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Abstract 
This works explores means of utilizing extra-sentential context in neural machine trans
lation (NMT) . Traditionally, N M T systems translate one source sentence into one target 
sentence, without any notion of the surrounding text. This is clearly insufficient and differ
ent from how humans translate text. For many high-resource language pairs, translations 
produced by N M T may be under certain, strict conditions, nearly indistinguishable from 
human produced translations. One of these conditions is that evaluators score the sentences 
separately. When evaluating whole documents, even the best N M T systems still fall short 
of human translators. This motivates the research of employing document level context in 
N M T , since there might not be much more space left to improve translations on the sen
tence level, at least for high resource languages and domains. This work summarizes recent 
state-of-the art approaches to context utilization, implements several of them, evaluates 
them both in terms of general translation quality and on specific context related phenom
ena, and analyzes their advantages and shortcomings. A hand-made context phenomena 
test set for English to Czech translation was created for this task. 

Abstrakt 
Tato práce se zabývá zapojením mezivětného kontextu v neuronovém strojovém překladu 
(NMT) . Dnešní běžné N M T systémy překládají jednu zdrojovou větu na jednu cílovou větu, 
bez jakéhokoliv ohledu na okolní text. Tento přístup je nedostačující a neodpovídá způ
sobu práce lidských překladatelů. Pro mnoho jazykových párů je dnes za splnění určitých 
(přísných) podmínek výstup N M T nerozeznatelný od lidského překladu. Jedna z těchto 
podmínek je, že hodnotitelé skórují přeložené věty nezávisle, bez znalosti kontextu. Při 
hodnocení celých dokumentů je výstup N M T stále hodnocen hůře, než lidský překlad, i v 
případech, kdy byl na úrovni jednotlivých vět preferován. Tato zjištění jsou motivací pro 
výzkum zapojení kontextu na úrovni dokumentu v N M T , je totiž možné, že na úrovni vět již 
není mnoho prostoru ke zlepšení, alespoň pro jazykové páry a domény bohaté na trénovací 
data. Tato práce shrnuje současné přístupy zapojení kontextu do překladu, několik z nich 
je implementováno a vyhodnoceno v rámci obecné překladové kvality i na překladu speci
fických fenoménů souvisejících s kontextem. Pro zhodnocení kvality jednotlivých systému 
byla ručně vytvořena testovací sada pro překlad z anglického do českého jazyka. 
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Chapter 1 

Introduction 

Quality of state-of-the-art machine translation systems has improved vastly over the last 
few years, thanks to shifting the paradigm from phrase-based statistical machine translation 
to models based on complex artificial neural networks. 

In 1986, Martin Kay [27] stated reasons why high quality machine translation is not 
possible - but that was before the statistical revolution" [22], in times of rule-based systems 
and symbolic A I . Nowadays, there is almost no doubt that high quality machine translation 
is feasible in some conditions - in several test scenarios, recent neural machine translation 
(NMT) systems are evaluated on par with, or even better than human translators. However, 
challenges mentioned in Kay's statement, and several others, still hold true today and 
are not addressed even in the current state-of-the-art. This work is focused on one of 
these challenges - utilizing discourse-level, cross-sentence context in N M T . Current systems 
usually use only one sentence as their input, which is clearly insufficient, as a single sentence 
may not contain enough information for a proper translation of itself. Context necessary 
for correct translation of a sentence can often lie outside the sentence, and this fact makes it 
impossible to translate such sentence correctly even for a perfect M T system, if that system 
adheres to one-to-one sentence paradigm. 

Exploiting the discourse addresses many interesting sub-problems, like adaptation to 
topic, genre, domain, or author's style, discourse consistency (e.g. lexical consistency -
using the same translation for one entity throughout the whole document) or coherence and 
cohesion, which includes coreference resolution (e.g. cross-lingual pronoun disambiguation, 
also mentioned in Kay's paper [27]). 

However, utilizing context is more than solving each of the problems mentioned above 
separately, since discourse can contain information that is not contained in any of the 
sentences alone, as described later on. As stated by Kehler [26]: „The meaning of a discourse 
is greater than the sum of the meanings of its parts.". For this reason, my work focuses 
on end-to-end learning, using neural networks and raw training data without any linguistic 
preprocessing (like coreference resolution), rather than developing specialized tools designed 
to tackle these phenomena separately. 

In the second chapter, I describe phenomena that this work addresses from a theoretical 
point of view, and then I summarize publications related to my work. Since employing 
context in N M T is only just getting into focus of researchers, this chapter is rather brief 
and mostly comprises of analyzing papers that were published during the last year. 

In the next chapter, issues concerning data preparation are discussed, including obtain
ing corpora with document-level information, preproccessing them and creating evaluation 
data and protocols. Since the effect of discourse level phenomena on sentence level qual-
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ity metrics is hard to predict, I evaluate the systems with test sets and metrics designed 
specifically for this task, aside from general translation quality measurements. 

In the fourth chapter, several context-aware architectures, inspired by a recent related 
work, are proposed and described. Their theoretical advantages and shortcomings are 
discussed. The fifth chapter describes implementation of the proposed models in a C++ 
N M T framework Marian [25]. 

The next chapter describes the central part of this work. Architectures described in 
previous two chapters are evaluated on test sets described in the third chapter. I analyze 
their shortcomings and determine which approach performs the best. Issues regarding 
machine translation evaluation are also discussed in this chapter. 

Finally, in the last chapter, I draw conclusions from the experiments and plan future 
work. 

In summary, I implemented some of the recent techniques of utilizing context in N M T 
and I evaluated them in terms of both general translation quality, and accuracy on transla
tion of specific discourse phenomena. A specialized English-Czech test set was created for 
this purpose. 

4 



Chapter 2 

Machine translation and context 

This work focuses on translation of a text given a document context or discourse. In first 
part of this chapter, discourse phenomena are described from a theoretical point of view, 
focusing more on the linguistic and less on the engineering side. First, a summary of what 
a discourse is and what phenomena are considered as being part of discourse is presented. 
Some of these phenomena are described more in detail, as they are important later in this 
work. In the second part, principles of current state-of-the-art N M T models are discussed. 
In the final part of this chapter, several papers related to this work are analyzed. 

2.1 Discourse 

Since this work focuses on translation of sentences utilizing a document context, or discourse 
(these terms will be used interchangeably), it may be beneficial to define what discourse 
means. Eisenstein [13] characterizes discourse simply as "multi-sentence linguistic phe
nomena" in his recent N L P notes. Andrew Kehler [26] refers to discourse as "collocated, 
related groups of sentences". Kendall and Wickham [28] say that a discourse is a corpus of 
statements whose organization is regular and systematic. Broader definition of discourse is 
that it is the use of spoken or written language in context of society. For the rest of this 
work, it will be assumed that a discourse means multiple sentences, which have some kind 
of connection between each other. A n interesting point is that the meaning communicated 
by the discourse is bigger than the sum of meanings of individual sentences. Discourse can 
contain information that none of the sentences contains by itself. 

2.1.1 Cohesion, Coherence, Consistency 

According to [17], discourse is mainly embodied in three aspects: cohesion, coherence and 
consistency. These terms are used in some of the related papers described later, so it may 
be useful to define them at least in general terms. Generally, cohesion is a surface property 
of text that qualifies whether the sentences are correctly linked to each other, using special 
words, also called cohesive devices [16]. In other words, cohesive devices are linguistic units 
that are used to tie parts of discourse together, e.g. expressions like however, although or 
on the other hand. In contrast, coherence concerns abstract, mental image of meaning of 
the text as a whole. Coherent text should be comprehensible and not confusing for the 
reader. Linguists are not united in their view on cohesion and coherence definitions and 
relationship. For example, Mey [43] defines the relationship as follows: „cohesion establishes 
local relations between syntactic items (reference, concord and the like), whereas coherence 

5 



has to do with the global meaning involved in what we want to express through our speech 
activity." Summary of different views on coherence and cohesion can be found in a work 
by Schmeid et al. [53]. Effort to analyze a subcategory of cohesion phenomena is called 
coreference resolution. 

2.1.2 Coreference resolution 

Several concepts regarding coreference resolution are introduced in this section, since coref
erence resolution is tightly related to a context-aware translation, and it can be used to 
evaluate a translation system's ability to exploit context information. 

Reference is a relationship between a linguistic expression and the object or idea repre
sented by the expression. Given a sentence: 

Kristýna went to a grocery shop, but she realized she left the shopping list home. 

In this sentence, Kristýna and both occurrences of she denote a person called Kristýna. 
These expressions are called referring expressions [13] or mentions [26] and the entity they 
refer to (person named Kristýna) is called the referent. When multiple referring expressions 
are referring to the same referent, they corefer. A l l previous coreferences of a mention are 
called antecedents. If an entity that was defined earlier in text is referenced, as is the case 
in the example sentence, this reference is called anaphoric. Inversely, cataphora is the term 
for the case when the referent is mentioned after the referring expression, as in the following 
two sentences: 

Who was that? That was Bedřich, an old friend of mine. 

The goal of coreference resolution is to find which referring expressions in a text refer to 
the same referent. This is a very challenging task, since apart from linguistic reasoning, 
effective algorithm would need to contain real world knowledge and be able to do a common 
sense reasoning. In fact, there is a Turing test inspired challenge to determine whether 
an algorithm is a true general artificial intelligence based on coreference resolution - the 
Winograd Scheme Challenge 1. 

A special, well-studied case of anaphoric expressions are pronomial anaphora. Resolu
tion of pronomial anaphora and a correct translation of a pronoun with antecedent outside 
the sentence is used as an evaluation metric in several papers presented in the related work 
section. Another way of exploiting coreference resolution for N M T evaluation is to look 
at attention matrix for a word with an antecedent in the context sentence and see if the 
word wich is most attended to agrees with a human judgement (or a coreference resolution 
system) of the atencedent. Such approach was used by Voita et al. [69] and it is further 
disscussed in section Related work. 

2.2 Machine translation 

Machine translation (MT) is, simply put, translation of text in one language into another 
language using a computer program. First M T experiments were carried out in 1950s, in
cluding the Georgetown-IBM experiment, which was designed to attract funding for the new 

1http: / / commonsensereasoning.org/ winograd.html 
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research area. The experiment consisted of translating 60 sentences (carefully picked before
hand) from Russian into English. Using 6 grammatical rules and vocabulary of 250 lexical 
terms the researchers were able to successfully demonstrate the system in operation. Both 
the rules and the vocabulary were crafted to the beforehand known sentences. This demon
stration, along with statements claiming that M T will be a solved problem in next few 
years, led to increased funding for M T projects. 

One of the early M T researchers, Yehoshua Bar-Hillel, argued that in order to be able 
to achieve fully automatic, high quality translation (FAHQT), machines would need to have 
world knowledge and understand the meaning behind the input text. For that reason, 
Bar-Hillel argued that F A H Q T should not be the ultimate goal of M T research, but the 
researchers should instead focus on systems providing help to human translators, thus 
speeding up the translation process [4]. He criticized his colleagues for not coming to 
terms with this fact, rising false hopes among investors and governments, and waiting for 
a F A H Q T system that was never to come. His view was proven right by the Automatic 
Language Processing Advisory Committee ( A L P A C ) report in 1966. The report was very 
sceptical of current state and prospects of M T , advised both the public and the researchers 
to lower their expectations, and finally led to significant decrease of M T funding by the 
U.S. government and companies. 

In the next two decades, M T had some limited successes in specific applications. Systems 
in that epoch generally analyzed semantic, syntactic and morphological aspects of the input 
text, and used rules and bilingual vocabularies to translate it into the target language. This 
approach to M T is called rule based machine translation (RBMT) . One of the successful 
systems, named M E T E O , was used by the Canadian government to translate weather 
forecasts between English and French [35]. 

A significant breakthrough came in the late 1980s. In 1988, researchers in I B M laid foun
dation for a new approach to the topic, so called statistical machine translation (SMT) [8]. 
S M T uses models trained on a large amount of parallel corpora (meaning same documents 
in two languages, where sentences and their translations are aligned) to estimate a prob
ability that a string in a target language is a translation of some other string in a source 
language. This probability estimation is usually based on Bayes rule and heuristics to limit 
the search space. First types of S M T systems were word-based models, in which the unit 
of translations were single words, translated into number of target words (including none), 
in other words, these systems align words in source and target sentences. Such system is 
clearly very constrained, but the obtained word alignments can be used as a training data 
for a more recent and advanced category of S M T systems, called phrase based statistical 
machine translation (PBSMT). 

Most notable example of these systems is Moses [32], an open source project by Philipp 
Koehn and many others. Moses and similar frameworks address many shortcomings of word 
based S M T by using a phrase as an atomic unit, instead of a word. This allows them to 
make use of local context and perform many-to-many translations. These phrases are not 
necessarily phrases in linguistic sense, rather they are n-grams of words based on statistics 
of their occurrences in the training data. The phrase model is usually coupled with another 
models that perform auxiliary analysis of the text and influence the translation. The most 
usual ones are reordering model, which changes the order of phrases in translation, and 
language model, which estimates the probability of candidate sentence translation in the 
target language (not conditioned on the source sentence, in other words, helps to create 
more natural and fluent translations). 
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P B S M T marked big leap in quality of translation for language pairs with big quantities 
of parallel data and made web translation services, such as Google Translate, possible and 
practical. This approach was state-of-the-art in machine translation up until 2014. 

2.2.1 Neural machine translation 

In 2014, two papers with major impact on M T were released by Sutskever et al. [63] and 
Cho et al. [9]. The main differences compared with P B S M T were the following two. 
First, the N M T systems are using continuous, distributed representation of words. Such 
representations came into focus of researches few years earlier, for example see paper by 
Mikolov et al. [44]. This means that words that appear in similar contexts in the training 
data, are processed similarly by the model, and that the representation is more semantic, 
in the spirit of J . R. Firth's quote: 

You shall know a word by the company it keeps. 

Second big shift from P B S M T is that the N M T systems use one model, based on encoder-
decoder neural network, performing all the necessary operations, instead of combination of 
separate models engineered for each task (e.g. translation, reordering, language modeling, as 
mentioned earlier). The network performs transformation of one sequence (source sentence) 
into another sequence (target sentence). Such networks are collectively called sequence-to-
sequence models. More specifically, encoder reads the input sequence (source sentence), 
converts the input words into continuous representations (vectors) using an embedding 
layer, and based on these representations, computes a representation of the whole sentence. 
Based on this representation, decoder iteratively, word-by-word, generates the translation. 
Already generated words form a second input of the decoder. 

Nowadays, one of two types of deep neural networks are used in practice. First, re
current neural networks (RNN), which were the first ones being used for M T , along with 
convolutional networks. These networks usually use either L S T M or G R U units, and are 
further improved by an attention mechanism [2]. Since Summer 2017, RNNs are being re
placed by self-attention based models [68], which are more parallelizable, since they remove 
the need for sequential processing of the input sequence inside the network, and also usually 
offer superior translation quality. Both architectures are described in more detail in the 
following two sections. 

2.2.2 Recurrent neural networks in machine translation 

Recurrent neural networks (RNN) were used in both of the fundamental N M T papers 
mentioned above. Almost simultaneously in 2014, Cho et al. [9] and Sutskever et al. [63] 
published neural network based M T systems and results that led to an increase of research 
in this direction. Both of the systems used encoder-decoder R N N networks with L S T M or 
G R U units. Both networks reached impressive results, achieving comparable performance 
with strong P B S M T baseline system in terms of the B L E U [47]. Cho and his colleagues 
performed analysis of relationship between sentence length and B L E U , presented in Figure 
2.1. 

As apparent from the figure, the performance of the system degrades rapidly for longer 
sentences, probably because only one fixed-sized vector is used to compress all the infor
mation about the sentence in the encoder. In the subsequent work, Bahdanau, Cho, and 
Bengio [2] proposed a solution - an attention mechanism which allows the decoder to look 
at all of the encoder states, not only the last one. Such network became a de facto baseline 
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Sentence length 

Figure 2.1: Relationship between sentence lengths and B L E U scores shows that the original 
R N N encoder-decoder architecture had difficulties with longer sentences. Based on this 
analysis, an attention mechanism between encoder and decoder was presented. Figure 
taken from [9] 

for N M T for the next three years, with many extensions and improvements built around 
this general architecture. A high level overview of encoder-decoder network with attention 
used in production (Google N M T system [72]) is presented in Figure 2.2. 

2.2.3 Transformer 

In Summer 2017, Google AI presented a paper [68] describing a novel N M T architecture, 
addressing many of the RNNs shortcomings. Most notably, the new architecture removes 
the need for sequential (recurrent) processing of the input sentence, which is responsible 
for much of the sequential computing of the R N N network, thus speeding up the training 
on modern GPUs, which are vastly parallel. 

Instead of L S T M or G R U recurrent units, the Transformer encoder utilizes a mechanism 
called self-attention, which models a relationship between all the input words and computes 
a representation of a word by comparing it with all the other words in the sentence. This 
comparison produces an attention score, which determines how much should the represen
tation of the other words contribute to representation of the current word. This procedure 
is repeated in parallel for all the input words for a constant (empirically chosen, 6 for the 
base model) number of steps, i.e. layers. 

Processing all the words at once allows the network to capture long-term dependencies 
better than RNNs are able to, since distance of the words in the sentence does not matter. 
RNNs have problems with long input sequences, even when gating and attention mecha
nisms are employed. The root cause of this is the inherently sequential nature of R N N 
processing - input symbols are processed one by one, the number of operations between 
processing two input symbols is linear in regard to their distance in the input sequence. 
During each operation on the path from first symbol to a second symbol, some part of 
the information about the first symbol is not propagated further. Thus, information about 
the first symbol is incomplete when creating representation of the second symbol. This is 
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Figure 2.2: Google's neural machine translation. Taken from [72] 

not the case with the Transformer - the self-attention mechanism connects all the symbol 
representations directly. This notion is further discussed in Chapters 4 and 6. 

A n issue with processing all input symbols at once is that the model does not have any 
information about the relative positions of the symbols. This information needs to be added 
explicitly. The position of the word in the sentence is encoded by a sinusoidal function and 
concatenated with the word representation. 

The decoder works in a similar fashion to the encoder, only difference being that it 
also attends to previously generated words, in addition to input words. Final layer of 
the decoder performs the softmax function with dimensionality equal to size of a target 
vocabulary. Output of this softmax is a probability distribution over words in the target 
vocabulary and the generated output word is selected based on this probability. Overview 
of the architecture can be seen in Figure 2.3. Transformer networks outperform RNNs in 
most applications (for example see paper by Lakew et al. [33]), one of the disadvantages 
is their sensitivity to hyperparameters, like learning rate schedule or minibatch size, see 
papers by Popel and Bojar [49] or Ott et al. [46]. 

Model description 

Since the experimental architectures described later in this work are modifications of the 
Transformer, the original model is described in detail in this section, following description 
in the original paper [68]. The architecture follows the general structure of encoder and 
decoder. Encoder creates a vector representations of the input sequence. Let the input 
symbols be denoted (xi, •••,xn) and the continuous representations generated by the encoder 
z = (zi,zn). The decoder sequentially generates output symbols (yi, ...,ym), based on z 
and symbols generated in previous steps. 

