
VYSOKÉ UČENI TECHNICKE V BRNE
BRNO UNIVERSITY OF T E C H N O L O G Y

FAKULTA INFORMAČNÍCH TECHNOLOGII
ÚSTAV POČÍTAČOVÉ GRAFIKY A MULTIMÉDIÍ

FACULTY OF INFORMATION T E C H N O L O G Y
DEPARTMENT OF C O M P U T E R G R A P H I C S AND MULTIMEDIA

MODERN METHODS FOR T R E E G R A P H
S T R U C T U R E S RENDERING

DIPLOMOVÁ PRÁCE
M A S T E R ' S THESIS

AUTOR PRÁCE Be. JIŘÍ ZAJÍC
AUTHOR

BRNO 2013

VYSOKÉ UČENI TECHNICKE V BRNE
BRNO UNIVERSITY OF T E C H N O L O G Y

FAKULTA INFORMAČNÍCH TECHNOLOGIÍ
ÚSTAV POČÍTAČOVÉ GRAFIKY A MULTIMÉDIÍ

FACULTY OF INFORMATION T E C H N O L O G Y
DEPARTMENT OF C O M P U T E R G R A P H I C S AND MULTIMEDIA

MODERNÍ METODY ZOBRAZOVANÍ STROMOVÝCH
GRAFŮ
M O D E R N M E T H O D S FOR T R E E G R A P H

S T R U C T U R E S RENDERING

DIPLOMOVÁ PRÁCE
M A S T E R ' S THESIS

AUTOR PRÁCE Be. JIŘÍ ZAJÍC
AUTHOR

VEDOUCÍ PRÁCE Prof. Dr. Ing. PAVEL ZEMČÍK
S U P E R V I S O R

BRNO 2013

Abstrakt
Tento projekt se věnuje problematice zobrazení velkých hierarchických struktur, zejména
možnostem vizualizace stromových grafů. Cílem je implementace hyperbolického prohlížeče
ve webovém prostředí, který využívá potenciálu neeukleidovské geometrie k promítnutí
stromu na hyperbolickou rovinu. Velký důraz je kladen na uživatelsky přívětivou manipulaci
se zobrazovaným modelem a snadnou orientaci.

Abstract
This project deals with the graphic portrayal of large hierarchies and explores possibilities
of tree graphs visualization. The aim is to implement a hyperbolic browser in web envi­
ronment. The browser shall exploit the potential of non-euclidean geometry and project
the tree onto hyperbolic plane. Great emphasis shall be placed on smooth user interface
allowing seamless navigation and orientation.

Klíčová slova
stromová struktura, strom, hyperbolický strom, hyperstrom, hyperbolická rovina, hyper­
bolický prohlížeč, neeukleidovská geometrie, graf, stromový graf, javascript, web, webové
prostředí, canvas, svg, raphaeljs

Keywords
tree structure, data tree, hyperbolic tree, hypertree, hyperbolic plane, hyperbolic browser,
non-euclidean geometry, graph, tree graph, javascript, web, web environment, canvas, svg,
raphaeljs

Citace
Jiří Zajíc: Modern Methods for Tree Graph
Structures Rendering, diplomová práce, Brno, F IT V U T v Brně, 2013

Modern Methods for Tree Graph
Structures Rendering

Prohlášení
Prohlašuji, že jsem tento semestrální projekt vypracoval samostatně pod vedením pana
Prof. Dr. Ing. Pavla Zemčíka.

Jiří Zajíc
9. ledna 2013

Declaration
I declare that I have elaborated my semestral project independently, under the supervision
of Prof. Dr. Ing. Pavel Zemčík.

Jiří Zajíc
January 9, 2013

Poděkování
Rád bych poděkoval vedoucímu semestrálního projektu panu Prof. Dr. Ing. Pavlu Zemčíkovi
za odborné vedení, konzultace a podnětné návrhy k práci. Dále bych chtěl poděkovat
Ing. Davidu Mikulkovi za konzultace týkající se neeukleidovské geometrie.

Acknowledgement
I would like to thank my semestral project supervisor Prof. Dr. Ing. Pavel Zemcik for his
support, supervision and expert advice. M y gratitude belongs also to Ing. David Mikulka
for advice regarding non-euclidean geometry.

© Jiří Zajíc, 2013.
Tato práce vznikla jako školní dílo na Vysokém učení technickém v Brné, Fakulté in­
formačních technologií. Práce je chráněna autorským zákonem a její užití bez udělení
oprávnění autorem je nezákonné, s výjimkou zákonem definovaných případů.

Contents

1 Introduction 3

2 State of the Art in Tree Visualization 4
2.1 History of Visualization 4
2.2 Mathematical Terms 6
2.3 Known Methods and Existing Software 9

3 Features Evaluation and Requirements Analysis 12
3.1 Evaluation 12
3.2 Web Environment 12
3.3 Requirements Analysis 13
3.4 Other Features 14

4 Mathematics Model Proposal 16
4.1 Layout onto Hyperbolic Plane 16
4.2 View Projection Initialization 18
4.3 Rendering 18
4.4 Changing View Projection 20

5 Implementation 21
5.1 Technologies 21
5.2 Library Modules 27

5.3 Results 30

6 Conclusion and Future Work 35

Literature 36

A Description of Related Art 40

B JavaScript Mathematical Functions 41

C G r l n C H Installation 42

D Screenshots 44

E D V D Contents 45

1

List of Figures

2.1 Langren's 1644 Graph of the Distance 5
2.2 Playfair's 1821 Time Series Graph 5
2.3 Tree Data Structure 7
2.4 Hyperbolic Plane Figures 8
2.5 Different Tree View Models 10
2.6 Different Tree View Models 11

4.1 Principle of Wedge Computation 18
4.2 Unit Disk Positionig and Rotation 19

5.1 G r l n C H Mockup Design 22
5.2 Simple E R D for tree storage in M y S Q L database 25
5.3 Flow of G r l n C H Application 29
5.4 G r l n C H Bar 31
5.5 G r l n C H Canvas 31
5.6 D O M and JavaScript Benchmark Results 33
5.7 S V G vs. H T M L canvas 34

D . l Screenshots 44

2

Chapter 1

Introduction

Since massive expansion of computer science as a tool to process nearly any kind of informa­
tion, there has always been a need to visualize the information in the nicest and friendliest
way possible. Despite the fact, that nowadays there are numerous known technologies and
methods available in order to achieve this very essential goal, it can still be quite a chal­
lenge to effectively and efficiently display extremely large portions of data. Especially, when
interactive manipulation operations for navigating around are necessary.

Consider the relationship between different pieces of information of hierarchical nature.
Useful and versatile way to represent such structure in a graphical form would be a tree.
Tree with one root and number of nodes connected to each other by exactly one path. It
is a fundamental concept that can be applied in computer science (binary search tree) as
well as in many other fields, e.g., biology (evolutionary tree), project management (work
breakdown structure), linguistics (phrase structure trees), mathematics (Von Neumann
universe). Apparently, a big part of all the information in the world can be hierarchically
structured.

It is difficult for user to extract information from large hierarchical structures, as the
navigation of the structure is often a burden and content information is hidden inside
individual nodes. Also, usually only small part of the monitor display is being used. In
1995, J . Lamping and R. Rao from Xerox Palo Alto Research Center came up with an idea
of the Hyperbolic Browser. Browser, that can visualize any tree structure by transforming it
into, so called, hypertree. Hypertree uses advantages of hyperbolic plane in non-Euclidean
Geometry, providing truly unique displaying and browsing experience.

The idea of Hyperbolic Browser is more than seventeen years old, yet its utilization is
seen quite rarely. I think that hyperbolic plane based browser has a great potential. This
work is motivated by my interest in human machine interfaces and I wanted to contribute
to the topic by revealing unusual non-Euclidean hypertree related features. Its aim is to
bring such concept into modern web environment by implementing it in pure JavaScript.

In the following chapter, there is summarized history, current state of the art in in­
formation visualization and introduction to the related mathematical terms. The third
chapter includes requirements analysis of the web environment based hyperbolic browser
and mentions couple of topics for further discussion. The fourth chapter proposes a suitable
mathematics model for the implementation, that is realized and described in chapter five.
The last chapter discusses results.

3

Chapter 2

State of the Art in Tree
Visualization

Since the beginning of the modern computer era 1, variety of approaches to displaying
information in graphical form on a computer has been constantly growing and evolving in
response to the needs of computer users.

This chapter provides brief history of graphic portrayal and information quantification.
It introduces some interesting and useful facts associated with the thesis topic, followed by
summary of the essence of visualization. Due to limited scope of work, this chapter is not
able to cover all the related information. It only focuses on facts that are important for the
reader to become acquainted with. It gives an overview of the current state of the art in
information visualization, divided into several categories.

2.1 History of Visualization

The graphic portrayal of quantitative information has deep roots in histories of thematic
cartography, statistical graphics and data visualization. These fields are intertwined with
each other and date back to 17th century. As true beginning of data visualization can be
considered rise of statistical thinking up through the 19th century, and of course develop­
ments in technology in the 20th century [].

