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Abstract 
This thesis covers the problem of artifacts i n electroencephalography ( E E G ) data and the 
methods used to remove them wi th a focus on adaptive filtering. Art ifacts are an unavoid­
able part of the E E G method and they have a negative impact on the analysis of the results 
by covering the bra in signals of interest. Adapt ive filtering is a versatile method that can be 
used for removal of these artifacts i f the reference signal correlated wi th the artifact is pro­
vided. The pr imary goal of this thesis is a proposal and implementat ion of the framework 
that can be used to apply methods of adaptive filtering on E E G data. The secondary goal is 
to examine the effectiveness of a novel Q - L M S algori thm on the task of removal of artifacts 
from E E G as it was not yet used i n this scenario. The work is introducing a l ibrary in a 
P y t h o n environment for E E G adaptive filtering and shows and evaluates experiments for 
E E G artifact removal scenarios wi th a Q - L M S filter implemented in the proposed library. 
In this library, a user is able to construct customizable filtering pipelines. The l ibrary of­
fers a variety of adaptive filters and reference-building methods wi th a focus on processing 
neurological data i n B I D S format. However, the user is able to share his custom filters w i th 
the framework as well as use his own input data and reference signals. The experiments 
wi th Q - L M S showed that it is a well-functioning adaptive a lgori thm yet the filtering results 
were moderate in contrast to results obtained by other standard adaptive algorithms. 

Abstrakt 
Tato p r á c e se zabývá p r o b l é m e m a r t e f a k t ů ve z á z n a m e c h elektroencefalografie ( E E G ) a 
metodami jejich o d s t r a n ě n í s d ů r a z e m na a d a p t i v n í filtrace. Artefakty jsou neodmys­
li telnou součás t í metody E E G a n e g a t i v n ě ovlivňují a n a l ý z u výs ledků t í m , že překrýva j í 
zá jmové mozkové signály. A d a p t i v n í filtrace je v š e s t r a n n o u metodou, kterou lze použ í t 
pro o d s t r a n ě n í t ě ch to a r t e f ak tů , pokud je k dispozici referenční s ignál kore lovaný s arte­
faktem. H l a v n í m cí lem t é t o p ráce je n á v r h a implementace frameworku, k t e r ý u m o ž n í 
apl ikaci metod a d a p t i v n í filtrace na E E G data. D r u h o t n ý m cílem je posouzen í úč innos t i 
nového algori tmu Q - L M S př i o d s t r a ň o v á n í a r t e f a k t ů z E E G , p r o t o ž e dosud nebyl v tomto 
scénář i použ i t . P r á c e p ř eds t avu j e knihovnu v p r o s t ř e d í P y t h o n pro a d a p t i v n í filtrace E E G 
a ukazuje a h o d n o t í experimenty pro scénáře o d s t r a ň o v á n í a r t e f a k t ů s p o u ž i t í m Q - L M S fi l­
t r u i m p l e m e n t o v a n é h o v n a v r ž e n é kn ihovně . V t é t o k n ih o v n ě je už iva te l schopen v y t v á ř e t 
p ř i způsob i t e lné f i l t rační pipeliny. K n i h o v n a nab íz í r ů z n é a d a p t i v n í filtry a metody vy tvá ř en í 
referenčního s igná lu s d ů r a z e m na zpracován í neuro logických dat ve f o r m á t u B I D S . Uži­
vatel však m ů ž e sdí let v l a s tn í filtry s frameworkem a t a k é použ íva t v l a s tn í v s t u p n í data 
a referenční signály. Exper imenty s Q - L M S algori tmem ukázaly , že se j e d n á o d o b ř e fun­
gující a d a p t i v n í algoritmus, avšak výs ledky filtrace byly p r ů m ě r n ý ve s r o v n á n í s výs ledky 
dosaženými j i nými s t a n d a r d n í m i a d a p t i v n í m i algori tmy 
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Chapter 1 

Introduction 

W i t h the emersion of Neurological disciplines, the need to analyze brain act ivi ty has risen 
to prominence i n the last few decades. Elect roencephalography(EEG) is one of the tools 
used for this purpose that has seen wide employment i n medical and scientific circles. Its 
advantage is its noninvasive nature and relatively cheap setup. However, E E G comes wi th 
its own set of problems and one of the biggest is the introduct ion of artifacts to the recorded 
data. Adapt ive filtering is one of the many methods used for the removal of these artifacts. 

The quali ty of adaptive filtering depends on many factors. There is a large number of 
adaptive algorithms and the effectiveness of each may differ depending on the si tuation. 
To evaluate the effectiveness of adaptive filters researchers need to explore a number of 
different scenarios. Th is work proposes a framework in a P y t h o n environment that would 
help researchers construct adaptive filtering scenarios on E E G data. A secondary goal is to 
use this proposed framework for the evaluation of the novel adaptive a lgori thm Quan tum 
least mean squared(Q-LMS) for E E G artifact removal purposes and compare its capabil i ty 
wi th other algorithms. 

Removal of E E G artifacts is a meaningful and interesting process. E E G has been used 
for many years to diagnose medical patients and effective filtering of artifacts is an essential 
part of this process. Also , after the recent progress i n the development of the Bra in -
computer interface(BCI) that can be seen for example in projects of Neural ink company, 
brain signal processing may see new applications for commercial use in the near future. 

In the next chapter, the E E G method is examined i n detail . There is a review of history 
and motivat ion, then the pract ical challenges and examination of neural-based waves and 
their implications in experiments. After that, the problem of E E G artifacts is introduced 
and the artifacts are then divided into different types. Last ly, there is a review of meth­
ods that are currently commonly in use for artifact removal together w i th their possible 
l imi ta t ion. 

In the th i rd chapter, there is a detailed introduct ion to the adaptive filtering method. 
Then there is an explanation of four of the adaptive algorithms, that w i l l be part of the 
framework. 

In the fourth chapter, a proposal for adaptive filtering is made based on the information 
gained from the proceeding chapters and reviewed literature. Individual functions of the 
framework are explained in detail using pseudocodes and then the internal structure of 
framework implementat ion is described in one of the sections. 

In the fifth chapter, a comparison wi th existing frameworks i n the P y t h o n environment 
is made. These frameworks overlap i n function wi th the proposed framework and the 
differences between them are pointed out. 
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In this chapter two experiments are made w i t h the help of the proposed framework. 
These experiments a i m to validate the novel Q - L M S algori thm and explore its capabilities. 
Also , these experiments a im to test the proposed framework in practice and show its abi l i ty 
to play a part i n meaningful experiments. 

In the last chapter, the final conclusion about this work is made. The upsides and 
downsides are cr i t ical ly evaluated and the next possible steps for research are suggested. 
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Chapter 2 

Introduction to 
Electroencephalography and to the 
problem of artifacts 

This chapter serves as an introduct ion to the field of Elect roencephalography(EEG) and the 
problem of artifacts in E E G signals. F i r s t , there is a short overview of Electroencephalog­
raphy as a scientific field, next, there is an examinat ion of known E E G artifacts, and after 
that, a list of standard methods that are regularly used to deal w i th E E G artifacts. 

2.1 Electroencephalography overview 

Electroencephalography(EEG) is an old method of s tudying brain activity. For the first 
time, it was described i n 1929 i n a paper by Hans Berger. Berger believed that the human 
brain is able to send telepathic signals so he started to examine electrical and thermal 
fluctuation around the scalp.[39] He d id not find proof of a telepathic connection yet the 
method he developed found its way into neurological practice. In the present day, E E G 
is used pr imar i ly for diagnosing epilepsy and sleep disorders [2] but also i n many B C I 
applications. 

E E G is recorded using smal l electrodes distr ibuted around the skul l . The number of 
electrodes varies, one of the standards adopted by The International Federation of C l i n i c a l 
Neurophysiology is an international 10 - 20 electrode placement protocol that describes the 
placement of 21 electrodes[24], but there are many applications using 35 - channel, 125-
channel, or even high-density 256 - channel. The effects of different numbers of electrodes 
on E E G focused on recording during mobile activities have been explored in an article in 
the Journa l of Behavioral and B r a i n Science. [19] W i t h an increased number of electrodes 
quali ty of captured E E G rises but so does the cost and setup becomes more complex and 
time-consuming. 

