
BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

FACULTY OF INFORMATION TECHNOLOGY
FAKULTA INFORMAČNÍCH TECHNOLOGIÍ

DEPARTMENT OF COMPUTER GRAPHICS AND MULTIMEDIA
ÚSTAV POČÍTAČOVÉ GRAFIKY A MULTIMÉDIÍ

EXPLORING CONTEXTUAL INFORMATION IN
NEURAL MACHINE TRANSLATION
VYUŽITÍ KONTEXTU V NEURONOVÉM STROJOVÉM PŘEKLADU

TERM PROJECT
SEMESTRÁLNÍ PROJEKT

AUTHOR
AUTOR PRÁCE

JOSEF JON

SUPERVISOR
VEDOUCÍ PRÁCE

doc. RNDr. PAVEL SMRŽ, Ph.D.

BRNO 2018

Abstract
This works explores means of utilizing extra-sentential context in neural machine trans
lation (NMT) . Traditionally, N M T systems translate one source sentence into one target
sentence, without any notion of the surrounding text. This is clearly insufficient and differ
ent from how humans translate text. For many high-resource language pairs, translations
produced by N M T may be under certain, strict conditions, nearly indistinguishable from
human produced translations. One of these conditions is that evaluators score the sentences
separately. When evaluating whole documents, even the best N M T systems still fall short
of human translators. This motivates the research of employing document level context in
N M T , since there might not be much more space left to improve translations on the sen
tence level, at least for high resource languages and domains. This work summarizes recent
state-of-the art approaches to context utilization, implements several of them, evaluates
them both in terms of general translation quality and on specific context related phenom
ena, and analyzes their advantages and shortcomings. A hand-made context phenomena
test set for English to Czech translation was created for this task.

Abstrakt
Tato práce se zabývá zapojením mezivětného kontextu v neuronovém strojovém překladu
(NMT) . Dnešní běžné N M T systémy překládají jednu zdrojovou větu na jednu cílovou větu,
bez jakéhokoliv ohledu na okolní text. Tento přístup je nedostačující a neodpovídá způ
sobu práce lidských překladatelů. Pro mnoho jazykových párů je dnes za splnění určitých
(přísných) podmínek výstup N M T nerozeznatelný od lidského překladu. Jedna z těchto
podmínek je, že hodnotitelé skórují přeložené věty nezávisle, bez znalosti kontextu. Při
hodnocení celých dokumentů je výstup N M T stále hodnocen hůře, než lidský překlad, i v
případech, kdy byl na úrovni jednotlivých vět preferován. Tato zjištění jsou motivací pro
výzkum zapojení kontextu na úrovni dokumentu v N M T , je totiž možné, že na úrovni vět již
není mnoho prostoru ke zlepšení, alespoň pro jazykové páry a domény bohaté na trénovací
data. Tato práce shrnuje současné přístupy zapojení kontextu do překladu, několik z nich
je implementováno a vyhodnoceno v rámci obecné překladové kvality i na překladu speci
fických fenoménů souvisejících s kontextem. Pro zhodnocení kvality jednotlivých systému
byla ručně vytvořena testovací sada pro překlad z anglického do českého jazyka.

Keywords
N M T , neural machine translation, context, recurrent neural networks, transformer, docu
ment level translation, discourse, cohesion, coherence

Klíčová slova
N M T , neuronový strojový překlad, kontext, rekurentní neuronové sítě, transformer, stro
jový překlad na úrovni dokumentů, diskurz

Reference
J O N , Josef. Exploring Contextual Information in Neural Machine Translation. Brno, 2018.
Term project. Brno University of Technology, Faculty of Information Technology. Super
visor doc. RNDr . Pavel Smrž, Ph.D.

Exploring Contextual Information in Neural M a
chine Translation

Declaration
Prohlašuji, že jsem tuto bakalářskou práci vypracoval samostatně pod vedením pana doc.
RNDr . Pavla Smrže Ph.D. Uvedl jsem všechny literární prameny a publikace, ze kterých
jsem čerpal.

Josef Jon
May 22, 2019

Acknowledgements
I would like to express my thanks to my advisor Doc. RNDr . Pavel Smrž, Ph.D. and to
Ing. Martin Fajčík who provided me with advice and guidance, and to Catarina Cruz Silva,
with whom we started a related project at Machine Translation Marathon 2018. I would
also like to thank my girlfriend, Kristýna, who provided me with food and support during
my work.

Contents

1 Introduction 3

2 Machine translation and context 5
2.1 Discourse 5
2.2 Machine translation 6
2.3 Related work 14

3 Training and evaluation datasets 23
3.1 Europarl 23
3.2 OpenSubtitles 25
3.3 W M T 25
3.4 Paracrawl 26

4 Proposed models 29
4.1 Baselines 29
4.2 Concatenation 29
4.3 Multiple encoders 30

5 Implementation 35
5.1 Marian source structure 36
5.2 Context encoder 37
5.3 Context-aware Transformer 43
5.4 Scripts 44

6 Experiments 47
6.1 Tools 47
6.2 Evaluation 47
6.3 Results 51

7 Conclusions 65
7.1 Short term goals 65
7.2 Long term goals 66
7.3 Summary 66

Bibliography 68

I

Brno University of Technology
Faculty of Information Technology

Department of Computer Graphics and Multimedia (DCGM) Academic year 2018/2019

Master's Thesis Specification
21979

Student:
Programme:
Title:

Jon Josef, Be.
Information Technology Field of study: Information Systems
Exploring Contextual Information in Neural Machine Translation

Category: Speech and Natural Language Processing
Assignment:

1. Get acquainted with current methods employing context in neural machine translation (NMT).
2. Prepare English-Czech corpora for training and evaluating NMT

models utilizing context.
3. Implement, train, and compare most promising current approaches dealing with context information in

NMT.
4. Design and implement extensions addressing shortcomings of the current methods or their evaluation.
5. Create a poster presenting your work, its goals and results.

Recommended literature:
• Rachel Bawden, Rico Sennrich, Alexandra Birch, Barry Haddow (2018). Evaluating Discourse

Phenomena in Neural Machine Translation
• Agrawal, R., Turchi, M., and Negri, M. (2018). Contextual Handling in Neural Machine Translation: Look

Behind, Ahead and on Both Sides.
• Elena Voita, Pavel Serdyukov, Ivan Titov, Rico Sennrich (2018). Context-Aware Neural Machine

Translation Learns Anaphora Resolution.
• Lesly Miculicich, Dhananjay Ram, Nikolaos Pappas, James Henderson (2018). Document-Level Neural

Machine Translation with Hierarchical Attention Networks.
• Sameen Maruf, Gholamreza Haffari (2018). Document Context Neural Machine Translation with Memory

Networks.
Requirements for the semestral defence:

• Functional prototype of the system
Detailed formal requirements can be found at http://www.fit.vutbr.cz/info/szz/
Supervisor: Smrž Pavel, doc. RNDr., Ph.D.
Head of Department: Černocký Jan, doc. Dr. Ing.
Beginning of work: November 1, 2018
Submission deadline: May 22, 2019
Approval date: November 6, 2018

Master's Thesis Specification/21979/2018/xjonjo00 Strana 1 z 1

http://www.fit.vutbr.cz/info/szz/

Chapter 1

Introduction

Quality of state-of-the-art machine translation systems has improved vastly over the last
few years, thanks to shifting the paradigm from phrase-based statistical machine translation
to models based on complex artificial neural networks.

In 1986, Martin Kay [27] stated reasons why high quality machine translation is not
possible - but that was before the statistical revolution" [22], in times of rule-based systems
and symbolic A I . Nowadays, there is almost no doubt that high quality machine translation
is feasible in some conditions - in several test scenarios, recent neural machine translation
(NMT) systems are evaluated on par with, or even better than human translators. However,
challenges mentioned in Kay's statement, and several others, still hold true today and
are not addressed even in the current state-of-the-art. This work is focused on one of
these challenges - utilizing discourse-level, cross-sentence context in N M T . Current systems
usually use only one sentence as their input, which is clearly insufficient, as a single sentence
may not contain enough information for a proper translation of itself. Context necessary
for correct translation of a sentence can often lie outside the sentence, and this fact makes it
impossible to translate such sentence correctly even for a perfect M T system, if that system
adheres to one-to-one sentence paradigm.

Exploiting the discourse addresses many interesting sub-problems, like adaptation to
topic, genre, domain, or author's style, discourse consistency (e.g. lexical consistency -
using the same translation for one entity throughout the whole document) or coherence and
cohesion, which includes coreference resolution (e.g. cross-lingual pronoun disambiguation,
also mentioned in Kay's paper [27]).

However, utilizing context is more than solving each of the problems mentioned above
separately, since discourse can contain information that is not contained in any of the
sentences alone, as described later on. As stated by Kehler [26]: „The meaning of a discourse
is greater than the sum of the meanings of its parts.". For this reason, my work focuses
on end-to-end learning, using neural networks and raw training data without any linguistic
preprocessing (like coreference resolution), rather than developing specialized tools designed
to tackle these phenomena separately.

In the second chapter, I describe phenomena that this work addresses from a theoretical
point of view, and then I summarize publications related to my work. Since employing
context in N M T is only just getting into focus of researchers, this chapter is rather brief
and mostly comprises of analyzing papers that were published during the last year.

In the next chapter, issues concerning data preparation are discussed, including obtain
ing corpora with document-level information, preproccessing them and creating evaluation
data and protocols. Since the effect of discourse level phenomena on sentence level qual-

3

ity metrics is hard to predict, I evaluate the systems with test sets and metrics designed
specifically for this task, aside from general translation quality measurements.

In the fourth chapter, several context-aware architectures, inspired by a recent related
work, are proposed and described. Their theoretical advantages and shortcomings are
discussed. The fifth chapter describes implementation of the proposed models in a C++
N M T framework Marian [25].

The next chapter describes the central part of this work. Architectures described in
previous two chapters are evaluated on test sets described in the third chapter. I analyze
their shortcomings and determine which approach performs the best. Issues regarding
machine translation evaluation are also discussed in this chapter.

Finally, in the last chapter, I draw conclusions from the experiments and plan future
work.

In summary, I implemented some of the recent techniques of utilizing context in N M T
and I evaluated them in terms of both general translation quality, and accuracy on transla
tion of specific discourse phenomena. A specialized English-Czech test set was created for
this purpose.

4

Chapter 2

Machine translation and context

This work focuses on translation of a text given a document context or discourse. In first
part of this chapter, discourse phenomena are described from a theoretical point of view,
focusing more on the linguistic and less on the engineering side. First, a summary of what
a discourse is and what phenomena are considered as being part of discourse is presented.
Some of these phenomena are described more in detail, as they are important later in this
work. In the second part, principles of current state-of-the-art N M T models are discussed.
In the final part of this chapter, several papers related to this work are analyzed.

2.1 Discourse

Since this work focuses on translation of sentences utilizing a document context, or discourse
(these terms will be used interchangeably), it may be beneficial to define what discourse
means. Eisenstein [13] characterizes discourse simply as "multi-sentence linguistic phe
nomena" in his recent N L P notes. Andrew Kehler [26] refers to discourse as "collocated,
related groups of sentences". Kendall and Wickham [28] say that a discourse is a corpus of
statements whose organization is regular and systematic. Broader definition of discourse is
that it is the use of spoken or written language in context of society. For the rest of this
work, it will be assumed that a discourse means multiple sentences, which have some kind
of connection between each other. A n interesting point is that the meaning communicated
by the discourse is bigger than the sum of meanings of individual sentences. Discourse can
contain information that none of the sentences contains by itself.

2.1.1 Cohesion, Coherence, Consistency

According to [17], discourse is mainly embodied in three aspects: cohesion, coherence and
consistency. These terms are used in some of the related papers described later, so it may
be useful to define them at least in general terms. Generally, cohesion is a surface property
of text that qualifies whether the sentences are correctly linked to each other, using special
words, also called cohesive devices [16]. In other words, cohesive devices are linguistic units
that are used to tie parts of discourse together, e.g. expressions like however, although or
on the other hand. In contrast, coherence concerns abstract, mental image of meaning of
the text as a whole. Coherent text should be comprehensible and not confusing for the
reader. Linguists are not united in their view on cohesion and coherence definitions and
relationship. For example, Mey [43] defines the relationship as follows: „cohesion establishes
local relations between syntactic items (reference, concord and the like), whereas coherence

5

has to do with the global meaning involved in what we want to express through our speech
activity." Summary of different views on coherence and cohesion can be found in a work
by Schmeid et al. [53]. Effort to analyze a subcategory of cohesion phenomena is called
coreference resolution.

2.1.2 Coreference resolution

Several concepts regarding coreference resolution are introduced in this section, since coref
erence resolution is tightly related to a context-aware translation, and it can be used to
evaluate a translation system's ability to exploit context information.

Reference is a relationship between a linguistic expression and the object or idea repre
sented by the expression. Given a sentence:

Kristýna went to a grocery shop, but she realized she left the shopping list home.

In this sentence, Kristýna and both occurrences of she denote a person called Kristýna.
These expressions are called referring expressions [13] or mentions [26] and the entity they
refer to (person named Kristýna) is called the referent. When multiple referring expressions
are referring to the same referent, they corefer. A l l previous coreferences of a mention are
called antecedents. If an entity that was defined earlier in text is referenced, as is the case
in the example sentence, this reference is called anaphoric. Inversely, cataphora is the term
for the case when the referent is mentioned after the referring expression, as in the following
two sentences:

Who was that? That was Bedřich, an old friend of mine.

The goal of coreference resolution is to find which referring expressions in a text refer to
the same referent. This is a very challenging task, since apart from linguistic reasoning,
effective algorithm would need to contain real world knowledge and be able to do a common
sense reasoning. In fact, there is a Turing test inspired challenge to determine whether
an algorithm is a true general artificial intelligence based on coreference resolution - the
Winograd Scheme Challenge 1.

A special, well-studied case of anaphoric expressions are pronomial anaphora. Resolu
tion of pronomial anaphora and a correct translation of a pronoun with antecedent outside
the sentence is used as an evaluation metric in several papers presented in the related work
section. Another way of exploiting coreference resolution for N M T evaluation is to look
at attention matrix for a word with an antecedent in the context sentence and see if the
word wich is most attended to agrees with a human judgement (or a coreference resolution
system) of the atencedent. Such approach was used by Voita et al. [69] and it is further
disscussed in section Related work.

2.2 Machine translation

Machine translation (MT) is, simply put, translation of text in one language into another
language using a computer program. First M T experiments were carried out in 1950s, in
cluding the Georgetown-IBM experiment, which was designed to attract funding for the new

1http: / / commonsensereasoning.org/ winograd.html

6

http://commonsensereasoning.org/

research area. The experiment consisted of translating 60 sentences (carefully picked before
hand) from Russian into English. Using 6 grammatical rules and vocabulary of 250 lexical
terms the researchers were able to successfully demonstrate the system in operation. Both
the rules and the vocabulary were crafted to the beforehand known sentences. This demon
stration, along with statements claiming that M T will be a solved problem in next few
years, led to increased funding for M T projects.

One of the early M T researchers, Yehoshua Bar-Hillel, argued that in order to be able
to achieve fully automatic, high quality translation (FAHQT), machines would need to have
world knowledge and understand the meaning behind the input text. For that reason,
Bar-Hillel argued that F A H Q T should not be the ultimate goal of M T research, but the
researchers should instead focus on systems providing help to human translators, thus
speeding up the translation process [4]. He criticized his colleagues for not coming to
terms with this fact, rising false hopes among investors and governments, and waiting for
a F A H Q T system that was never to come. His view was proven right by the Automatic
Language Processing Advisory Committee (A L P A C) report in 1966. The report was very
sceptical of current state and prospects of M T , advised both the public and the researchers
to lower their expectations, and finally led to significant decrease of M T funding by the
U.S. government and companies.

In the next two decades, M T had some limited successes in specific applications. Systems
in that epoch generally analyzed semantic, syntactic and morphological aspects of the input
text, and used rules and bilingual vocabularies to translate it into the target language. This
approach to M T is called rule based machine translation (RBMT) . One of the successful
systems, named M E T E O , was used by the Canadian government to translate weather
forecasts between English and French [35].

A significant breakthrough came in the late 1980s. In 1988, researchers in I B M laid foun
dation for a new approach to the topic, so called statistical machine translation (SMT) [8].
S M T uses models trained on a large amount of parallel corpora (meaning same documents
in two languages, where sentences and their translations are aligned) to estimate a prob
ability that a string in a target language is a translation of some other string in a source
language. This probability estimation is usually based on Bayes rule and heuristics to limit
the search space. First types of S M T systems were word-based models, in which the unit
of translations were single words, translated into number of target words (including none),
in other words, these systems align words in source and target sentences. Such system is
clearly very constrained, but the obtained word alignments can be used as a training data
for a more recent and advanced category of S M T systems, called phrase based statistical
machine translation (PBSMT).

Most notable example of these systems is Moses [32], an open source project by Philipp
Koehn and many others. Moses and similar frameworks address many shortcomings of word
based S M T by using a phrase as an atomic unit, instead of a word. This allows them to
make use of local context and perform many-to-many translations. These phrases are not
necessarily phrases in linguistic sense, rather they are n-grams of words based on statistics
of their occurrences in the training data. The phrase model is usually coupled with another
models that perform auxiliary analysis of the text and influence the translation. The most
usual ones are reordering model, which changes the order of phrases in translation, and
language model, which estimates the probability of candidate sentence translation in the
target language (not conditioned on the source sentence, in other words, helps to create
more natural and fluent translations).

7

P B S M T marked big leap in quality of translation for language pairs with big quantities
of parallel data and made web translation services, such as Google Translate, possible and
practical. This approach was state-of-the-art in machine translation up until 2014.

2.2.1 Neural machine translation

In 2014, two papers with major impact on M T were released by Sutskever et al. [63] and
Cho et al. [9]. The main differences compared with P B S M T were the following two.
First, the N M T systems are using continuous, distributed representation of words. Such
representations came into focus of researches few years earlier, for example see paper by
Mikolov et al. [44]. This means that words that appear in similar contexts in the training
data, are processed similarly by the model, and that the representation is more semantic,
in the spirit of J . R. Firth's quote:

You shall know a word by the company it keeps.

Second big shift from P B S M T is that the N M T systems use one model, based on encoder-
decoder neural network, performing all the necessary operations, instead of combination of
separate models engineered for each task (e.g. translation, reordering, language modeling, as
mentioned earlier). The network performs transformation of one sequence (source sentence)
into another sequence (target sentence). Such networks are collectively called sequence-to-
sequence models. More specifically, encoder reads the input sequence (source sentence),
converts the input words into continuous representations (vectors) using an embedding
layer, and based on these representations, computes a representation of the whole sentence.
Based on this representation, decoder iteratively, word-by-word, generates the translation.
Already generated words form a second input of the decoder.

Nowadays, one of two types of deep neural networks are used in practice. First, re
current neural networks (RNN), which were the first ones being used for M T , along with
convolutional networks. These networks usually use either L S T M or G R U units, and are
further improved by an attention mechanism [2]. Since Summer 2017, RNNs are being re
placed by self-attention based models [68], which are more parallelizable, since they remove
the need for sequential processing of the input sequence inside the network, and also usually
offer superior translation quality. Both architectures are described in more detail in the
following two sections.

2.2.2 Recurrent neural networks in machine translation

Recurrent neural networks (RNN) were used in both of the fundamental N M T papers
mentioned above. Almost simultaneously in 2014, Cho et al. [9] and Sutskever et al. [63]
published neural network based M T systems and results that led to an increase of research
in this direction. Both of the systems used encoder-decoder R N N networks with L S T M or
G R U units. Both networks reached impressive results, achieving comparable performance
with strong P B S M T baseline system in terms of the B L E U [47]. Cho and his colleagues
performed analysis of relationship between sentence length and B L E U , presented in Figure
2.1.

