
T
BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

FACULTY OF INFORMATION TECHNOLOGY
FAKULTA INFORMAČNÍCH TECHNOLOGIÍ

DEPARTMENT OF COMPUTER SYSTEMS
ÚSTAV POČÍTAČOVÝCH SYSTÉMŮ

METHODOLOGY FOR FAULT TOLERANT
SYSTEMS DESIGN INTO LIMITED
IMPLEMENTATION AREA IN FPGA

METODIKA NÁVRHU SYSTÉMŮ ODOLNÝCH PROTI PORUCHÁM DO

OMEZENÉHO IMPLEMENTAČNÍHO PROSTORU NA BÁZI FPGA

PHD THESIS AUTOREFERATE
AUTOREFERÁT DISERTAČNÍ PRÁCE

AUTHOR Ing. LUKÁŠ MIČULKA
AUTOR PRÁCE

SUPERVISOR Doc. Ing. ZDENĚK KOTÁSEK, CSc.
ŠKOLITEL

BRNO 2017

Abstract
The work presents a methodology of fault tolerant system design into an
F P G A with the ability of the transient fault and the permanent fault
mitigation. The transient fault mitigation is done by the partial dynamic
reconfiguration. The mitigation of a certain number of permanent faults
is based on using a specific fault tolerant architecture occupying less re
sources than the previosly used one and excluding the faulty part of the
F P G A from further use. This inovative technique is based on the precom
piled configurations stored in an external memory. To reduce the required
space for a partial bitstream the relocation technique is used.

Keywords
fault tolerant system design, partial reconfiguration, design methodology,
F P G A .

Reference
M I C U L K A , Lukas. Methodology for Fault Tolerant
Systems Design into Limited
Implementation Area in FPGA. Brno, 2017. PhD thesis autoreferate.
Brno University of Technology, Faculty of Information Technology. Su
pervisor Doc. Ing. Zdenek Kotäsek, CSc.

Contents

1 Introduction 2
1.1 Fault tolerant systems 3
1.2 Fault detection and localization techniques 3
1.3 Transient fault mitigation 6
1.4 Techniques for system recovery after permanent fault oc

curence 7

2 Motivation and goals of the research 10
2.1 Motivation 10
2.2 Goals of the research 11

3 Methodology for F T system design into limited imple
mentation area in F P G A 13
3.1 Methodology basic principles 13
3.2 Generations of alternative F T architecture configurations 15
3.3 Generic partial dynamic reconfiguration controller 17
3.4 Fault mitigation procedure 18

4 Design of F T architecture by means of developed method
ology principles 22
4.1 Fault tolerant architectures design 22
4.2 The implementation of generated F T architectures 24

5 Implementation and experimental results 26
5.1 The implementation of G P D R C 26
5.2 F T architectures developed to secure a given part of system 27
5.3 Evaluation of resource overhead 29
5.4 Implementation results of different approaches to the par

titioning of original system 31
5.5 S E U testing platform for the evaluation of F T system de

sign by means of methodology principles 32

6 Conclusions 36
6.1 Benefits of this research 36
6.2 Possible enhancements of methodology 37

1

1. Introduction
In last decades, the huge progress in manufacturing electronic devices
mainly stands on shrinking its parts such as chips and transistors. The
scaling of transistors to small sizes provides high performance due to
higher densities and low power and lower costs per unit but has also very
strong drawbacks. These small devices are also very fragile on overstress
and other environmental influences during operational lifetime. Addi
tionally, small changes inside fabric caused by these factors can lead to
large impact on device performance. It also brings bigger susceptibility
to transient upsets. Small nodes use less charge to hold state or data and
can be easily altered and upset by noise from outside environment such as
radiation. Thus, the dependability of the system becomes the key indica
tor. System dependability expresses the ability of system to produce the
outputs that can justifiably be trusted. To increase the dependability of
system, several mechanism can be adopted such as Fault Tolerant (FT)
system design which enables a system to continue its intended operation
when some part of the system fails.

Nowadays, the F P G A technology became very popular and frequently
used. It provides high logic density and possibility to easily upgrade the
implemented designs. Another benefit of F P G A design in comparison
with custom chips is their relatively short design cycle supported by the
possibility of using existing low cost design tools. These benefits together
result in low non-recurring engineering costs (NRE) for F P G A design. On
the other side, their drawback is their vulnerability to radiation effects
[21]. This mainly concerns SRAM-based F P G A s which are becoming
increasingly popular for many applications due to their high-throughput
capabilities and relatively low cost. The use of fault tolerant system design
can be the solution to overcome their higher rate of fault occurrence.

The ability of F P G A to be configured many times also brings new
possibilities from the perspective of system fault tolerance. When the
system in F P G A is affected by a fault, the reconfiguration can be used to
overcome its effects. Partial Dynamic Reconfiguration (PDR) capable to
reconfigure only some parts of implemented system while the others can
run without interruption and also to change their layout and connections
in F P G A can be used to implement the new advanced fault localization
and mitigation methods. This flexibility allows the use of the same F P G A
for multiple missions without the need of replacement.

2

1.1 Fault tolerant systems
A fault tolerant system is that one which can perform its function and
produce correct outputs even when it is affected by a hardware or software
fault. In [7], three condition to state that system is fault tolerant are
considered:

• The system computation for given dataset was not interrupted when
a fault occured and complete batch of input data was processed.

• The outputs produced by the system are correct.

• The length of computation did not exceed the predefined time limit.

In F T systems, the key goal is to prevent the errors from propagating to
observable outputs of computation process. This can be achieved by the
adding space, time, information, software or other type of redundancy to
original system. In this work, the main focus is put on approaches based
on hardware redundancy such as unit replication. One of the most known
F T architectures is the system with 3 identical modules and majority voter
referred to as Triple Modular Redundancy (TMR) system or the duplex
system with 2 modules and checker units. In the systems with replicated
modules, the voter or compare logic is the most vulnerable part. Thus,
they can be implemented into more resistable fabric or also replicated.

1.2 Fault detection and localization techniques
For fault detection, the capability of systems to mitigate faults which
appear during their operation is an important feature.

The fault detection always requires some kind of redundancy. Many
techniques based on information redundancy such as parity code, check
sum or C R C can be used. When the information redundancy is increased
the Hamming distance between the data word and encoded word can be
counted and can be used to find the detection parameters of used method
such as maximum number of errors which can be detected or repaired.
The codes with the ability to detect errors are referred to as Error Detec
tion Codes (EDCs). If they can also repair the error, they are referred to
as Error Correction Codes (ECCs).

Fault detection and localization methods can be also based on space
redundancy. The simplest form is n-modular redundancy with n repli
cated modules connected in parallel (e.g. T M R) . Their outputs are com
pared and any difference indicates the presence of fault. The redundancy

3

of this system is always more then (n — 1) * 100%. As its benefit, the
ability to detect every distinct error can be seen. The problem can arise
only when the same error will be produced by all replicated units.

Alternative to module replication is the use of checker unit. This
unit is placed in parallel to operational unit and it is computing some
function with the same input. Its output can be continuously used to
check the correctness of the output of operational unit. When the outputs
of the units are not equal, it means there is a fault in the system which
caused an error to occur. The drawback of this approach is that we
cannot distinguish whether the error is produced by operational unit or
its concurrent unit.

Another option can be the use of the unit implementing the inversion
of function. This unit can be used to compute the input value from the
output of checked unit. This will avoid the possibility of the same fault in
both units but the inversion function does not always exist. It also adds
some latency to computation.

Off-line fault detection is a widely used technique which is checking
the fault occurrence while the application in the F P G A is not running.
This method can be based on external testing equipment outside F P G A or
the test equipment can be configured into F P G A . The second approach is
known as Buil t- in Self-Test (BIST) which typically uses design consisted
of three block - test pattern generator, block under test and output re
sponse analyzer which are periodically switched by reconfiguration. Thus,
in several steps the entire F P G A can be fully tested. The main drawback
is its limitation that it can only detect faults during the test mode when
the F P G A is not operating. Thus, some timing-dependent faults or simi
lar may not be detected.

In bitstream readback approach, the controller (typically external)
reads the actual F P G A configuration memory contents as well as the con
tents of flip-flops in CLBs in the form of configuration bitstream. The
readback process can be considered as the inversion of F P G A configura
tion. Bitstream readback is available in two modes. In readback verify
mode, the controller reads the configuration of memory cells and com
pares it with the original bitstream. This mode is mainly used to verify
the success of previously done configuration. Readback capture mode
also reads configuration memory cells data but in addition to that it also
acquires the current states of all internal flip-flops inside CLBs and the
state of IOBs. Wi th these gained data from F P G A and the knowledge of
data which are expected to be in the configuration memory of F P G A and

4

other resources in the moment of readback, the diagnosis algorithms can
be used to detect and localize faults in F P G A [18] [19].

The techniques based on roving S T A R approach are capable to de
tect and localize faults in F P G A . The approach is based on the dividing
the array into tiles with the same number of resources and their struc
ture. Some of these tiles implement the function of system and in some of
them, the BIST is implemented. These tiles performing the fault detec
tion and localization are referred to as Self-Testing AReas (STAR). While
one S T A R is tested off-line the remaining blocks of system which are not
utilizing resources from actual S T A R continue in run and the aplication
in F P G A is not interrupted. Testing is focused on logic blocks and con
necting wires. When the testing is finished the partial reconfiguration of
F P G A is used to change the layout of design and another tiles previously
used to implement the function are configured as BIST and tested. The
fault coverage of this approach can be 100% because every tile of F P G A is
tested. Hardware overhead of this approach is formed by tiles needed for
STARs and the reconfiguration controller logic which is used for roving
the S T A R through the F P G A .

A l l presented fault detection methods have both positive and negative
features. Table 1.1 is showing the results of detection methods when they
are evaluated by several criteria.

