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ABSTRACT 

Hybrid Single-Particle Lagrangian Integrated Trajectory model ( H Y S P L I T ) , developed by 
National Oceanic and Atmospheric Administration ( N O A A ) A i r Resources Laboratory, is one 
of the most extensive modelling system for Atmospheric Boundary Layer ( A B L ) trajectories 
and dispersion calculations. A 3-d Lagrangian based tool H Y S P L I T uses meteorological data 
as input for the dispersion calculation. H Y S P L I T support a variety of different meteorological 
data simulations. This work describes the results obtained from Volcanic ash transport and 
dispersion ( V A T D ) models using H Y S P L I T from N O A A satellite using G D A S 
Meteorological data of Mount Etna volcanic region . H Y S P L I T interface programs which are 
generally available to process E T A , E C M W F , N O A A , Copernicus or other model output 
fields. This thesis highlights the H Y S P L I T model simulation results of Mount Etna volcanic 
region specifying the volcanic ash deposition at different heights and, ash particle position of 
calculated areas. Simulation results includes the data of Mount Etna last year eruption on 16 
February, 2021 reflects on V A T D models with February and March month data set. 

Keywords: Lagrangian; N O A A ; H Y S P L I T , V A T D , G D A S , Mount Etna, volcanic ash, ash 
particle, simulation. 

v 



Table of Contents 

Declaration i i i 

Acknowledgement iv 

Abstract v 

List of Figures v i i 

1 .Introduction 1 

2. Objective of study 2 

3. Literature Review 2 

3.1 Lagrangian analysis 2 
3.1.1 Lagrangian particle trajectories in Atmospheric Boundary Layer ( A B L ) 2 
3.1.2 Overview of volcanic ash particle trajectories 6 

3.2 Mount Etna 7 
3.2.1 Importance of Mount Etna 8 
3.2.2 Eruptions of Mount Etna and forecasting 10 

3.3 Volcanic ash transport and dispersion ( V A T D ) 14 
3.3.1 Volcanic ash deposition 14 
3.3.2 Ash particle distribution 15 

3.4 H Y S P L I T - A Lagrangian based tool 17 
3.4.1 N O A A satellite 19 

4. Material and Methods 20 

4.1 Material used 20 
4.2 Method for simulation 20 

5. Results 20 

5.1 M O U N T E T N A - O C T O B E R 2021 20 
5.1.1 Test results of Volcanic ash particle concentration 20 
5.1.2 Test results of ash particle position 25 

5.2 M O U N T E T N A E R U P T I O N M O N T H ( F E B R U A R Y 2021) 30 
5.2.1 Volcanic ash particle position 30 
5.2.2 Ash particle deposition 37 
5.2.3 Ash particle concentration 43 

6. Results and Discussion 50 

7. Conclusion 51 

References 



LIST OF FIGURES 

Figure 1: Horizontal variation of normalized concentration as a function of distance from the 
source x for A B L 
flows 3 
Figure 2: Movement of parcels in a typical two-dimensional model is presented 
schematically 4 
Figure 3: Lagrangian Integral of the auto correlation for the horizontal (a) and vertical (b) 
wind components for particles released at different heights 5 
Figure 4: Mean plume height (plume center line) of particles released at three different 
heights 5 
Figure 5: Mount Etna 8 
Figure 6: Sketch map of Mount Etna showing the extent of erupted material and the position 
of their vents or fissures 8 
Figure 7: Social media post from a local just after the eruption of Mount Etna volcano on 
16th February, 2021 10 
Figure 8: Mount Etna activity at night 11 
Figure 9: Lava flows from Mount Etna during one of summit eruptions in 2006 11 
Figure 10: Mount Etna cumulative eruption number 12 
Figure 11: Surveillance of Mount Etna by I N G V - C T 13 
Figure 12: Monitoring of Mount Etna eruptions between 2008-2009 13 
Figure 13: Volcanic ash particle size from Mount Etna eruptions 2008-2009 16 
Figure 14: Grain size distribution (in %) of ash particles in Mount Etna 2008 eruption 16 
Figure 15: Grain size distribution (in %) of ash particles in Mount Etna 2009 eruption 17 
Figure 16: Mechanism of the H Y S P L I T model 18 
Figure 17: Example of ash distribution forecast using H Y S P L I T 18 
Figure 18-27 
Figure 28-37 
Figure 38-50 
Figure 51-63 
Figure 64-76 

Test results Volcanic ash particle concentration 20-25 
Test results ash particle position 25-30 
Simulation results of Volcanic ash particle position 30-36 
Simulation results of ash particle deposition 37-43 
Simulation results of ash particle concentration 43-49 

Vll 



1. INTRODUCTION 

Volcano observatories are relative in organizing under the banner of the World Organization 
of Volcano Observatories, a commission of the International Association of Volcanology and 
the Earth's Interior, which holds membership for the International Union of Geodesy and 
Geophysics. Not all volcanoes are monitored and not all countries have volcano observatories. 
Volcano observatory staff can detect volcanic unrest, provide eruption forecasts, identify the 
onset of an eruption, and advise on the evolution and end of an eruption. Ideally these volcano 
observatories provide guidance on the changing eruption characteristics through time such as 
plume heights, altitudes of dispersing ash layers in the atmosphere, likely particle size 
distribution (post initial eruption) and possible mass eruption rates that can be used in 
numerical dispersion and transport models. Many observatories may analyse eruption 
products providing information on composition of ash and also gas emissions that impact on 
aircraft systems. Volcano observatories typically also hold information on past eruptions of a 
given volcano so they are able to provide likely eruption scenarios and a range of likely 
eruption parameters, such as possible ash ejection heights, before an eruption occurs. They 
are also responsible for monitoring ground hazards such as ash fall and volcanic gas 
dispersal. 
Researches proved that the atmospheric dispersion model H Y S P L I T (Stein et al., 2015), 
already in use by Met Service for the movement of fine particles travelling in the atmosphere, 
such as volcanic ash, and found it has the capability for estimating the distribution of ash 
particles on the ground. A s well as capturing the influence of realistic atmospheric motion in 
ash transport, H Y S P L I T can also model in-cloud (rainout) and below-cloud (washout) wet 
deposition processes. H Y S P L I T is a hybrid Lagrangian dispersion model, developed by 
N O A A / A R L which is used by MetService, in its role as a Volcanic Ash Advisory Centre 
( V A A C ) , to model airborne volcanic ash, with meteorological data provided by external and 
in-house N W P (Numerical Weather Prediction) models, which operate with three spatial 
dimensions and time. The spatial resolution of these models is four km, and the temporal 
resolution one hour. H Y S P L I T is operationally used by several of the Volcanic Ash Advisory 
Centres for aviation forecasting. A by-product of the H Y S P L I T volcanic ash dispersion 
simulations is the ash deposition at the ground surface. The ground surface elevation is 
modelled at the same resolution as the atmospheric model. Aside from the dispersion of 
volcanic ash, H Y S P L I T is used in several other atmospheric transport applications, including 
the dispersion of hazardous materials (e.g. nuclear material after the Fukushima reactor 
accident), air quality modelling (e.g. ozone, visibility, haze, and dioxin), dust storms, smoke, 
and the transport of biological material (e.g. pollen and mould spores). Rather than using a 
horizontal dispersion coefficient, the dispersion was calculated from the friction velocity, 
height and boundary layer height, where there are different equations for stable/neutral and 
unstable layers for both the surface and boundary layer. Above the boundary layer a mixing 
coefficient obtained from mixing length theory is generally used to calculate the velocity 
variances. The ash deposition results from H Y S P L I T obtained for similar eruptions and wind 
patterns. This showed that alterations to the standard fall velocity model of H Y S P L I T were 
required to deal with ash particles larger than about 100 microns, which make up the bulk of 
ash deposits near a volcano. This is not a consideration in the aviation applications of 
H Y S P L I T , as these particles are the ones that rapidly fall out of ash clouds. 

l 



2. OBJECTIVE 

The goal of this work is based on classified results obtained from H Y S P L I T Model 
using G D A S Meteorological data in Mount Etna volcanic region. 
The assessments in the context of this work produced by H Y S P L I T Model are basically 
focused on: 

1. volcanic ash deposition and mass concentration; 
2. ash particle position at different heights. 

3. LITERATURE REVIEW 

This part deliberates information regarding H Y S P L I T model, overviews of Mount Etna 
volcano, and volcanic ash distribution in Planetary Boundary Layer (PBL) which wi l l 
help us to find out the impact of H Y S P L I T modelling working system. 

3.1 LAGRANGIAN ANALYSIS 

A s provided by Gifford. (1982); de Baas et al. (1986); Sawford and Guest. (1987); 
Thomson. (1987); Luhar and Britter. (1989) and Yaping Shao (1991) the Lagrangian 
dispersion models brings outstanding predictions for the distributed of air pollutants in 
both homogeneous and inhomogeneous turbulent airflows. The Lagrangian dispersion 
model based in a simulation of tracer trajectories, naturally describe the movement of a 
pollutant and are numerically simple. Based on Thomson (1987) the Lagrangian model 
unfolds the characteristics on the movement of a passive particle in a turbulent flow 
which can be adequately described by a nonlinear stochastic equation system as follows: 

dUj = ajdt + bjjd^j 
dXj = Ujdt ... (1) (Yaping Shao, 1991) 

Here, U i and X ; are the velocity and position of the particle, respectively; t is time; and 
d ĵ is a random acceleration. The coefficients ai and by are determined by the structure of 
turbulence. 
Using this method a complete understanding of atmospheric turbulence over uniform 
surfaces has been achieved and this has provided a solid basis for the application of 
Lagrangian models. In this thesis, Lagrangian trajectory models have been obtained 
using H Y S P L I T application. 