Figure 2.1 shows a graphic from 1644, believed to be the first visual representation
of statistical data. At that time, lack of a reliable means to determine longitude at sea
hindered navigation and exploration. This ID line graph, showing several known estimates
of longitude between Toledo and Rome, is also a milestone as the earliest-known exemplar
of the principle of effect ordering for data display [].

New Graphic Forms

In the 18th century, abstract graphs and graphs of functions were introduced, together with
the early beginnings of statistical theory (measurement error) and systematic collection of
empirical data. Will iam Playfair (1759-1823) is widely considered the inventor of most of
the graphical forms widely used today:

• Line graph and bar chart (1786)
1 As the beginning of a modern computer era is considered year 1939, when Hewlett-Packard is founded [].

4

0
S 11 I I P -
5 GRADOS DE LA LONGITUD, V i - i i l i p 1M"
H 6 O V a,' h* o o" u V cf

1 1 1 < 1 1 1 1 I ' i 0 J , I I 1 I J 1 ' I »2fll ^ 1 " ' 1 1 1 1 J '3ol
/

Figure 2.1: Langren's 1644 Graph of the Distance

• Pie chart and circle graph (1801)

• Mixed series graph (1821; shown in Figure 2.2)

Beginnings of M o d e r n Graphics

The early 19th century witnessed explosive growth in statistical graphics and thematic
mapping, at a rate which would not be equalled until modern times. In statistical graphics,
all of the modern forms of data display were invented: bar and pie charts, histograms, line
graphs and time-series plots, contour plots, scatterplots, and so forth.

Figure 2.2: Playfair's 1821 Time Series Graph

In the second half of 19th century, statistical theory was initiated by Gauss and Laplace
and provided the means to make sense of large bodies of data. For the first time, graphical
methods proved crucial in a number of scientific discoveries (e.g. the discovery of atomic
number by H . Mosely).

5

Re-birth of Data Visualization

Finally, computer processing of data had begun, and offered the possibility to construct
old and new graphic forms by computer programs. True high-resolution graphics were
developed, but would take a while to enter common use.

By the end of this period significant intersections and collaborations would begin: (a)
computer science research (software tools, C language, U N I X , etc.) at Bell Laborato­
ries (Becker, 1994) and elsewhere would combine forces with (b) developments in data
analysis (EDA, psychometrics, etc.) and (c) display and input technology (pen plotters,
graphic terminals, digitizer tablets, the mouse, etc.). These developments would provide
new paradigms, languages and software packages for expressing statistical ideas and imple­
menting data graphics. In turn, they would lead to an explosive growth in new visualization
methods and techniques.

History Milestones

Contributions to the development and use of graphic forms. Instatistical graphics,
inventions of the bar chart, pie chart, line plot (all attributed to Playfair), the scatterplot
(attributed to J.F.W. Herschel; see Friendly and Denis (2004)), 3D plots (Luigi Perozzo),
boxplot (J. W. Tukey), and mosaic plot (Hartigan & Kleiner) provided new ways of repre­
senting statistical data.

Technology and enablement. It is evident that many developments had technologi­
cal prerequisites, and conversely that new technology allowed new advances that could not
have been achieved before. These include advances in rendering regarding computing and
video display.

Theory and data on perception of visual displays. Graphic displays are designed
to convey information to the human viewer, but how people use and understand this form
of communication was not systematically studied until recent times. As well, proposals
for graphical standards, and theoretical accounts of graphic elements and graphic forms
provided a basis for thinking of and designing visual displays.

Implementation and dissemination. New techniques become available when they
are introduced, mainly of implementations of graphical methods in software. But additional
steps are needed to make them widely accessible and useable.

2.2 Mathematical Terms

The term visualization is basically any technique for creating images, diagrams, or ani­
mations to communicate a message. Before moving on to computer based visualization,
it might be helpful to define other terms as they are crucial for understanding following
chapters.

Since this work deals, among others, with proposing a suitable model for rendering large
tree structures in hyperbolic plane, it is necessary to define terms tree structure, hyperbolic
plane, rendering, and some other.

Graph

In mathematics and computer science, graph theory is the study of graphs, which are
mathematical structures used to model pairwise relations between objects from a certain

6

0 root
O node
• leaf

Figure 2.3: Tree Data Structure

collection. A "graph" in this context is a collection of "vertices" (or "nodes") and a col­
lection of "edges" that connect pairs of vertices. It is either undirected, which means that
there is no distinction between the two vertices associated with each edge whatsoever, or
its edges may be directed from one vertex to another [12].

Graphs can be used to model many types of relations in many different systems. Also,
some practical problems can be represented by graphs. In mathematics, more specifically in
graph theory, one of the most important nonlinear structures is a tree. It is an undirected
graph in which any two vertices are connected by exactly one simple path. In other words,
any connected graph without cycles is a tree.

Tree Structure

Generally speaking, tree structure means a "branching" relationship between nodes, much
like that found in the trees of nature []. In order to describe a tree, definition of structure
is needed first.

A structure, in computer science and in terms of this paper more accurately a data
structure, is particular way of storing and organizing data in a computer, so that it can be
used efficiently [11].

Now, tree is a data structure, accessed beginning at the root node. Each node is either
a leaf or an internal node. A n internal node has one or more child nodes and is called the
parent of its child nodes. A l l children of the same node are siblings. Contrary to a physical
tree, the root is usually depicted at the top of the structure, and the leaves are depicted at
the bottom. It is a connected, undirected, acyclic graph and it is rooted and ordered unless
otherwise specified [1]. Mutual recursive definition would be

where tree is a /orest (list of trees), where tree consists of value and possibly another
/or est.

Different kinds of data structures are suited to different kinds of applications, and some
are highly specialized to specific tasks. The tree structure is perfectly suitable for dealing
with model proposal for rendering large hierarchies. Figure 2.3 shows the very simple
concept.

/ : [t[l],t[2],...,t[n]]

Uvf,

(2.1)
(2.2)

7

(a) Planar Representation of Hyperbolic Plane (b) Hyperbolic Triangle

Figure 2.4: Hyperbolic Plane Figures

Hyperbolic Plane and Geometry

In mathematics, hyperbolic geometry (also called Lobachevskian geometry or Bolyai-Lobachevskian
geometry) is a non-Euclidean geometry, meaning that the parallel postulate of Euclidean
geometry is replaced. The parallel postulate in Euclidean geometry is equivalent to the
statement that, in two dimensional space, for any given line R and point P not on R, there
is exactly one line through P that does not intersect R; i.e., that is parallel to R. In hyper­
bolic geometry there are at least two distinct lines through P which do not intersect R, so
the parallel postulate is broken. Models have been constructed within Euclidean geometry
that obey the axioms of hyperbolic geometry, thus proving that the parallel postulate is
independent of the other postulates of Euclid (assuming that those other postulates are in
fact consistent).

A characteristic property of hyperbolic geometry is that angles of a triangle add to
less than a straight angle. In the limit as the vertices go to infinity, there are even ideal
hyperbolic triangles in which all three angles are 0° [13].

Models of Hyperbolic Plane

There are four models commonly used for hyperbolic geometry: the Klein model, the
Poincaré disk model, the Poincaré half-plane model, and the Lorentz model (also called
Hyperboloid model). These models define a real hyperbolic space which satisfies the ax­
ioms of a hyperbolic geometry. Despite their names, the first three mentioned above were
introduced as models of hyperbolic space by Beltrami, not by Poincaré or Klein.

The Klein model, also known as the projective disc model and Beltrami-Klein model,
uses the interior of a circle for the hyperbolic plane, and chords of the circle as lines.

• This model has the advantage of simplicity, but the disadvantage that angles in the
hyperbolic plane are distorted.

• The distance in this model is the cross-ratio, which was introduced by Arthur Cayley
in projective geometry.

A non-Euclidean geometry, also called Lobachevsky-Bolyai-Gauss geometry, having con­
stant sectional curvature —1. This geometry satisfies all of Euclid's postulates except the

8

parallel postulate, which is modified to read: For any infinite straight line L and any point
P not on it, there are many other infinitely extending straight lines that pass through P
and which do not intersect L.

In hyperbolic geometry, the sum of angles of a triangle is less than 180°, and triangles
with the same angles have the same areas. Furthermore, not all triangles have the same
angle sum. There are no similar triangles in hyperbolic geometry. The best-known example
of a hyperbolic space are spheres in Lorentzian four-space. The Poincare hyperbolic disk
is a hyperbolic two-space. Hyperbolic geometry is well understood in two dimensions, but
not in three dimensions.

In Web development jargon and information visualization, a hyperbolic tree (often short­
ened as hypertree) defines a graph drawing method inspired by hyperbolic geometry. Ge­
ometric models of hyperbolic geometry include the Klein-Beltrami model, which consists
of an open disk in the Euclidean plane whose open chords correspond to hyperbolic lines.
A two-dimensional model is the Poincare hyperbolic disk. Felix Klein constructed an ana­
lytic hyperbolic geometry in 1870 in which a point is represented by a pair of real numbers
(xi, £2) with

x\ + xl<l (2.3)

(i.e., points of an open disk in the complex plane) and the distance between two points is
given by

1 - x\X\ - x2X2 d(x, X) = a cosh 1

^i-
x
f-4\/i-xf-xl

[10]. (2.4)

2.3 Known Methods and Existing Software

Thorough research on available tree visualizers divided implementations into two basic
categories: Java based applications and applets, and JavaScript libraries and frameworks.
Implementations in C / C + + and other languages exist too, but they are less suitable for
web environment.