Detection
method

Granularity,
detect, speed Fault coverage Space overhead Performance

overhead

Unit
replication

coarse
fast

good
all error occurences

large
resources for

n-1 modules +S
voter needed

small
voter latency

C E D coarse
fast

medium
can be impractical

for some functional units

medium
trade-off with coverage

small
just latency

of checker

Off-line
methods

fine
slow

very good
can detect also

faults not
manifested by error

small
testing controller

small
just start-up

delay

Bitstream
readback

fine
slow

very good
can detect also faults

not manifested by error

small
readback and

testing controller

small
just start-up

delay

Roving
star

fine
medium

very good
can detect also faults

not manifested by error

medium
resources for STARs
+ testing controller

large
switching la
tency, long

critical paths

Table 1.1: The comparison of fault detection methods

5

1.3 Transient fault mitigation
The use of F P G A s in harsh conditions has significantly risen the number
of transient faults mainly caused by ionization radiation. These faults can
be mitigated but this requires additional logic.

The susceptibility to these kinds of faults can be lowerred by the
special fabrication design to produce radiation-hardened F P G A s . This
radiation hardened design is based on protecting the configuration cells
at transistor or silicon level. As F P G A s become more and more complex
with large number of resources and processing capabilities, the radiation-
hardenning becomes excessively expensive in comparison with non-protec
ted ones. Radiation hardened F P G A has slower operating frequency and
increased power consumption when compared with its commercial off-the-
shelf F P G A counterpart [15].

When a transient fault occurs in F P G A it can be repaired by recon
figuration of affected part of configuration memory. This can be done by
complete (static) reconfiguration of F P G A or by P D R of affected Partial
Reconfigurable Module (PRM). Static reconfiguration causes the stopping
of running design in F P G A and possible loss of current status information
of implemented modules. Due to complete reconfiguration of F P G A , this
technique does not require the localization of the affected part of F P G A .
Nowadays, in most cases the application running in F P G A cannot be
stopped during the recovery process and therefore techniques based on
P D R are preferred.

Configuration bitstream scrubbing was introduced to correct configu
ration memory after S E U occurences. This method is based on periodi
cal reconfiguration of P R M by correct Partial Reconfiguration Bitstream
(PRB) while the F P G A is in operation. There are two common configura
tion scrubbing strategies. In blind scrubbing, the periodical reconfigura
tion of P R M by golden copy of designated partial configuration bitstream
is done without knowledge which module is faulty. Another scrubbing
methods use bitstream readback to detect if P R M is faulty and must be
reconfigured. The reconfiguration can be done by golden copy of bitstream
or by the read and corrected one. The scrubbing period should be stated
according to failure rate of system. The main drawback of configuration
scrubbing method is the need of continual use of the configuration port
but techniques such as [] to overcome this issue exist.

Methods based on P D R are dependent on some kind of detection and
localization technique implemented in design which in case of fault detec
tion triggers the process of recovery. Unlike in the configuration scrub-

6

bing, this process is started only in case of fault detection event. The
process of recovery is shown in Figure 1.1. The detection and localiza
tion of faulty module is typically done by the design itself implementing
techniques such as C E D or unit replication with checker units. The error
signals are supplied by some kind of P D R controller which will trigger the
reconfiguration process using appropriate configuration bitstream down
loaded from configuration bitstream storage. P D R controller is typically
implemented by some softcore processor in the same F P G A where it per
forms the P D R or in some external reliable fabric. Many techniques based
on this approach were presented [1] [2] [6].

No fault present Fault occured in module

PRM1

PRM2

o -

PRM3

PDR controller

SO
reconfiguration

detection
& localization

PRM1

PRM2

PRM3

Figure 1.1: Using P D R to recover system after S E U occurence

1.4 Techniques for system recovery after per
manent fault occurence

In this work, as the permanent fault is considered, each fault causes a
damage of F P G A resource in that way that it cannot be used in F P G A
design anymore. This happens mostly by damaging or during the wear-
out phase of F P G A or by the impact of harsh environment on F P G A .

One possible approach is to use the F P G A fabric which is designed
and manufactured with spare resources which can be utilized in case of
fatal fault occurence in currently used set of resources. This hardware
level approach can be easily used in array based resources (i.e. CLBs)
by using multiplexers or other switching logic at the ends of lines of cells.
This allows the remapping of a row or a column with damaged component
into some spare row or column []. For hardenning the interconnection of

7

CLBs and other hard blocks in F P G A , the fine-grain redundancy in the
interconnect blocks can be introduced [22]. The benefit of this approach
for permanent fault recovery is its transparentness to the configuration.
On the other hand, including the spare hardware resources to device is
expensive and it is firmly limited by the number of spare rows or columns.

Another approach is based on the recovery on the configuration level.
When the permanent fault occurs, the modification of current design con
figuration by incremental re-mapping and re-routing is performed to ex
clude the affected resources when a fault occurs. This approach can in the
ory utilize all spare resources which are currently not used by implemented
application for logic or routing affected by faults. The drawback of this
method is the need of adaption of F P G A mapping, placement and routing
tools to operate autonomously with considering existing faults in imple
mentation area. The incremental change of design requires not negligible
time for processing, it can increase power consumption and area overhead.
Many techniques based on this approach were presented [14] [16] [17].

As the opposite to online design modification, some other approaches
(see [13] [23]) are trying to prepare the possible solutions before the fault
appears, in the design phase. Then, the implementation space of F P G A
is typically divided into several tiles and the desired design is splitted
into modules which are configured into different tiles leaving one or more
tiles unused. The configurations with these alternative implementations
are precompiled and created partial configuration bitstreams are stored
in some type of memory. When a fault is detected and localized in some
tile, the reconfiguration of the entire design is performed with this pre
compiled configuration which does not utilize the resources from this tile.
Since each configuration of the design contains the implementation of the
same function and the interface between the entire reconfigurable area and
the rest of design is fixed and the same in all cases, all partial bitstreams
are interchangeable and can be configured to this partial reconfigurable
region. With this approach, a fault in logic block and in local interconnec
tions can be handled. This technique minimizes the recovery time since
the process consists of alternative configuration selection and P D R with
its precompiled bitstream. The drawbacks of this approach can be seen in
its poor area efficiency and complicated mitigation of mutliple faults but
the main one is the requirement of external storage for precompiled partial
configuration bitstreams. This can be reduced by some techniques such
as bitstream compression but there is always a trade-off with increased
time and complexity of recovery process.

8

The ability of modern F P G A s to be reconfigurated dynamically can
be used by evolutionary methods such as []. They can recover the system
correct operation through evolution when faults occur. These methods of
fer a large degree of flexibility in the number and distribution of faults
which can be mitigated. There is no need to preciselly localize the fault.
Evolutionary methods attempt to facilitate repair through the reuse of
damaged resources. The fitness function of implemented Genetic Algo
rithm (GA) is able to internally evaluate the residual functionality of the
design in F P G A and assess the fitness value. This value is used for the
upcoming selection phase. With this approach, very big flexibility can be
achieved and all remaining non-faulty resources can be utilized by the new
design. The drawback of this method is the complexity and the flexibil
ity what can result in very time-demanding search of satisfactory design
with unpredictable duration and its result. The logic for evolutionary
algorithms can cause unnegligble area overhead.

Although many different approaches to system recovery after perma
nent fault occurence exist, none of them is considered as universally appli
cable. Table 1.2 is showing the comparison of presented recovery methods
from different aspects.

Recovery
method

Recovery
speed

Resource
overhead

Performance
overhead

Flexibility
of recovery

Hardware
level

very fast
just switching lines

in hardware

low
spare physical

resources needed,
no requirements
for impl. space

low
no design change

low
entire row/column

excluded

Alternative
configurations

medium
configuration
selection and

reconfig. delay

high
reconfig. controller
and config. selector

& storage for
for configurations

low
alternative confi
guration can be

optimized

medium
trade-off with
the number of
configurations

Incremental
remapping

&; rerouting

poor
time demanding
remapping and

rerouting

high
design impl. and

reconfig. controller

medium
trade-off with

impl. controller
complexity

high
non-faulty resources

can be effectively
utilized

E volut ionary
algorithms

poor
may take long
time to evolve

high
after bitstream
is read, parsed
and analysed

low
can be opti

mized by setting
fitness function

high
non-faulty resources

can be effectively
utilized

Table 1.2: The comparison of permanent fault recovery methods

9

2. Mot ivat ion and goals of the
research

2.1 Motivation
The scaling of electronic devices and still less robustness of components
bring the strong need for more complex securing against the occurence of
faults. The use of electronic devices in new rough and noisy environment is
also another source of problems. For example, in the aerospace industry
there are requirements on electronic devices for their resilience against
radiation and on hardenning them against negative effects of material
aging during long term missions.

In recent decades, new possibilities and new challenges in the area of
system design appeared. Programmable electronic devices such as C P L D s
and F P G A s allowed rapid prototyping and started the era of reconfig-
urable computing. Faulty design can be easily fixed after the first de
ployment and the same hardware can be also used to perform various
tasks during the lifetime where some of these can be unforeseen. The F P
GAs came up with new possibilities in the field of fault tolerant hardware
design. The dynamic reconfiguration can be now used for changing the
mapping and routing inside F P G A in order to mitigate the faults which
have occurred. The new challenges with fault tolerance in F P G A s are con
nected with their configuration saving. Very often the F P G A s which have
configuration stored in S R A M memory are used []. They are popular
because of their lower price and easy use they offer. Higher susceptibity
to SEU faults in comparison with other F P G A types can be seen as their
drawback.

Many approaches for making digital systems more dependable were
presented. Fault tolerant system design offers the possibility to overcome
the impact of fault occurence while the use of detection and localization
methods together with fault mitigation based on P D R can offer to restore
the fully operational state of system. This can be done autonomously
without the need of user intervention and without stopping system opera
tion. Nowadays, the utilization of F P G A s is not only in rapid prototyping
but they are used frequently also in long term missions. Thus, the study
of system dependability has to focus also on permanent faults which oc
cur more likely with the increasing age of F P G A . Many techniques for
mitigation of S E U effects in F P G A and also several mitigation techniques

10

for permanent damage of resources in F P G A are available. None of them
is universally applicable due to their high demands on memory (e.g. pre
compiled alternative configurations), time-demanding fault recovery (e.g.
evolutionary algorithms), area overhead (e.g. incremental change of de
sign), etc. Thus, it makes sense to focus on optimization of these tech
niques and creating such methodology which will describe how to create
design with effective fault recovery ability.

2.2 Goals of the research
The effort to develop a methodology for fault tolerant systems design was
driven by the goal to satisfy the following aspects.

• The localization of the F P G A part (PRM) affected by fault.