3.1.1 Lagrangian particle trajectories in Atmospheric Boundary Layer (ABL) 

High Reynolds-number turbulence is evaluated by intermittency in its small-scale 
structure, where the velocity gradients and the instantaneous turbulent kinetic energy 
(TKE) dissipation rate e* exhibit large fluctuations in time provided by Chen (1971). 
According to Andy M . Reynolds et al. (2018) Lagrangian models of tracer-particle 
trajectories in turbulent flows can be adapted for simulation of particle trajectories. This 
is conventionally done by replacing the zero mean fall speed of a tracer-particle with the 
terminal speed of the particle. Such models have been used widely to predict spore and 
pollen dispersal. In A B L flows, Pope (2000) proposed that intermittency in e* can play a 
significant role, where the ratio between e* and its time-averaged value (= e) can reach as 
high as 50. However, in Lagrangian stochastic (LS) particle trajectory models have 
significant impact on the intermittent behaviour of e*. Thomson (1987); Wilson and 
Sawford (1996) studies shows that L S models typically do not consider for the 
intermittent behaviour of e*. L S models estimates a local Lagrangian time scale as a 
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function of a local e (Flesch and Wilson 1992; Baldocchi 1997; Kurbanmuradov and 
Sabelfeld 2000; Rannik et al. 2000; Kl jun et al. 2002; Nathan et al. 2002; Cassiani et al. 
2005a,b; Poggi et al. 2006; Vesala et al. 2008; Hsieh and Katul 2009). Studies from Pope 
and Chen (1990) using an extended L S model that includes not only the instantaneous 
velocity, but also the instantaneous dissipation (e*) along a particle trajectory. In this 
model, where the dissipation rate e* is sampled from a log-normal probability density 
function (PDF), by solving an additional stochastic differential equation for % = ln(e7e). 
In the Lagrangian frame of reference, Thomson (1987) formulated simplest two-
dimensional case based on the generalized Langevin equation. According to T. Duman 
et al. (2014) based on standard L S model and proposed log-normal model simulations 
for A B L flows were observed as shown in F i g . l 

Stable Neutral Unstable 

; log-normaJ (T=2,5 ; ; 
_4 r i i j i -i r i j i i .] r i i i i 

0 1 2 3 4 5 0 I 2 3 4 5 O I 2 3 4 5 
log{jrŷ > togfjr^) [og(;t ŝ) 

Fig. 1. Horizontal variation of normalized concentration as a function of distance from the source x 
for ABL flows. SI stands for source intensity and ur is the wind velocity at source height, a-c plots 
shows the horizontal variation at the source height (zs) for stable, neutral and unstable conditions 
respectively, d-f presents the same but at ground level (zg). The solid lines in all sub-figures 
represent simulations with Cx= 1.6. For the neutral case (b, e), simulations of Cx= 0.5 and 3 shown 
by the dashed lines and the dotted lines respectively (T. Duman et al., 2014) 

According to Alam and L i n (2008) in an atmospheric model, a set of conservation 
principles form a coupled set of PDEs that must be solved simultaneously. A system of 
prognostic equations describing atmospheric motion can be compactly written as 

dW 
— + u. d ¥ = R ... (2) (Alam and L i n , 2008) 
at 

Here, ¥ is a vector of d state variables, u is a two or three-dimensional velocity vector, 
and R is a vector that represents all forces or sources. In the absence of external forces or 
source/sink terms: R = 0, which implies that 

dW 

In Lagrangian models, in the first stage of the time step we can assume that an 
atmospheric state is governed by inertial forces only. Therefore, an air parcel in motion 
moves with the current velocity without changing ¥ within the parcel. In the second 
stage of the time step, we neglect the motion of air parcels and consider that an 
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atmospheric state is at rest, where flow properties defined by W changes within a parcel 
according to external sources/sinks or forces represented by nonzero R. For example, 
such movement of air parcels shown below in Fig.2. 
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Fig. 2. Movement of parcels in a typical two-dimensional model is presented schematically. A non­
filled circle represents a parcel assigned at t—*to. A filled circle represents a parcel at t = to + At. 
Arrows link present position with future positions. (Alam and Lin , 2008) 

Studies from Robert G. Lamb (1977) mentions the ensemble mean concentration of a 
passive, chemically inert species of air particles using Lagrangian equation. The results 
observed from the simulations are of mean particle height, root-mean-square vertical and 
lateral spread and mean cross-wind integrated concentrations estimated using Wi l l i s and 
Deardorff (1978) boundary model. Dosio, A . , & De Arellano, J. V . (2006) approaches 
the Lagrangian statistics in the Convective Boundary Layer ( C B L ) using Large Eddy 
Simulation (LES), i.e. trajectories of particles released in a numerically generated 
turbulent flow are tracked in space and time. Author examined three main issues using 
L E S as follows: First, the turbulent characteristics of the flow have been studied in both 
Eulerian and Lagrangian frameworks by analyzing velocity auto correlations and 
calculating integral scales. Second, the relationship between flow properties (auto 
correlations) and dispersion characteristics (particles displacements) which have been 
discussed through Taylor's analysis of turbulent dispersion provided by Taylor (1921). 
The influence of the asymmetry of the C B L flow on dispersion is studied, with the focus 
being on the difference between horizontal and vertical motion. And, finally the 
relationship between Eulerian and Lagrangian frameworks is studied by calculating the 
ratio (3 between the Lagrangian and Eulerian time scales. Lagrangian particle model 
analyzed using the position in direction j of the i t h particle calculated using the equation: 

Here, At is the time step and uj (t) is the velocity of the particle calculated by 

interpolating linearly the values of the resolved (Eulerian) velocity at the eight closest 

x)(t+At) =x)(t) + u)(t)At ...(4) (Dosio, A . , & De Arellano, J. V . , 2006) 
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grid points. In contrary, Lagrangian statistics (both auto correlations and integral scales) 
are associated with the largest scale of motion, which were explicitly solved by the L E S 
and therefore the velocity sub grid scales are not very relevant. Lagrangian auto 
correlation for both the horizontal and vertical components were calculated at different 
heights as shown below in Fig. 3. 
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Fig. 3. Lagrangian Integral of the auto correlation for the horizontal (a) and vertical (b) wind 
components for particles released at different heights. (Dosio, A., & De Arellano, J. V., 2006) 

In Fig.4, according to Lagrangian statistics an example of particle trajectory is shown. 
According to Moeng and Sullivan (1994), the difference in the particle motions at short 
times is related to the different vertical structure of the turbulent field in the C B L . 
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Fig. 4. Mean plume height (plume center line) of particles released at three different heights 
(Dosio, A., & De Arellano, J. V., 
2006) 
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This thesis works with the volcanic ash particle trajectories using Lagrangian statistics as 
mentioned in this section. The volcanic ash particle trajectories based on Alam and L i n 
(2008) equations (2) and, (3) respectively follows in this thesis work using H Y S P L I T 
model application of Mount Etna volcanic ash particle position and trajectories. 

3.1.2 Overview of volcanic ash particle trajectories 

Studies from Ram and Gayley (1991) ensures that volcano eruptions often release 
volcanic ash clouds into the atmosphere, which consist of tephra (submillimeter-sized 
rock particles), water vapor and other gases such as carbon dioxide (CO2), sulfur dioxide 
(SO2), hydrogen sulfide (H2S), etc. Ash particles from volcano eruptions are transported 
by wind to thousands of kilometers away, or even over 10,000 km from their source for 
some fine particles. Volcanic ash plumes can reach over 20 km in altitude above sea 
level provided by Holasek et al., (1996). 

According to T. Haszpra and T. Tel (2011), the equations of motion for small, inertial, 
spherical particles of radius r in a viscous fluid advected by a flow deterministically are 
given by the Maxey-Riley equations (Studies by M . Farazmand and G. Haller (2014)). 
For heavy particles of density p p much larger than that of the ambient medium p, the 
dimensionless equations for the particles trajectory rp(t) as follows: 

i > - g t ( v ( i \ t ) - r p - W t e r m i n a l n ) 

...(5) T. Haszpra and T. Tel (2011) 

where, v(r, t) is the flow field, Wterminai is the dimensionless terminal velocity in still fluid, 
and n is a unit vector pointing upwards. Velocity and distance are measured in units of a 
characteristic velocity U and L , respectively. The Stokes number (St) appearing here is 
the dimensionless relaxation time of inertial particles subject to Stokes drag. Usually, the 
limit of St-*0 in (5) implies finite acceleration only i f the parentheses on the right hand 
side vanishes, the large-scale equation of motion for aerosol particles becomes even 
simpler than (5). On the contrary, the inertial effects are negligible, but in the vertical 
direction deposition has to be taken into account with a terminal velocity. 
The dimensional equation of motion for volcanic ash particles following from (5) can be 
written as: 

v p = rp = v ( r p ( t ) , t) - w t e r m i n a i n . 