It's important to understand that when we are displaying and analyzing E E G the mea­
sured voltage is defined by the difference in electric potentials between a reference electrode 
and an active electrode. After the measurement, we can make different interpretations 
of the measured data by choosing different references for electrodes. The arrangement of 
reference electrodes and active electrodes is called montage 2.1.[2] 
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(B) Circumferential Montage 

<C) Reduced EEG Sample 
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Figure 2.1: (A) and (B) show the posi t ional arrangement of electrodes on the scalp i.e. 
montage. (C) then show the captured E E G signals. The figure was taken from paper [37]. 

Researchers recognize mult iple neural-based waves that can occur in E E G signals. These 
waves contain a lot of important pieces of information and are the main components for 
deriving results from experiments. Table 2.1 shows frequency ranges and functions of 
various frequency bands i n E E G . 

Name Frequency Funct ion 
Rare in the human brain, occurs during 

G a m m a 30 - 100 H z the process of combining different senses 
such as sound and sight. 
Found only i n healthy adults dur ing ac­

Beta 14 - 26 Hz tive th inking, paying attention, and solv­
ing cr i t ica l problems. 

A l p h a 8 - 13 Hz 
Associated wi th wakefulness, closing the 
eye, effortless alertness, and creativity. 
Shows synchronous firing of motor neu­

M u 8 - 13 Hz rons. They are overlapping w i t h other 
brain waves. 
N o r m a l for young children. In older chi l ­

The ta 4 - 8 Hz 
dren and adults, they are observed during 
arousal or i n a sleepiness state. Also ob­
served during meditat ion. 

De l t a 0.5 - 4.0 H z Associated wi th deep sleep. 

Table 2.1: B r a i n waves categorization as described i n the book by N i d a l , K . and M a l i k , A 
S.[26]. 
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2.2 E E G artifacts 

One of the most prominent problems in E E G analysis is dealing wi th E E G artifacts. E E G 
is by nature a very weak signal so the measurement requires sensitive tools. These tools 
can pick many signals from the body, or the environment around them. This means that 
signals from different sources may cover and obscure E E G signals [28], that the researchers 
want to observe. Therefore, by E E G artifact, we understand any potential fluctuations of 
non-neural origin[26]. It is important to understand and study them, i n order to prevent 
their negative effects on E E G analysis by removing them. We can distinguish two main 
classes of artifacts, Physiological and Non-Physiological[32]. 

Physiological artifacts 

Artifacts that are related to internal body functions. 

• Electromyographic a r t i f ac t s (EMG) - Art ifacts that are produced by contractions of 
muscles. Muscle movement generates a smal l electrical current that can be picked up 
by E E G electrodes and pollute the signal. These artifacts are hard to avoid, even 
if the subject is asked to do as l i t t le movement as possible, they won't be able to 
completely avoid i t . In the book by N i d a l , K a m e l , and M a l i k , A a m i r Saeed [26], in 
section 1.4.1.2, the E M G artifacts are shown on such a subject. In some real-world 
applications, the artifacts may get exponentially bigger so dealing wi th them is of big 
importance. E M G of skeletal and facial muscles affects E E G signals direct ly because 
their sources are located close to measuring electrodes. The frequency of skeletal 
E M G is in the range of 0 to 200 H z and is buil t of more distinct components. We can 
see that so-called E M G beta components that are in the range of 20 to 30 H z closely 
resemble E E G beta waves [11] which makes their f i l tration without losing important 
E E G information a challenging task. Other E M G components affect a lpha and delta 
waves as well . A big problem in E M G artifact removal is the inabi l i ty to establish 
a reference channel because the noise source is not localized like in E O G or E C G so 
there is no way of using an addi t ional reference diode effectively. Th is makes many 
filtering methods, like adaptive filtering or regression dependent on reference channel 
ineffective. 

I.I. Goncharova et at./einmal Neurophysiology IN I2UO.H I5W-I.W 

Subject 23 Frontalis Contraction 

* TAB 

, Relaxation 
5 4 '^^w^Y^vV l i ^ rVWvV^W^^Vi^^ 

AF3 

0 20 40 60 
Frequency (Hz) 

Figure 2.2: This recorded data introduced i n [11] show the true impact of frontalis muscle 
contraction on E E G data. Frontalis muscles are muscles of the forehead. 
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Ocular artifacts ( E O G ) - Art ifacts that arise from blinks, eye movement, or other 
visual s t imul i . Eye movement itself produces mult iple artifacts of mult iple mechanical 
causes w i t h different amounts of disturbance to E E G so removing a simple change 
of eye directions may be a very complex task. These artifacts interact w i th neural 
signals from the frontal parts of the bra in and they are characterized as waves of 
higher ampli tude and lower frequency than E E G signals. 

Dur ing eye blink, the eyelid is sl iding over the cornea, the transparent front part 
of the eye, which is posit ively charged w i t h respect to the forehead. The change 
of resistance between the forehead and the cornea produces spikes of electric signal 
that contaminate E E G measurement. D u r i n g larger eye movements, the change of 
orientation of an eyeball causes interaction between the posit ively charged cornea and 
negatively charged retina, part of an eye that covers the back part of an eyeball, this 
results i n a smal l electrical signal that w i l l be too picked by E E G electrodes. [28] 

In 2.3 we can see a depiction of standard E O G artifacts and their influence on E E G 
signal. Ar t i fac t has been extracted from the H E O G ( h o r i z o n t a l Electrooculogram), a 
channel that some datasets include. Th is channel should contain a strong presence 
of horizontal E O G artifacts for artifact removal purposes. The clear E E G has been 
approximated by filtration. 

EEG 
2.5 

0.0 
£ -2.5-
< 

0 500 1000 1500 2000 2500 3000 3500 4000 
Samples 

EOG artifact 
-d 0.5 

9-0.0-

0 500 1000 1500 2000 2500 3000 3500 4000 
Samples 

EEG + E O G 

T 5 ft 

\ 
| 0 - wrVv ^ W y W u ^ o ' ' W ^ ^ ^ ^ M K ^ " 1 1 ' 1 ' V 

< 0 500 1000 1500 2000 2500 3000 3500 4000 
Samples 

Figure 2.3: Depic t ion of E O G artifact i n E E G signal. 

• Electrocardiogram artifacts ( E C G ) - The heart can produce E E G artifacts as a result 
of a rhythmic contraction of cardiac muscles that generates an electric field that can 
affect potentials on the surface of the skul l . E C G artifacts have periodic characters 
and it is possible to generate an artif icial E C G signal and use it for reference [17] 
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Figure 2.4: In the figure we can see captured E C G signal and subsequent artifact i n the 
E E G signal. The artifact was shown in[6]. 

Name Frequency 
E O G delta and theta bands 
E M G 0 - 200 H z 
E C G 30 - 100 H z 

Table 2.2: Art ifacts categorization by frequency. 

Non-physiological artifacts 

Artifacts are caused by external sources of the environment of the experimental setup. 

• Electrode and equipment artifacts - A n y smal l movement of an electrode dur ing mea­
surement can cause big disturbances i n a signal, the problem occurs when the E E G 
electrodes par t ia l ly lose contact w i th the skul l . Therefore, it is important to avoid 
any manipulat ion wi th electrodes during an experiment by the researcher or patient. 
Unequal or too high impedance on electrodes poses a problem, too. The impedance 
should be held lower than 5000 ohms. W h e n the bipolar placement of electrodes is 
used, it is important to place electrodes properly. W h e n not the resulting signal w i l l 
contain addi t ional artifacts. It is good to use standard well-tested equipment. It is 
important to keep it i n good condit ion and check it for possible malfunctions before 
every use. [26] 

• Art ifacts from the environment - E lec t r ica l devices like laptops and phones present 
can introduce electromagnetic waves that may interfere w i th recording. Movements 
and sounds around the room where the experiment is conducted may also introduce 
potential noises. Possible causes of environmental artifacts are listed w i t h examples 
in the book by Sazgar, M o n a , and Young, Michae l G.[32]. These artifacts may be 
filtered out, but it is better to keep the original signal as clean as possible, therefore it 
is advised to follow strict protocols during experiments that are designed to prevent 
any unnecessary corruption of the measured signal. A n example of such protocol is 
Recording Pro toco l for Cognit ive and Affective H u m a n Neuroscience Research.[8] 
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2.3 Common methods of E E G artifact removal 

E E G is a widely used method, especially i n the medical field and artifact filtering has 
always been a concern. Over the years many methods were proposed and tested. Different 
applications desire different qualities, some need very good results in terms of filtering, and 
others need to be as fast as possible. Also , cost and setup difficulty plays a role. Th is 
section presents a few standard methods that see wide usage over the field. 