As apparent from the figure, the performance of the system degrades rapidly for longer
sentences, probably because only one fixed-sized vector is used to compress all the infor
mation about the sentence in the encoder. In the subsequent work, Bahdanau, Cho, and
Bengio [2] proposed a solution - an attention mechanism which allows the decoder to look
at all of the encoder states, not only the last one. Such network became a de facto baseline

8

Sentence length

Figure 2.1: Relationship between sentence lengths and B L E U scores shows that the original
R N N encoder-decoder architecture had difficulties with longer sentences. Based on this
analysis, an attention mechanism between encoder and decoder was presented. Figure
taken from [9]

for N M T for the next three years, with many extensions and improvements built around
this general architecture. A high level overview of encoder-decoder network with attention
used in production (Google N M T system [72]) is presented in Figure 2.2.

2.2.3 Transformer

In Summer 2017, Google AI presented a paper [68] describing a novel N M T architecture,
addressing many of the RNNs shortcomings. Most notably, the new architecture removes
the need for sequential (recurrent) processing of the input sentence, which is responsible
for much of the sequential computing of the R N N network, thus speeding up the training
on modern GPUs, which are vastly parallel.

Instead of L S T M or G R U recurrent units, the Transformer encoder utilizes a mechanism
called self-attention, which models a relationship between all the input words and computes
a representation of a word by comparing it with all the other words in the sentence. This
comparison produces an attention score, which determines how much should the represen
tation of the other words contribute to representation of the current word. This procedure
is repeated in parallel for all the input words for a constant (empirically chosen, 6 for the
base model) number of steps, i.e. layers.

Processing all the words at once allows the network to capture long-term dependencies
better than RNNs are able to, since distance of the words in the sentence does not matter.
RNNs have problems with long input sequences, even when gating and attention mecha
nisms are employed. The root cause of this is the inherently sequential nature of R N N
processing - input symbols are processed one by one, the number of operations between
processing two input symbols is linear in regard to their distance in the input sequence.
During each operation on the path from first symbol to a second symbol, some part of
the information about the first symbol is not propagated further. Thus, information about
the first symbol is incomplete when creating representation of the second symbol. This is

9

Figure 2.2: Google's neural machine translation. Taken from [72]

not the case with the Transformer - the self-attention mechanism connects all the symbol
representations directly. This notion is further discussed in Chapters 4 and 6.

A n issue with processing all input symbols at once is that the model does not have any
information about the relative positions of the symbols. This information needs to be added
explicitly. The position of the word in the sentence is encoded by a sinusoidal function and
concatenated with the word representation.

The decoder works in a similar fashion to the encoder, only difference being that it
also attends to previously generated words, in addition to input words. Final layer of
the decoder performs the softmax function with dimensionality equal to size of a target
vocabulary. Output of this softmax is a probability distribution over words in the target
vocabulary and the generated output word is selected based on this probability. Overview
of the architecture can be seen in Figure 2.3. Transformer networks outperform RNNs in
most applications (for example see paper by Lakew et al. [33]), one of the disadvantages
is their sensitivity to hyperparameters, like learning rate schedule or minibatch size, see
papers by Popel and Bojar [49] or Ott et al. [46].

Model description

Since the experimental architectures described later in this work are modifications of the
Transformer, the original model is described in detail in this section, following description
in the original paper [68]. The architecture follows the general structure of encoder and
decoder. Encoder creates a vector representations of the input sequence. Let the input
symbols be denoted (xi, •••,xn) and the continuous representations generated by the encoder
z = (zi,zn). The decoder sequentially generates output symbols (yi, ...,ym), based on z
and symbols generated in previous steps.

Encoder The encoder consists of six identical layers, each one formed by two functional
blocks or sublayers - multi-head self-attention followed by position-wise, fully connected
feed forward network. A residual connection [19] is built around each of the functional
blocks, followed by layer normalization [36]. This results in a final output function in form
LayerNorm(x + Sublayer(x)), Sublayer(x) being the function performed by the sublayer
itself.

10

The first layer of encoder uses word embeddings as an input, i.e. list of vectors (512-
dimensional for the base model) generated by the embedding layer for each token in the
source sentence. Length of the list is the maximum sentence length, which can be set as a
hyperparameter. Subsequent layers use outputs of the previous layer as an input.

Decoder The decoder is again built from six identical layers, but in contrast to the two
sublayers in the encoder, each layer consists of three sublayers. A multi-headed encoder-
decoder attention layer is inserted between the self-attention and feed-forward layers, which
are the same as in the encoder. Again, residual connections and layer normalization are
used. The decoder generates output symbols step by step. Additionally, the self-attention
in the decoder is masked, so that it can only attend to positions already generated in
the previous timesteps. In another words, the masking prevents the decoder to attend to
positions that were not yed generated, so the symbol that is being predicted depends only
on the encoder representations and previously generated symbols.

Attention The authors define attention as a function of three variables (vectors): query
Q, key K and value V . A weight of each element in the value V is computed by a
compatibility function of query Q and key K . Attention output can be then computed
using these weights as a weighted sum of elements in V .

In the original paper, the particular implementation of attention function is called scaled
dot-product attention. The function has three vectors as parameters, Q and K of dimen
sionality dk and values V with dv dimensions. The attention function output matrix is then
computed using the following formula:

Attentions, K, V) = softmax (0^—) V (2.1)

The dot product of a query and all keys (i.e. the compatibility function) is computed first,
then divided by square root of dimensionality of the key vector. Softmax function is then
applied to obtain the weights for corresponding values.

The attention used in Transformer is multi-headed, meaning that instead of computing
one set of attention weights (with dimension dmodei), h different linear projections of queries,
keys and values are learned. The Q, K and V vectors are projected to dk = dv = dmodei/h
dimensions, in case of the original model to 512/8 = 64-dimensional vector. The attention
function described above is performed on each of these vectors in parallel and the dv-
dimensional outputs are concatenated and projected again, resulting in the final output of
the multi-head attention layer.

MultiHead (Q, K, V) = Concat (head v . . . , head H)W°
(2 2)

where head i = Attention (QW? , KWf, VW^
Where w9 G Rd m°del x d k , Wt

K G M.d^°dBiXdk G K d m ° d e l X d * are the learned input
projection matrices for each of the heads, and W° G M.hdvXdinodel is the weight matrix of
the final projection after the concatenation of the outputs of each of the heads.

The multi-head attention is used in three contexts in the Transformer. Firstly, in the
encoder self-attention, Q, K and V are all the same vector, obtained as an output of
the previous layer (or embedding layer in case of the first layer). Each position can attend
to representations for all the other positions from the previous layer. In decoder self-
attention, the mechanism works similarly, only difference being masking. Each position

11

can only attend to position to the left of itself, which is implemented by setting values of
representations that break this condition to — oo before the softmax computation. This
ensures that the decoder only looks at previously generated symbols. Finally, encoder-
decoder attention is used similarly as in other encoder-decoder models. The queries are
obtained from previous decoder layers, while the key-value pairs are representations from
the last layer of the encoder. Each position in decoder can attend to all of the encoder
representations.

Position-wise feed-forward layer The second type of sub-layer used in the Trans
former is a feed-forward fully connected network. This network is applied to each position
separately and consists of a linear transformation, followed by a R e L U activation and a
second linear transformation:

FFN(x) = ReLU (xW1 + b1)W2 + b2 (2.3)

Embeddings As usual in other N M T models, the Transformer learns embeddings that
map input and output tokens to a <imorfe/-dimensional vector representation. To convert
the decoder output into a token probability, linear transformation followed by a softmax is
used. Weights of this linear transformation can also be considered a form of embedding,
meaning that the model uses embeddings at three different stages of computation (input
and output embeddings and the weights of the linear layer before softmax). A l l of these
three embeddings share the same weights - there is only one embedding weight matrix.

Positional embeddings One of the most notable improvements of the Transformer over
R N N models is that the input is processed in parallel, without a recurrent (sequential)
computation. However, this means that the model does not have any notion of the order
of the input symbols. In RNNs it is encoded implicitly by the order in which the input
symbols are processed. For the Transformer to be able to utilize the knowledge of positions
of input tokens in the sequence, the position information must be added in some way. To
achieve this, position of each token is encoded by a function and the resulting vector is
summed up with the corresponding token embedding. The encoding function can be either
learned, or manually designed. In the paper, authors use a hand-crafted combination of
sine and cosine functions:

PE(Pos2i) = sin (pos/100002i/d™dBl)
" ; ((2-4)

PE(pos,2i+i) = cos (pos/100002t/d™^J

Variable pos denotes the position of the token in the input, i is the dimension in the
embedding vector. The periodicity of this function allows the model to extrapolate to
lengths not seen during the training (in contrast to learned positional embeddings).

Training The author train the model using Adam optimizer with hyperparameters (3\ =
0.9,/?2 = 0.98 and e = 10~ 9. Learning rate is scheduled using the following formula:

^ r = ~̂modei ' rnin(step_nttm - 0 ' 5 , step-num.warmup_steps~1'5) (2-5)

Learning rate is linearly increased for warmup_steps training steps, and then, after reach
ing its maximum value, it is decreased with inverse square root of the step number. Without

12

this variation of the learning rate, the training diverges. The authors trained the models
on 8 P100 GPUs, with batch sizes around 25000 tokens. In the Transformer, the batch size
is important for stability of training and performance [49].

Three regularization techniques are used:

• Pervasive dropout [61] with probability = 0.1 at the output of each sublayer, before
layer normalization and summing the output with the input (residual connections).

• Dropout in the embbeding layer, after the token embeddings are summed with the
positional embeddings.

• Label smoothing [64] with value 0.1.

Output
Probabilities

i Stage 1 Positional
Encoding

Input : : Output
Embedding ! ; Embedding

Inputs Outputs
(shifted right)

Figure 2.3: Encoder (left) and decoder (right) of the transformer model. Taken from

The Transformer presented in this paper obtained state-of-the-art results on W M T 2014
English-German and English-French datasets, while allowing much better parallelization
and thus shorter training times than its RNNs or convolutional counterparts. Transformer's
superior performance in machine translation was confirmed by many subsequent papers,
e.g. Lakew et al. [33]. Transformer-based models are used in many other fields of N L P ,
also improving state-of-the-art results [12] [52].

Other explanations Even though the original paper is clearly written, several very nicely
done explanations and guides to the Transformer model can be found on the Internet. It
would be a shame not to name few of them, since they might be useful to get at least a gist
of how the model operates. The original Google blogpost about the Transformer2 contains

2

https: //ai.googleblog.com/2017/08/transformer-novel-neural-network.html

13

high-level, intuitive and animated explanation of how and why self-attention works. The
Illustrated Transformer'^, article by Jay Alammar, approaches the model from top-down
perspective, with helpful figures for every level of abstraction. One of the illustrations
from this post, which displays the whole model, is presented in Figure 2.4. The Annotated
Transformer1 takes the original paper and adds code and comments to the corresponding
parts. The whole article is a functional implementation of the Transformer in a Jupyter
notebook, using OpenNMT and Pytorch. Another similar post, with code snippets and
figures, was created by Michal Chromiak 5 .

Add & Normalize

Q Feed Forward J Q Feed Forward J

J

c

Add & Normalize

Self-Attention

Add & Normalize

Feed Forward } c

Add & Normalize

Self-Attention

Feed Forward

Thinking Machines

(Softmax)
Linear)

DECODER #2)
/— t t —\

Add & Normalize)
t +

Feed Forward) Q Feed Forward)
Add & Normalize)

A A
••>••*/ i 1 Encoder-Decoder Attention)

t 1
Add & Normalize)

+ 1
Self-Attention)

j

Figure 2.4: A n alternative overview of the Transformer model (with 2-layer encoder
and decoder) by Jay Alammar. Taken from The Illustrated Transformer (http: / /
j alammar . g i t h u b . i o / i l l u s t r a t e d - t r a n s f ormer/.

2.3 Related work

This thesis deals with employing extra-sentential context in N M T . Many publications about
this topic emerged in the last two years.

After Microsoft claimed reaching human parity in Chinese-English news translation
[18], Laubli et al. [34] analyzed these claims to asses if they are true. The authors
have changed the evaluation protocol slightly: evaluators were professional translators as
opposed to crowd sourced bilingual speakers used by Microsoft, and pairwise ranking was
adopted instead of direct assessment. The translations were evaluated in terms of fluency
and adequacy. The evaluators were shown a source sentence (in case of adequacy evaluation,
fluency evaluators were only shown the two translations) and two translations, one produced

3

http: / / j alammar.github.io/illustrated-transf ormer/
4

http://nlp.seas.harvard.edu/2018/04/03/attention.html
5

https: //mchromiak.github.io/articles/2017/Sep/ 12/Transf ormer-Attention-is-all-you-need/

#.XMzJK99f jMO

14

http://nlp.seas.harvard.edu/2018/04/03/attention.html

I Sentences • Documents l Sentences • Documents

9% 11%

Same

(a) Adequacy

Human Same

(b) Fluency

51% 50%

Figure 2.5: Results of human evaluation of Microsft's English to Chinese M T system transla
tion adequacy and fluency by Läubli et al. [34]. Increased preference of human translations
can be observed in document-level evaluation.

by a human (professional translator) and one by Microsoft's M T system. They were asked
two questions:

Which translation expresses the meaning of the source text more adequately?
(adequacy)

and

Which text is better English? (fluency)

The results did in fact confirm Microsoft's claims (see Figure 2.5). In terms of adequacy,
the evaluators preferred M T in 50% of the sentences, didn't have any preference in 9%
and preferred the human translation in 41% of the cases. Interestingly, in terms of fluency
(monolingual evaluators), the M T system output was preferred in only 32% of the examples
(51% human, 17% tied) - even though fluency, and not adequacy is often cited as the main
advantage of N M T .

However, when the evaluators were asked to compare whole documents, the results
changed drastically - 52% for human, 11% tied , 32% M T in adequacy, 50% human, 29%
tied, 22% M T in fluency. These results convincingly show the need for document level
N M T .

Just for completeness, the same translations by the Microsoft's M T system were reeval
uated again by [65], who found out that a large portion of the Chinese source sentences
in the test set were originally English sentences, translated into Chinese. This means that
a part of the data set was in fact „translationese", i.e. a text seemingly in Chinese, but
still retaining some of the properties of an English text. When only sentences which were
originally in Chinese were considered, the M T system did not reach human parity.

In a paper by Bawden et al. [5], most of the R N N model architectures that incorporate
context up to date are compared and evaluated on English-French dataset, which is designed
to target different discourse phenomena, namely coreference, lexical cohesion and lexical
disambiguation. Examples in the set are hand-crafted, but inspired by sentences found in
OpenSubtitles2016, to assure similarity to real world examples.

Structure of the set is described later, in Chapter 6, as I will use it directly and also
will modify it for English to Czech translation. So, only for a brief overview, in lexical dis
ambiguation part, each source sentence has two different source side contexts (one previous

15

sentence) and two possible translations (also with previous target sentence as a context).
Each translation is correct in one of the contexts. For lexical coherence (repetition), the
source context stays the same, but the previous target sentence is different for each case.
The desired result is that the same source word or phrase is translated the same way in
both target sentences.

Many context-aware R N N architectures were explored. The models were trained on
English-French OpenSubtitles2016, and evaluated on the set mentioned above, and also in
terms of general translation quality (B L E U [47], see Chapter 6 for details on this metric) on
subtitle test sets from 4 genres: comedy, crime, fantasy and horror. The general translation
performance depended heavily on test set used. The simplest models have ordinary encoder-
decoder architecture, with concatenation of current and previous sentence on the input
(separated by a special token), and either single (labeled 2-to-l) or two (previous and
current, 2-to-2) sentences on the output. Generally, 2-to-2 model performed quite well -
with about 0.5 B L E U gain on all subtitle test sets, 63.5 % precision on coreference and 52
% on cohesion/coherence sets. 2-to-l scored 52 % in coreference and 53% in cohesion, and
outperformed baseline in 2 out of 4 translation test sets.

Another set of experiments focused on multi-encoder models, using previous source or
target sentence as an additional input. Three different attention strategies were evaluated.
First of them was concatenation - the context vectors from both encoders are concatenated
and a linear transformation is applied on the result to obtain vector with same size as
the original vector. Second approach uses a tanh attention gate, which learns to give
different importance to each element of the both context vectors. Finally, hierarchical
attention, as in [?] is used - another attention layer is applied on the context vectors
from each encoder. Overall, the best performing model was using one previous source
sentence as an input, hierarchical attention and was trained to generate both previous
and current target sentence. This model gained about +1 B L E U across all test sets and
scored 72.5% on coreference and 57% on coherence/cohesion. Models from this paper
are not implemented in my work, with the exception of concatenation and 2-to-l dual
encoder model, since only R N N models were explored, while my work focuses mainly on
the Transformer model. However, this paper is crucial for my work because of the test set
and evaluation methodology used in it.

One of the earliest attempts on incorporating discourse into N M T is a work by Jean et al.
[21]. Presented system utilizes a dual encoder R N N , with one encoder for a source sentence,
as usual, and another auxiliary encoder for a context sentence. Attention mechanism for
the contextual encoder also has source vector from the main attention as an input, besides
the usual inputs (previous symbol, previous decoder state, annotation vector). The models
were trained on W M T 1 6 and ISWLT En-De and En-Fr data sets, which belong roughly to
news domain.

The authors evaluated their model in terms of general translation quality (BLEU) , as
well as in more focused evaluation - pronoun prediction (RIBES). For the pronoun predic
tion, pronouns in the target sentence were replaced with a special token, then sentences with
all the possible combinations of pronouns in place of these tokens were generated and the
one with best log-probability, as scored by the model, was chosen as the output. There were
improvements observed for both of the metrics when using small training data - ISWLT or
W M T 1 6 reduced to up to about 40%. However, when the model was trained on a larger
corpus, the improvements vanished. Another interesting outcome is that both baseline and

16

contextual model outperformed all the submissions for WMT16 pronoun prediction shared
task, even though these submissions were trained specifically for this task.

In a paper by Wang et al. [70], the authors focus on employing context from previous
source sentences using hierarchical RNNs. Target context was not used, because in the
preliminary experiments, the target context hurt the translation quality due to error prop
agation. First, the sentence-level R N N reads the sentence word by word and summarizes
the content in its last hidden state. Document-level R N N uses the last hidden states of n
sentence-level RNNs as an input and its last hidden state is considered a global context
vector D. Authors use n=3 for the experiments in this paper.

Two strategies of adding context to the N M T model are explored - Initialization and
Auxiliary input. Initialization means that encoder, decoder or both are initialized with D.
In encoder, all the states are traditionally zero at the begging of the sentence translation,
so D is simply used as an initial state of the encoder layers. In decoder, the usual formula
for computing the hidden state in the first step is changed from so = tanh(WshN) to
so = tanh(Wsh.N + WdD), where hjy is the encoder last state and Wh,Wn are trainable
weights.

