
TECHNICKÁ UNIVERZITAV LIBERCI

Fakulta mechatroniky, informatiky

a mezioborovýchstudií ^

Human Hand-Gesture Controlled Robotic
Arm by Image Processing

Semester Thesis by
Anoop Rode

Under the guidance of

Ing. Miroslav Holada Ph.D.

Liberec 2023

EVROPSKÁ UNIE

INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ

1

FACULTY OF MECHATRONICS,
INFORMATICS AND INTERDISCIPLINARY
STUDIES TUL

///' |\\\

Master Thesis

Human Hand-Gesture Controlled Robotic A r m by Image
Processing

Study programme:
Study branch:
Author:
Supervisor:

Masters
M.Sc. Mechatronics
ANOOP RODE
Mr. Miroslav Holada
{Department}

Liberec { October 20, 2023 }

2

FACULTY OF MECHATRONICS,
INFORMATICS AND INTERDISCIPLINARY
STUDIES TUL

Master Thesis Assignment Form

Human Hand-Gesture Controlled Robotic A r m by Image
Processing

Rules of Elaboration:

1. Find out the current state of development of gesture-assisted robotic arms. Learn about the 3D printing
capabilities of robotic arm parts. Map the current state of the art in computer image processing, especially
the real-time gesture recognition capabilities.

2. Design and 3D print robotic arm components. Install appropriate actuators in the printed robotic arm to
enable precise and dexterous movements. Connect the servo motors to a suitable control unit. Create an
interface between the image recognition program (hand gesture recognition) running on the desktop

3. Implement an algorithm for hand gesture recognition, which then sets the recognized gesture on the
robotic arm.

4.. Demonstrate the feasibility and functionality of a robotic arm controlled by a human hand. Design and
execute a series of repeatable tests to document the functionality achieved.

5. Consider possible improvements and limitations of a given implementation. Suggest possible applications.

[1] SZELISKI, Richard. Computer Vision. Online. Texts in Computer Science. Cham: Springer International
Publishing, 2022. ISBN 978-3-030-34371-2. Available from: https://doi.org/10.1007/978-3-030-34372-9.
[Feeling. 2023-10-30].

[2] ŠONKA, Milan; HLAVÁČ, Václav and BOYLE, Roger. Image Processing, analysis, and machine vision. 4th ed.
Stamford: Cengage Learning, 2015. ISBN 978-1133593607

[3] KOS, Anton and Anton UMEK. Biomechanical biofeedback systems and applications. New York, NY: Springer
Berlin Heidelberg, 2018. ISBN 978-331-9913-483.

Name and surname:
Identification number:
Study programme:
Study branch (specialization):
Assigning department:
A cademicyear:

ANOOP RODE
98012924AR
Masters
Mechatronics
{MTI}
2023-24/2024

List of professional literature:

In Liberec on
Ing. Miroslav Holada Ph.D.

Scope of Graphic Work:
Scope of Report-
Thesis Form:
Thesis Language:

by appropriate documentation
40-50 pages
printed/electronic
English

3

https://doi.org/10.1007/978-3-030-34372-9

List of Specialized Literature:

Thesis Supervisor: Mr. Miroslav Holada
{Institute of Information Technology and
Electronics}

Date of Thesis Assignment: October 20, 2023
Date of Thesis Submission: May 14, 2024

S.S.
{Dean of faculty} {Head of institute}

Dean Head of the institute

Liberec October 20, 2023

4

Declaration

I hereby certify, I, myself, have written my master's thesis as an original and primary work using
the literature listed below and consulting it with my thesis supervisor and my thesis counselor.

I acknowledge that my master thesis is fully governed by Act No. 121/2000 Coll., the Copyright
Act, in particular Article 60 - School Work.

I acknowledge that the Technical University of Liberec does not infringe on my copyrights by
using my master thesis for internal purposes of the Technical University of Liberec.

I am aware of my obligation to inform the Technical University of Liberec of having used or
granted a license to use the results of my master thesis; in such a case the Technical University of
Liberec may require reimbursement of the costs incurred for creating the result up to their actual
amount

At the same time, I honestly declare that the text of the printed version of my master thesis is
identical to the text of the electronic version uploaded into the IS STAG.

I acknowledge that the Technical University of Liberec will make my master thesis public in
accordance with paragraph 47b of Act No. 111/1998 Coll., on Higher Education Institutions and
on Amendment to Other Acts (the Higher Education Act), as amended.

I am aware of the consequences which may under the Higher Education Act result from a breach
of this declaration.

May 14, 2024 ANOOP RODE

5

Human Hand-Gesture Controlled Robotic A r m by Image

Processing

Abstract

This research presents an interdisciplinary methodology for the design, implementation and

development of the robotic gesture control system integrating with computer vision,

mechanical principles, and electronics circuitry. The interdisciplinary approach of the project

involves the collaboration of mechanical, computer and electrical electronics domains.

The circuit design architecture has generic components such as ESP32 WROOM32 Module

and MG996R Servo Motor. This system architecture has been developed to obtain the precise

angular control of servo motors with the help of P W M signals generated by the ESP32 module.

The interfacing and configuration step of the ESP32 W R O O M Module involves firmware

development using Arduino IDE and leading communication with peripheral devices via

U A R T protocol. Serial communication has been established between C++ running on ESP32

and Python script on Laptop.

Computer Vision Algorithm allows us to detect and track the objects desired objects in footage.

The Libraries used for gesture recognition by using MediaPipe & OpenCV Libraries. Over the

pre-processed footage with the help of libraries, I have implemented a custom post-processing

landmark detection technique for angular calculation via vector approach.

The mechanical structure design and fabrication involves Modelling and 3D printing of the

parts. After 3D printing involves the assembly of parts and calibrating with servo angular

motion for operating precisely.

The demonstrated methodology connects engineering principles with robotic control strategy

to obtain a robust control algorithm using computer vision to operate finger movement

precisely.

This project can be the promising for the applications such as prostherics Hands and HMI

applications on unmanned fields.

Keywords
Computer Vision, ESP32 Wroom, 3D Printing, Hand Gesture Recognition, Bionic Hand
Motion and Motion Control, HMI

6

Acknowledgments

I extend my deepest gratitude to Ing. Miroslav Holada, Ph.D., for his invaluable guidance,
unwavering support, and profound expertise throughout the duration of this research project.
His insightful supervision, encouragement, and constructive feedback have been instrumental
in shaping this thesis and enhancing its quality.

I am immensely thankful to him for providing me with the opportunity to explore the
fascinating realm of human hand-gesture-controlled robotic arms by image processing. His
passion for research and dedication to fostering academic excellence have been truly inspiring.

I am also grateful to the faculty members of the Technical University of Liberec (TUL) for
their encouragement and assistance during the course of my study. Their expertise and
scholarly insights have enriched my learning experience and contributed significantly to the
development of this thesis.

Furthermore, I extend my heartfelt appreciation to my family and friends for their unwavering
support, understanding, and encouragement throughout this academic journey. In particular, I
would like to thank my parents, Mr. Mohan Sudhakar Rode and Mrs. Neeta Mohan Rode,
for their unconditional love, sacrifices, and belief in my abilities. Their guidance and
encouragement have been the driving force behind my accomplishments.

Lastly, I would like to express my gratitude to all those who have directly or indirectly
contributed to the completion of this thesis. Your support and assistance are deeply appreciated.

