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Abstract
An existing experimental setup for degenerate, non-collinear spontaneous parametric down conver-

sion that generates correlated pairs of photons is optimized to achieve high-quality entanglement in
the generated pairs. This Thesis is concerned with estimation and characterization of the generated
quantum state, as well as with achieving as high entanglement as possible in the said state. Operation
of the source in two regimes is demonstrated. With narrow-band spectral filters, state-of-the-art qual-
ity of entanglement can be achieved, with the concurrence of 99 % and approx. 16,000 coincidences per
second. With wider-band filters, the rate of coincidences is just short of 100,000 per second, while the
output state concurrence value is still very high, with a value of 96 %. In this Thesis, the techniques
used to achieve such quality entanglement are described. Furthermore, a method of speeding up the
quantum state tomography procedure is devised and applied.
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1 Introduction

1.1 Entanglement and its significance
This Thesis is focused on a source of photon pairs which are entangled in the polarization degree of
freedom. Entanglement is a feature of composite physical systems that is of entirely quantum nature.
The correlations shared by the entangled particles have no counterpart in the classical description of
reality. Here, we will note the significance of the phenomenon of entanglement, and explore some of
its possible practical applications.
The existence of entangled states has been predicted by quantum mechanics in its early days. In

fact, it has been used as an argument against the theory in the famous Einstein’s, Podolsky’s and
Rosen’s gedankenexperiment from 1935 [1]. There, they argued that quantum mechanics, as it was,
could not be a complete theory. On a hypothesized entangled state of two distant particles which
shared correlations, or anti-correlations, in position and momentum, they tried to show that if the
theory were to be realistic, one would have to be able to measure simultaneously, and with an arbitrary
degree of precision, both the position and the momentum of the particles. This was in contradiction
with the incompatibility of position and momentum postulated by the theory. Eventually, a theoret-
ical approach to settle the debate was devised in the form of the Bell’s inequalities [2], which were
followed by propositions of their experimental verification, such as the CHSH inequality [3]. Violations
of the inequalities have been observed [4, 5], and after a significant amount of research, we now have
incontrovertible evidence in favor of quantum theory—the so-called loophole-free experimental viola-
tions of Bell’s inequalities [6, 7]. In hindsight, we can identify the flaws in the reasoning of Einstein,
Podolsky, and Rosen [8]. However, the argument, albeit flawed, is still of value, as it shows how
drastically a physicist’s way of thinking was forced to shift with the advent of the quantum theory.
The potential of quantum entanglement, however, reaches far beyond the historical matters. Over

the years, many possible practical applications of entanglement have been proposed, and even demon-
strated. For example, it has been shown that if two distant parties were to share two entangled
particles, it will become possible to transfer the quantum state of another particle from one party
to the other, using local operations and classical communication [9]. This phenomenon is known as
quantum teleportation, and along with entanglement swapping, it has been demonstrated experimen-
tally [10].
The particular properties of quantum states allow for applications in secure communication, giving

rise to a field called quantum cryptography. Secret messages encoded with the Vernam cipher are
virtually undecipherable, but they require that a so-called one-time pad—a single-use key that allows
for encoding and decoding of the message—be generated and shared only between the authorized
parties. It is the generation and transmission of the key between the two parties that benefits from
the quantum approach called quantum key distribution (QKD). The virtue of QKD is that any breach
of security of the transmission caused by an eavesdropper will inevitably lead to the destruction of
the transmitted information, and this will be noticed by the communicating parties [11]. There have
been proposals, and demonstrations of QKD protocols, such as BB84 [12, 13] and B92 [14, 15] that do
not need entanglement and rely on non-orthogonal quantum states, and E91 [16, 17] which explicitly
makes use of entanglement.
Apart from strengthening existing cryptography, entanglement can be in principle used to attack

existing public-key cryptography [18] schemes that rely on the computational difficulty of factoriza-
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1 Introduction

tion of large integers, such as the RSA cryptosystem [19]. For a classical computer, there have been
developed algorithms to find the prime factors of large numbers. However, there is no known factor-
ization algorithm with polynomial (P) scaling of computation time with the size of the number to be
factorized. On the other hand, there are such algorithms for a so-called quantum computer that relies
on quantum bits (qubits) and quantum gates. One such example is Shor’s algorithm [20]. Thanks to
the features of the quantum world, such as superposition and entanglement [21], algorithms relying
on quantum computers have the potential to outperform their classical counterparts.
Entangled systems can also be used to simulate [22] behaviour of other physical systems. This is

advantageous especially if we don have enough control over them. Using a well-controlled entangled
system, we can simulate quantum systems of sizes that would prove too much for a classical computer.
For example, magnetic materials described by the Ising model can be simulated using a chain of
quantum bits, where neighbouring qubits are entangled, to simulate ferromagnetic or diamagnetic
behaviour. This has been achieved with trapped ions [23, 24, 25] and Rydberg atoms [26].

1.2 Entanglement sources
Entangled particles share correlations across multiple incompatible observables. This makes prepa-
rations of entangled states a non-trivial matter. We are, of course, able to prepare correlations in a
particular observable rather easily, but correlations in other observables between the particles will not
be present. Most techniques for generation of entangled states thus rely on physical processes where
multiple particles are created simultaneously, or within a short time interval. Furthermore, we benefit
from constraints laid upon the process, for example by conservation laws, to ensure that the generated
particles share the desired correlations, or anti-correlations. Throughout the rest of this Thesis, we
will consider only photons as the realization of quantum bits. Furthermore, we will limit ourselves to
the discrete-variable scheme, with information encoded into the polarization degree of freedom.
The first experiments demonstrating the violation of Bell’s inequalities relied on entangled photons

generated in atomic cascades, such as the one in calcium [4, 5]. In an atomic cascade, an excited
electronic state decays through a series of energy levels, emitting a photon during each de-excitation.
The generated photons often vary in wavelength, as the energy levels are often not equidistant. There
is, however, entanglement in polarization.
Shortly after the birth of nonlinear optics, processes such as the spontaneous parametric down-

conversion (SPDC) in nonlinear optical crystals [27, 28] and, later on, four-wave mixing (FWM) in
atomic vapours [29, 30, 31], were used to create entangled pairs of photons. Presently, SPDC-based
entangled photon pair sources are the most widely used, as they are well-understood and reliable. To
satisfy the phase matching condition, explained in Chapter 2, the SPDC sources either utilize angular
tuning [27, 28], where the correct orientation of the pump and the generated photons with respect to
the crystal ensures successful SPDC generation, or temperature tuning in conjunction with periodic
poling [32, 33] of the crystal. The latter approach allows for greater length of the crystal, and thus a
brighter source, while the first approach enables the use of a wide-band, pulse pump laser [34, 35].
Entanglement generation using nonlinear optics has also been demonstrated in optical fibers. The

fiber-based sources often rely on FWM [36, 37, 38]. However, utilization of SPDC is also possible [39,
40]. The mechanical stress in the fibers induces asymmetry, enabling SPDC which would otherwise
be impossible, as second-order nonlinear-optical processes are not observed in media with central
symmetry [41].
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1.3 The aim of this Thesis

Recently, there is an increasing interest in new light sources with intriguing properties and capabili-
ties, such as quantum dots [42, 43], nitrogen-vacancy (NV) centers in diamond [44], photonic-band-gap
and hybrid fibers [45], and on-chip photonic circuits [46], to name a few. However, further development
is still required before entanglement sources based the mentioned techniques are widely adopted.

