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Abstract

The work presents a methodology of fault tolerant system design into an
FPGA with the ability of the transient fault and the permanent fault
mitigation. The transient fault mitigation is done by the partial dynamic
reconfiguration. The mitigation of a certain number of permanent faults
is based on using a specific fault tolerant architecture occupying less re-
sources than the previosly used one and excluding the faulty part of the
FPGA from further use. This inovative technique is based on the precom-
piled configurations stored in an external memory. To reduce the required
space for a partial bitstream the relocation technique is used.
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1. Introduction

In last decades, the huge progress in manufacturing electronic devices
mainly stands on shrinking its parts such as chips and transistors. The
scaling of transistors to small sizes provides high performance due to
higher densities and low power and lower costs per unit but has also very
strong drawbacks. These small devices are also very fragile on overstress
and other environmental influences during operational lifetime. Addi-
tionally, small changes inside fabric caused by these factors can lead to
large impact on device performance. It also brings bigger susceptibility
to transient upsets. Small nodes use less charge to hold state or data and
can be easily altered and upset by noise from outside environment such as
radiation. Thus, the dependability of the system becomes the key indica-
tor. System dependability expresses the ability of system to produce the
outputs that can justifiably be trusted. To increase the dependability of
system, several mechanism can be adopted such as Fault Tolerant (FT)
system design which enables a system to continue its intended operation
when some part of the system fails.

Nowadays, the FPGA technology became very popular and frequently
used. It provides high logic density and possibility to easily upgrade the
implemented designs. Another benefit of FPGA design in comparison
with custom chips is their relatively short design cycle supported by the
possibility of using existing low cost design tools. These benefits together
result in low non-recurring engineering costs (NRE) for FPGA design. On
the other side, their drawback is their vulnerability to radiation effects
[21].  This mainly concerns SRAM-based FPGAs which are becoming
increasingly popular for many applications due to their high-throughput
capabilities and relatively low cost. The use of fault tolerant system design
can be the solution to overcome their higher rate of fault occurrence.

The ability of FPGA to be configured many times also brings new
possibilities from the perspective of system fault tolerance. When the
system in FPGA is affected by a fault, the reconfiguration can be used to
overcome its effects. Partial Dynamic Reconfiguration (PDR) capable to
reconfigure only some parts of implemented system while the others can
run without interruption and also to change their layout and connections
in FPGA can be used to implement the new advanced fault localization
and mitigation methods. This flexibility allows the use of the same FPGA
for multiple missions without the need of replacement.



1.1 Fault tolerant systems

A fault tolerant system is that one which can perform its function and
produce correct outputs even when it is affected by a hardware or software
fault. In [7], three condition to state that system is fault tolerant are
considered:

e The system computation for given dataset was not interrupted when
a fault occured and complete batch of input data was processed.

e The outputs produced by the system are correct.

e The length of computation did not exceed the predefined time limit.

In FT systems, the key goal is to prevent the errors from propagating to
observable outputs of computation process. This can be achieved by the
adding space, time, information, software or other type of redundancy to
original system. In this work, the main focus is put on approaches based
on hardware redundancy such as unit replication. One of the most known
FT architectures is the system with 3 identical modules and majority voter
referred to as Triple Modular Redundancy (TMR) system or the duplex
system with 2 modules and checker units. In the systems with replicated
modules, the voter or compare logic is the most vulnerable part. Thus,
they can be implemented into more resistable fabric or also replicated.

1.2 Fault detection and localization techniques

For fault detection, the capability of systems to mitigate faults which
appear during their operation is an important feature.

The fault detection always requires some kind of redundancy. Many
techniques based on information redundancy such as parity code, check-
sum or CRC can be used. When the information redundancy is increased
the Hamming distance between the data word and encoded word can be
counted and can be used to find the detection parameters of used method
such as maximum number of errors which can be detected or repaired.
The codes with the ability to detect errors are referred to as Error Detec-
tion Codes (EDCs). If they can also repair the error, they are referred to
as Error Correction Codes (ECCs).

Fault detection and localization methods can be also based on space
redundancy. The simplest form is n-modular redundancy with n repli-
cated modules connected in parallel (e.g. TMR). Their outputs are com-
pared and any difference indicates the presence of fault. The redundancy



of this system is always more then (n — 1) x 100%. As its benefit, the
ability to detect every distinct error can be seen. The problem can arise
only when the same error will be produced by all replicated units.

