoru velice stručné a nepopisují ani základní dělení žíhání na žíhání s překrystalizací a bez překrystalizace. Teploty žíhání, které zde uvádí autoři, jsou také ve skutečnosti jiné“

J: Jak se liší teploty žíhání?

T: „V učebnicích uvádí autoři, že teplota žíhání na měkko je 600-790 °C, což není úplně přesné, u některého materiálu jako je například šedá litina s označením 42 2420 nebo 42 2415 je teplota při žíhání na měkko až 600-880°C. K žíhání ke snížení vnitřního pnutí v učebnících uvádějí, že teplota je 500-650°C, jsou však materiály u nichž je dostačující teplota žíhání 450°C. “
J: Ještě něco, co v textech není podle Vás správné?

T: „V zásadě text špatně není, ale ještě jedna informace v něm není příliš přesná. V obou učebnicích je totiž uvedeno, že při žíhání následuje po udržení na teplotě zpravidla pomalé ochlazení. Například u normalizačního žíhání je postup jiný. Materiál se totiž ochlazuje rychle vytažením z žíhací pece. Nic jiného mne k tomu nenapadá.“

J: Mají žáci, kteří k Vám chodí na praxi dostatečné znalosti o žíhání?

T: „Podle mě ano, teoretické znalosti mají dostatečné. Většina z nich však dokáže mluvit o žíhání pouze teoreticky, ale neví, jak to vlastně v praxi vypadá.“

J: Myslíte, že by pomohly obrázky v učebnicích?

T: „Určitě. Vidíte, to jsem si také říkal, že by mělo v těchto učebnicích být“

J: Na základě čeho určujete teplotu žíhání materiálu?

T: „Každý materiál má tabulkově danou teplotu žíhání a těchto hodnot se držíme. Samozřejmě při určení teploty a doba žíhání, také zohledňujeme druh žíhání a velikost materiálu, tak aby bylo žíhání co nejekonomičtější“

J: Využíváte k určení žíhacích teplot i Fe₃C diagram?

T: „Dříve v tabulkách nebyli všechny druhy materiálu, proto jsme jich museli určit sami, dnes se, ale dá najít každý materiál najít v materiálově normě pomocí programu, proto není nutné hledání těchto teplot v Fe₃C diagramu. Využíváme program pod názvem Lexikon kovů se zahraničními ekvivalenty. Tento software obsahuje přehled ocelí, litin a neželeznných kovů a informace o tepelném zpracování. Umožňuje tisk materiálových listů – norem a z nich se určuje pak samotná teplota žíhání.“
Z rozhovoru s technologem vyplývá několik zajímavých informací. Jak on sám uvádí, v učebnicích jsou některé informace nepřesné a neúplné. Přesto hodnotí znalosti žáků za dostatečné. Zásadním zjištění je, že v praxi nevyužívají vůbec Fe3C diagram a pracují naopak s materiálovými normami. Kvůli tomu jsem v následující části oslovil další střední školu strojírenskou, abych zjistil, jestli se to zde učí žáci jinak.

5.5 Výsledky průzkumu na SOŠ průmyslové a SOU strojírenském, Prostějov

Pro porovnání Sigmundovy SŠs, Lutín jsem oslovil v březnu roku 2014 SOŠ průmyslovou a SOU strojírenské, Prostějov. Požádal jsem zde o vyplnění stejného otázníku učitele odborných předmětů a jeho odpovědi jsou zde uvedeny.

1. Z jakých učebnic se učí žáci ve Vaší škole tepelné zpracování kovů - žihání? (Jaký je autor, název učebnice, rok vydání?)