In the Auxiliary context scenario, D is used as an additional input for the decoder.
In an usual N M T model, the decoder hidden state in time step i is computed as Si =
/ (S J _ I , yi-i, Ci) , where Sj_i is the previous state of the decoder, is the last generated
symbol, Cj is the sentence context vector from the encoder and attention mechanism. After
adding the global context vector D, the formula changes to following:

Si = f(si-i,yi-i, Ci, D)

On implementation level, the authors simply concatenated Cj and D into a single context
vector. However, the necessity of global context is different for each word, e.g. translation
of ambiguous words can benefit from more context information than translation of words
with no ambiguities. To address this observation, the authors used a sigmoid context gate,
as in a paper by Tu et al. [66]. The gate uses the previous symbol, previous hidden state
and encoder context vector to generate a vector of same dimension as D. More formally,

Zi = cr(UzSi-i + Wzyi-i + CzCi)

where Zi is the gate output and Uz, Wz and Cz are learned weights.
After applying the sigmoid function, all elements of Zi are between 0 and 1 and z^ has

the same size as D and intuitively, we want for each element from z% to tell the decoder how
much of corresponding element from D to use in generating the next symbol. To achieve
this, D is multiplied element-wise with zf.

Si = f(si-i, yi-i,Ci, Zi <g) D)

Experiments were carried out on a subset of Chinese-English L D C 6 corpora that contains
datasets with document boundaries. Implementation of the models is based on Nematus[55],
using vanilla Nematus as a baseline (30.57 average B L E U on 3 test sets). A l l of the modifi
cations had positive impact on B L E U score, and are mostly complementary - namely, using
encoder initialization the network achieved 31.55 B L E U , decoder initialization 31.90 B L E U

6https://www.ldc.upenn.edu/

17

https://www.ldc.upenn.edu/

and combining both 32 B L E U . Auxiliary context strategy reached 31.3 B L E U without the
gate, and 32.24 when the context gate was used. A l l of the improvements together yielded
improvement of 2.1 B L E U over the baseline, reaching 32.67 B L E U on average.

The authors also performed a manual analysis of the errors in inter-sentence phenomena.
They randomly chose part of the test set and counted number of errors in translation of
ambiguous words and phrases and in consistency of the translation. The system solved 76%
of ambiguity and 75% of consistency errors, while bringing in 26% of new errors (relative
to the original counts).

I Add &. Norm I

Feed
Forward

Add & Norm

Multi-Head
Attention

(IM-1)x

f—\ Add & No7m>
Feed

Forward

Add 8. NorrnV

Multi-Head
Attention

T"

Positional /^~_X
Encoding

Input
Embedding

Context

Add & Norm
Feed

Forward

Gated sum

I Add & Norm I Add & Norm I
Multi-Head Multi-Head

Attention Attention

shared
shared

shared
shared

/ *j Add & Norm I

Feed
Forward

•j—Jj Add & Norm
Multi-Head

Attention

c (N - 1)

s h a r e d

Positional
coding

Input
Embeddinq

Source

Figure 2.6: Context sentence (left) and source sentence (right) encoders of the context-aware
Transformer proposed by Voita et al. [69].

Paper by Voita et al. [69] presents a modified Transformer model with a specialized
context encoder, with some of the encoder layers weights shared between context and
source encoders. In the preliminary experiments, neither concatenation nor simple dual
encoder models, proposed in earlier work, worked well with the Transformer. The models
were trained on OpenSubtitles corpus, and resulted in improvement in B L E U (0.7 points),
pronoun disambiguation and coreference resolution.

The proposed model consists of two encoders - context and source encoder - and a
decoder. Overview of the encoder part of the model is presented in Figure 2.6. The
decoder is identical as in the vanilla Transformer model. More detailed description of the
architecture is presented in Chapters 4 and 5, since this is one of the models implemented
and evaluated in my work.

18

Type Baseline Context-aware Difference

Masculine
Feminine
Neuter
Plural

26.9
21.8
22.1
18.2

27.2
26.6
24.0
22.5

+0.3
+4.8
+1.9
+4.3

Table 2.1: Improvements in B L E U scores for test sets with a pronoun „it" referring to a
noun in the context sentence, split by the noun gender and number. Higher gains can be
observed for feminine a plural nouns. Taken from [69]

Evaluation of the proposed model was performed in terms of B L E U score, where a
moderate improvement (0.7 B L E U) was observed. Also, evaluation using a random context
sentence instead of the proper one was performed, to see whether the B L E U gains are due
to correct context utilization, or some other effects have played role. A more fine-grained
analysis of the system was also carried out. By investigating the distribution of attention
over the context and source sentences, the authors discovered that a large part of the
attention is given to the context sentence when pronouns like ,p,t", „yours", ,pnes" and
are being processed. These pronouns are indeed often hard to disambiguate without the
additional context when translating for English to Russian (similarly so from English to
Czech).

To see if this higher attention translates into higher B L E U scores, the authors created
a pronoun disambiguation test set. Standford CoreNLP [40] was used to find sentence
pairs containing coreferential pronouns, as such sentences are more likely to benefit from a
context-aware translation. The sentences were extracted from held out part of the training
corpus, OpenSubtitles2018. A n issue observed with this approach was that most of the
antecedents of the pronouns were also pronouns, which probably do not provide the infor
mation needed for the disambiguation. However, even if such sentences were left in the
dataset, a bigger B L E U gain than on the original test set was seen. When considering only
sentences with pronouns that have a noun as their antecedent in the previous sentence,
even larger improvements can be seen.

The most interesting case is the pronoun „it" (Table 2.1). For further analysis of sen
tences containing this pronoun, Berkley word aligner was used to divide the test sentence
pairs that contain Jtu referring to a noun into parts based on the gender and the number
of the noun. Larger improvements can be seen when „itu is to be translated into feminine
or plural form, since in the training data, Jt" is mostly masculine and the models tends
to translate the pronoun into its masculine form when no context information is available.
This observation links the context-aware N M T research with another currently actively
researched N M T topic - gender bias in N M T models [67].

The results on pronoun translation suggest that the model learns to correctly determine
an antecedent of the pronoun, i.e. perform anaphora resolution. The authors analyzed the
attention weights (average of attention to context words over all attention heads) to asses
this assumption. Again, only sentence pairs where a pronoun in the source sentence has
a noun antecedent in the context sentence were used. Next, the cases where the context
sentence only contained one noun, were excluded. The context word which had the highest
attention weight was compared to an antecedent determined by CoreNLP coreference reso
lution system. Also, picking first, last, or random noun was evaluated as a simple heuristic.

19

Pronoun Random First Last Attention Method Agreement(%)

it 40 36 52 58
you 42 63 29 67

I 39 56 35 62

Table 2.2: Agreement (in %) of a noun picked from
the context sentence by attention or one of the three
heuristics, with a noun determined by CoreNLP to
be the pronoun antecedent. Attention has the largest
agreement, suggesting that the model learns to per
form anaphora resolution. Taken from [69].

CoreNLP
attention

last

77
72
54

Table 2.3: Agreement (in %) of a
noun picked from the context sen
tence as an antecedent by atten
tion, by CoreNLP or the last noun,
with a human judgement. Taken
from [69].

The results are presented in Table 2.2. They show that the attention does indeed agree with
CoreNLP in more cases than any of the heuristics. The authors also performed human-
based evaluation, with results shown in Table 2.3. The context attention overall performs
slightly worse than the CoreNLP system, however, the results show that the model learns
to perform anaphora resolution.

In a work by Agrawal et al. [1], authors evaluate R N N and Transformer architectures
with context windows of up to three previous source sentences and a next source sentence
on the source side, and previous one or two target sentences on the target side. Context
sentences were added either by concatenation (separated by a special token), or as an input
for additional encoder. Models were trained and evaluated on English-Italian IWSLT 2017
dataset, consisting of transcribed T E D talks.

A drop in B L E U score was observed when adding context to R N N via simple concatena
tion, probably because even though L S T M s have gating mechanisms and the network used
attention, signal is still vanishing in long-range dependencies. When using multi-encoder
architecture, B L E U increased for R N N . Other research suggests gains for RNNs even when
using concatenation, however on OpenSubtitles dataset, where average sentence length is
much shorter. For the Transformer, where only concatenation experiments were carried
out, the best combination was one previous and one following source sentence on the source
side and one previous target sentence on the target side, yielding a 2 B L E U gain over the
baseline.

A work by Maruf and Haffari [41] is different from the others since the authors con
sider global context. Memory networks are used to store and use the context information.
A recent follow up work [42] is using the Transformer and a sparse hierarchical attention
to encode document-level context.

Recently, Jean and Cho [20] discovered that many of the models presented in previous
work do not rely on the context information too much when translating a source sentence.
The authors found this through a simple experiment - they replaced the context sentence
with a random sentence from the dataset. A surprisingly low drop in B L E U score was
observed.

A novel, multi level pair-wise loss function is presented. This loss function adds penalty
to the training loss when the usual cross-entropy loss for a sentence with correct context
is not significantly better (or even worse) than the loss for the same sentence with a ran
domly sampled context. In another words, the model is encouraged to utilize the context
by the fact that a correct translation paired with a correct context is assigned lower er-

20

ror than a correct translation paired with a random context. Traditionally, N M T models
that incorporate context are trained to maximize the log-likelihood on the training dataset
V(tr) = X(tr)^y(tr)^c(ir) = y^d),..., (XN, YN, CN)} ., where X are the source sen
tences, C are the corresponding context sentences and Y are the reference target sentence.
Log-likelihood is then defined as:

C^V) = ^Y,Y.l°zp(y?\y<t>xN,cN) (2.6)
n=lt=l

where 9 is the set of the model parameters.
Using the law of total probability, given a source sentence X, the additional context

influence is neutral over the entire distribution of C:

Pe (Vt\y<t, X) = (yt\y<t,X,C)p(C\X) =Ec^c\x\pe(yt\y<t,X,C)} ^.7)
c

When an additional context is used, there are two possibilities - either the context is
useful or harmful. For useful context, the model is able to assign better probability to a
correct translation (target token in case the context is provided than in case it is not.

Harmful context refers to the inverse situation - correct translation is assigned higher
probability when such context is not provided. Equations above are defined at the token
level, but can be extended to a sentence a dataset level functions easily:

stok(yt\-) =logpe (y*t\-)

sseat(Y\.) = £T=i l °gP*(l£ |y<t . -) (2.8)

s d a t a (y i -) = E y e ^ s e n t m -)
Authors propose to regularize training with these equations for all three levels, based

on margin-ranking loss [10]:

K{9-V) =ad [(^=1Tnyd-sd^{y\X,C) + sd^{y\X)\ +

+ « s £ j L i [Tn5s - s s e n t (Yn\Xn, Cn) + s s e n t (Yn\Xn)]+ (2-9)

+«TEJL IE£ I [5T-stok(yf\y^t,Xn,Cn) + S

t o k (yf \yn

<t,Xn)}+

where the hyperparameters Sd, 6s and St are margins and a,d,as and at are regularization
strengths for data, sentence a token level respectively.

One of the issues is estimating the score that would be given to the translation without
the additional context, since this would require to compute the score over all possible context
sentences and the knowledge of p(C\X). Therefore, a simple approximation is used, based
on a assumption that X and C are independently distributed p(C\X) = p(C) and that the
distribution of C follows the distribution of dataset D. Then, the context-less probability
can be estimated as:

1 M

S(-|-) = logp(-) « log — P ("I-. Cm) (2.10)
m=l

In the experiments, the authors set M = l , i.e. the shuffled the currently processed mini-
batch and chose one random context sentence for each source sentence. The definitions of

21

Model Correct context Random context

Noncontextual baseline 29.16 - -
Context-aware transformer 29.34 28.94 0.4
+ Context-aware learning 29.91 26.17 3.74

Table 2.4: Results (B L E U scores) of context-aware loss regularization applied to context-
aware Transformer [69]. Wi th the proposed regularization, context-aware Transformer out
performs the non-regularized model in terms of B L E U , and a higher drop in B L E U score
can be observed when random context is supplied. This suggests that the regularized model
depends more on the context sentence and it is able to utilize context information more
effectively. Taken from [20].

useful and neutral context described above can also serve as an evaluation metric: Dur
ing the training with the proposed algorithm, difference of scores for correct and random
contexts can be computed on a validation set to see the progress of training. Similarily,
another metric can be defined, this time using B L E U scores - difference of B L E U scores of
translations using the correct and using a random context. Using these metrics can help us
understand how much does the model depend on the context information.

Experiments (see Table 2.4) were carried out using a model proposed by Voita et al. [69],
which was already described earlier. Based on tuning on validation set, the hyperparameters
for the proposed loss were set to aT = = l,as = 0,5T = 5S = 0,5^ = log(l . l) . They
observed a negligible gain in B L E U score on the validation set and no gain on the test set
using a context-aware model trained only to maximize log-likelihood without the proposed
modifications. Also, when random context is supplied to this model, only a small (0.4)
B L E U drop can be observed.

When the proposed regularization is used, the model outperforms the baseline and a
big drop in B L E U score is seen when random context is supplied instead of the correct
one. This suggests that the model relies more on the context sentence and it is able to use
the context to improve overall translation quality. Furthermore, as the modification affects
purely the learning objective, this algorithm can be used in combination with virtually any
context-aware N M T model.

22

Chapter 3

Training and evaluation datasets

Download corpus Split into documents Filtering |Split into train/dev/test

Architecture
specific format Subwords Truecasing

Preprocessing

Token ization

Training

Conclusions

Shuffling dev set
context

Held out dev set
BLEU score evaluation

Manual inspection
Discourse test set
accuracy evaluation

Finding optimal
hyperparameters

Held out test set
BLEU score evaluation

Training and evaluation

Figure 3.1: Pipeline used in this work. Steps are explained in depth in current and the two
following chapters.

To compare the effects of utilizing context in different domains and with different types
of data, three publicly available datasets were be used in the experiments: Europarl 1 , Open-
Subtitles20182 and W M T 1 9 datasets for the news translation task 3, including Paracrawl'1,
which was preprocessed in a specific way, described later. The datasets were used to train
models for English to Czech and English to French translation, W M T 1 8 dataset was used
for English to Czech only. Overview of the complete workflow is presented in Figure 3.1.
Sizes of individual datasets are provided in Table 3.1.

3.1 Europarl

Europarl [31] is a parallel corpus containing 21 E U languages, extracted from translations
of European Parliament proceedings from 1996 to 2011. Since it is a content created by

1http: / / opus.nlpl.eu/Europarl.php
2http: / / opus.nlpl.eu/OpenSubtitles2018.plip
3littp://www.statmt.org/wmtl9/translation-task.html
4littps://paracrawl.eu/

23

http://opus.nlpl.eu/
http://www.statmt.org/wmtl9/translation-task.html

Dataset # lines # words # doc Dataset # lines # words # doc

OpenSub train 41.8M 678M 55.6k
OpenSub dev 7318 148k 20
OpenSub test 15684 262k 20

Europarl train 2M 115M 3138
Europarl dev 42k 2.5M 20
Europarl test 38k 2.3M 20

OpenSub train 42.4M 636M 56.4k
OpenSub dev 13.4k 214k 20
OpenSub test 14.k 227k 20

Europarl train 625k 31.4M 2060
Europarl dev 7144 358k 20
Europarl test 5170 258k 20

W M T 1 9 58M 1.2G -
News CZ 07-18 73M 2.3G -

Table 3.1: Approximate sizes of datasets used in this work.

professional translators and the sentences are generally aligned as they should be, the
filtering step is omitted during the preprocessing. In this work, English to French and
English to Czech parts of the corpus are used.

3.1.1 Download

The corpus was downloaded from O P U S 5 . Five files are needed - three archives containing
the documents in Czech, English and French, and two X M L files with alignment info for
the two language pairs. A toolkit called uplug, that serves for preprocessing and format
conversion, is supplied alongside the OPUS corpora. In this work, script uplug-readalign is
used to extract parallel documents using the X M L alignment file.

3.1.2 Splitting into documents

Uplug-readalign generates a long parallel file with all the parallel sentences for one language
pair, while preserving the document boundaries. For the next steps, two simple Python
scripts were created - readalign_to_docs.py changes the format of input file to slightly more
convenient one, and also splits the documents into training, validation and test sets. Second
one, docs2context.py, adds desired context (specified by command line parameters) to the
sentences and generates files in a format which is suitable for direct usage as a training and
test data for Marian (after applying B P E , see the next section).

3.1.3 Byte pair encoding

A n N M T system encoder converts source words into indices in the source vocabulary and
subsequently into embeddings, also called word vectors. In the last layer of the decoder,
probability distribution computed by a softmax function over the outputs of the layer, is
used to choose a word from target vocabulary. There are two issues with this approach,
especially for languages that use agglutination or compounding to form a new words, or
are otherwise morphologically rich.

First, it would be prohibitively expensive computationally- and memory-wise to use a
huge vocabulary that would cover most of the words used in the language - reasonable sizes
are in order of tens of thousands of words. Second, even it would be possible to use such
a big vocabulary, most of the words would appear very sparsely in the training corpora.

5http: / / opus.nlpl.eu/Europarl.php

24

With only few examples for a word, it is difficult for the network to learn a good quality
embedding. For example, words like fotbal and fotbalový (meaning football as a noun, and
football as an adjective) would not share any part of their representation, the word vectors
would be learned completely independently during the training.

Until character-level (or even better, byte-level) N M T systems are fast enough to be
used in production, it is necessary to mitigate this problem. The solution is to split the
words into smaller parts, called subwords or word pieces, which would reduce both of the
issues, e.g. fotbal -> fot bal, fotbalový -> fot bal ový. The technique used in this work is
called byte pair encoding (BPE), originally presented as a simple compression algorithm by
Philip Gage [14].

B P E was adapted for use in N L P by Sennrich et al. [58]. First, a vocabulary of all
characters in the training corpus is created and the sentences in the training data are split
into characters. Then all symbol pairs are iteratively counted and the most frequent one is
merged into one symbol, e.g. if i is frequently followed by n, in is added to the vocabulary.
In the next iteration, if in is often followed by g, ing is added to the vocabulary. Number of
these merge operations is a hyperparameter of the algorithm. The outcome of this algorithm
is that a most frequent words are kept whole, while rare words are split into more common,
smaller units. For all of the experiments, byte pair encoding is applied using subword-nmt6

with 30000 merge operations.

3.1.4 Sentence length analysis

Since in some of the experiments, sentences are concatenated and thus the input sequence
length is multiplied, it is useful to know distribution of sentence lengths, so the shortest
possible maximum length can be used, without loosing too many training sentences. Python
script hist_length.py generates a histogram of source sentence lengths in subwords and
prints out percentage of sentences longer than a number of token specified by a parameter.
For Europarl, maximum length of 80 subword units was chosen based on this analysis,
which led to leaving out leaving out 1.2 % of the training sentences for both English-Czech
and English-French language pairs. As discussed later, this choice was wrong and had to
be adjusted for a fair comparison of the models.

3.2 OpenSubtitles

Preprocessing of OpenSubtitles generally follows the same steps specified above for Eu
roparl, with the difference of maximum sentence length allowed - as sentences are shorter
in subtitles, 55 subword units is used as a limit, leaving out 0.02% of training examples for
English-French and 0.03% for English-Czech.

3.3 W M T

It is very common in N M T research to see a new method that performs well on a small
dataset, however, when evaluated on larger corpus, the gains vanish. To see if potential
improvements on smaller datasets scale on larger data, a corpus used for training state-of-
the-art N M T models was used. Conference on Machine Translation (W M T , based on the
previous name „Workshop on Machine Translation") is an annual conference accompanied

6github.com/subword-nmt

25

a 20 40 60 80 100 0 20 40 60 80 100

(a) OpenSubtiles (b) Europarl

Figure 3.2: Source sentence lengths in subwords for English-French Europarl and Open-
Subtiltes.

by an evaluation campaign. Training data for many tasks (e.g. translation in different
domains, quality estimation, automatic post editing) and many language pairs are provided.
Research groups can submit their systems, and results are evaluated by the participating
researchers.