Java

Among many implementations for visualizing tree structures in Java, the most sophisti­
cated seems Treeviz. It can be downloaded as a J N L P (Java Network Launching Protocol)
file2. J N L P extension allows the program to be distributed and managed as a standalone
application via the Internet.

Treeviz has fairly simple, user-friendly interface. It allows to choose from following
different ways of model view: Circular Treemap, Rectangular Treemap, Sunburst Tree,
Icicle Tree, Sunray Tree, Iceray Tree, and Hyperbolic Tree. Example of each model view
can be seen in Figure 2.5, individual images are self-explanatory. Treeviz is intented to
display primarily directory structures of a computer's H D D (hard disk drive), but it can
also read X M L files in a specific format.

There is one interesting fact about licensing of Treeviz software. A l l its source code
is copyrighted by Werner Randelshofer, but the only Hypertree code is licensed under the
M I T licence. More on Hypertree licensing and patent can be found in Appendix A .

2Available at http://www.randelshofer.ch/treeviz/.

9

http://www.randelshofer.ch/treeviz/

(g) Hyperbolic Tree

Figure 2.5: Different Tree View Models
[source: http: //www. randelshof er. ch/treeviz/]

10

(a) ForceDirected (b) Spacetree (c) RGraph

Figure 2.6: Different Tree View Models
[source: http://philogb.github.com/jit/demos.html]

JavaScript

Implementations of a hyperbolic browser in JavaScript are less common than in Java. A l -
tough, there are obviously more JavaScript frameworks and libraries for graph visualization
in general (e.g. Highcharts JS, ExtJS, GraphUp).

The JavaScript tree visualizer project with the best search engine optimization is ob­
viously a JavaScript InfoVis Toolkit (Jit). When "hypertree in javascript" is googled, no
other implementations can be found at the first three pages of results3, but Jit. It can be
downloaded 4 as a single-file JavaScript library.

Jit is copyrighted by SenchaLabs, its author is Belmonte, N . G . Besides its capability
of drawing area, bar and pie charts, it can visualize trees in the following ways: Sunburst,
Icicle, TreeMap, HyperTree, ForceDirected, SpaceTree, RGraph. Last three types are shown
in Figure 2.6.

3Dated to January 1st, 2013.
4Available at: http: / /phi logb. github. com/ j it/demos. html.

11

http://philogb.github.com/jit/demos.html

Chapter 3

Features Evaluation and
Requirements Analysis

This chapter evaluates current state of the art. It tries to constructively criticize available
software in order to design the best possible requirements for hyperbolic browser runnable
in modern web environment1.

3.1 Evaluation

When speaking of Java powered Treeviz described above, the core implementation of hy­
perbolic tree view is at very high level. After precomputing the layout, everything seems
very smooth. Navigation within the displayed model of more than 1000 nodes does not
have impact on user experience at all. What user might find disappointing is the fact, that
there are almost no configuration options. Nodes can not be expanded/collapsed, there are
no hover or tooltip effects, labeling is not adjustable at all, and reset button that would
take you back to the centered root is missing. Unfortunately, when there are too many
children nodes, undesirable "filled circle effect"2 appears.

Jit's implementation of hypertree view model in JavaScript is rather poor. The user
interface does not even offer a custom manipulation with the model; only clicking a partic­
ular node brings it to the center of the canvas. Latest web technologies offer much more
than that.

3.2 Web Environment

Web application development has become very popular during the last two decades. Soft­
ware development related to web allows users to enhance their experience by using variety
of features on a computer as well as on T V , game console, tablet or even on a mobile phone.
Such an approach has many advantages, especially when used within company intranet with
no need for access to the Internet:

Zero install
Web browser already available within every modern operating system

1Modern web environment means browser supporting HTML5 and respecting W W W standards.
2Filled circle effect occurs when there are to many edges connecting a parent node with its children.

When rendered on a small canvas, they actually fill the circle around the parent.

12

Zero maintenance
User is not the administrator

Always up-to-date
Immediate "automatic" update when new version is released

Low hardware requirements
Not entirely true, but generally web applications can be run on slower portable de­
vices, unlike standalone applications

Cross platform compatibility
Possible differences only between browsers, not between operating systems

Portability
Since no installation, it can be run from any place in the world 3

Direct access to the latest information
Immediate update in case of releasing new versions

Surely, the web environment has some disadvantages too, e.g. interfaces are often not as
sophisticated, it can take longer to develop such apps as they are more complex, a need
for different browsers support, security risks.. . However, some of these disadvantages do
not apply to the company intranet deployment (security risk is lower, standard browser is
recommended etc.), and some are simply worth overcoming.

3.3 Requirements Analysis

According to evaluated features in current state of the art applications, and also according
to nowadays advantages and/or demands for web applications, I decided to implement
hyperbolic browser named Graphs In Canvas Hyperbolic, simply called G r l n C H .

Purpose of G r l n C H is to enable graphical representation of large tree structures and
to allow fast movement in its data model. Application shall be able to load and display
a general tree structure (as defined in Chapter 2.2), and present it as graph projected
onto hyperbolic plane. This graph shall be visualized and viewable in general modern web
browser as part of the website with use of H T M L 5 technology.

Software requirements include both general as well as interface related requirements:

G r l n C H Requirement 001:

(a) G r l n C H shall be written in JavaScript and shall be delivered as a single-file
JavaScript object.

(b) G r l n C H application shall be configurable at least in this extent:

i . Width, height,
i i . X M L file upload,

i i i . Debug mode on/off.

G r l n C H Requirement 002:

(a) G r l n C H shall perform smoothly to ensure positive user interface.
3Assuming the Internet connection is available.

13

(b) G r l n C H shall handle X M L s with 1 to 500 nodes without any significant impact
on user interface smoothness.

(c) G r l n C H shall eliminate a "filled circle effect", when necessary.

G r l n C H Requirement 003:

(a) G r l n C H shall bring "Save as picture" dialogue when user clicks on S A V E button.

(b) G r l n C H shall have means to save user's current view.

(c) G r l n C H shall have means to save default view with the root centered in the
middle.

(d) G r l n C H shall have means to save the view as both raster and vector.

G r l n C H Requirement 004:

(a) When mouse hovers over a node, the node shall be highlighted.

(b) When user clicks an collapse symbol on a node, the node shall hide all its de­
scendants.

(c) When user clicks an expand symbol on a node, the node shall show all its children.

G r l n C H Requirement 005:

(a) Font style and font family of G r l n C H shall be customizable using CSS.

(b) G r l n C H shall provide user interface, that allows to switch from current view to
initial view (tree root in the center of canvas).

(c) G r l n C H shall provide minimalistic, easy and intuitive design.

G r l n C H Requirement 006:

(a) G r l n C H shall be able to load initial data in both X M L and J S O N file format, as
defined in section 5.1.

3.4 Other Features

Besides provided requirements, there are also possible features or problems, that can be
evaluated and resolved after the implementation of the basic core, such as:

Nodes labeling
Algorithm for positioning the labels of the nodes

A J A X loading
Dynamic loading of nodes when necessary, e.g. after expanding a collapsed node

Anti-aliasing
Ability to minimize the distortion of artifacts

Touch screen optimization
Optimization for touch screen devices, such as tablets, phones, etc.

Mobile phone app
Applications for Google Play 4 and Apple App Store

4 Formerly known as Android Market

14

Custom styling
Ability to apply custom CSS styles

Magnifying glass
Magnifying glass effect to resolve "filled circle" effect

A l l necessary information regarding both mandatory and optional features, requirements
and web limitations were collected and summarized. Last thing to do, before implemen­
tation can be realized, is to go through and analyze the mathematics model of hyperbolic
browser.

15

Chapter 4

Mathematics Model Proposal

This chapter explains in detail the role of hyperbolic plane inside the application, and
presents the Poincare model in conjuction with Klein-Beltrami open disk. It helps the
reader to better understand the nature of hyperbolic geometry on which the application is
built.

The open unit disk is commonly used as a model for the hyperbolic plane, by intro­
ducing a new metric on it, the Poincare metric. The Poincare disk is a conformal model
of hyperbolic space, i.e. angles measured in the model coincide with angles in hyperbolic
space, and consequently the shapes of small figures are preservedf].

Procedure of transforming tree into hypertree and then to the unit disk is quite com­
plicated. Therefore it is necessary to divide the problem into several simpler sub-problems.
Once the structure is loaded, verified and parsed, all the information is stored within the
core of the application/library that can now start working with it. First step is to lay out
all nodes onto the hyperbolic plane, which is described in detail in section 4.1. The result
of this layout is that each node knows its wedge, angle and distance from its parent.

Once this is done, nodes need to be mapped onto the unit disk. This is because it is
not simply possible to display the hyperbolic plane in just two dimensions on the screen.
Mapping uses the Poincare model and is described in Section 2.2. Once mapping is done,
each node has its x and y coords of the unit disk.