Encoder The encoder consists of six identical layers, each one formed by two functional 
blocks or sublayers - multi-head self-attention followed by position-wise, fully connected 
feed forward network. A residual connection [19] is built around each of the functional 
blocks, followed by layer normalization [36]. This results in a final output function in form 
LayerNorm(x + Sublayer(x)), Sublayer(x) being the function performed by the sublayer 
itself. 
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The first layer of encoder uses word embeddings as an input, i.e. list of vectors (512-
dimensional for the base model) generated by the embedding layer for each token in the 
source sentence. Length of the list is the maximum sentence length, which can be set as a 
hyperparameter. Subsequent layers use outputs of the previous layer as an input. 

Decoder The decoder is again built from six identical layers, but in contrast to the two 
sublayers in the encoder, each layer consists of three sublayers. A multi-headed encoder-
decoder attention layer is inserted between the self-attention and feed-forward layers, which 
are the same as in the encoder. Again, residual connections and layer normalization are 
used. The decoder generates output symbols step by step. Additionally, the self-attention 
in the decoder is masked, so that it can only attend to positions already generated in 
the previous timesteps. In another words, the masking prevents the decoder to attend to 
positions that were not yed generated, so the symbol that is being predicted depends only 
on the encoder representations and previously generated symbols. 

Attention The authors define attention as a function of three variables (vectors): query 
Q, key K and value V . A weight of each element in the value V is computed by a 
compatibility function of query Q and key K . Attention output can be then computed 
using these weights as a weighted sum of elements in V . 

In the original paper, the particular implementation of attention function is called scaled 
dot-product attention. The function has three vectors as parameters, Q and K of dimen
sionality dk and values V with dv dimensions. The attention function output matrix is then 
computed using the following formula: 

Attentions, K, V) = softmax (0^—) V (2.1) 

The dot product of a query and all keys (i.e. the compatibility function) is computed first, 
then divided by square root of dimensionality of the key vector. Softmax function is then 
applied to obtain the weights for corresponding values. 

The attention used in Transformer is multi-headed, meaning that instead of computing 
one set of attention weights (with dimension dmodei), h different linear projections of queries, 
keys and values are learned. The Q, K and V vectors are projected to dk = dv = dmodei/h 
dimensions, in case of the original model to 512/8 = 64-dimensional vector. The attention 
function described above is performed on each of these vectors in parallel and the dv-
dimensional outputs are concatenated and projected again, resulting in the final output of 
the multi-head attention layer. 

MultiHead (Q, K, V) = Concat (head v . . . , head H)W° 
(2 2) 

where head i = Attention (QW? , KWf, VW^ 
Where w9 G Rd m°del x d k , Wt

K G M.d^°dBiXdk G K d m ° d e l X d * are the learned input 
projection matrices for each of the heads, and W° G M.hdvXdinodel is the weight matrix of 
the final projection after the concatenation of the outputs of each of the heads. 

The multi-head attention is used in three contexts in the Transformer. Firstly, in the 
encoder self-attention, Q, K and V are all the same vector, obtained as an output of 
the previous layer (or embedding layer in case of the first layer). Each position can attend 
to representations for all the other positions from the previous layer. In decoder self-
attention, the mechanism works similarly, only difference being masking. Each position 
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can only attend to position to the left of itself, which is implemented by setting values of 
representations that break this condition to — oo before the softmax computation. This 
ensures that the decoder only looks at previously generated symbols. Finally, encoder-
decoder attention is used similarly as in other encoder-decoder models. The queries are 
obtained from previous decoder layers, while the key-value pairs are representations from 
the last layer of the encoder. Each position in decoder can attend to all of the encoder 
representations. 

Position-wise feed-forward layer The second type of sub-layer used in the Trans
former is a feed-forward fully connected network. This network is applied to each position 
separately and consists of a linear transformation, followed by a R e L U activation and a 
second linear transformation: 

FFN(x) = ReLU (xW1 + b1)W2 + b2 (2.3) 

Embeddings As usual in other N M T models, the Transformer learns embeddings that 
map input and output tokens to a <imorfe/-dimensional vector representation. To convert 
the decoder output into a token probability, linear transformation followed by a softmax is 
used. Weights of this linear transformation can also be considered a form of embedding, 
meaning that the model uses embeddings at three different stages of computation (input 
and output embeddings and the weights of the linear layer before softmax). A l l of these 
three embeddings share the same weights - there is only one embedding weight matrix. 

Positional embeddings One of the most notable improvements of the Transformer over 
R N N models is that the input is processed in parallel, without a recurrent (sequential) 
computation. However, this means that the model does not have any notion of the order 
of the input symbols. In RNNs it is encoded implicitly by the order in which the input 
symbols are processed. For the Transformer to be able to utilize the knowledge of positions 
of input tokens in the sequence, the position information must be added in some way. To 
achieve this, position of each token is encoded by a function and the resulting vector is 
summed up with the corresponding token embedding. The encoding function can be either 
learned, or manually designed. In the paper, authors use a hand-crafted combination of 
sine and cosine functions: 

PE(Pos2i) = sin (pos/100002i/d™dBl) 
" ; ( (2-4) 

PE(pos,2i+i) = cos (pos/100002t/d™^J 

Variable pos denotes the position of the token in the input, i is the dimension in the 
embedding vector. The periodicity of this function allows the model to extrapolate to 
lengths not seen during the training (in contrast to learned positional embeddings). 

Training The author train the model using Adam optimizer with hyperparameters (3\ = 
0.9,/?2 = 0.98 and e = 10~ 9. Learning rate is scheduled using the following formula: 

^ r = ~̂modei ' rnin(step_nttm - 0 ' 5 , step-num.warmup_steps~1'5) (2-5) 

Learning rate is linearly increased for warmup_steps training steps, and then, after reach
ing its maximum value, it is decreased with inverse square root of the step number. Without 
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this variation of the learning rate, the training diverges. The authors trained the models 
on 8 P100 GPUs, with batch sizes around 25000 tokens. In the Transformer, the batch size 
is important for stability of training and performance [49]. 

Three regularization techniques are used: 

• Pervasive dropout [61] with probability = 0.1 at the output of each sublayer, before 
layer normalization and summing the output with the input (residual connections). 

• Dropout in the embbeding layer, after the token embeddings are summed with the 
positional embeddings. 

• Label smoothing [64] with value 0.1. 

Output 
Probabilities 

i Stage 1 Positional 
Encoding 

Input : : Output 
Embedding ! ; Embedding 

Inputs Outputs 
(shifted right) 

Figure 2.3: Encoder (left) and decoder (right) of the transformer model. Taken from 

The Transformer presented in this paper obtained state-of-the-art results on W M T 2014 
English-German and English-French datasets, while allowing much better parallelization 
and thus shorter training times than its RNNs or convolutional counterparts. Transformer's 
superior performance in machine translation was confirmed by many subsequent papers, 
e.g. Lakew et al. [33]. Transformer-based models are used in many other fields of N L P , 
also improving state-of-the-art results [12] [52]. 

Other explanations Even though the original paper is clearly written, several very nicely 
done explanations and guides to the Transformer model can be found on the Internet. It 
would be a shame not to name few of them, since they might be useful to get at least a gist 
of how the model operates. The original Google blogpost about the Transformer2 contains 

2

https: //ai.googleblog.com/2017/08/transformer-novel-neural-network.html 
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high-level, intuitive and animated explanation of how and why self-attention works. The 
Illustrated Transformer'^, article by Jay Alammar, approaches the model from top-down 
perspective, with helpful figures for every level of abstraction. One of the illustrations 
from this post, which displays the whole model, is presented in Figure 2.4. The Annotated 
Transformer1 takes the original paper and adds code and comments to the corresponding 
parts. The whole article is a functional implementation of the Transformer in a Jupyter 
notebook, using OpenNMT and Pytorch. Another similar post, with code snippets and 
figures, was created by Michal Chromiak 5 . 

Add & Normalize 

Q Feed Forward J Q Feed Forward J 

J 

c 
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Figure 2.4: A n alternative overview of the Transformer model (with 2-layer encoder 
and decoder) by Jay Alammar. Taken from The Illustrated Transformer (http: / / 
j alammar . g i t h u b . i o / i l l u s t r a t e d - t r a n s f ormer/. 

2.3 Related work 

This thesis deals with employing extra-sentential context in N M T . Many publications about 
this topic emerged in the last two years. 

After Microsoft claimed reaching human parity in Chinese-English news translation 
[18], Laubli et al. [34] analyzed these claims to asses if they are true. The authors 
have changed the evaluation protocol slightly: evaluators were professional translators as 
opposed to crowd sourced bilingual speakers used by Microsoft, and pairwise ranking was 
adopted instead of direct assessment. The translations were evaluated in terms of fluency 
and adequacy. The evaluators were shown a source sentence (in case of adequacy evaluation, 
fluency evaluators were only shown the two translations) and two translations, one produced 

3

http: / / j alammar.github.io/illustrated-transf ormer/ 
4

http://nlp.seas.harvard.edu/2018/04/03/attention.html 
5

https: //mchromiak.github.io/articles/2017/Sep/ 12/Transf ormer-Attention-is-all-you-need/ 

#.XMzJK99f jMO 
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I Sentences • Documents l Sentences • Documents 

9% 11% 

Same 

(a) Adequacy 

Human Same 

(b) Fluency 

51% 50% 

Figure 2.5: Results of human evaluation of Microsft's English to Chinese M T system transla
tion adequacy and fluency by Läubli et al. [34]. Increased preference of human translations 
can be observed in document-level evaluation. 

by a human (professional translator) and one by Microsoft's M T system. They were asked 
two questions: 

Which translation expresses the meaning of the source text more adequately? 
(adequacy) 

and 

Which text is better English? (fluency) 

The results did in fact confirm Microsoft's claims (see Figure 2.5). In terms of adequacy, 
the evaluators preferred M T in 50% of the sentences, didn't have any preference in 9% 
and preferred the human translation in 41% of the cases. Interestingly, in terms of fluency 
(monolingual evaluators), the M T system output was preferred in only 32% of the examples 
(51% human, 17% tied) - even though fluency, and not adequacy is often cited as the main 
advantage of N M T . 

However, when the evaluators were asked to compare whole documents, the results 
changed drastically - 52% for human, 11% tied , 32% M T in adequacy, 50% human, 29% 
tied, 22% M T in fluency. These results convincingly show the need for document level 
N M T . 

Just for completeness, the same translations by the Microsoft's M T system were reeval
uated again by [65], who found out that a large portion of the Chinese source sentences 
in the test set were originally English sentences, translated into Chinese. This means that 
a part of the data set was in fact „translationese", i.e. a text seemingly in Chinese, but 
still retaining some of the properties of an English text. When only sentences which were 
originally in Chinese were considered, the M T system did not reach human parity. 

In a paper by Bawden et al. [5], most of the R N N model architectures that incorporate 
context up to date are compared and evaluated on English-French dataset, which is designed 
to target different discourse phenomena, namely coreference, lexical cohesion and lexical 
disambiguation. Examples in the set are hand-crafted, but inspired by sentences found in 
OpenSubtitles2016, to assure similarity to real world examples. 

Structure of the set is described later, in Chapter 6, as I will use it directly and also 
will modify it for English to Czech translation. So, only for a brief overview, in lexical dis
ambiguation part, each source sentence has two different source side contexts (one previous 
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sentence) and two possible translations (also with previous target sentence as a context). 
Each translation is correct in one of the contexts. For lexical coherence (repetition), the 
source context stays the same, but the previous target sentence is different for each case. 
The desired result is that the same source word or phrase is translated the same way in 
both target sentences. 

Many context-aware R N N architectures were explored. The models were trained on 
English-French OpenSubtitles2016, and evaluated on the set mentioned above, and also in 
terms of general translation quality ( B L E U [47], see Chapter 6 for details on this metric) on 
subtitle test sets from 4 genres: comedy, crime, fantasy and horror. The general translation 
performance depended heavily on test set used. The simplest models have ordinary encoder-
decoder architecture, with concatenation of current and previous sentence on the input 
(separated by a special token), and either single (labeled 2-to-l) or two (previous and 
current, 2-to-2) sentences on the output. Generally, 2-to-2 model performed quite well -
with about 0.5 B L E U gain on all subtitle test sets, 63.5 % precision on coreference and 52 
% on cohesion/coherence sets. 2-to-l scored 52 % in coreference and 53% in cohesion, and 
outperformed baseline in 2 out of 4 translation test sets. 

Another set of experiments focused on multi-encoder models, using previous source or 
target sentence as an additional input. Three different attention strategies were evaluated. 
First of them was concatenation - the context vectors from both encoders are concatenated 
and a linear transformation is applied on the result to obtain vector with same size as 
the original vector. Second approach uses a tanh attention gate, which learns to give 
different importance to each element of the both context vectors. Finally, hierarchical 
attention, as in [?] is used - another attention layer is applied on the context vectors 
from each encoder. Overall, the best performing model was using one previous source 
sentence as an input, hierarchical attention and was trained to generate both previous 
and current target sentence. This model gained about +1 B L E U across all test sets and 
scored 72.5% on coreference and 57% on coherence/cohesion. Models from this paper 
are not implemented in my work, with the exception of concatenation and 2-to-l dual 
encoder model, since only R N N models were explored, while my work focuses mainly on 
the Transformer model. However, this paper is crucial for my work because of the test set 
and evaluation methodology used in it. 

One of the earliest attempts on incorporating discourse into N M T is a work by Jean et al. 
[21]. Presented system utilizes a dual encoder R N N , with one encoder for a source sentence, 
as usual, and another auxiliary encoder for a context sentence. Attention mechanism for 
the contextual encoder also has source vector from the main attention as an input, besides 
the usual inputs (previous symbol, previous decoder state, annotation vector). The models 
were trained on W M T 1 6 and ISWLT En-De and En-Fr data sets, which belong roughly to 
news domain. 

The authors evaluated their model in terms of general translation quality (BLEU) , as 
well as in more focused evaluation - pronoun prediction (RIBES). For the pronoun predic
tion, pronouns in the target sentence were replaced with a special token, then sentences with 
all the possible combinations of pronouns in place of these tokens were generated and the 
one with best log-probability, as scored by the model, was chosen as the output. There were 
improvements observed for both of the metrics when using small training data - ISWLT or 
W M T 1 6 reduced to up to about 40%. However, when the model was trained on a larger 
corpus, the improvements vanished. Another interesting outcome is that both baseline and 

16 



contextual model outperformed all the submissions for WMT16 pronoun prediction shared 
task, even though these submissions were trained specifically for this task. 

In a paper by Wang et al. [70], the authors focus on employing context from previous 
source sentences using hierarchical RNNs. Target context was not used, because in the 
preliminary experiments, the target context hurt the translation quality due to error prop
agation. First, the sentence-level R N N reads the sentence word by word and summarizes 
the content in its last hidden state. Document-level R N N uses the last hidden states of n 
sentence-level RNNs as an input and its last hidden state is considered a global context 
vector D. Authors use n=3 for the experiments in this paper. 

Two strategies of adding context to the N M T model are explored - Initialization and 
Auxiliary input. Initialization means that encoder, decoder or both are initialized with D. 
In encoder, all the states are traditionally zero at the begging of the sentence translation, 
so D is simply used as an initial state of the encoder layers. In decoder, the usual formula 
for computing the hidden state in the first step is changed from so = tanh(WshN) to 
so = tanh(Wsh.N + WdD), where hjy is the encoder last state and Wh,Wn are trainable 
weights. 

In the Auxiliary context scenario, D is used as an additional input for the decoder. 
In an usual N M T model, the decoder hidden state in time step i is computed as Si = 
/ ( S J _ I , yi-i, Ci) , where Sj_i is the previous state of the decoder, is the last generated 
symbol, Cj is the sentence context vector from the encoder and attention mechanism. After 
adding the global context vector D, the formula changes to following: 

Si = f(si-i,yi-i, Ci, D) 

On implementation level, the authors simply concatenated Cj and D into a single context 
vector. However, the necessity of global context is different for each word, e.g. translation 
of ambiguous words can benefit from more context information than translation of words 
with no ambiguities. To address this observation, the authors used a sigmoid context gate, 
as in a paper by Tu et al. [66]. The gate uses the previous symbol, previous hidden state 
and encoder context vector to generate a vector of same dimension as D. More formally, 

Zi = cr(UzSi-i + Wzyi-i + CzCi) 

where Zi is the gate output and Uz, Wz and Cz are learned weights. 
After applying the sigmoid function, all elements of Zi are between 0 and 1 and z^ has 

the same size as D and intuitively, we want for each element from z% to tell the decoder how 
much of corresponding element from D to use in generating the next symbol. To achieve 
this, D is multiplied element-wise with zf. 

Si = f(si-i, yi-i,Ci, Zi <g) D) 

Experiments were carried out on a subset of Chinese-English L D C 6 corpora that contains 
datasets with document boundaries. Implementation of the models is based on Nematus[55], 
using vanilla Nematus as a baseline (30.57 average B L E U on 3 test sets). A l l of the modifi
cations had positive impact on B L E U score, and are mostly complementary - namely, using 
encoder initialization the network achieved 31.55 B L E U , decoder initialization 31.90 B L E U 

6https://www.ldc.upenn.edu/ 
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and combining both 32 B L E U . Auxiliary context strategy reached 31.3 B L E U without the 
gate, and 32.24 when the context gate was used. A l l of the improvements together yielded 
improvement of 2.1 B L E U over the baseline, reaching 32.67 B L E U on average. 

The authors also performed a manual analysis of the errors in inter-sentence phenomena. 
They randomly chose part of the test set and counted number of errors in translation of 
ambiguous words and phrases and in consistency of the translation. The system solved 76% 
of ambiguity and 75% of consistency errors, while bringing in 26% of new errors (relative 
to the original counts). 
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Figure 2.6: Context sentence (left) and source sentence (right) encoders of the context-aware 
Transformer proposed by Voita et al. [69]. 

Paper by Voita et al. [69] presents a modified Transformer model with a specialized 
context encoder, with some of the encoder layers weights shared between context and 
source encoders. In the preliminary experiments, neither concatenation nor simple dual 
encoder models, proposed in earlier work, worked well with the Transformer. The models 
were trained on OpenSubtitles corpus, and resulted in improvement in B L E U (0.7 points), 
pronoun disambiguation and coreference resolution. 

The proposed model consists of two encoders - context and source encoder - and a 
decoder. Overview of the encoder part of the model is presented in Figure 2.6. The 
decoder is identical as in the vanilla Transformer model. More detailed description of the 
architecture is presented in Chapters 4 and 5, since this is one of the models implemented 
and evaluated in my work. 
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Type Baseline Context-aware Difference 

Masculine 
Feminine 
Neuter 
Plural 

26.9 
21.8 
22.1 
18.2 

27.2 
26.6 
24.0 
22.5 

+0.3 
+4.8 
+1.9 
+4.3 

Table 2.1: Improvements in B L E U scores for test sets with a pronoun „it" referring to a 
noun in the context sentence, split by the noun gender and number. Higher gains can be 
observed for feminine a plural nouns. Taken from [69] 

Evaluation of the proposed model was performed in terms of B L E U score, where a 
moderate improvement (0.7 B L E U ) was observed. Also, evaluation using a random context 
sentence instead of the proper one was performed, to see whether the B L E U gains are due 
to correct context utilization, or some other effects have played role. A more fine-grained 
analysis of the system was also carried out. By investigating the distribution of attention 
over the context and source sentences, the authors discovered that a large part of the 
attention is given to the context sentence when pronouns like ,p,t", „yours", ,pnes" and 
are being processed. These pronouns are indeed often hard to disambiguate without the 
additional context when translating for English to Russian (similarly so from English to 
Czech). 