• The determination of the fault type and its classification according
to considered fault model.

• The driving of repair proccess to return the system

— to the exactly same state as there was before - in case of tran
sient fault,

— to the state when the functions of system are producing correct
outputs - in case of permanent fault.

• Keeping the design running during the reconfiguration process if it
is possible.

• Enabling the support for synchronization process after reconfigura
tion is completed.

• The effort to shrink the number of the F P G A resources needed as
hardware overhead because of the system design according to pro
posed methology.

The goal of this thesis is to combine the existing well known tech
niques together with new approaches. As an example, the C E D technique
together with online checkers can be used not only to ensure the fault
tolerance in system but also to localize the module affected by a fault in
F P G A if it is possible. This localization information will point at specific
reconfigurable module of F P G A which is faulty. Then some reconfigu
ration controller will use this information to process fault mitigation in

11

it. The P D R together with F T design will be used to ensure the correct
operation even during the fault recovery process.

The goals of the research can be summarized in the following way:

1. To propose the methodology for the F T design of digital system
into F P G A with the ability to recover after transient and permanent
fault occurence which satisfies these conditions:

• The designed architecture of system is operating in limited im
plementation area which means that it can only utilize the
resources from the area of F P G A which was designated for the
system at the begining of its lifetime.

• The occured transient fault in one system module is mitigated
while the rest of modules in F P G A are not affected by it.

• If the architecture of implemented system has to be modified
to recover after permanent fault occurence, the new one has
to keep producing correct outputs and it should remain fault
tolerant if it is possible.

2. To design the reconfiguration controller which will control the miti
gation process in F P G A after fault occurence done by P D R . It sup
plies the information about the detection and localization of fault,
it determines its type and controls the reconfiguration process. A l
ternatively, it can also trigger the sychronization process when it is
needed.

3. To create test platform which will enable the evaluation of methods
and procedures described by the proposed methodology. For the
F T architectures designed by means of methodology principles, the
ability to survive will be tested by fault injection.

The proposed methodology covering these points is described in the fol
lowing chapter.

12

3. Methodology for F T system
design into l imited implementa
t ion area in F P G A
In this chapter the principles of the proposed methodology which aims at
securing system by implementing its parts as fault tolerant systems into
the limited implementation area in F P G A are described.

The limited implementation area from the perspective of this research
means the set of F P G A resources assigned for implementation of some
system parts which are important from the dependability point of view.
This implementation area is specified during the design phase of system
implementation and it cannot be modified during system lifetime. This
assessment limits the fault mitigation technique during permanent fault
recovery process.

3.1 Methodology basic principles
The proposed methodology defines the process of securing digital system
designed and implemented in F P G A . In other words, it can be understood
as the recipe how to redesign the given architecture of a system in F P G A
and how to prepare the system for recovery after fault attack and thus
make its lifetime longer. Such methodologies have their justification e.g.
in long term missions where the implementation area becomes smaller
after every permanent fault which occurs in the design.

The detection and localization process is based on the comparison of
replicated functional units in F T architectures and on other C E D tech
niques. No specific methods are intended. The mitigation technique re
quires the localization on the P R M level. When the faulty P R M is lo
calized, it must be determined to which type of fault defined by fault
model this particular fault belongs. Mitigation process is different for
both types of fault - transient and permanent. Both of them are driven
by developed controller unit - Generic Partial Dynamic Reconfiguration
Controller (GPDRC) . This unit has a crucial role in the system because
it is responsible for the task of fault mitigation and is able to control the
reconfiguration performed through I C A P interface (see Section 3.3).

13

In the developed methodology, the design is protected by means of
F T architecture to guarantee the resilience against both independently
occurring transient faults and given number of permanent faults which
affect the F T system correct operation. The methodology suggests to
divide the implementation into certain number of PRMs . This set of
P R M s put together is called a configuration in the following text. Each
unit of F T system is placed in one P R M and it is assigned to Partial
Reconfiguration Region (PRR). P R M s are designed in a uniform way
which means that relative position of all sources, connections and proxy
logic inside it is identical for the particular type of the unit. This is
required for relocation process.

F P G A
Dynamic reconfigureble area

PRR!
IN

PRR ;

IN
PRRi

PRR2

OUT
PRR2

OUT

• • • ~*

PRR2

PRR3
PRR3 PRR3

PRRo PRR„ PRRo PRR4 PRRo PRR4

FT architecture 1 FT architecture 2 FT architecture n

PRM error 5*n

Static reconfigurable area

O H

Figure 3.1: The main structure of the proposed methodology

In Figure 3.1, an example of the complete F T system design in F P G A
based on the principles of methodology is shown. It consists of dynamic
part in which F T architectures are placed and static part which contains
G P D R C . The G P D R C utilizes the information about detection and local
ization of faults from the C E D logic units of F T architectures. The set
of error signals from P R M s (assigned in P R R I - PRR4) are the inputs to
G P D R C . Splitting F T architecture into several P R M s gives the possibility
to exclude from the implementation one or several P R M s when they are
affected by permanent fault. The interconnection signals between mod
ules and the connections between the particular module and the rest of
F P G A pass through single P R M assigned to PRRO which is neighbour
ing with all other PRRs. The other 4 PRRs can be assigned by P R M s

14

of different units of the selected F T architecture. The number of these
uniformly sized and structured PRRs can vary.

To illustrate the application of methodology for securing a real system,
several F T architectures were proposed which can be used in degradation
strategy of some system unit (see Figure 3.2). The first, most robust F T
architecture, is T M R architecture with doubled voter which enables the
detection of errors also in the voter. The next T M R architecture uses just
simple non-protected voter unit. The last architecture is based on Duplex
system with a comparator. This architecture is not fault tolerant since
there is no possibility to distinguish which output of two replicated units
is incorrect. But this system can run correctly until the first fault occurs
and then it is detected by compare unit.

Each replicated functional unit is implemented in single P R M referred
to as P R M _ F U , complex voter unit is implemented in its own P R M
referred to as P R M _ V O T E R and the routing between replicated units and
the F T architecture external interface is constrained into P R M referred
to as P R M R O U T E .

FT architecture 1
(TMR with doubled voter)

FT architecture 2
(Simple TMR)

Non-FT architecture 3
(Duplex with compare)

Legend

PRM ROUTE

PRM VOTER

NO PRM ASSIGNED

•
•

PRM
error

Figure 3.2: The assignment of PRRs by different P R M s

3.2 Generations of alternative F T architec
ture configurations

The methodology is based on the existence of precompiled configurations
of an F T design which are applied when a permanent fault occurs. These
configurations are divided into several generations. Configurations from
one generation contain the same F T architecture but with different P R M
placement. The enumeration of all possible generations for such F T ar
chitectures is shown in Figure 3.3.

15

Generation 0

VOTER PRM

F U i PRM

F U 2 PRM

ROUTING
PRM F U 3 PRM

[1111]

Generation 1

Legend

PRFn

PRR2

PRR3

PRRo PRR4

Configuration code: [b x b2 b 3 b4]

/ - \
Is PRRi Is PRR4

assigned? assigned?
(1/0) (1/0)

F U l PRM

FU2 PRM

ROUTING
& VOTER

PRM

FU3 PRM
ROUTING
& VOTER

PRM

[1110]

ROUTING
& VOTER

PRM

F U i PRM

ROUTING
& VOTER

PRM

FU2 PRM

ROUTING
& VOTER

PRM

ROUTING
& VOTER

PRM
FU3 PRM

[1101]

ROUTING
& VOTER

PRM

F U i PRM

ROUTING
& VOTER

PRM

ROUTING
& VOTER

PRM

FU2 PRM
ROUTING
& VOTER

PRM
FU3 PRM

[1011]

ROUTING
& VOTER

PRM

ROUTING
& VOTER

PRM

F U i PRM

ROUTING
& VOTER

PRM

FU2 PRM
ROUTING
& VOTER

PRM
FU3 PRM

[0111]

Generation 2

ROUTING
& COMP.

PRM

F U l PRM

ROUTING
& COMP.

PRM

FU2 PRM

ROUTING
& COMP.

PRM

ROUTING
& COMP.

PRM

[1100]

ROUTING
& COMP.

PRM

F U l PRM

ROUTING
& COMP.

PRM

ROUTING
& COMP.

PRM

FU2 PRM
ROUTING
& COMP.

PRM

[1010]

F U i PRM

ROUTING
& COMP.

PRM

ROUTING
& COMP.

PRM

ROUTING
& COMP.

PRM
FU2 PRM

[1001]

ROUTING
& COMP.

PRM

ROUTING
& COMP.

PRM

ROUTING
& COMP.

PRM

F U i PRM
ROUTING
& COMP.

PRM
FU2 PRM

[0011]

ROUTING
& COMP.

PRM

ROUTING
& COMP.

PRM

F U l PRM

ROUTING
& COMP.

PRM

ROUTING
& COMP.

PRM
FU2 PRM

[0101]

ROUTING
& COMP.

PRM

ROUTING
& COMP.

PRM

F U i PRM

ROUTING
& COMP.

PRM

FU2 PRM
ROUTING
& COMP.

PRM

[0110]

Figure 3.3: The generations of F T architectures and their alternative
configurations

The number of unused P R M s (PRMs excluded from use) in config
urations of each generation reflects the generation number. The code
of configuration is assembled from flags indicating if the corresponding
P R R is assigned by P R M (see legend in Figure 3.3). The configuration
with code 1111 from generation 0 represents the starting configuration for
this system part. After the first permanent fault is detected and affected
P R M is localized, the new configuration excluding the faulty P R M from
the next generation is chosen to be used for system implementation. This
principle is applied again when a new fault affects another P R M . The
number of possible variants of configurations is rising with the number
of P R M s affected by fault. To reduce the memory requirements for the
configuration, bitstream relocation method is used to avoid the existence
of several copies of P R M containing the same type of unit. Only one
copy of P R M bitstream for each type of P R M except P R M _ R O U T E is

16

needed. Only the bitstream designated as P R M _ R O U T E is stored for
each configuration in the memory.

