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Abstract 
The work presents a methodology of fault tolerant system design into an 
F P G A with the ability of the transient fault and the permanent fault 
mitigation. The transient fault mitigation is done by the partial dynamic 
reconfiguration. The mitigation of a certain number of permanent faults 
is based on using a specific fault tolerant architecture occupying less re
sources than the previosly used one and excluding the faulty part of the 
F P G A from further use. This inovative technique is based on the precom
piled configurations stored in an external memory. To reduce the required 
space for a partial bitstream the relocation technique is used. 
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1. Introduction 
In last decades, the huge progress in manufacturing electronic devices 
mainly stands on shrinking its parts such as chips and transistors. The 
scaling of transistors to small sizes provides high performance due to 
higher densities and low power and lower costs per unit but has also very 
strong drawbacks. These small devices are also very fragile on overstress 
and other environmental influences during operational lifetime. Addi
tionally, small changes inside fabric caused by these factors can lead to 
large impact on device performance. It also brings bigger susceptibility 
to transient upsets. Small nodes use less charge to hold state or data and 
can be easily altered and upset by noise from outside environment such as 
radiation. Thus, the dependability of the system becomes the key indica
tor. System dependability expresses the ability of system to produce the 
outputs that can justifiably be trusted. To increase the dependability of 
system, several mechanism can be adopted such as Fault Tolerant (FT) 
system design which enables a system to continue its intended operation 
when some part of the system fails. 

Nowadays, the F P G A technology became very popular and frequently 
used. It provides high logic density and possibility to easily upgrade the 
implemented designs. Another benefit of F P G A design in comparison 
with custom chips is their relatively short design cycle supported by the 
possibility of using existing low cost design tools. These benefits together 
result in low non-recurring engineering costs (NRE) for F P G A design. On 
the other side, their drawback is their vulnerability to radiation effects 
[21]. This mainly concerns SRAM-based F P G A s which are becoming 
increasingly popular for many applications due to their high-throughput 
capabilities and relatively low cost. The use of fault tolerant system design 
can be the solution to overcome their higher rate of fault occurrence. 

The ability of F P G A to be configured many times also brings new 
possibilities from the perspective of system fault tolerance. When the 
system in F P G A is affected by a fault, the reconfiguration can be used to 
overcome its effects. Partial Dynamic Reconfiguration (PDR) capable to 
reconfigure only some parts of implemented system while the others can 
run without interruption and also to change their layout and connections 
in F P G A can be used to implement the new advanced fault localization 
and mitigation methods. This flexibility allows the use of the same F P G A 
for multiple missions without the need of replacement. 
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1.1 Fault tolerant systems 
A fault tolerant system is that one which can perform its function and 
produce correct outputs even when it is affected by a hardware or software 
fault. In [7], three condition to state that system is fault tolerant are 
considered: 

• The system computation for given dataset was not interrupted when 
a fault occured and complete batch of input data was processed. 

• The outputs produced by the system are correct. 

• The length of computation did not exceed the predefined time limit. 

In F T systems, the key goal is to prevent the errors from propagating to 
observable outputs of computation process. This can be achieved by the 
adding space, time, information, software or other type of redundancy to 
original system. In this work, the main focus is put on approaches based 
on hardware redundancy such as unit replication. One of the most known 
F T architectures is the system with 3 identical modules and majority voter 
referred to as Triple Modular Redundancy (TMR) system or the duplex 
system with 2 modules and checker units. In the systems with replicated 
modules, the voter or compare logic is the most vulnerable part. Thus, 
they can be implemented into more resistable fabric or also replicated. 

1.2 Fault detection and localization techniques 
For fault detection, the capability of systems to mitigate faults which 
appear during their operation is an important feature. 

The fault detection always requires some kind of redundancy. Many 
techniques based on information redundancy such as parity code, check
sum or C R C can be used. When the information redundancy is increased 
the Hamming distance between the data word and encoded word can be 
counted and can be used to find the detection parameters of used method 
such as maximum number of errors which can be detected or repaired. 
The codes with the ability to detect errors are referred to as Error Detec
tion Codes (EDCs). If they can also repair the error, they are referred to 
as Error Correction Codes (ECCs). 

Fault detection and localization methods can be also based on space 
redundancy. The simplest form is n-modular redundancy with n repli
cated modules connected in parallel (e.g. T M R ) . Their outputs are com
pared and any difference indicates the presence of fault. The redundancy 
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of this system is always more then (n — 1) * 100%. As its benefit, the 
ability to detect every distinct error can be seen. The problem can arise 
only when the same error will be produced by all replicated units. 

Alternative to module replication is the use of checker unit. This 
unit is placed in parallel to operational unit and it is computing some 
function with the same input. Its output can be continuously used to 
check the correctness of the output of operational unit. When the outputs 
of the units are not equal, it means there is a fault in the system which 
caused an error to occur. The drawback of this approach is that we 
cannot distinguish whether the error is produced by operational unit or 
its concurrent unit. 

Another option can be the use of the unit implementing the inversion 
of function. This unit can be used to compute the input value from the 
output of checked unit. This will avoid the possibility of the same fault in 
both units but the inversion function does not always exist. It also adds 
some latency to computation. 

Off-line fault detection is a widely used technique which is checking 
the fault occurrence while the application in the F P G A is not running. 
This method can be based on external testing equipment outside F P G A or 
the test equipment can be configured into F P G A . The second approach is 
known as Buil t- in Self-Test (BIST) which typically uses design consisted 
of three block - test pattern generator, block under test and output re
sponse analyzer which are periodically switched by reconfiguration. Thus, 
in several steps the entire F P G A can be fully tested. The main drawback 
is its limitation that it can only detect faults during the test mode when 
the F P G A is not operating. Thus, some timing-dependent faults or simi
lar may not be detected. 

In bitstream readback approach, the controller (typically external) 
reads the actual F P G A configuration memory contents as well as the con
tents of flip-flops in CLBs in the form of configuration bitstream. The 
readback process can be considered as the inversion of F P G A configura
tion. Bitstream readback is available in two modes. In readback verify 
mode, the controller reads the configuration of memory cells and com
pares it with the original bitstream. This mode is mainly used to verify 
the success of previously done configuration. Readback capture mode 
also reads configuration memory cells data but in addition to that it also 
acquires the current states of all internal flip-flops inside CLBs and the 
state of IOBs. Wi th these gained data from F P G A and the knowledge of 
data which are expected to be in the configuration memory of F P G A and 

4 



other resources in the moment of readback, the diagnosis algorithms can 
be used to detect and localize faults in F P G A [18] [19]. 

The techniques based on roving S T A R approach are capable to de
tect and localize faults in F P G A . The approach is based on the dividing 
the array into tiles with the same number of resources and their struc
ture. Some of these tiles implement the function of system and in some of 
them, the BIST is implemented. These tiles performing the fault detec
tion and localization are referred to as Self-Testing AReas (STAR). While 
one S T A R is tested off-line the remaining blocks of system which are not 
utilizing resources from actual S T A R continue in run and the aplication 
in F P G A is not interrupted. Testing is focused on logic blocks and con
necting wires. When the testing is finished the partial reconfiguration of 
F P G A is used to change the layout of design and another tiles previously 
used to implement the function are configured as BIST and tested. The 
fault coverage of this approach can be 100% because every tile of F P G A is 
tested. Hardware overhead of this approach is formed by tiles needed for 
STARs and the reconfiguration controller logic which is used for roving 
the S T A R through the F P G A . 

A l l presented fault detection methods have both positive and negative 
features. Table 1.1 is showing the results of detection methods when they 
are evaluated by several criteria. 