7

Table of Contents
1. Introduction 12

1.1 Objectives of the Project 12

1.2 Significance of the Research 13

2. Literature Review 14

3. Methodology 16

3.1 Electronic Circuit Designing and Component Selection 16

3.1.1. List of Components Electronic Components 16

3.1.2. Design and interfacing of system architecture 16

3.1.3. Installation & Pin Configuration of Servo Motors 17

3.1.4. Interfacing & Configuring ESP32 W R O O M Module 18

3.1.5. Interfacing & Configuring Servo Driver 20

3.1.6. Power Source configuration and specification 21

3.1.7. System architecture and component interfacing 21

3.2 Designing and building strategic approach for C V in Python Programming 22

3.2.1. Evolution & Implementation of a computer program 22

3.2.2. Design and Development of Computer Vision Algorithm 22

3.2.3. Strategic planning for implementing Computer Vision 23

3.2.4. Fundamental Skeleton of Python Program 24

3.2.5. Libraries and Functions 25

3.2.6. Architecture for Image Detection & Tracking 25

3.2.7. Superimposition of landmarks on detected hand 26

3.2.8. Implementation of Hand Gesture Recognition 27

3.2.9. Implementation of fetching hand attributes 28

3.2.10. Processing and calculating desired angles 28

3.2.11. Formation of arrays with desired angles 30

3.2.12. Establishing Serial Communication with ESP32 31

3.2.13. Data Encryption & Transmission Strategy 31

8

3.2.14. Development of a C++ code for the ESP32 Module 32

3.2.15. Establishing C++ Serial Data Communication 32

3.2.16. Data Decryption Strategy after receiving the data 32

3.3. Mechanical Design and Fabrication 34

3.3.1. Modelling and Designing of Mechanical Structure of Hand 34

3.3.2. 3D Printing of Robotic Hand Parts 37

3.3.3. Assembly and fabrication of parts 40

3.3.4. Mechanical joint connections & tuning of Servo Drive 41

4. Results 42

4.1 Detection Accuracy and Tracking Confidence 42

4.2 Angle - Frequency chart to demonstrate finger movement 45

5. Discussion 47

5.1 Interpretation of Results and Implications 47

5.2 Analysis of Challenges and Proposed Solutions 47

6. Conclusion 50

6.1 Key Findings 50

6.2 Reiteration of Objectives and Significance 50

7. Recommendations for Future Work 52

8. References 53

9. Annexure 57

9

List of images

Image 1. System Architecture and Interfacing 16

Image 2. Servo Motor Pin Configuration 17

Image 3. Servo Motor Specification Sheet 17

Image 4 ESP32 Pin Configuration 18

Image 5. ESP32 Servo Motor Interface 18

Image 6. Servo Driver Motor Interface 19

Image 7. System architecture 20

Image 8. Hand Detected by Computer Vision 22

Image 9. Hand Detected by Computer Vision 23

Image 10. OpenCV & MediaPipe Architecture for Video Rendering 24

Image 11. Skeleton Landmark plot rendered real-time footage 25

Image 12. Communication Array with State & Servo Number 26

Image 13. Plotted Landmarks on Hand Skeleton on Human Hand 27

Image 14. Plotted Landmarks on Hand Skeleton on Human Hand 27

Image 15. Vector Calculation from the detected gesture of bionic skeleton 28

Image 16. Arrays data Packet formation from detected gesture of bionic skeleton 28

Image 17. Communication Strategy between Python and C++ 31

Image 18. Servo Motor Mount 32

Image 19. Supporting Stand for Robo Hand 32

Image 20. Robotic Palm Support 33

Image 21. Robotic Hand Palm and Finger Mount 34

Image 22. Index Finger 34

Image 23. Little Finger 34

Image 24. Middle Finger 34

Image 25. R n g Finger 35

Image 26 Thumb Finger 35

Image 27. Actual 3D printed Palm 36

Image 28. Palm Connector 36

10

Image 29. Hand Stand 37

Image 30. Servo Mount 37

Image 31. Final Assembly of Robotic Hand 38

Image 32. Finger Folding Mechanism Tested on Wooden Prototype 39

Image 33. Angle Representation of fingers 40

Image 34. Angle Representation of Thumb Finger 41

Image 35. Angle Representation of Index fingers 41

Image 36. Angle Representation of Middle Fingers 41

Image 37. Angle Representation of Ring fingers 42

Image 38. Angle Representation of Pinky Fingers 42

Image 39. Angle Representation of fingers 42

Image 40 Frequency angle Chart 43

Image 41. ESP-WROOM-32 Module 14

Image 42. Servo Drive (MG996R) 14

Image 43. Connecting Wires 15

Image I Breadboard 15

Image 45. Soldering Machine & Soldering Flux 15

11

1. Introduction

In today's world robotic industry is a boom for our lives to excel in every field. Robotics is a

technology that we can use to reduce human efforts and perform the work with accuracy.

To execute the tasks with robotics we have to program the robot for the desired task with the

help of various input devices such as joystick, buttons, sensors, etc. But nowadays as the

computer industry is excelling from the technological point of view computer vision is a robust

algorithm for object detection and tracking.

This Project is an extension of the customized computer vision technique for autonomous

fetching of desired parameters from the object while tracking its trajectory. Human-computer

interaction is an emerging field that allows us to communicate with machines to give input for

executing the desired task with the help of machines.

This Project emphasizes gesture control robotic hands which unlock the feature to fetch the

required parameters from objects detected in the camera frame and use those parameters in

work execution by a mathematical approach to execute in perfection. So robotic movement

would be fluid and full of dexterity like human anatomy.

1.1 Objectives of the Project

1. The main objective of this project is to design and fabricate a robotic bionic hand similar to

human anatomy to execute the same gestures in real time by mimicking a human hand with

good fluidity and dexterity.

2. Design and building of the robot hand will include C A D for modeling and fabrication of the

robotic hand for a precise DOF and task operation.

3. Installation of servo motors MG996R-0-180 for controlling each finger with precise

continuous motion from 0 to 180 as per the real-time finger movement with good dexterity and

fluidity like human hands.

4. For interaction with ESP32 W R O O M Module we used serial communication protocol to run

and compile C++ program to receive commands from python code to run respective servos to

specific angle.

12

5. Implementation of image processing algorithm. I developed computer vision code by using

OpenCV and MediaPipe libraries to execute detection and tracking algorithms for basic vision

algorithms for implementing angle detection calculation with vector calculation and speed of

finger movement.

6. Gesture recognition focuses on finger movements to detect the gestures of the human finger

to extract meaningful data with desired parameters such as the angle of the finger.

1.2 Significance of the Research

The significance of the research is the Human-Computer Interaction of this project's computer

vision algorithm to implement a communication channel between robots and humans to

execute a particular task through a computer vision algorithm[7].

This system would enable users to control robots by giving natural gestures and movements.

These advancements give a boom solution for the fields, including manufacturing, healthcare,

rehabilitation, and assistive technology[9]. Where exactly no human can enter the field but

human-controlled robots will perform the task with good dexterity and fluidity in the

movements of robotic hands.

13

2. Literature Review

1. Human-mobile robot interaction using hand gesture-based leap:
This article describes the integration of Leap Motion sensors for intuitive gesture control

of mobile robots [3]. This highlights the potential of cyber-physical systems to enhance

human-robot interaction by providing a more natural and efficient means of communication

between humans and robots [3]. This research demonstrates how accurate motion

recognition can be achieved using Leap Motion sensors and advances the development of

control interfaces that could revolutionize interaction with robotic systems in a variety of

applications [3],

2. Human-robot interaction based on gesture and motion

recognition:

In this study, present a sophisticated gesture and action recognition model using a 3D Single

Shot MultiBox Detector (SSD) combined with Dynamic Time Warping (DTW). This

method aims to provide a more flexible and intuitive way to control robotic arms by

reducing the barrier between human commands and robot actions[3]. Using 3D SSD for

spatial perception and DTW for temporal analysis, this paper provides a powerful

framework for improving the ability of robots to understand and perform complex human

gestures [2].