Due to the specifics of design and implementation flow adopted by
Xil inx tools, the generated partial configuration bistream of P R M cannot
be assigned to different P R R than it was originally designated to. One
P R B has to be generated for each P R R where the P R M will be config
ured. Thus, if there is a need to apply N P R M s of different types to any
of M PRRs, N * M PRBs have to be produced and stored in external
memory for run-time partial reconfiguration. With the adoption of bit-
stream relocation technique, the number of generated PRBs is reduced
to N. These PRBs can be used then for reconfiguration of all PRRs sat
isfying the conditions for the application of relocation technique. These
conditions are applied in the design phase and the implementation phase.
One of the main limitations of this technique is the need to have all PRRs
with identical F P G A resources. In common, this technique always starts
by generating the PRBs for all types of P R M s in one chosen location
of P R R . Before the run-time reconfiguration, the bitstream manipulation
modifying the information related to its location to apply it into other
different P R R is needed.

3.3 Generic partial dynamic reconfiguration
controller

The concept of the first G P D R C for transient fault mitigation was pre
sented in []. The first implementation within system with counter and
SEU injection was presented in [8]. Previous G P D R C design has been ex
tended to be able to perform reconfiguration of entire F T system (several
PRMs) when the permanent fault occurs in its P R M . New issues such
as choosing the proper configuration from the next generation of con
figurations, performing the relocation process on loaded PRBs and the
synchronization of the complete F T system were solved and implemented
into controller. The G P D R C for transient and permanent fault mitigation
was presented in [12].

Before the development of G P D R C , several design goals to be achieved
were defined:

• The resource utilization of new controller has to be lower than the
standard controller units implemented by universal softcore proces
sors. It must be built in generic way to be able to perform P D R in
the systems with the different number of PRMs .

17

• The controller should be autonomously able to determine the type
of fault which occured in a P R M , whether it is a transient or a per
manent one - for this purpose the information on whether the fault
occurred during n successive reconfiguration cycles (the reconfigu
ration cycle consists of faulty P R M detection, P R M reconfiguration,
P R M synchronization) can be used. If the fault occurrence is equal
or lower than n, the fault is seen as a transient one, otherwise it is
concluded that the fault is a permanent one.

• The P D R will be done via internal reconfiguration interface (ICAP
in Xil inx FPGAs) and utilize its full speed (up to 100MHz).

• To reduce the number of needed precompiled PRBs the controller
has to implement the technique to use the same P R B for the P D R
of several P R M s where it is possible (e.g. the same type of P R M
but different physical assignment to P R R) .

• The controller should allow the synchronization of reconfigured P R M s .

• The controller should support different external memory devices.

The detailed architecture of G P D R C can be seen in Figure 3.4. Its
interface contains an error vector of F T architectures as input. Its width
depends on the number of F T architectures and the available number of
P R M s for each of them. The next interface signals such as bitstream ad
dress and data are designated to communication with external bitstream
storage when bitstream is transported through I C A P interface of F P G A .
The sync done and rec done signals are intended for controlling the syn
chronization of reconfigured P R M s in F T architectures, the fatal signal
announces the situation when the F T architecture cannot be repaired
by G P D R C because the number of available P R M s has fallen below the
required minimum.

3.4 Fault mitigation procedure
In Figure 3.5 the behavior of the system after a fault is detected in P R M
is shown in flow diagram. The fault is detected by the F T architecture.
The F T architecture generates a set of error signals which identify the
faulty P R M (step 0). This is possible due to the fact that the functional
units and voters are implemented into separate P R M s and the relation
between the units and P R M s where they are placed is known.

18

I FT Architectures PRM Error Vectors

PRM error
. index

Memory controller
address 1 \ A d a t a

i < i T
Bitstream storage memory

Figure 3.4: Fault tolerant system structure for S R A M based F P G A

When the faulty P R M is localized, the G P D R C determines, if the
occured fault will be considered as transient or permanent one. The solu
tion used in the case of transient fault occurence is denoted as the option
A further in this text. If the fault is seen as a permanent one, then the
subsequent steps depend on whether the current configuration comes from
the final generation (Generation 2 in this case). The G P D R C stores the
configuration code of actual configuration so it is able to identify that it is
from final generation. If it is from final generation, there is no additional
option to continue in mitigation of this new permanent fault and the F T
architecture will indicate this to G P D R C unit. Then, the intervention
from outside is needed (e.g. physical placement of configuration is moved

19

NORMAL OPERATION MODE
&

GPDRC CHECKS FOR FAULT

YES

REPORT
UNREPAIRABLE STATE

DOWNLOAD AND RELOCATE
BITSTREAM OF PRM

WITH THE SAME TYPE
AS THE AFFECTED PRM

CHOOSE THE NEXT GENERATION
CONFIGURATION NOT USING
AFFECTED PRM LOCALITY

(B2)

(A2) > t
RECONFIGURE PRM

WITH FAULT BY
RELOCATED BITSTREAM

(A3) > f
SYNCHRONIZE

RECONFIGURE PRM

DOWNLOAD BITSTREAM OF
PRMROUTE FROM CHOSEN

CONFIGURATION AND PERFORM
RECONFIGURATION

(B3)

DOWNLOAD AND RELOCATE
BITSTREAM OF ALL PRMs USED

BY CONFIGURATION
EXCEPT OF PRM ROUTE

(B4)

RECONFIGURE ALL PRMs
(EXCEPT PRMROUTE)

BY RELOCATED BITSTREAMS

Figure 3.5: Reconfiguration flow diagram

to another locality of F P G A or the F P G A is replaced with a new one). In
the situation when actual configuration is not from final generation, it is
possible to mitigate the occured fault and the solution is denoted as the
option B.

Option A - recovery from a transient fault: After a transient
fault is detected, G P D R C reads from external memory the P R B which re-

20

sponds to the type (P R M _ F U , P R M _ V O T E R , P R M _ C H E C K E R , etc.)
of the identified faulty P R M . The type of the unit is known because the
G P R D C knows which configuration is configured actually and the distri
bution of P R M s in it. The downloaded P R B is originally designated to
the first suitable P R R (typically to PRR1) . Therefore, the next step of
mitigation process (step A l) will be the relocation of this bitstream in
such way that it can be used for reconfiguration of the affected P R M . The
reconfiguration process of this P R M with the relocated P R B is driven by
G P D R C (step A2).

After the reconfiguration is finished, in some cases the P R M must be
synchronized with other components of F T architecture. The synchro
nization can be also controlled by G P D R C (step A3).

Option B - recovery from a permanent fault: After a permanent
fault is detected in P R M and the actual configuration does not belong to
the final generation, new configuration from the following generation is
selected. This configuration will not use the faulty P R M . The G P D R C will
choose configuration according to configuration code which will respond
to bitwise negation of the vector of error signals from F T architecture (B l
step).

The P R B for P R M _ R O U T E (P R M with the interconnections) of se
lected configuration is stored in the external bitstream storage. This bit-
stream is designated to reconfigure resources of PRRO (the only P R R of
F P G A where this bitstream of P R M _ R O U T E can be assigned). This
implies that there is no need to relocate this P R B (step B2).

The downloading of P R B copies implementing all remaining P R M s
will be the next action. The number of needed bitstream copies and their
type (if it is implementing P R M _ F U , P R M _ C H E C K E R or P R M _ V O T E R)
is determined by the selected configuration. PRBs of all P R M types are
downloaded from the same destination, as in the case of reconfiguration
after transient fault. Each of these downloaded PRBs will go through
relocation process which will make them suitable for appropriate PRRs
(step B3).

The downloaded and relocated PRBs are used for the reconfiguration
of PRMs , which are used in the configuration (step B4). After completion
of the reconfiguration, local reset of units in newly configured P R M s is
performed. Also some kind of synchronization (state recovery of all units
in affected PRMs) can be performed in this step.

21

4. Design of F T architecture by
means of developed methodol
ogy principles
The process of F T architecture system design to meet requirements de
fined by the proposed methodology is described in this chapter.

4.1 Fault tolerant architectures design
The application of the methodology requires the specific process of system
design. When this design is adopted, it is ensured that faults appearing
subsequently in functional modules or other F T modules (containing vot
ers, checkers, etc.) of design can be mitigated.

The original system design delivered from a designer for securing has
to be divided into important parts in terms of required dependability and
the remaining parts which may remain unsecured (from the methodology
point of view) or they are secured in some other way. From the chosen
important system parts every single part will be secured as single F T
architecture with fault mitigation capability according to the methodol
ogy. The process of partitioning has to be driven by designer knowledge
of importance of each system part. This can be gained as the result of
modelling reliability of system parts and the impacts of faults occured in
specific system part to entire system. The partitioning can be done with
different granularity (see also Figure 4.1)

• Coarse-grained partitioning - The complete system is just one part.

• Fine-grained partitioning - The system is divided into more smaller
parts. This reduces the overall size of all needed bitstreams but
the G P D R C size is increased and it brings more complexity to fault
mitigation process.

• Mixed partitioning - The combination of two previous approaches
can be done by grouping several small system parts into several
groups and implement each of them as single F T architecture.

The next step is the selection of degradation strategy for each chosen
important part according to their stated level of importance. Permanent

22

PART,

FU i F U 2

F U 3

PART!
FU„ FU C

FU n F U ,

F U 3

PART! PART2

FUz

PART4

(a) Coarse-grained partitioning

FU C

FU,

PART5 PART6

(b) Fine-grained partitioning
PART2

FUn F U ,

PART!

F U 3 F U 3

F U 4 F U 5 l inn F U 4 F U 5

PART3 PART4

(c) Mixed partitioning

Figure 4.1: Design partitioning with different granularity

fault occurence in system is mitigated by downgrading the F T architecture
from the robust one to less robust one. This step is required every time a
permament fault occurs in currently occupied P R R containing the P R M
of F T architecture (see Figure 4.2). The less robust F T architecture will
exclude this P R R from the further use. The number of PRRs which can
be excluded at the same time then specifies the number of permanent
faults which can be handled by this secured part of the system.

C H E C K E R ! C H E C K E R !

FU i FU i CHECKERx CHECKERx

FU i FU i

/ CHECKER 2

F U 2 F U 2

Figure 4.2: The set of F T architectures as a sample of degradation strategy

In the next step, the implementation area in F P G A for each system
part implemented as F T architecture has to be stated. This area is al
located in dynamic area. It enables the modification of assigned P R M s
by P D R . The remaining parts are placed in static area. For each chosen
important part of system, several PRRs will be created. To these PRRs,
the P R M s of currently used F T architecture will be assigned according to

23

stated procedure (see Figure 4.3). The location and the size of PRRs for
implementing one system part must respect this conditions:

• The number of PRRs is the same or bigger than the number of
P R M s of the starting (the most robust) F T architecture for given
system part.