Detection 
method 

Granularity, 
detect, speed Fault coverage Space overhead Performance 

overhead 

Unit 
replication 

coarse 
fast 

good 
all error occurences 

large 
resources for 

n-1 modules +S 
voter needed 

small 
voter latency 

C E D coarse 
fast 

medium 
can be impractical 

for some functional units 

medium 
trade-off with coverage 

small 
just latency 

of checker 

Off-line 
methods 

fine 
slow 

very good 
can detect also 

faults not 
manifested by error 

small 
testing controller 

small 
just start-up 

delay 

Bitstream 
readback 

fine 
slow 

very good 
can detect also faults 

not manifested by error 

small 
readback and 

testing controller 

small 
just start-up 

delay 

Roving 
star 

fine 
medium 

very good 
can detect also faults 

not manifested by error 

medium 
resources for STARs 
+ testing controller 

large 
switching la
tency, long 

critical paths 

Table 1.1: The comparison of fault detection methods 
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1.3 Transient fault mitigation 
The use of F P G A s in harsh conditions has significantly risen the number 
of transient faults mainly caused by ionization radiation. These faults can 
be mitigated but this requires additional logic. 

The susceptibility to these kinds of faults can be lowerred by the 
special fabrication design to produce radiation-hardened F P G A s . This 
radiation hardened design is based on protecting the configuration cells 
at transistor or silicon level. As F P G A s become more and more complex 
with large number of resources and processing capabilities, the radiation-
hardenning becomes excessively expensive in comparison with non-protec
ted ones. Radiation hardened F P G A has slower operating frequency and 
increased power consumption when compared with its commercial off-the-
shelf F P G A counterpart [15]. 

When a transient fault occurs in F P G A it can be repaired by recon
figuration of affected part of configuration memory. This can be done by 
complete (static) reconfiguration of F P G A or by P D R of affected Partial 
Reconfigurable Module (PRM). Static reconfiguration causes the stopping 
of running design in F P G A and possible loss of current status information 
of implemented modules. Due to complete reconfiguration of F P G A , this 
technique does not require the localization of the affected part of F P G A . 
Nowadays, in most cases the application running in F P G A cannot be 
stopped during the recovery process and therefore techniques based on 
P D R are preferred. 

Configuration bitstream scrubbing was introduced to correct configu
ration memory after S E U occurences. This method is based on periodi
cal reconfiguration of P R M by correct Partial Reconfiguration Bitstream 
(PRB) while the F P G A is in operation. There are two common configura
tion scrubbing strategies. In blind scrubbing, the periodical reconfigura
tion of P R M by golden copy of designated partial configuration bitstream 
is done without knowledge which module is faulty. Another scrubbing 
methods use bitstream readback to detect if P R M is faulty and must be 
reconfigured. The reconfiguration can be done by golden copy of bitstream 
or by the read and corrected one. The scrubbing period should be stated 
according to failure rate of system. The main drawback of configuration 
scrubbing method is the need of continual use of the configuration port 
but techniques such as [ ] to overcome this issue exist. 

Methods based on P D R are dependent on some kind of detection and 
localization technique implemented in design which in case of fault detec
tion triggers the process of recovery. Unlike in the configuration scrub-
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bing, this process is started only in case of fault detection event. The 
process of recovery is shown in Figure 1.1. The detection and localiza
tion of faulty module is typically done by the design itself implementing 
techniques such as C E D or unit replication with checker units. The error 
signals are supplied by some kind of P D R controller which will trigger the 
reconfiguration process using appropriate configuration bitstream down
loaded from configuration bitstream storage. P D R controller is typically 
implemented by some softcore processor in the same F P G A where it per
forms the P D R or in some external reliable fabric. Many techniques based 
on this approach were presented [1] [2] [6]. 

No fault present Fault occured in module 

PRM1 

PRM2 

o -

PRM3 

PDR controller 

SO 
reconfiguration 

detection 
& localization 

PRM1 

PRM2 

PRM3 

Figure 1.1: Using P D R to recover system after S E U occurence 

1.4 Techniques for system recovery after per
manent fault occurence 

In this work, as the permanent fault is considered, each fault causes a 
damage of F P G A resource in that way that it cannot be used in F P G A 
design anymore. This happens mostly by damaging or during the wear-
out phase of F P G A or by the impact of harsh environment on F P G A . 

One possible approach is to use the F P G A fabric which is designed 
and manufactured with spare resources which can be utilized in case of 
fatal fault occurence in currently used set of resources. This hardware 
level approach can be easily used in array based resources (i.e. CLBs) 
by using multiplexers or other switching logic at the ends of lines of cells. 
This allows the remapping of a row or a column with damaged component 
into some spare row or column [ ]. For hardenning the interconnection of 
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CLBs and other hard blocks in F P G A , the fine-grain redundancy in the 
interconnect blocks can be introduced [22]. The benefit of this approach 
for permanent fault recovery is its transparentness to the configuration. 
On the other hand, including the spare hardware resources to device is 
expensive and it is firmly limited by the number of spare rows or columns. 

Another approach is based on the recovery on the configuration level. 
When the permanent fault occurs, the modification of current design con
figuration by incremental re-mapping and re-routing is performed to ex
clude the affected resources when a fault occurs. This approach can in the
ory utilize all spare resources which are currently not used by implemented 
application for logic or routing affected by faults. The drawback of this 
method is the need of adaption of F P G A mapping, placement and routing 
tools to operate autonomously with considering existing faults in imple
mentation area. The incremental change of design requires not negligible 
time for processing, it can increase power consumption and area overhead. 
Many techniques based on this approach were presented [14] [16] [17]. 

As the opposite to online design modification, some other approaches 
(see [13] [23]) are trying to prepare the possible solutions before the fault 
appears, in the design phase. Then, the implementation space of F P G A 
is typically divided into several tiles and the desired design is splitted 
into modules which are configured into different tiles leaving one or more 
tiles unused. The configurations with these alternative implementations 
are precompiled and created partial configuration bitstreams are stored 
in some type of memory. When a fault is detected and localized in some 
tile, the reconfiguration of the entire design is performed with this pre
compiled configuration which does not utilize the resources from this tile. 
Since each configuration of the design contains the implementation of the 
same function and the interface between the entire reconfigurable area and 
the rest of design is fixed and the same in all cases, all partial bitstreams 
are interchangeable and can be configured to this partial reconfigurable 
region. With this approach, a fault in logic block and in local interconnec
tions can be handled. This technique minimizes the recovery time since 
the process consists of alternative configuration selection and P D R with 
its precompiled bitstream. The drawbacks of this approach can be seen in 
its poor area efficiency and complicated mitigation of mutliple faults but 
the main one is the requirement of external storage for precompiled partial 
configuration bitstreams. This can be reduced by some techniques such 
as bitstream compression but there is always a trade-off with increased 
time and complexity of recovery process. 
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The ability of modern F P G A s to be reconfigurated dynamically can 
be used by evolutionary methods such as [ ]. They can recover the system 
correct operation through evolution when faults occur. These methods of
fer a large degree of flexibility in the number and distribution of faults 
which can be mitigated. There is no need to preciselly localize the fault. 
Evolutionary methods attempt to facilitate repair through the reuse of 
damaged resources. The fitness function of implemented Genetic Algo
rithm (GA) is able to internally evaluate the residual functionality of the 
design in F P G A and assess the fitness value. This value is used for the 
upcoming selection phase. With this approach, very big flexibility can be 
achieved and all remaining non-faulty resources can be utilized by the new 
design. The drawback of this method is the complexity and the flexibil
ity what can result in very time-demanding search of satisfactory design 
with unpredictable duration and its result. The logic for evolutionary 
algorithms can cause unnegligble area overhead. 

Although many different approaches to system recovery after perma
nent fault occurence exist, none of them is considered as universally appli
cable. Table 1.2 is showing the comparison of presented recovery methods 
from different aspects. 