1.3 The aim of this Thesis
The goal of this Thesis is to take an existing SPDC-based experimental setup for photon pair genera-
tion and optimize it to achieve high quality of entanglement of the generated pairs, without sacrificing
the rate of their generation. The resulting entanglement source differs in those already built in the
Quantum Optics Lab Olomouc [47, 48], which brings along new challenges. A relatively new nonlin-
ear material called BiBO [49] is used, with higher nonlinear coefficients than other commonly used
crystals, such as BBO, KTP, or LiNbO3 [50]. The source is designed while keeping in mind both
continuous and pulsed [34, 35] laser to be used as pump. The non-collinear geometry of the output
photons is also different from the already-built sources available at our lab.

Figure 1.1: The schematic of the experimental setup for generation of entangled photon pairs, consisting of
the source itself, quantum state estimation, and compensations of the source imperfections. The
source consists of a strong laser pump and two BiBO crystals placed in series, generating the
signal and idler beams which go off in different directions. Quantum state estimation utilizes half-
wave plates (HWP), quarter-wave plates (QWP), and polarizing beam splitters (PBS). Detectors
(D) are placed in one of the two output ports of each PBS. The compensation part relies on pre-
compensating (PreC) and post-compensating (PostC) birefringent crystals which aim to eliminate
the detrimental effect of the source imperfections on the entanglement of the generated photon
pairs.

The schematic of the setup is shown in Figure 1.1. It is possible to divide the entire setup into three
distinct parts—the entanglement source, quantum state estimation, and compensations. These parts
correspond with the later chapters of the Thesis, and will be now described in more detail.
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The central part of the entanglement source are two nonlinear BiBO crystals. They are positioned
in a series, and their axes of birefringence are oriented so that they are mutually orthogonal [28]. The
challenges surrounding the source itself come from the fact that BiBO is a biaxial crystal, which is
uncommon among other presently used angularly tuned nonlinear crystals. In Chapter 2, the physical
aspects of entanglement generation via the SPDC process, including phase matching, will be described.
To properly adjust and evaluate the entanglement source, full characterization of the quantum state

is required. It is desirable that the tomographical procedure be automatized, and that it take the least
amount of time, as it is a routine to be performed numerous times on a daily basis. The maximum-
likelihood method will be used to infer the density matrix of the state, and entanglement criteria and
measures will be applied to evaluate the presence and quality of entanglement, respectively. This is
the focus of Chapter 3.
Entanglement sources based on angularly tuned birefringent crystals feature some imperfections in

the generated photons, which lead to which-crystal information and the overall degradation of en-
tanglement. Most notable example is the effect called walk-off. To compensate such imperfections,
birefringent compensation crystals need to be used, both before and after the BiBO crystals. To evalu-
ate the effect of compensations on the generated quantum state, mainly on its quality of entanglement,
we will make use of the full state characterization techniques. In Chapter 4 we will discuss walk-off
and see how the quality of entanglement in the generated photon pairs depends on the presence and
orientation of the compensating elements. Eventually, we will arrive at a quantum state with nearly
perfect entanglement.
Each of the chapters described above will start with a presentation of the necessary theoretical

aspects and then discuss the matters related to the experimental realization on the SPDC entanglement
source. The concluding Chapter 5 serves to provide a concise overview of the resulting characteristics
of the entanglement source, and hints at some possible future improvements to the setup, as well as
its applications in other experimental projects.
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2 The SPDC-based entanglement source

2.1 Introduction to SPDC
Spontaneous parametric down conversion is a non-resonant nonlinear-optical process. Optical non-
linearity arises from the nonlinear dependence of the polarization vector P on the applied electric
field E in certain media. This dependence is given by the nonlinear electric susceptibility χ of the
given medium. SPDC is second-order process, which means that it relies on the quadratic part of the
nonlinear susceptibility, denoted χ(2) [41].
The basic concept of nonlinear-optical processes is that if strong enough, the applied electric field

E can generate a response in the form of P, which oscillates not only with the same frequency as E,
but also at different frequencies. This in turn gives rise to respective outcoming optical fields. In the
case of SPDC, the applied field Ep, called the pump generates outcoming field with two chromatic
components Es, Ei called the signal and the idler, respectively. The energy conservation law implies
strong anti-correlations in the frequencies of signal and idler. The wave vector conservation law
(the phase-matching condition), if satisfied using birefringent media, can lead to entanglement in
polarization.
In the most basic form, SPDC can be understood as a photon scattering process where one pump

photon, with frequency ωp and wave vector kp is absorbed in a medium, followed by the emission of
two photons, signal and idler, with frequencies and wave vectors ωs,ks and ωi,ki, respectively. This
is portrayed using a schematic in Figure 2.1a.

(a)

(b)

(c)

Figure 2.1: A phenomenological description of the SPDC process. A schematic (a) shows SPDC as a photon
scattering process. The energy-level diagram (b) visualizes the energy conservation law (2.1).
The phase-matching condition (2.3) is shown in (c).

Two conditions must be met in order to observe this process. The energy conservation law

h̄ωp = h̄ωs + h̄ωi (2.1)
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2 The SPDC-based entanglement source

states that the energy of the two generated photons must match the energy of the absorbed one. By
dividing both sides of (2.1) by h̄, we arrive at

ωp = ωs + ωi. (2.2)

Furthermore, momentum must be conserved:

h̄kp = h̄ks + h̄ki. (2.3)

Again, upon dividing both sides of (2.3) by h̄ we obtain

kp = ks + ki, (2.4)

which is known as the phase-matching condition [41]. We can write (2.4) as

∆k = 0, (2.5)

where we define the phase mismatch:

∆k = kp − ks − ki. (2.6)

2.2 Classical description of SPDC: coupled wave equations
If we assume that two monochromatic components E3, E2 of the electric field vector E are present in
the medium, and that they oscillate at angular frequencies and with wave vectors ω3, k3, and ω2, k2
respectively, ω3 > ω2, then the second-order contribution P(2) to the nonlinear polarization vector P
oscillating at frequency ω1 = ω3 − ω2 and with wave vector k1 is given as

P(2) = ε0χ
(2)E3E∗2e−i(ω3−ω2)e−i∆k, (2.7)

This part of the second-order polarization vector P(2) is a source of the electric vector E1 oscillating
at angular frequency ω1, as can be seen from the wave equation for a nonlinear medium:

∇2E1 −
n2

c2
∂2E1

∂t2
= µ0

∂2P(2)

∂t2
. (2.8)