.. .(6) T. Haszpra and T. Tel (2011) 

Here the Wterminai, the terminal velocity can be written as: 

2 2 Pp 
m terminal t{?' ff' 

9 pv 
... (7) T. Haszpra and T. Tel (2011) 

According to Fay et al. (1995), the particle dispersion equations are formulated in terms of the 
turbulent velocity components. These velocity components are a function of the turbulent 
diffusivities computed in the previous section. In the particle implementation of the model, 
the dispersion process is represented by adding a turbulent component to the mean velocity 
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obtained from the meteorological data. The particle model can be applied in either the vertical, 
horizontal, or both directions. In this thesis the V A T D models for ash particles deposition 
referred to as grain-sizr distributions (GSDs). 
Studies from Draxler, R. R., & Hess, G. D . (1997) deliberates that the Puff dispersion model 
for ash particles is treated in two domains, when the puff is smaller than the meteorological 
model grid size and the other is larger. In the latter case it is assumed that the meteorological 
model is capable of resolving turbulent motions on that scale. GSDs and "top-hat" puffs are 
treated almost identically. 
G S D distributions may be defined in either the vertical and horizontal directions, or only in 
the horizontal direction. For each G S D , concentrations are summed at each time step to all 
grid points that fall within the particle extent defined for G S D distributions (±1.54 oi), where i 
indicates z or h, or Gaussian distributions (±3.0 oh). Vertical distributions are always defined 
as top-hat while horizontal distributions may be either. The incremental concentration 
contribution by each G S D of mass m to a grid point is computed as follows: 

where the vertical extent Az = 3.08o z, and the horizontal radius r = 1.54ah. A l l grid-nodes 
within the G S D extent receive the same Ac. 

Particle calculations can be performed in either the vertical or both the vertical and 
horizontal directions. However, particle calculations are summed into a grid-cell rather than 
computed at a grid-point. A cell is defined at the center of the node and has an area 
corresponding to the half-way distance to adjacent nodes. The incremental concentration 
contribution to a cell by a single particle of mass m is defined for a 3D particle, 

Here, Ax , Ay ,Az are the grid-cell dimensions. For every particle with a horizontal G S D the 
incremental concentration is same as equation (8), but with Az defined as grid-cell height. If 
the horizontal distribution is Gaussian then the incremental concentration is the same as 
incremental concentration contribution for a Gaussian G S D , and with Az defined as the grid-
cell height. The incremental concentrations are added to each grid cell with each advection 
time step for all particles that intersect that point. The final average concentration is the 
incremental sum divided by the number of time steps in the concentration averaging period. 

3.2 MOUNT ETNA 

Mount Etna, a stratovolcano in Italy is the highest volcano in Europe and one of most active 
of the world. Located at 37° 45' 18" N , 14° 59' 42" E it's size is more than 3327 meters high 
with an average basal diameter of 40 km. Studies regarding endangerment of Mt . Etna began 
in the late 1970s and early 1980s focusing on the patterns in historic eruptions and 
speculating the location of future activity (Frazzetta and Romano, 1978; Guest and Murray, 
1979; Duncan et al., 1981). Numerous studies have built on this work by statistics of historic 
eruptions (Mulargia et al., 1985; Behncke and Neri , 2003; Branca and Del Carlo, 2004, 2005; 
Salvi et al., 2006; Neri et al., 2011; Smethurst et al., 2009; Passarelli et al., 2010; Proietti et 
al., 2011) and making probabilistic hazard maps of surrounding areas (Andronico and Lodato, 
2005; Bisson et al., 2009; Behncke et al., 2005; Crisci et al., 2010; Harris et al., 2011; 
Cappello et al., 2012, 2013). 

Ac = m (TI r 2 Az)" 1 ...(8) Draxler, R. R., & Hess, G. D . (1997) 

Ac = m (Ax Ay Az)" 1 ...(9) Draxler, R. R , & Hess, G. D . (1997) 
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Fig.5. Mount Etna (Source: wikipedia) 

Fig.6. Sketch map of Mount Etna showing the extent of erupted material and the position of their vents or 
fissures (L.S. Gunn et al., 2014) 

3.2.1 Importance of Mount Etna 

Mount Etna, in June 2013 have been added to U N E S C O World Heritage Site. Mount Etna, 
Latin Aetna, Sicilian Mongibello, active volcano on the east coast of Sicily. The name comes 
from the Greek Aitne, from aitho, "I burn." Mount Etna is the highest active volcano in 
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Europe, its topmost elevation being about 10,900 feet (3,320 metres). L ike other active 
volcanoes, it varies in height, increasing from deposition during eruptions and decreasing 
from the periodic collapse of the crater's rim. In 1865 the volcanic summit was about 170 feet 
(52 metres) higher than it was in the early 21st century. Etna covers an area of some 600 
square miles (1,600 square km), and its base has a circumference of about 93 miles (150 km). 
About 35,000 to 15,000 years ago Etna experienced highly explosive eruptions generating 
large pyroclastic flows leaving extensive ignimbrite deposits. There are two types of volcanic 
activity which have been recognized in the historical records of Mt . Etna: persistent activity 
from summit vents and periodic activity from eruptive fissures on the volcano's flanks (Guest 
and Murray 1979; Duncan et al., 1981; Acocella and Neri , 2003; Behncke and Neri , 2003; 
Branca and Del Carlo, 2005; Crisci et al., 2010). The Etna mountain has three ecological 
zones, one above the other, each exhibiting its own characteristic vegetation. The lowest zone, 
sloping gradually upward to perhaps 3,000 feet (915 metres), is fertile and rich in vineyards, 
olive groves, citrus plantations, and orchards. Several densely populated settlements, notably 
the city of Catania, are found on the lower slopes, but settlements become less frequent as the 
height increases. Above, the mountain grows steeper and is covered with forests of chestnut, 
beech, oak, pine, and birch. A t heights of more than 6,500 feet (1,980 metres), the mountain 
is covered with ashes, sand, and fragments of lava and slag; there are a few scattered plants 
such as Astragalus aetnensis (local name: spino santo), which typically forms bushes almost 1 
yard (about 0.9 metre) high, while some alpine plants manage to survive even near the top. 
Algae have been found near the steam outlets at 9,800 feet (2,990 metres) (Britannica web.). 

Geologically, the Mount Etna indicates active signs since the end of the Neogene Period (i.e., 
for about the past 2.6 mill ion years). The volcano has more than one active centre. A number 
of subsidiary cones have been formed on lateral fissures extending out from the centre and 
down the sides. The present structure of the mountain is the result of the activity of at least 
two main eruptive centers. The eruption of 1971 threatened several villages with its lava flow 
and destroyed some orchards and vineyards. Activity was almost continuous in the decade 
following 1971, and in 1983 an eruption that lasted four months prompted authorities to 
explode dynamite in an attempt to divert lava flows. The major eruptions of the 20th century 
occurred in 1986 and in 1999. In the early 21st century a major eruption began in July 2001 
and lasted several weeks. Beginning of February 2021, Mount Etna began a series of 
explosive eruptions, which had made an impact on nearby villages and cities, with volcanic 
ash and rock falling as far away as Catania. A s of 12 March 2021, the volcano has erupted 11 
times in three weeks. The eruptions have consistently sent ash clouds over 10 km (33,000 ft) 
into the air, closing Sicilian airports. This thesis work made with the data set measured from 
the 16 February, 2021 eruption of Mount Etna. 
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Latest in space 
©latestinspace 

BREAKING: Majestic eruption from Mount #Etna in 
Sicily this afternoon. 

Fig. 7. Social media post from a local just after the eruption of Mount Etna volcano on 16th February, 
2021 (Source: Firstpost) 

3.2.2 Eruptions of Mount Etna and forecasting 

The data set generally used in this thesis is from last year eruption of Mount Etna on 16 
February, 2021. Since 1300s the dataset of flank eruptions are in record from the description 
of summit and flanked activities provided by Tanguy et al. (2007) and Neri et al. (2011). 
Mount Etna as one of the active volcano in the world where eruptions occur quite frequently. 
In 2001, for example there were sixteen eruptions occur in Mount Etna. Major 20 t h century 
eruptions occurred in 1949, 1971, 1979, 1981, 1983 and 1991-1993. In 1971, lava buried the 
Etna Observatory (built in the late 19th century), destroyed the first generation of the Etna 
cable-car, and seriously threatened several small villages on Etna's east flank. In March 1981, 
the town of Randazzo on the northwestern flank of Etna narrowly escaped destruction by 
unusually fast-moving lava flows. That eruption was remarkably similar to one in 1928 that 
destroyed Mascali . The 1991-1993 eruption saw the town of Zafferana threatened by a lava 
flow, but successful diversion efforts saved the town with the loss of only one building a few 
hundred metres from the town's margin. Initially, such efforts consisted of the construction of 
earth barriers built perpendicularly to the flow direction; it was hoped that the eruption would 
stop before the artificial basins created behind the barriers would be completely filled. Instead, 
the eruption continued, and lava surmounted the barriers, heading directly toward Zafferana. 
Shortly after the blasting, the rate of lava emission dropped, and during the remainder of the 
eruption (until 30 March 1993) the lava never advanced close to the town again. In 2002-2003, 
a much larger eruption threw up a huge column of ash that could easily be seen from space. 
Eruptions, in 2001, 2002-2003, and 2004-2005 had lasted 3 weeks, 3 months, and 6 months, 
respectively. Lava flows advanced 6.5 km during the first few days of this eruption but 
thereafter stagnated at many minor distances from the vents; during the last months of the 
eruption lava rarely advanced more than 1 km down slope. On 3 December 2015, an eruption 
occurred between 03:20 and 04:10 local time. The Voragine crater exhibited a lava fountain 
which reached 1 km (3,300 ft) in height, with an ash plume which reached 3 km (9,800 ft) in 
height. The activity continued with an ash plume that reached 7 km (23,000 ft) in height that 
forced Catania airport to shut down for a few hours. Volcanic gas emissions from this volcano 
are measured by a multi-component gas analyzer system, which detects pre-eruptive 
degassing of rising magmas, improving prediction of volcanic activity. A n eruption on 24 
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December 2018, following a dyke intrusion at shallow depth, spewed ash into the air, forcing 
the closure of airspace around Mount Etna. Two days later, a magnitude 4.9 earthquake shook 
the town of Fieri and surrounding towns. Mount Etna began a series of explosive eruptions, 
which have had an impact on nearby villages and cities, with volcanic ash and rock falling as 
far away as Catania. In 2021, the volcano has erupted eleven times in three weeks. The 
eruptions have consistently sent ash clouds over 10 km (33,000 ft) into the air, closing 
Sicilian airports. 