3. Robotic hand controlled by gestures using OpenCV:
To create a cost-effective and accessible solution, this paper details the development of a

3D-printed robotic arm controlled by real-time gesture recognition[7]. Using the open-

source computer vision library (OpenCV) and a standard USB camera, this study

demonstrates how gestures can be accurately translated into robot movements without the

need for expensive hardware[7]. This methodology includes comprehensive steps of

gesture detection, feature extraction, and command translation, highlighting the practicality

of OpenCV in bridging the gap between human gestures and robot execution [7],

14

4. Real-time control of a robotic arm using hand gestures with

multiple end-effectors.
By studying the control of a robotic arm with increased flexibility, this paper evaluates

the effectiveness of the Leap Motion controller in controlling a robot equipped with

various end effectors[4]. Specifically, we compare the capabilities of a standard electric

gripper with an AR10 robotic arm to analyze its performance in a real-time control

scenario [4],

5. A Robotic Hand: Controlled With a Vision-Based Hand

Gesture Recognition System.
A workaround is to use cameras to identify hand movements. This method eliminates the

need for any other gadgets. Rather, your hand movements are captured by a camera, which

the robot interprets as commands[5]. This type of technology makes engaging with robots

easier, which is helpful for patients, the elderly, and those with impairments. It is also

advantageous in areas where human travel is hazardous or unfeasible [5],

In this regard, a system that recognizes hand motions and controls a robotic hand using a

camera was developed. The idea is to make it easier for everyone to engage with robots by

developing a straightforward and efficient method that only requires your hands[5],

6. Efficient and Feasible Gesture Controlled Robotic Arm
Remote controllers became immensely popular in the 1990s because they simplified user

experience. Everywhere you looked, people were using remote controllers for everything

from TVs to toy cars[12]. However as technology developed, people's needs for

convenience and flexibility increased. This resulted in the creation of robotic arms, which

are currently employed in numerous industries. Robotic arms have a lot of advantages over

remote controls. Applications in aviation, medical technology, and even the military have

adopted them[12]. When it comes to efficiency and functionality, they constitute a

significant improvement. We can now improve upon the current state of robotic arms[12].

The most recent technology enables us to operate robotic arms with gestures rather than

remote controls by utilizing computer vision and different hardware components including

sensors and controllers. This paper discusses how this approach can significantly expand

the use of robotic arms and increase their efficiency in many applications [6],

15

3. Methodology

3.1 Electronic Circuit Designing and Component Selection

This project includes interdisciplinary work from Mechanical Engineering, Computer

Engineering, and Electrical & Electronics Engineering. Which includes interdisciplinary skills

such as Modelling, Fabrication, Programming, and interfacing of actuators and sensors.

3.1.1. List of Components Electronic Components:

1. ESP32 W R O O M Module

2. MG996R Servo Motor

3. Servo Power Distribution Board

4. Bread Board

5. Soldering Machine

6. Jumper Wires/Soldering Cables

7. Adhesive Agents

8. Laptop (Python Program Execution via Webcam)

3.1.2. Design and interfacing of system architecture:

Development of the system architecture to drive the servo motors MG996r which are capable

of rotating from 0-180 and 180-0 as perthe command received from ESP32 W R O O M Module.

The interfacing of the controller and other peripheral devices are driven with an active power

DC source along with a servo driver to drive the servo motor with stable P W M (50Hz) input

under the controlled signal to control the servo within its operating voltage & ampere rating

between 4.2v-6v at 500mV.

The Main control strategy for controlling servo movement by generating compatible P W M out

put via ESP32 W R O O M module to rotate a specific angle received from python script running

parallelly on the laptop and detecting realtime angles of the finger. The precised angular data

ranging from 0-180 is being transferring from python to C++ via serial communication U A R T

Protocol running at 9600 boud rate.

16

Interfacing pins from
ESP32to Driver

Servo Motor
Output Pins

Input Power Supply
for Servo Driver

ESP32 WROOM Module

UART-USB Communication

Image 1: System Architecture and Interfacing [source: own]

3.1.3. Installation & Pin Configuration of Servo Motors:

Mechanical integration: This project has used MG996r servo motor with 0-180 rotation. Which

has feedback loop enabled architecture to measure the precise agnle shaft rotation. Need to

make sure that motor has been perfectly aligned in to the servo brackets in robotic hand stand.

Electrical connection: Servo motor model MG996r has pin configuration as Vcc, GND &

Signal Pin. Which has to be connected to the dedicated Port number on ESP32 W R O O M to

control the movement of servo motor as per the signals sent from ESP32 W R O O M to

respective servo Motor.

Calibration Process: Calibration of the servo is essential step for ensuring that Servo motor will

rotate in precise motion and smooth rotation of servomotor. In practical application of servo

motor we provided customized operating dead angle zones where servo must not operates. That

allows servo motor to operates from range (10-170).

17

Image 2: Servo Motor Pin Configuration [source: 30]

Specifications

• Weight: 55g

• Dimension: 40.7mm X 19.7mm X 42.9mm

• Stall Torque: 9.4 kg-cm (4.8V); 11 kg-cm (6V)

• Operating Speed: 0.23sec/60degree (4.8V); 0.2sec/60degree (6.0V)
• Operating Voltage: 4.8V - 6.6V

• Gear Type: Metal gear

• Temperature Range: 0CC - 55°C

• Dead Band Width: 1us

• Servo Wire Length: 32cm
• Current Draw at idle: 10mA

• No Load Operating Current: 170mA

• Stall Current: 1.4A

• Servo Arms and Screws included

Image 3: Servo Motor Specification Sheet [source:30]

3.1.4. Interfacing & Configuring ESP32 WROOM Module:

Firmware development and IDE Support: The development of firmware for ESP32 W R O O M

module supported by Arduino IDE which helps to program the firmware and implement the

control algorithms for external peripherals for communication protocol and control algorithms.

18

ESP3Z WROOM 3 2 E Pinout

Hansa

T0UCH_9

T0UCH_8

DAC_1

T0UCH_7

HSPI_CLK T0UCH_6

IT2 H S P I J I I S O T0UCH_5

'_DAT3 HSPI_MOSI T0UCH_4

A K 1 . 4 AiJftH>JkA-
A D C 1 5 ic iJI lVH^ A
AOC2_8 E M s H E ^ V ^
ADC2_9 flfglgEKA
ADC2_7 / r j f l » » /
ADC2_S gUTilET^A-
ADC2_5 « a J U S w /aa i i tW^ A

•o lot conned [used ny internal Flash]

ADC2_4 fiäEUPV-
SHD/SD2 inaBltrf^
SWP/SD3 ßäEJEKA
CSC/CMD /tia<«it»- A

• Input unly
» Input /Output
-A;— PLUM Output

GPID pins are not 51/ tolerant

— f i M

•-VfiäEBT VSPIMOSI

A ^ < 1 J H M F f l 2 C SPA
— f i M
^d:»iH:> V S P I _ M I S O

•A r/da W W V S P I _ C L K

A^süitkf vspi.cs

- " t r A U M W RX2
-A,Jd:H«El B W W

-V4&Utk# SDO/SD0

ADC2_0

A D C 2 1

ADC2_2

ADC 2 3

TOUCH_0

TOUCH_ l

T0UCH_2

TOUCH_3

SD_DAT0

SD_CHO

Do not connect (used by internal Flash)

2xSPI:VSPI & HSPI 2xADC:ADCl & ADC2

JUT- TOUCH SENSOR

I2C DAC SD UART

Image 4: ESP32 Pin Configuration [source:30]

The communication protocol and data transfer channel are set to be serial U A R T

communication for this project. The communication protocol is set up in between Python script

running on a laptop and ESP32 W R O O M module via a micro USB module. The protocol is

configured for this project's U A R T communication is C O M port 5 with a baud rate of 9600.

Image 5: ESP32 Servo Driver Interface [source: own]

19

The ESP32 W R O O M module is interfaced with a DC power source to get power up and

configured and interfaced pins for servo operation are [G l 1, G12, G13, G25, and G27].