We now apply this to the case of SPDC. We identify the field E3 with the pump, and the fields E1,E2
with signal and idler, respectively. We are interested in frequency-degenerate SPDC, meaning that
the down-converted fields E1 and E2 both oscillate at the same frequency ω1 = ω2. By employing the
slowly-varying envelope approximation, it is possible to arrive at the following coupled wave equations
for the amplitudes A1, A2 of the generated down-converted electric fields:

dA1

dz = iω2
1χ

(2)

k1c2
A3A

∗
2ei∆kz, (2.9)

dA2

dz = iω2
2χ

(2)

k2c2
A3A

∗
1ei∆kz. (2.10)

The solutions to the Equations (2.9) and (2.10) for the case of perfect phase matching ∆k = 0 are the
hyperbolic functions sinh and cosh, leading to increase in the amplitude of the down-converted fields
as the pump propagates through the nonlinear medium.
Note that the description above assumes that some, however small, amount of one of the generated

fields E1,E2 is already present. However, SPDC is a spontaneous process, meaning that the presence
of the fields E1 and E2 is not necessary for the process to start. To account for spontaneity of SPDC,
quantum-mechanical treatment would be required.
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2.3 Phase matching in a biaxial birefringent crystal

2.3 Phase matching in a biaxial birefringent crystal
Now we focus on the phase-matching condition itself. We are interested in the case of zero phase
mismatch ∆k = 0 for which the process is most effective. Upon separating the wave vectors into their
scalar components

ki =
3∑
j=1

êjk
j
i , kji = ωi

c
ni cosαji , i = 1, 2, 3, (2.11)

where êj are the three canonical base vectors and cosαji are the directional cosines of the ith wave,
we can see that the refractive indices ni play a role in the phase matching condition. As real optical
media are dispersive, the indices ni are frequency-dependent. Using a birefringent medium additionally
makes the refractive indices ni angularly dependent. This opens up the possibility of finding for the
three interacting waves a set of direction of propagation such that they each experience the correct
refractive index as to satisfy the phase-matching
The task of finding the correct angles of propagation of the three waves with respect to the optical

axes of the crystal usually involves solving a system of equations. In these equations, both the
angular and frequency dependence of the refractive index are explicitly present, the latter often being
approximated by the Sellmeier relations.

2.4 The Kwiat’s Type-I entanglement source
With the possibility of generating pairs of photons in an angularly-tuned phase-matched birefringent
crystal, we proceed to show how the SPDC process can be applied to achieve entanglement in the
generated pairs. For Type-I phase matching, a commonly used geometry is the one shown in Figure
2.2. Two nonlinear crystals are used, and their axes of birefringence are perpendicular to each other.
Furthermore, the pump beam is diagonally polarized with respect to the axes.

BiBO

Figure 2.2: A schematic of the Kwiat’s Type-I entanglement source. Two BiBO crystals are placed in series,
with orthogonal birefringent axes. Diagonally polarized pump beam causes SPDC in both the
crystals. Signal and idler are generated in two overlapping cones.

If the first crystal was oriented in such a manner that a vertically polarized pump generates via
SPDC pairs of horizontally polarized photons:

|V 〉p → |H〉s|H〉i (2.12)

then the second crystal, with optical axis perpendicular to the axis of the first crystal, will generate
vertically polarized photons when pumped horizontally

|H〉p → |V 〉s|V 〉i (2.13)

7



2 The SPDC-based entanglement source

and since the pump is diagonal, both of these processes will occur at once:

1√
2

(|H〉p + |V 〉p)→ 1√
2

(|H〉s|H〉i + |V 〉s|V 〉i) (2.14)

The SPDC process in question is non-collinear, meaning that the pump and the generated photon
pairs do not propagate in a single common direction. Effectively, we observe that the photon pairs
generated from the two SPDC crystals fly off in two separate cones, as shown in Figure 2.2.
Now we describe the experimental setup, shown in Figure 2.3, that is used throughout the rest of this

Thesis. We use a fiber-coupled 405 nm laser (Toptica iBEAM-SMART-PT-405) as a pump. The power
of the laser just before the SPDC crystals is approximately 43 mW, and the laser is not frequency-
stabilized. The pump passes through a half-wave plate HWPp which allows us to rotate its plane of
linear polarization. After being focused by a lens Lp, the pump is incident on the two BiBO crystals,
both 0.5 mm thick, and the rest of the pump beam that passes through unaffected is stopped. The
signal and idler SPDC photons—visualized by red and orange lines, respectively, in Figure 2.3—are
generated in cones with an opening angle of 3 ◦ and are deflected using a split prism. In both the signal
and the idler arm of the setup, the generated photons are focused by lenses Ls, Li, steered through a
series of irises Is, Ii in order to facilitate maintenance of the source geometry, and finally coupled to
single-mode fibers, shown as thin curved lines in Figure 2.3. Before coupling to fibers, the photons
pass through narrow-band interference-based frequency filters IFs, IFi centered about 810 nm.

An important element of the fiber-part of the setup are the polarization controllers PCs, PCi they
play a role once the signal and idler photons leave the single-mode fibers and enter the quantum state
estimation part of the setup, described in more detail in Chapter 3. This part of the experiment consists
of half-wave plates HWPs, HWPi, quarter-wave plates QWPs, QWPi, polarizing beam splitters PBSs, PBSi.
After passing these components, the photons are coupled into multi-mode fibers, denoted by thick
curved lines in Figure 2.3. Before that, however, cut-off frequency filters CFs, CFi are used to reduce
the amount of stray light coupled into the multi-mode fibers along with the desired SPDC-generated
photon pairs. The fibers are connected to single photon avalanche detectors, and the signal from them
is in turn fed into coincidence logic and a multi-channel counter.
There are some components that were not so far listed. They are the pre-compensator PreC and the

post-compensators PostCs, PostCi. They aim to eliminate the effect of the entanglement-degrading
mechanisms inherently present in the described scheme. Compensations will be studied in Chapter 4.
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Figure 2.3: The experimental setup. Pump, signal, and idler beams are visualized as blue, red, and orange lines, respectively. Single-mode fibers
are denoted by thin curved lines, and multi-mode fibers by thick curved lines. CF: cut-off filter, HWP: half-wave plate, I: iris, IF:
interference filter, L: lens, M: mirror, PBS: polarizing beam splitter, PC: polarization controller, PostC: post-compensator, PreC:
pre-compensator, QWP: quarter-wave plate. Lower indices indicate the pump, signal, and idler parts of the setup.