Fig. 8. Mount Etna activity at night (Source: INGV-CT) 

Fig. 9. Lava flows from Mount Etna during one of summit eruptions in 2006 (Source: INGV-CT) 
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Fig. 10. Mount Etna cumulative eruption number (L.S. Gunn et al., 2014) 

Mount Etna has a very long eruptive history that has been going on for over half a mill ion 
years, but only in the last hundred thousand years has it assumed the conical shape that 
characterizes it today. The magma rises to the surface through an open central conduit that 
continuously releases the gaseous phases, generating the characteristic plume observable on 
the top of the volcano. National Institute of Geophysics and Volcanology - Catania section 
Istituto Nazionale di Geofisica e Vulcanologia ( I N G V - C T ) responsible for the development 
and implement the system for forecasting volcanic plumes of Mount Etna. According to S. 
Scollo et al., (2009) forecasting performed by: a) downloading weather forecast data from 
meteorological mesoscale models; b) running models of tephra dispersal, c) plotting hazard 
maps of volcanic ash dispersal and deposition for certain scenarios and, d) publishing the 
results on a web-site dedicated to the Italian C i v i l Protection. Simulations are based on 
eruptive scenarios obtained by analysing field data collected from every Etna eruptions. 
Forecasting is supported by plume observations carried out by the monitoring system. 
Currently, the eruptive activity can be classified into three different categories: 

• persistent activity : continuous degassing from the summit craters. 

• terminal and sub terminal eruptions: lava eruptions that usually occur from the Summit 
Craters present on the top of the volcano ( terminals ) or from their immediate proximity 
(sub terminal ). 

• lateral and eccentric eruptions : occurs from eruptive vents that open along the slopes of 
the volcano, fed by magma that rises along the central duct (lateral eruptions ), or 
through ducts independent from the central one ( eccentric eruptions ). 
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Fig. 11. Surveillance of Mount Etna by INGV-CT (Source: INGV-CT) 

Fig. 12. Monitoring of Mount Etna eruptions between 2008-2009 (Source: INGV-CT) 

The geochemical monitoring network was developed around 1984 to monitor all types of 
interactions present, in order to obtain, through the measurement of various parameters, a 
more complete picture of the state of activity of the volcano. Specifically, the network 
currently consists of thirteen stations for measuring the flow of CO2 , the chemical-physical 
parameters of the aquifer and the T D G P and the temperatures of three fumaroles on the edge 
and internal wall of the L a Fossa crater. Chemical-physical parameters of water and analysis 
of the chemical and isotopic composition of the water and gases dissolved in the groundwater 
through sampling carried out on a monthly basis. Monthly prospecting to estimate the diffuse 
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flow of CO2 from the soils in three sectors of the Etna. The determination of the chemical and 
isotopic composition of the gases emitted in the peripheral and summit areas of the volcano. 
Bimonthly / monthly measurements for the analysis of the CO2 / SO2 ratios in the gases of the 
plume emitted by the Etna craters carries out. 

3.3 VOLCANIC ASH TRANSPORT AND DISPERSION (VATD) 

In this work V A T D models obtained from H Y S P L I T maintained by N O A A is a Lagrangian 
model and supports a wide range of simulations related to the transport, dispersion and 
deposition of substances in the air such as volcanic ash, radioactive species, smoke and dust. 
According to Peterson et al. (in press) they reflect on the different physical processes that 
effect the movement of volcanic ash particles, such as diffusion, settling and aggregation. 

3.3.1 Volcanic ash deposition 

Basaltic volcanism is the most widespread volcanic activity on Earth and also familiar to 
Mount Etna volcanic activity. Ash emissions are a very typical manifestation of basaltic 
activity despite of their frequency of occurrence. In this thesis, the volcanic ash concentration 
has been measured.The principal gases released during volcanic activity are water, carbon 
dioxide, hydrogen, sulfur dioxide, hydrogen sulfide, carbon monoxide and hydrogen chloride. 
The sulfur and halogen gases and metals are removed from the atmosphere by processes of 
chemical reaction, dry and wet deposition, and by adsorption onto the surface of volcanic ash. 
It has long been recognised that a range of sulfate and halide (primarily chloride and fluoride) 
compounds are readily mobilised from fresh volcanic ash. It is considered most likely that 
these salts are formed as a consequence of rapid acid dissolution of ash particles within 
eruption plumes, which is thought to supply the cations involved in the deposition of sulfate 
and halide salts. Studies provided by Taddeucci et al., (2002, 2004); Andronico et al., (2009a, 
2013, 2014b) mentions the compositional features of ash particles erupted from explosive 
activity at Mount Etna. The Juvenile ash particles at Etna consist of two end-members: 
sideromelane and tachylite. The sideromelane has fluidal to irregular morphology, is yellow 
to brown in colour, transparent, vesicular and generally glassy in the groundmass. The 
tachylite is blocky, grey to black, generally opaque (sometimes it can be shiny), poorly 
vesicular and crystallised in the groundmass. Whereas, a continuous, progressive transition of 
textural features between the two ash types, mainly generated by the different extent of 
groundmass crystallisation, far more pronounced in tachylite, and by the higher content of 
(sub) spherical vesicles, as opposed to vesicles with complex and/or irregular shapes, in 
sideromelane. According to Taddeucci et al.,( 2002, 2004); Polacci et al., (2006). In the 1995 
eruption of Mount Etna , tachylite glass tends to be more compositionally differentiated in 
comparison to its sideromelane counterpart, with a higher silica, alkali and phosphorous 
content and lower magnesium and calcium. Studies by Taddeucci et al., (2004) proves that 
the eruptive activity investigations of ash componentry have revealed that the proportion of 
sideromelane ash increases with increasing eruption intensity. Ash dispersal at Mount Etna is 
mostly controlled by eruption intensity and the ensuing plume height. On 23 February and 23 
November 2013, two lava fountain episodes characterised by relatively high eruption columns 
(atleast for the most common explosive activity at Etna) of up to 9-10 km a.s.l. and high 
M E R s , generated dispersal of ash particles up to 400 km from Etna, in Puglia (Italy) studies 
by Poret et al., (2018a,b). During the 2001 and 2002-2003 eruptions the intensity was low but 
the duration of the activity last for days to weeks, the continuous injection of relatively fine­
grained ash in the atmosphere is able to form a sustained tephra column feeding an eruption 
cloud spreading hundreds of kilometers away from the volcano. In this thesis, the volcanic 
ash deposition works with the ash concentration from volcanic plumes observed by the 
N O A A satellite. 
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3.3.2 Ash particle distribution 

According to the work from M . P lu (2021), the 3-D representation of volcanic ash of a 
resolved source term and of the assimilation of different observation datasets, using the 
M O C A G E model. The main findings are as follows: 
• The use of a resolved source term instead of a parameterised source term induces a more 

realistic representation of the horizontal dispersion of the ash plume. 
• A positive impact of the assimilation of M O D I S A O D on the horizontal dispersion of the 

plume has been shown, but this effect is rather low and local compared to source term 
improvement. 

• The continuous assimilation of lidar profiles from two ground-based stations improves 
the vertical distribution of ash and helps to simulate ash concentrations closer to those 
values obtained from in situ observations. 

According to Murrow et al., (1980); Carey and Sigurdsson (1982); Bonadonna and Houghton, 
(2005); Rose et al., (2007) grain size, the clayey material (VG) has a particle-size distribution 
between 1 and 200 um with a maximum peak at around 20 um and a second smaller, but 
wider, interval and a peak at 1500 um. The volcanic ash (va) is almost unimodal and is 
characterized by coarser particles with a maximum peak at 150 um, most of which are 
between 50 and 450 um. The ash particles consist of tachylite. They show smoothed, poorly 
vesicular surfaces with conchoidal fractures. Webley et al. (2009) evaluated the sensitivity of 
the grain size distribution on the modeled ash cloud and found that this predefined 
distribution is sufficient for H Y S P L I T volcanic ash simulation. In Rose (1993), the grain-size 
distribution of tephra produced during an eruption is highly relevant to aviation hazards but 
poorly characterized. Volcanic eruptions produce fragments ranging in size from meters to 
fractions of a micron. Particles larger than a millimeter or so fall out at roughly their terminal 
velocity and are generally removed from the eruption column in the first 30 min. Provided by 
Carey and Sigurdsson (1982), finer particles fall at rates influenced by variable and poorly 
understood processes of particle aggregation. The mass fraction of fine ash can be estimated 
from the total grainsize distribution (TGSD) of eruptive debris. Several studies have 
estimated the total grain-size distribution by analysis of old tephra deposits especially Suzuki 
et al., (1973); Walker, (1980); Sparks et al., (1981); Walker, (1981a,c); Self, (1983); 
Hayakawa, (1985); Woods and Bursik, (1991). The impact of explosive volcanic eruptions on 
climate and 
air traffic strongly depends on the concentration and G S D of pyroclastic fragments injected 
into the atmosphere suggested by Girault et al., (2014). G S D is normally reconstructed by the 
volcanologists from grain size data at individual outcrops, ranging from basic unweighted 
average of the G S D at individual sparse outcrops to various integration methods of grain size 
data provided by Rose and Durant (2009). In volcanology, grain size distributions are given in 
terms of the (|), defined as d = 2"*, where d is the particle diameter in mm. According to 
Heffter and Stunder (1993), the N O A A H Y S P L I T G S D defines the particle bins as 1% total 
mass at 0.6 um, 7% total mass at 2 um, 25% of total mass at 6 um and 67% of mass at 20 um 
as originally used in the V A T D . Vertically the volcanic ash distribution, i.e. the Height of ash 
= M a x Height - [Zw i dthxP] + (0.5xZ w i dthxR) 
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Fig. 14. Grain size distribution (in %) of ash particles in Mount Etna 2008 eruption (Source: INGV-CT) 
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Fig. 15. Grain size distribution (in %) of ash particles in Mount Etna 2009 eruption (Source: INGV-CT) 