Recovery 
method 

Recovery 
speed 

Resource 
overhead 

Performance 
overhead 

Flexibility 
of recovery 

Hardware 
level 

very fast 
just switching lines 

in hardware 

low 
spare physical 

resources needed, 
no requirements 
for impl. space 

low 
no design change 

low 
entire row/column 

excluded 

Alternative 
configurations 

medium 
configuration 
selection and 

reconfig. delay 

high 
reconfig. controller 
and config. selector 

& storage for 
for configurations 

low 
alternative confi
guration can be 

optimized 

medium 
trade-off with 
the number of 
configurations 

Incremental 
remapping 

&; rerouting 

poor 
time demanding 
remapping and 

rerouting 

high 
design impl. and 

reconfig. controller 

medium 
trade-off with 

impl. controller 
complexity 

high 
non-faulty resources 

can be effectively 
utilized 

E volut ionary 
algorithms 

poor 
may take long 
time to evolve 

high 
after bitstream 
is read, parsed 
and analysed 

low 
can be opti

mized by setting 
fitness function 

high 
non-faulty resources 

can be effectively 
utilized 

Table 1.2: The comparison of permanent fault recovery methods 
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2. Mot ivat ion and goals of the 
research 

2.1 Motivation 
The scaling of electronic devices and still less robustness of components 
bring the strong need for more complex securing against the occurence of 
faults. The use of electronic devices in new rough and noisy environment is 
also another source of problems. For example, in the aerospace industry 
there are requirements on electronic devices for their resilience against 
radiation and on hardenning them against negative effects of material 
aging during long term missions. 

In recent decades, new possibilities and new challenges in the area of 
system design appeared. Programmable electronic devices such as C P L D s 
and F P G A s allowed rapid prototyping and started the era of reconfig-
urable computing. Faulty design can be easily fixed after the first de
ployment and the same hardware can be also used to perform various 
tasks during the lifetime where some of these can be unforeseen. The F P 
GAs came up with new possibilities in the field of fault tolerant hardware 
design. The dynamic reconfiguration can be now used for changing the 
mapping and routing inside F P G A in order to mitigate the faults which 
have occurred. The new challenges with fault tolerance in F P G A s are con
nected with their configuration saving. Very often the F P G A s which have 
configuration stored in S R A M memory are used [ ]. They are popular 
because of their lower price and easy use they offer. Higher susceptibity 
to SEU faults in comparison with other F P G A types can be seen as their 
drawback. 

Many approaches for making digital systems more dependable were 
presented. Fault tolerant system design offers the possibility to overcome 
the impact of fault occurence while the use of detection and localization 
methods together with fault mitigation based on P D R can offer to restore 
the fully operational state of system. This can be done autonomously 
without the need of user intervention and without stopping system opera
tion. Nowadays, the utilization of F P G A s is not only in rapid prototyping 
but they are used frequently also in long term missions. Thus, the study 
of system dependability has to focus also on permanent faults which oc
cur more likely with the increasing age of F P G A . Many techniques for 
mitigation of S E U effects in F P G A and also several mitigation techniques 
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for permanent damage of resources in F P G A are available. None of them 
is universally applicable due to their high demands on memory (e.g. pre
compiled alternative configurations), time-demanding fault recovery (e.g. 
evolutionary algorithms), area overhead (e.g. incremental change of de
sign), etc. Thus, it makes sense to focus on optimization of these tech
niques and creating such methodology which will describe how to create 
design with effective fault recovery ability. 

2.2 Goals of the research 
The effort to develop a methodology for fault tolerant systems design was 
driven by the goal to satisfy the following aspects. 

• The localization of the F P G A part (PRM) affected by fault. 

• The determination of the fault type and its classification according 
to considered fault model. 

• The driving of repair proccess to return the system 

— to the exactly same state as there was before - in case of tran
sient fault, 

— to the state when the functions of system are producing correct 
outputs - in case of permanent fault. 

• Keeping the design running during the reconfiguration process if it 
is possible. 

• Enabling the support for synchronization process after reconfigura
tion is completed. 

• The effort to shrink the number of the F P G A resources needed as 
hardware overhead because of the system design according to pro
posed methology. 

The goal of this thesis is to combine the existing well known tech
niques together with new approaches. As an example, the C E D technique 
together with online checkers can be used not only to ensure the fault 
tolerance in system but also to localize the module affected by a fault in 
F P G A if it is possible. This localization information will point at specific 
reconfigurable module of F P G A which is faulty. Then some reconfigu
ration controller will use this information to process fault mitigation in 
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it. The P D R together with F T design will be used to ensure the correct 
operation even during the fault recovery process. 

The goals of the research can be summarized in the following way: 

1. To propose the methodology for the F T design of digital system 
into F P G A with the ability to recover after transient and permanent 
fault occurence which satisfies these conditions: 

• The designed architecture of system is operating in limited im
plementation area which means that it can only utilize the 
resources from the area of F P G A which was designated for the 
system at the begining of its lifetime. 

• The occured transient fault in one system module is mitigated 
while the rest of modules in F P G A are not affected by it. 

• If the architecture of implemented system has to be modified 
to recover after permanent fault occurence, the new one has 
to keep producing correct outputs and it should remain fault 
tolerant if it is possible. 

2. To design the reconfiguration controller which will control the miti
gation process in F P G A after fault occurence done by P D R . It sup
plies the information about the detection and localization of fault, 
it determines its type and controls the reconfiguration process. A l 
ternatively, it can also trigger the sychronization process when it is 
needed. 

3. To create test platform which will enable the evaluation of methods 
and procedures described by the proposed methodology. For the 
F T architectures designed by means of methodology principles, the 
ability to survive will be tested by fault injection. 

The proposed methodology covering these points is described in the fol
lowing chapter. 

12 



3. Methodology for F T system 
design into l imited implementa
t ion area in F P G A 
In this chapter the principles of the proposed methodology which aims at 
securing system by implementing its parts as fault tolerant systems into 
the limited implementation area in F P G A are described. 

The limited implementation area from the perspective of this research 
means the set of F P G A resources assigned for implementation of some 
system parts which are important from the dependability point of view. 
This implementation area is specified during the design phase of system 
implementation and it cannot be modified during system lifetime. This 
assessment limits the fault mitigation technique during permanent fault 
recovery process. 

3.1 Methodology basic principles 
The proposed methodology defines the process of securing digital system 
designed and implemented in F P G A . In other words, it can be understood 
as the recipe how to redesign the given architecture of a system in F P G A 
and how to prepare the system for recovery after fault attack and thus 
make its lifetime longer. Such methodologies have their justification e.g. 
in long term missions where the implementation area becomes smaller 
after every permanent fault which occurs in the design. 

The detection and localization process is based on the comparison of 
replicated functional units in F T architectures and on other C E D tech
niques. No specific methods are intended. The mitigation technique re
quires the localization on the P R M level. When the faulty P R M is lo
calized, it must be determined to which type of fault defined by fault 
model this particular fault belongs. Mitigation process is different for 
both types of fault - transient and permanent. Both of them are driven 
by developed controller unit - Generic Partial Dynamic Reconfiguration 
Controller (GPDRC) . This unit has a crucial role in the system because 
it is responsible for the task of fault mitigation and is able to control the 
reconfiguration performed through I C A P interface (see Section 3.3). 
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In the developed methodology, the design is protected by means of 
F T architecture to guarantee the resilience against both independently 
occurring transient faults and given number of permanent faults which 
affect the F T system correct operation. The methodology suggests to 
divide the implementation into certain number of PRMs . This set of 
P R M s put together is called a configuration in the following text. Each 
unit of F T system is placed in one P R M and it is assigned to Partial 
Reconfiguration Region (PRR). P R M s are designed in a uniform way 
which means that relative position of all sources, connections and proxy 
logic inside it is identical for the particular type of the unit. This is 
required for relocation process. 