3 Output state tomography

3.1 Introduction to quantum state tomography
Estimating an unknown state of a single-qubit system by means of quantum state tomography requires
projecting the state onto a certain set of states. Usually, the tomography consists of projection onto
the six states: the horizontal (H), vertical (V), diagonal (D), anti-diagonal (A), right-circular (R),
and left-circular (L), which form three mutually unbiased bases [51]. The measurements are often
realized using a sequence of a half-wave plate (HWP), a quarter-wave plate (QWP), and a polarizing
beamsplitter (PBS), shown in Figure 3.1a. Without the waveplates, the H state can be measured
behind the PBS. Different projections can be measured using the waveplates, more specifically by
adjusting the angles φ and θ of the optical axes of the HWP and QWP, respectively, with respect to
the plane of horizontal polarization. The waveplate angles corresponding to the six projections, valid
for the order of waveplates shown in Figure 3.1a are given in Table 3.1.

symbol state HWP (φ) QWP (θ)
H horizontal 0 0
V vertical 45 0
D diagonal 22.5 0
A anti-diagonal -22.5 0
R right-circular 0 45
L left-circular 0 -45

Table 3.1: The six one-qubit polarization projections and the corresponding waveplate angles.

For a two-qubit system, it is not enough to perform the one-qubit procedure for each individual
qubit. Whereas the single-qubit density matrix is given by 4 − 1 = 3 independent parameters, the
two-qubit density matrix requires 42 − 1 = 15 parameters [51]. We can see that we would not
obtain enough data to properly reconstruct the density matrix. If we denote µ1 = |H〉〈H|, µ2 =
|V 〉〈V |, . . . the operators describing our 6 polarization projection measurement, we perform the multi-
qubit tomography by the means of operators

µij ≡ µi ⊗ µj , i = 1, 2, . . . , 6, j = 1, 2, . . . , 6. (3.1)

The number of performed measurement then rises from 6 to 36. Furthermore, the technique of
measurement changes as well. In single-qubit state tomography, our measurement results are the
detected intensities of—or, in case of weak signal, detector counts caused by—the optical signal after
the PBS. With multi-qubit tomography, we must evaluate the coincidence rate rather than the single
detections—individual signals from all the involved detectors. This is often done by feeding the output
of the detectors into electronic circuitry, which we will further call coincidence logic (see Figure 3.1b).
Here, the signals from both detectors first pass through a discriminator, which takes pulses with
amplitude that exceeds a certain threshold and outputs rectangular pulses with a given length in their
place. The resulting signal from the two discriminators then enters the coincidence unit itself. If two
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3 Output state tomography

(a)
(b)

Figure 3.1: The used polarization tomography scheme (a). The signal and idler photons from the output
of the SPDC source pass through a half-wave plate (HWP), a quarter-wave plate (QWP) and
a polarizing beam splitter (PBS). The fraction of intensity detected by the detector (D) then
corresponds to the projection of the output state into one of the 36 tomographical projections.
The coincidence logic (b) consists of discriminators (Discr.) which produce negative NIM pulses,
and a coincidence unit (Coinc.), which outputs a pulse when the two pulses arrive within a
certain time window, shown with red dotted lines.

pulses arrive within a certain time window, the coincidence unit outputs a pulse. These pulses are
then counted using a multi-channel counter. Single clicks are counted as well, and are used during
source adjustment and maintenance.

3.2 Minimal-time tomography strategy
For each polarization projection measurement, the waveplates must be oriented at specific angles.
When we wish to move from one projection to another, at least one of the waveplates needs to be
readjusted. This is done using motorized rotation mounts which are computer-controlled via serial
interface. The readjustment of the waveplates takes different amounts of time, depending on the angle
travelled and the type of the rotation mount. This opens up the possibility to optimize the order of
projection measurements with respect to the total time spent on reorienting the waveplates between
measurements.
For one-qubit tomography, it is feasible to find the projection measurement order that minimizes the

total time spent on reorienting the waveplates by a simple brute-force algorithm. Such an algorithm
would go through all permutations of the HVDARL sequence and add up the total time that is spent
on all the transitions between polarization projection measurements. After all possible permutations
have been checked, the algorithm would return the one that minimized the total time spent on the
transitions. However, this approach cannot be used for larger systems. The total number of all possible
orderings of the measurements is 6n! where n is the number of qubits that the system consists of.
For the one-qubit case, this gives 6! = 720 permutations to check, but for a two-qubit system, there
are 62! ≈ 1041 possibilities. Thus, to optimize the polarization projection order, we regarded the task
as an instance of the travelling salesman problem (TSP) [52] and solved it using the state-of-the-art
branch and bound algorithms [52, 53].
The TSP is a well-known problem of graph theory. We will use the common graph-theoretical termi-

nology, and proceed to call the set of projection measurements a graph. The individual measurements
will be known as nodes of the graph. Between each two nodes, there is an edge, corresponding to a
transition from the first to the second node. The edges are weighted, which means that different tran-
sitions take a different amount of time. The graph is visualized for the case of one-qubit tomography
in Figure 3.2a.
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(a)
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Figure 3.2: A graph representation of one-qubit tomography (a). The graph nodes correspond to the six
projection measurements. All graph edges are shown as lines. The graph edge weights are rep-
resented by the adjacency matrix (b). The matrix elements correspond to the largest angle that
any waveplate has to be rotated by during a given transition. The most demanding transitions,
represented by black, are those between the R and L polarization states.

The durations of transitions between the projection measurements depend heavily on the particular
type of rotation mount used. However, if we consider the situation where all the rotation mounts rotate
equally fast, with uniform angular velocity throughout each and every possible transition between
the tomographical projections, we can formulate the TSP in terms of angle travelled, instead of
time spent on readjusting the waveplates [54, 55]. This approach makes the formulation clearer, as
the edge weights can be checked by comparison with Table 3.1. Furthermore, the results obtained
from the optimization are device-independent, as long as the real rotation mounts satisfy the initial
assumption of uniform angular velocity. As multiple waveplates may need to be readjusted during a
single transition, we take the maximal angle—absolute valued—travelled by any waveplate during the
transition, and consider that the weight of the corresponding graph edge.
With a set of graph nodes, and the values of all graph edge weights, we have all the information

needed to specify the instance of a TSP. This data is commonly organized into an adjacency matrix [52,
56]. Its elements Cij are the weights of the edges i→ j, or the transitions from projection measurement
i to measurement j. The diagonal elements of this matrix are zero, and the matrix is symmetrical for
our case. The adjacency matrix for one-qubit tomography, corresponding to the experimental setup
shown in Figure 3.1a and the waveplate angles from Table 3.1 is shown in Figure 3.2b.
To quantify the reduction in time achieved using a TSP-optimized measurement sequence, we use

the speedup factor
s = τconv

τTSP
, (3.2)

where τTSP is the total transition duration for the TSP-optimized measurement order, and τconv is
the total duration for the conventional order, by which we mean the order in which the six projections
were introduced: H, V, D, A, R, and L. Both τTSP and τconv include the transition from the final
projection to the first one, completing a cycle. τconv can be computed from the adjacency matrix as( 5∑

i=1
Ci,i+1

)
+ C6,1. (3.3)

For the example of one-qubit tomography, we use (3.3) to arrive at τconv = 292.5 ◦, and the TSP
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conv H V D A R L H
τconv = 292.5 ◦ 45 22.5 45 45 90 45

TSP H L A R V D H
τTSP = 225 ◦ 45 45 45 45 22.5 22.5

Table 3.2: The conventional and TSP-optimized sequence for the example case of one-qubit tomography.
The order of projection measurements is shown for both, along with the maximal angle travelled
by any waveplate during individual transitions, including the transition between the final and the
initial measurement, completing a cycle.
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Figure 3.3: The adjacency matrices for the two-qubit (a) and three-qubit (b) quantum state tomography
TSPs. Curiously, the matrices resemble fractal-like objects.

algorithm finds an optimal sequence with τTSP = 225 ◦. The speedup factor computed using (3.2)
is then s = 1.3. Working with transition angles instead of temporal durations has no effect on the
end result, provided that all waveplates rotate with uniform angular speed. This sequence is listed in
Table 3.2.