4.1 Layout onto Hyperbolic Plane

When tree is loaded from X M L or JSON, the layout is being computed. The mathematical
model of hyperbolic geometry is used. Hyperbolic geometry (also called Lobachevskian
geometry) is non-Euclidean geometry, meaning that the parallel postulate of Euclidean
geometry is redefined. The parallel postulate of Euclidean geometry says that, in two
dimensional space, for any given line I and point P not in I, there is one and only one line
k through the point P which has no intersection with line I, i.e., lines I and k are parallel.

In hyperbolic geometry the parallel postulate is not fulfilled. Simply put, in Euclidean
geometry two parallel lines have still the same distance between themselves. In the hy­
perbolic geometry distance between these two lines distance grows exponentially, the lines
diverge. That means, that if the distance grows, the space between the parallel lines grows
too. Having the circle in the hyperbolic plane, its circumference and space grow exponen­
tially with its radius.

There is an abstraction that each node has a given wedge of the circle used in G r l n C H .

16

This wedge is used to lay out the node and its children in it. The node itself is placed at the
vertex of its wedge. The angle of the wedge is divided by the number of the node's children,
so every child has its own subwedge, inside of it is placed, and its children are placed in
it as well. So the node's children are placed along an arc in the node's wedge at an equal
distance from the node, and are placed in the middle of theirs subwedges. Because the lines
diverge as mentioned above, the subwedge of each node's child can span the same angle
of the wedge, as the node's wedge owns and no sibling subwedges can overlap. There are
operations like moving some distance and turning through some angle used for computing
the children's position relatively to its parent [7].

There is two dimensional space used for layout and visualization, so the complex num­
bers have to be used for the representation of the point on the plane.

The layout function is called recursively for each node. It starts from the root node and
goes through all its children. If the node has n children, its wedge is divided to n equal
subwedges for each child. The distance from the node to his child is computed by

where a is an angle between midline and edge of the subwedge, and s is the desired distance
between the child and the edge of its subwedge. d is computed distance. A l l values are
scalars; d and s are represented as hyperbolic tangent of the distance in the hyperbolic
plane [7].

Given the subwedge for the child and the distance to it, it is possible to compute the
child's wedge inside the subwedge, as seen in Figure 4.1. Given the subwedge's vertex p,
midline endpoint m and angle of the subwedge a, computed wedge of the child will be
calculated using the transformation

where the new position zt is the old position z rotated by angle 9 and moved to P.
Vertex calculation:

(4.1)

zt = Trans(z, (P,9))
9z + P

(4.2)

(4.3)
\ + P9z

p = Trans(dm, (p, 1))
, dm + p

(4.4)

(4.5)
1 + dmp

Middle endpoint:

rn Trans(Trans(m, (p, 1)), (—p, 1)) (4.6)

\1 + pm

1+pm "

(4.7)

rn (4.8)

17

Figure 4.1: Principle of Wedge Computation

Angle of the wedge:

/ rx,
a = y

(log (Trans (eia, (-d,l)))) (4.9)
a = 9 (log (Trans ((cos a + i sin a), (—d, 1)))) (4-10)

/ r^Vi (c o s a + i sin a) - d \ \
a = » log - V = ; . . , (4.11)

\ \ H — d (c o s a + z sm a) / /

where 3Tog(...) returns an angle of the wedge converted from the complex number returned
from the transformation. The number eta is the complex number in trigonometric form

reta = r(cosa + i s m a) , (4-12)

and for this case r = 1 simply
eta = cos a + i s i na . (4.13)

4.2 View Projection Initialization

When the layout function is finished, the tree graph is laid out on the hyperbolic plane.
Every node stores its own position that is permanent. It is never changed in the future,
unless the graph structure (X M L or JSON) is modified.

Before the whole graph is rendered on the canvas, the current view projection initial­
ization is needed. There is a request to have the root node in the center of the canvas, so
the initial view projection (P, 9) is set to (0,1).

4.3 Rendering

There is a mapping from the hyperbolic plane to the Euclidean two dimensional plane used
for visualizing the graph. There is a mathematical theory of the Poincare model of mapping
from the hyperbolic plane to the unit disk. The nearest neighborhood of the selected point
on the hyperbolic plane is in the focus and further neighborhood fades off toward the edge
of the unit disk. The special features of the Poincare model is that it preserves angles and
the lines in the hyperbolic plane are changed to the arcs on the unit disk that evokes a
perception of the hyperbolic plane.

18

(- L 0) ^ (- L i)
\ 1 /

(1,-1)* (1,0)

Figure 4.2: Unit Disk Positionig and Rotation

As seen in the picture 4, two main properties of the mapping the hyperbolic plane to the
unit disk are that the parts of the image decrease its size and its count grows exponentially
with their distance from the center of the unit disk.

There is the recursive node render method call used for rendering the whole graph. The
algorithm uses a Depth-First Search (DFS) methodology for traversing the graph. It starts
from the root node and explores as far as possible along branch before backtracking [3].
The flow diagram of the rendering is depicted in the picture 5.

At first, node's position in the hyperbolic plane is mapped to the unit disk. The defined
transformation under the current view projection is used for it. There are actions like
vector rotation, moving, translation and scaling used in mapping algorithm. If we have the
node position on the unit disk, the scaling of the position is performed to preserve follow
the actual canvas size, because the canvas is not the square, but mostly the rectangle with
different width and height, so the unit disk is an ellipse instead of the circle in that cases.

Then the visibility of the node and its label is computed. Visibility of the node and its
label is not the same. There are different threshold for their computation. The threshold
of the whole node is less than the threshold of the node's label visibility. Visibility of the
whole node is significant for rendering the edges of the graph. Edges are thin arcs or lines
so more edges can be rendered on the canvas and the distance between two edges can be
very small and the user can recognize these edges very well. The situation about nodes'
labels is different. Labels contains icon and the node's description, so much more area for
its display is needed. So there are three areas of the unit disk. The first area, the biggest of
all is the one the nodes' labels and the whole nodes are visible. The whole nodes' are and
their labels are not visible in the second area. There are the whole nodes and their labels
not visible at all in the third area. This equipment has no effect to the user's perception of
the graph structure; the visualization is clearer respectively.

If the current node has no children, the current node is the leaf of the tree and there
is nothing to do again. Otherwise there are children who must be rendered; the operations
described by next paragraphs will be iterated for each child.

If the number of children is bigger than one hundred; children rendering optimization

19

is needed. The graph visualization may not be providing an easy survey without the
optimization. The distance between sibling children may be very small so the user may not
be able recognizing the context. The optimization is based on the theory that each child
should not be displayed without the context loss. The number of displayed children which
are nearer the focus is bigger than the number of displayed children which are further the
focus. Every xth child display is skipped relatively to the distance from the focus.

When the current child should be rendered, recursive call is performed to render child's
subtree. Then the edge from the child to its parent is rendered.

After the iteration over the node's children was finished, node's area the label should be
displayed in is computed. The computation node's label area is very important to prevent
the node labels overlapping.

If it is realized the node has some visible children, their rendering must be performed.
Their label's area must be recomputed and optimized to prevent an overlapping with parent
node and than their icons and labels can be rendered.

4.4 Changing View Projection

Changing the view projection is performed when user interacts the application. When the
user clicks on another position to make the focus on this point or drags the mouse to make
continuous focusing, view projection must be changed to get requested focus.

To change the view projection, the inverse mapping of the selected point on the canvas,
i.e., unit disk must be computed to get corresponding point in the hyperbolic plane. The
inverse mapping uses inverse transformation of the current transformation of the actual
view projection.

Given the current transformation {P, 9), the inverse transformation can be computed
by

P' = -OP Q' = 0, (4.14)

so the point in the hyperbolic plane is computed by

zt = Trans(z,{P',0')), (4.15)

where zt is the point on the hyperbolic plane and z is point selected in the unit disk.
The new graph's visualization is achieved by the composition of the current view pro­

jection and the new view projection. The composition (P, 9) of the transformations (Pi , 9\)
and (P21O2) is given by

p = 6>2Pi+P2 a _ 6>i6>2+giPTP2 (A 1 fi\
B2P1P2+1 U flaPiPa + l • V U)

20

Chapter 5

Implementation

After thorough description and explanation of the mathematics model in the previous chap­
ter, the application itself can now be implemented. Among the requirements listed in sec­
tion 3.3, it might be useful to sum up all the demands; not only from system or software
point of view, but also from architectural and functional perspective.

Application shall contain the top bar with heading, logo and control elements, rest of
the viewport shall be dedicated to displaying the graph, see the mockup design in Fig­
ure 5.1. Application shall allow user free rotation and seamless navigation within the tree.
Application shall also be apparent that there were increased focus on human factors. User
interface shall be smooth, clean, simple, modern and minimalistic. Touch device ready, and
of course, intuitive and easy to use.

The library itself shall be contained in a single file and installation shall be as simple
as including the file within a valid H T M L 5 web page and calling the constructor of the
G r l n C H class. Application shall support all modern browsers without any compatibility
issues or usage restrictions.

5.1 Technologies

The architecture of hyperbolic browser is neither complicated nor confusing, yet it is still
worth categorizing the available solutions for each part of the concept. To simply and
elegantly achieve all that is stated above, it is quite crucial to carefully choose appropriate
languages and technologies for each individual task.