In this work, models were trained on data provided for English-Czech translation of
news. The parallel data consist of Europarl, CzEng , Common crawl, News commen
tary and Paracrawl datasets. Monolingual datasets are also provided, Czech News crawl
2007-2018 was used in this work. To make use of the target language monolingual data,
backtranslation [57] was performed, i.e. the monolingual News Commentary corpus was
translated into English by an N M T model to create a parallel dataset.

The Paracrawl dataset provided by the organizers is filtered and does not preserve
document boundaries, which is making this version unsuitable for training a document-
level system. For this reason, the raw corpus was downloaded a preprocessed by a specific
pipeline, described in the next section.

3.4 Paracrawl

Paracrawl is a recent project which is co-financed by the E U . It is a collection of parallel
corpora, created by web crawling, and once finished, it will contain corpora for pairs of
all official E U languages (as well as some others) and English. Since the Paracrawl corpus
is composed with emphasis on recall, most of its contents is noise. For this reason, the
preprocessing is more involved than for the other two corpora. The advantage of this
corpus is that each sentence pair has a source and target U R L address, so the corpus can
be split into documents. A fairly new technique for scoring translation adequacy is used to
score sentences and compute average score for the whole documents.

Documents with a low average score are filtered out, as well as documents that are
deemed too different from a news domain (like car salesmen websites with lot of listings of
offered cars, the translations can be adequate, but not really fit to be N M T training data),

7

http: / /uf al.mf f. cuni. cz/czeng/czengl7

26

documents recognized as a different language than the expected one, or documents that do
not pass through few other simple heuristics.

3.4.1 Download

Czech Paracrawl version 1 (unfiltered) and monolingual News Crawl 8 (for training a lan
guage model later on, news2014 to news2018) corpora are used in this part. The raw
Paracrawl comprises of roughly 820 million sentences for English to Czech.

3.4.2 Deduplication

First step is to deduplicate the sentence pairs, since it would be wasteful to run compu
tationally expensive language identification and adequacy scoring more times on the same
sentence pairs. This is done using a simple awk command.

3.4.3 Language filter

Due to high noise ratio, it is essential to carry out language identification and filtering.
In this work, langid.py [39] is used to perform this task. This script implements a naive
Bayes classifier, using 1 to 4-grams of bytes as an input. Pre-trained models for nearly
one hundred languages are available, including English, French and Czech. Using langind,
language of each sentence is estimated and sentences with other than expected language
are filtered out. For Czech, sentences classified as Slovak or Slovene are also admitted to
improve recall.

3.4.4 Scoring

For each sentence pair in deduplicated and filtered data, adequacy and domain score is
estimated by technique presented in a paper by Junczys-Dowmunt [23] - dual conditional
cross-entropy filtering.

Dual conditional cross-entropy filtering is a novel method of filtering noisy parallel data,
based on difference and absolute value of cross-entropy scores of the sentence pairs scored
by two inverse N M T models. It is often crucial to apply some kind of filtering based on
sentence pair adequacy, as N M T is very sensitive to data noise [29] [6]. A similar concept
was used before for selecting in-domain monolingual data to train language models. This
method is very straightforward - first it is necessary to train models for the desired language
pair on „clean" (WMT18 is this case) data in both directions. The next step is to use the
models to score sentence pairs from noisy corpus (e.g. Paracrawl) with word-normalized
cross-entropy. The score is computed as

I I T 2

where A and B are the cross-entropy scores. The first part of the formula aims to maxi
mize agreement on how probable is that one side is translation of the other. The second
part penalizes sentences where both sides are equally probable, but the probability is very
low. This formula produces positive values, with zero being the best one. To obtain final

8http://www.statmt.org/wmtl8/translation-task.html

27

http://www.statmt.org/wmtl8/translation-task.html

adequacy score within 0-1 range, where 1 is the most adequate translation, the result is
negated and exponentiated:

Using this score, highly adequate sentence pairs can be obtained from the training corpus.
However, large percentage of adequate sentences is not fit as N M T training data, e.g.
product names from e-shops, headers and footers, dates, menu items and so on. To filter
out this part of data, very similar concept as above can be used. First, it is necessary to
train two language models for the target language - one on all of the data we want to apply
the filtering to, another one on clean data similar to filtered sentences we are expecting.
In this work, W M T monolingual News corpus will be used as an approximation of general
domain clean data. After training the models on Paracrawl and News, domain score is
computed as follows:

Where A a B are the cross-entropy scores of general (Paracrawl) and in-domain (News)
L M for given target sentence. The values are clipped at 1 for further processing to prevent
high domain score outweigh low adequacy score, as both of them are multiplied to obtain
the final score:

This method was used in W M T 18 En-De translation winning system [24] and also won
W M T 18 data filtering shared task [23].

Since the unfiltered corpus is very large and contains a lot of duplicate sentence pairs,
scoring the whole corpus would be very time consuming and wasteful. Thus, only a subset
of the sentences, obtained by deduplicating and language filtering, was scored. However,
for context-aware models training, whole documents, without any missing sentences are
needed. The scored sentences from filtered and unfiltered corpora need to be matched, and
the scores need to be mapped back into the unfiltered version.

For this purpose, first a hash of concatenated source and target sentence from the
filtered, scored corpus is made, using hash.py script. A hash table that assigns a score to
each hash is created. Then the whole unfiltered corpus is iterated over, each sentence pair
is hashed and looked up in the hashtable (match_hashes .py). If found, the score is added
to the sentence pair. If not found, meaning that this sentence pair was removed by the
language filter, the score is set to zero.

After having the complete, document-segmented corpus scored, average scores for each
documents are computed. Documents with a score above a certain threshold are then
selected and preprocessed in the same manner as Europarl and OpenSubtitles corpora
described above.

adq = exp

dom = exp{—[A — B])

dom = max(dom, 1)

score = dom x adq

28

Chapter 4

Proposed models

This chapter describes the context-aware N M T architectures which where evaluated in this
work. Their possible advantages as well as shortcomings are discussed.

4.1 Baselines

The Transformer [68] and R N N network with G R U cells were used as a baseline. The
base Transformer model was already described earlier, in Chapter 2. For Transformer, the
hyper parameters were generally the same as in the original paper. A baseline Transformer
architecture is presented in Figure 4.1. For the R N N model, the systems were similar
to WMT2017 systems by University of Edinburgh [54]. Training scripts with the exact
parameters can be found on the attached C D , or at https://github.com/cepinl9/dp.

4.2 Concatenation

The most straight-forward approach to employ extended context is to simply concatenate
multiple sentences as an input of the model. Main advantage of this approach is the
simplicity - the changes are made solely on the preprocessing level. To inform the model
which part of the input is supposed to be translated, and which part should be treated
only as an additional context, the sentences can be separated by a special token. Another
way of differentiating between source and context sentences is to use binary flag for each
input token (also called features or factors in the literature [15] [56]), as in a paper by Voita
et al. [69]. This method was not evaluated in this work, since the used framework lacks
implementation of such input factors.

First possible downside to using concatenation is the increased sequence length - re
sulting in higher memory usage, and longer computation time for R N N models, since the
input is processed sequentially, token by token, by these models. Additionally, RNNs suffer
from problems with long-term dependencies, even if gating mechanisms (L S T M , G R U) ,
and attention, which should mitigate them, are employed. The reason behind this is is in
inherently sequential nature of RNNs. The number of steps between processing two tokens
is linear in regard to their distance in the input sequence, and in each step, part of the
information about the first token vanishes. For the Transformer, the sequence length does
not pose such problem, since there is no notion of distance between input symbols (position
representation of each token is added explicitly), all the input symbols are processed simul-

29

https://github.com/cepinl9/dp

Softmax

Nx

Nx

Feed-Forward

Self-Attention

Source
Embedding

Feed-Forward

Encoder-Decoder
Attention

Self-Attention

Target
Embedding

Figure 4.1: Schematic overview of the vanilla Transfomer model, used as a baseline and for
the concatenation experiments. Taken from [73].

taneously and are connected directly by the network. The experimental results presented
later support this hypothesis.

Another possible downside is that a large number of the available training corpora either
do not contain document boundaries, or, even worse, are shuffled. Training examples from
such corpora have no context information. It is possible to specify a „null" context for
these sentences and either mix them with sentences from document split corpora, or first
train on these sentences and then fine tune the model on the sentences from document split
corpora. However, experiences from domain adaptation and similar tasks show that N M T
models are prone to the catastrophic forgetting problem [59] [3] [48] [71], possibly leading
to suboptimal training data utilization when using this approach.

Finally, also due to the same forgetting problem mentioned above, it is not easily possible
to use already trained sentence-level models, context-aware models using concatenation have
to be trained from scratch. This can be a costly procedure in scenarios with many language
pairs or domains.

4.3 Mul t ip le encoders

Another way to integrate the context into an N M T model is via an additional encoder,
which may or may not have a same structure as the original one.

4.3.1 Two identical encoders

The simplest multiple encoder model employs two encoders with identical structure. Source
sentence is fed into the original encoder, and context sentence into the additional one. En-

30

Softmax

Feed-Forward

Self-Attention

Source
Embedding

J V x l
Feed-Forward

Feed-Forward

Self-Attention

t t t

Source
Embedding

Encoder-Decoder
Attention

T T 2
Encoder-Decoder

Attention

Self-Attention

Target
Embedding

Figure 4.2: Schematic overview of the dual encoder Transformer model with serial encoders-
decoder attention.

coding runs independently for both of the encoders. Encoders can have either separate, or
shared layers, i.e. weights of the encoder neurons are the same in both encoders, identical
weight matrices are used. For dual encoder with shared layers, a special token may be
concatenated to the context sentence, so that the encoder learns to treat context sentences
differently than source sentences. In decoder, the only difference in regard to the vanilla
model is that source-target attention the decoder attends over both encoders. Let and

(2)

c\ be the context vectors produced by an attention over source and context encoder hid
den states, respectively. The decoder needs to by able to combine attention information
from both encoders, and there are a several attention strategies for multiple encoders. Pos
sible combination methods for RNNs are discussed for example in [5]. The first presented
approach is to concatenate the context vectors created by the encoders, use linear trans
formation to resize the vector back to its original size and compute the attention over this
vector:

d = Wr + bc

Wc and bc are the learned weights and biases, and Cj denotes the final context vector used
by the decoder. Another way is to use for example hierarchical attention, introduced by
Libovicky and Held [37], which performed well in [5]. Other possibilities of multi-encoder
attention in RNNs are not discussed here, since my work is mainly centered around the
Transformer model.

For the Transformer, Libovicky and Held [38] propose three multiple encoder attention
strategies. The first one, which is called serial in the paper, is presented in Figure 4.2.
In this approach, the attention sub-layer is simply repeated for each encoder. In another
words, an encoder-decoder attention is first computed for the first (source) encoder. Let
C 1 and C 2 be states of the first (source) and second (context) encoders respectively, and
S 1 _ 1 output of the previous layer of the decoder. This output vector, already containing
information about which parts of the source sentences are attended to in the current step
of decoding, is used as a query for the encoder-decoder attention over the second encoder

31

(D1). One layer of the decoder the performs these operations:

self
i

L s e Z /

MultiHeadAtt (S^^S
Layer Norm(Sl~1 + A

A Al

encl = MultiHeadAtt
Knd = Layer Norm{A\elf + A,
A L c 2 = MultiHeadAtt '

self)
sdf> c , c)

end)
2 r~i2\

{A-lnd, C ,C)

enc2 LayerNorm(A encl

S ! F N N A erac2[.,l]

LayerNorm(Al

enc2 + S

+ A e n c 2)

F N N CA

(4.1)

enc2[-,M]

A * e Z j is the result of decoder self-attention, A | N C L is the result of attention over the first
encoder, A | N C 2 is the result of attention over the second encoder and S* is the new decoder
hidden state.

Another approaches presented in the work are parallel, flat and hierarchical attention.
Since the authors did not observe significant differences between the performance of these
strategies, my work only explores serial attention, i.e. decoder first attends over one encoder
and then, with state already updated by this attention, attends over the second one.

4.3.2 Context encoder

Softmax

A r ,x

Feed-Forward

Self-Attention

Feed-Forward

Context
Attention

X T

Self-Attention

Feed-Forward

Encoder-Decoder
Attention

X T "
Context

Attention

t t j

Self-Attention

Context Source Target
Embedding Embedding Embedding

Figure 4.3:
from [73].

Schematic overview of the Transformer model with context encoder. Taken

Inspired by [73], I implemented Transformer with context encoder in Marian [25]. This
architecture also utilizes two encoders, yet there are a few differences in comparison with
multiple encoder architecture described above. First, the encoders are not exactly the same
- the context encoder has fewer self-attention layers (only one, while the source encoder has
six). Second, the context encoder states are also attended over in the source encoder, and
not only in decoder, in contrast to the previous approach. Also, the influence of context
encoder is gated by a sigmoid gate. This should allow better usage of the context. Schematic
overview is presented in Figure 4.3.

32

The context encoder consists of iV c layers that have the same structure as in the original
Transformer model - self-attention, followed by position-wise fully-connected feed forward
layer. Residual connection and a layer normalization are used after each of the sublayers.
Computation steps performed in each layer are then:

A* = MultiHeadAtt (C * - 1 , C*" 1 , C1'1)

Ai = Layer N or miC1'1 + A')

C* = [FNN (A\) F N N (A \ I (4 ' 2)

M ,

Cl = LayerNorm{Al + Cl

(4.3)

where C% the annotation vector in layer i. The annotation vector from the last layer of
context encoder is incorporated into both source encoder and decoder.

In the source encoder, an additional context attention layer is used in between self-
attention and feed forward layer. Since the source sentence is usually more important for
a correct translation than the context sentence, and since residual connections after the
context attention may allow the context representations to influence the source representa
tions uncontrollably, it may be beneficial to restrict the context encoder influence. For this
reason, a gating mechanism is used for the residual connections after the context attention
layer. Source encoder the performs this function:

A* = MultiHeadAtt (S1'1, ST'1, S1'1)

A1 = Layer Nor miS*'1 + A*)

= MultiHeadAtt {A\ CN% CNc)

D ! = LayerNorm{A% + D l)

S* = F N N (D*x) ; . . . ; F N N (p\

S* = LayerNormiXS* + (1 - X)DI)

where A is the sigmoid gate with learned weights - W j and H + W s are trainable weights
of the gate function:

X = a (W i H + W s SubLayer(H))

In the decoder, the context annotation vector is incorporated in the same manner. Each
decoder layer has four sublayers - self-attention, source encoder-decoder attention, context
encoder-decoder attention and a feed forward layer.

This architecture allows for a vanilla Transformer model to be pretrained on general data
without document boundaries, which are usually much larger than a document-split training
data. Then, the weights of this base model are frozen and the additional components
(highlighted in red in Figure 4.3) are added. Their weights are then tuned on a smaller
corpus with document level information. During inference, the system can either use the
full model in case that the input has context information, or only the pretrained part, for
single sentence translation.

33

4.3.3 Context-aware Transformer

The second architecture implemented in my work is the context-aware Transformer, pre
sented by Voita et al. [69]. Experimental results and observations obtained in the original
paper are summarized in Chapter 2, section Related work. Overview of the encoder is shown
in Figure 2.6. The source encoder consists of iV layers, with N — 1 layers identical as in
the original Transformer encoder. The last layer is used to incorporate the encoded con
text representations. Aside from the source encoder self-attention, this layer also performs
attention over the context encoder representations. The outputs of these two multi-head
attention blocks are combined together using a gated sum:

a[Wg ^s—attn) ^(c—attn)
+ M (4- 4)

C l = 9 l 0 c t a t t n) + (1 - 9i) © c t a t t n) (4-5)

where c\c a t t n > l is the attention output for the context encoder, c\s a t t n > l is the attention
output for the source encoder, Wg and bg are the learned weights and bias for the gate and
Ci is the final, gated sum. A position-wise, feed-forward layer is applied to this sum and
the resulting tensor is used in the decoder.

Structure of the context encoder is the same as the structure of the original Trans
former encoder. First N — 1 layers shared their weights with the corresponding layers in
the source encoder, only the last layer has its own set of weights. Since most of the layers
are shared, to make it possible for the encoders to distinguish whether source or context
sentence is being encoded, a special token, denoted <bos>, is inserted at beginning of the
context sentences. Decoder is identical to the original Transformer decoder.

34

Chapter 5

Implementation

The N M T framework used in this work is Marian [25], which is fast and efficient, written in
pure C++ with minimal dependencies. It provides differentiation engine based on dynamic
computation graphs, unified G P U / C P U interface, and implements most of the current state-
of-the-art architectures and techniques in N M T , including both of the network architectures
that are used in this work - R N N and Transformer.

The basic unit of the computation graph is Chainable, usually referenced by its pointer
of type Expr in the code. A l l the building elements of the computation graph, like weight
matrices, inputs and operations, are of type Chainable. At least two methods are usually
implemented in a Chainable which represents an operation: forward, which performs the
implemented function on the inputs, and backward, which computes the gradient for the
weights updates.

In this work, most modifications are done on a higher level of abstraction and consist
of combining already existing building blocks into an encoder-decoder model. A simplified
example of the interface of encoder-decoder model follows:

class Encoder {

EncoderState build(batch);

Specific models like Transformer derive their encoder and decoder from a class similar
to the one presented here, and implement the functionality. The Encoder: :build creates
the computation graph for the encoder and returns EncoderState based on the input
inside the batch. Batch is a matrix containing vocabulary ids of words in the input data.
EncoderState holds the context vector produced by the encoder and a mask for this vector.

The Decoder: :step method uses EncoderState and DecoderState to generate logits
(probabilities of all words in target vocabulary) for one step of the decoding, and then
updates the DecoderState.

In the previous chapter, four approaches to employing context in N M T are proposed.
First of them, concatenation, does not need any changes to the baseline model. The second

>;

class Decoder {

DecoderState

DecoderState

startState(EncoderState[], batch);

step(DecoderState);

}

35

Encoder #1

FFN layer

self-attention

Embedding

batch[0]

Softmax

Linear

FFN layer

encoder2 attention

encoderl attention

self-attention

Decoder

Encoder # 2

FFN layer

self-attention

Embedding

batch[1]

(a) Dual encoder

context

Linear & softmax

N f
A d d N o r m

FFN layer

con tex t a t ten t ion

source a t ten t ion

se l f -a t tent ion

Decoder

r.

source
Encoder

FFN layer

self-attention

FFN layer

context attention

self-attention

Embedding
batch[0] batch[1]

batch

(b) Context encoder

Figure 5.1: Implementation of dual encoder and context encoder in Marian

one, dual encoder model with identical encoders, is already implemented in Marian, using
serial encoders-decoder attention. Thus, only the context encoder by Zhang et al. [73] and
context-aware Transformer by Voita et al. [69] were actually implemented.

5.1 Mar ian source structure

Marian only has an automatically generated, Doxygen code documentation. A bit outdated
version available at https://marian-nmt.github.io/docs/marian/classes.html. A cur
rent version can be generated using make doc in the build directory.

Generally, two source files need to be edited to add a new model. First is the file
containing the actual implementation, in case of the Transformer model it is located in
models/transformer, h. A l l the models must be registered in models/model_f actory. cpp.
This registration links the constructor of the model with configuration options determining
the model type - e.g. when the training parameter type is set to transformer in the config
file or on the command line, the registration assures that the constructors for Transformer

36

https://marian-nmt.github.io/docs/marian/classes.html

encoder and Transformer decoder are called. Source file common/conf ig_parser .h also
needed to be edited to add config options for freezing pretrained layers and controlling num
ber of context encoder layers and gating. In my case, I also had to modify model/states .h,
so that the EncoderState can also hold the context encoder context vector.