In our scenario, we concern ourselves with tomography of a two-qubit system. This means that our
TSP graph has 36 nodes. Again, by using the assumption of a uniform angular velocity for all the
waveplate mounts, we can arrive at an angularly specified adjacency matrix shown in Figure 3.3a. In
order to gain an insight into how the speedup factor scales with the size of a quantum system, we
performed the TSP optimization of an up to five-qubit system [54]. The resulting speedup factors are
plotted in Figure 3.4. With an adjacency matrix of size 7776×7776, we were not able to solve the six-
qubit tomography TSP on a consumer-grade laptop. Exact solution of the TSP for even large systems,
however, will quickly become impossible for any modern computer. This is due to the non-polynomial
(NP) scaling of the TSP. Upon comparing the two-qubit TSP adjacency matrix from Figure 3.3a with
the tree-qubit matrix in Figure 3.3b, it is interesting to note the apparent self-similarity present in
the adjacency matrices for n-qubit tomography TSP with angular specification of the graph weights.
This might show that the problems of optimizing such tomographical tasks form a distinct subset of
the general TSP problem. This fact may have some interesting implications. Their rigorous study is,
however, beyond the scope of this Thesis.
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Figure 3.4: The speedup factor for increasingly larger systems of qubits. We see an increasing trend, and
the speedup factor nearly reaches a value of 2 for a three-qubit system already.

3.3 Tomography optimization for the SPDC source
In our setup, the angular specification of the tomography TSP cannot be used, as three of the wave-
plates are in slow mounts, while a fourth one—a quarter-wave plate in the idler branch—is in a fast
mount. We thus rely on temporal specification. The times of all the possible rotations the waveplates
might undergo during the tomographical procedure were obtained using serial interface communica-
tion with the mounts. From this information we assembled the adjacency matrix, which can be seen
in Figure 3.5, where we took the liberty to divide the data into second-long bins. However, when the
TSP was being solved, the accurate values were used.

HH VH DH AH RH LH
HH

VH

DH

AH

RH

LH
0− 1

2− 3

4− 5

5− 6

11− 12

12− 13

17− 18

23− 24

Figure 3.5: The adjacency matrix for our real-world two-qubit tomography TSP with three slower rotation
mounts and one fast mount used for a QWP. For clearer presentation, the matrix elements have
been divided into second-long bins.

We use (3.3) to obtain τconv = 352 s. The TSP algorithm found an optimal measurement sequence
with τTSP = 206 s. The speedup factor is then s = 1.71. The TSP-optimized sequence of measurements
is shown in Table 3.3.
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3 Output state tomography

HH HA AH AD AV AA RR RL RD RH RA RV
AL AR HL HR DR DL VL VR LR LL LA LV
LD LH VV VD VH VA DD DV DA DH HV HD

Table 3.3: The TSP-optimized sequence of 36 measurements for two-qubit state tomography in our setup
with three slow rotation mounts and one fast mount. The sequence is to be read left-to-right,
top-to-bottom.

3.4 Maximum-likelihood quantum state estimation
Maximum-likelihood estimation (MaxLik) [57, 58] is a method of statistical inference that tries to
answer the following question: “What physical density matrix ρ is the most likely to have generated the
measured data?” This approach sets it apart from the direct inversion method. The word “physical”
refers to the fact that the obtained density matrix ρ should be Hermitian, positive semi-definite, and
have a trace equal to unity.
Let our measurement apparatus be described by a positive operator valued measure (POVM)

{Πi}Ni=1 ,

N∑
i=1

Πi = I, (3.4)

where Pii is the POVM operator corresponding to the ith outcome of the measurement, N is the
number of possible measurement outcomes, and I is the identity operator. Then, for a quantum state
described by a density matrix ρ, the outcome i of the measurement has the probability [57]

p
(ρ)
i = Tr (ρΠi) . (3.5)

If those probabilities were known, an inversion of the linear relation (3.5) would yield the density
matrix ρ [59] In reality, however, the probabilities are not known. Instead, we measure the relative
frequencies of outcomes {fi}Ni=1. These are not equivalent to the probabilities {pi}, and so the inversion
cannot guarantee a correct result.
Instead of the direct inversion of (3.5) we seek the density matrix ρ that maximizes the likelihood

functional [59]

L (ρ) =
N∏
i=1
〈yi|ρ|yi〉fi , (3.6)

where |yi〉 is the pure state corresponding to outcome i of the measurement apparatus. From here,
we can proceed formally and solve the corresponding Lagrange equation, or we can use the iterative
algorithm described below.
The estimation starts with an initial density matrix ρ0. We choose it to be a 4 × 4 unit matrix,

normalized such that Tr (ρ0) = 1. Next, Equation (3.5) is used to compute the probabilities of the 36
polarization projection measurements for the state described by ρ0. In our case, the POVM operators
Πi are the outer products |HH〉〈HH|, |HV 〉〈HV |, and so on. With the newly obtained probabilities
p

(ρ0)
i we can proceed to compute the following matrix:

R =
36∑
i=1

fiΠi

p
(ρ0)
i

. (3.7)
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Finally, we obtain a new density matrix ρ1:

ρ1 = Rρ0R. (3.8)

This procedure is repeated a numerous times: for ρn, new probabilities p(ρn)
i are obtained, the matrix

R is computed, finally resulting in a new matrix ρn+1. We chose to perform 1,000 iterations of the
MaxLik algorithm for each state we estimated. However, even fewer were needed, as the estimation
converges rather quickly.