I: „Strojírenský technologie 1, M.Hluchý a kolektiv, 1978,- studijní obory
Technologie zpracování kovů 1 - Frischherz, Skop, Knourek-2007- učební obory“

2. Připravují se žáci doma na vyučování ze sešitů nebo přímo z učebnic?

I: „Žáci se učí doma ze zápisů, které mají v sešitech“

3. Texty podle kterých žáky dané téma učíte, si tvoříte sami, nebo jen upravujete texty od jiných autorů? (Jaké materiály konkrétně využíváte?)
I: „Ano tvořím si je sám, jako zdroj využívám učebnice pro střední školy a internet. Z nich mám zpracované zápisy, které poté žákům diktuji nebo pouštím v prezentaci na dataprojektoru.“

4. Jak využíváte při výuce výpočetní techniku?
I: „V některých hodinách využíváme dataprojektory, ale bohužel jich nemáme kvůli financím ve všech učebnách.“

5. Považujete texty v učebnicích dostupných pro žáky za dostatečně aktuální a úplné, nebo v nich pozorujete nějaké informace, které se liší od průmyslové praxe? (Pokud jsou v nich nějaké odlišnosti, tak jaké?)
I: „Učebnice jsou zastaralé. Základy sice souhlasí a jsou pořád stejně, ale zařízení na provádění tepelného zpracování jsou dnes již daleko modernější než před 20-30 lety, kdy některé učebnice byli vydány, proto jejich popis je nepřesný.

6. Odlučují se studijní materiály pro studenty podle konkrétního zaměření jednotlivých oborů? (např. pro karosáře, nástrojaře, mechaniky seřizovače... Pokud ano, tak v čem se liší?)
I: „Ne, dokonce jsou někdy třídy při výuce spojené.

7. Liší se množství informací předávaných v této oblasti žákům na učebních oborech a na studijních oborech? V následující tabulce zatrhňete, které témata se na zmíněných oborech vyučují.
I: „Studijní i učební obory se učí všechno z tabulky, kromě IRA a ARA a Fe₃C diagramů, které se uční neučí, poněvadž je v praxi nepotřebuji. Studijní obory se ale učí tyto témata podrobněji a je po nich požadováno přibližně o 50 % více vědomostí, než u žáků učebních oborů.“

8. Učí se žáci na vaší škole pracovat s materiálovými listy (normami)?
I: „Ne, ve výuce je nevyužíváme.“

Odpovědi dokazují, že přístup obou těchto škol je téměř totožný. Na obou školách pracují s téměř totožnými učebnicemi a učí žáky stejná témata. Jejich způsob práce s učebnicí se v nicem zásadně neliší.
6 Výsledky průzkumu – shrnutí

Během průzkumu jsem naplnil prioritní cíl práce. Díky odpověďím odborníků je možné zhodnotit aktuálnost a úplnost textů v učebnicích a zároveň získat odpověď na otázku, zda žákům předávají informace potřebné v praxi. Z průzkumu v práci vyplývá několik podstatných informací, které zde uvádím v několika bodech.

Aktuálnost učebních textů

Přestože, část učitelů považuje učebnice za aktuální, nelze to o všech informacích v nich jednoznačně říct. Jak vyplývá z rozhovoru s technologem, tak teploty, při kterých se žíhá se v praxi, oproti teplotám uváděným v učebnicích liší.

Úplnost učebních textů

Učební texty v učebnicích pro střední školy strojírenské nejsou dostatečně obsáhlé. Obsahují nedostatek informací týkající se žíhání. Na neúplnosti učebnic se shodují obě dotázané strany a to jak technolog, tak i učitelé. Nedostatky v úplnosti učebních textů se neprojevují na znalostech žáků. Jejich znalosti jsou díky učitelům na dobré úrovni. Učitelé uvádějí, že čerpají materiály z internetu a z vysokoškolských skript a zpracované materiály pak žákům, buď diktují do sešitů, nebo předávají v elektronické podobě. Žáci se připravují na výuku vždy ze sešitů, proto je zde možnost jim scházející informace doplnit.

Odlíšnosti v textech pro studijní a učební obory

Přestože, se učitelé shodují v tom, že po žácích na učebních oborech není požadováno natolik podrobné vysvětlení jednotlivých kapitol o tepelném zpracování, jako po žácích na studijních oborech, tak v průmyslové praxi se nezmiňují, že by u žáků z učebních oborů byl problém s nedostatkem znalostí. Domníval jsem se, že se bude lišit i zaměření informací na jednotlivé oblasti podle zaměření oborů, ale z dotazníku vyplývá, že tomu tak na střední škole strojírenské v Lutíně ani v Prostějově není. Odlíšností u těchto škol je, že žáci učebních oborů v Prostějově se na rozdíl od žáků v Lutíně neučí Fe3C diagramy. Obě školy se shodují na tom, že je vhodné využívat jiné učebnice pro studijní a učební obory.