• Hybrid • ICA • CCA • Filtering • WT • EMD • other 

Figure 2.5: D iag ram that shows a comparison i n the usage of different methods for artifact 
removal i n E E G research. Diagram was presented in [17] where it is shown in Figure 1. 

I C A (Independent Component Analysis) 

Independent component analysis ( I C A ) of the most widely used methods for the removal 
of E E G artifacts. The I C A method was developed to solve the B l i n d Source Separation 
problem which describes the need to separate mult iple sound (signal) sources recorded 
simultaneously on the recording device. I C A can solve this problem very well as long as 
there are as many recording devices as there are different sources of signals. The method 
assumes that signal sources are instantaneously linear mixtures of cerebral and artifactual 
sources and it decomposes them into statist ically independent components. This approach 
works well i n E E G analysis [17], as we have electrodes capturing signals from many different 
sources (ideally neuron groups) at once, where some of them may be sources of artifacts. 
In standard practice, researchers run recorded data through the I C A algori thm, which 
decomposes E E G signals into a set of ind iv idua l components. Researchers inspect them 
manually and i f they see that some component resembles an artifact, they remove it from 
the set. After the inspection, a new signal is reversely buil t from the remaining components. 

The approach is suitable for c l in ical practice yet it has some shortcomings. The staff 
reviewing results needs to be highly trained and experienced. Inspecting waves of E E G 
signals w i th their chaotic nature is not an intuit ive task especially when we are working 
wi th many channeled devices. There are also many opportunities for errors. Programs 
for displaying E E G datasets offer many tools like low-pass or high-pass filters, amplitude 
mult ipl icat ion, t ime axis control, or notch filters. Simple changes in these configurations can 
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greatly impact data presentation; if they go unnoticed, they can easily cloud the researcher's 
judgment. For example, i f somebody changes the size of a displayed chunk of data from 
10 seconds to 12 seconds a l l displayed frequencies would appear lower, subsequently, the 
normal alpha waves could be mistaken for muscle artifacts and removed. The practices of 
manually analyzing E E G data by researchers and medical personnel were covered in video 
series by D r . Jeremy J . Moeller[22]. 

C C A ( C a n o n i c a l C o r r e l a t i o n Analysis) 

The method is similar to the I C A yet different i n some key ways. C C A is using second-
order statistics instead of the higher-order statistics that are used by I C A and it separates 
components from uncorrelated sources instead of statist ically independent sources. The 
use of second-order statistics brings lower computat ional complexity which means faster 
calculation of results than the I C A method. 

The C C A for E E G artifact removal showed very good results. The paper about the 
removal of E M G artifacts[7] shows that for this task C C A outperformed the I C A method. 
In the paper the hypothesis is made that the E M G signal has a broad frequency range, 
approximating white noise, thus its autocorrelation w i l l be very low, i n opposition to E E G 
which has much larger autocorrelation. The decomposition was made and the components 
w i th low autocorrelation were removed. 

The method has s imilar downsides to I C A but the computat ion t ime is shortened. 

W T ( W a v e l e t Transform) 

Wavelet transform is based on a similar principle as the Fourier transform. Fourier trans­
form represents the analyzed signal as the sum of sine functions but unfortunately, these 
functions are not determined i n t ime [26]. Therefore when we analyze signals using Fourier 
transform we can tel l what frequencies are represented but cannot tel l when these frequen­
cies occur on t ime axes. Wavelets are functions that are well localized i n both t ime and 
frequency. There are mult iple wavelet functions each preferable for different applications. 

For E E G artifact removal, we decompose the channel recording into wavelets. After 
that thresholding is applied to remove the signals containing artifacts. A clear E E G signal 
is reconstructed from the remaining data. 

Art i fact removal using this technique has mixed results and the removed signal w i l l 
often overlap wi th spectral properties. For that reason, it is often used in combinat ion wi th 
other methods[17]. 

E M D ( E m p i r i c a l M o d e Decomposit ion) 

E m p i r i c a l mode decompos i t ion(EMD) is very well suited for processing non-static and non­
linear signals. It is a data-driven method that decomposes the signal to I M F functions 
based on information about the signal's ampli tude and frequency. 

It is problematic to remove artifacts based on intrinsic mode functions ( I M F ) components 
due to the overlapping at higher frequencies w i th E E G but when there is an especially strong 
presence of artifacts it can outperform other methods like I C A and wavelet transform. [3] 

10 



A d a p t i v e F i l t e r i n g 

The method that is closely examined i n this paper is one of the regularly used methods for 
filtering E E G artifacts. Single-channel filtering is done wi th the help of a reference signal 
that should be correlated w i t h the noise contained i n the input signal. [6] 

For E E G fil tration firstly the quali ty reference signal needs to be obtained. Reference 
signals are normal ly acquired from other devices for signal capturing like electrodes around 
the eyes for E O G reference or on muscles for E M G reference. Then one of the many adaptive 
filtering algorithms has to be chosen and a filtering pipeline created. 

11 



Chapter 3 

Adaptive Fi l tering 

This chapter is about adaptive filtering. A general adaptive filter w i l l be introduced as well 
as methods of bui ld ing reference signals and a few adaptive algorithms. Examined methods 
w i l l be in later chapters used for artifact filtering. 

3.1 General adaptive filter 

The function of an adaptive filter is to remove noise from an input, where the filtered noise 
is a signal correlated to the provided reference. The filter is adapting its coefficients by 
the chosen a lgor i thm i n a way that it is able to generate a signal similar to noise i n a 
filtered signal based on reference. The generated signal is afterward subtracted from the 
input signal and thus is the noise removed. The difference between filtered signal and filter 
output is known as error value and it is then also used for adaptation. 

s(n) + n(n) 

Adaptive 
Algorithm 

Figure 3.1: B lock diagram of the adaptive filter. The diagram is presented as Figure 1 in 
the article by Mustafa, R . , et al.[23]. d(n) is signal composed from s(n), that is the looked 
for base signal, and n(n),that is the noise that x(n) is referencing. 

Adapt ive filtering works under the assumption that noise i n the filtered signal is corre­
lated to the reference and the rest of the signal is not. If there are parts of the signal, apart 
from the noise, that is correlated to reference, the filter w i l l filter them out and important 
data could be lost i n the process. 

There are two ways to use adaptive filters for noise cancellation and deciding between 
them is based on the reference signal that is i n disposit ion. E i the r there is a reference for 
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the looked-for base signal or there is a reference for the noise signal that needs to be filtered 
out. If the reference is for the base signal,y(n) w i l l be the approximation of the base signal, 
and e(n) w i l l be the noise, this approach is called adaptive signal enhancement [9]. In the 
second case, the y(n) w i l l be noise approximat ion and the e(n) error w i l l be the base signal 
as shown in Figure 3.1. For filtering E E G artifacts the second approach is usually used[6]. 

A classic example of the usage of adaptive filters is for filtering echoes i n audio calls. 
W h e n the calls are made from inside of buildings, the received voice of the speaker on 
the other side w i l l bounce off the walls and return back to them through the listener's 
microphone leading to an unpleasant effect. For clear communication, this effect needs to 
be eliminated. The echoes are correlated wi th the incoming audio signals, so they can be 
used as reference signals for the adaptive filter that w i l l filter our microphone input . The 
adaptive a lgor i thm w i l l take care of adjusting the reference signal i n a way that it matches 
the echos and the output w i l l be subsequently subtracted from the audio we are sending. 