3.5 Quantum state characterization
With the estimated density matrix ρ of the generated photon pair state, we can proceed to answer the
following questions: Does ρ belong to a pure state, or a mixed state? Is the quantum state entangled?
And if so, how well entangled is it? To answer the first question, we evaluate the purity of the density
matrix, the second question is answered by entanglement criteria, and entanglement measures answer
the last one.
The purity of a quantum state is defined as

γ (ρ) = Tr
(
ρ2) (3.9)

A perfectly pure state has a purity of one. On the other hand, a perfect mixture of states has a purity
equal to 1/d, where d is the dimension of the Hilbert space in question.
Density matrices of non-entangled quantum systems have one property that distinguishes them

from their entangled counterparts: separability. Suppose that the non-entangled system in question
consists of two particles with density matrices ρ′A and ρ′′A, respectively. Then the separability of the
density matrix ρ of the bipartite system means that ρ can be expressed as a sum of direct products:

ρ =
∑
A

wAρ
′
A ⊗ ρ′′A, (3.10)

or, with explicitly denoting the matrix elements:

ρmµ,nν =
∑
A

wA (ρ′A)mn , (ρ
′′
A)µν (3.11)

On the other hand, if ρ were not separable, it would mean that the quantum state in question is
entangled. However, a direct verification of separability by finding the sum (3.10) is tedious. Instead,
the positive partial transpose criterion is commonly used. First, a partial transpose of the density
matrix ρ is found by transposing the matrix indices of ρ that belong to one of the subsystems:

σmµ,nν ≡ ρnµ,mν . (3.12)

The positive partial transpose criterion states that if the partial transpose σ has negative eigenvalues,
then the density matrix ρ belongs to a non-separable state. In general, it is a necessary condition for
ρ. However, for density matrices of subsystems of dimension 2× 2 it is also a sufficient condition.

To quantify the quality of entanglement of the generated pairs, and also in order to evaluate the
effect of pre- and post-compensations, entanglement measures are needed. One of the many commonly
used measures is concurrence. For a quantum state described by the density matrix ρ, concurrence is
defined as

C (ρ) ≡ max {0, λ1 − λ2 − λ3 − λ4} , (3.13)
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3 Output state tomography

where λi are, in decreasing order, the eigenvalues of the matrix

R ≡
√√

ρρ̃
√
ρ. (3.14)

The matrix ρ̃ is obtained in the following fashion:

ρ̃ ≡ (σy ⊗ σy) ρ∗ (σy ⊗ σy) , (3.15)

where the star denotes complex conjugation and σy is the 2× 2 Pauli matrix

σy ≡
(

0 −i
i 0

)
. (3.16)

The value of concurrence ranges from 0 to 1, reaching 1 for the maximally entangled states, and 0 for
completely non-entangled states.
From concurrence other entanglement measures can be readily computed. Firstly, the multipar-

tite entanglement measure tangle is in the case of a bipartite state simply reduced to the square of
concurrence:

T (ρ) ≡ [C (ρ)]2 . (3.17)

Another commonly used entanglement measure is entanglement of formation. It is a convex function
of concurrence, and is defined as

E (ρ) = E [C (ρ)] (3.18)

with
E (C) ≡ −1 +

√
1− C2

2 log2
1 +
√

1− C2

2 − 1−
√

1− C2

2 log2
1−
√

1− C2

2 . (3.19)

The entanglement measures mentioned above share one common trait: invariance under unitary
transformations. More specifically, a density matrix ρ̃, obtained from ρ by a unitary transformation
U

ρ̃ = U†ρ U, (3.20)

has the same concurrence, tangle, and entanglement of formation as the unmodified density matrix ρ.
This invariance is not the case for another quantifier of entanglement: Bell state fidelity. If we take
it as our goal to generate one of the maximally entangled Bell states |ψB〉, it is reasonable to seek to
maximize the overlap between the density matrix ρ of our generated bipartite state, and |ψB〉. This
is the Bell state fidelity

F (ψB) ≡ Tr〈ψB|ρ|ψB〉. (3.21)

If the density matrix ρ has been modified by an unwanted unitary transformation U , however, the
fidelity will change its value. To mitigate this, we can try to compensate U by physically introducing
another transformation Ũ , which we have some control over, and try to achieve Ũ = U†. Unfortunately,
this might not be always possible. If we still wish to evaluate the Bell state fidelity, we could introduce
Ũ numerically, on the density matrix obtained via the MaxLik algorithm. When we use this approach
in the Thesis, we will always explicitly state so.

3.6 Error propagation
During each polarization projection measurement, we count the number of coincidences registered
during a certain time interval. If we were to perform this measurement repeatedly, we would observe
some fluctuations of the coincidence counts. This is due to the fact that we are merely sampling the
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Figure 3.6: A description of the Monte Carlo technique. The coincidence counts for the 36 projections are
sampled N times from Poissonian distributions with means equal to the respective measured
coincidence counts. These distributions are shown schematically for the HH and LL projections.
Each set of the N sets of 36 coincidence count samples is fed to the MaxLik algorithm, resulting
in N density matrix estimates, from which the purity, concurrence, tangle, entanglement of
formation, and possibly Bell state fidelity are computed. We then have an insight into the
statistical distributions of the entanglement measure values for the measured state.

true value of the projection. What follows immediately from this is the notion that upon repeating
the tomographical procedure, we would also observe fluctuations in the density matrix estimates, and
the resulting entanglement measures. The task that lies in front of us then is to assess the statistical
distribution of the density matrix and entanglement measure estimates, and to obtain confidence
intervals, especially for the values of entanglement measures.
One method of achieving this is repeated measurement. This approach is obviously very time-

consuming, and applying it to all the presented data sets is not feasible. This can be circumvented,
however, by a Monte Carlo simulation. If we consider the coincidence counts {ni}36

i=1 for the 36
projection measurements to be random variables with Poissonian distributions

{Pi (n)}36
i=1 , Pi (n) = e−λiλni

n! , (3.22)

where we identify the means λi of the distributions with the measured coincidence counts, we can
programatically sample the coincidence count values according to these distributions, perform the
MaxLik density matrix estimation algorithm, and evaluate the entanglement measures, as shown in
Figure 3.6. Finally, we can study the statistical distribution of the resulting data, which will lead us
to the confidence intervals.
When we present the results of the Monte Carlo sampling of entanglement measures, we will limit

ourselves to the mean value and the standard deviation only. This is common for many estimates.
It should be noted, however, that the results will most likely not obey the Gaussian distribution,
and might in fact have more complicated statistics. Then the mean and the standard deviation do
not give us all the information about the statistical distribution of the entanglement measure value
estimates. In principle, this might be a cause for concern to a skeptic, as any outlying values would
go unnoticed. The presence of outliers very far below the mean would imply that while taking into
account the Poissonian statistics of the coincidence counts collected during a measurement, there
might be a chance that the measured state might not be as well entangled as the mean value of the
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Figure 3.7: Test of the quantum state estimation procedure. The real (a) and imaginary (b) parts of the
density matrix of the |HH〉 state generated by the SPDC source are shown. The purity of the
state is γ = 0.969(2).

entanglement measure estimates would suggest. In an attempt to counter this argument, we will later
present the shape of the distributions of the entanglement measures for one case of Monte Carlo error
propagation. We will see that, albeit not Gaussian, the distributions contain no outlying values. We
will then make the assumption that the statistics of all other Monte Carlo samplings are similar to
the one presented, and carry on using the mean and standard deviation for the characterization of
the results.