To see if this higher attention translates into higher B L E U scores, the authors created 
a pronoun disambiguation test set. Standford CoreNLP [40] was used to find sentence 
pairs containing coreferential pronouns, as such sentences are more likely to benefit from a 
context-aware translation. The sentences were extracted from held out part of the training 
corpus, OpenSubtitles2018. A n issue observed with this approach was that most of the 
antecedents of the pronouns were also pronouns, which probably do not provide the infor
mation needed for the disambiguation. However, even if such sentences were left in the 
dataset, a bigger B L E U gain than on the original test set was seen. When considering only 
sentences with pronouns that have a noun as their antecedent in the previous sentence, 
even larger improvements can be seen. 

The most interesting case is the pronoun „it" (Table 2.1). For further analysis of sen
tences containing this pronoun, Berkley word aligner was used to divide the test sentence 
pairs that contain Jtu referring to a noun into parts based on the gender and the number 
of the noun. Larger improvements can be seen when „itu is to be translated into feminine 
or plural form, since in the training data, Jt" is mostly masculine and the models tends 
to translate the pronoun into its masculine form when no context information is available. 
This observation links the context-aware N M T research with another currently actively 
researched N M T topic - gender bias in N M T models [67]. 

The results on pronoun translation suggest that the model learns to correctly determine 
an antecedent of the pronoun, i.e. perform anaphora resolution. The authors analyzed the 
attention weights (average of attention to context words over all attention heads) to asses 
this assumption. Again, only sentence pairs where a pronoun in the source sentence has 
a noun antecedent in the context sentence were used. Next, the cases where the context 
sentence only contained one noun, were excluded. The context word which had the highest 
attention weight was compared to an antecedent determined by CoreNLP coreference reso
lution system. Also, picking first, last, or random noun was evaluated as a simple heuristic. 
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Pronoun Random First Last Attention Method Agreement(%) 

it 40 36 52 58 
you 42 63 29 67 

I 39 56 35 62 

Table 2.2: Agreement (in %) of a noun picked from 
the context sentence by attention or one of the three 
heuristics, with a noun determined by CoreNLP to 
be the pronoun antecedent. Attention has the largest 
agreement, suggesting that the model learns to per
form anaphora resolution. Taken from [69]. 

CoreNLP 
attention 

last 

77 
72 
54 

Table 2.3: Agreement (in %) of a 
noun picked from the context sen
tence as an antecedent by atten
tion, by CoreNLP or the last noun, 
with a human judgement. Taken 
from [69]. 

The results are presented in Table 2.2. They show that the attention does indeed agree with 
CoreNLP in more cases than any of the heuristics. The authors also performed human-
based evaluation, with results shown in Table 2.3. The context attention overall performs 
slightly worse than the CoreNLP system, however, the results show that the model learns 
to perform anaphora resolution. 

In a work by Agrawal et al. [1], authors evaluate R N N and Transformer architectures 
with context windows of up to three previous source sentences and a next source sentence 
on the source side, and previous one or two target sentences on the target side. Context 
sentences were added either by concatenation (separated by a special token), or as an input 
for additional encoder. Models were trained and evaluated on English-Italian IWSLT 2017 
dataset, consisting of transcribed T E D talks. 

A drop in B L E U score was observed when adding context to R N N via simple concatena
tion, probably because even though L S T M s have gating mechanisms and the network used 
attention, signal is still vanishing in long-range dependencies. When using multi-encoder 
architecture, B L E U increased for R N N . Other research suggests gains for RNNs even when 
using concatenation, however on OpenSubtitles dataset, where average sentence length is 
much shorter. For the Transformer, where only concatenation experiments were carried 
out, the best combination was one previous and one following source sentence on the source 
side and one previous target sentence on the target side, yielding a 2 B L E U gain over the 
baseline. 

A work by Maruf and Haffari [41] is different from the others since the authors con
sider global context. Memory networks are used to store and use the context information. 
A recent follow up work [42] is using the Transformer and a sparse hierarchical attention 
to encode document-level context. 

Recently, Jean and Cho [20] discovered that many of the models presented in previous 
work do not rely on the context information too much when translating a source sentence. 
The authors found this through a simple experiment - they replaced the context sentence 
with a random sentence from the dataset. A surprisingly low drop in B L E U score was 
observed. 

A novel, multi level pair-wise loss function is presented. This loss function adds penalty 
to the training loss when the usual cross-entropy loss for a sentence with correct context 
is not significantly better (or even worse) than the loss for the same sentence with a ran
domly sampled context. In another words, the model is encouraged to utilize the context 
by the fact that a correct translation paired with a correct context is assigned lower er-
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ror than a correct translation paired with a random context. Traditionally, N M T models 
that incorporate context are trained to maximize the log-likelihood on the training dataset 
V(tr) = X(tr)^y(tr)^c(ir) = y^d),..., (XN, YN, CN)} ., where X are the source sen
tences, C are the corresponding context sentences and Y are the reference target sentence. 
Log-likelihood is then defined as: 

C^V) = ^Y,Y.l°zp(y?\y<t>xN,cN) (2.6) 
n=lt=l 

where 9 is the set of the model parameters. 
Using the law of total probability, given a source sentence X, the additional context 

influence is neutral over the entire distribution of C: 

Pe (Vt\y<t, X) = (yt\y<t,X,C)p(C\X) =Ec^c\x\pe(yt\y<t,X,C)} ^.7) 
c 

When an additional context is used, there are two possibilities - either the context is 
useful or harmful. For useful context, the model is able to assign better probability to a 
correct translation (target token in case the context is provided than in case it is not. 

Harmful context refers to the inverse situation - correct translation is assigned higher 
probability when such context is not provided. Equations above are defined at the token 
level, but can be extended to a sentence a dataset level functions easily: 

stok(yt\-) =logpe (y*t\-) 

sseat(Y\.) = £T=i l °gP*( l£ |y<t . - ) (2.8) 

s d a t a ( y i - ) = E y e ^ s e n t m - ) 
Authors propose to regularize training with these equations for all three levels, based 

on margin-ranking loss [10]: 

K{9-V) =ad [(^=1Tnyd-sd^{y\X,C) + sd^{y\X)\ + 

+ « s £ j L i [Tn5s - s s e n t (Yn\Xn, Cn) + s s e n t (Yn\Xn)]+ (2-9) 

+«TEJL IE£ I [5T-stok(yf\y^t,Xn,Cn) + S

t o k (yf \yn

<t,Xn)}+ 

where the hyperparameters Sd, 6s and St are margins and a,d,as and at are regularization 
strengths for data, sentence a token level respectively. 

One of the issues is estimating the score that would be given to the translation without 
the additional context, since this would require to compute the score over all possible context 
sentences and the knowledge of p(C\X). Therefore, a simple approximation is used, based 
on a assumption that X and C are independently distributed p(C\X) = p(C) and that the 
distribution of C follows the distribution of dataset D. Then, the context-less probability 
can be estimated as: 

1 M 

S(-|-) = logp(-) « log — P ("I-. Cm) (2.10) 
m=l 

In the experiments, the authors set M = l , i.e. the shuffled the currently processed mini-
batch and chose one random context sentence for each source sentence. The definitions of 
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Model Correct context Random context 

Noncontextual baseline 29.16 - -
Context-aware transformer 29.34 28.94 0.4 
+ Context-aware learning 29.91 26.17 3.74 

Table 2.4: Results ( B L E U scores) of context-aware loss regularization applied to context-
aware Transformer [69]. Wi th the proposed regularization, context-aware Transformer out
performs the non-regularized model in terms of B L E U , and a higher drop in B L E U score 
can be observed when random context is supplied. This suggests that the regularized model 
depends more on the context sentence and it is able to utilize context information more 
effectively. Taken from [20]. 

useful and neutral context described above can also serve as an evaluation metric: Dur
ing the training with the proposed algorithm, difference of scores for correct and random 
contexts can be computed on a validation set to see the progress of training. Similarily, 
another metric can be defined, this time using B L E U scores - difference of B L E U scores of 
translations using the correct and using a random context. Using these metrics can help us 
understand how much does the model depend on the context information. 

Experiments (see Table 2.4) were carried out using a model proposed by Voita et al. [69], 
which was already described earlier. Based on tuning on validation set, the hyperparameters 
for the proposed loss were set to aT = = l,as = 0,5T = 5S = 0,5^ = log( l . l ) . They 
observed a negligible gain in B L E U score on the validation set and no gain on the test set 
using a context-aware model trained only to maximize log-likelihood without the proposed 
modifications. Also, when random context is supplied to this model, only a small (0.4) 
B L E U drop can be observed. 

When the proposed regularization is used, the model outperforms the baseline and a 
big drop in B L E U score is seen when random context is supplied instead of the correct 
one. This suggests that the model relies more on the context sentence and it is able to use 
the context to improve overall translation quality. Furthermore, as the modification affects 
purely the learning objective, this algorithm can be used in combination with virtually any 
context-aware N M T model. 
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Chapter 3 

Training and evaluation datasets 

Download corpus Split into documents Filtering |Split into train/dev/test 
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Manual inspection 
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Held out test set 
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Figure 3.1: Pipeline used in this work. Steps are explained in depth in current and the two 
following chapters. 

To compare the effects of utilizing context in different domains and with different types 
of data, three publicly available datasets were be used in the experiments: Europarl 1 , Open-
Subtitles20182 and W M T 1 9 datasets for the news translation task 3, including Paracrawl'1, 
which was preprocessed in a specific way, described later. The datasets were used to train 
models for English to Czech and English to French translation, W M T 1 8 dataset was used 
for English to Czech only. Overview of the complete workflow is presented in Figure 3.1. 
Sizes of individual datasets are provided in Table 3.1. 

3.1 Europarl 

Europarl [31] is a parallel corpus containing 21 E U languages, extracted from translations 
of European Parliament proceedings from 1996 to 2011. Since it is a content created by 

1http: / / opus.nlpl.eu/Europarl.php 
2http: / / opus.nlpl.eu/OpenSubtitles2018.plip 
3littp://www.statmt.org/wmtl9/translation-task.html 
4littps://paracrawl.eu/ 
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Dataset # lines # words # doc Dataset # lines # words # doc 

OpenSub train 41.8M 678M 55.6k 
OpenSub dev 7318 148k 20 
OpenSub test 15684 262k 20 

Europarl train 2M 115M 3138 
Europarl dev 42k 2.5M 20 
Europarl test 38k 2.3M 20 

OpenSub train 42.4M 636M 56.4k 
OpenSub dev 13.4k 214k 20 
OpenSub test 14.k 227k 20 

Europarl train 625k 31.4M 2060 
Europarl dev 7144 358k 20 
Europarl test 5170 258k 20 

W M T 1 9 58M 1.2G -
News CZ 07-18 73M 2.3G -

Table 3.1: Approximate sizes of datasets used in this work. 

professional translators and the sentences are generally aligned as they should be, the 
filtering step is omitted during the preprocessing. In this work, English to French and 
English to Czech parts of the corpus are used. 

3.1.1 Download 

The corpus was downloaded from O P U S 5 . Five files are needed - three archives containing 
the documents in Czech, English and French, and two X M L files with alignment info for 
the two language pairs. A toolkit called uplug, that serves for preprocessing and format 
conversion, is supplied alongside the OPUS corpora. In this work, script uplug-readalign is 
used to extract parallel documents using the X M L alignment file. 

3.1.2 Splitting into documents 

Uplug-readalign generates a long parallel file with all the parallel sentences for one language 
pair, while preserving the document boundaries. For the next steps, two simple Python 
scripts were created - readalign_to_docs.py changes the format of input file to slightly more 
convenient one, and also splits the documents into training, validation and test sets. Second 
one, docs2context.py, adds desired context (specified by command line parameters) to the 
sentences and generates files in a format which is suitable for direct usage as a training and 
test data for Marian (after applying B P E , see the next section). 

3.1.3 Byte pair encoding 

A n N M T system encoder converts source words into indices in the source vocabulary and 
subsequently into embeddings, also called word vectors. In the last layer of the decoder, 
probability distribution computed by a softmax function over the outputs of the layer, is 
used to choose a word from target vocabulary. There are two issues with this approach, 
especially for languages that use agglutination or compounding to form a new words, or 
are otherwise morphologically rich. 

First, it would be prohibitively expensive computationally- and memory-wise to use a 
huge vocabulary that would cover most of the words used in the language - reasonable sizes 
are in order of tens of thousands of words. Second, even it would be possible to use such 
a big vocabulary, most of the words would appear very sparsely in the training corpora. 

5http: / / opus.nlpl.eu/Europarl.php 
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With only few examples for a word, it is difficult for the network to learn a good quality 
embedding. For example, words like fotbal and fotbalový (meaning football as a noun, and 
football as an adjective) would not share any part of their representation, the word vectors 
would be learned completely independently during the training. 

Until character-level (or even better, byte-level) N M T systems are fast enough to be 
used in production, it is necessary to mitigate this problem. The solution is to split the 
words into smaller parts, called subwords or word pieces, which would reduce both of the 
issues, e.g. fotbal -> fot bal, fotbalový -> fot bal ový. The technique used in this work is 
called byte pair encoding (BPE), originally presented as a simple compression algorithm by 
Philip Gage [14]. 

B P E was adapted for use in N L P by Sennrich et al. [58]. First, a vocabulary of all 
characters in the training corpus is created and the sentences in the training data are split 
into characters. Then all symbol pairs are iteratively counted and the most frequent one is 
merged into one symbol, e.g. if i is frequently followed by n, in is added to the vocabulary. 
In the next iteration, if in is often followed by g, ing is added to the vocabulary. Number of 
these merge operations is a hyperparameter of the algorithm. The outcome of this algorithm 
is that a most frequent words are kept whole, while rare words are split into more common, 
smaller units. For all of the experiments, byte pair encoding is applied using subword-nmt6 

with 30000 merge operations. 

3.1.4 Sentence length analysis 

Since in some of the experiments, sentences are concatenated and thus the input sequence 
length is multiplied, it is useful to know distribution of sentence lengths, so the shortest 
possible maximum length can be used, without loosing too many training sentences. Python 
script hist_length.py generates a histogram of source sentence lengths in subwords and 
prints out percentage of sentences longer than a number of token specified by a parameter. 
For Europarl, maximum length of 80 subword units was chosen based on this analysis, 
which led to leaving out leaving out 1.2 % of the training sentences for both English-Czech 
and English-French language pairs. As discussed later, this choice was wrong and had to 
be adjusted for a fair comparison of the models. 

3.2 OpenSubtitles 

Preprocessing of OpenSubtitles generally follows the same steps specified above for Eu
roparl, with the difference of maximum sentence length allowed - as sentences are shorter 
in subtitles, 55 subword units is used as a limit, leaving out 0.02% of training examples for 
English-French and 0.03% for English-Czech. 

3.3 W M T 

It is very common in N M T research to see a new method that performs well on a small 
dataset, however, when evaluated on larger corpus, the gains vanish. To see if potential 
improvements on smaller datasets scale on larger data, a corpus used for training state-of-
the-art N M T models was used. Conference on Machine Translation ( W M T , based on the 
previous name „Workshop on Machine Translation") is an annual conference accompanied 

6github.com/subword-nmt 
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(a) OpenSubtiles (b) Europarl 

Figure 3.2: Source sentence lengths in subwords for English-French Europarl and Open-
Subtiltes. 

by an evaluation campaign. Training data for many tasks (e.g. translation in different 
domains, quality estimation, automatic post editing) and many language pairs are provided. 
Research groups can submit their systems, and results are evaluated by the participating 
researchers. 

In this work, models were trained on data provided for English-Czech translation of 
news. The parallel data consist of Europarl, CzEng , Common crawl, News commen
tary and Paracrawl datasets. Monolingual datasets are also provided, Czech News crawl 
2007-2018 was used in this work. To make use of the target language monolingual data, 
backtranslation [57] was performed, i.e. the monolingual News Commentary corpus was 
translated into English by an N M T model to create a parallel dataset. 

The Paracrawl dataset provided by the organizers is filtered and does not preserve 
document boundaries, which is making this version unsuitable for training a document-
level system. For this reason, the raw corpus was downloaded a preprocessed by a specific 
pipeline, described in the next section. 

3.4 Paracrawl 

Paracrawl is a recent project which is co-financed by the E U . It is a collection of parallel 
corpora, created by web crawling, and once finished, it will contain corpora for pairs of 
all official E U languages (as well as some others) and English. Since the Paracrawl corpus 
is composed with emphasis on recall, most of its contents is noise. For this reason, the 
preprocessing is more involved than for the other two corpora. The advantage of this 
corpus is that each sentence pair has a source and target U R L address, so the corpus can 
be split into documents. A fairly new technique for scoring translation adequacy is used to 
score sentences and compute average score for the whole documents. 

Documents with a low average score are filtered out, as well as documents that are 
deemed too different from a news domain (like car salesmen websites with lot of listings of 
offered cars, the translations can be adequate, but not really fit to be N M T training data), 

7

http: / /uf al.mf f. cuni. cz/czeng/czengl7 
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documents recognized as a different language than the expected one, or documents that do 
not pass through few other simple heuristics. 

3.4.1 Download 

Czech Paracrawl version 1 (unfiltered) and monolingual News Crawl 8 (for training a lan
guage model later on, news2014 to news2018) corpora are used in this part. The raw 
Paracrawl comprises of roughly 820 million sentences for English to Czech. 

3.4.2 Deduplication 

First step is to deduplicate the sentence pairs, since it would be wasteful to run compu
tationally expensive language identification and adequacy scoring more times on the same 
sentence pairs. This is done using a simple awk command. 

3.4.3 Language filter 

Due to high noise ratio, it is essential to carry out language identification and filtering. 
In this work, langid.py [39] is used to perform this task. This script implements a naive 
Bayes classifier, using 1 to 4-grams of bytes as an input. Pre-trained models for nearly 
one hundred languages are available, including English, French and Czech. Using langind, 
language of each sentence is estimated and sentences with other than expected language 
are filtered out. For Czech, sentences classified as Slovak or Slovene are also admitted to 
improve recall. 

3.4.4 Scoring 

For each sentence pair in deduplicated and filtered data, adequacy and domain score is 
estimated by technique presented in a paper by Junczys-Dowmunt [23] - dual conditional 
cross-entropy filtering. 