Alternative to module replication is the use of checker unit. This
unit is placed in parallel to operational unit and it is computing some
function with the same input. Its output can be continuously used to
check the correctness of the output of operational unit. When the outputs
of the units are not equal, it means there is a fault in the system which
caused an error to occur. The drawback of this approach is that we
cannot distinguish whether the error is produced by operational unit or
its concurrent unit.

Another option can be the use of the unit implementing the inversion
of function. This unit can be used to compute the input value from the
output of checked unit. This will avoid the possibility of the same fault in
both units but the inversion function does not always exist. It also adds
some latency to computation.

Off-line fault detection is a widely used technique which is checking
the fault occurrence while the application in the FPGA is not running.
This method can be based on external testing equipment outside FPGA or
the test equipment can be configured into FPGA. The second approach is
known as Built-In Self-Test (BIST) which typically uses design consisted
of three block - test pattern generator, block under test and output re-
sponse analyzer which are periodically switched by reconfiguration. Thus,
in several steps the entire FPGA can be fully tested. The main drawback
is its limitation that it can only detect faults during the test mode when
the FPGA is not operating. Thus, some timing-dependent faults or simi-
lar may not be detected.

In bitstream readback approach, the controller (typically external)
reads the actual FPGA configuration memory contents as well as the con-
tents of flip-flops in CLBs in the form of configuration bitstream. The
readback process can be considered as the inversion of FPGA configura-
tion. Bitstream readback is available in two modes. In readback verify
mode, the controller reads the configuration of memory cells and com-
pares it with the original bitstream. This mode is mainly used to verify
the success of previously done configuration. Readback capture mode
also reads configuration memory cells data but in addition to that it also
acquires the current states of all internal flip-flops inside CLBs and the
state of IOBs. With these gained data from FPGA and the knowledge of
data which are expected to be in the configuration memory of FPGA and



other resources in the moment of readback, the diagnosis algorithms can
be used to detect and localize faults in FPGA [18] [19].

The techniques based on roving STAR approach are capable to de-
tect and localize faults in FPGA. The approach is based on the dividing
the array into tiles with the same number of resources and their struc-
ture. Some of these tiles implement the function of system and in some of
them, the BIST is implemented. These tiles performing the fault detec-
tion and localization are referred to as Self-Testing AReas (STAR). While
one STAR is tested off-line the remaining blocks of system which are not
utilizing resources from actual STAR continue in run and the aplication
in FPGA is not interrupted. Testing is focused on logic blocks and con-
necting wires. When the testing is finished the partial reconfiguration of
FPGA is used to change the layout of design and another tiles previously
used to implement the function are configured as BIST and tested. The
fault coverage of this approach can be 100% because every tile of FPGA is
tested. Hardware overhead of this approach is formed by tiles needed for
STARs and the reconfiguration controller logic which is used for roving
the STAR through the FPGA.

All presented fault detection methods have both positive and negative
features. Table 1.1 is showing the results of detection methods when they
are evaluated by several criteria.

Detection Granularity, Fault coverage Space overhead Performance
method detect. speed g p overhead
large
Unit coarse good resources for small
replication fast all error occurences n-1 modules +S voter latency
voter needed
coarse medium medium small
CED fast can be 1mp1.ractlcal . trade-off with coverage just latency
for some functional units of checker
very good
Off-line fine can detect also small . small
. just start-up
methods slow faults not testing controller
. delay
manifested by error
. very good small small
Bitst fi .
r(le: d:)zacli{n slgjv can detect also faults readback and just start-up
not manifested by error testing controller delay
. large
. very good medium e 1 _
Roving ﬁr{e can detect also faults resources for STARSs switching la
star medium . . tency, long
not manifested by error + testing controller e
critical paths

Table 1.1: The comparison of fault detection methods




1.3 Transient fault mitigation

The use of FPGAs in harsh conditions has significantly risen the number
of transient faults mainly caused by ionization radiation. These faults can
be mitigated but this requires additional logic.

The susceptibility to these kinds of faults can be lowerred by the
special fabrication design to produce radiation-hardened FPGAs. This
radiation hardened design is based on protecting the configuration cells
at transistor or silicon level. As FPGAs become more and more complex
with large number of resources and processing capabilities, the radiation-
hardenning becomes excessively expensive in comparison with non-protec-
ted ones. Radiation hardened FPGA has slower operating frequency and
increased power consumption when compared with its commercial off-the-
shelf FPGA counterpart [15].