3.4 HYSPLIT - A LAGRANGIAN BASED TOOL 

According to the A . F . Stein et al., (2015) model calculation method is a hybrid between the 
Lagrangian approach, using a moving frame of reference for the advection and diffusion 
calculations as the trajectories or air parcels move from their initial location, and the Eulerian 
methodology, which uses a fixed three-dimensional grid as a frame of reference to compute 
pollutant air concentrations. 

The H Y S P L I T model has evolved throughout more than thirty years, from estimating 
simplified single trajectories based on radiosonde observations to a system accounting for 
multiple interacting pollutants. H Y S P L I T can use a large variety of meteorological model 
data in its calculations, ranging from mesoscale to global scales. Rather than having a 
different version of H Y S P L I T to cope with the variations in variables and structure for each 
meteorological data source, a customized preprocessor is used to convert each meteorological 
data source into a HYSPLIT-compatible format. In this way H Y S P L I T can easily be run with 
one or more meteorological datasets at the same time, using the optimal data for each 
calculation point. The meteorological data already formatted for H Y S P L I T that are publicly 
available from N O A A A R E website. 
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Fig. 16. Mechanism of the HYSPLIT model. The light gray shades leads HYSPLIT. The dark gray shade 
corresponds to the first three versions of the HYSPLIT system. The dark blue box corresponds to 
HYSPLIT4 and the light blue boxes correspond to applications that derive from HYSPLIT4. (A.F. Stein 
et al., 2015) 
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Fig. 17. Example of ash distribution forecast using HYSPLIT (Hurst and Davis, 2017) 

The model calculation method of H Y S P L I T is a hybrid between the Lagrangian approach, 
using a moving frame of reference for the advection and diffusion calculations as the 
trajectories or air parcels move from their initial location, and the Eulerian methodology, 
which uses a fixed three-dimensional grid as a frame of reference to compute pollutant air 
concentrations. 
H Y S P L I T simulation works for volcanic ash dispersion modeling as following conditions: 

• Eruption input 
• Meteorological data input 
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• Ash particle distribution 
• Ash cloud 
• Reduced ash 
• Model output 

A l l H Y S P L I T options are available generally in the Windows-based version. H Y S P L I T 
modeling system features : 

A ) Trajectories 
• Single or multiple (space or time) simultaneous trajectories 
• Optional grid of initial starting locations 
• Computations forward or backward in time 
• Default vertical motion using omega field 
• Other motion options: isentropic, isosigma, isobaric, isopycnic 
• Trajectory ensemble option using meteorological variations 
• Output of meteorological variables along a trajectory 
• Integrated trajectory clustering option 

B) A i r Concentrations 

• 3D particle dispersion or splitting puffs (top-hat or Gaussian) 
• Instantaneous or continuous emissions, point or area sources 
• Multiple resolution concentration output grids 
• Fixed concentration grid or dynamic sampling 
• Wet and dry deposition, radioactive decay, and re-suspension 
• Emission of multiple simultaneous pollutant species 
• Automated source-receptor matrix computation 
• Ensemble dispersion based on variations in meteorology, turbulence, or physics 
• Concentration probability output for multiple simulations 
• Integrated dust-storm emission algorithm 
• Define rate constants to convert one species to another 
• Mass can be transferred to a Eulerian module for global-scale simulations 

C) Meteorology 

• Model can run with multiple nested input data grids 
• Links to A R L and N W S meteorological data server 
• Utili ty programs to display and manipulate meteorological data 

3.4.1 NOAA Satellite 

H Y S P L I T models acquire to simulate the dispersion and trajectory of substances transported 
and dispersed through our atmosphere, over local to global scales. National Oceanic and 
Atmospheric Administration ( N O A A ) is an American scientific and regulatory agency within 
the United States Department of Commerce that forecasts weather, monitors oceanic and 
atmospheric conditions. Meteorologists at the V A A C and the Meteorological Watch Offices 
use the H Y S P L I T forecasts, among other sources of information, for writing Volcanic Ash 
Advisories and Significant Meteorological Information warning messages (called SIGMETs) , 
respectively. The H Y S P L I T dispersion forecasts are issued to the public and made available 
online in the website. 
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4. MATERIAL AND METHODS FOR SIMULATION 

4.1 MATERIAL USED 

The laptop device used in this thesis to develop the simulation results from H Y S P L I T 
modelling system. Laptop is configured with the processor of 11th Gen Intel(R) Core(TM) i7-
1165G7 and installed R A M of 16 G B . Laptop works with 64-bit Windows Operating System. 

4.2 METHOD FOR SIMULATION 

The simulation results obtained from H Y S P L I T by N O A A . The simulation tests have been 
obtained from N O A A website. Other simulation details regarding the work function of 
H Y S P L I T modelling system gathered from Hurst et al. (2017), I N G V - C T , Webley et al. 
(2009) and documents from N O A A website. 

5. RESULTS 

5.1 MOUNT ETNA SIMULATIONS - OCTOBER 2021 

In this section, Mount Etna volcanic region at different location from October 2021 have been 
simulated using H Y S P L I T modelling system evolved by N O A A . 

5.1.1 Test results of Volcanic ash particle concentration 

In this section, the results were obtained for volcanic ash particle concentration at mg/m 2 

which have been evaluated using H Y S P L I T modeling system from October 2021 data. The 
Mount Etna located at 37.734° N 15.004° E , where the mass concentration evaluated in given 
in Fig . 18. The data set comprises of October month. 

NOAA HYSPLIT MODEL 
Mass loading (mg/m2) between 0 ft and 60000 ft 

Integrated from 0200 06 Oct to 0300 06 Oct 21 (UTC) 
SUM Release started at 0000 06 Oct 21 (UTC) 

wl 
GDAS METEOROLOGICAL DATA 

Fig. 18. Volcanic ash concentration (mg/m2) at Mount Etna (37.734° N 15.004° E) using HYSPLIT 
modeling system 
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Another location from Mount Etna (37.752° N 14.995° E) where the ash particle mass 
concentration have been evaluated at mg/m 2 . The measurements were taken in three parts for 
the data set in this particular location. 

NOAAHYSPLIT MODEL 
Mass loading {mg/m2) between 0 ft and 60000 ft 

Integrated from 0200 06 Oct to 0300 06 Oct 21 (UTC) 
SUM Release started at 0000 06 Oct 21 (UTC) 

>1G0 mg/m2 
H>10mg/m2 
H > 1 mg/m2 

>0.1 mg/m2 
Maximum: 2.5E+02 mgmi2 

Minimum: 9 9E-05 mg/m2 

THIS IS A TEST 

GDAS METEOROLOGICAL DATA 
Fig. 19. Volcanic ash concentration (mg/m2) at Mount Etna (37.752° N 14.995° E) using HYSPLIT 
modeling system 

NOAA HYSPLIT MODEL 
Mass loading (mg/m2) between 0 ft and 60000 ft 

Integrated from 0500 06 Oct to 0600 06 Oct 21 (UTC) 
SUM Release started at 0000 06 Oct 21 (UTC) 

>100mgym2 
B>10mg/m2 

>1 mg/m2 
>0.1 mg/m2 

Maximum: 7.5E+01 mg/m2 

Minimum: 7.2E-0B mg/m2 

GDAS METEOROLOGICAL DATA 
Fig. 20. Volcanic ash concentration (mg/m2) at Mount Etna (37.752° N 14.995° E) using HYSPLIT 
modeling system 
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NOAA HYSPLIT MODEL 
Mass loading (mg/m2) between 0 ft and 60000 ft 

Integrated from 0800 06 Oct to 0900 06 Oct 21 (UTC) 
SUM Release started at 0000 06 Oct 21 (UTC) 

>100 mg/m2 
•10 mg/m2 
•1 mg/m2 

>0.1 mg/m2 
Maximum: 3.0E+01 mg/rn2 

Minimum: 2.4E-07 mg/m2 

THIS IS A TEST 

GDAS METEOROLOGICAL DATA 
Fig. 21. Volcanic ash concentration (mg/m2) at Mount Etna (37.752° N 14.995° E) using HYSPLIT 
modeling system 

Other location of Mount Etna, 37.752° N 14.991° E from the measurement for volcanic ash 
concentration at mg/m 2 

h i 

NOAA HYSPLIT MODEL 
Mass loading (mg/m2) between 0 ft and 60000 ft 

Integrated from 0200 06 Oct to 0300 06 Oct 21 (UTC) 
SUM Release started at 0000 06 Oct 21 (UTC) 