3.1.5. Interfacing & Configuring Servo Driver:

The servo motor driver is an essential component to drive the servo with the desired P W M

frequency and constant controlled input signal to achieve the desired angle of the servo motor.

As soon as the servo motor receives a P W M signal from the ESP32 W R O O M module signals

have been sent to the servo drive for signal amplification and stable servo signals. Once signals

are refined in the servo driver those signals are sent to the servo motor. So that, the servomotor

can accept the signals and ask the motor to rotate in continuous rotation along with that

potentiometer meter starts to measure the angle rotated by the motor, and as soon as the motor

rotates to the desired angle potentiometer starts sending a signal to the servo driver to stop the

input signal for drive the motor[2].

+5v 2A

Image 6: Servo Driver Motor Interface [source: own, 30]

20

3.1.6. Power Source configuration and specification:

This system architecture has two power inputs separately to power up the ESP32WROOM

module and Servo Driver. The input power specification for these two individual modules is

defined as 4.2V for the ESP32 W R O O M Module and 4.2-6.OV required to power up the servo

driver with 5 servo motors interfaced with the driver. The range of 4.2-6V for servo motor

drivers mainly depends upon the torque and speed needed for servo.

3.1.7. System architecture and component interfacing:

A l l the components used in this project such as the Microcontroller ESP32 W R O O M module,

Servo Driver to drive the servo Motor, Power Unit, Servo motor along with all other wiring

and communication channels, etc. The main crucial module of this architecture is the ESP3

W R O O M microcontroller which is responsible for receiving commands from the laptop via

the U R A T COM5 Port.

Once signals are received from the laptop to the ESP32 module C++ will take over the signal

processing and assign and generate individual signals for the servo motor to rotate by specific

angles for each Servo motor.

J
Image 7: System architecture [source: 30]

21

3.2. Designing and building strategic approach for Computer

Vision in Python Programming.

3.2.1. Evolution & Implementation of a computer program.

Computers are a very crucial part. Where the world is progressing with the advancement of

computers and automation. When the word automation word comes into the picture, the

computer plays a vital role in controlling all the tasks and functionalities of automation.

Industry 4.0 is an autonomous factory that deals with fast-paced production, manufacturing,

and Delivery of finished products.

Computer networks and computer intercommunication lead the automation process with a set

of factory instructions. Autonomous sets of instructions play a vital role in using smart vision

and Data Analysis techniques to carry out tasks[l 1].

Computer vision is one of the computer programs that enables humans to implement Image

processing, Object Detection, And Object tracking capabilities. These capabilities would be an

asset to make machines understand the task to execute by visual gestures.

3.2.2. Design and Development of Computer Vision Algorithm

The computer vision algorithm has four basic fundamental pillars to execute. The designing of

the algorithm has been started with the declaration of required libraries. Library used are

OpenCV, MediaPipe, Serial, Numpy, Matplotlib, etc[13].

The next segment of the code is dedicated to initializing the computer camera to fetch every

frame that the camera can detect in the loop. After detection, every frame will be taken into

consideration for preprocessing.

In the Preprocessing step, the camera frame will be analyzed fully to detect the entities with

two parameters such as detection confidence and Tracking detection.

In the next segment of code, preprocessed frames of the camera will be processed under an

object detection algorithm and object tracking capabilities with specific confidence values.

22

After detection and tracking implementation on the frame, relevant information is fetched from

each frame in a loop.

Based on desired values gathered from each frame, we process the data or modify the data with

some relevant mathematical computational techniques[l].

Finally, we bundle the data in appropriate data blocks and send it to the relevant communication

to other peers in the network.

3.2.3. Strategic planning for implementing Computer Vision

The computer vision algorithm used for this project is based on the detection of the hand

gestures along with some parameters of the hand such as the angles of each finger and speed

of rotation of each fmger[15].

The process of fetching angles and speed of the finger is only possible after projecting skeleton

landmarks on the hand. These landmarks are used to extract useful information from human

hands.

I have used the Hand Detection model from the MediaPipe library which allows us to

superimpose skeleton data points on hand. I used the same data to process further angle

calculations using the vector approach.

Image 8: Hand Detected by Computer Vision [source: own]

23

The skeleton hand detection approach uses a total of 21 landmark points on a detected human

hand to generate a skeleton to superimpose on the real camera frames fetched by the camera.

Based on desired values gathered from each frame we process the data and modify the data

with relevant mathematical vector computational techniques. Finally, we bundle the data in

appropriate data blocks and send it to the relevant communication to other peers in the network.

Computer vision is one of the computer programs that allow people to realize image processing,

object detection, and tracking functions. These features are useful when a machine uses visual

gestures to understand what to do. The next part of the algorithm is used for the interaction of

the model with the preprocessed video frames. The preprocessed video frames are passed to

the next image-processing algorithm controlled by the MediaPipe library[2].

3.2.4. Fundamental Skeleton of Python Program

1. Initializing & Declaration of Libraries.

2. Initialize MediaPipe Solution.

3. Initializing Serial Communication.

4. Defining Utility Function.

5. Main Program Loop.

6. Release Resources.

24

3.2.5. Libraries and Functions

1. MediaPipe: Used for hand Tracing & Landmark Detection.

2. OpenCV (cv2): Used for webcam access & Processing webcam feed.

3. Numpy: Handling numerical operation.

4. Serial: Establishing serial communication channel between Python & C++.

3.2.6. Architecture for Image Detection & Tracking

The architecture of image detection and object tracking is typically implemented with the first

step which is data acquisition received from the webcam. The camera footage is first processed

with the OpenCV library to convert it into video in multiple image frames.

cap = cv2.VideoCapture(0)
cap.set(3, 1080)
cap.set(4, 1920)

Code Snippet [source: own]

This input undergoes preprocessing for quality enhancement and conversion into a suitable

format. The detection algorithm in code is usually carried out by locating the predefined objects

that are being asked in the data library of code to find in the real-time footage.

While tracking the obj ect the same predefined obj ect detected in the virtual frame or a boundary

has been made to locate the object into the frame and each frame goes into preprocessing to

update the detection frame for the same object. If we continue the same process in a loop until

the object lies within the frame then it declares as object tracking[1].

Image

Transform

Tensor

Landmark

Image 10: OpenCV & MediaPipe Architecture for Video Rendering, [souce: own]

25

Computer vision is one of the computer programs that enables humans to implement Image

processing, Object Detection, And Object tracking capabilities. These capabilities would be an

asset to make machines understand the task to execute by visual gestures.

The next Segment of the algorithm deals with model interference with preprocessed video

frames. The preprocessed video frames will delivered to the next image processing algorithm

which is governed by MediaPipe Library.

3.2.7. Superimposition of landmarks on detected hand

The OpenCV library uses the Hand Detection Module to gain access to the webcam and fetch

the video footage. This enables Python code to operate the data received from the webcam of

the system and access each video frame with a suitable resolution. After accessing each video

frame separately OpenCV processes the frame to enhance the quality and color gradient scheme

to a desired level which would make it easy to render the same video frame footage with a

computer vision model to execute over the same.

The next Segment of the algorithm deals with model interference with preprocessed video

frames. The preprocessed video frames will delivered to the next image processing algorithm

which is governed by MediaPipe Library[3],

The MediaPipe is meant for plotting desired landmarks on the detected object such as Hand,

Face, Leg, Human Body, etc. This would help to extract important useful information from the

detected object. This information again ahead we can use it for net post-processing to find

useful results.

In this project, we have used Hand Detection Landmark which is rendered with real-time

footage that got preprocessed with the OpenCV library and then passed to this MediaPipe

module.

The final rendered footage of the video would have overlaid landmarks on the screen with

skeleton behavior connected to each node worth a linear link between them. Object tracking

finds objects in frames by generating identical predefined objects detected at virtual frames or

boundaries, and each frame goes into preprocessing to update detection frames for the same

objects. We continue the same process in a loop until the object gets inside the object and it is

declared as a tracking object.