A similar approach can be used for filtering E E G signals. If there is a need to filter 
certain types of E E G artifacts a reliable reference signal needs to be provided. Reference 
signals should represent the source of noise as much as possible i n order to establish corre­
lat ion and establishing the reference is one of the big challenges in E E G adaptive filtering. 
There are many methods for capturing reference signals. 

A n advantage of adaptive filtering is that the signal can be filtered i n real-time, as 
soon as it is measured. Computa t iona l intensity is relatively smal l compared to some 
other methods used for E E G artifact filtering like I C A section 2.3 and I C C section 2.3 but 
s t i l l considerable. The possibil i ty of real-time filtering can be useful i n applications like 
B C I ( B r a i n Computer Interface) [33] where the E E G signals must be processed rapidly to 
ensure quick response and good user experience. 

3.2 Choosing reference signal 

Choosing the right reference signal is an essential part of adaptive filtering. It is important 
that the reference signal w i l l correlate as much as possible w i t h the artifact we want to 
filter out yet that it does not correlate w i th other parts of the original E E G signal so the 
important pieces of information w i l l not be lost. Every artifact is different i n nature and 
comes from different sources and some are easier to capture or define than others. Therefore 
mult iple methods for obtaining different reference signals are being used each suitable for 
filtering different types of noise [6]. 

• Cap tur ing reference from the source - W h e n we can reliably identify the artifact source 
a special device can be selected to capture signals close to the source of an artifact. It 
is an analogy to noise filtering i n audio signals when one microphone is localized near 
the source of noise to capture it and filter it from the second microphone localized 
nearby that is used for communicat ion. For E E G referencing electrodes can be placed 
near the eyes of the subject to capture E O G artifacts. W i t h the introduct ion of new 
devices also comes addi t ional costs and setup difficulties. 

• Reference separated from original E E G - If the artifacts are predictable and have 
frequencies that do not overlap wi th important E E G waves we can separate them 
directly from captured E E G signals using a bandwidth filter. W h e n we isolate the 
electrode where the artifact is strongest and capture it we can use it as a reference 
for filtering it from a l l other diodes. The problem is that capturing the artifact 
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precisely i n its whole form and without capturing some other parts of E E G using 
bandwidth filters is nearly impossible, so compromises have to be made and a lot of 
experimentation is required. 

• Ar t i f i c ia l ly created reference signal - W h e n the artifact is mathematical ly well-defined 
we can generate an art if icial signal resembling the actual artifact. The quali ty of 
filtering w i l l then depend on the quali ty of the mathematical definition and its abi l i ty 
to describe real-world noise. 

3.3 Adaptive algorithms 

There is a large number of proposed adaptive algorithms that are working on various 
principles. Algor i thms that w i l l be part of this work are presented i n this section. 

L M S ( L e a s t M e a n Squares) 

This most common and simple adaptive a lgori thm is extensively used for its computat ional 
speed, easy implementation, and good performance. 

Algor i thms adapt a l l weights in every i teration in a way that w i l l minimize the squared 
error of the filter. E a c h weight is updated based on its previous value and order of change 
of squared error i n reaction to the previous value. The learning coefficient \x represents 
the strength of reaction to changes in squared error, i f the value of this constant is too big 
the filter w i l l be unstable as it w i l l react violently to any change i n squared error, on the 
contrary, i f the value is too smal l the adaptat ion w i l l be min imal . 

Al ready in 1996, the a lgori thm has been used for filtering E E G artifacts and it proved 
to be very effective [25]. Mul t i p l e filters can be attached in cascade schema where each is 
used for filtering different types of artifacts using different references. [6] Th is approach can 
be used wi th any adaptive filter not just L M S . 

The representation of standard F I R that is used i n L M S , is given in 3.1. In equations, wk 

represents weights that w i l l be updated by the adaptive algori thm. 

Er ro r is a difference between the desired signal and filter output i n previous iterations. 

L 
(3-1) 

k=n 

e(n) = d{n) — y{n) (3.2) 

L 
(3.3) 

k=n 

After subversion of y(n) 

wk(n - 1) = wk(n) + / i ( - V f c ) (3.4) 

Adapta t ion of weights 

d{e2} 
dwk(n) 

(3.5) 
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Representation of the change i n squared error. 

wk(n - 1) = wk(n) - / / { e 2 ( , n ) , } (3.6) 

Equa t ion 3.4 after substi tut ion 

wk(n - 1) = wk(n) - 2 /xe(n)§^4 (3-7) 
Derivat ion w i t h respect to wk(n) 

Wk(n ~ 1) = Mn) ~ 2 M n ) ' K n ) " ^ " 7 X ( n " f c ) } (3.8) 
Subst i tut ion of e(n) 

wk(n — 1) = wk{n) — 2/xe(n)x(n — k) (3-9) 

Another derivation wi th respect to wk(n) 

Equat ion 3.9 is the final representation of L M S adaptation. These equations were 
presented in a paper on cascade filtering of E E C [6] 

R L S ( R e c u r s i v e Least Squares) 

R L S shows better results than other methods like L M S when the reference signal was 
derived from E E G as it displays min ima l loss of filtered signal. It also performs well w i th 
other forms of the reference signal, therefore, it is considered to be one of the best adaptive 
algorithms for E E G filtering as stated in [29]. 

R{n) is an autocorrelation matr ix . Th is represents the relationship between the current 
value and past values of the series. R~1(n) is transposed value of matr ix . r (n) represents 
the mutua l correlation between our reference signal and filtered signal. L a m b d a is known 
as the forgetting factor. 

wk(n) = R~l{n)r{n) (3.10) 

R-l(n) = A x ( i ) x ( i ) T (3.11) 
i=0 

-(n) = ^2\x(i)d(i)T (3.12) 
i=0 

A n iterative approach is needed for an easy transi t ion into a computer program. The 
algori thm makes use of Woodbury mat r ix identity R~1(n) where k(n) is a gain vector. 

R-l{n) = | [ i ? _ 1 ( n - 1) - A ; ( n ) x ( n ) T i ? " 1 ( n - 1)] (3.13) 

k(n) = R~Hn-l)x(n) 
X + x{n)TR~1{n — l ) x ( n ) 

Adap ta t ion of weight for every i teration w i l l look as follows. 

w(n) = w{n — 1) + k(n)d(n) (3.15) 

Equations were taken from Padasip l ibrary documentation [4]. 
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F L M S ( F r a c t i o n Least M e a n Squares) 

In this algori thm, fractional order derivative accompanies classical integer order derivative. 
Th is approach has shown promising results i n many applications. Convergence is increased 
together w i th computat ional complexity. 

The first-order gradient is i n this a lgori thm used together w i th the fractional order 
gradient 

wk{n) = wk{n - 1) - ^ ( ^ ) + / x ( / ) ( ^ j J (n ) ) (3.16) 

Caputo and Riemann-Liouvi l le rule for fractional order derivative g(t) = tn. Where 
is the fractional order operator 

r ( n - / + \)ftn - f) 

G a m m a function 
r ( n ) = ( n - l ) ! (3.18) 

df df 

J(n) = -2(e(n)u(n))(—,Tw(n)) (3.19) dwf dwf 
After substi tution, we get a weight update function 

H f 
Wh{n) = wk(n — 1) + u i e ( n W n ) H ; ; —-. —— (3.20) 

fcv j fcv ) v j v j r ( 2 - / ) W ( l - / ) ( n ) 

Equations and information about F L M S were presented in [38] 

Q - L M S ( Q u a n t u m Least M e a n Squares) 

Q - L M S is a novel a lgori thm based on a q-derivative concept. Fi rs t ly , to avoid possible 
confusion, it should be stated that there is an algori thm similar i n name called Quaternion 
L M S ( Q L M S ) . Th is is an algori thm intended for the fi l tration of three and four-dimensional 
processes and more information about its functioning of it can be found in this paper [34]. 

Standard L M S algori thm implements a learning rate value fi, If we choose a large 
learning rate value the rate of convergence w i l l be faster but the steady state w i l l be higher 
which means that results w i l l be less precise during the steady state. For better results, a 
smaller learning rate has to be chosen and this w i l l on the other hand negatively affect the 
rate of convergence. Q - L M S introduces the q parameter that w i l l be correcting the learning 
rate value dur ing the operation of adaptive filtering. A t the start, the learning rate w i l l 
be pushed to higher values for faster convergence and when approaching the steady state 
learning rate w i l l be lowered for better results. 