Dual conditional cross-entropy filtering is a novel method of filtering noisy parallel data, 
based on difference and absolute value of cross-entropy scores of the sentence pairs scored 
by two inverse N M T models. It is often crucial to apply some kind of filtering based on 
sentence pair adequacy, as N M T is very sensitive to data noise [29] [6]. A similar concept 
was used before for selecting in-domain monolingual data to train language models. This 
method is very straightforward - first it is necessary to train models for the desired language 
pair on „clean" (WMT18 is this case) data in both directions. The next step is to use the 
models to score sentence pairs from noisy corpus (e.g. Paracrawl) with word-normalized 
cross-entropy. The score is computed as 

I I T 2 

where A and B are the cross-entropy scores. The first part of the formula aims to maxi
mize agreement on how probable is that one side is translation of the other. The second 
part penalizes sentences where both sides are equally probable, but the probability is very 
low. This formula produces positive values, with zero being the best one. To obtain final 

8http://www.statmt.org/wmtl8/translation-task.html 
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adequacy score within 0-1 range, where 1 is the most adequate translation, the result is 
negated and exponentiated: 

Using this score, highly adequate sentence pairs can be obtained from the training corpus. 
However, large percentage of adequate sentences is not fit as N M T training data, e.g. 
product names from e-shops, headers and footers, dates, menu items and so on. To filter 
out this part of data, very similar concept as above can be used. First, it is necessary to 
train two language models for the target language - one on all of the data we want to apply 
the filtering to, another one on clean data similar to filtered sentences we are expecting. 
In this work, W M T monolingual News corpus will be used as an approximation of general 
domain clean data. After training the models on Paracrawl and News, domain score is 
computed as follows: 

Where A a B are the cross-entropy scores of general (Paracrawl) and in-domain (News) 
L M for given target sentence. The values are clipped at 1 for further processing to prevent 
high domain score outweigh low adequacy score, as both of them are multiplied to obtain 
the final score: 

This method was used in W M T 18 En-De translation winning system [24] and also won 
W M T 18 data filtering shared task [23]. 

Since the unfiltered corpus is very large and contains a lot of duplicate sentence pairs, 
scoring the whole corpus would be very time consuming and wasteful. Thus, only a subset 
of the sentences, obtained by deduplicating and language filtering, was scored. However, 
for context-aware models training, whole documents, without any missing sentences are 
needed. The scored sentences from filtered and unfiltered corpora need to be matched, and 
the scores need to be mapped back into the unfiltered version. 

For this purpose, first a hash of concatenated source and target sentence from the 
filtered, scored corpus is made, using hash.py script. A hash table that assigns a score to 
each hash is created. Then the whole unfiltered corpus is iterated over, each sentence pair 
is hashed and looked up in the hashtable (match_hashes .py). If found, the score is added 
to the sentence pair. If not found, meaning that this sentence pair was removed by the 
language filter, the score is set to zero. 

After having the complete, document-segmented corpus scored, average scores for each 
documents are computed. Documents with a score above a certain threshold are then 
selected and preprocessed in the same manner as Europarl and OpenSubtitles corpora 
described above. 

adq = exp 

dom = exp{—[A — B]) 

dom = max(dom, 1) 

score = dom x adq 

28 



Chapter 4 

Proposed models 

This chapter describes the context-aware N M T architectures which where evaluated in this 
work. Their possible advantages as well as shortcomings are discussed. 

4.1 Baselines 

The Transformer [68] and R N N network with G R U cells were used as a baseline. The 
base Transformer model was already described earlier, in Chapter 2. For Transformer, the 
hyper parameters were generally the same as in the original paper. A baseline Transformer 
architecture is presented in Figure 4.1. For the R N N model, the systems were similar 
to WMT2017 systems by University of Edinburgh [54]. Training scripts with the exact 
parameters can be found on the attached C D , or at https://github.com/cepinl9/dp. 

4.2 Concatenation 

The most straight-forward approach to employ extended context is to simply concatenate 
multiple sentences as an input of the model. Main advantage of this approach is the 
simplicity - the changes are made solely on the preprocessing level. To inform the model 
which part of the input is supposed to be translated, and which part should be treated 
only as an additional context, the sentences can be separated by a special token. Another 
way of differentiating between source and context sentences is to use binary flag for each 
input token (also called features or factors in the literature [15] [56]), as in a paper by Voita 
et al. [69]. This method was not evaluated in this work, since the used framework lacks 
implementation of such input factors. 

First possible downside to using concatenation is the increased sequence length - re
sulting in higher memory usage, and longer computation time for R N N models, since the 
input is processed sequentially, token by token, by these models. Additionally, RNNs suffer 
from problems with long-term dependencies, even if gating mechanisms ( L S T M , G R U ) , 
and attention, which should mitigate them, are employed. The reason behind this is is in 
inherently sequential nature of RNNs. The number of steps between processing two tokens 
is linear in regard to their distance in the input sequence, and in each step, part of the 
information about the first token vanishes. For the Transformer, the sequence length does 
not pose such problem, since there is no notion of distance between input symbols (position 
representation of each token is added explicitly), all the input symbols are processed simul-
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Figure 4.1: Schematic overview of the vanilla Transfomer model, used as a baseline and for 
the concatenation experiments. Taken from [73]. 

taneously and are connected directly by the network. The experimental results presented 
later support this hypothesis. 

Another possible downside is that a large number of the available training corpora either 
do not contain document boundaries, or, even worse, are shuffled. Training examples from 
such corpora have no context information. It is possible to specify a „null" context for 
these sentences and either mix them with sentences from document split corpora, or first 
train on these sentences and then fine tune the model on the sentences from document split 
corpora. However, experiences from domain adaptation and similar tasks show that N M T 
models are prone to the catastrophic forgetting problem [59] [3] [48] [71], possibly leading 
to suboptimal training data utilization when using this approach. 

Finally, also due to the same forgetting problem mentioned above, it is not easily possible 
to use already trained sentence-level models, context-aware models using concatenation have 
to be trained from scratch. This can be a costly procedure in scenarios with many language 
pairs or domains. 

4.3 Mul t ip le encoders 

Another way to integrate the context into an N M T model is via an additional encoder, 
which may or may not have a same structure as the original one. 

4.3.1 Two identical encoders 

The simplest multiple encoder model employs two encoders with identical structure. Source 
sentence is fed into the original encoder, and context sentence into the additional one. En-
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Figure 4.2: Schematic overview of the dual encoder Transformer model with serial encoders-
decoder attention. 

coding runs independently for both of the encoders. Encoders can have either separate, or 
shared layers, i.e. weights of the encoder neurons are the same in both encoders, identical 
weight matrices are used. For dual encoder with shared layers, a special token may be 
concatenated to the context sentence, so that the encoder learns to treat context sentences 
differently than source sentences. In decoder, the only difference in regard to the vanilla 
model is that source-target attention the decoder attends over both encoders. Let and 

(2) 

c\ be the context vectors produced by an attention over source and context encoder hid
den states, respectively. The decoder needs to by able to combine attention information 
from both encoders, and there are a several attention strategies for multiple encoders. Pos
sible combination methods for RNNs are discussed for example in [5]. The first presented 
approach is to concatenate the context vectors created by the encoders, use linear trans
formation to resize the vector back to its original size and compute the attention over this 
vector: 

d = Wr + bc 

Wc and bc are the learned weights and biases, and Cj denotes the final context vector used 
by the decoder. Another way is to use for example hierarchical attention, introduced by 
Libovicky and Held [37], which performed well in [5]. Other possibilities of multi-encoder 
attention in RNNs are not discussed here, since my work is mainly centered around the 
Transformer model. 

For the Transformer, Libovicky and Held [38] propose three multiple encoder attention 
strategies. The first one, which is called serial in the paper, is presented in Figure 4.2. 
In this approach, the attention sub-layer is simply repeated for each encoder. In another 
words, an encoder-decoder attention is first computed for the first (source) encoder. Let 
C 1 and C 2 be states of the first (source) and second (context) encoders respectively, and 
S 1 _ 1 output of the previous layer of the decoder. This output vector, already containing 
information about which parts of the source sentences are attended to in the current step 
of decoding, is used as a query for the encoder-decoder attention over the second encoder 
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A * e Z j is the result of decoder self-attention, A | N C L is the result of attention over the first 
encoder, A | N C 2 is the result of attention over the second encoder and S* is the new decoder 
hidden state. 

Another approaches presented in the work are parallel, flat and hierarchical attention. 
Since the authors did not observe significant differences between the performance of these 
strategies, my work only explores serial attention, i.e. decoder first attends over one encoder 
and then, with state already updated by this attention, attends over the second one. 

4.3.2 Context encoder 
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Figure 4.3: 
from [73]. 

Schematic overview of the Transformer model with context encoder. Taken 

Inspired by [73], I implemented Transformer with context encoder in Marian [25]. This 
architecture also utilizes two encoders, yet there are a few differences in comparison with 
multiple encoder architecture described above. First, the encoders are not exactly the same 
- the context encoder has fewer self-attention layers (only one, while the source encoder has 
six). Second, the context encoder states are also attended over in the source encoder, and 
not only in decoder, in contrast to the previous approach. Also, the influence of context 
encoder is gated by a sigmoid gate. This should allow better usage of the context. Schematic 
overview is presented in Figure 4.3. 
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The context encoder consists of iV c layers that have the same structure as in the original 
Transformer model - self-attention, followed by position-wise fully-connected feed forward 
layer. Residual connection and a layer normalization are used after each of the sublayers. 
Computation steps performed in each layer are then: 

A* = MultiHeadAtt ( C * - 1 , C*" 1 , C1'1) 

Ai = Layer N or miC1'1 + A') 

C* = [FNN (A\) F N N (A \ I ( 4 ' 2 ) 

M , 

Cl = LayerNorm{Al + Cl 

(4.3) 

where C% the annotation vector in layer i. The annotation vector from the last layer of 
context encoder is incorporated into both source encoder and decoder. 

In the source encoder, an additional context attention layer is used in between self-
attention and feed forward layer. Since the source sentence is usually more important for 
a correct translation than the context sentence, and since residual connections after the 
context attention may allow the context representations to influence the source representa
tions uncontrollably, it may be beneficial to restrict the context encoder influence. For this 
reason, a gating mechanism is used for the residual connections after the context attention 
layer. Source encoder the performs this function: 

A* = MultiHeadAtt (S1'1, ST'1, S1'1) 

A1 = Layer Nor miS*'1 + A*) 

= MultiHeadAtt {A\ CN% CNc) 

D ! = LayerNorm{A% + D l) 

S* = F N N (D*x) ; . . . ; F N N (p\ 

S* = LayerNormiXS* + (1 - X)DI) 

where A is the sigmoid gate with learned weights - W j and H + W s are trainable weights 
of the gate function: 

X = a ( W i H + W s SubLayer(H)) 

In the decoder, the context annotation vector is incorporated in the same manner. Each 
decoder layer has four sublayers - self-attention, source encoder-decoder attention, context 
encoder-decoder attention and a feed forward layer. 

This architecture allows for a vanilla Transformer model to be pretrained on general data 
without document boundaries, which are usually much larger than a document-split training 
data. Then, the weights of this base model are frozen and the additional components 
(highlighted in red in Figure 4.3) are added. Their weights are then tuned on a smaller 
corpus with document level information. During inference, the system can either use the 
full model in case that the input has context information, or only the pretrained part, for 
single sentence translation. 
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4.3.3 Context-aware Transformer 

The second architecture implemented in my work is the context-aware Transformer, pre
sented by Voita et al. [69]. Experimental results and observations obtained in the original 
paper are summarized in Chapter 2, section Related work. Overview of the encoder is shown 
in Figure 2.6. The source encoder consists of iV layers, with N — 1 layers identical as in 
the original Transformer encoder. The last layer is used to incorporate the encoded con
text representations. Aside from the source encoder self-attention, this layer also performs 
attention over the context encoder representations. The outputs of these two multi-head 
attention blocks are combined together using a gated sum: 

a[Wg ^s—attn) ^(c—attn) 
+ M ( 4- 4) 

C l = 9 l 0 c t a t t n ) + (1 - 9i) © c t a t t n ) (4-5) 

where c\c a t t n > l is the attention output for the context encoder, c\s a t t n > l is the attention 
output for the source encoder, Wg and bg are the learned weights and bias for the gate and 
Ci is the final, gated sum. A position-wise, feed-forward layer is applied to this sum and 
the resulting tensor is used in the decoder. 

Structure of the context encoder is the same as the structure of the original Trans
former encoder. First N — 1 layers shared their weights with the corresponding layers in 
the source encoder, only the last layer has its own set of weights. Since most of the layers 
are shared, to make it possible for the encoders to distinguish whether source or context 
sentence is being encoded, a special token, denoted <bos>, is inserted at beginning of the 
context sentences. Decoder is identical to the original Transformer decoder. 
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Chapter 5 

Implementation 

The N M T framework used in this work is Marian [25], which is fast and efficient, written in 
pure C++ with minimal dependencies. It provides differentiation engine based on dynamic 
computation graphs, unified G P U / C P U interface, and implements most of the current state-
of-the-art architectures and techniques in N M T , including both of the network architectures 
that are used in this work - R N N and Transformer. 

The basic unit of the computation graph is Chainable, usually referenced by its pointer 
of type Expr in the code. A l l the building elements of the computation graph, like weight 
matrices, inputs and operations, are of type Chainable. At least two methods are usually 
implemented in a Chainable which represents an operation: forward, which performs the 
implemented function on the inputs, and backward, which computes the gradient for the 
weights updates. 

In this work, most modifications are done on a higher level of abstraction and consist 
of combining already existing building blocks into an encoder-decoder model. A simplified 
example of the interface of encoder-decoder model follows: 

class Encoder { 

EncoderState build(batch); 

Specific models like Transformer derive their encoder and decoder from a class similar 
to the one presented here, and implement the functionality. The Encoder: :build creates 
the computation graph for the encoder and returns EncoderState based on the input 
inside the batch. Batch is a matrix containing vocabulary ids of words in the input data. 
EncoderState holds the context vector produced by the encoder and a mask for this vector. 

The Decoder: :step method uses EncoderState and DecoderState to generate logits 
(probabilities of all words in target vocabulary) for one step of the decoding, and then 
updates the DecoderState. 

In the previous chapter, four approaches to employing context in N M T are proposed. 
First of them, concatenation, does not need any changes to the baseline model. The second 

>; 

class Decoder { 

DecoderState 

DecoderState 

startState(EncoderState[], batch); 

step(DecoderState); 

} 
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Figure 5.1: Implementation of dual encoder and context encoder in Marian 

one, dual encoder model with identical encoders, is already implemented in Marian, using 
serial encoders-decoder attention. Thus, only the context encoder by Zhang et al. [73] and 
context-aware Transformer by Voita et al. [69] were actually implemented. 

5.1 Mar ian source structure 

Marian only has an automatically generated, Doxygen code documentation. A bit outdated 
version available at https://marian-nmt.github.io/docs/marian/classes.html. A cur
rent version can be generated using make doc in the build directory. 

Generally, two source files need to be edited to add a new model. First is the file 
containing the actual implementation, in case of the Transformer model it is located in 
models/transformer, h. A l l the models must be registered in models/model_f actory. cpp. 
This registration links the constructor of the model with configuration options determining 
the model type - e.g. when the training parameter type is set to transformer in the config 
file or on the command line, the registration assures that the constructors for Transformer 
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encoder and Transformer decoder are called. Source file common/conf ig_parser .h also 
needed to be edited to add config options for freezing pretrained layers and controlling num
ber of context encoder layers and gating. In my case, I also had to modify model/states .h, 
so that the EncoderState can also hold the context encoder context vector. 

The original Transformer model is implemented in classes EncoderTransf ormer and 
DecoderTransf ormer, which are both derived from Transformer class with either BaseEncoder 
or BaseDecoder as a class template. The Transformer class implements the layers and 
functions utilized by a Transformer model, and only slight changes are made in these. 

Most modifications are done in the EncoderTransf ormer class. Implementation of 
context encoder is described in the next section. 

5.2 Context encoder 

In Marian, multiple encoder models are supported, and it would seem intuitive to make use 
of their implementation. However, it is not easy to adapt the implementation to the needs 
of the context encoder model. The central issue is that the multiple encoders are meant to 
run in parallel, whereas in the context encoder architecture, a representation of the context 
sentences must be computed first, since it is used during encoding of the source sentence. 

To get around this issue, I decided to create a new encoder class that implements both 
encoders, and returns two context vectors instead of one. Since this class is treated as a 
single encoder elsewhere in the code, I also had to adjust the decoder to attend over both 
context vectors generated by the encoders. Another issue that arises with this approach 
is how to divide the input between the encoders correctly, i.e. how to make the context 
encoder encode the context sentence and the source encoder encode the source sentence. 
Schematic illustration of the difference between implementing dual encoder as two separate 
encoders, and a context encoder as a single class, are presented in Figure 5.1. After resolving 
these issues, the implementation consists mostly of putting together already implemented 
building blocks (layers) and making small modification to them, to allow gating of the 
residual connections a freezing of the weights. 

Two new classes were added to transformer .h - EncoderTransformerContext and 
DecoderTransf ormerContext, based on EncoderTransf ormer and DecoderTransf ormer. 
First, the issue with splitting the input between context encoder and source encoder needs 
to be solved. Input data are passed to the apply function through a parameter batch, 
which is of type data: :CorpusBatch. It can be thought of as a vector which contains 
matrices of word ids for a batch from each of the input files, demonstrated in Table 5.1. In 
code, such batch would look as follows: 

batch=[[[I0SlWl,I0S2Wl,I0S3Wl,I0S4Wl],[I0S1W2,I0S2W2,I0S3W2,I0S4W2],...],\ 

[[I1S1W1,I1S2W1,I1S3W1,I1S4W1],[I1S1W2,I1S2W2,I1S3W2,I1S4W2],...]] 

where I denotes the input file index, S is the sentence number, and W is the index of a 
word in the sentence. Hence, with values presented in the table, the contents of the batch 
vector would be: 

batch=[[[53,13,457,235],[145,421,111,9888],...] ,\ 

[[31,10,7,15],[587,154,11,782],...]] 
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W 1 W 2 W 3 W 4 W 5 W 1 W 2 W 3 W 4 W 5 
S 1 53 145 1289 17 454 S 1 31 587 4588 1145 154 
S 2 13 421 13 246 1134 S 2 10 154 124 985 78 
S 3 457 111 22 586 5457 S 3 7 11 78 548 1 
S 4 235 9888 553 988 4554 S 4 15 782 587 8 4 

(a) batch[0] = one batch of sentences from (b) batch[l] = one batch of sentences from 
the source file the reference file 

Table 5.1: Example of a batch structure, which holds input word ids, for two input files 
(source and target), batch size 4 and sentence length 5. Rows are sentences and columns 
are words in each sentence. 

To select a batch of sentences belonging to one of the input files, the topmost index is 
used. For example, when using two encoders, there are three input files - two source files 
and one target file with reference translations. Then batch [0] contains batch of sentences 
from the first input file, batch[1] from the second input file and batch [1] contains the 
reference translations. Constructors of EncoderTransf ormer and DecoderTransf ormer 
can be passed an index parameter that is used to select the correct batch. However, I can't 
use this index, since both of the encoders are implemented in a single encoder class and are 
instantiated as a single object. To simplify the implementation, only two source files and 
one target file are considered - then it is safe to use fixed indices: 0 for context encoder, 1 
for source encoder and 2 for decoder. 

After having solved the input processing issues, the next step is to actually implement 
the network. A l l the building blocks (layers) all already implemented, hence it is only 
needed to put them together and make a few small modifications to enable gating and 
freezing of the weights. 

First step of the encoding is to convert vocabulary word ids in the input batches into em-
beddings. EncoderTransformer::createWordEmbeddingLayer() method is used to create 
the embedding layer. The same embedding layer will be used word both encoders, since 
same vocabulary is used for all the inputs. After using apply method of the embedding 
layer on both batches, a tensor consisting of embeddings for all of the words is stored in 
variables layer for the source sentences and layerContext for the context sentences. From 
now on, there are two different paths in the computation graph. 