• The set of created PRRs will contain one specific P R R for P R M
with routing (P R M _ R O U T E) . This P R R has to be located in the
neighbourhood of all other PRRs.

• Every P R R from the set of created PRRs (except of the P R R desig
nated to be configured by P R M with routing) has to have the same
size, the same structure and the same local placement of the F P G A
resources.

• The placement of P R R and also the size of the smallest possible
P R R (PRRmin) is limited by the fact that reconfiguration is done
per configuration frames. As the configuration frame is modifying the
configuration of specified number of resources at once, the location
and the size of P R R has to respect these principles and can only
allocate resources corresponding to one PRRmin or its multiples.

ERROR

OUT-

PRR1

PRR2

PRRO 1 PRR3

ERROR

OUT-

PRR1

— — — PRR3 — —

PRR4

ERROR

OUT-

—
PRR2

— — PRR3 — —

PRR4

— —

PRRO PRR5

4 P R R 5 P R R 6 P R R

The implementation area
corresponding to one PRR,

• PRM with routing
_ PRM with FU

No PRM asigned

Figure 4.3: Several possibilities with area allocation for simple T M R ar
chitecture

4.2 The implementation of generated F T ar
chitectures

The complete process starting with the entry of unsecured system design
to the final step of configuration of F P G A with the equipment to tolerate
the fault impacts and their mitigation consists of several steps:

24

1. Design entry - the designer enters V H D L source codes.

2. The specification of the system parts to be secured - the designer
chooses the parts and the degradation stategy for each of these parts.

3. The generation of F T architectures for the use in degradation strate
gies - the developed tool is used for the generation of F T architec
tures for each system part.

4. The creation of secured F T system - the original system design is
modified by replacement of selected parts by their implementations
as F T architectures. This can be done without much effort because
the interface of original part (unit) is a subset of the interface of the
generated F T architecture. Further, the G P D R C instance has to
be added and the error signals from all F T architectures have to be
gathered and connected to its error input. The controller for some
external memory device (e.g. the developed SD card controller) has
to be added, too. This unit is needed to provide the configuration
bitstream data for G P D R C . Alternatively, the synchronization con
troller and logic to perform synchronization of the modules of F T
architectures can be added as well in this step.

5. The implementation of static design with the starting configuration -
for the complete (static) reconfiguration of F P G A , the system design
where all chosen important parts are secured with most robust F T
archictures from generation 0 is used. This implementation run is
also used for generating partial bitstreams for all P R M s utilized by
F T architectures in generation 0. From these partial bitstreams,
one from each P R M type is chosen as golden copy to be stored in
external memory storage. These bitstreams can be later relocated
and used during fault mitigation process.

6. The implementation of all partial configuration bitstreams - to cre
ate partial bitstreams which can be used by G P D R C for recovery
from permanent fault, PRBs for each P R M with routing for all pos
sible alternative configurations in each F T architecture is created.

25

5. Implementation and experi
mental results
This chapter describes the implementation results of systems where the
methodology was applied and several experiments simulating transient
and permanent fault occurences and their mitigation

5.1 The implementation of GPDRC
In the secured system design, a very important role is designated to
G P D R C unit. The reason for its development as the alternative to con
trollers implemented into softcore processor is its smaller size and lower
reconfiguration latency due to its specialization. Its size (the number of
utilized F P G A resources) is mainly affected by the number of P R M s into
which the system is implemented.

For the evaluation of G P D R C resource utilization results for different
system partitioning approaches, a design with counters, registers, decoders
and other logic was created. The complexity of this implemented system
does not play any role in the evaluation of G P D R C size. It is mainly
influenced by the overall number of P R M s and other attributes mentioned
in above paragraph. Thus, the entire design in F P G A was divided into
several F T architectures and they were divided into the same number
of PRMs . The experiments were done for 3 to 6 P R M s . The size of
G P D R C for various numbers of F T architectures and the number of P R M s
is presented in Figure 5.1.

The size of G P D R C and its units together with the comparison with
the size of MicroBlaze IP core used as P D R controller is shown in Ta
ble 5.1. These results are valid for 32 F T architectures with 6 P R M s per
each controlled by the G P D R C . The meaning of the columns is as follows:
the name of unit (column 1), the size of unit in slices (2), the number of
occupied LUTs (3) and FlipFlops (4) and the size of T M R alternative (5).

26

400
3 P R M per FT architecture

350 - 4 P R M per FT architecture
g 5 P R M per FT architecture

300 - 6 P R M per FT architecture
-a

50 1 1 1 1 1 1 1 1

1 5 10 15 20 25 30
Number of FT architectures

Figure 5.1: G P D R C size vs. the number of F T architectures for various
numbers of P R M s per F T architecture

ML506 - Virtex5 Size LUTs F /Fs T M R
192 P R M s [slices] [#] [#] [slices]

Input Capture Register 49 (0,6%) 97 192 127 (2,6x)
Actual Error Register 48 (0,6%) 101 101 124 (2,6x)

Previous Error Register 48 (0,6%) 192 192 124 (2,6x)
Hard Error Unit 3 (0,1%) 4 0 9 (3,0x)

Round Robin Unit 5 (0,1%) 6 6 14 (2,9x)
Error Encoder 3 (0,1%) 3 0 6 (2,0x)

Relocation Unit 7 (0,1%) 16 1 20 (2,9x)
Architecture Status Unit 2 (0,1%) 49 32 6 (3,0x)

Address Counter 22 (0,3%) 52 21 56 (2,5x)
F S M 22 (0,3%) 48 17 59 (2,7x)

Others (LUTs, MUXs. . .) 135 (1,7%) 317 186 414 (3,lx)
G P D R C total 344 (4,2%) 885 748 959 (2,8x)

MicroBlaze 628 (7,7%) 1414 1491 1664 (2,8x)

Table 5.1: The numbers of F P G A resources for G P D R C (32 F T architec
tures, 6 P R M per F T architecture)

5.2 F T architectures developed to secure a
given part of system

This section presents the basic features of F T architectures which were
developed as a model architectures for each generation (0, 1 and 2). Dif-

27

ferent F T architectures which have the ability to detect and localize faults
on P R M level can be used. The proposed F T architectures utilize 5 P R M s
and thus 5 error signals can be identified on the output of P R M _ R O U T E
block. These signals are connected to the inputs of G P D R C where they
indicate the occurrence of a fault.

The initial F T architecture of Generation 0 is based on T M R scheme in
which the outputs of all FUs are checked by the majority element (voter).
This architecture consists of 5 P R M s (3 P R M _ F U s , P R M _ V O T E R and
P R M _ R O U T E) . Figure 5.2 presents the proposed structure of this ar
chitecture. Each F U of the architecture is implemented as a standalone
P R M without any additional diagnostic logic. The outputs of all P R M
FUs are connected into P R M _ V O T E R block which is implemented as a
duplex architecture because of the need to detect fault occurrence in its
structure.

Figure 5.2: The F T Architecture of Generation 0 based on T M R

The F T architecture of Generation 1 is based on a duplex scheme with
the addition of one P R M with C H E C K E R unit (P R M _ C H E C K E R) . As
can be seen in Figure 5.3, this architecture consists of four P R M s (2
P R M _ F U , P R M _ C H E C K E R and P R M _ R O U T E) . Each F U of the ar
chitecture is implemented as a single P R M and their outputs are switched
by output multiplexor which is controlled by error signal from diagnostic
logic.

In order to detect any fault in P R M _ R O U T E block, this block is sup
posed to be implemented as duplex architecture with comparator. The
alternative of F T architecture of Generation 1 can be seen in Figure 5.4.
The comparator output is connected to error signal err_route, the oc
currence of logical one value on error signal will cause the start of P D R
process.

28

Figure 5.3: The F T Architecture of Generation 1 based on Duplex with
checker

PRM_ROUTE

Figure 5.4: The alternative F T Architecture of Generation 1

The final architecture of Generation 2 is based on classical duplex
scheme (see Figure 5.5). This architecture is not F T and it has only 3
P R M s (2 P R M _ F U and P R M _ R O U T E) . In this architecture, P R M _ R O U T E
block contains additional diagnostic logic for fault detection. Because it
is not known which one of the two P R M implementing FUs is faulty,
the reconfiguration process is applied to both of F U PRMs . This is final
architecture, no recovery from permanent fault is possible.

5.3 Evaluation of resource overhead
The sizes of F T architecture components which cause hardware overhead
in F P G A are shown in Table 5.2. In this table, the overhead of only
those units which were utilized and extended by our methodology when
compared to the standard use of these units are taken into account. For

29

Figure 5.5: The architecture of Generation 2 based on Duplex

the generation 0, the overhead includes the size of P R M _ R O U T E and
P R M _ V O T E R units. The sizes of any of three FUs were not consid
ered into overhead as they are present also in the standard T M R scheme.
The size of P R M _ V O T E R unit was decremented by the size of standard
majority voter unit without the ability of faulty unit localization to get
only the overhead caused by the use of our methodology. For both types
of the generation 1 and for the generation 2, the overhead includes only
P R M _ R O U T E unit for the same reasons as for the generation 0. The
meaning of the columns is as follows: column 1 - the width of each F U
output in bits; column 2 to 5 - the overhead of F T architecture from the
specified generation in slices.

X C 5 V S X 5 0 T
data width

[bits]

Generation
0

[slices]

Generation
1

[slices]

Generation
1-variant

[slices]

Generation
2

[slices]
2 12 5 12 1
4 22 11 24 2
8 36 17 39 3
16 68 31 68 7
32 126 57 122 12
64 206 111 210 23

Table 5.2: The overheads of Generations in slices

30

5.4 Implementation results of different ap
proaches to the partitioning of original
system

The key step in design process of securing a given system is its partitioning
into parts which will be implemented as standalone F T architectures. To
examine the properties of a secured system such as hardware overhead
or the size of PRBs used for the reconfiguration after fault occurence for
different types of its partitioning, the test design of system with M B - L I T E
softcore processor (see [10]) was developed. Altough the top-level design
contains only two main units - the instance of M B - L I T E and Wishbone
adapter, the processor can be further divided into 4 functional units - IF,
ID, E X and M E M .