Problematika určování teploty žíhání

Určení správné teploty žíhání je jednou z nejdůležitějších částí celého procesu. Jeden z učitelů v dotazníku zmiňuje, že právě jejich určování se dnes liší oproti tomu, jak tomu bylo
dříve. To poté potvrzuje během rozhovoru i technolog žíhání. Z jejich odpovědí vyplývá, že se dnes s narůstající cenou elektrické energie více sleduje také nákladnost celého žíhacího procesu, a proto se přesněji určují žíhací teploty přímo z materiálové normy každého materiálu. V učebnici Strojírenská technologie I uvádějí, že teplota žíhání se určuje druhem materiálu a způsobem žíhání. Mělo by zde být ale zmíněno také to, že se zohledňuje i velikost materiálu, což v učebnicích nesděluje.

Zásadním zjištěním v průmyslové praxi je fakt, že přestože se žáci učí Fe₃C diagram, aby pochopili princip tepelného zpracování, v praxi ho vůbec nevyužijí. K určení žíhacích teplot se v praxi využívají materiálové normy, ve kterých stačí teplotu vyhledat. S těmito normami se však žáci na středních školách vůbec nesetkávají a proto s nimi bohužel neumějí v praxi pracovat.

Obrazová část učebnic

V učebnicích využívaných na strojírenské škole, schází dle mého názoru názorné obrázky, aby si žáci mohli představit co je to žíhací pec a jak v ní žíhání probíhá. Studenti pak při vstupu na praxi do firmy znají žíhání pouze teoreticky, ale neumí si jej příliš představit, což potvrzuje v mém rozhovoru i mnou oslovený technolog. Na internetových stránkách na serveru youtube.com je sice video žíhací pece, ale je nutné zadat název videa anglicky pod termínem Annealing Furnace, toto video by mohli žáci rovněž pro představu využít. Odkaz na video přikládám v seznamu použité literatury pod položkou 24 (24, online).

Součástí práce je několik fotografií odporové žíhací pece a jejího ovládání, které by mohli zájemci ve výuce případně použít.

Srovnání střední školy strojírenské v Prostějově a v Lutíně

Během průzkumu jsem zjistil, že odpovědi učitelů těchto dvou středních škol jsou téměř totožné. Způsob výuky a názor na kvalitu učebnic je velice podobný. Nepatrnou odlišností je pouze to, že na prostějovské škole se uči ze starších učebnic.

Nedostatky při výuce shledané technologem

Hlavním nedostatkem je, že se žáci učí širší souvislosti o žíhání v podobě diagramů, které jsou sice nutné pro pochopení, ale nejsou v praxi využívány. Pro uplatnění žáka v praxi je nutné mít nejen teoreticky znalosti neboť je zřejmé, že pokud žáci vědí pouze co to znamená žíhání, neznamená to, že to umějí dělat. Žáci se bohužel neučí pracovat
s materiálovými normami, což právě v praxi potřebují. To potvrzuje již dlouhodobě známý problém nedostatečného spojení středních odborných škol s praxí. Za tímto účelem Ministerstvo školství, mládeže a tělovýchovy vytváří podporované programy ESF, jejichž cílem je prostřednictvím spolupráce s aktéry na trhu práce zvýšit kvalitu počátečního vzdělávání (25, online).
Závěr

Tato práce podává čtenářům informace o didaktických problémech při výuce tepelného zpracování kovů. Zaměřuje se na popis toho, jakým způsobem jsou učebnice používány a jaké jsou jejich nedostatky.