26

Image 11: Skeleton Landmark plot rendered real-time footage with angle, [source: own]

3.2.8. Implementation of Hand Gesture Recognition

The implementation of the hand recognition algorithms works on the basic principle of

scanning and locating landmarks in specific shapes. In this project, we are using a hand

detection module by MediaPipe which helps to identify the gestures of hand fingers and map

the predefined actions to the gestures.

$ 0 0 0 1 0
Gesture Pinky Ring Middle Index Thumb

Zero 0 0 0 0 0

One 0 0 0 1 0

Two 0 0 1 1 0

Three 0 1 1 1 0

Four 1 1 1 1 0

Five 1 1 1 1 1

Image 12: Communication Array with State & Servo Number [source: own]

Initially, with the starting of the algorithm, we designed and implemented a binary value

mapping technique where we mapped every finger state with binary values Os & Is. Where 0

denotes with finger state closed finger and 1 indicates the finger up state these values we saved

and bundled in the form of an array with an array length of 5.

Each finger number denotes the index number of the array starting from 0 to 4 as mentioned

size of 5 and the value contained at a specific index number will be denoted as the state of the

finger, which would vary from 0 to 1 as open and closed.

3.2.9. Implementation of fetching hand attributes

This project aims to fetch the necessary attributes from gestures made by human hands. These

attributes would later be very useful to consider as features for training algorithms and

performing specific tasks.

In this project, we are using features such as angle as the degree of each finger and the speed

of the finger moving at a velocity V . These parameters will later be used for further calculation

for performing tasks.

3.2.10. Processing and calculating desired angles

1 2 *

20

19
4

Image 13: PlotedLandmarks on hand skeleton on Human Hand, [source: 31]

28

We used OpenCV and media pipe libraries to access the webcam footage and then considered

each frame for processing each frame to draw skeletons ver the human hand and plot landmarks

on a human hand.

The total number of landmarks I am dealing with is 21 points spread over the hand and with

the help of these landmarks, we performed the calculation by using the vector approach.

In the Python program, I have defined the landmarks that we have to take into consideration

and perform further calculations

First, we consider landmarks which help to calculate the angle of fingers efficiently. For the

selection of landmarks we used 3 consecutive landmarks and the angle can be found at the

middle landmark.

Thumb 2 3 4

Index 5 6 7

Middle 9 10 11

Ring 13 14 15

Pinky 17 18 19

Image 14: Ploted Landmarks on hand skeleton on Human Hand, [source: own]

def draw f i n g e r angles(image, hand landmarks, j o i n t l i s t) :
global previous angles
f i n g e r names = ['Thumb', 'Index', 'Middle', 'Ring' , 'Pinky]
for i d x , (j o i n t , name) in e n u m e r a t e (z i p (j o i n t l i s t , f i n g e r names)):

a = np.array([hand landmarks.landmark[joint[0]] -x,
hand landmarks.landmark[j o i n t [0]] .y])

b = np.array([hand landmarks.landmark[joint[1]] -x,
hand landmarks.landmark[j o i n t [1]] .y])

c = np.array([hand landmarks.landmark[joint[2]] -x.
hand landmarks.landmark[j o i n t [2]] .y])

angle = np.abs(np.arctan2(c[1]-b[1], c[0]-b[0]) - np. a r c t a n 2 (a [1] - b [1] ,
a [0] - b [0])) * 180 / np.pi

angle = 360 - angle if angle > 180 else angle
normalized angle = normalize angle(angle, 10, 170)

j o i n t l i s t = [[2, 3, 4] , [5, 6, 7] , [9, 10, 11], [13, 14, 15], [17, 18, 19]]

Code Snippet [source: own]

29

7

Image 15: Vector Calculation from detected gecture ofbonic skeleton, [source: own]

3.2.11. Formation of arrays with desired angles

The above shown vector approach for angle calculation would be used for angle determination

and rate of change of angle per unit time.

These angles will saved in an array of size 5 starting from 0-4. Every index represents each

finger and the data stored at every index will be in the range of 0-180 degrees. This data will

then trnsfered to the C++ code via serial communication with a predefined baud rate of 9600

via COM5.

Index 0 1 2 3 4

Angle 30 175 56 48 126

Image 16: Arrays data Packet formation from detected

gesture ofbonic skeleton, [source: own]

Finally, we bundle the data in appropriate data blocks and send it to the relevant communication

to other peers in the network.

30

3.2.12. Establishing Serial Communication with ESP32

Inially we declare libraries which support for the serial communication called as "serial'. After

declaration we initialize the serial library with declaration COM5 port and baudrate needed

that is 9600 for sending data packets via serial communication.

To make the C++ code robust to handle errors and issues during serial communication, code

algorithm has implemented If statement in code to through an error i f COM5 is disconnected

or the data packets got collided with each other and makes the code freeze.

Code Snippet [source: own]

3.2.13. Data Encryption & Transmission Strategy

Once the seial communication protocol declared. Now it allows us to send via COM5 with a

predefined baud rate of 9600.

|def| |send s e r i a l data| (|servo num, angle|) :

ser . w r i t e (|f " { servo num} {angle}\n"|. encode (
;ept| s e r i a l . S e r i a l E x c e p t i o n [as] e:

|print| (|f " E r r o r : {e}"|)

i f j |abs| (p r e v i o u s angles [name] - no r m a l i z e d _ a n g l e) >=
w

s e n d _ s e r i a l _ d a t a (i d x + Q , normálized_angle)
previous_angles[name] = normálized_angle

s e r . c l o s e()

Code Snippet [source: own]

After the sending operation done with the serial communication command we can close serial

communication properly. This is a crucial for releasing resources and avoiding issues with

subsequent connection.

31

3.2.14. Development of a C++ code for the ESP32 Module

In machines, C++ is a widely used low-level programming language. Because of its time

complexity and ease of compiling at high speed. This programming language is very useful for

designing and programming microcontrollers to perform specific tasks.

Here in this project, we are using the ESP32 W R O O M module to drive the servo motors. This

microcontroller is powered by the ESP32 processor combines a CPU with 2 Tensilica L X 6

cores, clocked at up to 240 MHz, and 512 kilobytes of S R A M in a single microcontroller chip.

This enables the module to hand multiple sensors and actuators to work in a multitasking

protocol with 512kb R A M management 15],

For this C++ code for programming, we have used Arduino IDE for programming the ESP32

W R O O M module. Where we have two sections in a code.

3.2.15. Establishing C++ Serial Data Communication

In C++ Code, defined a Serial communication protocol for receiving data packets from COM5

with a suitable baud rate of 9600. The data packets are in the form of an array with array size

5 starting from 0 to 4. Each index number denotes the finger number and values contained at

each index number will denote the angle of the respective finger.

These array data packets are kept on updating with a certain frequency to operate the servo

motors. To operate the servo motor C++ program has to generate certain P W M signals to

control the position precision and speed of the servo motor.

3.2.16. Data Decryption Strategy after receiving the data

The C++ code defines a serial communication protocol for receiving data packets from COM5

with a reasonable baud rate of 9600. Atr data packets are an array of array size 5 starting from

32

Setup Serial Communication

Start Camera

Check Hand Gestures

Convert Gestures to Binary

Send Binary Signals

0 1 2 3 4

25 1 40 58 45 1 2

$ 0 0 0 1 0
Update and Repeat

PlnVy i Hb« — — »-*

I 1 I \l I I 11
I j i

•

End Communication

Listen for Instructions

Message

Handling the Array and Servo
Commands

Image 17: Communication Strategy between Python and C++.[source: own]

0 to 4. Each index number represents a finger number, and the value contained in each index

number represents the angle of that finger. These array data packets are continuously updated

at a specific frequency to control the servo motor. To operate a servo motor, a C program must

generate specific P W M signals to control the position accuracy and speed of the servo motor.