F P G A 
Dynamic reconfigureble area 

PRR! 
IN 

PRR ; 

IN 
PRRi 

PRR2 

OUT 
PRR2 

OUT 

• • • ~* 

PRR2 

PRR3 
PRR3 PRR3 

PRRo PRR„ PRRo PRR4 PRRo PRR4 

FT architecture 1 FT architecture 2 FT architecture n 

PRM error 5*n 

Static reconfigurable area 

O H 

Figure 3.1: The main structure of the proposed methodology 

In Figure 3.1, an example of the complete F T system design in F P G A 
based on the principles of methodology is shown. It consists of dynamic 
part in which F T architectures are placed and static part which contains 
G P D R C . The G P D R C utilizes the information about detection and local
ization of faults from the C E D logic units of F T architectures. The set 
of error signals from P R M s (assigned in P R R I - PRR4) are the inputs to 
G P D R C . Splitting F T architecture into several P R M s gives the possibility 
to exclude from the implementation one or several P R M s when they are 
affected by permanent fault. The interconnection signals between mod
ules and the connections between the particular module and the rest of 
F P G A pass through single P R M assigned to PRRO which is neighbour
ing with all other PRRs. The other 4 PRRs can be assigned by P R M s 
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of different units of the selected F T architecture. The number of these 
uniformly sized and structured PRRs can vary. 

To illustrate the application of methodology for securing a real system, 
several F T architectures were proposed which can be used in degradation 
strategy of some system unit (see Figure 3.2). The first, most robust F T 
architecture, is T M R architecture with doubled voter which enables the 
detection of errors also in the voter. The next T M R architecture uses just 
simple non-protected voter unit. The last architecture is based on Duplex 
system with a comparator. This architecture is not fault tolerant since 
there is no possibility to distinguish which output of two replicated units 
is incorrect. But this system can run correctly until the first fault occurs 
and then it is detected by compare unit. 

Each replicated functional unit is implemented in single P R M referred 
to as P R M _ F U , complex voter unit is implemented in its own P R M 
referred to as P R M _ V O T E R and the routing between replicated units and 
the F T architecture external interface is constrained into P R M referred 
to as P R M R O U T E . 

FT architecture 1 
(TMR with doubled voter) 

FT architecture 2 
(Simple TMR) 

Non-FT architecture 3 
(Duplex with compare) 

Legend 

PRM ROUTE 

PRM VOTER 

NO PRM ASSIGNED 

• 
• 

PRM 
error 

Figure 3.2: The assignment of PRRs by different P R M s 

3.2 Generations of alternative F T architec
ture configurations 

The methodology is based on the existence of precompiled configurations 
of an F T design which are applied when a permanent fault occurs. These 
configurations are divided into several generations. Configurations from 
one generation contain the same F T architecture but with different P R M 
placement. The enumeration of all possible generations for such F T ar
chitectures is shown in Figure 3.3. 
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Generation 0 

VOTER PRM 

F U i PRM 

F U 2 PRM 

ROUTING 
PRM F U 3 PRM 

[1111] 

Generation 1 

Legend 

PRFn 

PRR2 

PRR3 

PRRo PRR4 

Configuration code: [ b x b2 b 3 b4 ] 

/ - \ 
Is PRRi Is PRR4 

assigned? assigned? 
(1/0) (1/0) 

F U l PRM 

FU2 PRM 

ROUTING 
& VOTER 

PRM 

FU3 PRM 
ROUTING 
& VOTER 

PRM 

[1110] 

ROUTING 
& VOTER 

PRM 

F U i PRM 

ROUTING 
& VOTER 

PRM 

FU2 PRM 

ROUTING 
& VOTER 

PRM 

ROUTING 
& VOTER 

PRM 
FU3 PRM 

[1101] 

ROUTING 
& VOTER 

PRM 

F U i PRM 

ROUTING 
& VOTER 

PRM 

ROUTING 
& VOTER 

PRM 

FU2 PRM 
ROUTING 
& VOTER 

PRM 
FU3 PRM 

[1011] 

ROUTING 
& VOTER 

PRM 

ROUTING 
& VOTER 

PRM 

F U i PRM 

ROUTING 
& VOTER 

PRM 

FU2 PRM 
ROUTING 
& VOTER 

PRM 
FU3 PRM 

[0111] 

Generation 2 

ROUTING 
& COMP. 

PRM 

F U l PRM 

ROUTING 
& COMP. 

PRM 

FU2 PRM 

ROUTING 
& COMP. 

PRM 

ROUTING 
& COMP. 

PRM 

[1100] 

ROUTING 
& COMP. 

PRM 

F U l PRM 

ROUTING 
& COMP. 

PRM 

ROUTING 
& COMP. 

PRM 

FU2 PRM 
ROUTING 
& COMP. 

PRM 

[1010] 

F U i PRM 

ROUTING 
& COMP. 

PRM 

ROUTING 
& COMP. 

PRM 

ROUTING 
& COMP. 

PRM 
FU2 PRM 

[1001] 

ROUTING 
& COMP. 

PRM 

ROUTING 
& COMP. 

PRM 

ROUTING 
& COMP. 

PRM 

F U i PRM 
ROUTING 
& COMP. 

PRM 
FU2 PRM 

[0011] 

ROUTING 
& COMP. 

PRM 

ROUTING 
& COMP. 

PRM 

F U l PRM 

ROUTING 
& COMP. 

PRM 

ROUTING 
& COMP. 

PRM 
FU2 PRM 

[0101] 

ROUTING 
& COMP. 

PRM 

ROUTING 
& COMP. 

PRM 

F U i PRM 

ROUTING 
& COMP. 

PRM 

FU2 PRM 
ROUTING 
& COMP. 

PRM 

[0110] 

Figure 3.3: The generations of F T architectures and their alternative 
configurations 

The number of unused P R M s (PRMs excluded from use) in config
urations of each generation reflects the generation number. The code 
of configuration is assembled from flags indicating if the corresponding 
P R R is assigned by P R M (see legend in Figure 3.3). The configuration 
with code 1111 from generation 0 represents the starting configuration for 
this system part. After the first permanent fault is detected and affected 
P R M is localized, the new configuration excluding the faulty P R M from 
the next generation is chosen to be used for system implementation. This 
principle is applied again when a new fault affects another P R M . The 
number of possible variants of configurations is rising with the number 
of P R M s affected by fault. To reduce the memory requirements for the 
configuration, bitstream relocation method is used to avoid the existence 
of several copies of P R M containing the same type of unit. Only one 
copy of P R M bitstream for each type of P R M except P R M _ R O U T E is 
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needed. Only the bitstream designated as P R M _ R O U T E is stored for 
each configuration in the memory. 

Due to the specifics of design and implementation flow adopted by 
Xil inx tools, the generated partial configuration bistream of P R M cannot 
be assigned to different P R R than it was originally designated to. One 
P R B has to be generated for each P R R where the P R M will be config
ured. Thus, if there is a need to apply N P R M s of different types to any 
of M PRRs, N * M PRBs have to be produced and stored in external 
memory for run-time partial reconfiguration. With the adoption of bit-
stream relocation technique, the number of generated PRBs is reduced 
to N. These PRBs can be used then for reconfiguration of all PRRs sat
isfying the conditions for the application of relocation technique. These 
conditions are applied in the design phase and the implementation phase. 
One of the main limitations of this technique is the need to have all PRRs 
with identical F P G A resources. In common, this technique always starts 
by generating the PRBs for all types of P R M s in one chosen location 
of P R R . Before the run-time reconfiguration, the bitstream manipulation 
modifying the information related to its location to apply it into other 
different P R R is needed. 

3.3 Generic partial dynamic reconfiguration 
controller 

The concept of the first G P D R C for transient fault mitigation was pre
sented in [ ]. The first implementation within system with counter and 
SEU injection was presented in [8]. Previous G P D R C design has been ex
tended to be able to perform reconfiguration of entire F T system (several 
PRMs) when the permanent fault occurs in its P R M . New issues such 
as choosing the proper configuration from the next generation of con
figurations, performing the relocation process on loaded PRBs and the 
synchronization of the complete F T system were solved and implemented 
into controller. The G P D R C for transient and permanent fault mitigation 
was presented in [12]. 