New weight update function wi th the q parameter that is a iming to control the learning 
rate 

wk(n) = wk(n - 1) + ^ ^ — e(n)u(n) (3.21) 

The t ime-varying rule that is used for q parameter update 

ip(n + 1) = /3ip(n) + 7e (n ) 2 (3.22) 

16 



The update of the q parameter is defined as this dis t r ibut ion function 

q(n+ 1) 
Qupper 

1 

ip(n+ 1) 

if ip(n+ 1) > qUpper 

for a;i/>(n + 1) < 1 

otherwise 

(3.23) 

Qupper is chosen to fulfill the stabil i ty condit ion 

2 
(3.24) Qupper 

/ A <max 

^max is the max value of the correlation mat r ix that represents correlations between 
samples of the reference signal i n each iteration. 

Equations were assembled based on the paper [1]. 

Few adaptive algorithms have been examined i n this section. These adaptive algorithms 
have been chosen for this work for different reasons. L M S algori thm is standard for adaptive 
filtering of any k ind so it should not be missing in a framework focused on adaptive filtering. 
R L S algori thm as noted before has already shown very good results on E E G artifact filtering 
so it should be included also i n the framework. Q - L M S algori thm, on the other hand, is a 
novel a lgori thm that has, to my knowledge, not yet been tested for E E G artifact removal 
so I wanted to explore its capabilities i n this work using the framework. 

3.4 Data 

A l l datasets used i n this work are available on O p e n N E U R O N , a free and open platform 
for val idat ing and sharing BIDS-compl ian t M R I , P E T , M E G , E E G , and E E G data. 

For working wi th datasets we are using M N E - P y t h o n , an open-source P y t h o n pack­
age for visual izing and analyzing human neurophysiological data. Package offers tools for 
processing the dataset as well as many tools for standard experiments. 

• Clear EEG[21] - Dataset contains data from patients diagnosed wi th Alzheimer 's 
disease and Frontotemporal Dementia ( F T D group) as well as patients i n full health. 
Recordings were acquired from the 2nd Department of Neurology of A H E P A General 
Hospi ta l of Thessaloniki . Par t of the dataset are processed data clear of E E G artifacts. 
Artifact-free data w i l l be used as base E E G data in the experiment on adaptive 
filtering. 

• E C G data [10] - Th is dataset is combining human-participant high-density E E G w i t h 
physiological and continuous behavioral metrics. One of these metrics is electrocar-
d i o g r a m ( E C G ) recording conducted simultaneously wi th E E G recording. This E C G 
data w i l l be used i n the experiment on adaptive filtering as a reference channel and 
for the construction of E C G artifacts. 

• E O G data[16]- D a t a are collected on 122 collage-aged-participants that scored reliably 
high or low i n Beck Depression Inventory circa 2008-2010. Experiments were carried 
out in John J . B . Al len ' s lab at U A r i z o n a and the dataset contains more than 16 G B 
of E E G recordings. The E O G channel from this dataset was used i n the experiment 
on adaptive filtering for squaring reference and bui ld ing E O G artifacts. 
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• E M G data[27] - Dataset includes synchronized 128-channel E E G , lower leg E M G , 
neck E M G , E O G , and mot ion capture data. D a t a was collected at the Universi ty of 
Mich igan by Steven Peterson in the lab of Danie l Ferris. A g a i n E M G channels were 
used i n the experiment for the construction of the E M G artifact and at the same time 
as a reference channel for the fi l tration of this artifact for this artifact. 

• E O G - E C G data[31] - These data consist of E E G and pupilogram. The dataset should 
also contain E C G this data however was not found so a different dataset had to be 
used. Recordings were done on a group of young and a group of older adults that were 
engaged in auditory-cued reaction t ime tasks or passively listening to the auditory 
stimulus. 
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Chapter 4 

Preposal of a framework for 
adaptive filtering of E E G artifacts 

This chapter w i l l include the design of the proposed framework for adaptive filtering of 
E E G artifacts from E E G signals based on information acquired in earlier sections. 

4.1 General design 

The a i m is to design a framework that can be used to test adaptive algorithms on E E G data 
to determine their quality, their abi l i ty to remove different kinds of E E G artifacts, and their 
damaging effects on the original E E G . The idea is to find an algori thm you are interested 
in for your applicat ion, explore its capabilities, and compare it to other algorithms a l l 
in the span of a few hours. Because of that Framework should be intuit ive to use wi th 
straightforward concepts. 

Design should be simple and easily scalable. After the upload of data user can choose 
what channels of the dataset he wants to work on. For each of the chosen channels w i l l 
be subsequently created an object that w i l l contain a l l data dur ing its lifecycle. Users can 
then choose from a database of accessible adaptive filters and reference-building options 
and assign them to channels. F i l t e r ing and reference preparation w i l l be executed by run 
command at the end of a script. Ass igning and a l l managing are done by a controller that 
is the basis of the framework and encapsulates most of the functionality. 
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channel 
name 

chanel_number 

initial_signal 

results 

errors 

run_channel() 

add_cascade_level() 

controls 

cascade thread 

filtering_function 

reference_fu notion 

input_signal 

parameters 

run_cascade_thread() 

prepare_reference_signal() 

test_cascade_th read () 

controls 

controler 

adaptive_filter() 

create_reference() 

prepare_references() 

run() 

run_channels() 

plot() 

MNE_provide_signals() 

create_chanels() 

distributes 

algorithms 

adaptive_algorithm() 

LMS_update_weights() 

LMS_parameter_check() 

perform_SWT() 

Figure 4.1: Diagram showing applicat ion architecture. 

For every E E G channel i n the dataset that the user wants to work wi th , one channel 
object is ini t ia l ized wi th stored signal data. Th is object is created wi th the desired number 
of cascade_thread objects that can each run filtration on their input data. The channel 
object is running each of these threads managing their inputs and storing their results. A l l 
algorithms that are used by cascade threads for filtering or reference bui ld ing are defined 
in algorithms object. The main object of the framework is then assigning references to 
cascade threads, managing what channels should be run, and carrying out the visualizat ion 
of results from channels. 

4.2 Functions 

One channel one f i l trat ion 

The most basic operation this framework should manage is to use an adaptive filter of 
choice on one channel of an E E G dataset. There are many recorded channels i n one E E G 
session and we can get information about them wi th an informative helper function that 
w i l l print information about the uploaded dataset. 

After we know a l l the channel names we can specify our selection wi th MNE_chosen_channels () 
function. In this example, one object channel w i l l be created after selection which we can 
then target w i th chosen_channels() parameter in the succeeding functions for adaptive 
filter and reference builder specification. 

MNE_provide_signals(filepath) 
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MNE_choose_chanels (chosen_chaiiels= [FP1]-) 

adaptive_filter(type='LMS
)

, chosen_chanels= [0], parameters) 

create_reference(type = 'wavelet', chosen_chanels=[0]) 

run() 

Lis t ing 4.1: P y t h o n example 

Diversif ication 

W h e n we talk about E E G datasets we talk about recordings on headsets that may contain 
tens or hundreds of electrodes. E a c h electrode has a different placement on the headset 
and that is important i n the context of artifact filtering where different electrodes may 
be vulnerable to different types of artifacts. For example, electrodes around the eyes w i l l 
contain much stronger E O G than electrodes on the head and we may want to adjust our 
filters accordingly. For these reasons and others, our framework should offer a choice to 
adjust any channel or group of channels direct ly in terms of chosen filter, its parameters, 
or its reference. 