33

3.3. Mechanical Design and Fabrication

3.3.1. Modelling and Designing of Mechanical Structure of Hand

I have designed and customized a predesigned model of a robotic hand for implementing

continuous robotic hand movements with fluidity and detexitrity of the robotic hand. There are

a total of nine parts that have been modeled and designed for the robotic hand. These robotic

hand parts are shown below.

Image 18: Servo Motor Mount, [source: own]

This is a Servo motor mount shown in Image 18: which is specifically designed to hold 5

servo motors to operate the movements of finger open and closed actions of fingers. The

connection between the servo motor and the finger would be connected via a nonelastic

transperant string which takes care to pull action for closing the fingers.

Image 19: Supporting Stand for Robo Hand, [source: own]

34

Image 20: Robotic Palm Support, [source: own]

This Robotic hand palm support shown in Image 20 is specially designed to support the

robotic hand palm over the foundation of a robotic hand that is shown in Image 21.

Image 21: Robotic Hand Palm and Finger Mount, [source: own]

This is a palm of robotic hand which has been designed to replicate the human hand anatomy

to hold five fingers and also give a rigid support got the human hand anatomy. The aim is to

designed in a such way that, the connecting thread guide ways are alredy been created while

35

modeling in the software which hand handle the pull and controls the action of the servo

Image 23: Little Finger [source: own]

Image 24: Middle Finger [source: own]

36

Image 25: Ring Finger [source: own]

Image 26: Thumb Finger [source: own]

These are the STL versions of the 3D parts of the hand. Which has been designed and

modeled on Fusion 360 and printed on a 3D printer with a P L A material Type and 0.4mm

Nozzle diameter with a printing precision of 0.1-0.3mm.

3.3.2. 3D Printing of Robotic Hand Parts.

Designing of the robotic hand parts as shown in previous images and I have printed with 3D

printer as shown in below images. The image exactly shown Image 31: Actual 3D printed Palm

is hand palm to hold all fingers and servo mount.

37

Image 27: Actual 3D printed Palm [source: own]

The image is shown below in Image 27: Palm Connector responsible for the palm mount

which will be holding hand structure and servo mount.

Image 28: Palm Connector [source: own]

The part shown below in Image 28: Hand Stand this a structure stand that will help to give

rigid support for the structure. This stand will be responsible for the holding servo mount and

the palm of the robotic hand to hold 5 fingers.

38

Image 29: Hand Stand [source: own]

This part is a servo mount shown in Image 29: Servo Mount Which is capable and designed to

hold 5 servos with rigid fitting to control fingers which optimizes pull torque.

3.3.3. Assembly and fabrication of parts.

The complete assembly of the robotic hand is is as shown below in the Image 31: Final

Assembly of Robotic Hand. This includes all the 3D printer parts that are interconnected with

each other for better linkage control between the servo lever and finger. The fingers attached

to this robotic hand are 3 fold joint except the thumb which ensures the closing and opening of

the finger exactly as per the human finger anatomy. The thumb is designed with 2 fold joint

for better controllable human dexterity.

Further, I have modified the servo motor lever with wooden sticks attached to the levers for

more control length of the finger when the finger operates between an open and closed state.

17cm

Image 31: Final Assembly of Robotic Hand [source: own]

40

3.3.4. Mechanical joint connections & tuning of Servo Drive.

This proj ect consists of 3D-printed parts along with some other electric drives. I am using servo

motors as an electric drive to operate the movement of fingers precisely. To operate the finger

with precision, I have used Digital filters to reduce fluctuations and noise in signals,

to operate mechanically between the connection of the servo motor and finger, I am using a

nonelastic string that provides active control for pull action for fingers.

In this robotic arm, I am using 5 servo motors for 5 separate fingers. These servo motors are

enabled to rotate in 0-180 and 180-0. To get an enhanced precision performance, I have enabled

end restriction for servo movement from 10-170 degrees.

3D printed hand has five fingers, each finger has 3 joints. Every joint allows for rotation of the

finger with 30 degrees at the top joint, 60 degrees with the lower joint, and 90 degrees with the

bottom joint. This angle of rotation allows the finger to total 180 degrees. The precise angle of

rotation is governed by a string connected along with all three joints and with the servo motor

lever which is 2 cm in length.

As the signals from the servo driver are received by the servo motor then the servo motor

rotates with the desired angle and the thread connected between these finger joints will rotate

in with a desired curve of a finger. Once this operation is completed the finger would go back

to its original position with an elastic strip installed at the back side of each finger which helps

the finger to regain its initial position at 180 degrees.

Image 32: Finger Folding Mechanism Tested on Wooden Prototype.

In 3 stages of folding, [source: own]

41

4. Results
4.1. Detection Accuracy and Tracking Confidence

The detection of objects is a challenging task to detect the object with the highest accuracy like

human beings. This detection process needs high computational power and a good

preprocessing approach in order to find and consider relevant features from the object. In this

project, implemented an object detection algorithm with the help of OpenCV which allows us

a capable environment where we can program an object detection algorithm and tacking of the

same with requires preprocessing of the video frames captured from the webcam.

Here in this project, implemented an object detection with a threshold value of 0.8 confidence

which allows us to detect the object with an accuracy up to 80% and above. If any object is

detected with a low accuracy confidence eg. Less than 80% it won't be labeled with a desired

category of the objects from the code.

Once the object is detected and continuously tracked with tracking threshold confidence we

could conduct statistical analysis on the object and post-processing of the object. The post

processing techniques taking care of the desired result are plotting exoskeleton landmarks on

the human hand detected in the camera. This skeleton accuracy depends on the number of

landmarks plotted on the hand. Here in this project, used 21 landmark points to plot over the

hand to conduct vector calculations to find angles. These angles I have plotted these on a bar

chart to a representation of the angle of each finger in real-time and accuracy achieved around

80% with 0.8 confidence in tracking the frame.

Thumb Index Middle Ring Pinky

Image 33:Angle Representation of fingers, [source: own]

42

Thumb Index Middle Ring Pinky

Image 34:Angle Representation of Thumb Finger, [source: own]

Thumb index Middle Ring Pinky

Image 35:Angle Representation of Index fingers, [source: own]

Thumb Index Middle Ring Pinky

Image 36:Angle Representation of Middle fingers, [source: own]

43

Thumb Index Middle Ring Pinky

Image 37 .Angle Representation of Ring fingers, [source: own]

Image 38:Angle Representation of Pinky fingers, [source: own]

Thumb ndex Middle Ring Pinky

Image 39.Angle Representation of fingers, [source: own]

44

4.2. Angle - Frequncy chart to demonstrate finger movement.

Image 40:Angle Frequency Chart, [source: own]

This particular histogram represents the angular frequency of a particular finger at a specific

angle. As you can see in Image 40: Angle Frequency Chart. X The axis represents an angle in

degrees and Y-axis represents frequency and the color of the histogram represents the type of

fingers. There are a total of five colors represented in the above histogram which shows five

fingers.

At the time when this image was captured the states of the graph represent that code started

with all fingers detected at 180 degrees and later on most of the finger operations were made

within the range of 75 degrees to 150 degrees.

As you can see in the above chart there are fewer agular finger movements detected at the lower

range of the finger from 15 degrees to 75 degrees and no finger has been achieved 0 degrees

till the above plot is captured.

45

This specific plot is very useful when we want to track the motion of fingers or any object with

respective to specific mathematical parameters as here in my case, I am tracking the motion of

the finger at every angle and calculating the frequency of finger angle achieved that same angle

which will beneficial to track the motion of finger in particular angular range. And operation

angular report.