Before the development of G P D R C , several design goals to be achieved 
were defined: 

• The resource utilization of new controller has to be lower than the 
standard controller units implemented by universal softcore proces
sors. It must be built in generic way to be able to perform P D R in 
the systems with the different number of PRMs . 
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• The controller should be autonomously able to determine the type 
of fault which occured in a P R M , whether it is a transient or a per
manent one - for this purpose the information on whether the fault 
occurred during n successive reconfiguration cycles (the reconfigu
ration cycle consists of faulty P R M detection, P R M reconfiguration, 
P R M synchronization) can be used. If the fault occurrence is equal 
or lower than n, the fault is seen as a transient one, otherwise it is 
concluded that the fault is a permanent one. 

• The P D R will be done via internal reconfiguration interface (ICAP 
in Xil inx FPGAs) and utilize its full speed (up to 100MHz). 

• To reduce the number of needed precompiled PRBs the controller 
has to implement the technique to use the same P R B for the P D R 
of several P R M s where it is possible (e.g. the same type of P R M 
but different physical assignment to P R R ) . 

• The controller should allow the synchronization of reconfigured P R M s . 

• The controller should support different external memory devices. 

The detailed architecture of G P D R C can be seen in Figure 3.4. Its 
interface contains an error vector of F T architectures as input. Its width 
depends on the number of F T architectures and the available number of 
P R M s for each of them. The next interface signals such as bitstream ad
dress and data are designated to communication with external bitstream 
storage when bitstream is transported through I C A P interface of F P G A . 
The sync done and rec done signals are intended for controlling the syn
chronization of reconfigured P R M s in F T architectures, the fatal signal 
announces the situation when the F T architecture cannot be repaired 
by G P D R C because the number of available P R M s has fallen below the 
required minimum. 

3.4 Fault mitigation procedure 
In Figure 3.5 the behavior of the system after a fault is detected in P R M 
is shown in flow diagram. The fault is detected by the F T architecture. 
The F T architecture generates a set of error signals which identify the 
faulty P R M (step 0). This is possible due to the fact that the functional 
units and voters are implemented into separate P R M s and the relation 
between the units and P R M s where they are placed is known. 
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I FT Architectures PRM Error Vectors 

PRM error 
. index 

Memory controller 
address 1 \ A d a t a 

i < i T 
Bitstream storage memory 

Figure 3.4: Fault tolerant system structure for S R A M based F P G A 

When the faulty P R M is localized, the G P D R C determines, if the 
occured fault will be considered as transient or permanent one. The solu
tion used in the case of transient fault occurence is denoted as the option 
A further in this text. If the fault is seen as a permanent one, then the 
subsequent steps depend on whether the current configuration comes from 
the final generation (Generation 2 in this case). The G P D R C stores the 
configuration code of actual configuration so it is able to identify that it is 
from final generation. If it is from final generation, there is no additional 
option to continue in mitigation of this new permanent fault and the F T 
architecture will indicate this to G P D R C unit. Then, the intervention 
from outside is needed (e.g. physical placement of configuration is moved 
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NORMAL OPERATION MODE 
& 

GPDRC CHECKS FOR FAULT 

YES 

REPORT 
UNREPAIRABLE STATE 

DOWNLOAD AND RELOCATE 
BITSTREAM OF PRM 

WITH THE SAME TYPE 
AS THE AFFECTED PRM 

CHOOSE THE NEXT GENERATION 
CONFIGURATION NOT USING 
AFFECTED PRM LOCALITY 

(B2) 

(A2) > t 
RECONFIGURE PRM 

WITH FAULT BY 
RELOCATED BITSTREAM 

(A3) > f 
SYNCHRONIZE 

RECONFIGURE PRM 

DOWNLOAD BITSTREAM OF 
PRMROUTE FROM CHOSEN 

CONFIGURATION AND PERFORM 
RECONFIGURATION 

(B3) 

DOWNLOAD AND RELOCATE 
BITSTREAM OF ALL PRMs USED 

BY CONFIGURATION 
EXCEPT OF PRM ROUTE 

(B4) 

RECONFIGURE ALL PRMs 
(EXCEPT PRMROUTE) 

BY RELOCATED BITSTREAMS 

Figure 3.5: Reconfiguration flow diagram 

to another locality of F P G A or the F P G A is replaced with a new one). In 
the situation when actual configuration is not from final generation, it is 
possible to mitigate the occured fault and the solution is denoted as the 
option B. 

Option A - recovery from a transient fault: After a transient 
fault is detected, G P D R C reads from external memory the P R B which re-
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sponds to the type ( P R M _ F U , P R M _ V O T E R , P R M _ C H E C K E R , etc.) 
of the identified faulty P R M . The type of the unit is known because the 
G P R D C knows which configuration is configured actually and the distri
bution of P R M s in it. The downloaded P R B is originally designated to 
the first suitable P R R (typically to PRR1) . Therefore, the next step of 
mitigation process (step A l ) will be the relocation of this bitstream in 
such way that it can be used for reconfiguration of the affected P R M . The 
reconfiguration process of this P R M with the relocated P R B is driven by 
G P D R C (step A2). 

After the reconfiguration is finished, in some cases the P R M must be 
synchronized with other components of F T architecture. The synchro
nization can be also controlled by G P D R C (step A3). 

Option B - recovery from a permanent fault: After a permanent 
fault is detected in P R M and the actual configuration does not belong to 
the final generation, new configuration from the following generation is 
selected. This configuration will not use the faulty P R M . The G P D R C will 
choose configuration according to configuration code which will respond 
to bitwise negation of the vector of error signals from F T architecture ( B l 
step). 

The P R B for P R M _ R O U T E ( P R M with the interconnections) of se
lected configuration is stored in the external bitstream storage. This bit-
stream is designated to reconfigure resources of PRRO (the only P R R of 
F P G A where this bitstream of P R M _ R O U T E can be assigned). This 
implies that there is no need to relocate this P R B (step B2). 

The downloading of P R B copies implementing all remaining P R M s 
will be the next action. The number of needed bitstream copies and their 
type (if it is implementing P R M _ F U , P R M _ C H E C K E R or P R M _ V O T E R ) 
is determined by the selected configuration. PRBs of all P R M types are 
downloaded from the same destination, as in the case of reconfiguration 
after transient fault. Each of these downloaded PRBs will go through 
relocation process which will make them suitable for appropriate PRRs 
(step B3). 

The downloaded and relocated PRBs are used for the reconfiguration 
of PRMs , which are used in the configuration (step B4). After completion 
of the reconfiguration, local reset of units in newly configured P R M s is 
performed. Also some kind of synchronization (state recovery of all units 
in affected PRMs) can be performed in this step. 
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4. Design of F T architecture by 
means of developed methodol
ogy principles 
The process of F T architecture system design to meet requirements de
fined by the proposed methodology is described in this chapter. 

4.1 Fault tolerant architectures design 
The application of the methodology requires the specific process of system 
design. When this design is adopted, it is ensured that faults appearing 
subsequently in functional modules or other F T modules (containing vot
ers, checkers, etc.) of design can be mitigated. 

The original system design delivered from a designer for securing has 
to be divided into important parts in terms of required dependability and 
the remaining parts which may remain unsecured (from the methodology 
point of view) or they are secured in some other way. From the chosen 
important system parts every single part will be secured as single F T 
architecture with fault mitigation capability according to the methodol
ogy. The process of partitioning has to be driven by designer knowledge 
of importance of each system part. This can be gained as the result of 
modelling reliability of system parts and the impacts of faults occured in 
specific system part to entire system. The partitioning can be done with 
different granularity (see also Figure 4.1) 

• Coarse-grained partitioning - The complete system is just one part. 

• Fine-grained partitioning - The system is divided into more smaller 
parts. This reduces the overall size of all needed bitstreams but 
the G P D R C size is increased and it brings more complexity to fault 
mitigation process. 

• Mixed partitioning - The combination of two previous approaches 
can be done by grouping several small system parts into several 
groups and implement each of them as single F T architecture. 

The next step is the selection of degradation strategy for each chosen 
important part according to their stated level of importance. Permanent 
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PART, 
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F U 3 

PART! 
FU„ FU C 
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F U 3 

PART! PART2 

FUz 
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(a) Coarse-grained partitioning 

FU C 

FU, 

PART5 PART6 

(b) Fine-grained partitioning 
PART2 

FUn F U , 

PART! 