MNE_provide_signals(filepath) 

MNE_choose_chanels(chosen_chanels=[FP1,FP2,AF3]) 

adaptive_filter(type='LMS
)

, chosen_chanels= [0], parameters) 

adaptive_filter(type='LMS
)

, chosen_chanels=[1], parameters) 

adaptive_filter(type='RLS
)

, chosen_chanels=[2], parameters) 

create_reference(type
=>

wavelet', chosen_chanels= 

create_reference(type
=>

wavelet', chosen_chanels= 

= [1]) 

=[2,3]) 

run() 

Lis t ing 4.2: P y t h o n example 

Cascade filtration 

Implementing adaptive filters i n cascade is very common in practical use. Each filter is 
designed specifically to filter one type of artifact and the reference signal and parameters are 
chosen accordingly. E a c h step w i l l be separated by cascade_step() which w i l l introduce a 
new cascade_thread object to chosen channels. E a c h channel w i l l then prepare the correct 
paths for data. 
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Figure 4.2: B lock diagram of cascade filtering based on the diagram proposed i n paper [6]. 

MNE_provide_signals(filepath) 

2 MNE_choose_chanels(chosen_chanels) 

3 

4 

5 adaptive_filter(type, chosen_chanels, parameters) 

6 create_reference(type, chosen_chanels) 

7 

8 cascade_step() 

9 

adaptive_filter(type, chosen_chanels, parameters) 

create_reference(type, chosen_chanels) 

12 

13 cascade_step() 

14 

15 adaptive_filter(type, chosen_chanels, parameters) 

16 create_reference(type = 'wawelet', chosen_chanels) 

17 

is run () 

Lis t ing 4.3: P y t h o n example 

A d d i n g custom algorithms 

Adapt ive filtering is a wide field that is constantly evolving as new algorithms are being 
developed regularly. Tha t is why this framework should support adding custom algorithms 
as s imply as possible so the user won't be l imi ted to the already implemented algorithms. 
A s this framework is developed for algori thm testing, users should be able to use it on a wide 
range of algorithms. This function is aimed at researchers that want to quickly test their 
new algori thm without the need to bu i ld code infrastructure around it or for developers 
that want to easily explore new possibilities for their products. 

There can be many differences between adaptive algorithms but we can find many 
similarities too. O u r three bui ld- in algorithms for example differ only in weight updates, 
parameters, and parameter updates. Tha t is because a l l are variations of L M S . These are 
mathematical ly significant changes yet i n implementation, the changes can be expressed 
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in a single function. If the user has a basic knowledge of P y t h o n programming, we can 
let h i m define this function and its parameters. T h e n we can secure that the framework 
can reliably receive this function through a function pointer and work wi th it as wi th any 
bui ld- in algori thm. 

def my_weight_update(weights, samples_vector, error, desired_sample, 

parameters): 

2 for i in range(len(weights): 

3 weight_delta = parameters[
,

learning_rate
)

] * error * 

samples_vector[i] 

4 weights [i] = weights [i] + weight_delta 

5 

6 return weights, error 

9 

MNE_provide_signals(filepath) 

MNE_ choo se _chane1s(cho sen_ chaneIs) 

12 

13 param = {' learning_rate' : 0.1} 
custom_LMS_weight_update(fuction_pointer=my_weight_update, 

15 chosen_chanels, parameters=param) 

16 

17 create_reference(type, chosen_chanels) 

18 

filter_pipeline.run() 

Lis t ing 4.4: P y t h o n example 

Another option is to implement the whole algori thm. Adapt ive filters have by definition 
two inputs, a reference signal, and a filtered signal. Users can bu i ld a function that w i l l 
have these two arguments plus parameters arguments, a dict ionary containing a l l needed 
parameters. If the function can return output and error framework w i l l be able to implement 
such filter function seamlessly into its workflow. 

Reference bui ld ing 

The preparation of reference signal is a big part of the adaptive filtering method as discussed 
i n earlier sections. The results of adaptive filtration w i l l depend largely on the quali ty of 
the reference signal and there are many methods of acquiring one. 

One of the best ways to get high-quality references is to use a measurement device to 
record the reference signal near the source of the artifact dur ing the E E G session. This 
signal w i l l be very good for artifact removal as the artifact and reference w i l l surely have a 
high correlation as far as the source of the artifact is identified correctly. There are studies 
that explore reference measuring from different sources and these reference channels are 
shared i n their datasets. Also , a large number of datasets include E O G reference channels 
because they can be easily recorded wi th a few more electrodes. In the proposed framework 
the reference channels that are part of the datasets can be simply used wi th one function. 

If reference channels are not available i n the dataset, the framework offers the possibil i ty 
to use single-channel component decomposition methods for the preparation of reference 
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signals. This method should be used mostly for the evaluation of the filtering process 
because such a reference signal won't guarantee a good correlation wi th artifacts and big 
parts of actual E E G may be filtered out. There is an option to use Wavelet transform for 
input signal decomposition. The framework uses Stat ionary Wavelet Transform because the 
length of the output is the same as the length of the input signal so it can be directly used as 
a reference. The PyWavelets[20] l ibrary is used for this implementat ion. Another opt ion is 
to use E M D transform. Tha t is implemented using the E M D P y t h o n library[30]. O f course, 
after computing these decompositions simplest way to get r i d of unwanted components is 
to reconstruct the signal without them, this option is present only for observing functions 
of adaptive filters without the need to look for reference signals. 

There is also an option to add a custom reference signal. Th is is most useful while 
designing experiments w i th custom data and not w i t h data from datasets. This function 
also adds the possibil i ty to add preprocessing steps on reference signals that are not part 
of the framework. 

4.3 Implementation details 

U s e d tools 

Numpy[13], MNE-python[12] , Padasip[35], Scipy[36], P y Wavelets [20], Matplotl ib[14], openneuro 
Scipy[36], pytest[18] ,EMD-python[30] 

Implementat ion 

The M a i n Class, users w i l l be working wi th , is class framework(). Here are present 
al l the methods that are listed in 4.2. Input t ing dataset is managed by the function 
MNE_provide_signals (f ilepath) that w i l l read B I D S files and create object P y t h o n can 
work wi th . Reading B I D S is done wi th help from M N E - P y t h o n library[12], which w i l l cre­
ate an M N E object that contains signal data that can be extracted into P y t h o n lists. Class 
channel manages the fi l tration of one channel that represents the signal captured from 
one electrode. Instances of this class w i l l create one or more instances of cascade_threat 
class. cascade_threat is the smallest component that takes care of the fi l tration of one 
signal. There can be mult iple cascade_threat instances i n one channel instance, channel 
manages their inputs and results to create a functional cascade filtering body. 

Every adaptive filter is represented by two functions working together, one represents the 
filtering part, and the other updat ing of weights. For example, every L M S - b a s e d algori thm 
( L M S , Q L M S , F L M S ) has the same filter function but a different weight update function. 
Parameters to these algorithms are given i n dict ionary parameters. Correct parameters 
are defined in the check functions specific to each algori thm. These check functions are 
then run before every fi l tration and make sure the right parameters are chosen. 

W h e n a filter is defined by the user using function adaptive_f i l t e r (), channel takes 
as an input function pointer to the filtering functions, reflecting the choice of filter made 
by the user, and set this function pointer for his last cascade_thread. W h e n the filtering 
starts cascade_thread w i l l be using the defined filtering function. The reference bui lding 
is done i n the same way. W h e n the existing reference signal is chosen the reference bui lding 
function s imply reads the reference. Available algorithms for adaptive filtering and reference 
bui lding are defined i n class algorithms. 
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In a standard experiment w i th one adaptive filter on each channel, there is only one 
cascade_thread object present i n each channel. If the user wants to l ink another filter in 
succession to the first one he can use the function cascade_step (). This function w i l l create 
a new cascade_thread for selected channels that w i l l be added to the cascade_threads 
list i n channel. The user must then, define the adaptive a lgori thm and reference that w i l l 
be used by this thread. E a c h thread has implemented a self-check that w i l l be run before 
every filtration. This guarantees that the cascade_thread is correctly configured and error 
messages w i l l inform the user about possible problems. 