In this section there are covered three fundamental parts of the implementation. Firstly,
I discuss and describe possibilites of how to store the data, that G r l n C H visualizes. Then
I focus on what to use to draw in a browser, and finally the topic of implementing the core
is covered.

Data Storage

G r l n C H shall be able to read several data formats for different purposes. Because it will be
implemented and run in web environment, there are couple of available options right there.
I should mention I would always prefer open source solutions, since they are standardized,
well documented and thoroughly discussed in many forums all over the world, hence they
are also easy to use. And, well, they are free of charge. The first web-related technology to
store the data that came to my mind was X M L .

21

GRcphs IN Canvas Hyperbolic

h t t p s V / w w w s t u d fit v u t b r c z Z - x z a j i c O ? /

^ J I file selecl.on"|r] | upload | | sow as | J^)> / \ ^ / | |

GrLnCH lose

Figure 5.1: G r l n C H Mockup Design

X M L is a well-supported Internet standard for encoding structured data. It can be easily
decoded by practically any programming language and also read or written by humans
using standard text editors. Many applications, especially modern standards-compliant
web browsers, can deal directly with X M L data. Therefore I decided to use it as one of the
main formats to store the nodes and edges in.

Supported X M L design, structurally corresponding with figure 2.3, including some ad­
ditional attributes, is shown in code in Listing 5.1. I kept it quite simple, there are, among
the root node and the node holding the graph file name, only two basic nodes called simply
node and edge .

1 <?xml version = "1.0" encoding = "UTF-8"?>

2 <!D0CTYPE GraphXML>

3 <GraphXML>

4 <graph filename = "vut-structure.xml">

5 <node nodeld="0">

6 <label>Father</label>

7 </node>

8 <node nodeId="l" collapsed="true">

9 <label>Son AK/label>

10 </node>

11 <node nodeId="2">

12 <label>Son A2</label>

13 </node>

14 <node nodeId="3">

15 <label>Son A3</label>

16 </node>

17 <node nodeId="4">

22

18 <label>Grandson BK/label>

19 </node >

20 <node nodeId="5">

21 <label>Grandson B2</label>

22 </node >

23 < edge source="0" target="l"/>

24 < edge source="0" target="2"/>

25 < edge source="0" target="3"/>

26 < edge source="l" target="4"/>

27 < edge source="l" target="5"/>

28 </graph>

29 </GraphXML>

Listing 5.1: A Simple Tree Structure Stored in X M L

For any web application, it is not possible to read directly from a file located on a
user's hard-drive. This is because of client-side browser security restrictions. File must be
uploaded to server before handling. Cookies could be used to deal with this issue instead,
but not all users have them turned, there are also size limitations for each browser and file
would have to be uploaded at least once for the very first time, so this is probably not a
very good workaround. Also, the purpose of cookies is to be of benefit to the user, not to
application as the main storage point[]. Furthermore, sometimes it is not desirable to run
the application on a server (e.g. demonstration purposes), therefore G r l n C H shall also be
able to read some other, client-side only format, preferably natively JavaScript compliant.

J S O N is a text-based open standard designed for data interchange in a human-readable
form and it is directly derived from JavaScript for representing simple data structures and
associative arrays, in JavaScript generally called objects. Despite its direct relationship to
JavaScript, it is language-independent, with parsers available for many languages1.

Since X M L file has to be uploaded, it makes sense to perform the parsing on the server
as well. Here I chose P H P to be in charge of this task. More specifically I used P H P
SimpleXMLElement

2

 class. After calling for new SimpleXMLElement , while passing the
X M L file as the first parameter to the constructor, the contents of the file can be type­
casted3 into an array and converted to J S O N string using json_encode function. The
output, that is perfectly human-readable and G r l n C H compliant, can be seen in code in
Listing 5.2 below.

1 {

2 node : [

3 { " © a t t r i b u t e s " : {nodeld:

4 { " © a t t r i b u t e s " : {nodeld:

5 collapsed: true},

6 { " © a t t r i b u t e s " : {nodeld:

7 { " © a t t r i b u t e s " : {nodeld:

8 { " © a t t r i b u t e s " : {nodeld:

9 { " © a t t r i b u t e s " : {nodeld:

10] ;

11 edge : [

JavaScript parser is available e.g. in Java, C#, C++, PHP, Python.
2http://php.net/manual/en/class.simplexmlelement.php
3Type-casting in PHP: http://php.net/manual/en/language.types.type-juggling.php.

0}, l a b e l :

1}, l a b e l :

2}, l a b e l :

3}, l a b e l :

4}, l a b e l :

5}, l a b e l :

"Father"},

"Son A l " ,

"Son A2"},

"Son A3"},

"Grandson Bl"},

"Grandson B2"}

23

http://php.net/manual/en/class.simplexmlelement.php
http://php.net/manual/en/language.types.type-juggling.php

12 { " © a t t r i b u t e s " : {source: 0 , target: 1}} ,
13 { " © a t t r i b u t e s " : {source: 0 , target: 2 } } ,
14 { " © a t t r i b u t e s " : {source: 0 , target: 3}},

15 { " © a t t r i b u t e s " : {source: 1, target: 4}},

16 { " © a t t r i b u t e s " : {source: 1, target: 5}}

17] ;
18 };

Listing 5.2: Simple Tree Structure Stored in JSON

G r l n C H will most likely need to know asynchronous loading of the nodes as part of
optimalization for better performance. The ability to read the data structure from a rela­
tional database might be very useful and memory-saving. When reading from X M L , the
whole file needs to be uploaded and parsed, then the desired data need to be found and
finally transformed into GrlnCH's internal representation and used. Whilst when reading
from an appropiately designed database, only the needed nodes and edges can be loaded
with no useless overhead data or already known ballast.

I decided to go with M y S Q L , as it is the world's most popular open source database
softwaref]. Simple and suitable E R D in U M L representing M y S Q L dialect could look
something like figure 5.2 and could be easily created executing query 5.3.

1 CREATE TABLE 'nodes' (

2 'id ' int (11) NOT NULL ,

3 ' l a b e l ' varchar(lOO) NOT NULL,

4 'collapsed' smallint(2) NOT NULL DEFAULT 0 ,
5 PRIMARY KEY ('id')

6
7

) ENGINE=InnoDB;

1
8 CREATE TABLE 'edges' (

9 'source ' int (11),

10 'target ' int (11) ,

11 FOREIGN KEY ('source') REFERENCES 'nodes'('id ') ,

12 FOREIGN KEY ('target') REFERENCES 'nodes ' (' id ')

13) ENGINE=InnoDB ;

14
15 INSERT INTO 'nodes' ('id', ' l a b e l ' , 'collapsed') VALUES

16 (0 , 'Father', 0) , (1, 'Son A l ' , 1),
17 (2, 'Son A2', 0) , (3, 'Son A3', 0) ,
18 (4, 'Grandson B l ' , 0), (5, 'Grandson B2', 0);

19
20 INSERT INTO 'edges' ('source', 'target') VALUES

21 (0 , 1) , (0 , 2) , (0 , 3) , (1 , 4) , (1 , 5) ;

Listing 5.3: Simple Tree Structure in M y S Q L Database

Canvas

The newest markup language for structuring and presenting content for the World Wide
Web and a core technology of the Internet, H T M L 5 , brought a new way of drawing in a
web browser. The element to draw on is called canvas and it is accessed by JavaScript
language. It looks like a decent choice for G r l n C H .

24

nodes
id int (PK)
label varchar(lOO)
collapsed boolean

f edges \

source int (FK)
target int (FKJ

-<

Figure 5.2: Simple E R D for tree storage in M y S Q L database

Unfortunately, canvas is raster-based, i.e., once any shape is drawn, the fact that it
was drawn is forgotten. If its position were to be changed, the entire scene would need
to be redrawn. This would complicate the implementation as there are nodes with hover
effects, click&drag movement and other dynamic features and complex behavior. More on
implementation experience of drawing graphs and charts in canvas can be found in my
bachelor's thesis called Graphs in Web Browser Using JavaScript [].

Somewhat older technology then canvas , that is offered by nowadays browsers to draw
shapes, is S V G . Unlike raster-based canvas , S V G is vector-based and each drawn shape
is remembered as an object in Document Object Model (DOM), which is rendered to a
bitmap. This means that when attributes of an S V G object are changed, the browser can
automatically re-render the scene. Also, appending standardized events, e.g. hover and
onclick^, is much more easy and straightforward.

There are two more options worth mentioning when it comes to drawing in browser.
One of them are Java applets. Java applet is a small application written in Java, delivered
to the user in a form of byte-code. After user's confirmation, browser launches Java applet
from a web page and then executes it using Java Virtual Machine (JVM) . It is a process
technically separated from the web browser, but it appears in a frame as integrated part of
the website. The greatest disadvantage lies in lack of support. Lots of new mobile devices,
including all Apple products running iOS, do not support Java applets5.

The other option, the last I am going to mention in this section, is Adobe Flash (formerly
called Macromedia Flash). It is a multimedia platform used for creating and displaying
vector graphics, animations and games which can be viewed in a browser using Adobe
Flash Player plugin. Also, as in the case of Java applets, the lack of support is a huge issue.
Again, I would refer to my bachelor thesisf], Chapter 4, where a detailed description of
the above mentioned drawing techniques can be found.