When a transient fault occurs in FPGA it can be repaired by recon-
figuration of affected part of configuration memory. This can be done by
complete (static) reconfiguration of FPGA or by PDR of affected Partial
Reconfigurable Module (PRM). Static reconfiguration causes the stopping
of running design in FPGA and possible loss of current status information
of implemented modules. Due to complete reconfiguration of FPGA, this
technique does not require the localization of the affected part of FPGA.
Nowadays, in most cases the application running in FPGA cannot be
stopped during the recovery process and therefore techniques based on
PDR are preferred.

Configuration bitstream scrubbing was introduced to correct configu-
ration memory after SEU occurences. This method is based on periodi-
cal reconfiguration of PRM by correct Partial Reconfiguration Bitstream
(PRB) while the FPGA is in operation. There are two common configura-
tion scrubbing strategies. In blind scrubbing, the periodical reconfigura-
tion of PRM by golden copy of designated partial configuration bitstream
is done without knowledge which module is faulty. Another scrubbing
methods use bitstream readback to detect if PRM is faulty and must be
reconfigured. The reconfiguration can be done by golden copy of bitstream
or by the read and corrected one. The scrubbing period should be stated
according to failure rate of system. The main drawback of configuration
scrubbing method is the need of continual use of the configuration port
but techniques such as [5] to overcome this issue exist.

Methods based on PDR are dependent on some kind of detection and
localization technique implemented in design which in case of fault detec-
tion triggers the process of recovery. Unlike in the configuration scrub-



bing, this process is started only in case of fault detection event. The
process of recovery is shown in Figure 1.1. The detection and localiza-
tion of faulty module is typically done by the design itself implementing
techniques such as CED or unit replication with checker units. The error
signals are supplied by some kind of PDR controller which will trigger the
reconfiguration process using appropriate configuration bitstream down-
loaded from configuration bitstream storage. PDR controller is typically
implemented by some softcore processor in the same FPGA where it per-
forms the PDR or in some external reliable fabric. Many techniques based
on this approach were presented [1] [2] [0].

No fault present Fault occured in module
N
DI D+
e D]
PRM1 P
N N
o B
— VOTER|
D | iS-
PRM2 PDR controller P
N
D s
D | |
PRM3 - w detection P
J"Sconfiguration B A L

Figure 1.1: Using PDR to recover system after SEU occurence

1.4 Techniques for system recovery after per-
manent fault occurence

In this work, as the permanent fault is considered, each fault causes a
damage of FPGA resource in that way that it cannot be used in FPGA
design anymore. This happens mostly by damaging or during the wear-
out phase of FPGA or by the impact of harsh environment on FPGA.
One possible approach is to use the FPGA fabric which is designed
and manufactured with spare resources which can be utilized in case of
fatal fault occurence in currently used set of resources. This hardware
level approach can be easily used in array based resources (i.e. CLBs)
by using multiplexers or other switching logic at the ends of lines of cells.
This allows the remapping of a row or a column with damaged component
into some spare row or column [1]. For hardenning the interconnection of



CLBs and other hard blocks in FPGA, the fine-grain redundancy in the
interconnect blocks can be introduced [22]. The benefit of this approach
for permanent fault recovery is its transparentness to the configuration.
On the other hand, including the spare hardware resources to device is
expensive and it is firmly limited by the number of spare rows or columns.

Another approach is based on the recovery on the configuration level.
When the permanent fault occurs, the modification of current design con-
figuration by incremental re-mapping and re-routing is performed to ex-
clude the affected resources when a fault occurs. This approach can in the-
ory utilize all spare resources which are currently not used by implemented
application for logic or routing affected by faults. The drawback of this
method is the need of adaption of FPGA mapping, placement and routing
tools to operate autonomously with considering existing faults in imple-
mentation area. The incremental change of design requires not negligible
time for processing, it can increase power consumption and area overhead.
Many techniques based on this approach were presented [14] [16] [17].

As the opposite to online design modification, some other approaches
(see [13] [23]) are trying to prepare the possible solutions before the fault
appears, in the design phase. Then, the implementation space of FPGA
is typically divided into several tiles and the desired design is splitted
into modules which are configured into different tiles leaving one or more
tiles unused. The configurations with these alternative implementations
are precompiled and created partial configuration bitstreams are stored
in some type of memory. When a fault is detected and localized in some
tile, the reconfiguration of the entire design is performed with this pre-
compiled configuration which does not utilize the resources from this tile.
Since each configuration of the design contains the implementation of the
same function and the interface between the entire reconfigurable area and
the rest of design is fixed and the same in all cases, all partial bitstreams
are interchangeable and can be configured to this partial reconfigurable
region. With this approach, a fault in logic block and in local interconnec-
tions can be handled. This technique minimizes the recovery time since
the process consists of alternative configuration selection and PDR with
its precompiled bitstream. The drawbacks of this approach can be seen in
its poor area efficiency and complicated mitigation of mutliple faults but
the main one is the requirement of external storage for precompiled partial
configuration bitstreams. This can be reduced by some techniques such
as bitstream compression but there is always a trade-off with increased
time and complexity of recovery process.