For the context encoder, the usual Transformer encoding layer is applied n times, 
where n is defined by the context-enc-depth option, which had to be added in the 
common/conf ig_parser. cpp file. The layer consists of two functions: 

Expr Transformer::LayerAttention(std::string prefix, Expr query, const 

Expr& keys, const Exprfe values, const Expr& mask, bool cache = false, 

bool saveAttentionWeights = false, bool trainable=true) 

Expr Transformer::LayerFFN(std::string prefix, Expr input, std::string 

op="", bool trainable=true) 

The first function performs multi-head self-attention, residual connection after this op
eration, and also the final layer normalization. The prefix parameter is an identifier of 
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the node in the computation graph. Tensors query, keys and values are inputs of the 
self-attention function as described in Chapter 2. In case of self-attention, all three input 
tensors are the same, and they are obtained either as output of the previous layer, or, in 
case of the first layer, output of embedding layer. The function returns tensor of the same 
dimensions as query and it is again stored into the layerContext variable. 

This tensor is an input of the position-wise feed forward layer, represented by LayerFFN 
function. This layer applies the same linear transformation to each input position, i.e. to 
each input token representation stored in the input tensor. This transformation is followed 
by residual connection and layer normalization. Output of this sub-layer is again a tensor 
with the same dimensions, which is used as a query, key and value for the subsequent self-
attention layer, or, in case of the last encoder layer, as a context vector used in the decoder. 
The output is stored into the layerContext variable. In a simplified code, the complete 
context encoder looks as follows: 

Expr embedding=createWordEmbeddingLayer(0); 

Expr layerContext=embedding->apply(0/*batch index*/); 

auto contextEncDepth = opt<int>("context-enc-depth"); 

for (int i = 1; i <= contextEncDepth; ++i) { 

//multi head self-attention 

layerContext = LayerAttention("context_encoder_self_" + i , 

layerContext, // query 

layerContext, // keys 

layerContext, // values 

layerMaskContext); 

//position-wise feed forward network 

layerContext = LayerFFN("context_encoder_ffn" + i , layerContext); 

} 

The source encoder implementation is very similar, with a small number of modifica
tions. Another sub-layer is placed between the self-attention and the position-wise feed for
ward layer. This sub-layer performs attention over the context representation created by the 
context encoder. This attention is implemented by the same function - LayerAttention, 
the only difference are the input parameters. Query tensor is obtained as the output of 
previous layer (or embedding layer in the first layer), which is stored in variable layer, keys 
and values are the context vector, output of the last layer of the context encoder, stored in 
layerContext. 

Parameter trainable was added to the original function to allow freezing of some of 
the layers when training only the context part of the model. In the context encoder, this 
value is always set to true, since only weights for the pretrained original Transformer blocks 
are frozen during the context Transformer training. This parameter propagates deeper 
into the function creating nodes in the computation graph. On the lowest level, in file 
graph/nodes .h, trainable_ attribute of the node representing the weights is set to the 
bool value of the parameter. 

The subsequent position-wise feed forward layer uses a gated residual connection, i.e. 
before summing the input and output tensors of the layer, they are weighted by a sigmoid 
gate. This is done to prevent uncontrolled influence of the context on the source encoder 
representations - usually, source sentence is far more important for the translation than 
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the context sentence, and it might be beneficial to let the network learn to regulate the 
influence of the context encoder. In simplified code: 

/*normal residual connection*/ 

//preprocessing of the input tensor, e.g. dropout 

auto output = preProcess(prefix + "_Wo", opsPre, input, dropProb, 

trainable); 

//position-wise FF layer 

output = dense(output, prefix, /*suffix=*/std::to_string(depthFfn), 

dimModel,nullptr,0.Of,trainable); 

/*residual connection*/ 

output = input+output; 

/*gated residual connection*/ 

//sigmoid gate 

Expr sigmoid_gate2(Expr x, Expr y, std::string prefix, std::string suffix, 

int outDim) { 

auto graph_x = x->graph(); 

auto graph_y = y->graph(); 

//trainable parameters 

auto Wi = graph_x->param(prefix + "_Wi" + suffix, {x->shape()[-1], 

outDim]-, inits: :glorot_unif orm); 

auto bi = graph_x->param(prefix + "_bi" + suffix, {1, outDim}, 

inits::zeros); 

auto Ws = graph_y->param(prefix + "_Ws" + suffix, {x->shape()[-1], 

outDim}, inits::glorot_uniform); 

auto bs = graph_y->param(prefix + "_bs" + suffix, {1, outDim}, 

inits::zeros); 

x = affine(x, Wi, bi); 

y = affine(y, Ws, bs); 

x = sigmoid(x + y); 

return x; 

} 

auto output = preProcess(prefix + "_Wo", opsPre, input, dropProb, 

trainable); 

output = dense(output, prefix, /*suffix=*/std::to_string(depthFfn), 

dimModel,nullptr,0.Of,trainable); 
auto lambda= sigmoid_gate(input,output,prefix,"lambda",dimModel); 

//gated residual connection 

output=lambda*output+(1-lambda)*input 

} 
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The desired training sequence is to first train the vanilla Transformer on sentence-level 
corpus, freeze the weights, add context-aware extensions and train only the newly added 
parameters on a document-level corpus. For this purpose, all of the layers of the source 
encoder, excluding the attention to the context encoder and the sigmoid gates, are frozen 
during the training on the document-level corpus. 

After the encoder computation is completed, EncoderState is returned. EncoderState 
is implemented in models/states .h and holds the context vector produced by the encoder, 
corresponding mask, and pointer to the input batch, stored in private attributes context_, 
mask_ and batch_. These values were stored in variables layer, layerMask and batch in 
the encoder build () method. The contents of the context vector and mask are accessible 
from the decoder by methods getContextO and getMask(). Since two encoders, each one 
with its own context vector and mask, are used, the EncoderState class was modified by 
adding new attributes to also hold the vectors produced by the context encoder: 

/*original encoder state*/ 

EncoderState::EncoderState(Expr context, Expr mask, Ptr<data::CorpusBatch> 

batch); 

EncoderTransformer::build(Ptr<data::CorpusBatch> batch){ 

... //computation 

return new<EncoderState>(layer,layerMask, batch); 

} 

/*modified encoder state for context encoder*/ 

EncoderState::EncoderState(Expr context, Expr mask, Expr documentContext, 

Expr documentMask, Ptr<data::CorpusBatch> batch); 

EncoderTransformerContext::build(Ptr<data::CorpusBatch> batch){ 

... //computation 

return new<EncoderState>(layer,layerMask, layerContext, 

layerContextMask, batch); 

} 

The decoder was also slightly modified to attend to context vectors from both encoders. 
One more encoder-decoder attention layer was inserted after decoder self-attention. The 
original Transformer layers are frozen and residual connection after sub-layer following the 
context encoder attention sub-layer is gated: 

/*original decoder*/ 

DecoderTransformer::step(<DecoderState> state){ 

auto encoderContext = encoderState->getContext(); 

auto encoderMask = encoderState->getMask(); 

auto query = state->getTargetEmbeddings(); 

for(int i = 0; i < decDepth; ++i) { 
//decoder self-attention, different function because future 

postions in decoder state need to be masked 
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query = DecoderLayerSelfAttention(decoderState, prevDecoderState, 

name, query, selfMask, startPos); 

//encoder-decoder attention 

query = LayerAttention(name, 

query, 

encoderContext, // keys 

encoderContext, // values 

encoderMask); 

query = LayerFFN(prefix_ + "_]_" + layerNo + "_ffn", query); 

} 

//probabilities of words in the target vocabulary for this step of 

decoding 

Expr logits = output_->apply(query); 

//update decoder state for the next step 

return New<TransformerState>(decoderStates, logits, 

state->getEncoderStates(), state->getBatch()); 

/*modified decoder*/ 

DecoderTransformerContext::step(<DecoderState> state){ 

auto encoderContext = encoderState->getContext(); 

auto encoderMask = encoderState->getMask(); 

auto encoderDocumentContext = encoderState->getDocumentContext(); 

auto encoderDocumentMask = encoderState->getDocumentMask(); 

auto query = state->getTargetEmbeddings(); 

for(int i = 0; i < decDepth; ++i) { 
//decoder self-attention, the weight are frozen 

query = DecoderLayerSelfAttention(decoderState, prevDecoderState, 

name, query, selfMask, startPos, Ifreeze); 

//context encoder-decoder attention 

query = LayerAttention(name, 

query, 

encoderDocumentContext, // keys 

encoderDocumentContext, // values 

encoderDocumentMask); 

// source encoder-decoder attention 

query = LayerAttentionGated(name, 

query, 

encoderContext, // keys 

encoderContext, // values 

encoderMask,Ifreeze); 

query = LayerFFN(prefix_ + "_]_" + layerNo + "_ffn", query, 

!freeze); 

} 

//probabilities of words in the target vocabulary for this step of 

decoding 

Expr logits = output_->apply(query); 

//update decoder state for the next step 
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return New<TransformerState>(decoderStates, logits, 

state->getEncoderStates(), state->getBatch()); 

} 

5.3 Context-aware Transformer 

The second model implemented in my work is the context-aware Transformer by Voita et 
al. [69]. The modifications are similar as above, with the difference that for this model, 
only the encoder had to be modified, while decoder stays the same. 

The same approach as above was used for the input processing - encoder is implemented 
as a single class and the input batch is divided into source sentence and context in the same 
fashion as in the previous case. The structure of the encoder is different (see Figure 2.6) -
there are no connections between the encoders up until the last layer, where states of the 
encoders are gated through a sigmoid gate and summed. The sigmoid gate was already 
implemented in the previous section. Only this single context vector is returned by the 
encoder, opposed to two context vectors, one for each encoder, returned by the previous 
model. The original Transformer decoder without any modifications can be used thanks to 
this fact. 

The modified encoder is implemented by the EncoderTransf ormerVoita class. Simpli
fied commented code follows: 

/*compute word embeddings*/ 

Expr contextLayer=embedding->apply(0/*batch index*/); 

Expr layer=embedding->apply(1); 

//layer created in this loop are identical for both encoders and share the 

weights 

for(int i = 1; i <= encDepth-1; ++i) { 

//context encoder self attention 

layerContext = LayerAttention(prefix_ + "_]_" + std::to_string(i) + 

"_self", 

layerContext, // query 

layerContext, // keys 

layerContext, // values 

layerMaskContext); 

//source encoder self attention, weights are shared with the context 

encoder 

layer = LayerAttention(prefix_ + "_]_" + std::to_string(i) + "_self", 

layer, // query 

layer, // keys 

layer, // values 

layerMask); 

layerContext = LayerFFN(prefix_ + "_]_" + std::to_string(i) + "_ffn", 

layerContext); 

layer = LayerFFN(prefix_ + "_]_" + std::to_string(i) + "_ffn", layer); 

} 
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//final context encoder layer, not shared with the source encoder 

layerContext = LayerAttention(pref ix_ + "_]_" + 

std::to_string(encDepth) + "context_self", 

layerContext, // query 

layerContext, // keys 

layerContext, // values 

layerMaskContext); 

layerContext = LayerFFN(prefix_ + "_]_" + std::to_string(encDepth) + 

"context_ffn", layerContext); 

//attention over the context encoder with source encoder 

representations as queries 

auto layerContextSource = LayerAttention(prefix_ + "_]_" + 

std::to_string(encDepth) + "context_src_self", 

layer, // query 

layerContext, // keys 

layerContext, // values 

layerMaskContext); 

//final source encoder self-attention 

auto layerSource = LayerAttention(prefix_ + "_]_" + 

std::to_string(encDepth+l) + "_self", 

layer, // query 

layer, // keys 

layer, // values 

layerMask); 

//gating function 

auto lambda=sigmoid_gate2(layerContextSource,layerSource,"sum_gate",\ 

"lambda",layerContextSource->shape()[-1]); 

auto output=lambda*layerContextSource+(1-lambda)*layerSource; 

output = LayerFFN(prefix_ + "final_ffn", output); 

return New<EncoderState>(output, batchMask, batch) 

5.4 Scripts 

Aside from implementing the context-aware models, several support scripts were created or 
modified. They can be divided into two categories: preprocessing and evaluation. 

5.4.1 Preprocessing 

To split datasets into documents, filter them, and convert them into a format suitable for 
training, a set of Python scripts was created. For other preprocessing tasks, commonly 
available tools were used. These necessary preprocessing steps, scripts and tools are de
scribed in detail in Chapter 3. A quick overview of the most important custom scripts 
created for this work follows: 
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readalign_to_docs.py 

doc2context.py 

length_hist.py 

preprocess.sh 

Converts output of uplug-readalign into a parallel corpus 
format and splits the corpus into dev/train/test sets. 

Converts the output of previous script into a format suitable 
for a specific architecture, e.g. token-delimeted sequence of 
sentences for the concatenation architecture. Also performs 
tokenization and truecasing. 

Creates a histogram of sentence lengths in a corpus. 

Runs B P E algorithm on training data for a specific model 
architecture. 

preprocess_wmt.sh 

context2dual. py 

Runs a complete preprocessing pipeline for W M T corpus. 

Converts token-delimeted corpus into multiple files, suitable 
for dual encoder models. 

score.sh 

hash.py 

hash_match.py 

Scores a corpus using dual cross-entropy filtering. Used for 
Paracrawl preprocessing. 

Computes hashes of sentence pairs from filtered input par
allel corpora and creates a hash table with adequacy and 
domain scores as values. Used for Paracrawl preprocessing. 

Iterates over unfiltered parallel corpus, computes a hash 
for each sentence pair and finds the score in the hash table 
created by the previous script. Used for Paracrawl prepro
cessing. 

5.4.2 Evaluation 

Evaluation procedure is described in depth in the following chapter. Again, only a brief list 
of scripts is presented here: 

trans test.sh Translates a test set with selected model, saves both the 
raw and postprocessed output and computes B L E U and 
chrF scores. 

bootstrap_par.py Uses a bootstrap resampling to compute statistical signifi
cance of differences between two candidate translations of 
a test set in regard to the reference. Outputs p-value for 
which one system performs significantly better than the 
other one, and confidence intervals. 

test all.sh Runs the previous two scripts for selected models and saves 
the results. 
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eval. py Converts a discourse test set from JSON to a parallel corpus 
format suitable for scoring by an N M T model and runs the 
preprocessing. 

get_scores_*. sh Scores the test set created by the previous script by a given 
model. 

normalize.py Normalize the scores obtained by the previous script by 
target sentence length. 

compare.py Compares the normalized scores and computes accuracy of 
a model on the discourse test set. 
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Chapter 6 

Experiments 

Experimental evaluation of different approaches to employing context in N M T is the pivotal 
part of my work. In the first section, some of the intricacies of M T evaluation are discussed 
and metrics used in this work are described. In the second part, results of the experiments 
are presented and analyzed. Only the most relevant results are presented here for the sake 
of clarity, complete overview of successful experiments is located on the accompanying data 
medium, along side with test and dev sets translated by some of the systems. 

6.1 Tools 

Preprocessing steps and tools are described in Chapter 3. Marian framework is presented 
in Chapter 5, so only a breif describtion of both follows. 

Preprocessing Standard Moses scripts are used for tokenization, truecasing and cleaning 
of the data. Language filtering is performed using langid.py [39]. Finally, splitting input 
text into subword units to resolve the open vocabulary problem is done using subword-nmt 
[58]. Other preprocessing steps are performed by custom scripts. 

N M T framework Marian [25], for more detailed information see Chapter 5. 

Evaluation Detokenized B L E U scores [47] are computed using SacreBLEU [51]. Other 
metrics are calculated using custom scripts, described in the following section. To evaluate 
the statistical significance of the results on the test sets, bootstrap resampling [30] was 
used for some of the experiments. A script by Graham Neubig 1 modified for multi-process 
parallelism 2 was used to perform this task. 

6.2 Evaluation 

Evaluation of an M T system is a complicated task involving many intricacies. Ideally, 
human evaluators asses the quality of the translation, but even then, there is a number of 
issues that need to be dealt with. A good source of experience with human assessment are 
the Findings of Conference on Machine Translation (WMT) [7]. Since it is not feasible to 

x

https: //github.com/neubig/util-scripts/blob/master/paired-bootstrap.py 
2

https: //github.com/cepin!9/mt_scripts/blob/master/bootstrap_par.py 
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evaluate every model that is developed by number of human evaluators, automated metrics 
are used, which are even more problematic. These metrics are usually reference-based, 
meaning that they compare the model-produced translation of a test set with a reference, 
human-made translation of the test set. 

Most problems with automated metrics stem from the fact that usually a large number 
of correct translations of the same source sentence exists, and only one, or few of them, are 
available as a reference translation. This leads to penalization of systems that translate the 
source sentence correctly, but using different word choice than the human translated refer
ence, since most of the metrics do not take semantics of translation, or at least synonyms, 
into account. To evaluate systems in terms of two commonly used automated metrics, 
B L E U (Bilingual Evaluation Understudy) [47] and chrF (character n-gram F-score) [50] 
scores, parts of training corpora were set aside to create development and test sets. The 
splitting was performed using readalign_to_docs .py, 20 documents were set aside for 
both dev and test sets. The scores are computed using SacreBLEU [51]. 

6.2.1 B L E U 

B L E U score is the most widely used metric in M T . It measures overlap of tokens and 
token n-grams between M T generated translation and a reference translation provided by 
a human translator. It is a precision based metric, basically a percentage of matching 
n-grams (independently on the position in the sentences), with several modifications. As 
such, the values range from 0 for translation with no overlap with the reference, to 100 for 
an exact match. The calculation is done on a corpus level and it is controlled by a number 
of parameters: 

• N - maximum n-gram length, usually N = 4 

• p - brevity penalty, penalizing short translations 

• smoothing type - what to do with n-grams with zero overlap count (e.g. there are no 
4-grams that are the same in M T output and the reference), this issue usually does 
not occur on a corpus level 

• case sensitivity 

Main advantages of B L E U score are that only one reference translation of a test set is 
needed, speed and zero cost compared to a human evaluation. Additionally, the score often 
correlates well with a human judgement [11]. 

Unfortunately, many issues arise when using B L E U score. Its simplicity does not allow 
it to capture any semantic meaning behind the compared texts, thus a perfectly good 
translation can score very badly, for example because synonyms of words in the reference 
translation were used. Inversely, a small change in a translation may completely change the 
meaning of a sentence, but it may not cause a large drop in B L E U score. See for example: 

Source: It was a beautiful trip, I am glad I came along. 
Reference: B y l to nádherný výlet, je dobře, že jsem jel s vámi. 

Translation 1: Je dobře to nádherný výlet, to že jsem jel s vámi byl, je dobře, 
že jsem. 

Translation 2: Krásná vyjížďka, rád jsem se k vám přidal. 
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Depending on smoothing type, translation 1 can score 50.76 B L E U , while translation 
2, even though it is much superior, scores 3.70 with the same settings. 

Also, B L E U score underestimates the quality of N M T and rule-based systems compared 
to P B S M T systems [60]. These and other issues show that comparisons based on B L E U 
scores need to be taken with caution. However, it is still the most ubiquitously used metric 
in M T and as such it is also used as one of the main metrics in this work. 