The original Transformer model is implemented in classes EncoderTransf ormer and
DecoderTransf ormer, which are both derived from Transformer class with either BaseEncoder
or BaseDecoder as a class template. The Transformer class implements the layers and
functions utilized by a Transformer model, and only slight changes are made in these.

Most modifications are done in the EncoderTransf ormer class. Implementation of
context encoder is described in the next section.

5.2 Context encoder

In Marian, multiple encoder models are supported, and it would seem intuitive to make use
of their implementation. However, it is not easy to adapt the implementation to the needs
of the context encoder model. The central issue is that the multiple encoders are meant to
run in parallel, whereas in the context encoder architecture, a representation of the context
sentences must be computed first, since it is used during encoding of the source sentence.

To get around this issue, I decided to create a new encoder class that implements both
encoders, and returns two context vectors instead of one. Since this class is treated as a
single encoder elsewhere in the code, I also had to adjust the decoder to attend over both
context vectors generated by the encoders. Another issue that arises with this approach
is how to divide the input between the encoders correctly, i.e. how to make the context
encoder encode the context sentence and the source encoder encode the source sentence.
Schematic illustration of the difference between implementing dual encoder as two separate
encoders, and a context encoder as a single class, are presented in Figure 5.1. After resolving
these issues, the implementation consists mostly of putting together already implemented
building blocks (layers) and making small modification to them, to allow gating of the
residual connections a freezing of the weights.

Two new classes were added to transformer .h - EncoderTransformerContext and
DecoderTransf ormerContext, based on EncoderTransf ormer and DecoderTransf ormer.
First, the issue with splitting the input between context encoder and source encoder needs
to be solved. Input data are passed to the apply function through a parameter batch,
which is of type data: :CorpusBatch. It can be thought of as a vector which contains
matrices of word ids for a batch from each of the input files, demonstrated in Table 5.1. In
code, such batch would look as follows:

batch=[[[I0SlWl,I0S2Wl,I0S3Wl,I0S4Wl],[I0S1W2,I0S2W2,I0S3W2,I0S4W2],...],\

[[I1S1W1,I1S2W1,I1S3W1,I1S4W1],[I1S1W2,I1S2W2,I1S3W2,I1S4W2],...]]

where I denotes the input file index, S is the sentence number, and W is the index of a
word in the sentence. Hence, with values presented in the table, the contents of the batch
vector would be:

batch=[[[53,13,457,235],[145,421,111,9888],...] ,\

[[31,10,7,15],[587,154,11,782],...]]

37

W 1 W 2 W 3 W 4 W 5 W 1 W 2 W 3 W 4 W 5
S 1 53 145 1289 17 454 S 1 31 587 4588 1145 154
S 2 13 421 13 246 1134 S 2 10 154 124 985 78
S 3 457 111 22 586 5457 S 3 7 11 78 548 1
S 4 235 9888 553 988 4554 S 4 15 782 587 8 4

(a) batch[0] = one batch of sentences from (b) batch[l] = one batch of sentences from
the source file the reference file

Table 5.1: Example of a batch structure, which holds input word ids, for two input files
(source and target), batch size 4 and sentence length 5. Rows are sentences and columns
are words in each sentence.

To select a batch of sentences belonging to one of the input files, the topmost index is
used. For example, when using two encoders, there are three input files - two source files
and one target file with reference translations. Then batch [0] contains batch of sentences
from the first input file, batch[1] from the second input file and batch [1] contains the
reference translations. Constructors of EncoderTransf ormer and DecoderTransf ormer
can be passed an index parameter that is used to select the correct batch. However, I can't
use this index, since both of the encoders are implemented in a single encoder class and are
instantiated as a single object. To simplify the implementation, only two source files and
one target file are considered - then it is safe to use fixed indices: 0 for context encoder, 1
for source encoder and 2 for decoder.

After having solved the input processing issues, the next step is to actually implement
the network. A l l the building blocks (layers) all already implemented, hence it is only
needed to put them together and make a few small modifications to enable gating and
freezing of the weights.

First step of the encoding is to convert vocabulary word ids in the input batches into em-
beddings. EncoderTransformer::createWordEmbeddingLayer() method is used to create
the embedding layer. The same embedding layer will be used word both encoders, since
same vocabulary is used for all the inputs. After using apply method of the embedding
layer on both batches, a tensor consisting of embeddings for all of the words is stored in
variables layer for the source sentences and layerContext for the context sentences. From
now on, there are two different paths in the computation graph.

For the context encoder, the usual Transformer encoding layer is applied n times,
where n is defined by the context-enc-depth option, which had to be added in the
common/conf ig_parser. cpp file. The layer consists of two functions:

Expr Transformer::LayerAttention(std::string prefix, Expr query, const

Expr& keys, const Exprfe values, const Expr& mask, bool cache = false,

bool saveAttentionWeights = false, bool trainable=true)

Expr Transformer::LayerFFN(std::string prefix, Expr input, std::string

op="", bool trainable=true)

The first function performs multi-head self-attention, residual connection after this op
eration, and also the final layer normalization. The prefix parameter is an identifier of

38

the node in the computation graph. Tensors query, keys and values are inputs of the
self-attention function as described in Chapter 2. In case of self-attention, all three input
tensors are the same, and they are obtained either as output of the previous layer, or, in
case of the first layer, output of embedding layer. The function returns tensor of the same
dimensions as query and it is again stored into the layerContext variable.

This tensor is an input of the position-wise feed forward layer, represented by LayerFFN
function. This layer applies the same linear transformation to each input position, i.e. to
each input token representation stored in the input tensor. This transformation is followed
by residual connection and layer normalization. Output of this sub-layer is again a tensor
with the same dimensions, which is used as a query, key and value for the subsequent self-
attention layer, or, in case of the last encoder layer, as a context vector used in the decoder.
The output is stored into the layerContext variable. In a simplified code, the complete
context encoder looks as follows:

Expr embedding=createWordEmbeddingLayer(0);

Expr layerContext=embedding->apply(0/*batch index*/);

auto contextEncDepth = opt<int>("context-enc-depth");

for (int i = 1; i <= contextEncDepth; ++i) {

//multi head self-attention

layerContext = LayerAttention("context_encoder_self_" + i ,

layerContext, // query

layerContext, // keys

layerContext, // values

layerMaskContext);

//position-wise feed forward network

layerContext = LayerFFN("context_encoder_ffn" + i , layerContext);

}

The source encoder implementation is very similar, with a small number of modifica
tions. Another sub-layer is placed between the self-attention and the position-wise feed for
ward layer. This sub-layer performs attention over the context representation created by the
context encoder. This attention is implemented by the same function - LayerAttention,
the only difference are the input parameters. Query tensor is obtained as the output of
previous layer (or embedding layer in the first layer), which is stored in variable layer, keys
and values are the context vector, output of the last layer of the context encoder, stored in
layerContext.

Parameter trainable was added to the original function to allow freezing of some of
the layers when training only the context part of the model. In the context encoder, this
value is always set to true, since only weights for the pretrained original Transformer blocks
are frozen during the context Transformer training. This parameter propagates deeper
into the function creating nodes in the computation graph. On the lowest level, in file
graph/nodes .h, trainable_ attribute of the node representing the weights is set to the
bool value of the parameter.

The subsequent position-wise feed forward layer uses a gated residual connection, i.e.
before summing the input and output tensors of the layer, they are weighted by a sigmoid
gate. This is done to prevent uncontrolled influence of the context on the source encoder
representations - usually, source sentence is far more important for the translation than

39

the context sentence, and it might be beneficial to let the network learn to regulate the
influence of the context encoder. In simplified code:

/*normal residual connection*/

//preprocessing of the input tensor, e.g. dropout

auto output = preProcess(prefix + "_Wo", opsPre, input, dropProb,

trainable);

//position-wise FF layer

output = dense(output, prefix, /*suffix=*/std::to_string(depthFfn),

dimModel,nullptr,0.Of,trainable);

/*residual connection*/

output = input+output;

/*gated residual connection*/

//sigmoid gate

Expr sigmoid_gate2(Expr x, Expr y, std::string prefix, std::string suffix,

int outDim) {

auto graph_x = x->graph();

auto graph_y = y->graph();

//trainable parameters

auto Wi = graph_x->param(prefix + "_Wi" + suffix, {x->shape()[-1],

outDim]-, inits: :glorot_unif orm);

auto bi = graph_x->param(prefix + "_bi" + suffix, {1, outDim},

inits::zeros);

auto Ws = graph_y->param(prefix + "_Ws" + suffix, {x->shape()[-1],

outDim}, inits::glorot_uniform);

auto bs = graph_y->param(prefix + "_bs" + suffix, {1, outDim},

inits::zeros);

x = affine(x, Wi, bi);

y = affine(y, Ws, bs);

x = sigmoid(x + y);

return x;

}

auto output = preProcess(prefix + "_Wo", opsPre, input, dropProb,

trainable);

output = dense(output, prefix, /*suffix=*/std::to_string(depthFfn),

dimModel,nullptr,0.Of,trainable);
auto lambda= sigmoid_gate(input,output,prefix,"lambda",dimModel);

//gated residual connection

output=lambda*output+(1-lambda)*input

}

40

The desired training sequence is to first train the vanilla Transformer on sentence-level
corpus, freeze the weights, add context-aware extensions and train only the newly added
parameters on a document-level corpus. For this purpose, all of the layers of the source
encoder, excluding the attention to the context encoder and the sigmoid gates, are frozen
during the training on the document-level corpus.

After the encoder computation is completed, EncoderState is returned. EncoderState
is implemented in models/states .h and holds the context vector produced by the encoder,
corresponding mask, and pointer to the input batch, stored in private attributes context_,
mask_ and batch_. These values were stored in variables layer, layerMask and batch in
the encoder build () method. The contents of the context vector and mask are accessible
from the decoder by methods getContextO and getMask(). Since two encoders, each one
with its own context vector and mask, are used, the EncoderState class was modified by
adding new attributes to also hold the vectors produced by the context encoder:

/*original encoder state*/

EncoderState::EncoderState(Expr context, Expr mask, Ptr<data::CorpusBatch>

batch);

EncoderTransformer::build(Ptr<data::CorpusBatch> batch){

... //computation

return new<EncoderState>(layer,layerMask, batch);

}

/*modified encoder state for context encoder*/

EncoderState::EncoderState(Expr context, Expr mask, Expr documentContext,

Expr documentMask, Ptr<data::CorpusBatch> batch);

EncoderTransformerContext::build(Ptr<data::CorpusBatch> batch){

... //computation

return new<EncoderState>(layer,layerMask, layerContext,

layerContextMask, batch);

}

The decoder was also slightly modified to attend to context vectors from both encoders.
One more encoder-decoder attention layer was inserted after decoder self-attention. The
original Transformer layers are frozen and residual connection after sub-layer following the
context encoder attention sub-layer is gated:

/*original decoder*/

DecoderTransformer::step(<DecoderState> state){

auto encoderContext = encoderState->getContext();

auto encoderMask = encoderState->getMask();

auto query = state->getTargetEmbeddings();

for(int i = 0; i < decDepth; ++i) {
//decoder self-attention, different function because future

postions in decoder state need to be masked

41

query = DecoderLayerSelfAttention(decoderState, prevDecoderState,

name, query, selfMask, startPos);

//encoder-decoder attention

query = LayerAttention(name,

query,

encoderContext, // keys

encoderContext, // values

encoderMask);

query = LayerFFN(prefix_ + "_]_" + layerNo + "_ffn", query);

}

//probabilities of words in the target vocabulary for this step of

decoding

Expr logits = output_->apply(query);

//update decoder state for the next step

return New<TransformerState>(decoderStates, logits,

state->getEncoderStates(), state->getBatch());

/*modified decoder*/

DecoderTransformerContext::step(<DecoderState> state){

auto encoderContext = encoderState->getContext();

auto encoderMask = encoderState->getMask();

auto encoderDocumentContext = encoderState->getDocumentContext();

auto encoderDocumentMask = encoderState->getDocumentMask();

auto query = state->getTargetEmbeddings();

for(int i = 0; i < decDepth; ++i) {
//decoder self-attention, the weight are frozen

query = DecoderLayerSelfAttention(decoderState, prevDecoderState,

name, query, selfMask, startPos, Ifreeze);

//context encoder-decoder attention

query = LayerAttention(name,

query,

encoderDocumentContext, // keys

encoderDocumentContext, // values

encoderDocumentMask);

// source encoder-decoder attention

query = LayerAttentionGated(name,

query,

encoderContext, // keys

encoderContext, // values

encoderMask,Ifreeze);

query = LayerFFN(prefix_ + "_]_" + layerNo + "_ffn", query,

!freeze);

}

//probabilities of words in the target vocabulary for this step of

decoding

Expr logits = output_->apply(query);

//update decoder state for the next step

42

return New<TransformerState>(decoderStates, logits,

state->getEncoderStates(), state->getBatch());

}

5.3 Context-aware Transformer

The second model implemented in my work is the context-aware Transformer by Voita et
al. [69]. The modifications are similar as above, with the difference that for this model,
only the encoder had to be modified, while decoder stays the same.

The same approach as above was used for the input processing - encoder is implemented
as a single class and the input batch is divided into source sentence and context in the same
fashion as in the previous case. The structure of the encoder is different (see Figure 2.6) -
there are no connections between the encoders up until the last layer, where states of the
encoders are gated through a sigmoid gate and summed. The sigmoid gate was already
implemented in the previous section. Only this single context vector is returned by the
encoder, opposed to two context vectors, one for each encoder, returned by the previous
model. The original Transformer decoder without any modifications can be used thanks to
this fact.

The modified encoder is implemented by the EncoderTransf ormerVoita class. Simpli
fied commented code follows:

/*compute word embeddings*/

Expr contextLayer=embedding->apply(0/*batch index*/);

Expr layer=embedding->apply(1);

//layer created in this loop are identical for both encoders and share the

weights

for(int i = 1; i <= encDepth-1; ++i) {

//context encoder self attention

layerContext = LayerAttention(prefix_ + "_]_" + std::to_string(i) +

"_self",

layerContext, // query

layerContext, // keys

layerContext, // values

layerMaskContext);

//source encoder self attention, weights are shared with the context

encoder

layer = LayerAttention(prefix_ + "_]_" + std::to_string(i) + "_self",

layer, // query

layer, // keys

layer, // values

layerMask);

layerContext = LayerFFN(prefix_ + "_]_" + std::to_string(i) + "_ffn",

layerContext);

layer = LayerFFN(prefix_ + "_]_" + std::to_string(i) + "_ffn", layer);

}

43

//final context encoder layer, not shared with the source encoder

layerContext = LayerAttention(pref ix_ + "_]_" +

std::to_string(encDepth) + "context_self",

layerContext, // query

layerContext, // keys

layerContext, // values

layerMaskContext);

layerContext = LayerFFN(prefix_ + "_]_" + std::to_string(encDepth) +

"context_ffn", layerContext);

//attention over the context encoder with source encoder

representations as queries

auto layerContextSource = LayerAttention(prefix_ + "_]_" +

std::to_string(encDepth) + "context_src_self",

layer, // query

layerContext, // keys

layerContext, // values

layerMaskContext);

//final source encoder self-attention

auto layerSource = LayerAttention(prefix_ + "_]_" +

std::to_string(encDepth+l) + "_self",

layer, // query

layer, // keys

layer, // values

layerMask);

//gating function

auto lambda=sigmoid_gate2(layerContextSource,layerSource,"sum_gate",\

"lambda",layerContextSource->shape()[-1]);

auto output=lambda*layerContextSource+(1-lambda)*layerSource;

output = LayerFFN(prefix_ + "final_ffn", output);

return New<EncoderState>(output, batchMask, batch)

5.4 Scripts

Aside from implementing the context-aware models, several support scripts were created or
modified. They can be divided into two categories: preprocessing and evaluation.

5.4.1 Preprocessing

To split datasets into documents, filter them, and convert them into a format suitable for
training, a set of Python scripts was created. For other preprocessing tasks, commonly
available tools were used. These necessary preprocessing steps, scripts and tools are de
scribed in detail in Chapter 3. A quick overview of the most important custom scripts
created for this work follows:

44

readalign_to_docs.py

doc2context.py

length_hist.py

preprocess.sh

Converts output of uplug-readalign into a parallel corpus
format and splits the corpus into dev/train/test sets.

Converts the output of previous script into a format suitable
for a specific architecture, e.g. token-delimeted sequence of
sentences for the concatenation architecture. Also performs
tokenization and truecasing.

Creates a histogram of sentence lengths in a corpus.

Runs B P E algorithm on training data for a specific model
architecture.

preprocess_wmt.sh

context2dual. py

Runs a complete preprocessing pipeline for W M T corpus.

Converts token-delimeted corpus into multiple files, suitable
for dual encoder models.

score.sh

hash.py

hash_match.py

Scores a corpus using dual cross-entropy filtering. Used for
Paracrawl preprocessing.

Computes hashes of sentence pairs from filtered input par
allel corpora and creates a hash table with adequacy and
domain scores as values. Used for Paracrawl preprocessing.

Iterates over unfiltered parallel corpus, computes a hash
for each sentence pair and finds the score in the hash table
created by the previous script. Used for Paracrawl prepro
cessing.

5.4.2 Evaluation

Evaluation procedure is described in depth in the following chapter. Again, only a brief list
of scripts is presented here:

trans test.sh Translates a test set with selected model, saves both the
raw and postprocessed output and computes B L E U and
chrF scores.

bootstrap_par.py Uses a bootstrap resampling to compute statistical signifi
cance of differences between two candidate translations of
a test set in regard to the reference. Outputs p-value for
which one system performs significantly better than the
other one, and confidence intervals.

test all.sh Runs the previous two scripts for selected models and saves
the results.

45

eval. py Converts a discourse test set from JSON to a parallel corpus
format suitable for scoring by an N M T model and runs the
preprocessing.

get_scores_*. sh Scores the test set created by the previous script by a given
model.

normalize.py Normalize the scores obtained by the previous script by
target sentence length.

compare.py Compares the normalized scores and computes accuracy of
a model on the discourse test set.

46

Chapter 6

Experiments

Experimental evaluation of different approaches to employing context in N M T is the pivotal
part of my work. In the first section, some of the intricacies of M T evaluation are discussed
and metrics used in this work are described. In the second part, results of the experiments
are presented and analyzed. Only the most relevant results are presented here for the sake
of clarity, complete overview of successful experiments is located on the accompanying data
medium, along side with test and dev sets translated by some of the systems.

6.1 Tools

Preprocessing steps and tools are described in Chapter 3. Marian framework is presented
in Chapter 5, so only a breif describtion of both follows.

Preprocessing Standard Moses scripts are used for tokenization, truecasing and cleaning
of the data. Language filtering is performed using langid.py [39]. Finally, splitting input
text into subword units to resolve the open vocabulary problem is done using subword-nmt
[58]. Other preprocessing steps are performed by custom scripts.

N M T framework Marian [25], for more detailed information see Chapter 5.

Evaluation Detokenized B L E U scores [47] are computed using SacreBLEU [51]. Other
metrics are calculated using custom scripts, described in the following section. To evaluate
the statistical significance of the results on the test sets, bootstrap resampling [30] was
used for some of the experiments. A script by Graham Neubig 1 modified for multi-process
parallelism 2 was used to perform this task.

6.2 Evaluation

Evaluation of an M T system is a complicated task involving many intricacies. Ideally,
human evaluators asses the quality of the translation, but even then, there is a number of
issues that need to be dealt with. A good source of experience with human assessment are
the Findings of Conference on Machine Translation (WMT) [7]. Since it is not feasible to

x

https: //github.com/neubig/util-scripts/blob/master/paired-bootstrap.py
2

https: //github.com/cepin!9/mt_scripts/blob/master/bootstrap_par.py

47

evaluate every model that is developed by number of human evaluators, automated metrics
are used, which are even more problematic. These metrics are usually reference-based,
meaning that they compare the model-produced translation of a test set with a reference,
human-made translation of the test set.