The ability of modern FPGAs to be reconfigurated dynamically can
be used by evolutionary methods such as [3]. They can recover the system
correct operation through evolution when faults occur. These methods of-
fer a large degree of flexibility in the number and distribution of faults
which can be mitigated. There is no need to preciselly localize the fault.
Evolutionary methods attempt to facilitate repair through the reuse of
damaged resources. The fitness function of implemented Genetic Algo-
rithm (GA) is able to internally evaluate the residual functionality of the
design in FPGA and assess the fitness value. This value is used for the
upcoming selection phase. With this approach, very big flexibility can be
achieved and all remaining non-faulty resources can be utilized by the new
design. The drawback of this method is the complexity and the flexibil-
ity what can result in very time-demanding search of satisfactory design
with unpredictable duration and its result. The logic for evolutionary
algorithms can cause unneglighle area overhead.

Although many different approaches to system recovery after perma-
nent fault occurence exist, none of them is considered as universally appli-
cable. Table 1.2 is showing the comparison of presented recovery methods

from different aspects.

Recovery Recovery Resource Performance Flexibility
method speed overhead overhead of recovery
low
Hardware ' very f:ast . spare physical low . low
just switching lines resources needed, . entire row/column
level . . no design change
in hardware no requirements excluded
for impl. space
medium reconfi hl%(l;lntroller low medium
Alternative configuration & alternative confi- trade-off with
. . and config. selector .
configurations selection and guration can be the number of
reconfig. delay & storage for optimized configurations
’ for configurations
Incremental . poot high medl““f high
. time demanding . trade-off with non-faulty resources
remapping . design impl. and . .
. remapping and impl. controller can be effectively
& rerouting . reconfig. controller . o1
rerouting complexity utilized
oor high low high
Evolutionary ma P‘Zake lon after bitstream can be opti- non-faulty resources
algorithms Y & is read, parsed mized by setting can be effectively

time to evolve

and analysed

fitness function

utilized

Table 1.2: The comparison of permanent fault recovery methods




2. Motivation and goals of the
research

2.1 Motivation

The scaling of electronic devices and still less robustness of components
bring the strong need for more complex securing against the occurence of
faults. The use of electronic devices in new rough and noisy environment is
also another source of problems. For example, in the aerospace industry
there are requirements on electronic devices for their resilience against
radiation and on hardenning them against negative effects of material
aging during long term missions.

In recent decades, new possibilities and new challenges in the area of
system design appeared. Programmable electronic devices such as CPLDs
and FPGAs allowed rapid prototyping and started the era of reconfig-
urable computing. Faulty design can be easily fixed after the first de-
ployment and the same hardware can be also used to perform various
tasks during the lifetime where some of these can be unforeseen. The FP-
GAs came up with new possibilities in the field of fault tolerant hardware
design. The dynamic reconfiguration can be now used for changing the
mapping and routing inside FPGA in order to mitigate the faults which
have occurred. The new challenges with fault tolerance in FPGAs are con-
nected with their configuration saving. Very often the FPGAs which have
configuration stored in SRAM memory are used [9]. They are popular
because of their lower price and easy use they offer. Higher susceptibity
to SEU faults in comparison with other FPGA types can be seen as their
drawback.

Many approaches for making digital systems more dependable were
presented. Fault tolerant system design offers the possibility to overcome
the impact of fault occurence while the use of detection and localization
methods together with fault mitigation based on PDR can offer to restore
the fully operational state of system. This can be done autonomously
without the need of user intervention and without stopping system opera-
tion. Nowadays, the utilization of FPGAs is not only in rapid prototyping
but they are used frequently also in long term missions. Thus, the study
of system dependability has to focus also on permanent faults which oc-
cur more likely with the increasing age of FPGA. Many techniques for
mitigation of SEU effects in FPGA and also several mitigation techniques
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for permanent damage of resources in FPGA are available. None of them
is universally applicable due to their high demands on memory (e.g. pre-
compiled alternative configurations), time-demanding fault recovery (e.g.
evolutionary algorithms), area overhead (e.g. incremental change of de-
sign), etc. Thus, it makes sense to focus on optimization of these tech-
niques and creating such methodology which will describe how to create
design with effective fault recovery ability.