I decided to go with S V G . It is an XML-based vector image format for two-dimensional
graphics that has support for interactivity and animation. When speaking of animation,
as it is quite important from human factors point of view for G r l n C H to provide some
animated elements and figures (e.g. expandingcollapsing node with children), there are
three means by which S V G animation can be achieved:

Scripting
E C M A S c r i p t 6 is a primary means of creating animations and interactive user inter­
faces within S V G .

4More about H T M L event attributes can be found at http://www.w3schools.com/tags/ref_
eventattributes. asp.

5 According to Statistical analysis and market research of Internet usage trends (StatOwl.com), Java (all
versions) was supported by 66.24% devices during the past 6 months; http://www.statowl.com/java.php.

6 ECMAScript is the scripting language standardized by Ecma International. One of its well-known
dialects is already mentioned JavaScript.

25

http://www.w3schools.com/tags/ref_
http://StatOwl.com
http://www.statowl.com/java.php

Styling
Stylesheet-driven animation of S V G files from within the D O M using CSS is available
in WebKit powered browsers7 only.

SMIL
Synchronized Multimedia Integration Language (in this context also known as S V G + Time)
is a W3C recommended X M L markup language to describe multimedia presentations.
In order to view a SMIL presentation, client needs to have a SMIL player installed on
his/her computer. Only Safari, Opera, Mozilla Firefox and Google Chrome currently
support this markup.

I chose scripting from the following reasons:

• Support of scripting, especially on mobiles and tablets, is by far better than other
two mentioned means.

• G r l n C H shall be implemented in JavaScript, therefore the compatibility and unifor­
mity.

• I have already had plenty of experience with JavaScript from my bachelor thesis [15]
and from working as a Software Design Engineer in Honeywell on user interface of a
web based cloud application in Ex t JS 8 .

I should also mention that S V G is not supported by Internet Explorer until version 9. Old
versions use V M L instead. It is also an XML-based file format for two-dimensional vector
graphics. However, its syntax is different.

Core

Data storage and drawing issues were discussed and resolved and it is now time to take a
look at the G r l n C H application itself. It shall be written primarily in JavaScript and it
shall be H T M L 5 compliant. P H P shall handle the server operations upload and parsing, if
needed, and S V G shall be used for drawing the graph.

During the development, several minor issues arose and sometimes, it was necessary to
adjust pre-approved requirements or supply with additional auxiliary technologies. Most
of issues were resolved by adding some extra functionalities and/or using some additional
libraries.

First obvious topic to discuss was, whether to draw S V G nodes using JavaScript man­
ually. From my point of view, that would be a silly solution, since there is quite a lot
of available JavaScript frameworks that are supposed to simplify one's work with vector
graphics on the web. Such libraries appear and disappear in todays fast evolving web
environment very often and therefore I did not spend too much time choosing the one.

Two most referenced and used libraries, in my opionion, that was based on several
Google search queries and couple of articles found on the Internet, were RaphaelJS 9 by
Dmitry Baranovskiy, and jQuery S V G 1 0 by Keith Wood. While RaphaelJS is a standalone

7WebKit core powers Google Chrome and Safari; Mozilla Firefox is powered by Gecko and Internet
Explorer by Trident.

8Sencha ExtJS is a JavaScript front-end framework; http://www.sencha.com/products/extjs.
9Raphael - JavaScript Library: http://raphaeljs.com/.

1 0jQuery SVG: http://keith-wood.name/svg.html.

26

http://www.sencha.com/products/extjs
http://raphaeljs.com/
http://keith-wood.name/svg.html

library, jQuery S V G , as the name itself suggests, is a jQuery plugin. Both are licenced
under free software M I T License and both provide some sort of wrapper for creating and
editing S V G nodes within the D O M of H T M L page. I simply chose RaphaelJS because of
its rich variety of examples and quite good documentation.

When implementing X M L upload, I used jQuery Form Plugin. This is because standard
form in H T M L requires page refresh after submitting. From user's point of view, I find this
quite annoying. Luckily, this can be easily worked around using A J A X . A J A X is a group
of interrelated web development techniques to asynchronously both send and retrieve data
from a server. Concept is as follows:

• Create a simple H T M L form for file upload.

• Set the target to an iframe which is on the actual page, but not visible. This way,
when the form is submitted, only the hidden iframe will be refreshed.

• Call a JavaScript function on form submit to display the loading animation.

• Have an event handler registered for the iframe's load event to parse the response and
to hide the animation.

• Parse the response from iframe.

A J A X shall also handle queries to database when necessary. This feature is however not im­
plemented, because latter testing indicated it does not affect the performance dramatically.
More on that in section 5.3.

User can save the current view projection of the visualized tree in G r l n C H onto hard-
drive. Two extensions are availble: vector .svg and raster graphics .png. Saving S V G is
quite straightforward - the root S V G D O M node is serialized to string using XMLSerializer

1

and sent to browser with M I M E media type image/svg+xml . Desktop browser automat­
ically offers to download the created file.

Dealing with saving P N G was a little bit more tricky. Root S V G D O M node is serialized
to string similarly, like when saving S V G . Then, element canvas (discussed in section 5.1)
is created on the fly using JavaScript document. createElement funcion. Serialized S V G
is then imported onto canvas using Javascript S V G parser and renderer 1 3. After that,
canvas method toDataURL finally provides stringifed version of P N G image which is sent
to browser with M I M E image/png .

Last third party software I used during the implementation was Raphael S V G Import 1 4 .
It is not needed to run the application, but it was useful when converting S V G to RaphaelJS
source code when developing and working with the design.

5.2 Library Modules

Even though G r l n C H application is in its final form distributed as a single file l ibrary 1 5 ,
during the implementation it was necessary to divide it into several functional units. This

n jQuery is a JavaScript library designed to simplify the client-side scripting of H T M L .
1 2 Supported by Internet Explorer since version 9.
13canvg.js: Javascript SVG parser and renderer on Canvas by Gabe Lerner, MIT Licensed, http://code.

google.com/p/canvg/.
14raphael-svg-import.js: Raphael SVG Import 0.0.4, MIT Licensed, https://github.com/wout/

raphael-svg-import.
1 5 W i t h dependency to jQuery and RaphaelJS.

27

http://code
https://github.com/wout/

helped to achieve and maintain clear and transparent working environment during the whole
time.

math.js

Hyperbolic browser works with hyperbolic geometry and unit disk coordinates. Firstly,
I implemented object for working with complex numbers called Complex . Besides get­
ting and setting the real and imaginary value of the number, it can also return absolute
and inverted value, conjugated number and square root of a complex number. Additional
operations are:

Complex.add(Complex c)

Complex.conj ugate()

Complex.divide(Complex c)

Complex.distance(Complex c)

Complex.multiply(Complex c)

addition of c

complex conjugate

division by c

distance to c

multiplication by c

Vectors of complex numbers were needed as well, object Vector only stores its complex
base and direction. Projection presents object for inverting, multiplying and projecting
projections:

Projection, invert () inversion

Projection, multiply (Projection p) multiplication by p

Projection.project(Vector v) projection to v

JavaScript Math object only defines basic mathematical functions, that can be found in
Appendix B) . More complicated mathematical functions were implemented as methods of
HyperMath object using the pre-existing built-in functions:

HyperMath.sinh(x)

HyperMath.cosh(x)

HyperMath.asinh(x)

HyperMath.acosh(x)

hyperbolic sine of x

hyperbolic cosine of x

hyperbolic arc sine of x

hyperbolic arc cosine of x

hyperbolic.js

Poincare model of hyperbolic geometry is quite complicated. Luckily, it was greatly ex­
plained by Dr. David C. Royster, one of the teachers at University of Kentucky, during
spring lectures in 2004[]. After going through his Chapter 9 - Poincare Models of the
Hyperbolic Plane, I was able to create PoincareModel object with the following methods:

PoincareModel.rotate(Complex point, angle) rotation about point by angle

PoincareModel .translate (Complex c) translation by c

PoincareModel.distance(Complex c) distance to c

28

Algorithm 1 Layout onto Hyperbolic Plane

10

function L A Y O U T (parent)
children <— children of parent
for all children do

L A Y O U T (child)
if child is last sibling then

SCALE(child)
end if

end for
C O M P U T E (p a r e n t)

end function

> post-oder DFS

> recursive call

> scaling

> computing

Initilization

Parsing data

Layout onto hy­
perbolic plane

Algorithm 2 Projection Onto Unit Disk

1 function P R O J E C T (p a r e n t) > recursive function
2 for all children do
3 C O M P U T E (parent) > computing
4 PROJECT (ch i ld) > recursive call
5 end for
6 end function

Projection
onto unit disk

Plot

Figure 5.3: Flow of G r l n C H Application

29

model.js

For more readable and self-explanatory code I designed a model, that consists of Node and
NodeList objects. This is internal representation of the tree inside G r l n C H . Probably
the most useful is NodeList 's method eachDFSpostCustom , that accepts parameters
function and callbackFunction and is able to recursively walk through the whole tree acting
as post-order depth-first search algorithm. It also applies callback function for every node
that is last sibling at its level, as can be seen in Figure 5.3 represented by algorithm 1.

grinch.js

Last but not least comes the core, the brain of the browser. It controls flow of the whole
application. During initialization, G r l n C H creates two S V G canvases. One for the top bar,
containing heading, logo and controls, because it is only redrawn when new file is uploaded
or when window resized; the second one for displaying the tree is redrawn every time user
interacts with the graph.