From the implementation results revealed the fact that the unit per
forming the execute stage of pipeline (M B - L I T E - E X) utilizes much more
slices than other units which is caused by a big number of used LUTs.
Therefore, the following possibilities for partitioning based on different
granularity were proposed:

• 1 F T architecture - all functional units are grouped together and
replicated (coarse-grained partitioning), see Figure 5.6.

• 2 F T architectures - E X unit of M B - L I T E processor is implemented
as one F T architecture, the remaining units are grouped together
and implemented as the second F T architecture.

• 5 F T architectures - each unit mentioned in the above provided table
is implemented in a single F T architecture (fine-grained partition
ing).

Table 5.3 shows the implementations of all variants of the secured
system. They were compared by their resource utilization (column 1),
hardware overhead in comparison to original design (column 2) and the
sizes of their PRBs (column 3).

The results summarized in the table show that the H W overhead is
slightly lower for the variant with 1 F T architecture. This is caused by the
smaller G P D R C unit due to lower number of PRMs . On the other side,
this is degraded by bigger P R B size which causes longer reconfiguration
time. The table shows that there is a tradeoff between H W overhead and
the overall size of all PRBs (or the time of reconfiguration).

31

INSTRUCTION

DATA

FPGA

•
1

• 1 l - l M E M •
1 Wishbone adapter

• H H M E M •
Wishbone adapter

• J ID J J EX J | M E M | •
Wishbone adapter

FT arch. 1

GPDRC

MEMORY
CTRL

Figure 5.6: A l l units in one F T architecture

BITSTREAM DATA
• BITSTREAM ADDRESS

X C 5 V S X 5 0 T
The variant of
secured system

P R M s

Slices

H W overhead

%

Bitstream sizes
PRM_ROUTE: [kB]

PRM_FU: [kB]

Original design
T M R design (w/o P D R)

0
0

723
2287

0
216

-

1 F T arch. 5 2421 235 6,6
408

2 F T arch. 10 2484 244 6,6
92,4

6,6
39,6

5 F T arch. 25 2572 256 6,6; 6,6; 6,6; 6,6
6,6; 19,8; 92,4; 13,2

6,6
6,6

Table 5.3: The comparison of resource utilization and hardware overhead
for different implementations of the given system

5.5 SEU testing platform for the evaluation
of FT system design by means of method
ology principles

To evaluate the quality of secured F P G A to cope with transient and per
manent fault occurence, the special test platform was developed. The
testing was based on fault injection into configuration bitstream to simu
late an SEU fault occurence. The platform allows to observe the behaviour
of entire secured system implemented in F P G A when a fault occurs. The
test platform contains several parts which are creating together the nec
essary test and evaluation equipment (see Figure 5.7). The F P G A is

32

configured by the implementation of system secured by the means of the
methodology. The remaining parts of the test platform are implemented
and run on P C .

Designer
sources

H ^
design

generation
tool

SEU s imulat ion & evaluat ion f ramework

Source codes
of secured

system
(VHDL)

Implementation tool
(Xilinx ISE)

Design
synthesis &

implementation

SEU bits list generator
(Rapidsmith) Pi

XDL

NCD to XDL
conversion

Generation of bit list
for SEU injection

Reconfiguration tool
(Xilinx Impact) BIT

Test & evaluation tool
(BASH scripts)

SEU injection

BITSTREAM MEMORY

Figure 5.7: Dependability evaluation platform with S E U injection test
platform

For the S E U injection into configuration memory, the external S E U
injector presented in [11] was used. It uses P D R to simulate the radiation-
induced upsets by artificially changing the contents of the configuration
memory. This injector is written as T C L script and is run on P C . It
accesses the J T A G external reconfiguration interface of F P G A . It uses
the ChipScope library function of Xil inx ISE toolkit to perform the upset
in configuration memory by toggling some bit value in the configuration
bitstream.

One simulation step for testing a secured design consists of one S E U
injection into one of F T architecture P R M s and checking its output for
error. When the fault is detected by the compare logic in the evaluation
unit or by detection and localization logic implemented in F T architecture,
the status message is sent via RS-232 to the evaluation tool in P C . If the
reconfiguration is performed, the G P D R C status is observed and after rec.
done signal is set, the next status message is sent to the evaluation tool.

33

Experimental results of G P D R C transient fault miti
gation process
The test platform described in the above section was implemented and
tested with Virtex 5 F P G A (XC5VSX50T) on an ML506 development
board. To implement the system design for F P G A and for bitstream
generation, the Xil inx ISE 14.7 toolkit was used. The F U contains several
8-bit counters, decoders and multiplexers, the data width of input was
6 bits and the data width of output was 16 bits. The design contains
one F T architecture with 5 P R M s and the F T architectures described in
Section 5.2 was used in the degradation strategy. The size of a P R B for
P R M s with F U , P R M with doubled voter and P R M with checker unit
was 6632 bytes, the sizes of PRBs for each P R M with routing were 26582
bytes.

X C 5 V S X 5 0 T P R M S E U detected F T arch. S E U missed G P D R C
utiliz. by F T arch. output errors by F T . arch reconf.

P R M type % # # # #
P R M _ F U
(all generations) 45% 7806 552 25 7826

P R M _ V O T E R
(generation 0) 30% 3345 1571 105 3345
P R M _ C H E C K E R
(generation 1) 45% 6901 552 11 6900
P R M _ R O U T E
(generation 0) 1% 0 21 21 0
P R M _ R O U T E
(generation 1) 12% 3542 1243 234 3541

P R M _ R O U T E
(generation 2) 6% 2432 1056 351 2430

Table 5.4: The number of detected SEUs in FUs of the architecture

From the results summarized in Table 5.4, it can be seen that the F T
architecture of generation 0 and 1 can detect and repair more than 97%
SEUs in P R M with F U , voter or checker unit. Except the F T architecture
from generation 0 which do not have ability to detect faults in P R M with
routing, this P R M type in the F T architectures from other generations
was able to detect faults in more than 85% cases. Almost all detected
faults have triggered the mitigation process done by G P D R C . In all cases,
the P R M with routing was able to survive most of the SEU faults injected
inside it due to very low utilization of F P G A resources.

34

Testing and evaluating recovery from permanent fault
occurence
According to the results of SEU injection campaign during transient fault
simulation process only some configuration bits of F T architecture P R M s
were used for permanent fault simulation. A specific bit was chosen for
permanent fault injection campaign, if the fault that it creates in the
unit implemented in P R M was detected by the detection logic of F T
architecture or it has been manifested as an error on F T architecture
output during the transient fault simulation campaign.

The experimental results for a permanent fault injection campaign to
the same F T architectures as in previous experiment are shown in Ta
ble 5.5. The meaning of the columns in the table is as follows: column 1 -
the type of F T architecture and which generation it belongs to; column 2
- the number of injected SEU faults; column 3 - the number of incorrect
data on the outputs of F T architecture; column 4 - the number of perma
nent faults detected; column 5 - the number of performed permanent fault
recoveries by the reconfiguration to a different F T architecture; column 6
- the mean time to repair the system to the correctly operating state.

X C 5 V S X 5 0 T

Generation

Injected
faults

F T arch, output
data errors

Perm, fault
detected

Recovery
done

M T T R

[ms]
Generation 0
(T M R - 2 x V O T E R)
Generation 1
(TMR-simple)
Generation 2
(Duplex)

12768

12575

7987

2144

1796

708

12515

12287

156

12480

9802

0

512

351

Table 5.5: The number of successfully detected permanent faults and the
M T T R for permanent fault recovery

The results summarized in Table 5.5 show that the number of de
tected faults is decreasing with the number of P R M s which are used by
F T architecture. This is caused mainly by masking the faults which are
injected into excluded PRMs . The repair process is shorter for less robust
F T architectures due to the fact that the reconfiguration of fewer P R M
is performed.

35

6. Conclusions
In this work, the methodology of F T system design with the ability to
mitigate transient faults caused by SEUs and to recover from several
permanent fault occurences was proposed as the alternative to existing
methods or methodologies. This methodology benefits from the ability to
P D R in modern F P G A s which can be used for the run-time repair or the
change of current F P G A configuration. The production of correct outputs
from the system implemented in F P G A even during its P D R is ensured
by its designing as an F T architecture. For the transient and permanent
fault mitigation techniques, the set of relocatable PRBs to create the sets
of alternative configurations is created and used for P D R . The final sys
tem implementation is then ready to survive many transient and several
permanent fault occurences.

6.1 Benefits of this research
As the main benefit of this research, the proposal of alternative method
ology for the F T system design with the ability of fault mitigation can be
mentioned. This methodology brings some new features such as the use
of dedicated reconfiguration controller or the application of the relocation
technique in transient fault mitigation and also in the recovery process
from permanent fault occurence. This greatly suppresses the main disad
vantage of the use of precompiled configurations to mitigate faults which
is space demanding storing of many configuration bitstreams. A l l benefits
are summarized in the following points.

• The exact procedure of transformation the system design entered
by designer to secured system where selected important parts are
implemented as F T architectures with the mechanism of transient
fault mitigation and recovery from permanent fault was described.

• The dedicated reconfiguration controller (GPDRC) with the ability
to determine the type of fault and perform the correct mitigation
procedure was developed. It was designed with the effort to reduce
the necessary area and performance overhead.

• There is a possibility to define the level of importance for every
system part by specifying the degradation strategy. This strategy

36

is used when the recovery after permanent fault occurence is per
formed.

• The final system design can be extended with synchronization mech
anism for reconfigured units. The G P D R C is designed to cooperate
with the synchronization controller.

6.2 Possible enhancements of methodology
This complex methodology is based on many principles and incorporates
many methods which can be further enhanced to achieve better perfor
mance of final secured system, to lower the neccessary area overhead in
F P G A or to lower the necessary capacity of external bitstream storage.

One of possible approaches to reduce the space for storing the data is
data compression. It can be incorporated into final F T system designed
by means of proposed methodology. Due to the fact that the G P D R C
unit does not implement the direct read from the memory but it uses
external memory controller unit, the decompressor unit for processing the
compressed bitstream can be inserted to the data path between these
units.