2.2 Goals of the research

The effort to develop a methodology for fault tolerant systems design was
driven by the goal to satisfy the following aspects.

e The localization of the FPGA part (PRM) affected by fault.

e The determination of the fault type and its classification according
to considered fault model.

e The driving of repair proccess to return the system

— to the exactly same state as there was before - in case of tran-
sient fault,

— to the state when the functions of system are producing correct
outputs - in case of permanent fault.

e Keeping the design running during the reconfiguration process if it
is possible.

e Enabling the support for synchronization process after reconfigura-
tion is completed.

e The effort to shrink the number of the FPGA resources needed as
hardware overhead because of the system design according to pro-
posed methology.

The goal of this thesis is to combine the existing well known tech-
niques together with new approaches. As an example, the CED technique
together with online checkers can be used not only to ensure the fault
tolerance in system but also to localize the module affected by a fault in
FPGA if it is possible. This localization information will point at specific
reconfigurable module of FPGA which is faulty. Then some reconfigu-
ration controller will use this information to process fault mitigation in
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it. The PDR together with FT design will be used to ensure the correct
operation even during the fault recovery process.
The goals of the research can be summarized in the following way:

1. To propose the methodology for the FT design of digital system
into FPGA with the ability to recover after transient and permanent
fault occurence which satisfies these conditions:

e The designed architecture of system is operating in limited im-
plementation area which means that it can only utilize the
resources from the area of FPGA which was designated for the
system at the begining of its lifetime.

e The occured transient fault in one system module is mitigated
while the rest of modules in FPGA are not affected by it.

e If the architecture of implemented system has to be modified
to recover after permanent fault occurence, the new one has
to keep producing correct outputs and it should remain fault
tolerant if it is possible.

2. To design the reconfiguration controller which will control the miti-
gation process in FPGA after fault occurence done by PDR. It sup-
plies the information about the detection and localization of fault,
it determines its type and controls the reconfiguration process. Al-
ternatively, it can also trigger the sychronization process when it is
needed.

3. To create test platform which will enable the evaluation of methods
and procedures described by the proposed methodology. For the
FT architectures designed by means of methodology principles, the
ability to survive will be tested by fault injection.

The proposed methodology covering these points is described in the fol-
lowing chapter.
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3. Methodology for FT system
design into limited implementa-
tion area in FPGA

In this chapter the principles of the proposed methodology which aims at
securing system by implementing its parts as fault tolerant systems into
the limited implementation area in FPGA are described.

The limited implementation area from the perspective of this research
means the set of FPGA resources assigned for implementation of some
system parts which are important from the dependability point of view.
This implementation area is specified during the design phase of system
implementation and it cannot be modified during system lifetime. This
assessment limits the fault mitigation technique during permanent fault
recovery process.

3.1 Methodology basic principles

The proposed methodology defines the process of securing digital system
designed and implemented in FPGA. In other words, it can be understood
as the recipe how to redesign the given architecture of a system in FPGA
and how to prepare the system for recovery after fault attack and thus
make its lifetime longer. Such methodologies have their justification e.g.
in long term missions where the implementation area becomes smaller
after every permanent fault which occurs in the design.

The detection and localization process is based on the comparison of
replicated functional units in FT architectures and on other CED tech-
niques. No specific methods are intended. The mitigation technique re-
quires the localization on the PRM level. When the faulty PRM is lo-
calized, it must be determined to which type of fault defined by fault
model this particular fault belongs. Mitigation process is different for
both types of fault - transient and permanent. Both of them are driven
by developed controller unit - Generic Partial Dynamic Reconfiguration
Controller (GPDRC). This unit has a crucial role in the system because
it is responsible for the task of fault mitigation and is able to control the
reconfiguration performed through ICAP interface (see Section 3.3).
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In the developed methodology, the design is protected by means of
FT architecture to guarantee the resilience against both independently
occurring transient faults and given number of permanent faults which
affect the FT system correct operation. The methodology suggests to
divide the implementation into certain number of PRMs. This set of
PRMs put together is called a configuration in the following text. Each
unit of FT system is placed in one PRM and it is assigned to Partial
Reconfiguration Region (PRR). PRMs are designed in a uniform way
which means that relative position of all sources, connections and proxy
logic inside it is identical for the particular type of the unit. This is
required for relocation process.