F U 3 F U 3 

F U 4 F U 5 l inn F U 4 F U 5 

PART3 PART4 

(c) Mixed partitioning 

Figure 4.1: Design partitioning with different granularity 

fault occurence in system is mitigated by downgrading the F T architecture 
from the robust one to less robust one. This step is required every time a 
permament fault occurs in currently occupied P R R containing the P R M 
of F T architecture (see Figure 4.2). The less robust F T architecture will 
exclude this P R R from the further use. The number of PRRs which can 
be excluded at the same time then specifies the number of permanent 
faults which can be handled by this secured part of the system. 

C H E C K E R ! C H E C K E R ! 

FU i FU i CHECKERx CHECKERx 

FU i FU i 

/ CHECKER 2 

F U 2 F U 2 

Figure 4.2: The set of F T architectures as a sample of degradation strategy 

In the next step, the implementation area in F P G A for each system 
part implemented as F T architecture has to be stated. This area is al
located in dynamic area. It enables the modification of assigned P R M s 
by P D R . The remaining parts are placed in static area. For each chosen 
important part of system, several PRRs will be created. To these PRRs, 
the P R M s of currently used F T architecture will be assigned according to 
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stated procedure (see Figure 4.3). The location and the size of PRRs for 
implementing one system part must respect this conditions: 

• The number of PRRs is the same or bigger than the number of 
P R M s of the starting (the most robust) F T architecture for given 
system part. 

• The set of created PRRs will contain one specific P R R for P R M 
with routing ( P R M _ R O U T E ) . This P R R has to be located in the 
neighbourhood of all other PRRs. 

• Every P R R from the set of created PRRs (except of the P R R desig
nated to be configured by P R M with routing) has to have the same 
size, the same structure and the same local placement of the F P G A 
resources. 

• The placement of P R R and also the size of the smallest possible 
P R R (PRRmin) is limited by the fact that reconfiguration is done 
per configuration frames. As the configuration frame is modifying the 
configuration of specified number of resources at once, the location 
and the size of P R R has to respect these principles and can only 
allocate resources corresponding to one PRRmin or its multiples. 

ERROR 

OUT-

PRR1 

PRR2 

PRRO 1 PRR3 

ERROR 

OUT-

PRR1 

— — — PRR3 — — 

PRR4 

ERROR 

OUT-

— 
PRR2 

— — PRR3 — — 

PRR4 

— — 

PRRO PRR5 

4 P R R 5 P R R 6 P R R 

The implementation area 
corresponding to one PRR, 

• PRM with routing 
_ PRM with FU 

No PRM asigned 

Figure 4.3: Several possibilities with area allocation for simple T M R ar
chitecture 

4.2 The implementation of generated F T ar
chitectures 

The complete process starting with the entry of unsecured system design 
to the final step of configuration of F P G A with the equipment to tolerate 
the fault impacts and their mitigation consists of several steps: 
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1. Design entry - the designer enters V H D L source codes. 

2. The specification of the system parts to be secured - the designer 
chooses the parts and the degradation stategy for each of these parts. 

3. The generation of F T architectures for the use in degradation strate
gies - the developed tool is used for the generation of F T architec
tures for each system part. 

4. The creation of secured F T system - the original system design is 
modified by replacement of selected parts by their implementations 
as F T architectures. This can be done without much effort because 
the interface of original part (unit) is a subset of the interface of the 
generated F T architecture. Further, the G P D R C instance has to 
be added and the error signals from all F T architectures have to be 
gathered and connected to its error input. The controller for some 
external memory device (e.g. the developed SD card controller) has 
to be added, too. This unit is needed to provide the configuration 
bitstream data for G P D R C . Alternatively, the synchronization con
troller and logic to perform synchronization of the modules of F T 
architectures can be added as well in this step. 

5. The implementation of static design with the starting configuration -
for the complete (static) reconfiguration of F P G A , the system design 
where all chosen important parts are secured with most robust F T 
archictures from generation 0 is used. This implementation run is 
also used for generating partial bitstreams for all P R M s utilized by 
F T architectures in generation 0. From these partial bitstreams, 
one from each P R M type is chosen as golden copy to be stored in 
external memory storage. These bitstreams can be later relocated 
and used during fault mitigation process. 

6. The implementation of all partial configuration bitstreams - to cre
ate partial bitstreams which can be used by G P D R C for recovery 
from permanent fault, PRBs for each P R M with routing for all pos
sible alternative configurations in each F T architecture is created. 
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5. Implementation and experi
mental results 
This chapter describes the implementation results of systems where the 
methodology was applied and several experiments simulating transient 
and permanent fault occurences and their mitigation 

5.1 The implementation of GPDRC 
In the secured system design, a very important role is designated to 
G P D R C unit. The reason for its development as the alternative to con
trollers implemented into softcore processor is its smaller size and lower 
reconfiguration latency due to its specialization. Its size (the number of 
utilized F P G A resources) is mainly affected by the number of P R M s into 
which the system is implemented. 

For the evaluation of G P D R C resource utilization results for different 
system partitioning approaches, a design with counters, registers, decoders 
and other logic was created. The complexity of this implemented system 
does not play any role in the evaluation of G P D R C size. It is mainly 
influenced by the overall number of P R M s and other attributes mentioned 
in above paragraph. Thus, the entire design in F P G A was divided into 
several F T architectures and they were divided into the same number 
of PRMs . The experiments were done for 3 to 6 P R M s . The size of 
G P D R C for various numbers of F T architectures and the number of P R M s 
is presented in Figure 5.1. 

The size of G P D R C and its units together with the comparison with 
the size of MicroBlaze IP core used as P D R controller is shown in Ta
ble 5.1. These results are valid for 32 F T architectures with 6 P R M s per 
each controlled by the G P D R C . The meaning of the columns is as follows: 
the name of unit (column 1), the size of unit in slices (2), the number of 
occupied LUTs (3) and FlipFlops (4) and the size of T M R alternative (5). 

26 



400 
3 P R M per FT architecture 

350 - 4 P R M per FT architecture 
g 5 P R M per FT architecture 
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-a 
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1 5 10 15 20 25 30 
Number of FT architectures 

Figure 5.1: G P D R C size vs. the number of F T architectures for various 
numbers of P R M s per F T architecture 

ML506 - Virtex5 Size LUTs F /Fs T M R 
192 P R M s [slices] [#] [#] [slices] 

Input Capture Register 49 (0,6%) 97 192 127 (2,6x) 
Actual Error Register 48 (0,6%) 101 101 124 (2,6x) 

Previous Error Register 48 (0,6%) 192 192 124 (2,6x) 
Hard Error Unit 3 (0,1%) 4 0 9 (3,0x) 

Round Robin Unit 5 (0,1%) 6 6 14 (2,9x) 
Error Encoder 3 (0,1%) 3 0 6 (2,0x) 

Relocation Unit 7 (0,1%) 16 1 20 (2,9x) 
Architecture Status Unit 2 (0,1%) 49 32 6 (3,0x) 

Address Counter 22 (0,3%) 52 21 56 (2,5x) 
F S M 22 (0,3%) 48 17 59 (2,7x) 

Others (LUTs, MUXs. . . ) 135 (1,7%) 317 186 414 (3,lx) 
G P D R C total 344 (4,2%) 885 748 959 (2,8x) 

MicroBlaze 628 (7,7%) 1414 1491 1664 (2,8x) 

Table 5.1: The numbers of F P G A resources for G P D R C (32 F T architec
tures, 6 P R M per F T architecture) 

5.2 F T architectures developed to secure a 
given part of system 

This section presents the basic features of F T architectures which were 
developed as a model architectures for each generation (0, 1 and 2). Dif-
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ferent F T architectures which have the ability to detect and localize faults 
on P R M level can be used. The proposed F T architectures utilize 5 P R M s 
and thus 5 error signals can be identified on the output of P R M _ R O U T E 
block. These signals are connected to the inputs of G P D R C where they 
indicate the occurrence of a fault. 