Current methodology uses the standard P R design flow defined by
Xil inx to implement the final F T system and generate the static design
bitstream and the set of partial configuration bistreams. Another flow
such as IDF can be adopted to make the system more secure by reducing
the possibility of fault occurence which affects more than one P R M at
once. This can be achieved by thorough isolation of PRMs . It can also
simplify the relocation of PRBs designated to these isolated PRMs .

Several enhancements would be also possible in the G P D R C unit. One
of the current issues in this unit is its permanent occupation of IC A P . If the
system entered by designer would like to use the P D R ability of F P G A for
its reconfiguration it will not be possible because only one instance of this
unit can be used. This can be solved by excluding the I C A P instance from
the G P D R C unit and using it externally. Then some multiplexing logic
can be added and this one I C A P instance can be shared by the original
system and by the G P D R C . Because the final secured system (designed
by means of the methodology) is based on the set of F T architectures and
thus the fault can be masked by them the instant fault mitigation is not
necessary. The G P D R C unit can wait until the I C A P instance is not used
and then finally perform the mitigation process.

37

Bibliography

[1] Cristiana Bolchini, Antonio Miele, and Marco D. Santambrogio.
Tmr and partial dynamic reconfiguration to mitigate seu faults in
fpgas. In 22nd International Symposium on Defect and
Fault-Tolerance in VLSI Systems (DFT '07), pages 87-95,
Washington, D C , USA, 2007. I E E E CS.

[2] Cristiana Bolchini, Antonio Miele, and Marco D. Santambrogio.
Tmr and partial dynamic reconfiguration to mitigate seu faults in
fpgas. In 22nd International Symposium on Defect and
Fault-Tolerance in VLSI Systems (DFT '07), pages 87-95,
Washington, D C , USA, 2007. I E E E CS.

[3] R. F. DeMara and Kening Zhang. Autonomous fpga fault handling
through competitive runtime reconfiguration. In 2005 NASA/DoD
Conference on Evolvable Hardware (EH'05), pages 109-116, June
2005.

[4] F. Hatori, T. Sakurai, K . Nogami, K . Sawada, M . Takahashi,
M . Ichida, M . Uchida, I. Yoshii, Y . Kawahara, T. Hibi, Y . Saeki,
H . Muroga, A . Tanaka, and K . Kanzaki. Introducing redundancy in
field programmable gate arrays. In Custom Integrated Circuits
Conference, 1993., Proceedings of the IEEE 1993, pages 7.1.1-7.1.4,
May 1993.

[5] J . Heiner, B. Sellers, M . Wirthlin, and J . Kalb. Fpga partial
reconfiguration via configuration scrubbing. In Field Programmable
Logic and Applications (FPL '09), pages 99-104, Washington, USA,
2009. I E E E CS.

[6] Yoshihiro Ichinomiya, Shiro Tanoue, Motoki Amagasaki, Masahiro
Iida, Morihiro Kuga, and Toshinori Sueyoshi. Improving the

38

robustness of a softcore processor against seus by using tmr and
partial reconfiguration. In Proceedings of the 2010 18th IEEE
Annual International Symposium on Field-Programmable Custom
Computing Machines, F C C M '10, pages 47-54, Washington, DC,
USA, 2010. I E E E Computer Society.

[7] Hlavička J . Cislicove systémy odolné proti poruchám. ČVUT, 1992.

[8] Straka M . , Miculka L . , Kastil J . and Kotasek Z. Test platform for
fault tolerant systems design qualities verification. In 15th IEEE
International Symposium on Design and Diagnostics of Electronic
Circuits and Systems, pages 336-341. I E E E Computer Society, 2012.

[9] F. Kastensmidt, L . Carro, and R. Reis. Designing fault tolerant
systems into sram-based fpgas. In Design Automation Conference,
2003. Proceedings, pages 650-655, June 2003.

[10] T. Kranenburg and R. van Leuken. Mb-lite: A robust, light-weight
soft-core implementation of the microblaze architecture. In 2010
Design, Automation Test in Europe Conference Exhibition (DATE
2010), pages 997-1000, March 2010.

[11] Kastil J. , Straka M . , Miculka L . and Kotasek Z. Dependability
analysis of fault tolerant systems based on partial dynamic
reconfiguration implemented into fpga. In 15th Euromicro
Conference on Digital System Design: Architectures, Methods and
Tools, pages 250 257. I E E E Computer Society, 2012.

[12] Miculka L . and Kotasek Z. Generic partial dynamic reconfiguration
controller for transient and permanent fault mitigation in fault
tolerant systems implemented into fpga. In 17th IEEE Symposium
on Design and Diagnostics of Electronic Circuits and Systems,
pages 171-174. I E E E Computer Society, 2014.

[13] J . Lach, W. H . Mangione-Smith, and M . Potkonjak. Enhanced fpga
reliability through efficient run-time fault reconfiguration. IEEE
Transactions on Reliability, 49(3):296-304, Sep 2000.

[14] Vijay Lakamraju and Russell Tessier. Tolerating operational faults
in cluster-based fpgas. In Proceedings of the 2000 ACM/SIGDA
Eighth International Symposium on Field Programmable Gate
Arrays, F P G A '00, pages 187-194, New York, N Y , USA, 2000.
A C M .

39

[15] Tyler M . Lovelly and Alan D. George. Comparative analysis of
present and future space processors with device metrics. Journal of
Aerospace Information Systems, 14(3): 184-197, 2017.

[16] J . Narasimham, K . Nakajima, C. S. Rim, and A . T. Dahbura. Yield
enhancement of programmable asic arrays by reconfiguration of
circuit placements. IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems, 13(8):976-986, Aug 1994.

[17] M . M . Pereira, L . Braun, M . Hübner, J . Becker, and L . Carro.
Run-time resource instantiation for fault tolerance in fpgas. In 2011
NASA/ESA Conference on Adaptive Hardware and Systems (AHS),
pages 88-95, June 2011.

[18] Aiwu Ruan, Bairui Jie, L i Wan, Junhao Yang, Chuanyin Xiang,
Zujian Zhu, and Yu Wang. A bitstream readback-based automatic
functional test and diagnosis method for xilinx fpgas.
Microelectronics Reliability, 54(8): 1627-1635, 2014.

[19] T. D. A . W. Ruan and P. L . B . R. Jie. A bitstream readback based
fpga test and diagnosis system. In 2014 International Symposium
on Integrated Circuits (ISIC), pages 592-595, Dec 2014.

[20] M . Straka, J . Kastil, and Z. Kotasek. Generic partial dynamic
reconfiguration controller for fault tolerant designs based on fpga. In
NORCHIP '10, pages 1-4, Washington, D C , USA, 2010. I E E E CS.

[21] M . Wirthlin, E . Johnson, N . Rollins, M . Caffrey, and P. Graham.
The reliability of fpga circuit designs in the presence of radiation
induced configuration upsets. In Field-Programmable Custom
Computing Machines, 2003. FCCM 2003. 11th Annual IEEE
Symposium on, pages 133-142, Apri l 2003.

[22] A . J . Yu and G. G. F. Lemieux. Defect-tolerant fpga switch block
and connection block with fine-grain redundancy for yield
enhancement. In International Conference on Field Programmable
Logic and Applications, 2005., pages 255-262, Aug 2005.

[23] Shu-Yi Y u and Edward J . McCluskey. Permanent fault repair for
fpgas with limited redundant area. In DFT '01: Proceedings of the
16th IEEE International Symposium on Defect and Fault-Tolerance
in VLSI Systems, pages 125-133, Washington, D C , USA, 2001.
I E E E Computer Society.

40

Author's publications
1. Towards a State Synchronization Methodology for Recovery Pro

cess after Partial Reconfiguration of Fault Tolerant Systems. In J^th
Prague Embedded Systems Workshop. Proceedings of 4th P E S W ,
2016 (20%)

2. Miculka L . and Kotasek Z. Generic partial dynamic reconfiguration
controller for transient and permanent fault mitigation in fault tol
erant systems implemented into fpga. In 17th IEEE Symposium on
Design and Diagnostics of Electronic Circuits and Systems, pages
171-174. I E E E Computer Society, 2014 (70%)

3. Szurman K . , Miculka L. and Kotasek Z. State synchronization af
ter partial reconfiguration of fault tolerant can bus control system.
In 17th Euromicro Conference on Digital Systems Design, pages
704-707. I E E E Computer Society, 2014 (30%)

4. Szurman K . , Miculka L . and Kotasek Z. Towards a state synchro
nization methodology for recovery process after partial reconfigura
tion of fault tolerant systems. In 9th IEEE International Conference
on Computer Engineering and Systems, pages 231-236. I E E E Com
puter Society, 2014 (20%)

5. Miculka L . and Kotasek Z. Synchronization technique for tmr sys
tem after dynamic reconfiguration on fpga. In The Second Work
shop on Manufacturable and Dependable Multicore Architectures at
Nanoscale (MEDIAN 2013), pages 53-56. Politecnico di Milano,
2013 (80%)

6. Miculka L. Metoda návrhu systémů odolných proti poruchám do
omezeného implementačního prostoru na bázi F P G A . In Počítačové
architektury & diagnostika 2013, pages 63-68. University of West
Bohemia in Pilsen, 2013 (100%)

7. Miculka L . , Straka M . and Kotasek Z. Methodology for fault toler
ant system design based on fpga into limited redundant area. In
16th Euromicro Conference on Digital System Design: Architec
tures, Methods and Tools, pages 227-234. I E E E Computer Society,
2013 (50%)

8. Straka M . , Kastil J . , Kotasek Z. and Miculka L. Fault tolerant sys
tem design and seu injection based testing. Microprocessors and
Microsystems, 2013(37):155-173, 2013 (10%)

41

9. Kastil J . , Straka M . , Miculka L . and Kotasek Z. Dependability
analysis of fault tolerant systems based on partial dynamic recon
figuration implemented into fpga. In 15th Euromicro Conference
on Digital System Design: Architectures, Methods and Tools, pages
250-257. I E E E Computer Society, 2012 (15%)