I když se v učebnicích nacházejí některé drobné odchylky, které jsou uvedeny ve výsledcích výzkumu, kromě nepřesných informací o teplotách žíhání jsou informace aktuální. Hlavním nedostatkem, co se týče kvality materiálů, je že v učebnicích schází obrazová část, která by žákům mohla graficky přiblížit průběh žíhání. Aby si žáci mohli zíhání a žíhací pec představit, mohou využít video na internetových stránkách, na něž práce odkazuje a nebo využít fotografie vložené do této práce. Poslední kapitola teoretické části popisuje inovace v oblasti žíhání a je doplněna velkým množstvím zajímavých fotografíí.

Z pohledu úplnosti textů jsou učebnice nedostatečné, na čemž se shodují všichni odborníci z oboru, jejichž názory ve výzkumu také uvádíme. Učitelé jsou proto nuceni čerpat z vysokoškolských skript a z internetu, a žákům poté buď diktovat zápisy do sešitů, nebo poskytovat informace v elektronické podobě. Jak vyplývá z dotazníku, žáci se neučí jen z učebnic, ale rovněž i ze sešitů a hlavně díky tomu pak mají v tomto oboru v průmyslové praxi potřebné množství aktuálních znalostí. Bohužel učitelům schází zpětná vazba od technologů a právě kvůli tomu se žáci učí o dignamech. Na školách, které jsem s průzkumem oslovil, se neučí pracovat s materiálovými normami, které v praxi nahrazují právě Fe₃C diagram, který se využíval k určování teploty žíhání dřive. Diagram je nezbytný pro systematické seznámení žáka s problematikou, ale v praxi není dostávající pouze znalost diagramu.

Přestože se na Sigmundově SŠs, Lutín liší množství informací, které musí o tepelném zpracování umět žáci na učebních oborech a na studijních oborech, v praxi u žáků zaměstnavatelé neshledávají žádné nedostatky.

Velmi podstatnou věcí, která z práce vyplývá, je mimo jiné fakt, že určování žíhacích teplot a doby žíhání, je dnes daleko přesnější, než bylo dříve a cílem je provést celý proces žíhání co nejekonomičtější formou. Za tímto účelem mají materiály tabulkově stanovené teploty pro konkrétní způsob žíhání vyhledávány v materiálových normách a zohledňuje se také velikost materiálu. Čím je materiál menší tím je kratší doba žíhání a doba chladnutí a díky tomu je výsledná cena za tepelné zpracování materiálu nižší.
Seznam pramenů a literatury

2. Vzdělávání v ČR. Národní ústav pro vzdělávání, [online], [cit. 8. 3. 2014]. Dostupné z: http://www.nuv.cz/vzdelavani-v-cr
Učební texty využívané učiteli na středních školách

A. DORAZIL, E. A kolektiv: Nauka o materiálu 1. Skripta VUT FS v Brně
D. Ministerstvo školství, mládeže a tělovýchovy. Digitální učební materiály RVP, [online], [cit. 13. 3. 2014], dostupné z internetu: http://www.msmt.cz/
Učebnice využívané žáky

Přílohy

Dotazník

Autor dotazníku: Milan Ošťádal

Škola: Pedagogická fakulta Univerzity Palackého Olomouc

Katedra: Katedra technické a informační výchovy

Datum: 2. 3. 2014

Téma dotazníku: Tepelné zpracování kovů - žíhání v současných vzdělávacích textech

Obracím se na Vás s prosbou o vyplnění tohoto dotazníku, který jsem vytvořil za účelem zjištění několika informací potřebných v mé bakalářské práci. Tyto informace bych rád využil v práci na téma: Tepelné zpracování - žíhání v současných vzdělávacích textech

1. Z jakých učebnic se učí žáci ve Vaší škole tepelné zpracování kovů - žíhání? (Jaký je autor, název učebnice, rok vydání?)

2. Připravují se žáci doma na vyučování ze sešitů nebo přímo z učebnic?

3. Texty podle kterých žáky dané téma učíte, si tvoříte sami, nebo jen upravujete texty od jiných autorů? (Jaké materiály konkrétně využíváte?)