The initial F T architecture of Generation 0 is based on T M R scheme in 
which the outputs of all FUs are checked by the majority element (voter). 
This architecture consists of 5 P R M s (3 P R M _ F U s , P R M _ V O T E R and 
P R M _ R O U T E ) . Figure 5.2 presents the proposed structure of this ar
chitecture. Each F U of the architecture is implemented as a standalone 
P R M without any additional diagnostic logic. The outputs of all P R M 
FUs are connected into P R M _ V O T E R block which is implemented as a 
duplex architecture because of the need to detect fault occurrence in its 
structure. 

Figure 5.2: The F T Architecture of Generation 0 based on T M R 

The F T architecture of Generation 1 is based on a duplex scheme with 
the addition of one P R M with C H E C K E R unit ( P R M _ C H E C K E R ) . As 
can be seen in Figure 5.3, this architecture consists of four P R M s (2 
P R M _ F U , P R M _ C H E C K E R and P R M _ R O U T E ) . Each F U of the ar
chitecture is implemented as a single P R M and their outputs are switched 
by output multiplexor which is controlled by error signal from diagnostic 
logic. 

In order to detect any fault in P R M _ R O U T E block, this block is sup
posed to be implemented as duplex architecture with comparator. The 
alternative of F T architecture of Generation 1 can be seen in Figure 5.4. 
The comparator output is connected to error signal err_route, the oc
currence of logical one value on error signal will cause the start of P D R 
process. 
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Figure 5.3: The F T Architecture of Generation 1 based on Duplex with 
checker 

PRM_ROUTE 

Figure 5.4: The alternative F T Architecture of Generation 1 

The final architecture of Generation 2 is based on classical duplex 
scheme (see Figure 5.5). This architecture is not F T and it has only 3 
P R M s (2 P R M _ F U and P R M _ R O U T E ) . In this architecture, P R M _ R O U T E 
block contains additional diagnostic logic for fault detection. Because it 
is not known which one of the two P R M implementing FUs is faulty, 
the reconfiguration process is applied to both of F U PRMs . This is final 
architecture, no recovery from permanent fault is possible. 

5.3 Evaluation of resource overhead 
The sizes of F T architecture components which cause hardware overhead 
in F P G A are shown in Table 5.2. In this table, the overhead of only 
those units which were utilized and extended by our methodology when 
compared to the standard use of these units are taken into account. For 
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Figure 5.5: The architecture of Generation 2 based on Duplex 

the generation 0, the overhead includes the size of P R M _ R O U T E and 
P R M _ V O T E R units. The sizes of any of three FUs were not consid
ered into overhead as they are present also in the standard T M R scheme. 
The size of P R M _ V O T E R unit was decremented by the size of standard 
majority voter unit without the ability of faulty unit localization to get 
only the overhead caused by the use of our methodology. For both types 
of the generation 1 and for the generation 2, the overhead includes only 
P R M _ R O U T E unit for the same reasons as for the generation 0. The 
meaning of the columns is as follows: column 1 - the width of each F U 
output in bits; column 2 to 5 - the overhead of F T architecture from the 
specified generation in slices. 

X C 5 V S X 5 0 T 
data width 

[bits] 

Generation 
0 

[slices] 

Generation 
1 

[slices] 

Generation 
1-variant 

[slices] 

Generation 
2 

[slices] 
2 12 5 12 1 
4 22 11 24 2 
8 36 17 39 3 
16 68 31 68 7 
32 126 57 122 12 
64 206 111 210 23 

Table 5.2: The overheads of Generations in slices 
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5.4 Implementation results of different ap
proaches to the partitioning of original 
system 

The key step in design process of securing a given system is its partitioning 
into parts which will be implemented as standalone F T architectures. To 
examine the properties of a secured system such as hardware overhead 
or the size of PRBs used for the reconfiguration after fault occurence for 
different types of its partitioning, the test design of system with M B - L I T E 
softcore processor (see [10]) was developed. Altough the top-level design 
contains only two main units - the instance of M B - L I T E and Wishbone 
adapter, the processor can be further divided into 4 functional units - IF, 
ID, E X and M E M . 

From the implementation results revealed the fact that the unit per
forming the execute stage of pipeline ( M B - L I T E - E X ) utilizes much more 
slices than other units which is caused by a big number of used LUTs. 
Therefore, the following possibilities for partitioning based on different 
granularity were proposed: 

• 1 F T architecture - all functional units are grouped together and 
replicated (coarse-grained partitioning), see Figure 5.6. 

• 2 F T architectures - E X unit of M B - L I T E processor is implemented 
as one F T architecture, the remaining units are grouped together 
and implemented as the second F T architecture. 

• 5 F T architectures - each unit mentioned in the above provided table 
is implemented in a single F T architecture (fine-grained partition
ing). 

Table 5.3 shows the implementations of all variants of the secured 
system. They were compared by their resource utilization (column 1), 
hardware overhead in comparison to original design (column 2) and the 
sizes of their PRBs (column 3). 

The results summarized in the table show that the H W overhead is 
slightly lower for the variant with 1 F T architecture. This is caused by the 
smaller G P D R C unit due to lower number of PRMs . On the other side, 
this is degraded by bigger P R B size which causes longer reconfiguration 
time. The table shows that there is a tradeoff between H W overhead and 
the overall size of all PRBs (or the time of reconfiguration). 
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FT arch. 1 

GPDRC 

MEMORY 
CTRL 

Figure 5.6: A l l units in one F T architecture 

BITSTREAM DATA 
• BITSTREAM ADDRESS 

X C 5 V S X 5 0 T 
The variant of 
secured system 

P R M s 

# 

Slices 

# 

H W overhead 

% 

Bitstream sizes 
PRM_ROUTE: [kB] 

PRM_FU: [kB] 

Original design 
T M R design (w/o P D R ) 

0 
0 

723 
2287 

0 
216 

-

1 F T arch. 5 2421 235 6,6 
408 

2 F T arch. 10 2484 244 6,6 
92,4 

6,6 
39,6 

5 F T arch. 25 2572 256 6,6; 6,6; 6,6; 6,6 
6,6; 19,8; 92,4; 13,2 

6,6 
6,6 

Table 5.3: The comparison of resource utilization and hardware overhead 
for different implementations of the given system 

5.5 SEU testing platform for the evaluation 
of FT system design by means of method
ology principles 

To evaluate the quality of secured F P G A to cope with transient and per
manent fault occurence, the special test platform was developed. The 
testing was based on fault injection into configuration bitstream to simu
late an SEU fault occurence. The platform allows to observe the behaviour 
of entire secured system implemented in F P G A when a fault occurs. The 
test platform contains several parts which are creating together the nec
essary test and evaluation equipment (see Figure 5.7). The F P G A is 
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configured by the implementation of system secured by the means of the 
methodology. The remaining parts of the test platform are implemented 
and run on P C . 

Designer 
sources 

H ^ 
design 

generation 
tool 

SEU s imulat ion & evaluat ion f ramework 

Source codes 
of secured 

system 
(VHDL) 

Implementation tool 
(Xilinx ISE) 

Design 
synthesis & 

implementation 

SEU bits list generator 
(Rapidsmith) Pi 

XDL 

NCD to XDL 
conversion 

Generation of bit list 
for SEU injection 

Reconfiguration tool 
(Xilinx Impact) BIT 

Test & evaluation tool 
(BASH scripts) 

SEU injection 

BITSTREAM MEMORY 

Figure 5.7: Dependability evaluation platform with S E U injection test 
platform 

For the S E U injection into configuration memory, the external S E U 
injector presented in [11] was used. It uses P D R to simulate the radiation-
induced upsets by artificially changing the contents of the configuration 
memory. This injector is written as T C L script and is run on P C . It 
accesses the J T A G external reconfiguration interface of F P G A . It uses 
the ChipScope library function of Xil inx ISE toolkit to perform the upset 
in configuration memory by toggling some bit value in the configuration 
bitstream. 