The core also adjusts the size of the canvas for the screen dimensions, sets, parses
and stores the data into internal representation, computes the layout of the nodes on the
hyperbolic plane as well as projects them onto unit disk. It also takes care of drawing with
help of integrated library RaphaelJS.

In this part of the program, all actions and events are handeled. Library recognizes,
whether it is being run on a desktop computer, or on some sort of touch device, and adjusts
the size and behavior of the graph accordingly.

5.3 Results

Application is functional and finished and it was minified into single file grinch-min.js.
Following section describes installation and usage. It also covers pros and cons of the
solution(s) I chose, performance and compatibility issues. It includes several screenshots
from different devices for better imagination of the reader.

Installation

Installation was already briefly mentioned in Chapter 5. G r l n C H application is a single file
library and it takes up the whole body of a web page. The process of getting it to work is
so easy:

1. Create minimal valid H T M L 5 file16 (see Listing C . l in Appendix C).

2. Include jQuery, RaphaelJS and G r l n C H libraries (see Listing C.2 in Appendix C).

3. Optionally, add a hidden form into the page body tag to allow file uploads.

4. Optionally, add library for conversion from S V G to canvas to allow saving graph as
P N G .

1 6 The minimal valid HTML5 structure according to W3C Makup Validation Service

30

/£\ Grinch. • < > V A O C 0

Figure 5.4: G r l n C H Bar

(
(? F F A ^ 0 FCE

f~\ l - l O FBM
CJ-H rb€

O "ran

^ T) ^ i T

CTUPSY \
O UIFS

— # UPGM

) UITS

Figure 5.5: G r l n C H Canvas

Usage

Using G r l n C H shall be quite easy, natural and user friendly. The top bar, see figure 5.4,
takes 200 px off of screen height and contains basic control elements. Clicking on S V G (or
PNG) icon downloads the current tree view as S V G (or P N G 1 7) . The four arrows move the
graph view in the four directions, rotating arrows rotate it clockwise and counter-clockwise
and finally reset button resets the view into initial projection by performing a smooth
animation.

The rest of the screen is reserved for displaying the tree. Design is simple and minimal-
istic, see figure 5.5. Black circles with a white border are either leaf nodes, or expanded
regular nodes. Completely white circles are collapsed nodes. By clicking on a collapsed
node, additional data are downloaded (if needed) and node is expanded (if contains any
children). Clicking on the same node again causes him to collapse (except the root node,
that can not be collapsed). By clicking & dragging, either on one of the displayed nodes
or on the black background, user can move the tree into desired location. Rotation using
multi-touch gesture is supported only on touch device.

Performance

G r l n C H was developed on Google Chrome 26 and tested under Safari 6. It also runs under
Mozilla Firefox 20 and Internet Explorer 9. It is optimized for touch devices and was tested

1 7 When downloading PNG, canvg.js or any other library for importing SVG onto H T M L canvas must
be present.

31

in Google Chrome and Safari under iOS and Google Chrome under Android.
The best performance is experienced under Chrome and Safari. They are both powered

by WebKit rendering core. Most buggy and unstable is under Internet Explorer, that uses
core Trident. It runs fine in Firefox using core Gecko, but the experience is may be slower
and/or disjointed. G r l n C H is extremely demanding in several areas:

• JavaScript computation of hyperbolic plane coordinates.

• Adding lots of new nodes into D O M .

• Rendering quite complicated S V G .

There are several benchmark suits to measure the performance of the JavaScript engine
in a browser. I used Dromaeo18., because it aggregates variety of tests from other developer
suites, i.e. SunSpider or V8, and thus offers very complex testing with detailed information.
The testing was aimed specifically to tasks that G r l n C H performs the most:

D O M Core Tests

D O M Attributes Setting and getting D O M node attributes. Tests: dom, at­
tributes.

D O M Modification Creating and injecting D O M nodes into a document. Tests:
dom, modify.

D O M Query Querying D O M elements in a document. Tests: dom, query.

D O M Traversal Traversing a D O M structure. Tests: dom, traverse.

Dromaeo/SunSpider/V8 JavaScript Tests

Rotating 3D Cube Rotating the individual pixels of a cube. No rendering done.
Tests: object, array, property, math.

Trigonometric Calculation Calculate values from hyperbolic and trigonometric
functions. Tests: math, looping.

Richards Benchmarks A series of benchmarks to test the quality of system imple­
mentation languages. Tests: functions, object.

According to these carefully selected tests, visualized in charts 5.6 are Google Chrome
and Safari the fastest. Mozilla Firefox takes second place and the worst optimization of
the above listed JavaScript operations has Internet Explorer. This generally means, that
WekBit core is best optimized for G r l n C H , Gecko is not too bad and Trident is the worst
to run.

Besides D O M core tests and JavaScript optimization, it would me more than appropriate
to find out, what is the optimization of S V G rendering in different browsers. I let S V G
draw from 50 to 5000 circles on canvas size 2048 x 1536 px. In Figure 5.7 there are also
results of H T M L canvas to have something to compare the results with.

To sum up, every S V G element is appended to the Document Object Model (DOM) and
can be manipulated using a combination of JavaScript and CSS. Moreover, one can attach
an event handlers to a S V G element or update its properties based on another document
event. Canvas , on the other hand, is a simple graphics A P I . It draws pixels and nothing

18Dromaeo: JavaScript Performance Testing Suite by John Resig; http://dromaeo.com/

32

http://dromaeo.com/

• Internet Explorer • Mozilla Firefox • Google Chrome • Safari

DOM Attributes

DOM Modification

DOM Traversal

400

number of circles

(a) DOM Core Tests

I Internet Explorer • Mozilla Firefox Google Chrome • Safari

Rotating 3D Cube

g Trigonometric Calculation

Richards Benchmarks

number of circles

(b) JavaScript Tests

Figure 5.6: D O M and JavaScript Benchmark Results

more. There's no way to alter existing drawings or react to events. If an update of canvas
image is needed, the scene needs to be redrawn.

As a result, even though S V G showed to be overall slower than canvas mostly because
of working with D O M , it was still better choice for hyperbolic browser. One can assume that
the overhead of redrawing the scene manually would take much longer to both implement
and then perform, than leaving it to a little slower S V G . Furthermore, it is not unexpected
that S V G optimization in browsers will get better as more developers start using it.

Use in Practice

Parts of the code, measured results and the idea of hyperbolic browser found use in Hon­
eywell Technology Solutions in Brno. Condition Based Maintenance team is seriously con­
sidering usage of such concept within their own applications; negotiations with customers
are taking place.

Also, article about G r l n C H was accepted into the collection of Electrical Engineering,
Information and Communication Technologies (EEICT) conference in 2013 held by Fac­
ulty of Information Technology and Faculty of Electrical Engineering and Communication

33

• Internet Explorer • Mozilla Firefox • Google Chrome • Safari

400 -

100 500

number of circles

(a) SVG

I Internet Explorer • Mozilla Firefox Google Chrome • Safari

100 500

number of circles

(b) canvas

Figure 5.7: S V G vs. H T M L canvas

at Brno University Technology. It placed among the nine best projects in Graphics and
Multimedia category.

34

Chapter 6

Conclusion and Future Work

The aim of this thesis was to get acquainted with methods of visualization of tree structures
and existing software, and to propose and implement hyperbolic browser suitable for web
environment. This work is based on the article Hyperbolic browser: A focus + context
technique for visualizing large hierarchies by J . Lamping and R. Rao published in Journal
of Visual Languages and Computing in 1996.

Analysis of requirements for efficient visualization of large tree structures in hyperbolic
plane and evaluation of features considered for the task resulted in a suitable mathematical
model for computing coordinates of nodes in hyperbolic plane, distributed as a single-file
script called G r l n C H (Graphs in Canvas Hyperbolic). It is a pure JavaScript library that
transforms any modern web browser into hyperbolic tree visualizer using S V G technology.
The browsing experience is truly modern, uncommon and quite eye-catching. G r l n C H was
also optimized for touch devices and it is easily usable on any mobile device, assuming it
runs browser with H T M L 5 support.

The key feature of presented hyperbolic browser is the fact, that it offers seamless navi­
gation while browsing large tree hierarchies, thus avoids loosing orientation when exploring
trees with enormous width and depth.

G r l n C H experience is the best when run in browsers powered by WebKit rendering core,
accelerated directly by G P U . Optimization for slower devices, touch devices and Internet
Explorer were the most tricky parts. Understanding hyperbolic geometry rules and laws
was also quite a challenge.

Testing on real data confirmed that concept of hyperbolic browser is hiding great po­
tential and numerous opportunities of how to enhance its functionality and improve user
experience. G r l n C H could be used for educational purposes, for example to search for one
specific node (representing e.g. some biological species) within very deep tree structure
(e.g. evolutionary tree of life) and then automatically navigate to that node providing
clear instructive animation. Honeywell is considering using hyperbolic browser to navigate
among parts of airplane engine when it needs to be dismantled.