FPGA
Static reconfigurable area
IN IN IN
— PRR, — PRR, —_— PRR,
out out out
- PRR; — PRR, EEE ~— PRR,
PRR; PRR; PRR;
PRR, PRR, PRR, PRR, PRR, PRR,
FT architecture 1 FT architecture 2 FT architecture n GPDRC
5 10 PRM error 5%n )

vy ¢

| MEMORY CONTROLLERl

h

BITSTREAM BITSTREAM
ADDRESS DATA

C BITSTREAM STORAGE

Figure 3.1: The main structure of the proposed methodology

In Figure 3.1, an example of the complete F'T system design in FPGA
based on the principles of methodology is shown. It consists of dynamic
part in which FT architectures are placed and static part which contains
GPDRC. The GPDRC utilizes the information about detection and local-
ization of faults from the CED logic units of F'T architectures. The set
of error signals from PRMs (assigned in PRR1 - PRR4) are the inputs to
GPDRC. Splitting FT architecture into several PRMs gives the possibility
to exclude from the implementation one or several PRMs when they are
affected by permanent fault. The interconnection signals between mod-
ules and the connections between the particular module and the rest of
FPGA pass through single PRM assigned to PRRO which is neighbour-
ing with all other PRRs. The other 4 PRRs can be assigned by PRMs
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of different units of the selected FT architecture. The number of these
uniformly sized and structured PRRs can vary.

To illustrate the application of methodology for securing a real system,
several F'T architectures were proposed which can be used in degradation
strategy of some system unit (see Figure 3.2). The first, most robust FT
architecture, is TMR architecture with doubled voter which enables the
detection of errors also in the voter. The next TMR architecture uses just
simple non-protected voter unit. The last architecture is based on Duplex
system with a comparator. This architecture is not fault tolerant since
there is no possibility to distinguish which output of two replicated units
is incorrect. But this system can run correctly until the first fault occurs
and then it is detected by compare unit.

Each replicated functional unit is implemented in single PRM referred
to as PRM_FU, complex voter unit is implemented in its own PRM
referred to as PRM__VOTER and the routing between replicated units and
the FT architecture external interface is constrained into PRM referred
to as PRM_ ROUTE.

FT architecture 1 FT architecture 2 Non-FT architecture 3
(TMR with doubled voter) (Simple TMR) (Duplex with compare)

F IFU|—|
F Fuh

F

F

bl
]

Figure 3.2: The assignment of PRRs by different PRMs

3.2 Generations of alternative F'T architec-
ture configurations

The methodology is based on the existence of precompiled configurations
of an F'T design which are applied when a permanent fault occurs. These
configurations are divided into several generations. Configurations from
one generation contain the same FT architecture but with different PRM
placement. The enumeration of all possible generations for such FT ar-
chitectures is shown in Figure 3.3.
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Generation 0 Generation 1 Generation 2

VOTER PRM FU1 PRM FU1 PRM
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FU1 PRM FU1 PRM
FU2 PRM FU1 PRM
FU2 PRM
:‘o‘l;g.lr';ﬁ ROUTING ROUTING
FU3 PRM & COMP. & COMP.
PRM PRM prM| FU2 PRM
[1101] [1010] [01011
FU1 PRM FU1 PRM
FU1 PRM
Legend
FU2 PRM FU2 PRM
ROUTING
ROUTING ROUTING
& VOTER
PRM FU3 PRM & ;OI:ICII FU2 PRM & CPOI:IICII
Ailih [1011]
[1001] [0110]
PRR;
PRR; FU1 PRM
PRR, PRR, FU2 PRM
ROUTING
& VOTER
Configuration code: [b;b,bsb,] PRM: U3 PRM

R [0111]

Is PRR; Is PRR,
assigned? assigned?
(1/0) (1/0)

Figure 3.3: The generations of FT architectures and their alternative
configurations

The number of unused PRMs (PRMs excluded from use) in config-
urations of each generation reflects the generation number. The code
of configuration is assembled from flags indicating if the corresponding
PRR is assigned by PRM (see legend in Figure 3.3). The configuration
with code 1111 from generation 0 represents the starting configuration for
this system part. After the first permanent fault is detected and affected
PRM is localized, the new configuration excluding the faulty PRM from
the next generation is chosen to be used for system implementation. This
principle is applied again when a new fault affects another PRM. The
number of possible variants of configurations is rising with the number
of PRMs affected by fault. To reduce the memory requirements for the
configuration, bitstream relocation method is used to avoid the existence

of several copies of PRM containing the same type of unit. Only one
copy of PRM bitstream for each type of PRM except PRM__ROUTE is
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needed. Only the bitstream designated as PRM__ROUTE is stored for
each configuration in the memory.