6.2.2 chrF 

The smallest unit used in B L E U score computation is a word. This level of granularity may 
not be ideal, especially for morphologically rich languages. For example, consider sentences: 

Source: Our favorite teacher stood up and left. 
Reference: Náš oblíbený učitel vstal a odešel. 

Translation 1: Náš oblíbený učitel vstal a odešel. 
Translation 2: Naše oblíbená učitelka vstala a odešla. 

Both translations may be correct, depending on the teacher's gender. However, trans
lation 1 would obtain B L E U score of 100, while translation 2 would get a very low B L E U 
score (7.68). To mitigate this issue, several character-level metrics were presented. One of 
the recent ones, showing a good correlation with human assessment of translation quality, 
is chrF - character n-gram F-score, with n usually set to 6. The formula is following: 

chrP and chrR are character n-gram precision and recall, averaged over all n-grams. (5 
determines how many times is recall more important than precision. In the original paper, 
(3 = 3 was shown to have highest correlation with human judgement. ChrF3 of the first 
translation equals to 1.0, and chrF3 of the second translation equals to 0.52 - the difference 
is much more realistic than in case of the B L E U scores (100 and 7.68). 

ChrF is a useful metric for languages with high morphological variance, like French or 
Czech. Also, N M T models often operate on subword level, and thus evaluating on smaller 
language units may be beneficial, since, as mentioned earlier, word-level metrics like B L E U 
seem to underestimate N M T translation quality. 

6.2.3 Discourse test set 

For more targeted evaluation of inter-sentential phenomena, an approach used by Bawden 
et al. [5] was adopted. The authors created a manual contrastive test sets to quantify a 
machine translation system accuracy in translating coreference and coherence/cohesion phe
nomena. The set comprises of source sentences and both correct and incorrect translation. 
N M T model is used to score both translation in terms of cross-entropy. The translation 
with higher probability is chosen and overall accuracy is calculated. The test set is balanced 
so that any system without employing context scores 50%. In disambiguation part, which 
is used in this paper, there is one current source sentence, two possible previous source sen
tences and two possible translations - each one correct in one of the contexts. For example: 
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Context 1: We went to the cliffs to watch our favorite seal in the sea. 
Context 2: His house was sealed by the police because of the crime investi

gation. 
Source: When we have seen the seal, we went back home. 

Translation 1: Když jsme toho lachtana uviděli, šli jsme domů. 
Translation 2: Když jsme tu pečeť uviděli, šli jsme domů. 

For both contexts, correct and incorrect translations are scored by the model and the 
more probable one is chosen. Final accuracy is computed based on how many times the 
correct translation was preferred over the incorrect one. Since the test set contains both 
possible correct combinations paired with the wrong ones, a system without any knowledge 
of the previous context will always score 50% (as it will choose the same target sentence 
as more probable both times, the cross-entropy score wil l be the same for both contexts). 
For English-French, the original dataset was used 3, for English-Czech, relevant parts were 
translated and combined with newly created examples1. 

6.2.4 Mode l naming conventions 

Different configurations of input and output are labeled src/VtgtM to tgtK, where N and 
M are counts of previous source and target sentences concatenated to the input, and K 
denotes how many previous target sentences are to be generated on the output. 

Thus, srcOtgtO to tgtO is an ordinary, vanilla N M T architecture, without any context 
influence, srcltgtO to tgtO means that one previous source sentence is concatenated to the 
input, srcOtgtl to tgtO means that one previous target sentence (i.e. translation of previous 
source sentence) is concatenated to the input and so on. For systems generating more than 
one target sentence, for example srcltgtO to tgtl, the target side of the training data is 
preprocessed in the same way, this means that the model is trained to generate multiple 
sentences. 

For systems employing target context on source side, a slight issue appears. The tar
get context (translations) must be obtained somehow. It is cumbersome to generate the 
previous sentence translation using the same model - usually, the translations are done in 
batches which consist of subsequent sentences that are translated simultaneously. Sequen
tial dependencies between target sides of the sentences would prohibit processing them in 
one batch, which could be solved by interleaving sentences from different documents to cre
ate a batch. However, this is possible only under a big workload, when lots of independent 
documents are translated in parallel. 

Instead of using target context created by the model itself, I opted for two different 
configurations. First, srcltgtlref to tgtO means that the reference sentences are used as a 
target context. Such setting is similar to post-editing scenario - human translator approves 
or corrects a previous sentence translation, which is subsequently used as an input for 
translating the next sentence. 

In the second configuration, srcltgtlmt to tgtO, the target context sentences are gener
ated beforehand by a model using only a source context (srcltgtO to tgtO). This configura
tion is utilizable when translation of the whole document at once is necessary. The total 

3https: / / github.com/rbawden/discourse-mt-test-sets 
4https://github.com/cepin!9/discourse-test-set 
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sum of computation time is larger, each sentence is translated twice, but the translation 
can be parallelized (in two steps). 

Finally, for the newly implemented models, reflsrcO to tgtO configuration was also used 
as a sanity check, meaning that ther reference translation was used as a context. This 
was done to see whether the model is capable to use information provided by the context 
encoder - if that is the case, B L E U scores near 100 should be expected. 

6.3 Results 

In this section, experimental results are presented and discussed. Only the most relevant 
results are presented here, a more complete list can be found either on the attached C D , 
or at https://github.com/cepinl9/dp. 

6.3.1 Concatenation 

Adding context to R N N through concatenation hurts the translation performance, as pre
sented in Table 6.1. This is in line with observations made by Agrawal et al. [1], where 
the authors obtained similar result on ISWLT 2017 English->Italian data set, consisting 
of transcribed T E D Talks. For configurations srcltgtO to tgtO and srcltgtO to tgtl, B L E U 
drops of 1.8 and 2.8 points, respectively, were observed. Arguably because even though 
there are gating mechanisms employed, RNNs suffer from loss of signal in very long-range 
dependencies. 

In Bawden et al. [5], the results are quite different. Concatenating only a previous source 
sentence to the input decreased the performance on most genres (the authors trained and 
evaluated their systems on OpenSubtitles, and used test sets from different movie gen
res). When using srcltgtO to tgtl configuration, i.e. adding previous target sentence to 
the output, B L E U score surpassed baseline in all test sets. One of the reasons may be 
that OpenSubtitles contain much shorter lines on average, and the models do not suffer 
from weak long-range dependencies. Since R N N networks perform worse than the Trans
former model in most cases [33], and take longer to train, more advanced experiments were 
performed on the Transformer model only. 

metric srcOtgtO to tgtO srcltgtO to tgtO srcltgtl to tgtO srcltgtl to tgtl 

B L E U 29.07 28.88 27.82 27.33 
disambig 50% 50.7% - -

Table 6.1: Results of concatenation experiments with R N N , English to Czech, Eu-
roparl, average of three runs, dev set 

metric srcOtgtO to tgtO srcltgtO to tgtO srcltgtO to tgtl 

B L E U 34.58 34.99 34.05 

Table 6.2: Results of concatenation experiments with Transformer, English to French, 
Europarl, dev set 
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metric srcOtgtO to tgtO srcltgtO to tgtO srcltgtlref to tgtO src2tgt0 to tgtO 

B L E U 27.77 27.93 28.4 27.97 
disambig 50% 60.4% 52.8% -

Table 6.3: Results of concatenation experiments with Transformer, English to Czech, 
OpenSubtitles, dev set B L E U score and accuracy on discourse test set 

context type architecture n real c. random c. null c. ^•real ̂ random disambig 

0,0 to 0 baseline 0.6 34.92 - - - 50% 
0,0 to 0 baseline opt 36.38 - - - 50% 

1,0 to 0 concat 0.6 35.36 34.85 35.35 0.51 62.4% 
1,0 to 0 concat opt 36.60 35.97 36.35 0.63 62.4% 
1,0 to 0 DE 0.6 35.36 35.14 1.41 0.22 50.6% 
1,0 to 0 DE opt 36.47 36.32 1.44 0.15 50.6% 
1,0 to 0 DE, shared 0.6 34.98 34.32 1.38 0.65 50.6% 
1,0 to 0 DE, shared opt 36.33 35.64 1.39 0.69 50.6% 
1,0 to 0 DE, shared 4 - tok 0.6 35.24 34.93 1.41 0.31 51.8% 
1,0 to 0 DE, shared 4 - tok opt 36.42 36.15 1.43 0.27 51.8% 
1,0 to 0 CE 0.6 34.83 34.65 1.37 0.18 51.2% 
1,0 to 0 CE opt 36.41 36.20 1.42 0.21 51.2% 
1,0 to 0 Voita 0.6 34.82 34.15 1.88 0.15 52.4% 

l,lref to 0 concat 0.6 37.12 20.28 33.93 16.84 58.3% 
l,lref to 0 concat opt 37.44 20.92 35.14 16.52 58.3% 
l,lmt to 0 concat 0.6 35.10 - - - 58.3% 
l,lmt to 0 concat opt 35.90 - - - 58.3% 

Table 6.4: Results for models trained on English to French, OpenSubtitles, Trans
former model, dev set. First column shows type of context used. The first number stands 
for previous source sentences added to input, second one for previous target sentences added 
to input and the third one is number of additional previous target sentences generated by 
the model, so for example 1,0 to 0 equals to model denoted srcltgtO to tgtO elsewhere in the 
text. Second column is the model architecture, D E stands for dual encoder, C E denotes 
the context encoder model. For dual encoder, shared means that all weights in the two 
encoders are shared, in shared+tok strategy, a special token is added to the start of the 
previous sentence - since all the layers are shared, the encoder would otherwise be unable 
to distinguish between context and source sentence during the computation, and that may 
not be optimal. Third column is the length normalization coefficient - opt means an op
timal value found by search over possibilities within a given range, see paragraph Length 
normalization. In columns number 4, 5, and 6, B L E U scores depending on whether real, 
random, or empty context sentences were used, are shown. Next column shows difference 
between real and random context B L E U scores. Finally, in the last column, accuracy on 
disambiguation part of contrastive discourse test set is presented. 

As presented in Tables 6.2, 6.3, 6.4, 6.5 and 6.6, the performance of the Transformer 
model does not degrade when concatenating the sentences at the input, confirming the 
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context type architecture n r B L E U B L E U interval chrF l chrF3 p-value 

0,0 to 0 baseline 0.6 1.018 31.59 [0.311, 0.321] 0.5036 0.5062 -
1,0 to 0 concat 0.6 1.019 32.07 [0.315, 0.326] 0.5080 0.5114 0.000 
1,0 to 0 D E 0.6 1.010 31.62 [0.311, 0.322] 0.5013 0.5028 0.411 
1,0 to 0 D E , shrd 0.6 1.005 31.47 [0.309, 0.320] 0.5007 0.5013 -0.189 
1,0 to 0 D E , shrd+tok 0.6 1.015 31.59 [0.310, 0.321] 0.5032 0.5058 0.487 
1,0 to 0 C E 0.6 1.020 31.50 [0.310, 0.320] 0.5038 0.5069 -0.104 
l , l ref to 0 concat 0.6 1.018 33.14 [0.326, 0.337] 0.5181 0.5222 0.000 
l , lmt to 0 concat 0.6 1.033 31.15 [0.306, 0.317] 0.5022 0.5093 -0.001 

context type architecture n r B L E U B L E U interval chrF l chrF3 p-value 

0,0 to 0 baseline 2.9 1.122 29.31 [0.288, 0.298] 0.4977 0.5193 -
1,0 to 0 concat 1.7 1.117 29.81 [0.293, 0.303] 0.5016 0.5232 0.000 
1,0 to 0 D E 2.0 1.114 29.25 [0.287, 0.298] 0.4962 0.5166 -0.308 
1,0 to 0 D E , shrd 2.0 1.114 29.01 [0.285, 0.295] 0.4953 0.5157 -0.004 
1,0 to 0 D E , shrd+tok 1.9 1.108 29.54 [0.290, 0.301] 0.4979 0.5176 0.023 
1,0 to 0 C E 0.6 1.120 29.38 [0.310, 0.320] 0.4983 0.5198 -0.104 
l , l ref to 0 concat 1.0 1.083 31.47 [0.309, 0.320] 0.5134 0.5306 0.000 
l , lmt to 0 concat 1.5 1.113 29.45 [0.289, 0.300] 0.4979 0.5202 0.158 

Table 6.5: Results for models trained on English-French OpenSubtitles, Transformer 
model, test set. Description of the columns from Table 6.4 applies. In the top table, n is 
set to 0.6. The length normalization constant for the bottom table the one performing the 
best on the dev set. Values of r represent token length ratio of the M T translation and the 
reference. B L E U score column shows the score for the whole test set, B L E U interval column 
shows 95% confidence interval for B L E U score, using bootstrap resampling with n=10000. 
The last column presents the p-value for which the model performs significantly better 
than the baseline (or worse, in case of negative values). Scores of models outperforming the 
baseline for p > 0.05 are written in bold. 

assumption that the Transformer is better equipped to deal with longer sequences and longer 
dependencies between input symbols than RNNs. Concatenation was in most cases the only 
architecture that yielded significant improvements. For English-Czech Europarl dataset 
(Table 6.6), all of the methods failed to significantly improve upon the baseline. The results 
in English-French OpenSubtitles (Table 6.4 and Figure 6.1) are more diverse, suggesting 
that this type of corpus may be more suitable for incorporating context information. The 
configuration that achieved the largest B L E U improvement was srcltgtl to tgtO on English-
French dataset. 

Results presented in Tables 6.5 show that the improvements for English-French Open-
Subtitles, observed on dev set, can also be seen when evaluating on the test set. The 
systems were also evaluated in terms of ch rF l and chrF3 on the test set. The same conclu
sions as for B L E U scores hold true for chrF scores - the concatenation systems perform the 
best. The systems in the bottom part of Table 6.5, with n tuned on the dev set (explained 
later, Subsection 6.3.7), perform worse than the ones in the top table in B L E U and chrF, 
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• Real context • Random context 

38 

37.12 

Baseline CE, 1 src Co neat 1 sre, 1 mt DE, 1 src Co neat, 1 src Co neat, 1 src, 1 ref 

Figure 6.1: Results of some of the notable models on English-French OpenSubtitles 
dev set. Complete results are presented in Table 6.4. 

but better in chrF3 metric. This is caused by the fact that these systems generate longer 
sentences (as apparent from the r column) and chrF3 score assigns 3 times more weight to 
recall than to precision. To asses statistical significance of improvements over the baseline, 
bootstrap resampling was used. The concatenation systems performed significantly better 
than the baseline, for n = 10000 and p > 0.05. 

During the experiments, I ran into an issue with Transformer batch sizes and the frame
work I used. Transformer training is very sensitive to minibatch size [49] and a memory of 
one G P U is not sufficient to store an optimally sized minibatch. I only had limited access 
to GPUs, and sometimes only one G P U was available for experimenting. Luckily, Marian 
has a feature called optimizer delay, which accumulates gradients for n minibatches before 
updating the weights, effectively scaling the minibatch size by factor of n. Less luckily, this 
feature was broken until a recent commit"', which I found out during the experiments, since 
some of the runs with a same config were significantly worse the others, so I had to rerun 
the experiments. The lesson here is to always check whether larger batch size can bring an 
improvement when training the Transformer. 

Largest difference in B L E U scores was observed in srcltgtlref to tgtO concatenation 
on English-French OpenSubtitle dataset, i.e. base Transformer model with one previous 
source and one previous target sentence concatenated to the input sentence. The target 
context sentences in this scenario are taken from the reference data. When using model-
generated previous target context sentences (srcltgtlmt to tgtO), created by the srcltgtO to 
tgtO model, the performance is significantly worse, probably due to error propagation. 

This configuration was not investigated further, since the dependence on previous tar
get sentence is preventing parallelization of translation using batching, thus making this 

5

https: //github.com/marian-nmt/marian/issues/259 
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Baseline CEJsrc Concat lsrc, DEJsrc Conca t l s r c Concat, 1 
I imt src, I ref 

Figure 6.2: Results of some of the notable models on English-French OpenSubtitles 
test set. Complete results are presented in Table 6.5. 

approach impractical. However, the configuration with previous reference sentences is some
what similar to post-editing scenario, where a human translator sequentially corrects trans
lations made by an M T system, so the corrections made in previous sentences can be used 
to improve translation of the future sentences. 

6.3.2 Dual encoder 

Slight gains in B L E U score were obtained by a simple dual encoder models in some of the 
configurations, see Tables 6.4, 6.5 and 6.6. However, these gains are probably caused by 
the larger number of learnable parameters of the model, rather than by a correct context 
utilization. This issue is discussed later in the text, in Subsection 6.3.6. 

6.3.3 Context encoder 

First of the models that I implemented in Marian was document-level Transformer by Zhang 
et al. [73], denoted context encoder or CE in the tables. The original implementation was 
evaluated on English-Czech Europarl and English-French OpenSubtitles. The results are 
presented in Tables 6.7 and 6.8. For Europarl, a slight improvement in B L E U (0.3) was 
obtained on the dev set. After evaluating my implementation on the same data, a similar 
gain (0.2) was observed. For English-French OpenSubtitles, a drop of about 0.2 B L E U 
point was observed, again similar to my reimplementation. I was not able to evaluate the 
original implementation on the discourse test set, since it does not provide a way to score 
a translation. 

As a sanity check, to see if the implemented model is able to use input provided in the 
additional encoder at all, the reference translation was used as a context sentence. After 
a few thousand updates, B L E U score reached values around 98, proving that the model is 
indeed able to learn to use the context encoder. 
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DE CE DE,sriared+tok Voita concat 

Figure 6.3: Discourse test set accuracy of models trained on English-French OpenSub-
titles. Simple concatenation model outperforms other architectures by a large margin, 
similarily as in B L E U score evaluation. 

One of the advantages of this model is that it can be pretrained as a normal Transformer 
on sentence-level corpus and only the weights of the additional components can then be 
fine-tuned on a small, document-level corpus. In the experiments on Europarl (Table 6.6) 
and OpenSubtitles (Table 6.4), the models were trained on identical corpora in both phases 
(in the first one without the context level information), so it is expected that there is no 
observable gain from pretraining, other than quicker convergence of training in the second 
phase (much fewer parameters have to be learned). 

To asses the effect of pretraining and to see how the model performs on a larger scale, 
an additional experiment on W M T data was performed. The baseline models were trained 
on W M T 1 9 English-Czech corpora and Paracrawl, preprocessed as described in Chapter 3 
(including the special preprocessing for Paracrawl). Two models were trained, referred to 
as weak and strong in Table 6.10. Weak model is a Transformer-base model trained solely 
on the parallel data. Strong model is a Transformer-big, trained on the parallel data and 
backtranslated Czech News Commentary 2007-2018 datasets. For both models, context 
encoder architecture performs worse than the baseline. 

In neither of the experiments was I able to gain any significant improvement with the 
context encoder model. I tried to tweak hyperparameters like number of layers of the context 
encoder, different gating function (Table 6.9) or not pretraining the model, but none of the 
changes had the desired impact. For the Europarl and OpenSub datasets, models were alse 
trained using the original implementation for comparison, and similar results were observed. 
These results show that the performance of the proposed architecture is strongly dependent 
on the dataset used, since in the original paper authors observed significant improvements 
on a different dataset. 