W h e n the filtration is started by the function run() mult iple processes are created 
wi th the help of the python-multiprocessing library. Each process manages filtration 
on one channel by running function channel.run_channel(). This function manages 
cascade_threads of this channel by running each i n succession making sure that results 
from one are used as inputs to another. F i l t r a t i on of one cascade step is run by the func­
t ion cascade_thread.run_cascade_thread(). After the one process finishes, the changed 
channel object is retrieved from it . New channel object contains the results of the fil­
t ra t ion and changed state, stderr output is also captured after the finish of the process. 
If any error occurred during filtration, a l l results are abandoned and an error message is 
propagated to the user. O n l y the first captured error message is displayed. 
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Chapter 5 

Comparison with other frameworks 

In this chapter, we w i l l look at other options for using adaptive filters and working wi th 
E E G datasets. There w i l l be an introduct ion to other libraries and frameworks, a look at 
their abi l i ty to complete functions of the implemented framework, and their advantages 
and disadvantages. 

5.1 M N E - P y t h o n 

M N E - P y t h o n is a large open-source project that offers a variety of tools for working wi th 
neurophysiological data. It doesn't implement L M S - b a s e d filters yet it implements many 
methods for analyzing and visual izat ion of E E G data. The l ibrary also implements meth­
ods that can be used for the preparation of reference signals for adaptive filters such as 
independent components analysis. More information can be found i n the canonical journal 
article [12]. If you wanted to use your own filter design you would have to follow these 
steps: 

• Get E E G data from a raw object into P y t h o n lists or N u m p y arrays 

• Organized data based on raw object info 

• Design and implement your adaptive filter 

• Organize your results into raw object 

• Review your results 

We can see that is a lot of side management and that 's why implemented framework does 
al l these steps for you but the a lgori thm implementation. 

If you would like to use cascade filtering you would have to use the same approach for 
designing your filters and then you would have to manage the connection between them as 
one's results are input for another. 

Observed advantages: 

• Great visualizat ion options 

• Options for most state of art operations on neurological data 

• Huge community of experts 
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• Maintenance and constant bug repair and evolving 

• W e l l documented 

• Open source license 

Observed disadvantages: 

• Lack ing options for adaptive filtering. 

• Rather complicated way to implement adaptive filters into the M N E workflow. 

• H i g h complexity. 

• Assumed level of expertise in the field of neurology and signal processing for the 
understanding of documentation and usage. 

The M N E - p y t h o n was not implemented wi th adaptive filtering i n mind , but it is standard 
for working wi th neurological data. A n y researcher that wants to work w i t h E E G datasets 
in a P y t h o n environment would benefit from the abi l i ty to use this l ibrary for its wide range 
of options, active community, and extensive documentat ion [12]. 

5.2 Padasip 

Padasip [35] is a P y t h o n l ibrary that offers tools for filtering, prediction, reconstruction, and 
classification of signals w i th its main focus on adaptive filtering. Implemented are standard 
adaptive filters as well as some newer methods i n the field. F i l ters are well-optimized and 
they are implemented i n the N u m p y l ibrary for better performance. 

In order to use your adaptive filter for the E E G dataset by B I D S standard you would 
have to use some other software to prepare your data like M N E - p y t h o n and the implement 
visual izat ion of results. 

Observed advantages: 

• Better performance 

• G o o d documentation wi th many examples of usage 

• Larger amount of in-bui ld adaptive filtering options 

• Available options for data processing 

• Op t ion for real-time adaptive filtering applications 

Observed disadvantages: 

• Need to bu i ld visual izat ion manual ly 

• Need to prepare your data manual ly 
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Padasip was buil t to simplify adaptive signal processing tasks wi th in the P y t h o n environ­
ment. It should be used as a modular part of implementations that are requiring adaptive 
filtering and these would provide the infrastructure for obtaining data and visual izat ion of 
results. 

Padasip is state-of-the-art adaptive filtering i n P y t h o n and the implemented framework 
can use its function of including custom algorithms to leverage Padasip filters. Padasip 
implementations of L M S and R L S algorithms have been used to visual ly validate Frame­
works implementations. Codes can be found i n experiments/validations directory of the 
project repository. We can see some minor differences i n R L S algori thm operations that 
can be caused by the implementat ion details choice of delta value in the in i t ia l iza t ion of 
the identity matr ix . A l so w i th the R L S algori thm, we can see the great opt imizat ion of the 
Padasimp l ibrary where its implementat ion provides significantly better performance. 
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Chapter 6 

Experiments 

6.1 Noise cancellation in human speech signal 

In the first experiment, the effectiveness of 3 algorithms is examined in a noise cancellation 
scenario on an audio recording of human speech data. The a im of the experiment is to first 
compare the effectiveness of different algorithms on the less challenging task before moving 
to E E G artifact filtering as the experiment w i l l focus on filtering simple sinusoidal noise. 
Th is noise is much less complex than a standard E E G artifact so the results should be easier 
to interpret. Th is experiment also works as the validat ion of the used adaptive filtering 
method Q - L M S and showcases of basic functions of the designed framework. Because Q-
L M S is a novel algori thm, there are not any freely available implementations that could 
be used for val idat ion like in the case of L M S and R L S algorithms as discussed in section 
5.2. For this reason, it is important to show the function of Q - L M S in an experiment. Th is 
experiment was based on a paper examining Q - L M S noise cancellation capabilities[1]. 

M e t h o d o l o g y 

Recording of human speech w i l l be used as a base signal. The sinusoid wi th a frequency of 
50 H z w i l l be then introduced to the base signal as noise. The resulting signal w i l l serve 
as an input to the adaptive filter. A s a reference signal, the same sinusoid w i l l be used 
but this t ime w i t h a shifted phase to slightly reduce correlation. Signals w i l l be filtered by 
three different adaptive algorithms for comparison. 

To evaluate results square root differences and R M S E ( r o o t mean square error) [5] w i l l 
be computed. The square root differences w i l l be calculated between the base signal(audio 
recording) and the output of the adaptive filter. Th is calculation w i l l show the quali ty of 
approximated signal and the process of adaptive filtration. The results of every adaptive 
filter w i l l be plotted on graphs simultaneously wi th L M S results as L M S is the simplest of 
implemented adaptive algorithms and it is well examined by the science community. The 
differences between the base signal and the output of adaptive filters w i l l also be expressed 
by R M S E value. 

(6.1) 

(6.2) 
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&i stands for the difference in two signals we want to compare and n stands for the 
number of samples, ef then stands for the square difference between two values. 

For L M S and Q - L M S algorithms same learning rate of 0.005 is used for a fair comparison. 
The effects of learning rate values differ between L M S - b a s e d and R L S algorithms and R L S 
would not work properly wi th the value of 0.005. Tha t is why R L S was used wi th a learning 
rate of 0.99. Q - L M S upper q bound is set for 500. This value was determined experimentally 
where the q parameter doesn't seem to be l imi ted from up and at the same time algori thm 
retains stability. G a m m a and beta values were chosen close to their lower bounds to keep 
the q parameter closer to its min ima l value. G a m m a and Be ta are 10 and 0.05 respectively. 

Results 

In figure:6.1 the graphs of raw filtering output are plotted. These graphs were given by 
filtering framework and there can be seen that especially R L S captured more speech data. 

Input signal 

0 100000 200000 300000 
Samples 

Filtered signal using LMS filter 

"5.0 
E 
< 

P f|^|MÉllW|«'» f'HN 
0 100000 

Samples 
Reference signa 

< -1 
Ó 100000 

Samples 

Input signal 

100000 200000 
Samples 

Q.0 
E 
< 

0 100000 200000 300000 400000 
Samples 

Reference signal 

0 100000 200000 300000 400000 
Samples 

L M S fil tration 

"5.0 
E 
< 

Samples 

Input signal 

Reference signal 

Q L M S fil tration 

0 100000 200000 300000 400000 

R L S fil tration 

Figure 6.1: Framework visualizat ion output of adaptive filtering of human speech data. 

The next two graphs represent a difference i n squared error between L M S and Q L M S , 
and L M S and R L S . We can see right away that the error of R L S is negligible i n contrast 
to L M S and Q L M S . The error is the squared difference between the base, noise-less speech 
signal, and filter output. 
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Figure 6.4: Comparisons of squared error after fi l tration by different algorithms. 

Another two graphs depict also the same squared difference but this t ime also on a 
logari thmical scale, which allows for smoother visual izat ion. The last th i rd graph depicts 
the act ivi ty of the q parameter during the filtration as shown i n equation 3.24. Th is time 
is depicted only a cutout window of 2000 samples for enabling a closer look at Q - L M S 
functioning. 
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Figure 6.5: Closer look on Q - L M S fi l tration. Cutou t window of 2000 samples. 