46

5. Discussion

5.1 Interpretation of Results and Implications:

Once the robotic arm was assembled, the finger movements worked perfectly. Researched

and performed extensive testing and analysis of signals generated from computer vision

algorithms and serial communication servo motor signal receivers. The robotic arm control

operation worked flawlessly with smooth communication and minimal latency for real

time operation. I have achieved novelty in a project that involves continuous control of

robotic finger movements. This has not been done before today's literature in this area.

During the initial testing phase, we encountered some issues, such as a lack of signal

filtering. This resulted in increased variation in the signal generated by the servo motor,

resulting in the effects of the servo motor jitter. Another problem I face is that the robot's

fingers are not smooth enough. We also need to configure and set parameters to control the

closed and open states of the fingers, which are displayed in the range 0 to 180 depending

on the servo angle.

5.2 Analysis of Challenges and Proposed Solutions:

The robotic arm control operation worked flawlessly, providing seamless communication

and minimal latency for real-time operations. I achieved novelty in the project. It is to

control the movement of robotic fingers in continuous mode. Work that had not yet been

done before today's literature in this field. During the initial testing phase, we encountered

several challenges, including a lack of signal filtering, which increased the variation in the

signals produced by the servo motors and created jitter effects on the servo motors. Another

problem I faced is that the robot's fingers are not smooth enough. We also need to configure

and set parameters to control the closed and open states of the fingers, which range from 0

to 180 depending on the angle of the servo.

47

Challenges encountered:

1. Establishing a Real-time Communication Channel between Python and C++.

I started this project with real-time implementation of communication between Python

and C++ by passing string/Char from C++ - to Python or vice versa. Ahead in time, I

succeeded in communication. I established communication to control servo one motor

by passing string input. Then tried multiple servos with binary control protocol. 0

denoted 0 degreed state of the servo motor and 1 denoted 180 degrees of the servo

motor. Finally, I was able to pass random values from 0 to 180 in the form of an array

and was able to control the servo motor.

2. Designing and implementing Object Detection and Tracking Strategy.

Initially build object detection algorithm with the predefined library by open C V to

know the working principle of computer vision detection algorithm. Once I was able to

establish the detected approach I built a customized code to plot skeleton landmarks on

the detected hand which will be overlying over the original hand footage to perform

further computation requirements.

In the first attempt artificial skeleton landmark was not exactly overlying on the real

footage of the hand which resulted in difficulties in performing further calculations.

So I adjusted a few color and How parameters by converting it to greyscale and

analyzed histogram output for better detection accuracy of hand. Finally resolved that

the exoskeleton structure was able to plot on original hand footage.

3. Angle Calculation from gesture detected.

Designed and performed a vector approach to calculate the angular calculation for

finger states. In this computation step, I took the help of landmarks plotted on original

footage and found out the distance between 3 nodes and performed angular calculation

but it was lacking in the angular calculation as the skeleton landmark was continuously

moving and hence values of angle kept on fluctuating rigorously which related in servo

motor jitter effect.

48

To optimize the detected angle value and less fluctuation in servo angle values I used a

moving average filter with the size of 12. Which filtered out the fluctuation in the

calculation and resulted in smooth operation in servo movement.

4. Post-3D printed part refinement for smooth movements of parts.

I printed all the 3D printed parts, But the problem I encountered was that there a lot of

mesh lines on the 3D printed parts which resulted in friction in the operating stage.

Hence this resulted in less fluidity and dexterity of fingers and also heating of servo

motor and lack of accuracy of angle.

In order to resolve this issue needed to refine each part join by making its surface

smooth so that it won't interfere with the smooth moving operation of fingers when

fingers are under servomotor influence. Also, autolock strips to each finger for better

rigidity in the finger when fingers are in tangential stress influence.

5. Assembly of all components and connection between finger and servo motor.

I did the assembly of all 3D-printed parts. After assembly, I encountered imperfections

and very close dimension clashes, so to get rid of that, I needed to clean and sharpen

the surfaces of 3D printed parts for perfect fitting and smooth kinematic movements

between links and joints of the robotic hand.

One finger got installed to the palm. I connected the string linkage between the servo

motor lever and the 3-fold joint finger. Initially, I found that the servo turning angle

was greater than the 3-fold j oint finger which resulted in the breakage of the finger and

link of the finger.

I solved this proposed change by increasing the elastic linkage which will take care of

over-torque operations from the servo which won't result in breakage.

49

6. Conclusion

6.1 Key Findings:

Fabricated successfully robotic bionic hand similar to the human anatomy which ensures a high

degree of fluidity and dexterity of motion in real-time operation with servo actions and capable

of executing similar gestures in real-time with minimal latency like the real human hand.

Assembled and installed servo motor into 3D printed servo mounting as shown in image: 30.

Calibrated the servo angular rotation from 0-180 degrees precisely with 3-fold finger

mechanisms to operate the finger from 0-180 degrees between open and close states similar to

human hand.

Successfully established the U A R T channel communication which can able to communicate

between Python to C++ code to receive commands from Python code to drive servo motors at

specific angles with precise degrees of motion.

Developed an OpenCV algorithm that will fetch the angle parameters from the detected Human

hand by overlying an exoskeleton plot over the original hand. This method has been executed

with an obj ect detection algorithm to detect the hand in the camera footage and plot exoskeleton

structural landmarks to implement mathematical calculations with the help of those landmarks.

A total of 21 landmarks have been plotted and we have used 5 sets of landmark groups each

group containing 3 landmarks to calculate the angle of five fingers via vector approach.

The key finding and novelty of this project mainly has the continuous movement of the servo

motor which allows the controlling of fingers to rotate from 0-180 by feeding appropriate

signals to the servo for precise rotation of the servo shaft to achieve fluidity movement of the

robotic hand fingers and dexterity similar to human anatomy. Which makes this finding

superior to other literature work done till now.

50

6.2 Summary of Objectives and Significance

The goal and objective of this prototype research is to bridge the gap between human-computer

communication interfaces via a gesture input to operate the robots with precise and accurate

movements of robotic actuators. This research surely would be an asset for the robotic industry

to operate the robots in fields where man can not enter the territory such as Industrial

Production lines, Military applications, Space Robots, the Medical Industry, etc.

This prototype research allows us to operate robots with a precise and fluid motion similar to

human anatomy to control the real-time environment with active actions of human gestures.

With some more advancement and future work proposed for the extension of this prototype

research would unlock tremendous opportunities for robotic application in Human-Computer-

Interaction (HMI).

51

7 Recommendations for Future Work:

1. The 3D printing step is complete. The use of 3D printing to create robotic arm

components remains a significant advance. Future work should prioritize completing

this step to begin the integration and demonstration of the robotic arm.

2. Enhancement in image processing algorithms. Further improvements and

optimizations of computer vision algorithms are recommended to improve accuracy

and practical application by using stereo camera mechanisms.

3. rigorous inspection and testing are required to ensure smooth integration and

functionality operation components. Testing in different environments and scenarios

helps identify and eliminate potential issues and limitations.

4. Similar to the bionic hand can be applicable to fabricate and automate biped robotic leg

and other parts of robot which will be an intelligent and superior key to establish a

natural connection with humanoid robots and getting tasks done on the unmanned

fields.

52

8 References

[1] S. Ahmed, V . Popov, A . Topalov, N . Shakev, "Hand Gesture based Concept of Human -

Mobile Robot Interaction with Leap," in IFAC PapersOnLine, vol. 52-25, pp. 321-326,

2019. DOI: 10.1016/j.ifacol.2019.12.543

[2] X . L i , "Human-robot interaction based on gesture and movement recognition," Signal

Processing: Image Communication, vol. 81, 115686, 2020. DOI:

10.1016/j.image.2019.115686

[3] J. Paterson, A . Aldabbagh, "Gesture-Controlled Robotic Arm Utilizing OpenCV," in

European Journal of Science and Technology, June 2021. DOI:

10.1109/HORA52670.2021.9461389

[4] S. Devine, K. Rafferty, S. Ferguson, "Real-time robotic arm control using hand gestures

with multiple end effectors," in 2016 U K A C C 11th International Conference on Control

(CONTROL), Belfast, U K , August 31 - September 2, 2016. DOI:

10.1109/CONTROL.2016.7737545

[5] J. Hossain Gourob, S. Raxit and A . Hasan, "A Robotic Hand: Controlled With Vision Based

Hand Gesture Recognition System," 2021 International Conference on Automation,

Control and Mechatronics for Industry 4.0 (ACMI), Rajshahi, Bangladesh, 2021, pp. 1-4,

doi: 10.1109/ACMI53878.2021.9528192.