Most problems with automated metrics stem from the fact that usually a large number
of correct translations of the same source sentence exists, and only one, or few of them, are
available as a reference translation. This leads to penalization of systems that translate the
source sentence correctly, but using different word choice than the human translated refer
ence, since most of the metrics do not take semantics of translation, or at least synonyms,
into account. To evaluate systems in terms of two commonly used automated metrics,
B L E U (Bilingual Evaluation Understudy) [47] and chrF (character n-gram F-score) [50]
scores, parts of training corpora were set aside to create development and test sets. The
splitting was performed using readalign_to_docs .py, 20 documents were set aside for
both dev and test sets. The scores are computed using SacreBLEU [51].

6.2.1 B L E U

B L E U score is the most widely used metric in M T . It measures overlap of tokens and
token n-grams between M T generated translation and a reference translation provided by
a human translator. It is a precision based metric, basically a percentage of matching
n-grams (independently on the position in the sentences), with several modifications. As
such, the values range from 0 for translation with no overlap with the reference, to 100 for
an exact match. The calculation is done on a corpus level and it is controlled by a number
of parameters:

• N - maximum n-gram length, usually N = 4

• p - brevity penalty, penalizing short translations

• smoothing type - what to do with n-grams with zero overlap count (e.g. there are no
4-grams that are the same in M T output and the reference), this issue usually does
not occur on a corpus level

• case sensitivity

Main advantages of B L E U score are that only one reference translation of a test set is
needed, speed and zero cost compared to a human evaluation. Additionally, the score often
correlates well with a human judgement [11].

Unfortunately, many issues arise when using B L E U score. Its simplicity does not allow
it to capture any semantic meaning behind the compared texts, thus a perfectly good
translation can score very badly, for example because synonyms of words in the reference
translation were used. Inversely, a small change in a translation may completely change the
meaning of a sentence, but it may not cause a large drop in B L E U score. See for example:

Source: It was a beautiful trip, I am glad I came along.
Reference: B y l to nádherný výlet, je dobře, že jsem jel s vámi.

Translation 1: Je dobře to nádherný výlet, to že jsem jel s vámi byl, je dobře,
že jsem.

Translation 2: Krásná vyjížďka, rád jsem se k vám přidal.

18

Depending on smoothing type, translation 1 can score 50.76 B L E U , while translation
2, even though it is much superior, scores 3.70 with the same settings.

Also, B L E U score underestimates the quality of N M T and rule-based systems compared
to P B S M T systems [60]. These and other issues show that comparisons based on B L E U
scores need to be taken with caution. However, it is still the most ubiquitously used metric
in M T and as such it is also used as one of the main metrics in this work.

6.2.2 chrF

The smallest unit used in B L E U score computation is a word. This level of granularity may
not be ideal, especially for morphologically rich languages. For example, consider sentences:

Source: Our favorite teacher stood up and left.
Reference: Náš oblíbený učitel vstal a odešel.

Translation 1: Náš oblíbený učitel vstal a odešel.
Translation 2: Naše oblíbená učitelka vstala a odešla.

Both translations may be correct, depending on the teacher's gender. However, trans
lation 1 would obtain B L E U score of 100, while translation 2 would get a very low B L E U
score (7.68). To mitigate this issue, several character-level metrics were presented. One of
the recent ones, showing a good correlation with human assessment of translation quality,
is chrF - character n-gram F-score, with n usually set to 6. The formula is following:

chrP and chrR are character n-gram precision and recall, averaged over all n-grams. (5
determines how many times is recall more important than precision. In the original paper,
(3 = 3 was shown to have highest correlation with human judgement. ChrF3 of the first
translation equals to 1.0, and chrF3 of the second translation equals to 0.52 - the difference
is much more realistic than in case of the B L E U scores (100 and 7.68).

ChrF is a useful metric for languages with high morphological variance, like French or
Czech. Also, N M T models often operate on subword level, and thus evaluating on smaller
language units may be beneficial, since, as mentioned earlier, word-level metrics like B L E U
seem to underestimate N M T translation quality.

6.2.3 Discourse test set

For more targeted evaluation of inter-sentential phenomena, an approach used by Bawden
et al. [5] was adopted. The authors created a manual contrastive test sets to quantify a
machine translation system accuracy in translating coreference and coherence/cohesion phe
nomena. The set comprises of source sentences and both correct and incorrect translation.
N M T model is used to score both translation in terms of cross-entropy. The translation
with higher probability is chosen and overall accuracy is calculated. The test set is balanced
so that any system without employing context scores 50%. In disambiguation part, which
is used in this paper, there is one current source sentence, two possible previous source sen
tences and two possible translations - each one correct in one of the contexts. For example:

49

Context 1: We went to the cliffs to watch our favorite seal in the sea.
Context 2: His house was sealed by the police because of the crime investi

gation.
Source: When we have seen the seal, we went back home.

Translation 1: Když jsme toho lachtana uviděli, šli jsme domů.
Translation 2: Když jsme tu pečeť uviděli, šli jsme domů.

For both contexts, correct and incorrect translations are scored by the model and the
more probable one is chosen. Final accuracy is computed based on how many times the
correct translation was preferred over the incorrect one. Since the test set contains both
possible correct combinations paired with the wrong ones, a system without any knowledge
of the previous context will always score 50% (as it will choose the same target sentence
as more probable both times, the cross-entropy score wil l be the same for both contexts).
For English-French, the original dataset was used 3, for English-Czech, relevant parts were
translated and combined with newly created examples1.

6.2.4 Mode l naming conventions

Different configurations of input and output are labeled src/VtgtM to tgtK, where N and
M are counts of previous source and target sentences concatenated to the input, and K
denotes how many previous target sentences are to be generated on the output.

Thus, srcOtgtO to tgtO is an ordinary, vanilla N M T architecture, without any context
influence, srcltgtO to tgtO means that one previous source sentence is concatenated to the
input, srcOtgtl to tgtO means that one previous target sentence (i.e. translation of previous
source sentence) is concatenated to the input and so on. For systems generating more than
one target sentence, for example srcltgtO to tgtl, the target side of the training data is
preprocessed in the same way, this means that the model is trained to generate multiple
sentences.

For systems employing target context on source side, a slight issue appears. The tar
get context (translations) must be obtained somehow. It is cumbersome to generate the
previous sentence translation using the same model - usually, the translations are done in
batches which consist of subsequent sentences that are translated simultaneously. Sequen
tial dependencies between target sides of the sentences would prohibit processing them in
one batch, which could be solved by interleaving sentences from different documents to cre
ate a batch. However, this is possible only under a big workload, when lots of independent
documents are translated in parallel.

Instead of using target context created by the model itself, I opted for two different
configurations. First, srcltgtlref to tgtO means that the reference sentences are used as a
target context. Such setting is similar to post-editing scenario - human translator approves
or corrects a previous sentence translation, which is subsequently used as an input for
translating the next sentence.

In the second configuration, srcltgtlmt to tgtO, the target context sentences are gener
ated beforehand by a model using only a source context (srcltgtO to tgtO). This configura
tion is utilizable when translation of the whole document at once is necessary. The total

3https: / / github.com/rbawden/discourse-mt-test-sets
4https://github.com/cepin!9/discourse-test-set

50

http://github.com/rbawden/
https://github.com/cepin!9/discourse-test-set

sum of computation time is larger, each sentence is translated twice, but the translation
can be parallelized (in two steps).

Finally, for the newly implemented models, reflsrcO to tgtO configuration was also used
as a sanity check, meaning that ther reference translation was used as a context. This
was done to see whether the model is capable to use information provided by the context
encoder - if that is the case, B L E U scores near 100 should be expected.

6.3 Results

In this section, experimental results are presented and discussed. Only the most relevant
results are presented here, a more complete list can be found either on the attached C D ,
or at https://github.com/cepinl9/dp.

6.3.1 Concatenation

Adding context to R N N through concatenation hurts the translation performance, as pre
sented in Table 6.1. This is in line with observations made by Agrawal et al. [1], where
the authors obtained similar result on ISWLT 2017 English->Italian data set, consisting
of transcribed T E D Talks. For configurations srcltgtO to tgtO and srcltgtO to tgtl, B L E U
drops of 1.8 and 2.8 points, respectively, were observed. Arguably because even though
there are gating mechanisms employed, RNNs suffer from loss of signal in very long-range
dependencies.

In Bawden et al. [5], the results are quite different. Concatenating only a previous source
sentence to the input decreased the performance on most genres (the authors trained and
evaluated their systems on OpenSubtitles, and used test sets from different movie gen
res). When using srcltgtO to tgtl configuration, i.e. adding previous target sentence to
the output, B L E U score surpassed baseline in all test sets. One of the reasons may be
that OpenSubtitles contain much shorter lines on average, and the models do not suffer
from weak long-range dependencies. Since R N N networks perform worse than the Trans
former model in most cases [33], and take longer to train, more advanced experiments were
performed on the Transformer model only.

metric srcOtgtO to tgtO srcltgtO to tgtO srcltgtl to tgtO srcltgtl to tgtl

B L E U 29.07 28.88 27.82 27.33
disambig 50% 50.7% - -

Table 6.1: Results of concatenation experiments with R N N , English to Czech, Eu-
roparl, average of three runs, dev set

metric srcOtgtO to tgtO srcltgtO to tgtO srcltgtO to tgtl

B L E U 34.58 34.99 34.05

Table 6.2: Results of concatenation experiments with Transformer, English to French,
Europarl, dev set

51

https://github.com/cepinl9/dp

metric srcOtgtO to tgtO srcltgtO to tgtO srcltgtlref to tgtO src2tgt0 to tgtO

B L E U 27.77 27.93 28.4 27.97
disambig 50% 60.4% 52.8% -

Table 6.3: Results of concatenation experiments with Transformer, English to Czech,
OpenSubtitles, dev set B L E U score and accuracy on discourse test set

context type architecture n real c. random c. null c. ^•real ̂ random disambig

0,0 to 0 baseline 0.6 34.92 - - - 50%
0,0 to 0 baseline opt 36.38 - - - 50%

1,0 to 0 concat 0.6 35.36 34.85 35.35 0.51 62.4%
1,0 to 0 concat opt 36.60 35.97 36.35 0.63 62.4%
1,0 to 0 DE 0.6 35.36 35.14 1.41 0.22 50.6%
1,0 to 0 DE opt 36.47 36.32 1.44 0.15 50.6%
1,0 to 0 DE, shared 0.6 34.98 34.32 1.38 0.65 50.6%
1,0 to 0 DE, shared opt 36.33 35.64 1.39 0.69 50.6%
1,0 to 0 DE, shared 4 - tok 0.6 35.24 34.93 1.41 0.31 51.8%
1,0 to 0 DE, shared 4 - tok opt 36.42 36.15 1.43 0.27 51.8%
1,0 to 0 CE 0.6 34.83 34.65 1.37 0.18 51.2%
1,0 to 0 CE opt 36.41 36.20 1.42 0.21 51.2%
1,0 to 0 Voita 0.6 34.82 34.15 1.88 0.15 52.4%

l,lref to 0 concat 0.6 37.12 20.28 33.93 16.84 58.3%
l,lref to 0 concat opt 37.44 20.92 35.14 16.52 58.3%
l,lmt to 0 concat 0.6 35.10 - - - 58.3%
l,lmt to 0 concat opt 35.90 - - - 58.3%

Table 6.4: Results for models trained on English to French, OpenSubtitles, Trans
former model, dev set. First column shows type of context used. The first number stands
for previous source sentences added to input, second one for previous target sentences added
to input and the third one is number of additional previous target sentences generated by
the model, so for example 1,0 to 0 equals to model denoted srcltgtO to tgtO elsewhere in the
text. Second column is the model architecture, D E stands for dual encoder, C E denotes
the context encoder model. For dual encoder, shared means that all weights in the two
encoders are shared, in shared+tok strategy, a special token is added to the start of the
previous sentence - since all the layers are shared, the encoder would otherwise be unable
to distinguish between context and source sentence during the computation, and that may
not be optimal. Third column is the length normalization coefficient - opt means an op
timal value found by search over possibilities within a given range, see paragraph Length
normalization. In columns number 4, 5, and 6, B L E U scores depending on whether real,
random, or empty context sentences were used, are shown. Next column shows difference
between real and random context B L E U scores. Finally, in the last column, accuracy on
disambiguation part of contrastive discourse test set is presented.

As presented in Tables 6.2, 6.3, 6.4, 6.5 and 6.6, the performance of the Transformer
model does not degrade when concatenating the sentences at the input, confirming the

52

context type architecture n r B L E U B L E U interval chrF l chrF3 p-value

0,0 to 0 baseline 0.6 1.018 31.59 [0.311, 0.321] 0.5036 0.5062 -
1,0 to 0 concat 0.6 1.019 32.07 [0.315, 0.326] 0.5080 0.5114 0.000
1,0 to 0 D E 0.6 1.010 31.62 [0.311, 0.322] 0.5013 0.5028 0.411
1,0 to 0 D E , shrd 0.6 1.005 31.47 [0.309, 0.320] 0.5007 0.5013 -0.189
1,0 to 0 D E , shrd+tok 0.6 1.015 31.59 [0.310, 0.321] 0.5032 0.5058 0.487
1,0 to 0 C E 0.6 1.020 31.50 [0.310, 0.320] 0.5038 0.5069 -0.104
l , l ref to 0 concat 0.6 1.018 33.14 [0.326, 0.337] 0.5181 0.5222 0.000
l , lmt to 0 concat 0.6 1.033 31.15 [0.306, 0.317] 0.5022 0.5093 -0.001

context type architecture n r B L E U B L E U interval chrF l chrF3 p-value

0,0 to 0 baseline 2.9 1.122 29.31 [0.288, 0.298] 0.4977 0.5193 -
1,0 to 0 concat 1.7 1.117 29.81 [0.293, 0.303] 0.5016 0.5232 0.000
1,0 to 0 D E 2.0 1.114 29.25 [0.287, 0.298] 0.4962 0.5166 -0.308
1,0 to 0 D E , shrd 2.0 1.114 29.01 [0.285, 0.295] 0.4953 0.5157 -0.004
1,0 to 0 D E , shrd+tok 1.9 1.108 29.54 [0.290, 0.301] 0.4979 0.5176 0.023
1,0 to 0 C E 0.6 1.120 29.38 [0.310, 0.320] 0.4983 0.5198 -0.104
l , l ref to 0 concat 1.0 1.083 31.47 [0.309, 0.320] 0.5134 0.5306 0.000
l , lmt to 0 concat 1.5 1.113 29.45 [0.289, 0.300] 0.4979 0.5202 0.158

Table 6.5: Results for models trained on English-French OpenSubtitles, Transformer
model, test set. Description of the columns from Table 6.4 applies. In the top table, n is
set to 0.6. The length normalization constant for the bottom table the one performing the
best on the dev set. Values of r represent token length ratio of the M T translation and the
reference. B L E U score column shows the score for the whole test set, B L E U interval column
shows 95% confidence interval for B L E U score, using bootstrap resampling with n=10000.
The last column presents the p-value for which the model performs significantly better
than the baseline (or worse, in case of negative values). Scores of models outperforming the
baseline for p > 0.05 are written in bold.

assumption that the Transformer is better equipped to deal with longer sequences and longer
dependencies between input symbols than RNNs. Concatenation was in most cases the only
architecture that yielded significant improvements. For English-Czech Europarl dataset
(Table 6.6), all of the methods failed to significantly improve upon the baseline. The results
in English-French OpenSubtitles (Table 6.4 and Figure 6.1) are more diverse, suggesting
that this type of corpus may be more suitable for incorporating context information. The
configuration that achieved the largest B L E U improvement was srcltgtl to tgtO on English-
French dataset.

Results presented in Tables 6.5 show that the improvements for English-French Open-
Subtitles, observed on dev set, can also be seen when evaluating on the test set. The
systems were also evaluated in terms of ch rF l and chrF3 on the test set. The same conclu
sions as for B L E U scores hold true for chrF scores - the concatenation systems perform the
best. The systems in the bottom part of Table 6.5, with n tuned on the dev set (explained
later, Subsection 6.3.7), perform worse than the ones in the top table in B L E U and chrF,

53

• Real context • Random context

38

37.12

Baseline CE, 1 src Co neat 1 sre, 1 mt DE, 1 src Co neat, 1 src Co neat, 1 src, 1 ref

Figure 6.1: Results of some of the notable models on English-French OpenSubtitles
dev set. Complete results are presented in Table 6.4.

but better in chrF3 metric. This is caused by the fact that these systems generate longer
sentences (as apparent from the r column) and chrF3 score assigns 3 times more weight to
recall than to precision. To asses statistical significance of improvements over the baseline,
bootstrap resampling was used. The concatenation systems performed significantly better
than the baseline, for n = 10000 and p > 0.05.

During the experiments, I ran into an issue with Transformer batch sizes and the frame
work I used. Transformer training is very sensitive to minibatch size [49] and a memory of
one G P U is not sufficient to store an optimally sized minibatch. I only had limited access
to GPUs, and sometimes only one G P U was available for experimenting. Luckily, Marian
has a feature called optimizer delay, which accumulates gradients for n minibatches before
updating the weights, effectively scaling the minibatch size by factor of n. Less luckily, this
feature was broken until a recent commit"', which I found out during the experiments, since
some of the runs with a same config were significantly worse the others, so I had to rerun
the experiments. The lesson here is to always check whether larger batch size can bring an
improvement when training the Transformer.

Largest difference in B L E U scores was observed in srcltgtlref to tgtO concatenation
on English-French OpenSubtitle dataset, i.e. base Transformer model with one previous
source and one previous target sentence concatenated to the input sentence. The target
context sentences in this scenario are taken from the reference data. When using model-
generated previous target context sentences (srcltgtlmt to tgtO), created by the srcltgtO to
tgtO model, the performance is significantly worse, probably due to error propagation.

This configuration was not investigated further, since the dependence on previous tar
get sentence is preventing parallelization of translation using batching, thus making this

5

https: //github.com/marian-nmt/marian/issues/259

54

34

33.14

Baseline CEJsrc Concat lsrc, DEJsrc Conca t l s r c Concat, 1
I imt src, I ref

Figure 6.2: Results of some of the notable models on English-French OpenSubtitles
test set. Complete results are presented in Table 6.5.

approach impractical. However, the configuration with previous reference sentences is some
what similar to post-editing scenario, where a human translator sequentially corrects trans
lations made by an M T system, so the corrections made in previous sentences can be used
to improve translation of the future sentences.

6.3.2 Dual encoder

Slight gains in B L E U score were obtained by a simple dual encoder models in some of the
configurations, see Tables 6.4, 6.5 and 6.6. However, these gains are probably caused by
the larger number of learnable parameters of the model, rather than by a correct context
utilization. This issue is discussed later in the text, in Subsection 6.3.6.

6.3.3 Context encoder

First of the models that I implemented in Marian was document-level Transformer by Zhang
et al. [73], denoted context encoder or CE in the tables. The original implementation was
evaluated on English-Czech Europarl and English-French OpenSubtitles. The results are
presented in Tables 6.7 and 6.8. For Europarl, a slight improvement in B L E U (0.3) was
obtained on the dev set. After evaluating my implementation on the same data, a similar
gain (0.2) was observed. For English-French OpenSubtitles, a drop of about 0.2 B L E U
point was observed, again similar to my reimplementation. I was not able to evaluate the
original implementation on the discourse test set, since it does not provide a way to score
a translation.