I T 36 

-35-

•100 mgym2 
'10mgym2 
•1 mg/m2 

>0.1 mg/m2 
Maximum: 2.5E+02 mg/m2 

Minimum: 4.3E-09 mg/m2 

THIS IS A TEST 

GDAS METEOROLOGICAL DATA 
Fig. 22. Volcanic ash concentration (mg/m2) at Mount Etna (37.752° N 14.991° E) using HYSPLIT 
modeling system 
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NOAA HYSPLIT MODEL 
Mass loading (mg/m2) between 0 ft and 60000 ft 

Integrated from 0500 06 Oct to 0600 06 Oct 21 (UTC) 
SUM Release started at 0000 06 Oct 21 (UTC) 

GDAS METEOROLOGICAL DATA 
Fig. 23. Volcanic ash concentration (mg/m2) at Mount Etna (37.752° N 14.991" E) using HYSPLIT 
modeling system 

NOAA HYSPLIT MODEL 
Mass loading {mg/m2) between 0 ft and 60000 ft 

Integrated from 0800 06 Oct to 0900 06 Oct 21 (UTC) 
SUM Release started at 0000 06 Oct 21 (UTC) 

GDAS METEOROLOGICAL DATA 
Fig. 24. Volcanic ash concentration (mg/m2) at Mount Etna (37.752° N 14.991" E) using HYSPLIT 
modeling system 

Other measurement for ash concentration at mg/m 2 comprises the summit location of Mount 
Etna (37.751° N 14.993°E) 
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NOAA HYSPLIT MODEL 
Mass loading (mg/m2) between 0 ft and 60000 ft 

Integrated from 0200 06 Oct to 0300 06 Oct 21 (UTC) 
SUM Release started at 0000 06 Oct 21 (UTC) 
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>100 mg/m2 
B>10 mg/m2 

>1 mg/m2 
>0.1 mg/m2 

Maximum: 2.5E+02 mg/m2 

Minimum: 9.9E-05 mg/m2 

THIS IS A TEST 

GDAS METEOROLOGICAL DATA 

Fig. 25. Volcanic ash concentration (mg/m2) at Mount Etna (37.751° N 14.993° E) using HYSPLIT 
modeling system 

NOAA HYSPLIT MODEL 
Mass loading (mg/m2) between 0 ft and 60000 ft 

Integrated from 0500 06 Oct to 0600 06 Oct 21 (UTC) 
SUM Release started at 0000 06 Oct 21 (UTC) 

>100mg/m2 
^>10mg/m2 

>1 mg/m2 
>0.1 mg/m2 

Maximum: 7.6E+01 mg/m2 

Minimum: 5.4E-06 mg/m2 

THIS IS A TEST 

GDAS METEOROLOGICAL DATA 

Fig. 26. Volcanic ash concentration (mg/m2) at Mount Etna (37.751° N 14.993" E) using HYSPLIT 
modeling system 
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NOAA HYSPLIT MODEL 
Mass loading (mg/m2) between 0 ft and 60000 ft 

Integrated from 0800 06 Oct to 0900 06 Oct 21 (UTC) 
SUM Release started at 0000 06 Oct 21 (UTC) 

>100 mg/m2 
^ > 1 0 mg/m2 

>1 mg/m2 
>0.1 mg/m2 

Maximum: 3.1E+01 mg/m2 

Minimum: 2.4E-07 mgim2 

GDAS METEOROLOGICAL DATA 

Fig. 27. Volcanic ash concentration (mg/m2) at Mount Etna (37.751° N 14.993° E) using HYSPLIT 
modeling system 

5.1.2 Test results of ash particle position 

The ash particle positions from Mount Etna at different locations have been simulated using 
H Y S P L I T modelling system by N O A A . In Fig. 28 ash particle positions simulated from 
Mount Etna (37.734° N 15.004° E) location. 

NOAA HYSPLIT MODEL 
PARTICLE CROSS-SECTIONS 
PARTICLE POSITIONS AT 03 00 06 Oct 21 

E 3500 
_j 3000 
O 2500 

< 2000 
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cn 1000 
a> 500 
I 0 

LAYER (m): < 1000 < 2000 
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-
-

N U M B E R O F P A R T I C L E S P L O T T E D : 4 6 7 2 (sk ip interval 0 3 ) 

Fig. 28. ash particle positions in ABL at Mount Etna (37.734° N 15.004° E) using HYSPLIT modeling 
system 

Second location from Mount Etna (37.752° N 14.995° E) have been taken for ash particle 
positions in A B L . The ash particle positions have been simulated using H Y S P L I T by N O A A . 
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NOAA HYSPLIT MODEL 
PARTICLE CROSS-SECTIONS 
PARTICLE POSITIONS AT 03 00 06 Oct 21 
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Fig. 29. 
system 

NUMBER OF PARTICLES PLOTTED: 4672 {skip interval 03) 

ash particle positions in ABL at Mount Etna (37.752° N 14.995° E) using HYSPLIT modeling 

NOAA HYSPLIT MODEL 
PARTICLE CROSS-SECTIONS 
PARTICLE POSITIONS AT 06 00 06 Oct 21 
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Fig. 30. 
system 

NUMBER OF PARTICLES PLOTTED: 4672 (skip interval 03) 

ash particle positions in ABL at Mount Etna (37.752° N 14.995° E) using HYSPLIT modeling 

26 



NOAA HYSPLIT MODEL 
PARTICLE CROSS-SECTIONS 
PARTICLE POSITIONS AT 09 00 06 Oct 21 
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Fig. 31. ash particle positions in ABL at Mount Etna (37.752° N 14.995° E) using HYSPLIT modeling 
system 

Another location from Mount Etna (37.752° N 14.991° E) taken simulations for ash particle 
concentrations in A B L . Simulations done using H Y S P L I T modelling system evolved by 
N O A A . 

NOAA HYSPLIT MODEL 
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Fig. 32. ash particle positions in ABL at Mount Etna (37.752° N 14.991° E) using HYSPLIT modeling 
system 
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NOAAHYSPLIT MODEL 
PARTICLE CROSS-SECTIONS 
PARTICLE POSITIONS AT 06 00 06 Oct 21 

NUMBER OF PARTICLES PLOTTED: 4672 (skip interval 03) 

Fig. 33. ash particle positions in ABL at Mount Etna (37.752° N 14.991° E) using HYSPLIT modeling 
system 

NOAA HYSPLIT MODEL 
PARTICLE CROSS-SECTIONS 
PARTICLE POSITIONS AT 09 00 06 Oct 21 

NUMBER OF PARTICLES PLOTTED: 4672 (skip interval 03) 

Fig. 34. ash particle positions in ABL at Mount Etna (37.752° N 14.991° E) using HYSPLIT modeling 
system 

One more location from the volcanic region of Mount Etna has been taken at 37.751° N 
14.993°E. 
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NOAA HYSPLIT MODEL 
PARTICLE CROSS-SECTIONS 
PARTICLE POSITIONS AT 03 00 06 Oct 21 

LAYER (m): < 2000 * 4000 
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NUMBER OF PARTICLES PLOTTED: 4672 {skip interval 03) 

Fig. 35. ash particle positions in ABL at Mount Etna (37.751° N 14.993° E) using HYSPLIT modeling 
system 

NOAA HYSPLIT MODEL 
PARTICLE CROSS-SECTIONS 
PARTICLE POSITIONS AT 06 00 06 Oct 21 

LAYER (m): < 2000 < 4000 
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NUMBER OF PARTICLES PLOTTED: 4672 (skip interval 03) 

Fig. 36. ash particle positions in ABL at Mount Etna (37.751° N 14.993° E) using HYSPLIT modeling 
system 
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NOAA HYSPLIT MODEL 
PARTICLE CROSS-SECTIONS 
PARTICLE POSITIONS AT 09 00 06 Oct 21 

NUMBER OF PARTICLES PLOTTED: 4672 {skip interval 03) 

Fig. 37. ash particle positions in ABL at Mount Etna (37.751° N 14.993° E) using HYSPLIT modeling 
system 

5.2 MOUNT ETNA ERUPTION MONTH (FEBRUARY 2021) 

5.2.1 Volcanic ash particle position 

This section obtains simulation results from February 2021 month data. Starting with 1 s t Feb. 
2021 ash particle position of Mount Etna volcano. 