Due to the specifics of design and implementation flow adopted by
Xilinx tools, the generated partial configuration bistream of PRM cannot
be assigned to different PRR than it was originally designated to. One
PRB has to be generated for each PRR where the PRM will be config-
ured. Thus, if there is a need to apply N PRMs of different types to any
of M PRRs, N x M PRBs have to be produced and stored in external
memory for run-time partial reconfiguration. With the adoption of bit-
stream relocation technique, the number of generated PRBs is reduced
to N. These PRBs can be used then for reconfiguration of all PRRs sat-
isfying the conditions for the application of relocation technique. These
conditions are applied in the design phase and the implementation phase.
One of the main limitations of this technique is the need to have all PRRs
with identical FPGA resources. In common, this technique always starts
by generating the PRBs for all types of PRMs in one chosen location
of PRR. Before the run-time reconfiguration, the bitstream manipulation

modifying the information related to its location to apply it into other
different PRR is needed.

3.3 Generic partial dynamic reconfiguration
controller

The concept of the first GPDRC for transient fault mitigation was pre-
sented in [20]. The first implementation within system with counter and
SEU injection was presented in [3]. Previous GPDRC design has been ex-
tended to be able to perform reconfiguration of entire FT system (several
PRMs) when the permanent fault occurs in its PRM. New issues such
as choosing the proper configuration from the next generation of con-
figurations, performing the relocation process on loaded PRBs and the
synchronization of the complete F'T system were solved and implemented
into controller. The GPDRC for transient and permanent fault mitigation
was presented in [12].

Before the development of GPDRC, several design goals to be achieved
were defined:

e The resource utilization of new controller has to be lower than the
standard controller units implemented by universal softcore proces-
sors. It must be built in generic way to be able to perform PDR in
the systems with the different number of PRMs.
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e The controller should be autonomously able to determine the type
of fault which occured in a PRM, whether it is a transient or a per-
manent one - for this purpose the information on whether the fault
occurred during n successive reconfiguration cycles (the reconfigu-
ration cycle consists of faulty PRM detection, PRM reconfiguration,
PRM synchronization) can be used. If the fault occurrence is equal
or lower than n, the fault is seen as a transient one, otherwise it is
concluded that the fault is a permanent one.

e The PDR will be done via internal reconfiguration interface (ICAP
in Xilinx FPGAs) and utilize its full speed (up to 100MHz).

e To reduce the number of needed precompiled PRBs the controller
has to implement the technique to use the same PRB for the PDR
of several PRMs where it is possible (e.g. the same type of PRM
but different physical assignment to PRR).

e The controller should allow the synchronization of reconfigured PRMs.
e The controller should support different external memory devices.

The detailed architecture of GPDRC can be seen in Figure 3.4. Its
interface contains an error vector of F'T architectures as input. Its width
depends on the number of FT architectures and the available number of
PRMs for each of them. The next interface signals such as bitstream ad-
dress and data are designated to communication with external bitstream
storage when bitstream is transported through ICAP interface of FPGA.
The sync done and rec done signals are intended for controlling the syn-
chronization of reconfigured PRMs in FT architectures, the fatal signal
announces the situation when the FT architecture cannot be repaired
by GPDRC because the number of available PRMs has fallen below the
required minimum.

3.4 Fault mitigation procedure

In Figure 3.5 the behavior of the system after a fault is detected in PRM
is shown in flow diagram. The fault is detected by the FT architecture.
The FT architecture generates a set of error signals which identify the
faulty PRM (step 0). This is possible due to the fact that the functional
units and voters are implemented into separate PRMs and the relation
between the units and PRMs where they are placed is known.
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Figure 3.4: Fault tolerant system structure for SRAM based FPGA

When the faulty PRM is localized, the GPDRC determines, if the
occured fault will be considered as transient or permanent one. The solu-
tion used in the case of transient fault occurence is denoted as the option
A further in this text. If the fault is seen as a permanent one, then the
subsequent steps depend on whether the current configuration comes from
the final generation (Generation 2 in this case). The GPDRC stores the
configuration code of actual configuration so it is able to identify that it is
from final generation. If it is from final generation, there is no additional
option to continue in mitigation of this new permanent fault and the F'T
architecture will indicate this to GPDRC unit. Then, the intervention
from outside is needed (e.g. physical placement of configuration is moved
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Figure 3.5: Reconfiguration flow diagram

to another locality of FPGA or the FPGA is replaced with a new one). In
the situation when actual configuration is not from final generation, it is
possible to mitigate the occured fault and the solution is denoted as the
option B.