TO 

< 
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Model dev set B L E U test set B L E U 

Baseline 29.6 33.0 
srcltgtO to tgtO 29.9 33.2 

Marian baseline 30.3 33.4 
Marian srcltgtO to tgtO 30.5 33.5 

Table 6.7: Comparison of results of original implementation of context encoder by Zhang 
et al. [73] and reimplementation in Marian, English-Czech Europarl 

Model dev set B L E U test set B L E U 

Baseline 33.0 30.1 
srcltgtO to tgtO 32.8 30.0 

Marian baseline 34.9 31.6 
Marian srcltgtO to tgtO 34.8 31.5 

Table 6.8: Comparison of results of original implementation of context encoder by Zhang 
et al. [73] and reimplementation in Marian, English-French OpenSubtitles 

6.3.4 Context-aware Transformer 

The second model that was implemented in this work is the context-aware Transformer by 
Voita et al. [69]. In a sanity check with reference sentence as a context, the model obtained 
B L E U score of 99. Next, the architecture was evaluated on English-French OpenSubtitles 
and English-Czech Europarl. In both settings, the model performed worse than the baseline. 
Some evidence of a correct context usage was observed on the discourse test set for the 
English-French OpenSubtiles-trained model, see Table 6.4. 

No reference implementation of this model is available, so the poor performance may be 
caused by an implementation error. However, in a recent paper by Jean and Cho [20], this 
model also fails to improve upon the baseline. I performed sanity checks to see whether 
the model is able to use information from the second encoder. These checks suggest that 
the model can indeed use the additional information and that the implementation may be 
correct. 

6.3.5 Discourse test set 

Some of the models were also evaluated in terms of accuracy on the discourse test sets 
described earlier, and the results are presented in disambig columns in corresponding tables. 
The only significant gains, again, were obtained by concatenation architecture, trained 
on OpenSubtitles. Europarl models did not perform well on this test set, partially due 
to domain mismatch (test set examples are much closer to sentences found in subtitles 
than to the ones found in Europarl) and partially due to bad overall context utilization in 
Europarl-trained models. Only disambiguation based on one preceding source sentence was 
evaluated. Examples of correct and incorrect disambiguation performed by srcltgtO to tgtO 
concatenation models follow: 
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Context sentence Source sentence Chosen translation 

But who's ever going to 
stand up to her ? 

But in such a sorry state, 
who's going to look after 
her ? 

Are we having the chicken 
tonight? 

That hair's still there, you 
know. 

If anyone can take her on, 
it's you. 

if anyone can take her on, 
it's you. 

I couldn't bring myself to 
pluck it. 

I couldn't bring myself to 
pluck it. 

Jestli se jí někdo může 
postavit, jsi to ty. 

Jestli se jí někdo může uj
mout, jsi to ty. 

Nedokázala jsem se přinutit 
ho oškubat. 

Nedokázala jsem se přinutit 
ho vytrhnout. 

We need to boil the pasta 
in something 

I really need to get high 
right now. 

The weather's starting to 
get hot. 

The chicken curry's meant 
to be good. 

The captain said we're sail
ing to France. 

They've finished the main 
course and are asking for 
dessert. 

So anything new on the sus
pects? 

M y lighter isn't working... 

Evacuate immediately. 

Do you have some pot ? 

Do you have some pot? 

Too hot for me. 

Too hot for me. 

Which port does he want? 

Which port does he want? 

I found a match! 

I found a match! 

Is this not a drill? 

Máš nějakou trávu? 

Máš nějakou trávu? 

Na mne je moc horko. 

Na mne je moc horko. 

II veut quel port? 

II veut quel porto? 

J'ai trouvé une correspon-
dance! 

J'ai trouvé une allumette! 

Ce n'est pas un exercice? 

Ce n'est pas un exercice? I need you to go and find Is this not a drill? 
me a drill. 
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Oh, I do like your... the They're braces. C'est un appareil dentaire. 
things holding up your 
trousers. 

Oh, what a pretty smile, They're braces. C'est un appareil dentaire. 
despite the thing on your 
teeth. 

Dual encoder models, despite the slight gains in B L E U on the OpenSubtitles corpus, 
do not seem to utilize context information well - accuracy for different model checkpoints 
fluctuated between 48.5 and 51.5 % for a simple dual encoder model. Better utilization of 
context can be observed when the encoders share learnable parameters, but the accuracy 
is still worse than the accracy of concatenation models by a large margin. 

This suggests that the B L E U gains for dual encoder models are caused by other effects 
than a successful context utilization. For dual encoder and context encoder configurations, 
the B L E U gains are observed probably mainly due to increased number of parameters 
in comparison to the baseline model - there are more attention layers and subsequent 
feedforward layers, which in theory should serve to incorporate the context information, 
but their main contribution in reality is presumably improving the representation of current 
source sentence. 

6.3.6 Adversary context 

Several models were also evaluated with a random context as an input, instead of a real 
one. Quite surprisingly, the results were not much worse with the random context sentences, 
especially for Europarl corpus, as presented in Tables 6.6 and 6.4. This, along with results 
on the discourse test set, shows that the models do not depend on context information too 
much. As mentioned in last paragraph, the B L E U gains over the baseline for multi encoder 
models can be explained by increased number of parameters of the model. 

For concatenation configuration, this is not true, model architectures are exactly the 
same regardless whether the context is used or not. However, on English-Czech Europarl 
corpus (see Table 6.6) an improvement over the baseline (29.6 B L E U ) can be observed for 
concatenation system, even when random context is used (30.3 B L E U ) . Maximum source 
sentence length for training is set differently for baseline and concatenation models, which 
seems to be the issue. 

6.3.7 M a x i m u m source sentence length 

For Europarl corpus, maximum length of the source sentence was set to 80 subwords for no 
context, multiplied by the number of context sentences for concatenation models. Longer 
sentences were omitted from the training. Since it is not probable that two exceedingly 
long sentences follow each other in the corpus, concatenation models had chance to train 
on these long sentences, while the baseline model excluded them. I assumed it will not 
hurt the performance too much, based on a sentence length analysis, only 1.2 % of the 
source sentences were longer 80 subwords in English-Czech Europarl. As it turned out, this 
assumption was wrong. 

When trained with maximum input length of 160, baseline model performs the same, 
or better, as the concatenation models, reaching B L E U score of 30.3 on English-Czech 
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Europarl dev set. This does hold true for Europarl, on OpenSubtitles, I did not observe 
this problem and even for a larger length limit, improvements in B L E U score were observed 
on OpenSubtiles. This suggests that there is more to gain using context on OpenSubtitles 
dataset than on Europarl, or that different techniques need to be used for different datasets. 

6.3.8 Length normalization 

Usually, in N M T , beam search is used to select the best sentence translation from hypotheses 
generated by the model. Beam search in N M T has two hyperparameters - beam size 
and length normalization constant n. Without length normalization, probabilities of each 
word along the beam are summed up and then the best overall score (log-likelihood) is 
chosen. Usually, this results in preference for shorter sentences, since less total tokens in 
the output wil l probably mean lower (better) score. To mitigate this issue, which often 
harms translation quality, the final summed score is divided by number of output tokens I 
to the power of n: ln. However, n has to be chosen empirically since its optimal value 
varies from language to language, dataset to dataset, and model to model. Popular choice 
is 0.6, which is the default used in experiments in this paper, if not stated otherwise. 

However, for some of the models, optimal n was determined on the dev set by search in 
interval 0.4-3.0 (with step 0.1). Results are shown in Table 6.4. Optimal n was always much 
higher than 0.6, usually in range 1.5-2.5. Also, it is different for each model, so probably 
the most fair way to compare the models is to choose optimal n on the development set 
for each model and then compare the test set scores with these parameters, as in Table 
6.5. Beam size and length normalization value are not independent of each other - an ideal 
solution would be to run a grid search along these two parameters, which was not done due 
to computing restraints - beam size was set to 6 for all the experiments. 

The optimal n found by the search on the dev set was also tried out when translating 
the test set. As presented in Table 6.5, models generally performed worse with the found 
n than with n=0.6. This observation confirms that this value strongly depends on the test 
set used. 

6.3.9 Manual inspection 

During the development of a new system, automated metrics are necessary to compare the 
candidates. However, to see if the system really improves the translations in the way that 
the metrics suggest, manual inspection of the translated sentences is a very valuable tool. 
Examples of passages of the text where the context seems to be used appropriately follow. 
Of course, these are only a few cherry-picked examples and do not say much about the sys
tem quality. First set comes from English-Czech OpenSubtitles dev set and a concatenation 
system with two previous source sentences as a context is used: 

Source srcOtgtO to tgtO src2tgt0 to tgtO 

Did he tell me to buy front Rekl mi, ať si koupím Rekl mi, abych koupil 
leg? Or back leg? přední nohu? Nebo zadní přední nohu? Nebo zadní 

noha? nohu? 
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Let go of her hand. - Go 
back and do your dance. 
You can't let go? 

Do you think you can de
stroy it with just that 
power? I was planning to 
do this even without it . 

Pusť j i . - Vrať se a zatancuj 
si. Nemůžeš to nechat být? 

Myslíš, že j i můžeš zničit 
jen s takovou silou? Chtěl 
jsem to udělat i bez něj. 

Pusť jí ruku. - Vrať se 
a zatancuj si. Nemůžeš j i 
pustit? 

Myslíš, že j i můžeš zničit 
jen s takovou mocí? Pláno
val jsem to udělat i bez ní. 

Another set of examples from the discourse test set, using a model train on English-
Czech OpenSubtitles for the translations. Only translation of the second sentence is pro
vided, since that is the interesting sentence with an ambiguous translation: 

Source srcOtgtO to tgtO srcltgtO to tgtO 

We've been thinking about it and 
we'd like to throw a ball this week
end. A ball! 

Míč! Ples! 

The new guy is a bit rude. And dim. A temný. A tupý. 

Okay, now you want to turn right. Ne, je to moje právo! Ne, to je moje doprava! 
No, it's my right! 

The makeup looks good. We do sil- Taky děláme stříbrné Děláme i stříbrné ne
ver nails too. hřebíky. hty. 

You've gone and broken the teacup! Na ten pohár kašlu. Kašlu na ten hrnek. 
I don't give a damn about the cup. 

I should probably be off now. But Ale tohle je tvoje Ale tohle je tvůj byt. 
this is your place. místo. 

The pizza is in the oven, but there's Nikdy jsem neviděl to- Nikdy jsem neviděl to-
still some dough left. I've never seen lik prachů! lik těsta! 
so much dough! 

We could use a brush to detangle the Nemyslím , že bychom Nemyslím, že bychom 
hair. I don't think we should use a měli používat štětec. měli použít kartáč, 
brush. 

On the other hand, many examples where the context was less successfully employed 
can be found among the sentences from the discourse test set. Some of the translation do 
not show any traces of context influence, while others seem to be at least half-correct. The 
last sentence is translated correctly without the context, and incorrectly by the context 
model:: 

Source srcOtgtO to tgtO srcltgtO to tgtO 
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Do you need anything for the game, Jako netopýr? Třeba netopýra? 
son? Like a bat? 

Where did you say the chicken was? Támhle u pera. Támhle u pera. 
Over there by the pen. 

We should be getting back to the Ministr bude mít Ministr bude mít 
church. The minister will be getting obavy. obavy. 
worried. 

Could it be anything serious, Doc- Musíme se zbavit toho Musíme se zbavit toho 
tor? We'll have to get rid of that krtka. krtka. 
mole. 

The verdict isn't great. What is the Jaká je poslední věta? Jaká je poslední věta? 
hnal sentence? 

Did you give her a slice of tart? No, Ne, byla to hračka. Ne, byla to hračka, 
it was a piece of cake. 

He crawled into that cannon himself Ano, ale stejně si ne- Ano, ale stejně si ne-
and ask me to do it. Yes, but I still myslím, že bys ho měl myslím, že bys ho měl 
don't think you should fire him. vyhodit. vyhodit. 

But you need good nails to play the S trsátkem by to bylo S krumpáčem by to 
guitar. It might be easier with a jednodušší. bylo jednodušší, 
pick. 
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context type architecture km n real c. random c. null c. disambig 

0,0 to 0 baseline 80 0.6 29.6 - - 50% 
0,0 to 0 baseline 160 0.6 30.3 - - 50% 

1,0 to 0 concat 160 0.6 30.3 30.3 29.4 51.8% 
1,0 to 0 dual encoder 80 0.6 30.0 30.0 1.9 50.5% 
1,0 to 0 CE 80 0.6 29.8 - - -
1,0 to 0 CE, +gate 80 0.6 29.9 - - -
1,0 to 0 CE, +gate, pretrain 80 0.6 30.0 - -
1,0 to 0 CE, +gate, pretrain 160 0.6 30.5 30.4 0.1 52.8% 
1,0 to 0 CE, switch 160 0.6 29.6 - - -
1,0 to 0 Voita 160 0.6 29.8 - - -
1,0 to 0 Vbita, switch 160 0.6 29.3 - - -

1,0 to 1, 1st sent concat 160 0.6 30.0 - - -

1,0 to 1, 2nd sent concat 160 0.6 29.8 - - -
1,0 to 1, 1st sent concat 160 1.9 30.2 - - -
1,0 to 1, 2nd sent concat 160 1.9 30.1 - - -

1,1 to 0 concat 240 0.6 29.97 - - -

Table 6.6: Results for models trained on English-Czech Europarl, Transformer model, 
dev set. For detailed description of the columns, see previous table. The additional len 
column shows maximal sentence length in subwords for training, see Subsection 6.3.7. (Max
imum source sentence length) for further discussion of this issue. CE denotes the context 
encoder model, +gate is the same model improved with sigmoid gate to filter the influ
ence of context, pretrain means that the model was pretrained on the same corpus without 
context information. For 1,0 to 1 context type, the model is trained to generate not only 
the current target sentence, but also the previous one, separated by a special token. 2nd 
sentence score is obtained by striping off the first (previous) target sentence and calculating 
B L E U on dev set, whereas 1st sentence score is obtained by cutting off the second (current) 
target sentence and computing B L E U of the first target sentence on reference set that is 
shifted accordingly by one sentence. For CE, switch and Voita, switch architectures , inputs 
of the encoders were switched - the context encoder encoded the source sentence and the 
source encoder encoded the context sentence. This configuration serves as a sanity check 
- showing that the model can utilize the context encoder, since it is able to translate the 
source sentence when its encoded by the context encoder. 
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# context enc. layers gating function pretraining freezing B L E U 

non-contextual baseline - - - 35.92 
1 original yes yes 35.83 
1 original no no 35.71 
1 original yes no 35.85 
1 none yes yes 35.65 
1 modified yes yes 35.79 
2 original yes yes 35.66 
6 original yes yes 35.81 

Table 6.9: Results of context encoder model for different number of context encoder layers 
and different gating functions. Column titled pretraining shows whether the model was 
pretrained on sentence-level corpus, and the next column shows whether the pretrained 
weights were frozen during the fine tuning on document-level corpus. No significant differ
ences are observed for any of the parameters, none of the configurations outperformed the 
non-contextual baseline. English to Czech, OpenSubtitles, dev set B L E U score. 

model B L E U +Context encoder +gating Discourse test set 

weak baseline 25.28 (26.64) 24.93 (26.25) 24.97 (26.33) 52.08% 
strong baseline 28.3 (29.95) 27.42 (29.03) 27.25 (29.12) 51.5% 

Table 6.10: Results for models trained on English-Czech W M T data, newstest2018 test 
set (newstest2016 used as a dev set, results in parenthesis). Weak baseline is a Transformer-
base model, strong baseline is Transformer-big with backtranslated data 

64 



Chapter 7 

Conclusions 

This final chapter first presents some of the easily achievable improvements and possible 
future research directions. In the second part, outcomes of this thesis are summarized and 
conclusions are presented. 

7.1 Short term goals 

Even though I aimed to do an extensive exploration of current context-aware architectures, 
many possible configurations were left untested. Several new experiments can be performed 
with the same, or only slightly modified models. I plan to evaluate the modifications 
presented in the next few paragraphs, since I intend to implement the best performing 
architecture in practice. 

7.1.1 Forward context 

In all of the experiments, only previous context was used. However, even a future context 
may hold some information valuable for translation of a current sentence. I plan to run 
experiments with the same model architectures, using forward context together with the 
backward one. 

7.1.2 Context-aware learning 

The results of experiments using random context sentences suggest that the context-aware 
models do not depend on context information too much - a recent paper by Jean and Cho 
[20], which is described in Chapter 2, confirms this observation. The authors propose a 
model-independent modification of the cross-entropy loss function, which is aimed to make 
the model more sensitive to the context. Since this algorithm can be used with any neural 
network M T architecture, it is an interesting future research direction, which I plan to try 
out before using the models in production environment. 

7.1.3 Longer context window 

A l l of the approaches presented in this work assume only a small context window of several 
surrounding sentences. Helpful information for the translation might however lie outside 
this window. A sparse, hierarchical attention mechanism was presented in a recent paper 
by Maruf et al. [42]. This mechanism first focuses on relevant sentences in the text, and 
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then on the most relevant tokens in these sentences, to create a document-level context 
vector. This additional input can be incorporated into the translation model, extending 
the possible context size. 

7.1.4 More detailed manual inspection 

I did perform manual analysis consisting of checking the systems translations and looking for 
examples of correct and incorrect context usage. However, I did not analyze the translations 
profoundly to see exactly which types of phenomena are easy or hard to address for the 
model. Also, it might be interesting to look at the attention weights of words in the context 
sentences when the ambiguous parts of the source sentence are processed, to see for example 
if the model performs some kind of coreference resolution. 

7.1.5 Integration with computer-aided translation system 

Even though the results may not be spectacular, some improvements were observed. I plan 
to integrate the context-aware models into a C A T system used by human translators. I also 
intend to explore target context incorporation in more detail, since it might be beneficial 
to use sentences already corrected by the human translator as an additional input for the 
machine translation. 

7.2 Long term goals 

Surrounding sentences form only a small subset of possible context which can help with 
translation of the input. Human translators need to have general world knowledge and 
domain knowledge to translate a text perfectly. Of course, a perfect translation model would 
need a perfect artificial general intelligence, which is not near by any means. However, it 
may be possible to at least partially embed some kind of external world knowledge into 
an N M T model. A recent work in this area is a paper by Moussallem et al. [45], where 
the authors use knowledge graphs as an additional input into an N M T system, resulting in 
significant improvement over the baseline model. 

Another way to incorporate some type of world knowledge into an N M T model is to 
use approaches known from question answering systems, i.e. to use an information retrieval 
system to find a passages of text in a large corpus, which are relevant to the translation 
of an input. Novel approaches using sparse attention [42] or adaptive attention spans [62] 
could enable processing of long passages of text and incorporation of relevant information 
into self-attention based models. 

7.3 Summary 

This work summarizes current state-of-the-art in dealing with extra-sentential context in 
N M T , focusing mostly on the Transformer model. Some of the simpler architectures were 
evaluated and compared both in terms of general translation quality and evaluation fo
cused on discourse phenomena. Two context-aware architectures were implemented in a 
framework suitable for production systems. However, both of them have failed to bring any 
significant improvements over the baseline. The results have shown that a very carefully 
controlled experiments must be performed to asses the effect of context in N M T . Small 
changes in parameters like maximum sentence length, length normalization, or batch size, 
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led to differences in automated metrics, which were in several cases larger than differences 
caused by context incorporation. 