3.7 Tomography of the pairs generated without compensations
To demonstrate proper functionality of the tomography scheme and the quantum state estimation, we
perform the tomographical procedure on an example state |HH〉. To generate such a state using the
SPDC source, a HWP placed before the crystal is adjusted so that the pump beam is vertically polar-
ized when incident on the BiBO crystals. One of the two crystals then generates pairs of horizontally
polarized photons, as dictated by the Type-I phase matching.
The mechanical stresses inside the optical fibers causes the polarizations of the signal and idler

photons to undergo unknown unitary transformations Us, Ui. To mitigate this, the HWPs and QWPs
used in the tomography scheme are set to angles corresponding to the |HH〉 projection, and fiber
polarization controllers (PCs) are adjusted until the coincidence rate is maximized for both signal
and idler. When this is accomplished, the PCs introduce additional mechanical stress into the fibers,
which further transforms the state of signal and idler by U†s and U†i , respectively. Combined with the
previous unitary transforms, the polarization states of signal and idler after the fibers are identical as
before the fibers, except for a global phase factor.
With correctly compensated fiber unitary transforms, the tomographical routine can proceed. We

use a coincidence window of approximately 7 ns, and count coincidences for one second per projection.
Polarization projections are measured in the TSP-optimized order, and the resulting coincidence
counts are fed into the MaxLik algorithm. The estimated density matrix is shown in Figure 3.7. The
values of the entanglement measures are of no interest to us at this point, hence we only evaluate the
purity of the state, which is estimated using the Monte Carlo sampling to be γ = 0.969(2).

Finally, we proceed to estimate and characterize the output state of the SPDC entanglement source,
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Figure 3.8: The real (a) and imaginary (b) parts of the density matrix of the photon pair state generated
by the SPDC source with diagonally polarized input beam. No compensating elements were
present at this stage. Purity: γ = 0.573(3), concurrence: C = 0.347(6), tangle: T = 0.120(4),
entanglement of formation: E = 0.200(5).

without any compensating elements present. Before this and every measurement that will follow,
proper cancellation of the fiber-induced unitary transforms Us, Ui must be ensured. This means
pumping the SPDC crystals vertically, generating the HH state, and adjusting the PCs to maximize
the coincidence rate for the HH state projection. We arrive at a coincidence rate of approximately
16,000 per second. With roughly 90,000 detector clicks per second for both signal and idler, our
two-photon coupling efficiency is then

η ≈ 16000√
90000× 90000

≈ 17.8 %. (3.23)

When successful elimination of the fiber-induced unitary transformation is accomplished, the HWP
before the crystals is rotated so that the pump beam is polarized diagonally. The tomographical
procedure can then start. The resulting density matrix estimate is shown in Figure 3.8. We can see that
the desired off-diagonal elements |HH〉〈V V | and |V V 〉〈HH| are present but rather small. The values
of the entanglement measures, summarized in the caption of Figure 3.8 show that some entanglement
is present. The evaluation of the PPT criterion supports this. With concurrence C = 0.347(6),
however, we are far from the highly entangled state we ultimately seek.
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4.1 The reason behind entanglement degradation
The bipartite state generated by the SPDC photon pair source so far is not perfectly entangled. To
explain this, imagine that the source is set up to generate—in the ideal scenario—the following Bell
state:

|Ψideal〉 = |HH〉+ |V V 〉 (4.1)

What happens in the real case is that Bell states with various phases δ

|Ψ (δ)〉 = |HH〉+ eiδ|V V 〉 (4.2)

are generated, and the state that we measure is in fact a mixture of these states |Ψ (δ)〉:

ρreal =
∫ 2π

0
C (δ) |Ψ (δ)〉〈Ψ (δ) | dδ (4.3)

where C (δ) is a weight function normalized to unity. Depending on the shape of C (δ), the entangle-
ment of the real state ρreal can be more or less deteriorated. To eliminate this undesirable outcome,
compensating techniques are required in order to flatten the profile of the phase δ across the regions
in space and time where we collect the signal and idler photons.
An alternative explanation for entanglement degradation in the measured state is the presence of

which-crystal information. In the same scenario as above, we would ideally be generating the Bell
state from Equation (4.1). Therefore, in both the signal and the idler arms of the setup, we would
encounter photons from both of the two SPDC crystals. If we were, even in principle only, able to tell
which one of the two crystals had a given photon been generated in, we would reduce the quality of
entanglement in the generated photon pair. While adopting this point of view, we can identify two
major causes of entanglement deterioration, caused by the birefringence of the SPDC crystals. They
are called the spatial and temporal walk-off.
Spatial walk-off occurs in birefringent media and is caused by the fact that the Poynting vector,

which signifies the direction of energy flow, is not in general collinear with the direction of propagation
in the media. In practice, this means that the signal and idler beams generated in the two SPDC
crystals are each differently distorted and that C (δ) has a non-trivial spatial profile. In our case of
Type-I phase matched SPDC entanglement source, compensating walk-off means making sure that it
is, not even in principle, possible to tell from the spatial profile of the outcoming beams the photons
generated in one crystal from the photons generated in the other one. This is done using post-
compensators—birefringent crystals placed in the signal and idler arms of the entanglement source
geometry [35, 60]. If oriented correctly, these crystals effectively make sure that the spatial profiles of
the photons from both crystals match as closely as possible.
We make use of a two-crystal scheme for entanglement generation. As the pump reaches one of the

crystals sooner than the other, the generated photons are slightly displaced in time. This temporal
displacement, or temporal walk-off is a source of which-crystal information, and ultimately leads to
entanglement degradation. Compensation of temporal walk-off is achieved by placing a birefringent
pre-compensator before the two SPDC crystals [35, 60]. If the pre-compensator is oriented so that
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the polarization component of the pump that reaches the first SPDC crystal is delayed by the right
amount of time, the temporal walk-off is successfully eliminated. This technique can be used even if
the pump is very broad-band, as is the case for pulse lasers [34, 35].

4.2 The effect of compensations
After a discussion of walk-off of both kinds, and the respective compensation techniques, we proceed
to study their effect on the quality of entanglement in the photon pairs generated by our entanglement
source. First, we insert a post-compensator in the signal arm of the setup. We change the angle ϕs
of the optical axis of the post-compensator from 0 ◦ to 180 ◦, with 22.5 ◦ steps, and perform a full
quantum state tomography and Monte Carlo estimation of the entanglement measures every time. In
Figure 4.1 we present the observed dependence of the quantum state concurrence on the orientation
of the pre-compensator. We find a maximum concurrence of C = 0.362(9) for ϕs = 180 ◦.

22.5 45.0 67.5 90.0 112.5 135.0 157.5 180.0
ϕs[
◦]

0.28

0.30

0.32

0.34
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C

Figure 4.1: The dependence of concurrence on the orientation of the post-compensating crystal in the signal
arm of the entanglement source geometry. No other compensating elements were present. The
angle ϕs is taken with respect to the optical axis of the crystal. The highest observed concurrence
C = 0.362(9) was achieved for ϕs = 180 ◦. The error bars correspond to the standard deviation
of the Monte-Carlo-sampled concurrence.