4. Jak využíváte při výuce výpočetní techniku?

5. Považujete texty v učebnicích dostupných pro žáky za dostatečně aktuální a úplné, nebo v nich pozorujete nějaké informace, které se liší od průmyslové praxe? (Pokud jsou v nich nějaké odlišnosti, tak jaké?)
6. Odlišují se studijní materiály pro žáky podle konkrétního zaměření jednotlivých oborů? (např. pro karosáře, nástrojaře, mechaniky seřizovače… Pokud ano, tak v čem se liší?)

7. Liší se množství informací předávaných v této oblasti žákům na učebních oborech a na studijních oborech? V následující tabulce zatrhněte, které témata se nezminěných oborech vyučují.

<table>
<thead>
<tr>
<th>STUDIJNÍ OBORY</th>
<th>ANO</th>
<th>NE</th>
<th>ČÁSTEČNĚ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Význam a průběh tepelného zpracování kovů</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Krystalové mřížky</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diagram Fe – Fe₃C</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IRA a ARA diagramy</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kalení obecně</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Žíhání obecně</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dělení žíhání (bez překrystalizace, s překrystalizací)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Průběh jednotlivých druhů žíhání</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>UČEBNÍ OBORY</th>
<th>ANO</th>
<th>NE</th>
<th>ČÁSTEČNĚ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Význam a průběh tepelného zpracování kovů</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Krystalové mřížky</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diagram Fe – Fe₃C</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IRA a ARA diagramy</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kalení obecně</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Žíhání obecně</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dělení žíhání (bez překrystalizace, s překrystalizací)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Průběh jednotlivých druhů žíhání</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Anotace

<table>
<thead>
<tr>
<th>Jméno a příjmení:</th>
<th>Milan Ošťádal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Katedra:</td>
<td>Katedra technické a informační výchovy</td>
</tr>
<tr>
<td>Vedoucí práce:</td>
<td>Doc. PaedDr. Jiří Kropáč, CSc.</td>
</tr>
<tr>
<td>Rok obhajoby:</td>
<td>2014</td>
</tr>
<tr>
<td>Název práce:</td>
<td>Tepelné zpracování kovů – žíhání, způsob práce s učebnicí na Sigmundově střední škole strojírenské, Lutín</td>
</tr>
<tr>
<td>Název v angličtině:</td>
<td>Heat Treatment of metals - Annealing, method of work with the textbook Sigmund High School of Engineering, Lutín</td>
</tr>
<tr>
<td>Anotace práce:</td>
<td>Bakalářská práce podává přehled o problematice výuky tepelného zpracování se zaměřením na způsob práce s učebními texty, které jsou v současné době využívány k výuce na Sigmundově SŠS, Lutín. Prioritním cílem práce je ověřit zda jsou učební texty aktuální a úplné a zda předávají žákům potřebné vědomosti. Teoretická část pojednává o didaktických problémech při výuce tepelného zpracování a žíhání. Empirická část obsahuje průzkum u učitelů a technologa zaměřený na způsob práce s učebnicemi a jinými texty.</td>
</tr>
<tr>
<td>Klíčová slova:</td>
<td>Tepelné zpracování, Učebnice a její funkce, Fe3C diagram, Žíhání</td>
</tr>
<tr>
<td>Anotace v angličtině:</td>
<td>Thesis provides an overview of the problems of teaching heat treatment, focusing on how to work with textbooks that are currently used to teach at Sigmund SSS Lutín. The primary objective of this work is to evaluate texts in textbooks, to verify whether current and complete, and that students needed to transmit knowledge. The theoretical part deals with the problems of teaching in the classroom heat treatment and annealing. The practical part contains a survey of teachers and technologists.</td>
</tr>
<tr>
<td>Klíčová slova v angličtině:</td>
<td>Heat treatment, Textbooks and functions, Fe3C diagram, Annealing</td>
</tr>
<tr>
<td>Přílohy vázané v práci:</td>
<td>Příloha č. 1 Dotazník</td>
</tr>
<tr>
<td>Rozsah práce:</td>
<td>49 stran</td>
</tr>
<tr>
<td>Jazyk práce:</td>
<td>Český</td>
</tr>
</tbody>
</table>