Table 6.1 Shows the values of R M S E after f i l trat ion. These values again represent the 
difference between the base signal and the filter. 

L M S Q L M S R L S 

0.2934 0.3323 0.0195 

Table 6.1: Table depicts R M S E values after fi l tration, which shows the similar i ty between 
the fi l tration result and the actual noiseless signal. A smaller R M S E value means that 
signals are more similar and thus fi l tration was more effective. 

Discussion 

Based on the assumption that the Q - L M S is L M S variant that is looking to improve on 
the algori thm, better performance was expected i n comparison to L M S . However, in this 
configuration, the results were very close to L M S w i t h a tendency for weaker performance. 
F rom the graphs, i n 6.5 we can see that i n error peaks q parameter works as expected and 
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Q L M S is able to outperform L M S . However, when the filtration reaches a steady state, 
Q L M S seems to not be able to stabilize. Th is causes spikes i n learning rate value which 
then introduces unnecessary errors. 

R L S filtration performs exceptionally well as expected on the bases of information in 
section 3.3. 

W i t h a l l that said a l l after the examinat ion of visualized results and audio recordings 
before and after filtering, the conclusion is that a l l algorithms successfully removed the 
noise from the speech data and significantly improved the quali ty of the audio recording. 

6.2 Fil tering of E E G artifacts in cascade 

In the second experiment, we w i l l examine the effectiveness of different algorithms on the 
E O G E C G and E M G artifact removal from E E G data. A s discussed in earlier section 2.2, 
E E G artifacts are sources of complex noise and their removal is a difficult task. Every type 
of artifact is different and their response to filtration may vary from method to method, 
one of the aims of the experiment is to see if adaptive filtering methods respond strongly 
to different artifact types or are some methods just better a l l around than others. Another 
a im is to inspect the effectiveness of the Q L M S algori thm explored i n an earlier section on 
E E G artifact removal as this a lgori thm was not been used on E E G artifact removal before. 

M e t h o d o l o g y 

For this experiment, four types of signals w i l l be needed. Unfortunately, it is uncommon 
to find a l l of these i n an average dataset therefore data from mult iple datasets had to be 
used. 

• Clear E E G channel - Downloaded from the dataset that had also contained results of 
artifact removal methods. 

• E O G reference channel - Common ly found i n E E G datasets usually collected by three 
electrodes placed on the face around the eyes. 

• E C G reference channel - A l so commonly found i n E E G datasets. Collected by an 
electrode or other recording device placed on the chest near the heart. 

• E M G reference channel - Not commonly found i n E E G datasets. Collected by elec­
trodes placed on the muscles. 

In this experiment, E E G artifacts are derived from reference signals. 
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Figure 6.6: Graphs are showing impacts of ind iv idua l artifacts on clear E E G signal 

EEG + artifacts 

Figure 6.7 

Figure 6.8: Graphs show the mean square error after fi l tration using three different adaptive 
algorithms each compared to the L M S algori thm wi th blue error. 

Results 

These first graphs are showing the squared error and squared error i n logari thmic scale for 
each cascade step during Q - L M S fil tration. In the first step, the E O G artifact is filtered, 
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in the second E M G and i n the last E C G . This squared error is compared to the squared 
error of L M S algori thm. 
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Figure 6.9: Graphs showing the squared error w i th squared error in logari thmic scale during 
every cascade step of Q - L M S fil tration 

Here we can see the resulting filtered E E G . when we make a comparison wi th figure 
6.13 we can clearly see that many artifacts were successfully filtered. 
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Figure 6.11: E E G signal after removal of artifacts using Q - L M S adaptive filter 

In this figure, we can see the squared errors depicted i n the same way as in 6.9 but 
during R L S fil tration. A t first glance, we can see that i n comparison to Q - L M S , the error 
stays i n considerably lower values. 
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Figure 6.12: Graphs are showing impacts of ind iv idua l artifacts on clear E E G signal 
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Filtered EEG (RLS) 
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Figure 6.14: E E G signal after removal of artifacts using R L S adaptive filter 

Table 6.2 is showing R M S E values of each algori thm for each cascade step. The final 
th i rd step should be taken as the most significant value representing the final filtration 
results. The other values should be looked at carefully i f t ry ing to determine the quali ty of 
certain artifact filtration, as i n cascade, the error from previous filtration w i l l be propagated 
to current filtration. 

Stage Art i fac t type L M S Q L M S R L S 

1 E O G 0.1654 0.1564 0.1058 

2 E M G 0.0563 0.0620 0.0431 

3 E C G 0.1832 0.1800 0.1043 

Table 6.2: Table depicting R M S E between cascade stage filtration result and E E G free of 
the artifacts that were targeted by current and preceding stages. 

Discussion 

We can read a similar pattern from the results, as in the first experiment 6.2 where the q 
parameter works as expected i n some parts of the filtering process, increasing the learning 
rate i n order to return to a steady state when the error is high. In other parts, the q 
parameter seems to unexpectedly rise only to increase the error while the L M S wi th a 
static learning rate retains good performance. This t ime the results from table 6.2 seem 
to indicate that this t ime Q - L M S outperformed L M S although only by a l i t t le margin. 
The results of filtering an E M G artifact suggest that for this couple of reference signal 
and artifact L M S s t i l l outperformed Q - L M S . This may show that the L M S works better for 
cases when the reference and noise have a high correlation as this artifact was least modified 
while buil t from the reference signal. This hypothesis can be supported also by the first 
experiment 6.2 where the noise was also very similar to the reference and the results were 
in favor of L M S . 

Once again the R L S shows remarkably better results although this t ime not as domi-
nantly as i n the first experiment 6.2. 

Results show that the mult iple types of artifacts were successfully removed from E E G 
signals using cascade filtering. 
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Chapter 7 

Conclusion 

The pr imary goal of this thesis was to propose and implement a framework wi th a toolkit 
capable of adaptive filtration on E E G data. The secondary goal was to explore the capa­
bilities of a novel Q - L M S algori thm for filtering of E E G artifacts as this a lgori thm was not 
yet used for this type o scenario. B o t h goals were successfully fulfilled and the functions of 
the framework were shown in experiments w i th Q - L M S . 

In the first part of the thesis E E G artifacts were carefully studied together w i t h standard 
methods of their removal. Internal processes of these methods were discussed as well as 
their possible l imitat ions i n real-world applications. 

In the next part, a close examination of the adaptive filtering method was performed. 
The general adaptive filter has been introduced together w i th specific adaptive algorithms. 

Based on the studied mater ial the framework for adaptive filtering was proposed and 
implemented in a P y t h o n environment. 

The other existing frameworks that are covering similar problems were put forward and 
a discussion about their similarities and differences to the proposed framework was held. 
The results of adaptive filtration of the Padasip framework were compared to the results of 
the implemented framework in order to gain validat ion for L M S and R L S algorithms. 

After that, the experiments a im to examine the capabilities of the Q - L M S adaptive 
algori thm for artifact removal from E E G . In experiments, the filtration was done using the 
proposed framework. These experiments showed that the Q - L M S algori thm has moderate 
results for E E G artifact scenario as opposed to the R L S method which showed excellent 
performance. 

Dur ing the work on the thesis, I had to go through a large number of scientific publica­
tions and that helped me to improve my own scientific wr i t ing and my reading comprehen­
sion of wri t ten scientific material . Th is work also gave me a good introduct ion to handling 
brain signals and the interpretation of experiments tested my newly obtained knowledge. 

For future work, I would suggest implementing the abi l i ty of real-time filtering of the 
data. Such an approach would need to deal w i th interesting problems like managing delays 
and communicat ing between processes conducting the filtering at least i n the case of filters 
in cascade. A l so , the possibil i ty to connect the software to real-world E E G recording devices 
could be investigated together w i t h new possibilities for the visualizat ion of results. Another 
area wi th a place for more studies would be the problem of obtaining a reference signal. 
Here the methods for the generation of custom reference signals could be examined and 
implemented into the framework. 
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