NOAA HYSPLIT MODEL 
PARTICLE CROSS-SECTIONS 
PARTICLE POSITIONS AT 21 00 01 Feb 21 
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-
NUMBER OF PARTICLES PLOTTED: 3333 (skip interval 03) 

Fig. 38. ash particle positions in ABL at Mount Etna (1st Feb. 2021) using HYSPLIT modeling system 

30 



8 t h Feb. 2021 

NOAA HYSPLIT MODEL 
PARTICLE CROSS-SECTIONS 
PARTICLE POSITIONS AT 21 00 08 Feb 21 
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Fig. 39. ash particle positions in ABL at Mount Etna (8th Feb. 2021) using HYSPLIT modeling system 

10 t h Feb. 2021 

NOAA HYSPLIT MODEL 
PARTICLE CROSS-SECTIONS 
PARTICLE POSITIONS AT 21 00 10 Feb 21 
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NUMBER OF PARTICLES PLOTTED: 3333 (skip interval 03) 

Fig. 40. ash particle positions in ABL at Mount Etna (10th Feb.) using HYSPLIT modeling system 
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11 t h Feb. 2021 

NOAA HYSPLIT MODEL 
PARTICLE CROSS-SECTIONS 
PARTICLE POSITIONS AT 21 00 11 Feb 21 
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Fig. 41. ash particle positions in ABL at Mount Etna (11th Feb. 2021) using HYSPLIT modeling system 

12 t h Feb. 2021 

NOAA HYSPLIT MODEL 
PARTICLE CROSS-SECTIONS 
PARTICLE POSITIONS AT 21 00 12 Feb 21 
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Fig. 42. ash particle positions in ABL at Mount Etna (12th Feb. 2021) using HYSPLIT modeling system 
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15 t h Feb. 2021 

NOAA HYSPLIT MODEL 
PARTICLE CROSS-SECTIONS 
PARTICLE POSITIONS AT 21 00 15 Feb 21 

LAYER (m): < 3000 < 6000 

'••i'<^ ••••• 
NUMBER OF PARTICLES PLOTTED: 3333 (skip interval 03) 

Fig. 43. ash particle positions in ABL at Mount Etna (15th Feb. 2021) using HYSPLIT modeling system 

16 t h Feb. 2021 (Eruption day) 

NOAA HYSPLIT MODEL 
PARTICLE CROSS-SECTIONS 
PARTICLE POSITIONS AT 21 00 16 Feb 21 
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Fig. 44. ash particle positions in ABL at Mount Etna (16th Feb. 2021) using HYSPLIT modeling system 
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17 t h Feb. 2021 (later day after eruption) 

N O A A H Y S P L I T MODEL 
PARTICLE CROSS-SECTIONS 
PARTICLE POSITIONS AT 21 00 17 Feb 21 

LAYER (my. < 3000 = 6000 

NUMBER OF PARTICLES PLOTTED: 3333 (skip interval 03) 

Fig. 45. ash particle positions in ABL at Mount Etna (17th Feb. 2021) using HYSPLIT modeling system 

18 t h Feb. 2021 

NOAAHYSPLIT MODEL 
PARTICLE CROSS-SECTIONS 
PARTICLE POSITIONS AT 21 00 18 Feb 21 
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Fig. 46. ash particle positions in ABL at Mount Etna (18th Feb. 2021) using HYSPLIT modeling system 
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2 2 n d Feb. 2021 

28 t h Feb. 2021 

N O A A H Y S P L I T MODEL 
PARTICLE CROSS-SECTIONS 
PARTICLE POSITIONS AT 21 00 28 Feb 21 

LAYER (m): < 3000 < 6000 <120Q0 -=15000 

NUMBER OF PARTICLES PLOTTED: 3333 (skip interval 03} 

Fig. 48. ash particle positions in ABL at Mount Etna (28th Feb. 2021) using HYSPLIT modeling system 
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10 t h March 2021 

16 t h March 2021 

NOAA HYSPLIT MODEL 
PARTICLE CROSS-SECTIONS 
PARTICLE POSITIONS AT 21 00 16 Mar 21 

NUMBER OF PARTICLES PLOTTED: 3333 (skip interval 03) 

Fig. 50. ash particle positions in ABL at Mount Etna (16th March 2021) using HYSPLIT modeling system 
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5.2.2 Ash particle deposition 

1 s t Feb. 2021 

NOAA HYSPLIT MODEL 
Deposition (mg/m2) at ground-level 

Integrated from 0200 01 Feb to 2100 01 Feb 21 (UTC) 
SUM Release started at 0000 01 Feb 21 (UTC) 

GDAS METEOROLOGICAL DATA 

Fig. 51. ash particle deposition in ABL at Mount Etna (1st Feb. 2021) using HYSPLIT modeling system 

8 t h Feb. 2021 

Fig. 52. ash particle deposition in ABL at Mount Etna (8th Feb. 2021) using HYSPLIT modeling system 

37 



10 t h Feb. 2021 

NOAA HYSPLIT MODEL 
Deposition (mg/m.2) at ground-level 

Integrated from 0200 10 Feb to 2100 10 Feb 21 (UTC) 
SUM Release started at 0000 10 Feb 21 (UTC) 

>100 mg/m2 
10 mg/m2 
1 mg/m2 

>0.1 mg/rn2 
Maximum: 1.2E+02 mg/m2 

Minimum: 1.5E-04 mg/m2 

GDAS METEOROLOGICAL DATA 

Fig. 53. ash particle deposition in ABL at Mount Etna (10th Feb. 2021) using HYSPLIT modeling system 

11 t h Feb. 2021 

NOAA HYSPLIT MODEL 
Deposition (mg/m2) at ground-level 

Integrated from 0200 11 Feb to 2100 11 Feb 21 (UTC) 
SUM Release started at 0000 1 1 Feb 21 (UTC) 

>100 mg/m2 
I mg/m2 

>G I" mg/m2 
~ j>1.0E-04 mg/m2 

Maximum: 6.SE+02 mg/m2 

Minimum: S.3E-09 mg;m2 

GDAS METEOROLOGICAL DATA 

Fig. 54. ash particle deposition in ABL at Mount Etna (11th Feb. 2021) using HYSPLIT modeling system 
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12 t h Feb. 2021 

NOAA HYSPLIT MODEL 
Deposition (mg/m2) at ground-level 

Integrated from 0200 12 Feb to 2100 12 Feb 21 (UTC) 
SLIM Release started at 0000 12 Feb 21 (UTC) 

••38-

18 

36 

>10Dmg.'m2 
^ > 1 0 mg.'m2 

H >1 mg/m2 
>0.1 mg/m2 

Maximum: 1.9E+02 mg/m2 
Minimum: 2 .2E-Ü2 mg/m2 

GDAS METEOROLOGICAL DATA 

Fig. 55. ash particle deposition in ABL at Mount Etna (12th Feb. 2021) using HYSPLIT modeling system 

15 t h Feb. 2021 

NOAA HYSPLIT MODEL 
Deposition (mg/m2) at ground-level 

Integrated from 0200 15 Feb to 2100 15 Feb 21 (UTC) 
S U M Release started at 0000 15 Feb 21 (UTC) 

GDAS METEOROLOGICAL DATA 

Fig. 56. ash particle deposition in ABL at Mount Etna (15th Feb. 2021) using HYSPLIT modeling system 
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16 t h Feb. 2021 

NOAA HYSPLIT MODEL 
Deposition (mg/m2) at ground-levet 

integrated from 0200 16 Feb to 2100 16 Feb 21 (UTC) 
SUM Release started at 0000 16 Feb 21 (UTC) 

GDAS METEOROLOGICAL DATA 

Fig. 57. ash particle deposition in ABL at Mount Etna (16th Feb. 2021) using HYSPLIT modeling system 

17 t h Feb. 2021 

NOAA HYSPLIT MODEL 
Deposition (mg/m2) at ground-level 

integrated from 0200 17 Feb to 2100 17 Feb 21 (UTC) 
SUM Release started at 0000 17 Feb 21 (UTC) 

GDAS METEOROLOGICAL DATA 

Fig. 58. ash particle deposition in ABL at Mount Etna (17th Feb. 2021) using HYSPLIT modeling system 
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18 t h Feb. 2021 

NOAAHYSPLIT MODEL 
Deposition (mg/m2) at ground-level 

Integrated from 0200 18 Feb to 2100 18 Feb 21 (UTC) 
SUM Release started at 0000 18 Feb 21 (UTC) 

GDA3 METEOROLOGICAL DATA 

Fig. 59. ash particle deposition in ABL at Mount Etna (18th Feb. 2021) using HYSPLIT modeling system 

2 2 n d Feb. 2021 

NOAA HYSPLIT MODEL 
Deposition (mg/m2) at ground-level 

Integrated from 0200 22 Feb to 2100 22 Feb 21 (UTC) 
SUM Release started at 0000 22 Feb 21 (UTC) 

(S I i : ! L i l _ 
GDAS METEOROLOGICAL DATA 

Fig. 60. ash particle deposition in ABL at Mount Etna (22nd Feb. 2021) using HYSPLIT modeling system 
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28 t h Feb. 2021 

NOAA HYSPLIT MODEL 
Deposition (mg/m2) at ground-level 

integrated from 0200 28 Feb to 2100 28 Feb 21 (UTC) 
SUM Release started at 0000 28 Feb 21 (UTC) 

>10Dmg/m2 
| > 1 0 mg;m2 
• ' mg/m2 

|>0.1 mg/m2 
Maximum: 2.3E+02 mg/m2 

Minimum: <l 11" 03 mg/m2 

GDAS METEOROLOGICAL DATA 

Fig. 61. ash particle deposition in ABL at Mount Etna (28th Feb. 2021) using HYSPLIT modeling system 

10 t h March 2021 

NOAA HYSPLIT MODEL 
Deposition (mg/m2) at ground-level 

Integrated from 0200 10 Mar to 2100 10 Mar 21 (UTC) 
SUM Release started at 0000 10 Mar 21 (UTC) 

>100 mg,'m2 
10 mg/m2 

B > 1 mg/m2 
( p 0 . 1 mg/m2 

Maximum: 3.6E+02 mg/m2 

Minimum: 2.2E-06 mg/m2 

GDAS METEOROLOGICAL DATA 

Fig. 62. ash particle deposition in ABL at Mount Etna (10th March 2021) using HYSPLIT modeling 
system 
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16 t h March 2021 
NOAA HYSPLIT MODEL 

Deposition (mg/m2) at ground-level 
Integrated from 0200 16 Mar to 2100 16 Mar 21 (UTC) 

SUM Release started at 0000 16 Mar 21 (UTC) 