As a sanity check, to see if the implemented model is able to use input provided in the
additional encoder at all, the reference translation was used as a context sentence. After
a few thousand updates, B L E U score reached values around 98, proving that the model is
indeed able to learn to use the context encoder.

55

65

62.4

60

55

51.3 • 5 2 4

50

DE CE DE,sriared+tok Voita concat

Figure 6.3: Discourse test set accuracy of models trained on English-French OpenSub-
titles. Simple concatenation model outperforms other architectures by a large margin,
similarily as in B L E U score evaluation.

One of the advantages of this model is that it can be pretrained as a normal Transformer
on sentence-level corpus and only the weights of the additional components can then be
fine-tuned on a small, document-level corpus. In the experiments on Europarl (Table 6.6)
and OpenSubtitles (Table 6.4), the models were trained on identical corpora in both phases
(in the first one without the context level information), so it is expected that there is no
observable gain from pretraining, other than quicker convergence of training in the second
phase (much fewer parameters have to be learned).

To asses the effect of pretraining and to see how the model performs on a larger scale,
an additional experiment on W M T data was performed. The baseline models were trained
on W M T 1 9 English-Czech corpora and Paracrawl, preprocessed as described in Chapter 3
(including the special preprocessing for Paracrawl). Two models were trained, referred to
as weak and strong in Table 6.10. Weak model is a Transformer-base model trained solely
on the parallel data. Strong model is a Transformer-big, trained on the parallel data and
backtranslated Czech News Commentary 2007-2018 datasets. For both models, context
encoder architecture performs worse than the baseline.

In neither of the experiments was I able to gain any significant improvement with the
context encoder model. I tried to tweak hyperparameters like number of layers of the context
encoder, different gating function (Table 6.9) or not pretraining the model, but none of the
changes had the desired impact. For the Europarl and OpenSub datasets, models were alse
trained using the original implementation for comparison, and similar results were observed.
These results show that the performance of the proposed architecture is strongly dependent
on the dataset used, since in the original paper authors observed significant improvements
on a different dataset.

TO

<

56

Model dev set B L E U test set B L E U

Baseline 29.6 33.0
srcltgtO to tgtO 29.9 33.2

Marian baseline 30.3 33.4
Marian srcltgtO to tgtO 30.5 33.5

Table 6.7: Comparison of results of original implementation of context encoder by Zhang
et al. [73] and reimplementation in Marian, English-Czech Europarl

Model dev set B L E U test set B L E U

Baseline 33.0 30.1
srcltgtO to tgtO 32.8 30.0

Marian baseline 34.9 31.6
Marian srcltgtO to tgtO 34.8 31.5

Table 6.8: Comparison of results of original implementation of context encoder by Zhang
et al. [73] and reimplementation in Marian, English-French OpenSubtitles

6.3.4 Context-aware Transformer

The second model that was implemented in this work is the context-aware Transformer by
Voita et al. [69]. In a sanity check with reference sentence as a context, the model obtained
B L E U score of 99. Next, the architecture was evaluated on English-French OpenSubtitles
and English-Czech Europarl. In both settings, the model performed worse than the baseline.
Some evidence of a correct context usage was observed on the discourse test set for the
English-French OpenSubtiles-trained model, see Table 6.4.

No reference implementation of this model is available, so the poor performance may be
caused by an implementation error. However, in a recent paper by Jean and Cho [20], this
model also fails to improve upon the baseline. I performed sanity checks to see whether
the model is able to use information from the second encoder. These checks suggest that
the model can indeed use the additional information and that the implementation may be
correct.

6.3.5 Discourse test set

Some of the models were also evaluated in terms of accuracy on the discourse test sets
described earlier, and the results are presented in disambig columns in corresponding tables.
The only significant gains, again, were obtained by concatenation architecture, trained
on OpenSubtitles. Europarl models did not perform well on this test set, partially due
to domain mismatch (test set examples are much closer to sentences found in subtitles
than to the ones found in Europarl) and partially due to bad overall context utilization in
Europarl-trained models. Only disambiguation based on one preceding source sentence was
evaluated. Examples of correct and incorrect disambiguation performed by srcltgtO to tgtO
concatenation models follow:

57

Context sentence Source sentence Chosen translation

But who's ever going to
stand up to her ?

But in such a sorry state,
who's going to look after
her ?

Are we having the chicken
tonight?

That hair's still there, you
know.

If anyone can take her on,
it's you.

if anyone can take her on,
it's you.

I couldn't bring myself to
pluck it.

I couldn't bring myself to
pluck it.

Jestli se jí někdo může
postavit, jsi to ty.

Jestli se jí někdo může uj
mout, jsi to ty.

Nedokázala jsem se přinutit
ho oškubat.

Nedokázala jsem se přinutit
ho vytrhnout.

We need to boil the pasta
in something

I really need to get high
right now.

The weather's starting to
get hot.

The chicken curry's meant
to be good.

The captain said we're sail
ing to France.

They've finished the main
course and are asking for
dessert.

So anything new on the sus
pects?

M y lighter isn't working...

Evacuate immediately.

Do you have some pot ?

Do you have some pot?

Too hot for me.

Too hot for me.

Which port does he want?

Which port does he want?

I found a match!

I found a match!

Is this not a drill?

Máš nějakou trávu?

Máš nějakou trávu?

Na mne je moc horko.

Na mne je moc horko.

II veut quel port?

II veut quel porto?

J'ai trouvé une correspon-
dance!

J'ai trouvé une allumette!

Ce n'est pas un exercice?

Ce n'est pas un exercice? I need you to go and find Is this not a drill?
me a drill.

58

Oh, I do like your... the They're braces. C'est un appareil dentaire.
things holding up your
trousers.

Oh, what a pretty smile, They're braces. C'est un appareil dentaire.
despite the thing on your
teeth.

Dual encoder models, despite the slight gains in B L E U on the OpenSubtitles corpus,
do not seem to utilize context information well - accuracy for different model checkpoints
fluctuated between 48.5 and 51.5 % for a simple dual encoder model. Better utilization of
context can be observed when the encoders share learnable parameters, but the accuracy
is still worse than the accracy of concatenation models by a large margin.

This suggests that the B L E U gains for dual encoder models are caused by other effects
than a successful context utilization. For dual encoder and context encoder configurations,
the B L E U gains are observed probably mainly due to increased number of parameters
in comparison to the baseline model - there are more attention layers and subsequent
feedforward layers, which in theory should serve to incorporate the context information,
but their main contribution in reality is presumably improving the representation of current
source sentence.

6.3.6 Adversary context

Several models were also evaluated with a random context as an input, instead of a real
one. Quite surprisingly, the results were not much worse with the random context sentences,
especially for Europarl corpus, as presented in Tables 6.6 and 6.4. This, along with results
on the discourse test set, shows that the models do not depend on context information too
much. As mentioned in last paragraph, the B L E U gains over the baseline for multi encoder
models can be explained by increased number of parameters of the model.

For concatenation configuration, this is not true, model architectures are exactly the
same regardless whether the context is used or not. However, on English-Czech Europarl
corpus (see Table 6.6) an improvement over the baseline (29.6 B L E U) can be observed for
concatenation system, even when random context is used (30.3 B L E U) . Maximum source
sentence length for training is set differently for baseline and concatenation models, which
seems to be the issue.

6.3.7 M a x i m u m source sentence length

For Europarl corpus, maximum length of the source sentence was set to 80 subwords for no
context, multiplied by the number of context sentences for concatenation models. Longer
sentences were omitted from the training. Since it is not probable that two exceedingly
long sentences follow each other in the corpus, concatenation models had chance to train
on these long sentences, while the baseline model excluded them. I assumed it will not
hurt the performance too much, based on a sentence length analysis, only 1.2 % of the
source sentences were longer 80 subwords in English-Czech Europarl. As it turned out, this
assumption was wrong.

When trained with maximum input length of 160, baseline model performs the same,
or better, as the concatenation models, reaching B L E U score of 30.3 on English-Czech

59

Europarl dev set. This does hold true for Europarl, on OpenSubtitles, I did not observe
this problem and even for a larger length limit, improvements in B L E U score were observed
on OpenSubtiles. This suggests that there is more to gain using context on OpenSubtitles
dataset than on Europarl, or that different techniques need to be used for different datasets.

6.3.8 Length normalization

Usually, in N M T , beam search is used to select the best sentence translation from hypotheses
generated by the model. Beam search in N M T has two hyperparameters - beam size
and length normalization constant n. Without length normalization, probabilities of each
word along the beam are summed up and then the best overall score (log-likelihood) is
chosen. Usually, this results in preference for shorter sentences, since less total tokens in
the output wil l probably mean lower (better) score. To mitigate this issue, which often
harms translation quality, the final summed score is divided by number of output tokens I
to the power of n: ln. However, n has to be chosen empirically since its optimal value
varies from language to language, dataset to dataset, and model to model. Popular choice
is 0.6, which is the default used in experiments in this paper, if not stated otherwise.

However, for some of the models, optimal n was determined on the dev set by search in
interval 0.4-3.0 (with step 0.1). Results are shown in Table 6.4. Optimal n was always much
higher than 0.6, usually in range 1.5-2.5. Also, it is different for each model, so probably
the most fair way to compare the models is to choose optimal n on the development set
for each model and then compare the test set scores with these parameters, as in Table
6.5. Beam size and length normalization value are not independent of each other - an ideal
solution would be to run a grid search along these two parameters, which was not done due
to computing restraints - beam size was set to 6 for all the experiments.

The optimal n found by the search on the dev set was also tried out when translating
the test set. As presented in Table 6.5, models generally performed worse with the found
n than with n=0.6. This observation confirms that this value strongly depends on the test
set used.

6.3.9 Manual inspection

During the development of a new system, automated metrics are necessary to compare the
candidates. However, to see if the system really improves the translations in the way that
the metrics suggest, manual inspection of the translated sentences is a very valuable tool.
Examples of passages of the text where the context seems to be used appropriately follow.
Of course, these are only a few cherry-picked examples and do not say much about the sys
tem quality. First set comes from English-Czech OpenSubtitles dev set and a concatenation
system with two previous source sentences as a context is used:

Source srcOtgtO to tgtO src2tgt0 to tgtO

Did he tell me to buy front Rekl mi, ať si koupím Rekl mi, abych koupil
leg? Or back leg? přední nohu? Nebo zadní přední nohu? Nebo zadní

noha? nohu?

60

Let go of her hand. - Go
back and do your dance.
You can't let go?

Do you think you can de
stroy it with just that
power? I was planning to
do this even without it .

Pusť j i . - Vrať se a zatancuj
si. Nemůžeš to nechat být?

Myslíš, že j i můžeš zničit
jen s takovou silou? Chtěl
jsem to udělat i bez něj.

Pusť jí ruku. - Vrať se
a zatancuj si. Nemůžeš j i
pustit?

Myslíš, že j i můžeš zničit
jen s takovou mocí? Pláno
val jsem to udělat i bez ní.

Another set of examples from the discourse test set, using a model train on English-
Czech OpenSubtitles for the translations. Only translation of the second sentence is pro
vided, since that is the interesting sentence with an ambiguous translation:

Source srcOtgtO to tgtO srcltgtO to tgtO

We've been thinking about it and
we'd like to throw a ball this week
end. A ball!

Míč! Ples!

The new guy is a bit rude. And dim. A temný. A tupý.

Okay, now you want to turn right. Ne, je to moje právo! Ne, to je moje doprava!
No, it's my right!

The makeup looks good. We do sil- Taky děláme stříbrné Děláme i stříbrné ne
ver nails too. hřebíky. hty.

You've gone and broken the teacup! Na ten pohár kašlu. Kašlu na ten hrnek.
I don't give a damn about the cup.

I should probably be off now. But Ale tohle je tvoje Ale tohle je tvůj byt.
this is your place. místo.

The pizza is in the oven, but there's Nikdy jsem neviděl to- Nikdy jsem neviděl to-
still some dough left. I've never seen lik prachů! lik těsta!
so much dough!

We could use a brush to detangle the Nemyslím , že bychom Nemyslím, že bychom
hair. I don't think we should use a měli používat štětec. měli použít kartáč,
brush.

On the other hand, many examples where the context was less successfully employed
can be found among the sentences from the discourse test set. Some of the translation do
not show any traces of context influence, while others seem to be at least half-correct. The
last sentence is translated correctly without the context, and incorrectly by the context
model::

Source srcOtgtO to tgtO srcltgtO to tgtO

61

Do you need anything for the game, Jako netopýr? Třeba netopýra?
son? Like a bat?

Where did you say the chicken was? Támhle u pera. Támhle u pera.
Over there by the pen.

We should be getting back to the Ministr bude mít Ministr bude mít
church. The minister will be getting obavy. obavy.
worried.

Could it be anything serious, Doc- Musíme se zbavit toho Musíme se zbavit toho
tor? We'll have to get rid of that krtka. krtka.
mole.

The verdict isn't great. What is the Jaká je poslední věta? Jaká je poslední věta?
hnal sentence?

Did you give her a slice of tart? No, Ne, byla to hračka. Ne, byla to hračka,
it was a piece of cake.

He crawled into that cannon himself Ano, ale stejně si ne- Ano, ale stejně si ne-
and ask me to do it. Yes, but I still myslím, že bys ho měl myslím, že bys ho měl
don't think you should fire him. vyhodit. vyhodit.

But you need good nails to play the S trsátkem by to bylo S krumpáčem by to
guitar. It might be easier with a jednodušší. bylo jednodušší,
pick.

62

context type architecture km n real c. random c. null c. disambig

0,0 to 0 baseline 80 0.6 29.6 - - 50%
0,0 to 0 baseline 160 0.6 30.3 - - 50%

1,0 to 0 concat 160 0.6 30.3 30.3 29.4 51.8%
1,0 to 0 dual encoder 80 0.6 30.0 30.0 1.9 50.5%
1,0 to 0 CE 80 0.6 29.8 - - -
1,0 to 0 CE, +gate 80 0.6 29.9 - - -
1,0 to 0 CE, +gate, pretrain 80 0.6 30.0 - -
1,0 to 0 CE, +gate, pretrain 160 0.6 30.5 30.4 0.1 52.8%
1,0 to 0 CE, switch 160 0.6 29.6 - - -
1,0 to 0 Voita 160 0.6 29.8 - - -
1,0 to 0 Vbita, switch 160 0.6 29.3 - - -

1,0 to 1, 1st sent concat 160 0.6 30.0 - - -

1,0 to 1, 2nd sent concat 160 0.6 29.8 - - -
1,0 to 1, 1st sent concat 160 1.9 30.2 - - -
1,0 to 1, 2nd sent concat 160 1.9 30.1 - - -

1,1 to 0 concat 240 0.6 29.97 - - -

Table 6.6: Results for models trained on English-Czech Europarl, Transformer model,
dev set. For detailed description of the columns, see previous table. The additional len
column shows maximal sentence length in subwords for training, see Subsection 6.3.7. (Max
imum source sentence length) for further discussion of this issue. CE denotes the context
encoder model, +gate is the same model improved with sigmoid gate to filter the influ
ence of context, pretrain means that the model was pretrained on the same corpus without
context information. For 1,0 to 1 context type, the model is trained to generate not only
the current target sentence, but also the previous one, separated by a special token. 2nd
sentence score is obtained by striping off the first (previous) target sentence and calculating
B L E U on dev set, whereas 1st sentence score is obtained by cutting off the second (current)
target sentence and computing B L E U of the first target sentence on reference set that is
shifted accordingly by one sentence. For CE, switch and Voita, switch architectures , inputs
of the encoders were switched - the context encoder encoded the source sentence and the
source encoder encoded the context sentence. This configuration serves as a sanity check
- showing that the model can utilize the context encoder, since it is able to translate the
source sentence when its encoded by the context encoder.

63

context enc. layers gating function pretraining freezing B L E U

non-contextual baseline - - - 35.92
1 original yes yes 35.83
1 original no no 35.71
1 original yes no 35.85
1 none yes yes 35.65
1 modified yes yes 35.79
2 original yes yes 35.66
6 original yes yes 35.81

Table 6.9: Results of context encoder model for different number of context encoder layers
and different gating functions. Column titled pretraining shows whether the model was
pretrained on sentence-level corpus, and the next column shows whether the pretrained
weights were frozen during the fine tuning on document-level corpus. No significant differ
ences are observed for any of the parameters, none of the configurations outperformed the
non-contextual baseline. English to Czech, OpenSubtitles, dev set B L E U score.

model B L E U +Context encoder +gating Discourse test set

weak baseline 25.28 (26.64) 24.93 (26.25) 24.97 (26.33) 52.08%
strong baseline 28.3 (29.95) 27.42 (29.03) 27.25 (29.12) 51.5%

Table 6.10: Results for models trained on English-Czech W M T data, newstest2018 test
set (newstest2016 used as a dev set, results in parenthesis). Weak baseline is a Transformer-
base model, strong baseline is Transformer-big with backtranslated data

64

Chapter 7

Conclusions

This final chapter first presents some of the easily achievable improvements and possible
future research directions. In the second part, outcomes of this thesis are summarized and
conclusions are presented.

7.1 Short term goals

Even though I aimed to do an extensive exploration of current context-aware architectures,
many possible configurations were left untested. Several new experiments can be performed
with the same, or only slightly modified models. I plan to evaluate the modifications
presented in the next few paragraphs, since I intend to implement the best performing
architecture in practice.

7.1.1 Forward context

In all of the experiments, only previous context was used. However, even a future context
may hold some information valuable for translation of a current sentence. I plan to run
experiments with the same model architectures, using forward context together with the
backward one.

7.1.2 Context-aware learning

The results of experiments using random context sentences suggest that the context-aware
models do not depend on context information too much - a recent paper by Jean and Cho
[20], which is described in Chapter 2, confirms this observation. The authors propose a
model-independent modification of the cross-entropy loss function, which is aimed to make
the model more sensitive to the context. Since this algorithm can be used with any neural
network M T architecture, it is an interesting future research direction, which I plan to try
out before using the models in production environment.

7.1.3 Longer context window

A l l of the approaches presented in this work assume only a small context window of several
surrounding sentences. Helpful information for the translation might however lie outside
this window. A sparse, hierarchical attention mechanism was presented in a recent paper
by Maruf et al. [42]. This mechanism first focuses on relevant sentences in the text, and

65

then on the most relevant tokens in these sentences, to create a document-level context
vector. This additional input can be incorporated into the translation model, extending
the possible context size.

7.1.4 More detailed manual inspection

I did perform manual analysis consisting of checking the systems translations and looking for
examples of correct and incorrect context usage. However, I did not analyze the translations
profoundly to see exactly which types of phenomena are easy or hard to address for the
model. Also, it might be interesting to look at the attention weights of words in the context
sentences when the ambiguous parts of the source sentence are processed, to see for example
if the model performs some kind of coreference resolution.

7.1.5 Integration with computer-aided translation system

Even though the results may not be spectacular, some improvements were observed. I plan
to integrate the context-aware models into a C A T system used by human translators. I also
intend to explore target context incorporation in more detail, since it might be beneficial
to use sentences already corrected by the human translator as an additional input for the
machine translation.

7.2 Long term goals

Surrounding sentences form only a small subset of possible context which can help with
translation of the input. Human translators need to have general world knowledge and
domain knowledge to translate a text perfectly. Of course, a perfect translation model would
need a perfect artificial general intelligence, which is not near by any means. However, it
may be possible to at least partially embed some kind of external world knowledge into
an N M T model. A recent work in this area is a paper by Moussallem et al. [45], where
the authors use knowledge graphs as an additional input into an N M T system, resulting in
significant improvement over the baseline model.