35

Literature

[1] P. E . Black and 1999 Algorithms & Theory of Computation Handbook, "tree" -
dictionary of algorithms and data structures, crc press 11c.
h t tp : / /www.nis t .gov/dads/HTML/tree .h tml, 14 August 2008. [Online; accessed
5-Jan-2013].

[2] Oracle Corporation. Mysql :: About mysql. http://www.mysql.com/about/, 2013.
[Online; accessed 8-May-2013].

[3] M . Friendly. Milestones in the history of data visualization: A case study in
statistical historiography. In C. Weihs and W. Gaul, editors, Classification: The
Ubiquitous Challenge. Springer, New York, 2005.

[4] M . Friendly and E . Kwan. Effect ordering for data displays. In Computational
Statistics & Data Analysis. Elsevier B .V. , 2002.

[5] M . Haverbeke. Eloquent JavaScript: A Modern Introduction to Programming. No
Starch Press, 2011.

[6] D. Knuth. The art of computer programming. Addison-Wesley, Upper Saddle River,
N J , 2005.

[7] J . Lamping and R. Rao. Hyperbolic browser: A focus + context technique for
visualizing large hierarchies. Journal of Visual Languages and Computing, (7):33-35,
1996.

[8] Computer History Museum. Timeline of computer history.
h t tp : / /www.computerh is tory .org / t imel ine / , 2006. [Online; accessed 5-Jan-2013].

[9] D. C. Royster. Class worksheets and lecture notes.
ht tp: / /www.ms.uky.edu/~droyster /courses/spring04/ , 2013. [Online; accessed
12-May-2013].

[10] E . W. Weisstein. Hyperbolic geometry — mathworld-a wolfram web resource, 2012.
[Online; accessed 30-December-2012].

[11] Wikipedia. Data structure — Wikipedia, the free encyclopedia.
h t t p : / / e n . w i k i p e d i a . o r g / w i k i / D a t a _ s t r u c t u r e , 2012. [Online; accessed
30-December-2012].

[12] Wikipedia. Graph theory — Wikipedia, the free encyclopedia.
h t tp : / / en .wik iped ia .o rg /wik i /Graph_ theory , 2012. [Online; accessed
30-December-2012].

36

http://www.nist.gov/dads/HTML/tree.html
http://www.mysql.com/about/
http://www.computerhistory.org/timeline/
http://www.ms.uky.edu/~droyster/courses/spring04/
http://en.wikipedia.org/wiki/Data_structure
http://en.wikipedia.org/wiki/Graph_theory

[13] Wikipedia. Hyperbolic geometry — Wikipedia, the free encyclopedia.
h t tp : / / en .wik iped ia .o rg /wik i /Hyperbo l i c_geomet ry , 2012. [Online; accessed
30-December-2012].

[14] Wikipedia. Unit disk — Wikipedia, the free encyclopedia.
h t t p : / / e n . w i k i p e d i a . o r g / w i k i / U n i t _ d i s k , 2013. [Online; accessed 12-May-2013].

[15] J . Zajic. Graphs in Web Browser Using JavaScript. Bachelor Thesis, B U T FIT,
Brno, Czech Republic, 2011.

37

http://en.wikipedia.org/wiki/Hyperbolic_geometry
http://en.wikipedia.org/wiki/Unit_disk

Nomenclature

9 Imaginary part of a number

G r l n C H Graphs In Canvas Hyperbolic (name of the implemented application)

A J A X Asynchronous JavaScript and X M L

CSS Cascading Style Sheet

DFS Depth-First Search

D O M Document Object Model

E E I C T Electrical Engineering, Information and Communication Technologies

E R D Entity Relationship Diagram

G P U Graphics Processing Unit

H D D Hard disk drive

H T M L 5 HyperText Markup Language

iOS Apple Operating System for Mobile Devices

Jit JavaScript Info Vis Toolkit

J N L P Java Network Launching Protocol

JSON JavaScript Object Notation

J V M Java Virtual Machine

M I M E Multipurpose Internet Mai l Extensions

M V S Markup Validation Service

MySQL My Structured Query Language

P H P P H P : Hypertext Preprocessor

P N G Portable Network Graphics

SMIL Synchronized Multimedia Integration Language

S V G Scalable Vector Graphics

38

U M L Unified Modelling Language

V M L Vector Markup Language

W3C World Wide Web Consortium

W W W World Wide Web

X M L Extensible Markup Language

3!)

Appendix A

Description of Related Art

The hyperbolic browser idea discussed and studied in this project is based on a paper
entitled "A Focus+Context Technique Based on Hyperbolic Geometry for Visualizing Large
Hierarchies" by Lamping, J . and Rao, R., published in Apr i l 3rd, 1995 in Journal of Visual
Languages and Computing. In the Acknowledgments section of that paper, the authors
claim that Xerox Corporation is seeking patent protection for the described technology.

There are several patents issued by U.S. Patent and Trademark Office, related to the
hyperbolic browser described in Rao's and Lamping's paper. After seeking "Tree visualiza­
tion system and method based upon a compressed half-plane model of hyperbolic geometry"
under patent No. 6901555 at United States Patent and Trademark Office Website 1, the
following can be read:

A focus+context technique for visualizing large hierarchies is described in U.S.
Pat. No. 5,590,250, entitled "Layout of Node-link Structures in Space with Neg­
ative Curvature," in U.S. Pat. No. 6,108,698, entitled "Node-Link Data Defin­
ing a Graph and a Tree Within the Graph," and in U.S. Pat. No. 5,619,632,
entitled "Displaying Node-link Structure with Region of Greater Spacings and
Peripheral Branches." Related prior art patent applications include: Local Rel­
ative Layout of Node-Link Structures in Space with Negative Curvature. John
Lamping, Ramana Rao, Tichomir Tenev. E P Publication No. 0977155, 2 Feb.
2000. Mapping a Node-Link Structure to a Rendering Space Beginning from
and Node. Ramana Rao, John Lamping, Tichomir Tenev. E P Publication No.
0977153, 2 Feb. 2000. Controlling Which Part of Data Defining a Node-Link
Structure is in Memory. Tichomir Tenev, John Lamping, Ramana Rao. E P
Publication No. 0977131, 2 Feb. 2000.

This semestral project, including the implementation of the hyperbolic browser, is in­
tended for educational purposes only.

searching for patent numbers can be accessed at http://patft.uspto.gov/netahtml/PTO/srchnum.htm

40

http://patft.uspto.gov/netahtml/PTO/srchnum.htm

Appendix B

JavaScript Mathematical Functions

Math.abs(x)

Math.acos(x)

Math.asin(x)

Math, atari (x)

Math.atan2(x, y)

Math.ceil(x)

Math.cos(x)

Math.exp(x)

Math.floor(x)

Math.log(x)

Math.max(x, y)

Math.min(x, y)

Math.pow(x, y)

Math.random()

Math.round(x)

Math.sin(x)

Math.sqrt(x)

Math.tan(x)

the absolute value of x

arc cosine of x

arc sine of x

arc tangent of x

arc tangent of x y

integer closest to x and not less than x

cosine of x

exponent of x (Math.E to the power x)

integer closest to x , not greater than x

log of x base e

the maximum of x and y

the minimum of x and y

x to the power y

pseudorandom number from 0 to 1

integer closest to x

sine of x

square root of x

tangent of x

41

Appendix C

GrlnCH Installation

1 <!doctype html>

2 <html>

3 <head>

4 <meta charset=utf -8>
5 <title>GrInCH</title>

6 </head>

7 <body>

8 <!-- content -->

9 </body>

10 </html>

Listing C . l : Minimal valid H T M L 5 file

1 <!doctype html>

2 <html>

3 <head>

4 <meta charset=utf -8>
5 <script type="text/javascript"

6 src = "http://code.jquery.com/jquery-latest.inin.js">

7 </script >

8 <script type = " t e x t / j a v a s c r i p t "

9 src = "http:/ / g i t hub .com/DmitryBaranovskiy/raphael-inin.js">

10 </script>

11 <script type="text/javascript"

12 src="js/grinch.js">

13 </script >

14 <title>GrInCH</title>

15 </head>

16 <body>

17 <script type="text/javascript">

18 <!--

19 $(document).ready(function() {

20 var grinch = new GrinchO;

21 var rawData = // Tree Structure Stored in JSON

22 data = JSON.parse(rawData);

42

http://code.jquery.com/jquery-latest.inin.js

23 grinch.setData(data) ;

24 }) ;
25 / / - - >
26 </script>

27 </body>

28 </html>

Listing C.2: G r l n C H Minimal Installation

43

Appendix D

Screenshots

(a) Screenshot of GrlnCH on iPhone 5

(b) Screenshot of GrlnCH on iPad

Figure D . l : Screenshots

44

Appendix E

DVD Contents

Attached D V D contains all the source code, including benchmark results from testing, in
the following directory structure:

/benchmarks.xlsx
Results of benchmark testing

/install.txt
The installation manual

/thesis.pdf
Master's thesis

/videol.mov
Demonstration video #1

/video2.mov
Demonstration video #2

/tex/*
Source codes of the thesis

/www/
G r l n C H application

index.html
H T M L 5 web page with included G r l n C H

js/*
JavaScript libraries

source/*
Testing X M L files

45