GDAS METEOROLOGICAL DATA 
Fig. 63. ash particle deposition in ABL at Mount Etna (16th March 2021) using HYSPLIT modeling 
system 

5.2.3 Ash particle concentration 

1 s t Feb. 2021 

Fig. 64. ash particle concentration in ABL at Mount Etna (1st Feb. 2021) using HYSPLIT modeling system 
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8 t h Feb. 2021 

NOAA HYSPLIT MODEL 
Mass loading (mg/m2) between 0 m and 5881 m 

Integrated from 2000 08 Feb to 2100 08 Feb 21 (UTC) 
SUM Release started at 0000 08 Feb 21 (UTC) 

GDAS METEOROLOGICAL DATA 

Fig. 65. ash particle concentration in ABL at Mount Etna (8th Feb. 2021) using HYSPLIT modeling system 

10 t h Feb. 2021 

NOAA HYSPLIT MODEL 
Mass loading (mg/m2) between 0 m and 18288 m 
Integrated from 2000 10 Feb to 2100 10 Feb 21 (UTC) 

SUM Release started at 0000 10 Feb 21 (UTC) 

GDAS METEOROLOGICAL DATA 

Fig. 66. ash particle concentration in ABL at Mount Etna (10th Feb. 2021) using HYSPLIT modeling 
system 
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11 t h Feb. 2021 

NOAA HYSPLIT MODEL 
Mass loading (mg/m2) between 0 m and 5881 m 

Integrated from 2000 11 Feb to 2100 11 Feb 21 (UTC) 
SUM Release started at 0000 11 Feb 21 (UTC) 

GDAS METEOROLOGICAL DATA 

Fig. 67. ash particle concentration in ABL at Mount Etna (11th Feb. 2021) using HYSPLIT modeling 
system 

12 t h Feb. 2021 

NOAA HYSPLIT MODEL 
Mass loading (mg,'m2) between 0 m and 5029 m 

Integrated from 2000 12 Feb to 2100 12 Feb 21 (UTC) 
SUM Release started at 0000 12 Feb 21 (UTC) 

GDAS METEOROLOGICAL DATA 

Fig. 68. ash particle concentration in ABL at Mount Etna (12th Feb. 2021) using HYSPLIT modeling 
system 
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15 t h Feb. 2021 

Fig. 69. ash particle concentration in ABL at Mount Etna (15th Feb. 2021) using HYSPLIT modeling 
system 

16 t h Feb. 2021 

NOAA HYSPLIT MODEL 
Mass loading (mg/m2) between 0 m and 18288 m 
Integrated from 2000 16 Feb to 2100 16 Feb 21 (UTC) 

SUM Release started at 0000 16 Feb 21 (UTC) 

>10000 mg.'m2 
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1 4 K U 1 r - - ; i 

1 — 1 33 — 1 

GDAS METEOROLOGICAL DATA 

Fig. 70. ash particle concentration in ABL at Mount Etna (16th Feb. 2021) using HYSPLIT modeling 
system 
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17 t h Feb. 2021 

NOAA HYSPLIT MODEL 
Mass loading (mg'm2) between 0 m and 18288 m 
Integrated from 2000 17 Feb to 2100 17 Feb 21 (UTC) 

SUM Release started at 0000 17 Feb 21 (UTC) 

GDAS METEOROLOGICAL DATA 

Fig. 71. ash particle concentration in ABL at Mount Etna (17th Feb. 2021) using HYSPLIT modeling 
system 

18 t h Feb. 2021 

NOAA HYSPLIT MODEL 
Mass loading (mg/m2) between Omand 5881 m 

Integrated from 2000 18 Feb to 2100 18 Feb 21 (UTC) 
SUM Release started at 0000 18 Feb 21 (UTC) 

GDAS METEOROLOGICAL DATA 

Fig. 72. ash particle concentration in ABL at Mount Etna (18th Feb. 2021) using HYSPLIT modeling 
system 
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2 2 n d Feb. 2021 

NOAA HYSPLIT MODEL 
Mass loading (mg.'m2) between 0 m and 18288 m 
Integrated from 2000 22 Feb to 2100 22 Feb 21 (UTC) 

SUM Release started at 0000 22 Feb 21 (UTC) 

GDAS METEOROLOGICAL DATA 

Fig. 73. ash particle concentration in ABL at Mount Etna (22nd Feb. 2021) using HYSPLIT modeling 
system 

28 t h Feb. 2021 

NOAA HYSPLIT MODEL 
Mass loading (mg.'m2) between 0 m and 5881 m 

Integrated from 2000 28 Feb to 2100 28 Feb 21 (UTC) 
SUM Release started at 0000 28 Feb 21 (UTC) 

GDAS METEOROLOGICAL DATA 

Fig. 74. ash particle concentration in ABL at Mount Etna (28th Feb. 2021) using HYSPLIT modeling 
system 
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10 t h March 2021 

NOAA HYSPLIT MODEL 
Mass loading (mg/m2) between 0 m and 18288 m 
Integrated from 2000 10 Mar to 2100 10 Mar 21 (UTC) 

SUM Release started at 0000 10 Mar 21 (UTC) 

GDAS METEOROLOGICAL DATA 

Fig. 75. ash particle concentration in ABL at Mount Etna (10th March 2021) using HYSPLIT modeling 
system 

16 t h March 2021 
NOAA HYSPLIT MODEL 

Mass loading (mg/m2) between 0 m and 18288 m 
Integrated from 2000 16 Mar to 2100 16 Mar 21 (UTC) 

S UM Release started at 0000 16 Mar 21 {UTC) 

GDAS METEOROLOGICAL DATA 
Fig. 76. ash particle concentration in ABL at Mount Etna (16th March 2021) using HYSPLIT modeling 
system 
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6. RESULTS AND DISCUSSION 

In this section, the simulation results has been analyzed. The simulations estimated using 
H Y S P L I T modelling system has been carried out for Mount Etna volcanic region specially in 
month of October 2021 and also focusing the eruption month i.e., February 2021. The 
investigations specifically based on: 
• Mass concentration of ash particles 
• Ash particle position 
• Ash particle deposition 

The results from the simulations divided mainly in two parts i.e., with different locations 
surrounding Mount Etna volcanic region in October 2021 data set and the other part focus on 
the data set from February 2021 where the eruption occurred on 16 t h February 2021. 

October 2021: 
From Fig. 18-27, the volcanic ash concentration during that period has been simulated. The 
results obtained from different locations of Mount Etna volcanic region. Again from Fig. 28-
37, the ash particle position results obtained. The ash particle position in average <6000 m 
layer ( A G L ) from all the distinguished simulations where the data set comprises of different 
locations of Mount Etna. The simulations obtained as test results as the data set varying 
comprising to the location grid-scale. 

February 2021: 
Figures 38-50 features volcanic ash particle position simulations of Mount Etna volcano. Fig. 
51-63 provides ash particle deposition results of Mount Etna volcano. And, Fig. 64-76 
comprises the ash particle concentrations of Mount Etna volcano. In average the ash particle 
position goes < 12000 m layer ( A G L ) in all the time from the eruption month data set where 
the eruption happened on 16 t h February, 2021 where the ash particle deposition occurred at 
higher rates compare to other simulation as shown in Fig. 58-60 where the deposition level 
goes >100 mg/m 2 layer. H Y S P L I T outputs have more detailed impression of accuracy that's 
why the large uncertainties in the eruption parameters i.e., the ash particle deposition, ash 
particle concentration has shown impact as seen in Fig. 70-72, the concentration layer 
reaches >10000 mg/m 2 which is why the outcome of 16 t h February 2021 eruption. More than 
100,000 volcanic trace particles per day were released during the multiple eruption times of 
February 2021 month and can be seen from the simulation results from Fig . 38 to 76. 

In this thesis, H Y S P L I T modelling system for Mount Etna 2021 February month eruptions 
has been focused and to get clearance reports from the simulations test results the data set of 
October 2021 too have been simulated in order to make ash forecasting results more 
visualized. Based on the eruption month simulations H Y S P L I T modelling system proves that 
how monitoring system parameters are in operations and how the forecasting analyzer works 
with the Mount Etna data set of eruption month and other times. 
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7. CONCLUSION 

This work successfully set up an example regarding the use of H Y S P L I T to give forecasts of 
volcanic ash deposition and ash particle concentrations, with Mount Etna February 2021 
(eruption month) and October 2021 data set simulation results. The simulation gives 
potentially more accurate forecasts using the Lagrangian based simulation modelling system. 
The volcanic ash concentration and deposition can be successfully forecast model as results 
shown in eruption month specifically Fig. 70-72 compared to Fig. 24-27. The volcanic ash 
concentration shows >10000 mg/m 2 in eruption month simulations compared to October 2021 
month simulation where the ash concentration level stays at > 100 mg/m 2 

The results shows the volcanic eruption of February 16 t h 2021 plotting with higher mass 
concentration and dispersal layers of ash particles. The technique focuses in forecasting ash 
dispersal method in order to evaluate the density that volcanic ash can be depicted in specific 
space and time during eruption. This thesis deliberates that the methods of improvement in 
forecasting can be easily analyzed only by improving the monitoring results as provided by 
N O A A . Advanced modelling like creating special volcanic eruption data set branch in the 
modelling system with presence of volcanic ash in the air or in the ground can help 
preventing damages to the eruption area surroundings and airport disruptions. The results also 
in general gives specification of volcanic risk hazards from volcanic ash, not only estimating 
the volcanic ash deposition and concentration. 
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