[6] P. Atre, S. Bhagat, N . Pooniwala and P. Shah, "Efficient and Feasible Gesture Controlled

Robotic Arm," 2018 Second International Conference on Intelligent Computing and

Control Systems (ICICCS), Madurai, India, 2018, pp. 1-6, doi:

10.1109/ICCONS .2018.8662943

[7] R. M . Gurav and P. K. Kadbe, "Real-time finger tracking and contour detection for gesture

recognition using OpenCV," 2015 International Conference on Industrial Instrumentation

and Control (ICIC), Pune, India, 2015, pp. 974-977, doi: 10.1109/IIC.2015.7150886.

53

[8] Pedro Neto, J. Norberto Pires, A . Paulo Moreira, "Accelerometer-Based Control of an

Industrial Robotic Arm"

[9] Dr. R. V . Dharaskar, S. A . Chhabria, Sandeep Ganorkar, "Robotic Arm Control Using

Gesture and Voice", In International Journal of Computer, Information Technology &

Bioinformatics (IJCITB), Vol . 1, Issue 1, pp. 41-46

[10] S. Waldherr, R. Romero and S. Thrun, 2000, " A gesture based interface for human-robot

interaction", In Autonomous Robots in Springer, vol. 9, Issue 2, pp. 151- 173

[11] K. Brahmani, K. S. Roy, Mahaboob A l i , April 2013, "Arm 7 Based Robotic Arm Control

by Electronic Gesture Recognition Unit Using Mems", International Journal of

Engineering Trends and Technology, Vol . 4 Issue 4 Available at:

http://www.ijettjournal.org/volume-4/issue4/IJETT-V4I4P347.pdf

[12] S. Perrin, A . Cassinelli and M . Ishikawa, May 2004, "Gesture Recognition Using Laser-

Based Tracing System", In Automated Face and Gesture Recognition. Proceeding, Sixth

IEEE Conference, pp. 541-546

[13] Y . Song, S. Shin, S. Kim, D. Lee, and K. H . Lee, "Speed estimation from a tri-axial

accelerometer using neural networks, " in 29th Annual International Conference of the

IEEE Engineering in Medicine and Biology Society, EMBS 2007, pp. 3224-3227, 2007

[14] J. Yang, W. Bang, E. Choi, S. Cho, J. Oh, J. Cho, S. Kim, E. K i and D. Kim, 2006, " A 3D

Hand drawn Gesture Input Device using Fuzzy ARTMAP-based Recognizer", In Journal

of Systemic, Cybernetics and Informatics, Vol . 4 Issue 3, pp. 1-7.

[15] K. Murakami and H . Taguchi, 1991, "Gesture Recognition using Recurrent Neural

Networks", In Proceedings of A C M CHT91 Conference on Human Factors in Computing

Systems, New Orleans, USA, pp. 237-242.

[16] P. Atre, S. Bhagat, N . Pooniwala and P. Shah, "Efficient and Feasible Gesture Controlled

Robotic Arm," 2018 Second International Conference on Intelligent Computing and

54

http://www.ijettjournal.org/volume-4/issue4/IJETT-V4I4P347.pdf

Control Systems (ICICCS), Madurai, India, 2018, pp. 1-6, doi:

10.1109/ICCONS .2018.8662943.

[17] J. Paterson and A. Aldabbagh, "Gesture-Controlled Robotic Arm Utilizing OpenCV," 2021

3rd International Congress on Human-Computer Interaction, Optimization and Robotic

Applications (HORA), Ankara, Turkey, 2021, pp. 1-6, doi:

10.1109/HORA52670.2021.9461389

[18] S. Bularka, R. Szabo, M . Otesteanu and M . Babaita, "Robotic Arm Control with Hand

Movement Gestures," 2018 41st International Conference on Telecommunications and

Signal Processing (TSP), Athens, Greece, 2018, pp. 1-5, doi: 10.1109/TSP.2018.8441341.

[19] R. V . Dharaskar. et.al., Robotic Arm Control Using Gesture and Voice. Int. Journal of

Computer, Inf. Technology & Bioinformatics (IJCITB). ISSN:2278-7593, Vol . 1, Issue-1.

2012.

[20] D. ZheKang. et.al. A fuzzy-based parametric fault diagnosis approach for multiple circuits.

11th Int. Conference on Control. DOI: 10.1109/CONTROL. 2016.7737525. Publisher:

IEEE. Belfast, UK. 2016.

[21] Abidhusain, et.al. "Flex Sensor Based Robotic Arm Controller Using Micro Controller"

Journal of Software Eng. and Applications, Vol.5 No.5, 2012

[22] A . Rashmi, et.al. "Robotic Hand Controlling Using Flex Sensors and Arduino Uno". Int.

Research Journal of Eng. and Technology (IRJET) e-ISSN: 2395-0056. Vol . 06 Issue: 04,

Apr 2019.

[23] U . D. Meshram and R. Harkare, "FPGA Based Five-Axis Robot Arm Controller," Int.

Journal of Electronics Engineering, Vol . 2, No. 1, 2010, pp. 209-211.

[24] M . Bhusa, et.al. "Controlling Robot by Fingers Using Flex Sensors" Int. Journal of

Computer Trends and Tech.67.8 (2019): 13-17.

55

[25] C. P. Shinde," Design of Myoelectric Arm", Int. Journal of Advanced Science,

Engineering, and Technology. ISSN 2319-5924, V . 1,1. 1, pp 21-25. 2012

[26] R. Singh, et.al, "Design and Development of a Data Glove for the Assistance of the

Physically Challenged". Int. Journal of Elect, and Communication Eng. and Tech.

(IJECET).4(4), pp. 36-41. 2013.

[27] L. Shrimanth Sudheer, Immanuel J., P. Bhaskar, and Parvathi C. S. A R M 7 Microcontroller

Based Fuzzy Logic Controller for Liquid Level Control System. International Journal of

Electronics and Communication Eng.& Tech. (IJECET).4(2), pp. 217-224. 2013

[28] A . Turnip, et.al, An application of modified filter algorithm fetal electrocardiogram signals

with various subjects, International Journal of Artificial Intelligence, vol. 18, no. 1, pp. 207-

217, 2020.

[29] R. Deepan, Santhana Vikrama Rajavarman, and K. Narasimhan., "Hand Gesture-Based

Control of Robotic Hand using Raspberry Pi Processor". Asian Journal of Scientific

Research. Vol . 8, (I). 3. pp. 392-402. 2015.

[30] ESP32 W R O O M 32E — SunFounder ESP32 Starter Kit documentation, [no date]. .

Online. Available from: https://docs.sunfounder.com/projects/esp32-starter-

kit/en/latest/components/component_esp32_extension.html [Accessed 14 May 2024],

[31] SHAKHADRI , Syed Abdul Gaffar, 2021. Building a Hand Tracking System using

OpenCV. Analytics Vidhya. Online. 8 July 2021. Available from:

https://www.analyticsvidhya.com/blog/2021/07/building-a-hand-tracking-system-using-

opencv/.

56

https://docs.sunfounder.com/projects/esp32-starter-
https://www.analyticsvidhya.com/blog/2021/07/building-a-hand-tracking-system-using-

9. Annexure

Image 44: Breadboard [source: own]

58