Another way to incorporate some type of world knowledge into an N M T model is to
use approaches known from question answering systems, i.e. to use an information retrieval
system to find a passages of text in a large corpus, which are relevant to the translation
of an input. Novel approaches using sparse attention [42] or adaptive attention spans [62]
could enable processing of long passages of text and incorporation of relevant information
into self-attention based models.

7.3 Summary

This work summarizes current state-of-the-art in dealing with extra-sentential context in
N M T , focusing mostly on the Transformer model. Some of the simpler architectures were
evaluated and compared both in terms of general translation quality and evaluation fo
cused on discourse phenomena. Two context-aware architectures were implemented in a
framework suitable for production systems. However, both of them have failed to bring any
significant improvements over the baseline. The results have shown that a very carefully
controlled experiments must be performed to asses the effect of context in N M T . Small
changes in parameters like maximum sentence length, length normalization, or batch size,

66

led to differences in automated metrics, which were in several cases larger than differences
caused by context incorporation.

A hand made discourse test set for English to Czech translation was created. The
experiments have shown that either the implemented context-aware models are not very
efficient at employing context, or there is a very little to gain in automated translation
quality metrics by using context models, even though this varies by the dataset used.
Evaluation focused on specific discourse phenomena was performed on a hand-made test
set developed for this purpose. A limited evidence of correct context usage was observed
on this test set for several of the models. Manual inspection of the translations generated
by a context-aware model was also performed and many cases where the translation was
improved by the context knowledge were found.

The best performing models (the only ones significantly outperforming the baseline in
terms of B L E U score) in all of the metrics were the simplest ones - with context sentences
concatenated to the input, separated by a special token, without any changes to the model
architecture. These results seem to be in line with recent development in other fields of
natural language processing, where big Transformer models, trained on large datasets and
many GPUs, usually outperform specialized models with an explicit problem knowledge
programmed into them.

67

Bibliography

[1] Agrawal, R.; Turchi, M . ; Negri, M . : Contextual Handling in Neural Machine
Translation: Look Behind, Ahead and on Both Sides. 2018.

[2] Bahdanau, D.; Cho, K . ; Bengio, Y . : Neural Machine Translation by Jointly Learning
to Align and Translate. CoRR. vol. abs/1409.0473. 2014. 1409.0473.
Retrieved from: http://arxiv.org/abs/1409.0473

[3] Bapna, A . ; Firat, O.: Non-Parametric Adaptation for Neural Machine Translation.
CoRR. vol. abs/1903.00058. 2019. 1903.00058.
Retrieved from: http://arxiv.org/abs/1903.00058

[4] Bar-Hillel, Y . : Demonstration of the Nonfeasibility of Fully Automatic High Quality
Translation. 1960.

[5] Bawden, R.; Sennrich, R.; Birch, A . ; et al.: Evaluating Discourse Phenomena in
Neural Machine Translation. CoRR. vol. abs/1711.00513. 2017. 1711.00513.
Retrieved from: http://arxiv.org/abs/1711.00513

[6] Belinkov, Y . ; Bisk, Y . : Synthetic and natural noise both break neural machine
translation. arXiv preprint arXiv:1711.02173. 2017.

[7] Bojar, O.; Federmann, C ; Fishel, M . ; et al.: Findings of the 2018 Conference on
Machine Translation (WMT18). In Proceedings of the Third Conference on Machine
Translation, Volume 2: Shared Task Papers. Belgium, Brussels: Association for
Computational Linguistics. October 2018. pp. 272-307.
Retrieved from: http://www.aclweb.org/anthology/W18-6401

[8] Brown, P.; Cocke, J.; Pietra, S. D.; et al.: A statistical approach to language
translation. In Proceedings of the 12th conference on Computational
linguistics-Volume 1. Association for Computational Linguistics. 1988. pp. 71-76.

[9] Cho, K . ; van Merrienboer, B.; Giilgehre, Q.; et al.: Learning Phrase Representations
using R N N Encoder-Decoder for Statistical Machine Translation. CoRR. vol.
abs/1406.1078. 2014. 1406.1078.
Retrieved from: http://arxiv.org/abs/1406.1078

[10] Collobert, R.; Weston, J.; Bottou, L . ; et al.: Natural language processing (almost)
from scratch. Journal of machine learning research, vol. 12, no. Aug. 2011: pp.
2493-2537.

[11] Coughlin, D. : Correlating automated and human assessments of machine translation
quality.

68

http://arxiv.org/abs/1409.0473
http://arxiv.org/abs/1903.00058
http://arxiv.org/abs/1711.00513
http://www.aclweb.org/anthology/W18-6401
http://arxiv.org/abs/1406.1078

[12] Devlin, J.; Chang, M. -W. ; Lee, K . ; et al.: Bert: Pre-training of deep bidirectional
transformers for language understanding. arXiv preprint arXiv:1810.04805. 2018.

[13] Eisenstein, J. : Natural Language Processing. M I T Press. 2018.

[14] Gage, P.: A new algorithm for data compression. The C Users Journal, vol. 12, no. 2.
1994: pp. 23-38.

[15] Garcia-Martinez, M . ; Barrault, L . ; Bougares, F.: Factored Neural Machine
Translation. CoRR. vol. abs/1609.04621. 2016. 1609.04621.
Retrieved from: http://arxiv.org/abs/1609.04621

[16] Halliday, M . A . K . : Hasan. Cohesion in English. 1976.

[17] Hardmeier, C.: Discourse in statistical machine translation, a survey and a case
study. Discours. Revue de linguistique, psycholinguistique et informatique. A journal
of linguistics, psycholinguistics and computational linguistics. , no. 11. 2012.

[18] Hassan, H . ; Aue, A . ; Chen, C.; et al.: Achieving Human Parity on Automatic
Chinese to English News Translation. CoRR. vol. abs/1803.05567. 2018. 1803.05567.
Retrieved from: http://arxiv.org/abs/1803.05567

[19] He, K . ; Zhang, X . ; Ren, S.; et al.: Deep residual learning for image recognition. In
Proceedings of the IEEE conference on computer vision and pattern recognition. 2016.
pp. 770-778.

[20] Jean, S.; Cho, K . : Context-Aware Learning for Neural Machine Translation. CoRR.
vol. abs/1903.04715. 2019. 1903.04715.
Retrieved from: http://arxiv.org/abs/1903.04715

[21] Jean, S.; Lauly, S.; Firat, O.; et al.: Does Neural Machine Translation Benefit from
Larger Context? arXiv preprint arXiv:1704-05135. 2017.

[22] Johnson, M . : How the statistical revolution changes (computational) linguistics. In
Proceedings of the EACL 2009 Workshop on the Interaction between Linguistics and
Computational Linguistics: Virtuous, Vicious or Vacuous1?. Association for
Computational Linguistics. 2009. pp. 3-11.

[23] Junczys-Dowmunt, M . : Dual Conditional Cross-Entropy Filtering of Noisy Parallel
Corpora. arXiv preprint arXiv:1809.00197. 2018.

[24] Junczys-Dowmunt, M . : Microsoft's Submission to the WMT2018 News Translation
Task: How I Learned to Stop Worrying and Love the Data. CoRR. vol.
abs/1809.00196. 2018. 1809.00196.
Retrieved from: http://arxiv.org/abs/1809.00196

[25] Junczys-Dowmunt, M . ; Grundkiewicz, R.; Dwojak, T.; et al.: Marian: Fast Neural
Machine Translation in C++. In Proceedings of ACL 2018, System Demonstrations.
Melbourne, Australia: Association for Computational Linguistics. July 2018. pp.
116-121.
Retrieved from: http://www.aclweb.org/anthology/P18-4020

[26] Jurafsky, D. : Speech & language processing. Pearson Education India. 2000.

69

http://arxiv.org/abs/1609.04621
http://arxiv.org/abs/1803.05567
http://arxiv.org/abs/1903.04715
http://arxiv.org/abs/1809.00196
http://www.aclweb.org/anthology/P18-4020

[27] Kay, M . : Machine translation will not work. In 24th Annual Meeting of the
Association for Computational Linguistics. 1986.

[28] Kendall, G.; Wickham, G.: Using Foucault's Methods. Introducing Qualitative
Methods series. S A G E Publications. 1999. ISBN 9780761957171.
Retrieved from: https://books.google.cz/books?id=3Zqwm4SQef oC

[29] Khayrallah, H . ; Koehn, P.: On the Impact of Various Types of Noise on Neural
Machine Translation. arXiv preprint arXiv:1805.12282. 2018.

[30] Koehn, P.: Statistical significance tests for machine translation evaluation. In
Proceedings of the 2004 conference on empirical methods in natural language
processing. 2004.

[31] Koehn, P.: Europarl: A parallel corpus for statistical machine translation. In MT
summit, vol. 5. 2005. pp. 79-86.

[32] Koehn, P.; Hoang, H. ; Birch, A . ; et al.: Moses: Open source toolkit for statistical
machine translation. In Proceedings of the 45th annual meeting of the ACL on
interactive poster and demonstration sessions. Association for Computational
Linguistics. 2007. pp. 177-180.

[33] Lakew, S. M . ; Cettolo, M . ; Federico, M . : A Comparison of Transformer and
Recurrent Neural Networks on Multilingual Neural Machine Translation. arXiv
preprint arXiv:1806.06957. 2018.

[34] Laubli, S.; Sennrich, R.; Volk, M . : Has Machine Translation Achieved Human Parity?
A Case for Document-level Evaluation. CoRR. vol. abs/1808.07048. 2018.
1808.07048.

Retrieved from: http://arxiv.org/abs/1808.07048

[35] Lawson, V . : Practical Experience of Machine Translation.

[36] Lei Ba, J.; Ryan Kiros, J.; E . Hinton, G. : Layer Normalization. 07 2016.
[37] Libovicky, J.; Held, J. : Attention Strategies for Multi-Source Sequence-to-Sequence

Learning. CoRR. vol. abs/1704.06567. 2017. 1704.06567.
Retrieved from: http://arxiv.org/abs/1704.06567

[38] Libovicky, J.; Held, J.; Marecek, D.: Input Combination Strategies for Multi-Source
Transformer Decoder. CoRR. vol. abs/1811.04716. 2018. 1811.04716.
Retrieved from: http://arxiv.org/abs/1811.04716

[39] Lui , M . ; Baldwin, T.: langid. py: A n off-the-shelf language identification tool. In
Proceedings of the ACL 2012 system demonstrations. Association for Computational
Linguistics. 2012. pp. 25-30.

[40] Manning, C. D.; Surdeanu, M . ; Bauer, J.; et al.: The Stanford CoreNLP Natural
Language Processing Toolkit. In Association for Computational Linguistics (ACL)
System Demonstrations. 2014. pp. 55-60.
Retrieved from: http://www.aclweb.Org/anthology/P/P14/P14-5010

70

https://books.google.cz/books?id=3Zqwm4SQef
http://arxiv.org/abs/1808.07048
http://arxiv.org/abs/1704.06567
http://arxiv.org/abs/1811.04716
http://www.aclweb.Org/anthology/P/P14/P14-5010

[41] Maruf, S.; Haffari, G. : Document Context Neural Machine Translation with Memory
Networks. CoRR. vol. abs/1711.03688. 2017. 1711.03688.
Retrieved from: http://arxiv.org/abs/1711.03688

[42] Maruf, S.; Martins, A . F . T.; Haffari, C : Selective Attention for Context-aware
Neural Machine Translation. CoRR. vol. abs/1903.08788. 2019. 1903.08788.
Retrieved from: http://arxiv.org/abs/1903.08788

[43] Mey, J.: Pragmatics: An Introduction. Wiley. 2001. ISBN 9780631211327.
Retrieved from: https://books.google.cz/books?id=TT_TF4sM61cC

[44] Mikolov, T.; Sutskever, I.; Chen, K . ; et al.: Distributed representations of words and
phrases and their compositionality. In Advances in neural information processing
systems. 2013. pp. 3111-3119.

[45] Moussallem, D.; Arcan, M . ; Ngomo, A . N . ; et al.: Augmenting Neural Machine
Translation with Knowledge Graphs. CoRR. vol. abs/1902.08816. 2019. 1902.08816.
Retrieved from: http://arxiv.org/abs/1902.08816

[46] Ott, M . ; Edunov, S.; Grangier, D.; et al.: Scaling Neural Machine Translation.
CoRR. vol. abs/1806.00187. 2018. 1806.00187.
Retrieved from: http://arxiv.org/abs/1806.00187

[47] Papineni, K . ; Roukos, S.; Ward, T.; et al.: B L E U : a method for automatic evaluation
of machine translation. In Proceedings of the 40th annual meeting on association for
computational linguistics. Association for Computational Linguistics. 2002. pp.
311-318.

[48] Pfiilb, B. ; Gepperth, A . ; Abdullah, S.; et al.: Catastrophic forgetting: still a problem
for DNNS. In International Conference on Artificial Neural Networks. Springer. 2018.
pp. 487-497.

[49] Popel, M . ; Bojar, O.: Training Tips for the Transformer Model. CoRR. vol.
abs/1804.00247. 2018. 1804.00247.
Retrieved from: http://arxiv.org/abs/1804.00247

[50] Popovic, M . : chrF: character n-gram F-score for automatic M T evaluation. In
Proceedings of the Tenth Workshop on Statistical Machine Translation. 2015. pp.
392-395.

[51] Post, M . : A Cal l for Clarity in Reporting B L E U Scores. CoRR. vol. abs/1804.08771.
2018. 1804.08771.

Retrieved from: http://arxiv.org/abs/1804.08771

[52] Radford, A . ; Wu, J.; Child, R.; et al.: Language models are unsupervised multitask
learners.

[53] Schmied, J.; Haase, C ; Povolná, R.: Complexity and Coherence: Approaches to
Linguistic Research and Language Teaching. R E A L studies. Cuvillier Verlag. 2007.
ISBN 9783867272155.
Retrieved from: https://books.google.cz/books?id=XiMLAQAAMAAJ

71

http://arxiv.org/abs/1711.03688
http://arxiv.org/abs/1903.08788
https://books.google.cz/books?id=TT_TF4sM61cC
http://arxiv.org/abs/1902.08816
http://arxiv.org/abs/1806.00187
http://arxiv.org/abs/1804.00247
http://arxiv.org/abs/1804.08771
https://books.google.cz/books?id=XiMLAQAAMAAJ

[54] Sennrich, R.; Birch, A . ; Currey, A . ; et al.: The university of edinburgh's neural M T
systems for WMT17 . arXiv preprint arXiv:1708.00726. 2017.

[55] Sennrich, R.; Firat, O.; Cho, K . ; et al.: Nematus: a Toolkit for Neural Machine
Translation. In Proceedings of the Software Demonstrations of the 15th Conference of
the European Chapter of the Association for Computational Linguistics. Valencia,
Spain: Association for Computational Linguistics. Apr i l 2017. pp. 65-68.
Retrieved from: http://aclweb.org/anthology/E17-3017

[56] Sennrich, R.; Haddow, B. : Linguistic Input Features Improve Neural Machine
Translation. CoRR. vol. abs/1606.02892. 2016. 1606.02892.
Retrieved from: http://arxiv.org/abs/1606.02892

[57] Sennrich, R.; Haddow, B. ; Birch, A . : Improving Neural Machine Translation Models
with Monolingual Data. CoRR. vol. abs/1511.06709. 2015. 1511.06709.
Retrieved from: http://arxiv.org/abs/1511.06709

[58] Sennrich, R.; Haddow, B. ; Birch, A . : Neural Machine Translation of Rare Words
with Subword Units. CoRR. vol. abs/1508.07909. 2015. 1508.07909.
Retrieved from: http://arxiv.org/abs/1508.07909

[59] Serra, J.; Suris, D.; Miron, M . ; et al.: Overcoming catastrophic forgetting with hard
attention to the task. CoRR. vol. abs/1801.01423. 2018. 1801.01423.
Retrieved from: http://arxiv.org/abs/1801.01423

[60] Shterionova, D.; Casanellas/3, P. N . L . ; Superbo/3, R.; et al.: Empirical evaluation of
N M T and P B S M T quality for large-scale translation production. In Conference
Booklet, page 74.

[61] Srivastava, N . ; Hinton, G.; Krizhevsky, A . ; et al.: Dropout: a simple way to prevent
neural networks from overfitting. The Journal of Machine Learning Research, vol. 15,
no. 1. 2014: pp. 1929-1958.

[62] Sukhbaatar, S.; Grave, E. ; Bojanowski, P.; et al.: Adaptive Attention Span in
Transformers. 2019.

[63] Sutskever, I.; Vinyals, O.; Le, Q. V . : Sequence to Sequence Learning with Neural
Networks. CoRR. vol. abs/1409.3215. 2014. 1409.3215.
Retrieved from: http://arxiv.org/abs/1409.3215

[64] Szegedy, C ; Vanhoucke, V . ; Ioffe, S.; et al.: Rethinking the inception architecture for
computer vision. In Proceedings of the IEEE conference on computer vision and
pattern recognition. 2016. pp. 2818-2826.

[65] Toral, A . ; Castilho, S.; Hu, K . ; et al.: Attaining the unattainable? Reassessing claims
of human parity in neural machine translation. arXiv preprint arXiv:1808.10432.
2018.

[66] Tu, Z.; Liu , Y . ; Lu , Z.; et al.: Context Gates for Neural Machine Translation. CoRR.
vol. abs/1608.06043. 2016. 1608.06043.
Retrieved from: http://arxiv.org/abs/1608.06043

72

http://aclweb.org/anthology/E17-3017
http://arxiv.org/abs/1606.02892
http://arxiv.org/abs/1511.06709
http://arxiv.org/abs/1508.07909
http://arxiv.org/abs/1801.01423
http://arxiv.org/abs/1409.3215
http://arxiv.org/abs/1608.06043

[67] Vanmassenhove, E. ; Hardmeier, C ; Way, A . : Getting gender right in neural machine
translation. In Proceedings of the 2018 Conference on Empirical Methods in Natural
Language Processing. 2018. pp. 3003-3008.

[68] Vaswani, A . ; Shazeer, N . ; Parmar, N . ; et al.: Attention Is A l l You Need. CoRR. vol.
abs/1706.03762. 2017. 1706.03762.
Retrieved from: ht tp: / /arxiv.org/abs/1706.03762

[69] Voita, E . ; Serdyukov, P.; Sennrich, R.; et al.: Context-Aware Neural Machine
Translation Learns Anaphora Resolution. CoRR. vol. abs/1805.10163. 2018.
1805.10163.
Retrieved from: ht tp: / /arxiv.org/abs/1805.10163

[70] Wang, L . ; Tu, Z.; Way, A . ; et al.: Exploiting Cross-Sentence Context for Neural
Machine Translation. In Proceedings of the 2017 Conference on Empirical Methods in
Natural Language Processing. 2017.

[71] Wen, S.; Itti, L . : Overcoming catastrophic forgetting problem by weight
consolidation and long-term memory. CoRR. vol. abs/1805.07441. 2018. 1805.07441.
Retrieved from: ht tp: / /arxiv.org/abs/1805.07441

[72] Wu, Y . ; Schuster, M . ; Chen, Z.; et al.: Google's Neural Machine Translation System:
Bridging the Gap between Human and Machine Translation. CoRR. vol.
abs/1609.08144. 2016. 1609.08144.
Retrieved from: ht tp: / /arxiv.org/abs/1609.08144

[73] Zhang, J.; Luan, H . ; Sun, M . ; et al.: Improving the Transformer Translation Model
with Document-Level Context. arXiv preprint arXiw.1810.03581. 2018.

73

http://arxiv.org/abs/1706.03762
http://arxiv.org/abs/1805.10163
http://arxiv.org/abs/1805.07441
http://arxiv.org/abs/1609.08144