This concurrence-maximizing procedure has been repeated as the other compensating elements
were added to the setup. The orientation of the signal post-compensator was fixed at ϕs and a post-
compensator for idler was placed, and concurrence maximized again. The effect on the concurrence of
the produced quantum state was not great, and the maximal concurrence ever observed with only the
post-compensators in place was C ≈ 0.41. We believe that the reason for the low gain in concurrence
lies in the fact that our entanglement source is fiber-coupled, and that the spatial filtering performed
inherently by the process of coupling into fiber did good enough job to mitigate spatial walk-off,
allowing us to observe some, albeit low-quality, entanglement event without the post-compensators.
Finally, the pre-compensator was placed and the maximization was performed once over. We

observed a significant increase in the concurrence of the produced quantum state. What followed was
another round of concurrence maximization. This time, however, the angular orientations of all the
compensating elements were kept fixed, and the only two degrees of freedom were the horizontal and
vertical tilt of the pre-compensator. Using this method, we were able to generate the quantum state
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4.2 The effect of compensations
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Figure 4.2: Real (a) and imaginary (b) parts of the density matrix of the SPDC entanglement source output
with all compensating elements present. Purity: γ = 0.988(4), concurrence: C = 0.988(4),
tangle: T = 0.976(8), entanglement of formation: E = 0.982(6), Bell state fidelity: F (ψB) =
0.984(2).

represented by the density matrix shown in Figure 4.2. We arrived at C = 0.988(4), which has so far
been our best result. The Bell state fidelity (3.21) has also been evaluated for this quantum state, the
target Bell state being |ψB〉 = 1√

2 (|HH〉+ |V V 〉). The off-diagonal elements of the estimated density
matrix are not purely real. We hypothesize that this is due to the presence of mirror Mp after the
half-wave plate HWPp that controls the polarization of the pump beam. We attribute the undesired
transformation of our density matrices to the fact that the diagonal polarization of light incident on
the mirror is distorted as it is reflected. We plan to test this hypothesis, and to eliminate the unwanted
transformation, by swapping the order of Mp and HWPp. For now, however, the density matrix has been
transformed by a unitary transformation

ρ̃ ≡ Ũρ Ũ†, Ũ =
(

1 0
0 1

)
⊗
(

1 0
0 eiδ

)
(4.4)

with δ chosen to maximize F (ρB). The resulting fidelity is F (ρB) = 0.984(2). The values of the other
entanglement measures are stated in the caption of Figure 4.2.
Furthermore, at this point we fulfill the promise given in Chapter 3, and present more details of

the statistical distributions of the Monte-Carlo-sampled values of the entanglement measures. The
violin plots in Figure 4.3 show the probability distributions of each of the five quantifiers we use to
characterize our photon pair states. It can be seen that there are no outliers. This means that there
is no room for doubts about the high quality of entanglement in the state we produced.
In the regime presented above, with narrow-band interference filters in the signal and idler arms

of the experiment, we observe roughly 16,000 coincidences per second. This value was obtained by
pumping the BiBO crystals vertically, and measuring the HH state projection. With the goal of
achieving even greater pair generation rate, we temporarily replaced the interference filters with a
broader-band (10 nm) filters. The coincidence rate then climbed to almost 100,000/s. In this regime,
we performed again the full quantum state tomography and estimation of the entanglement measures.
We arrived at γ = 0.962(2), C = 0.962(2), T = 0.926(3), E = 0.946(2), and, with the help of a unitary
transform, F (ρB) = 0.9676(8). We are certain that with some adjustments to the rotation and tilt of
the compensating elements, even better values could be obtained. These results give our entanglement
source the possibility of operation in two regimes. If extremely high quality of entanglement is desired,
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4 Compensations

Figure 4.3: The statistical distributions of the values of entanglement measures obtained using the Monte
Carlo sampling method. γ: purity, C: concurrence, T : tangle, E: entanglement of formation,
F : Bell state fidelity.

the narrow-band filters can be used. If, on the other hand, we seek higher pair generation rate, and
are willing to make a little sacrifice in terms of entanglement quality, the 10 nm filters can be used
instead.
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5 Conclusions and outlook
The presented experimental realization of an SPDC-based source of entangled photon pairs is on
par with similar setups [34, 35]. By employing compensating elements, we were able to produce
bipartite quantum states with a high concurrence C ≈ 0.99. This was achieved using narrow-band
interference filters in the signal and idler arms of the experiment, limiting the coincidence count rate
to approximately 16 000 s−1. By replacing these filters with wider, 10 nm filters, the coincidence count
climbed to almost 100 000 s−1, while the concurrence was still high, with a value of C ≈ 0.96. This
makes the setup ready for use in further experimental applications.
We studied in detail the tomographical procedure, and found that it can be considerably sped up if

an optimal order of polarization projection measurements is chosen. Apart from optimizing our quite
specific scenario, with one faster and three slower rotation mounts, and reaching a speedup factor of
1.71, we solved the tomographical TSPs for systems of increasing complexity, stopping at a five-qubit
system. Relying on angular specification required only the easily satisfied condition that all mounts
used rotate equally fast, and made the results hardware-independent. The speedup factor we found
increases with the size of the system, and is available to all of the many experiments that rely on
characterization of quantum states or processes. A nice feature of the speedup achieved using TSP
optimization is that no changes need to be made to existing experimental setups hardware-wise. It is
only the order of polarization projection measurements that is shuffled.
One of the changes the experimental setup might undergo in the future is switching from a continual

pump to a pulsed one. The source has been designed with this in mind, and the angularly-tuned scheme
should allow an easy transition. Furthermore, the position of the half-wave plate HWPp (see Figure
2.3) that controls the polarization of the pump might be changed, so that the diagonal polarization of
the pump is not distorted by the mirror Mp. We believe that this will enable our source to generate
Bell states unburdened by an undesired unitary transformation unlike the state in Figure 4.2.
Being able to generate any of the four Bell states on demand would be a welcome additional feature

of the entanglement source. In the original Type-I phase matched source [28], this was achieved using
a QWP in front of the pair of SPDC crystals. Tilting the QWP changed the phase of the superposition
state. Additionally, by introducing a single HWP in either the signal or idler arms of the geometry,
we would be readily able to swap horizontal and vertical polarization in the said arm, allowing the
transition between the states 1√

2

(
|HH〉+ eiδ|V V 〉

)
and 1√

2

(
|HV 〉+ eiδ|V H〉

)
.

If it was necessary to reduce the duration of the quantum state tomography even further, it would
be possible to use a minimal set of projections. This would lead to 14 measurements instead of 36.
We expect that the total duration of the procedure would by reduced by nearly 50%. Lastly, we could
replace the waveplate-based tomography scheme and use liquid crystal (LC) modules, instead [61].
The switching between various configurations of the LCs is very fast compared to the rotating mounts,
and a great reduction in total tomography time would follow. The real bottleneck would then be the
counting time required for each projection measurement.
Finally, it might be desirable in the future to measure additional characteristics of the generated

quantum state. To benchmark the indistinguishability of the two photons generated in each pair,
the visibility of the Hong-Ou-Mandel interference [62] might be measured. To further characterize
entanglement, a measurement of the Bell inequalities [2, 3] might be performed.
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