One simulation step for testing a secured design consists of one S E U 
injection into one of F T architecture P R M s and checking its output for 
error. When the fault is detected by the compare logic in the evaluation 
unit or by detection and localization logic implemented in F T architecture, 
the status message is sent via RS-232 to the evaluation tool in P C . If the 
reconfiguration is performed, the G P D R C status is observed and after rec. 
done signal is set, the next status message is sent to the evaluation tool. 
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Experimental results of G P D R C transient fault miti
gation process 
The test platform described in the above section was implemented and 
tested with Virtex 5 F P G A (XC5VSX50T) on an ML506 development 
board. To implement the system design for F P G A and for bitstream 
generation, the Xil inx ISE 14.7 toolkit was used. The F U contains several 
8-bit counters, decoders and multiplexers, the data width of input was 
6 bits and the data width of output was 16 bits. The design contains 
one F T architecture with 5 P R M s and the F T architectures described in 
Section 5.2 was used in the degradation strategy. The size of a P R B for 
P R M s with F U , P R M with doubled voter and P R M with checker unit 
was 6632 bytes, the sizes of PRBs for each P R M with routing were 26582 
bytes. 

X C 5 V S X 5 0 T P R M S E U detected F T arch. S E U missed G P D R C 
utiliz. by F T arch. output errors by F T . arch reconf. 

P R M type % # # # # 
P R M _ F U 
(all generations) 45% 7806 552 25 7826 

P R M _ V O T E R 
(generation 0) 30% 3345 1571 105 3345 
P R M _ C H E C K E R 
(generation 1) 45% 6901 552 11 6900 
P R M _ R O U T E 
(generation 0) 1% 0 21 21 0 
P R M _ R O U T E 
(generation 1) 12% 3542 1243 234 3541 

P R M _ R O U T E 
(generation 2) 6% 2432 1056 351 2430 

Table 5.4: The number of detected SEUs in FUs of the architecture 

From the results summarized in Table 5.4, it can be seen that the F T 
architecture of generation 0 and 1 can detect and repair more than 97% 
SEUs in P R M with F U , voter or checker unit. Except the F T architecture 
from generation 0 which do not have ability to detect faults in P R M with 
routing, this P R M type in the F T architectures from other generations 
was able to detect faults in more than 85% cases. Almost all detected 
faults have triggered the mitigation process done by G P D R C . In all cases, 
the P R M with routing was able to survive most of the SEU faults injected 
inside it due to very low utilization of F P G A resources. 
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Testing and evaluating recovery from permanent fault 
occurence 
According to the results of SEU injection campaign during transient fault 
simulation process only some configuration bits of F T architecture P R M s 
were used for permanent fault simulation. A specific bit was chosen for 
permanent fault injection campaign, if the fault that it creates in the 
unit implemented in P R M was detected by the detection logic of F T 
architecture or it has been manifested as an error on F T architecture 
output during the transient fault simulation campaign. 

The experimental results for a permanent fault injection campaign to 
the same F T architectures as in previous experiment are shown in Ta
ble 5.5. The meaning of the columns in the table is as follows: column 1 -
the type of F T architecture and which generation it belongs to; column 2 
- the number of injected SEU faults; column 3 - the number of incorrect 
data on the outputs of F T architecture; column 4 - the number of perma
nent faults detected; column 5 - the number of performed permanent fault 
recoveries by the reconfiguration to a different F T architecture; column 6 
- the mean time to repair the system to the correctly operating state. 

X C 5 V S X 5 0 T 

Generation 

Injected 
faults 

# 

F T arch, output 
data errors 

# 

Perm, fault 
detected 

# 

Recovery 
done 

# 

M T T R 

[ms] 
Generation 0 
( T M R - 2 x V O T E R ) 
Generation 1 
(TMR-simple) 
Generation 2 
(Duplex) 

12768 

12575 

7987 

2144 

1796 

708 

12515 

12287 

156 

12480 

9802 

0 

512 

351 

Table 5.5: The number of successfully detected permanent faults and the 
M T T R for permanent fault recovery 

The results summarized in Table 5.5 show that the number of de
tected faults is decreasing with the number of P R M s which are used by 
F T architecture. This is caused mainly by masking the faults which are 
injected into excluded PRMs . The repair process is shorter for less robust 
F T architectures due to the fact that the reconfiguration of fewer P R M 
is performed. 
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6. Conclusions 
In this work, the methodology of F T system design with the ability to 
mitigate transient faults caused by SEUs and to recover from several 
permanent fault occurences was proposed as the alternative to existing 
methods or methodologies. This methodology benefits from the ability to 
P D R in modern F P G A s which can be used for the run-time repair or the 
change of current F P G A configuration. The production of correct outputs 
from the system implemented in F P G A even during its P D R is ensured 
by its designing as an F T architecture. For the transient and permanent 
fault mitigation techniques, the set of relocatable PRBs to create the sets 
of alternative configurations is created and used for P D R . The final sys
tem implementation is then ready to survive many transient and several 
permanent fault occurences. 

6.1 Benefits of this research 
As the main benefit of this research, the proposal of alternative method
ology for the F T system design with the ability of fault mitigation can be 
mentioned. This methodology brings some new features such as the use 
of dedicated reconfiguration controller or the application of the relocation 
technique in transient fault mitigation and also in the recovery process 
from permanent fault occurence. This greatly suppresses the main disad
vantage of the use of precompiled configurations to mitigate faults which 
is space demanding storing of many configuration bitstreams. A l l benefits 
are summarized in the following points. 

• The exact procedure of transformation the system design entered 
by designer to secured system where selected important parts are 
implemented as F T architectures with the mechanism of transient 
fault mitigation and recovery from permanent fault was described. 

• The dedicated reconfiguration controller (GPDRC) with the ability 
to determine the type of fault and perform the correct mitigation 
procedure was developed. It was designed with the effort to reduce 
the necessary area and performance overhead. 

• There is a possibility to define the level of importance for every 
system part by specifying the degradation strategy. This strategy 
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is used when the recovery after permanent fault occurence is per
formed. 

• The final system design can be extended with synchronization mech
anism for reconfigured units. The G P D R C is designed to cooperate 
with the synchronization controller. 

6.2 Possible enhancements of methodology 
This complex methodology is based on many principles and incorporates 
many methods which can be further enhanced to achieve better perfor
mance of final secured system, to lower the neccessary area overhead in 
F P G A or to lower the necessary capacity of external bitstream storage. 

One of possible approaches to reduce the space for storing the data is 
data compression. It can be incorporated into final F T system designed 
by means of proposed methodology. Due to the fact that the G P D R C 
unit does not implement the direct read from the memory but it uses 
external memory controller unit, the decompressor unit for processing the 
compressed bitstream can be inserted to the data path between these 
units. 

Current methodology uses the standard P R design flow defined by 
Xil inx to implement the final F T system and generate the static design 
bitstream and the set of partial configuration bistreams. Another flow 
such as IDF can be adopted to make the system more secure by reducing 
the possibility of fault occurence which affects more than one P R M at 
once. This can be achieved by thorough isolation of PRMs . It can also 
simplify the relocation of PRBs designated to these isolated PRMs . 

Several enhancements would be also possible in the G P D R C unit. One 
of the current issues in this unit is its permanent occupation of IC A P . If the 
system entered by designer would like to use the P D R ability of F P G A for 
its reconfiguration it will not be possible because only one instance of this 
unit can be used. This can be solved by excluding the I C A P instance from 
the G P D R C unit and using it externally. Then some multiplexing logic 
can be added and this one I C A P instance can be shared by the original 
system and by the G P D R C . Because the final secured system (designed 
by means of the methodology) is based on the set of F T architectures and 
thus the fault can be masked by them the instant fault mitigation is not 
necessary. The G P D R C unit can wait until the I C A P instance is not used 
and then finally perform the mitigation process. 
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