A hand made discourse test set for English to Czech translation was created. The 
experiments have shown that either the implemented context-aware models are not very 
efficient at employing context, or there is a very little to gain in automated translation 
quality metrics by using context models, even though this varies by the dataset used. 
Evaluation focused on specific discourse phenomena was performed on a hand-made test 
set developed for this purpose. A limited evidence of correct context usage was observed 
on this test set for several of the models. Manual inspection of the translations generated 
by a context-aware model was also performed and many cases where the translation was 
improved by the context knowledge were found. 

The best performing models (the only ones significantly outperforming the baseline in 
terms of B L E U score) in all of the metrics were the simplest ones - with context sentences 
concatenated to the input, separated by a special token, without any changes to the model 
architecture. These results seem to be in line with recent development in other fields of 
natural language processing, where big Transformer models, trained on large datasets and 
many GPUs, usually outperform specialized models with an explicit problem knowledge 
programmed into them. 

67 



Bibliography 

[1] Agrawal, R.; Turchi, M . ; Negri, M . : Contextual Handling in Neural Machine 
Translation: Look Behind, Ahead and on Both Sides. 2018. 

[2] Bahdanau, D.; Cho, K . ; Bengio, Y . : Neural Machine Translation by Jointly Learning 
to Align and Translate. CoRR. vol. abs/1409.0473. 2014. 1409.0473. 
Retrieved from: http://arxiv.org/abs/1409.0473 

[3] Bapna, A . ; Firat, O.: Non-Parametric Adaptation for Neural Machine Translation. 
CoRR. vol. abs/1903.00058. 2019. 1903.00058. 
Retrieved from: http://arxiv.org/abs/1903.00058 

[4] Bar-Hillel, Y . : Demonstration of the Nonfeasibility of Fully Automatic High Quality 
Translation. 1960. 

[5] Bawden, R.; Sennrich, R.; Birch, A . ; et al.: Evaluating Discourse Phenomena in 
Neural Machine Translation. CoRR. vol. abs/1711.00513. 2017. 1711.00513. 
Retrieved from: http://arxiv.org/abs/1711.00513 

[6] Belinkov, Y . ; Bisk, Y . : Synthetic and natural noise both break neural machine 
translation. arXiv preprint arXiv:1711.02173. 2017. 

[7] Bojar, O.; Federmann, C ; Fishel, M . ; et al.: Findings of the 2018 Conference on 
Machine Translation (WMT18). In Proceedings of the Third Conference on Machine 
Translation, Volume 2: Shared Task Papers. Belgium, Brussels: Association for 
Computational Linguistics. October 2018. pp. 272-307. 
Retrieved from: http://www.aclweb.org/anthology/W18-6401 

[8] Brown, P.; Cocke, J.; Pietra, S. D.; et al.: A statistical approach to language 
translation. In Proceedings of the 12th conference on Computational 
linguistics-Volume 1. Association for Computational Linguistics. 1988. pp. 71-76. 

[9] Cho, K . ; van Merrienboer, B.; Giilgehre, Q.; et al.: Learning Phrase Representations 
using R N N Encoder-Decoder for Statistical Machine Translation. CoRR. vol. 
abs/1406.1078. 2014. 1406.1078. 
Retrieved from: http://arxiv.org/abs/1406.1078 

[10] Collobert, R.; Weston, J.; Bottou, L . ; et al.: Natural language processing (almost) 
from scratch. Journal of machine learning research, vol. 12, no. Aug. 2011: pp. 
2493-2537. 

[11] Coughlin, D. : Correlating automated and human assessments of machine translation 
quality. 

68 

http://arxiv.org/abs/1409.0473
http://arxiv.org/abs/1903.00058
http://arxiv.org/abs/1711.00513
http://www.aclweb.org/anthology/W18-6401
http://arxiv.org/abs/1406.1078


[12] Devlin, J.; Chang, M. -W. ; Lee, K . ; et al.: Bert: Pre-training of deep bidirectional 
transformers for language understanding. arXiv preprint arXiv:1810.04805. 2018. 

[13] Eisenstein, J. : Natural Language Processing. M I T Press. 2018. 

[14] Gage, P.: A new algorithm for data compression. The C Users Journal, vol. 12, no. 2. 
1994: pp. 23-38. 

[15] Garcia-Martinez, M . ; Barrault, L . ; Bougares, F.: Factored Neural Machine 
Translation. CoRR. vol. abs/1609.04621. 2016. 1609.04621. 
Retrieved from: http://arxiv.org/abs/1609.04621 

[16] Halliday, M . A . K . : Hasan. Cohesion in English. 1976. 

[17] Hardmeier, C.: Discourse in statistical machine translation, a survey and a case 
study. Discours. Revue de linguistique, psycholinguistique et informatique. A journal 
of linguistics, psycholinguistics and computational linguistics. , no. 11. 2012. 

[18] Hassan, H . ; Aue, A . ; Chen, C.; et al.: Achieving Human Parity on Automatic 
Chinese to English News Translation. CoRR. vol. abs/1803.05567. 2018. 1803.05567. 
Retrieved from: http://arxiv.org/abs/1803.05567 

[19] He, K . ; Zhang, X . ; Ren, S.; et al.: Deep residual learning for image recognition. In 
Proceedings of the IEEE conference on computer vision and pattern recognition. 2016. 
pp. 770-778. 

[20] Jean, S.; Cho, K . : Context-Aware Learning for Neural Machine Translation. CoRR. 
vol. abs/1903.04715. 2019. 1903.04715. 
Retrieved from: http://arxiv.org/abs/1903.04715 

[21] Jean, S.; Lauly, S.; Firat, O.; et al.: Does Neural Machine Translation Benefit from 
Larger Context? arXiv preprint arXiv:1704-05135. 2017. 

[22] Johnson, M . : How the statistical revolution changes (computational) linguistics. In 
Proceedings of the EACL 2009 Workshop on the Interaction between Linguistics and 
Computational Linguistics: Virtuous, Vicious or Vacuous1?. Association for 
Computational Linguistics. 2009. pp. 3-11. 

[23] Junczys-Dowmunt, M . : Dual Conditional Cross-Entropy Filtering of Noisy Parallel 
Corpora. arXiv preprint arXiv:1809.00197. 2018. 

[24] Junczys-Dowmunt, M . : Microsoft's Submission to the WMT2018 News Translation 
Task: How I Learned to Stop Worrying and Love the Data. CoRR. vol. 
abs/1809.00196. 2018. 1809.00196. 
Retrieved from: http://arxiv.org/abs/1809.00196 

[25] Junczys-Dowmunt, M . ; Grundkiewicz, R.; Dwojak, T.; et al.: Marian: Fast Neural 
Machine Translation in C++. In Proceedings of ACL 2018, System Demonstrations. 
Melbourne, Australia: Association for Computational Linguistics. July 2018. pp. 
116-121. 
Retrieved from: http://www.aclweb.org/anthology/P18-4020 

[26] Jurafsky, D. : Speech & language processing. Pearson Education India. 2000. 

69 

http://arxiv.org/abs/1609.04621
http://arxiv.org/abs/1803.05567
http://arxiv.org/abs/1903.04715
http://arxiv.org/abs/1809.00196
http://www.aclweb.org/anthology/P18-4020


[27] Kay, M . : Machine translation will not work. In 24th Annual Meeting of the 
Association for Computational Linguistics. 1986. 

[28] Kendall, G.; Wickham, G.: Using Foucault's Methods. Introducing Qualitative 
Methods series. S A G E Publications. 1999. ISBN 9780761957171. 
Retrieved from: https://books.google.cz/books?id=3Zqwm4SQef oC 

[29] Khayrallah, H . ; Koehn, P.: On the Impact of Various Types of Noise on Neural 
Machine Translation. arXiv preprint arXiv:1805.12282. 2018. 

[30] Koehn, P.: Statistical significance tests for machine translation evaluation. In 
Proceedings of the 2004 conference on empirical methods in natural language 
processing. 2004. 

[31] Koehn, P.: Europarl: A parallel corpus for statistical machine translation. In MT 
summit, vol. 5. 2005. pp. 79-86. 

[32] Koehn, P.; Hoang, H. ; Birch, A . ; et al.: Moses: Open source toolkit for statistical 
machine translation. In Proceedings of the 45th annual meeting of the ACL on 
interactive poster and demonstration sessions. Association for Computational 
Linguistics. 2007. pp. 177-180. 

[33] Lakew, S. M . ; Cettolo, M . ; Federico, M . : A Comparison of Transformer and 
Recurrent Neural Networks on Multilingual Neural Machine Translation. arXiv 
preprint arXiv:1806.06957. 2018. 

[34] Laubli, S.; Sennrich, R.; Volk, M . : Has Machine Translation Achieved Human Parity? 
A Case for Document-level Evaluation. CoRR. vol. abs/1808.07048. 2018. 
1808.07048. 

Retrieved from: http://arxiv.org/abs/1808.07048 

[35] Lawson, V . : Practical Experience of Machine Translation. 

[36] Lei Ba, J.; Ryan Kiros, J.; E . Hinton, G. : Layer Normalization. 07 2016. 
[37] Libovicky, J.; Held, J. : Attention Strategies for Multi-Source Sequence-to-Sequence 

Learning. CoRR. vol. abs/1704.06567. 2017. 1704.06567. 
Retrieved from: http://arxiv.org/abs/1704.06567 

[38] Libovicky, J.; Held, J.; Marecek, D.: Input Combination Strategies for Multi-Source 
Transformer Decoder. CoRR. vol. abs/1811.04716. 2018. 1811.04716. 
Retrieved from: http://arxiv.org/abs/1811.04716 

[39] Lui , M . ; Baldwin, T.: langid. py: A n off-the-shelf language identification tool. In 
Proceedings of the ACL 2012 system demonstrations. Association for Computational 
Linguistics. 2012. pp. 25-30. 

[40] Manning, C. D.; Surdeanu, M . ; Bauer, J.; et al.: The Stanford CoreNLP Natural 
Language Processing Toolkit. In Association for Computational Linguistics (ACL) 
System Demonstrations. 2014. pp. 55-60. 
Retrieved from: http://www.aclweb.Org/anthology/P/P14/P14-5010 

70 

https://books.google.cz/books?id=3Zqwm4SQef
http://arxiv.org/abs/1808.07048
http://arxiv.org/abs/1704.06567
http://arxiv.org/abs/1811.04716
http://www.aclweb.Org/anthology/P/P14/P14-5010


[41] Maruf, S.; Haffari, G. : Document Context Neural Machine Translation with Memory 
Networks. CoRR. vol. abs/1711.03688. 2017. 1711.03688. 
Retrieved from: http://arxiv.org/abs/1711.03688 

[42] Maruf, S.; Martins, A . F . T.; Haffari, C : Selective Attention for Context-aware 
Neural Machine Translation. CoRR. vol. abs/1903.08788. 2019. 1903.08788. 
Retrieved from: http://arxiv.org/abs/1903.08788 

[43] Mey, J.: Pragmatics: An Introduction. Wiley. 2001. ISBN 9780631211327. 
Retrieved from: https://books.google.cz/books?id=TT_TF4sM61cC 

[44] Mikolov, T.; Sutskever, I.; Chen, K . ; et al.: Distributed representations of words and 
phrases and their compositionality. In Advances in neural information processing 
systems. 2013. pp. 3111-3119. 

[45] Moussallem, D.; Arcan, M . ; Ngomo, A . N . ; et al.: Augmenting Neural Machine 
Translation with Knowledge Graphs. CoRR. vol. abs/1902.08816. 2019. 1902.08816. 
Retrieved from: http://arxiv.org/abs/1902.08816 

[46] Ott, M . ; Edunov, S.; Grangier, D.; et al.: Scaling Neural Machine Translation. 
CoRR. vol. abs/1806.00187. 2018. 1806.00187. 
Retrieved from: http://arxiv.org/abs/1806.00187 

[47] Papineni, K . ; Roukos, S.; Ward, T.; et al.: B L E U : a method for automatic evaluation 
of machine translation. In Proceedings of the 40th annual meeting on association for 
computational linguistics. Association for Computational Linguistics. 2002. pp. 
311-318. 

[48] Pfiilb, B. ; Gepperth, A . ; Abdullah, S.; et al.: Catastrophic forgetting: still a problem 
for DNNS. In International Conference on Artificial Neural Networks. Springer. 2018. 
pp. 487-497. 

[49] Popel, M . ; Bojar, O.: Training Tips for the Transformer Model. CoRR. vol. 
abs/1804.00247. 2018. 1804.00247. 
Retrieved from: http://arxiv.org/abs/1804.00247 

[50] Popovic, M . : chrF: character n-gram F-score for automatic M T evaluation. In 
Proceedings of the Tenth Workshop on Statistical Machine Translation. 2015. pp. 
392-395. 

[51] Post, M . : A Cal l for Clarity in Reporting B L E U Scores. CoRR. vol. abs/1804.08771. 
2018. 1804.08771. 

Retrieved from: http://arxiv.org/abs/1804.08771 

[52] Radford, A . ; Wu, J.; Child, R.; et al.: Language models are unsupervised multitask 
learners. 

[53] Schmied, J.; Haase, C ; Povolná, R.: Complexity and Coherence: Approaches to 
Linguistic Research and Language Teaching. R E A L studies. Cuvillier Verlag. 2007. 
ISBN 9783867272155. 
Retrieved from: https://books.google.cz/books?id=XiMLAQAAMAAJ 

71 

http://arxiv.org/abs/1711.03688
http://arxiv.org/abs/1903.08788
https://books.google.cz/books?id=TT_TF4sM61cC
http://arxiv.org/abs/1902.08816
http://arxiv.org/abs/1806.00187
http://arxiv.org/abs/1804.00247
http://arxiv.org/abs/1804.08771
https://books.google.cz/books?id=XiMLAQAAMAAJ


[54] Sennrich, R.; Birch, A . ; Currey, A . ; et al.: The university of edinburgh's neural M T 
systems for WMT17 . arXiv preprint arXiv:1708.00726. 2017. 

[55] Sennrich, R.; Firat, O.; Cho, K . ; et al.: Nematus: a Toolkit for Neural Machine 
Translation. In Proceedings of the Software Demonstrations of the 15th Conference of 
the European Chapter of the Association for Computational Linguistics. Valencia, 
Spain: Association for Computational Linguistics. Apr i l 2017. pp. 65-68. 
Retrieved from: http://aclweb.org/anthology/E17-3017 

[56] Sennrich, R.; Haddow, B. : Linguistic Input Features Improve Neural Machine 
Translation. CoRR. vol. abs/1606.02892. 2016. 1606.02892. 
Retrieved from: http://arxiv.org/abs/1606.02892 

[57] Sennrich, R.; Haddow, B. ; Birch, A . : Improving Neural Machine Translation Models 
with Monolingual Data. CoRR. vol. abs/1511.06709. 2015. 1511.06709. 
Retrieved from: http://arxiv.org/abs/1511.06709 

[58] Sennrich, R.; Haddow, B. ; Birch, A . : Neural Machine Translation of Rare Words 
with Subword Units. CoRR. vol. abs/1508.07909. 2015. 1508.07909. 
Retrieved from: http://arxiv.org/abs/1508.07909 

[59] Serra, J.; Suris, D.; Miron, M . ; et al.: Overcoming catastrophic forgetting with hard 
attention to the task. CoRR. vol. abs/1801.01423. 2018. 1801.01423. 
Retrieved from: http://arxiv.org/abs/1801.01423 

[60] Shterionova, D.; Casanellas/3, P. N . L . ; Superbo/3, R.; et al.: Empirical evaluation of 
N M T and P B S M T quality for large-scale translation production. In Conference 
Booklet, page 74. 

[61] Srivastava, N . ; Hinton, G.; Krizhevsky, A . ; et al.: Dropout: a simple way to prevent 
neural networks from overfitting. The Journal of Machine Learning Research, vol. 15, 
no. 1. 2014: pp. 1929-1958. 

[62] Sukhbaatar, S.; Grave, E. ; Bojanowski, P.; et al.: Adaptive Attention Span in 
Transformers. 2019. 

[63] Sutskever, I.; Vinyals, O.; Le, Q. V . : Sequence to Sequence Learning with Neural 
Networks. CoRR. vol. abs/1409.3215. 2014. 1409.3215. 
Retrieved from: http://arxiv.org/abs/1409.3215 

[64] Szegedy, C ; Vanhoucke, V . ; Ioffe, S.; et al.: Rethinking the inception architecture for 
computer vision. In Proceedings of the IEEE conference on computer vision and 
pattern recognition. 2016. pp. 2818-2826. 

[65] Toral, A . ; Castilho, S.; Hu, K . ; et al.: Attaining the unattainable? Reassessing claims 
of human parity in neural machine translation. arXiv preprint arXiv:1808.10432. 
2018. 

[66] Tu, Z.; Liu , Y . ; Lu , Z.; et al.: Context Gates for Neural Machine Translation. CoRR. 
vol. abs/1608.06043. 2016. 1608.06043. 
Retrieved from: http://arxiv.org/abs/1608.06043 

72 

http://aclweb.org/anthology/E17-3017
http://arxiv.org/abs/1606.02892
http://arxiv.org/abs/1511.06709
http://arxiv.org/abs/1508.07909
http://arxiv.org/abs/1801.01423
http://arxiv.org/abs/1409.3215
http://arxiv.org/abs/1608.06043


[67] Vanmassenhove, E. ; Hardmeier, C ; Way, A . : Getting gender right in neural machine 
translation. In Proceedings of the 2018 Conference on Empirical Methods in Natural 
Language Processing. 2018. pp. 3003-3008. 

[68] Vaswani, A . ; Shazeer, N . ; Parmar, N . ; et al.: Attention Is A l l You Need. CoRR. vol. 
abs/1706.03762. 2017. 1706.03762. 
Retrieved from: ht tp: / /arxiv.org/abs/1706.03762 

[69] Voita, E . ; Serdyukov, P.; Sennrich, R.; et al.: Context-Aware Neural Machine 
Translation Learns Anaphora Resolution. CoRR. vol. abs/1805.10163. 2018. 
1805.10163. 
Retrieved from: ht tp: / /arxiv.org/abs/1805.10163 

[70] Wang, L . ; Tu, Z.; Way, A . ; et al.: Exploiting Cross-Sentence Context for Neural 
Machine Translation. In Proceedings of the 2017 Conference on Empirical Methods in 
Natural Language Processing. 2017. 

[71] Wen, S.; Itti, L . : Overcoming catastrophic forgetting problem by weight 
consolidation and long-term memory. CoRR. vol. abs/1805.07441. 2018. 1805.07441. 
Retrieved from: ht tp: / /arxiv.org/abs/1805.07441 

[72] Wu, Y . ; Schuster, M . ; Chen, Z.; et al.: Google's Neural Machine Translation System: 
Bridging the Gap between Human and Machine Translation. CoRR. vol. 
abs/1609.08144. 2016. 1609.08144. 
Retrieved from: ht tp: / /arxiv.org/abs/1609.08144 

[73] Zhang, J.; Luan, H . ; Sun, M . ; et al.: Improving the Transformer Translation Model 
with Document-Level Context. arXiv preprint arXiw.1810.03581. 2018. 

73 

http://arxiv.org/abs/1706.03762
http://arxiv.org/abs/1805.10163
http://arxiv.org/abs/1805.07441
http://arxiv.org/abs/1609.08144