Option A - recovery from a transient fault: After a transient
fault is detected, GPDRC reads from external memory the PRB which re-
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sponds to the type (PRM__FU, PRM__VOTER, PRM__ CHECKER, etc.)
of the identified faulty PRM. The type of the unit is known because the
GPRDC knows which configuration is configured actually and the distri-
bution of PRMs in it. The downloaded PRB is originally designated to
the first suitable PRR (typically to PRR1). Therefore, the next step of
mitigation process (step Al) will be the relocation of this bitstream in
such way that it can be used for reconfiguration of the affected PRM. The
reconfiguration process of this PRM with the relocated PRB is driven by
GPDRC (step A2).

After the reconfiguration is finished, in some cases the PRM must be
synchronized with other components of F'T architecture. The synchro-
nization can be also controlled by GPDRC (step A3).

Option B - recovery from a permanent fault: After a permanent
fault is detected in PRM and the actual configuration does not belong to
the final generation, new configuration from the following generation is
selected. This configuration will not use the faulty PRM. The GPDRC will
choose configuration according to configuration code which will respond
to bitwise negation of the vector of error signals from FT architecture (B1
step).

The PRB for PRM__ROUTE (PRM with the interconnections) of se-
lected configuration is stored in the external bitstream storage. This bit-
stream is designated to reconfigure resources of PRRO (the only PRR of
FPGA where this bitstream of PRM__ROUTE can be assigned). This
implies that there is no need to relocate this PRB (step B2).

The downloading of PRB copies implementing all remaining PRMs
will be the next action. The number of needed bitstream copies and their
type (if it is implementing PRM__FU, PRM__ CHECKER or PRM_ VOTER)
is determined by the selected configuration. PRBs of all PRM types are
downloaded from the same destination, as in the case of reconfiguration
after transient fault. Each of these downloaded PRBs will go through
relocation process which will make them suitable for appropriate PRRs
(step B3).

The downloaded and relocated PRBs are used for the reconfiguration
of PRMs, which are used in the configuration (step B4). After completion
of the reconfiguration, local reset of units in newly configured PRMs is
performed. Also some kind of synchronization (state recovery of all units
in affected PRMs) can be performed in this step.
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4. Design of FT architecture by
means of developed methodol-
ogy principles

The process of FT architecture system design to meet requirements de-
fined by the proposed methodology is described in this chapter.

4.1 Fault tolerant architectures design

The application of the methodology requires the specific process of system
design. When this design is adopted, it is ensured that faults appearing
subsequently in functional modules or other FT modules (containing vot-
ers, checkers, etc.) of design can be mitigated.

The original system design delivered from a designer for securing has
to be divided into important parts in terms of required dependability and
the remaining parts which may remain unsecured (from the methodology
point of view) or they are secured in some other way. From the chosen
important system parts every single part will be secured as single F'T
architecture with fault mitigation capability according to the methodol-
ogy. The process of partitioning has to be driven by designer knowledge
of importance of each system part. This can be gained as the result of
modelling reliability of system parts and the impacts of faults occured in
specific system part to entire system. The partitioning can be done with
different granularity (see also Figure 4.1)

e Coarse-grained partitioning - The complete system is just one part.

e Fine-grained partitioning - The system is divided into more smaller
parts. This reduces the overall size of all needed bitstreams but
the GPDRC size is increased and it brings more complexity to fault
mitigation process.

e Mixed partitioning - The combination of two previous approaches
can be done by grouping several small system parts into several
groups and implement each of them as single F'T architecture.

The next step is the selection of degradation strategy for each chosen
important part according to their stated level of importance. Permanent
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Figure 4.1: Design partitioning with different granularity

fault occurence in system is mitigated by downgrading the F'T architecture
from the robust one to less robust one. This step is required every time a
permament fault occurs in currently occupied PRR containing the PRM
of FT architecture (see Figure 4.2). The less robust FT architecture will
exclude this PRR from the further use. The number of PRRs which can
be excluded at the same time then specifies the number of permanent
faults which can be handled by this secured part of the system.

CHECKER,
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FU,
CHECKER,
>  FU
g CHECKER,
FU,
CHECKER,
—>»  FU;

Figure 4.2: The set of F'T architectures as a sample of degradation strategy

In the next step, the implementation area in FPGA for each system
part implemented as FT architecture has to be stated. This area is al-
located in dynamic area. It enables the modification of assigned PRMs
by PDR. The remaining parts are placed in static area. For each chosen
important part of system, several PRRs will be created. To these PRRs,
the PRMs of currently used FT architecture will be assigned according to
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stated procedure (see