10. Miculka L. and Kotasek Z. Design sychronization after partial dy
namic reconfiguration of fault tolerant system. In 15th Euromicro
Conference on Digital System Design: Architectures, Methods and
Tools, pages 20-21. I E E E Computer Society, 2012 (70%)

11. Miculka L. Metoda návrhu systémů odolných proti poruchám do
omezeného implementačního prostoru na bázi F P G A . In Počítačové
architektury & diagnostika 2012, pages 109-115. Faculty of Informa
tion Technology, Czech Technical University in Prague, 2012 (100%)

12. Straka M . , Miculka L . , Kastil J . and Kotasek Z. Test platform for
fault tolerant systems design qualities verification. In 15th IEEE
International Symposium on Design and Diagnostics of Electronic
Circuits and Systems, pages 336-341. I E E E Computer Society, 2012
(30%)

13. Miculka L. Metoda návrhu systémů odolných proti poruchám do
omezeného implementačního prostoru na bázi F P G A . In Počítačové
architektury & diagnostika 2011, pages 61-66. Faculty of Informat
ics and Information Technologies, Slovak University of Technology
in Bratislava, 2011 (100%)

42

Publications cited by other authors
• Miculka L. and Kotasek Z. Generic partial dynamic reconfiguration

controller for transient and permanent fault mitigation in fault tol
erant systems implemented into fpga. In 17th IEEE Symposium on
Design and Diagnostics of Electronic Circuits and Systems, pages
171-174. I E E E Computer Society, 2014

— B. H . Krishna and C. A . Kumar. A novel method of recon-
figurable image processing using fpga. In 2016 International
Conference on Electrical, Electronics, and Optimization Tech
niques (ICEEOT), pages 3784-3789, 2016

— S. D i Carlo, P. Prinetto, P. Trotta, and J . Andersson. A
portable open-source controller for safe dynamic partial recon
figuration on xilinx fpgas. In Field Programmable Logic and
Applications (FPL), 2015 25th International Conference on,
pages 1-4, 2015

• Miculka L . and Kotasek Z. Synchronization technique for tmr sys
tem after dynamic reconfiguration on fpga. In The Second Work
shop on Manufacturable and Dependable Multicore Architectures at
Nanoscale (MEDIAN 2013), pages 53-56. Politecnico di Milano,
2013

— J. Jimenez, U . Bidarte, C. Cuadrado, E . Garcia, and J . Läzaro.
Safesoc: A fault-tolerant-by-redundancy evaluation card for
high speed serial communications. In 2016 Conference on De
sign of Circuits and Integrated Systems (DCIS), pages 1-4,
2016

• Miculka L . , Straka M . and Kotasek Z. Methodology for fault toler
ant system design based on fpga into limited redundant area. In
16th Euromicro Conference on Digital System Design: Architec
tures, Methods and Tools, pages 227-234. I E E E Computer Society,
2013

— A . S. B . Lopes, E . Santos, M . Kreutz, and M . Pereira. A
runtime mapping algorithm to tolerate permanent faults in a
cgra. In 2016 VI Brazilian Symposium on Computing Systems
Engineering (SBESC), pages 63-70, 2016

— R. Backasch, G. Hempel, S. Werner, S. Groppe, and T. Pio-
nteck. Identifying homogenous reconfigurable regions in het
erogeneous fpgas for module relocation. In ReConFigurable
Computing and FPGAs (ReConFig), 2014 International Con
ference on, pages 1-6, 2014

43

• Straka M . , Kastil J . , Kotasek Z. and Miculka L. Fault tolerant sys
tem design and seu injection based testing. Microprocessors and
Microsystems, 2013(37):155-173, 2013

— P. H . W. Leong, H . Amano, J . Anderson, K . Bertels, J . M . P.
Cardoso, O. Diessel, G. Gogniat, M . Hutton, J . Lee, W. Luk,
P. Lysaght, M . Platzner, V . K . Prasanna, T. Rissa, C. Silvano,
H . So, and Yu Wang. Significant papers from the first 25 years
of the fpl conference. In 2015 25th International Conference
on Field Programmable Logic and Applications (FPL), pages
1-3, 2015

— Thomas E . Carney, Richard P. McWill iam, and Alan Purvis.
Modelling electronic circuit failures using a xilinx fpga system.
Procedia CIRP, 38:277 - 282, 2015

— Deepa Jose, P. Nirmal Kumar, Arfath Hussain, and Prabhu
Shanker. Vls i circuit partitioning using ant colony optimisation
to yield fault tolerant testable systems. Arabian Journal for
Science and Engineering, 39(12):8709-8729, 2014

— Antonio da Silva, Pablo Parra, Oscar R. Polo, and Sebastian
Sanchez. Runtime instrumentation of systemc/tlm2 interfaces
for fault tolerance requirements verification in software cosim-
ulation. Model. Simul. Eng., 2014:42:42-42:42, 2014

— Reza Omidi Gosheblagh and Karim Mohammadi. Article: Dy
namic partial based single event upset (seu) injection plat
form on fpga. International Journal of Computer Applications,
76(3): 19-24, 2013

— D. Jose, P. N . Kumar, and A . David Naveen Dhas. Implemen
tation of power optimized vlsi designs for reliable processing
using majority circuit. In 2013 Annual IEEE India Conference
(INDICON), pages 1-6, 2013

— Reza Omidi Gosheblagh and Karim Mohammadi. New ap
proach to emulate seu faults on sram based fpgas. Journal of
Electronics (China), 31(l):68-77, 2014

— Reza Omidi Gosheblagh and Karim Mohammadi. Seu-secure
parity prediction multiplier on sram-based fpgas. Journal of
Circuits, Systems and Computers, 23(06): 1450081, 2014

— Xiuhai Cui, Haigang Yang, Y u Peng, and Xiyuan Peng. Re
search on the packing algorithm for anti-seu of fpga based on
triple modular redundancy and the numbers of fan-outs of the
net. Journal of Electronics (China), 31(4):284-289, 2014

44

— M . Psarakis, A . Vavousis, C. Boichini, and A . Miele. Design
and implementation of a self-healing processor on sram-based
fpgas. In 2014 IEEE International Symposium on Defect and
Fault Tolerance in VLSI and Nanotechnology Systems (DFT),
pages 165-170, 2014

— Shobana. M and Senthil Murugan. S. Reconfigurable data
processing using duplex fault tolerance system. In 2015 Inter
national Conference on Innovations in Information, Embedded
and Communication Systems (ICIIECS), pages 1-5, 2015

— R. Santos, S. Venkataraman, and A . Kumar. Generic scrub-
bingbased architecture for custom error correction algorithms.
In 2015 International Symposium on Rapid System Prototyping
(RSP), pages 112-118, 2015

— I. Villalta, U . Bidarte, J . Gomez-Cornejo, J . Lazaro, and C.
Cuadrado. Dependability in fpgas, a review. In 2015 Con
ference on Design of Circuits and Integrated Systems (DCIS),
pages 1-6, 2015

— D. Agiakatsikas, N . T. H . Nguyen, Z. Zhao, T. Wu, E . Cetin,
O. Diessel, and L. Gong. Reconfiguration control networks
for tmr systems with module-based recovery. In 2016 IEEE
24th Annual International Symposium on Field-Programmable
Custom Computing Machines (FCCM), pages 88-91, 2016

— M . Vavouras and C. S. Bouganis. Area-driven partial recon
figuration for seu mitigation on sram-based fpgas. In 2016
International Conference on ReConFigurable Computing and
FPGAs (ReConFig), pages 1-6, 2016

• Kastil J . , Straka M . , Miculka L . and Kotasek Z. Dependability
analysis of fault tolerant systems based on partial dynamic recon
figuration implemented into fpga. In 15th Euromicro Conference
on Digital System Design: Architectures, Methods and Tools, pages
250-257. I E E E Computer Society, 2012

— Khaza Anuarul Hoque, Otmane Ait Mohamed, and Yvon Savaria.
Formal analysis of S E U mitigation for early dependability and
performability analysis of fpga-based space applications. Jour
nal of Applied Logic, 21:-, 2017

— V . Simek and R. Ruzicka. Reconfigurable platform with poly
morphic digital gates and partial reconfiguration feature. In
2014 European Modelling Symposium, pages 501-506, 2014

— K . A . Hoque, O.A. Mohamed, Y . Savaria, and C. Thibeault.
Probabilistic model checking based dal analysis to optimize a

45

combined tmr-blind-scrubbing mitigation technique for fpga-
based aerospace applications. In Formal Methods and Models
for Codesign (MEMOCODE), 2014 Twelfth ACM/IEEE Inter
national Conference on, pages 175-184, 2014

— B. Navas, J . Oberg, and I. Sander. The upset-fault-observer: A
concept for self-healing adaptive fault tolerance. In Adaptive
Hardware and Systems (AHS), 2014 NASA/ESA Conference
on, pages 89-96, 2014

— Felix Siegle, Tanya Vladimirova, Jorgen Ilstad, and Omar Emam.
Mitigation of radiation effects in sram-based fpgas for space ap
plications. ACM Comput. Surv., 47(2):37:l-37:34, 2015

— F. Siegle, T. Vladimirova, C. Poivey, and O. Emam. Validation
of fdir strategy for spaceborne sram-based fpgas using proton
radiation testing. In 2015 15th European Conference on Radi
ation and Its Effects on Components and Systems (RADECS),
pages 1-8, 2015

— F. Siegle, T. Vladimirova, J . Ilstad, and O. Emam. Availability
analysis for satellite data processing systems based on sram fp
gas. IEEE Transactions on Aerospace and Electronic Systems,
52(3):977-989, 2016

— L. Sterpone, L. Boragno, and D. M . Codinachs. Analysis of
radiation-induced seus on dynamic reconfigurable systems. In
2016 11th International Symposium on Reconfigurable Commu-
nicationcentric Systems-on-Chip (ReCoSoC), pages 1-6, 2016

• Straka M . , Miculka L . , Kastil J . and Kotasek Z. Test platform for
fault tolerant systems design qualities verification. In 15th IEEE
International Symposium on Design and Diagnostics of Electronic
Circuits and Systems, pages 336-341. I E E E Computer Society, 2012

— Felix Siegle, Tanya Vladimirova, Jorgen Ilstad, and Omar Emam.
Mitigation of radiation effects in sram-based fpgas for space ap
plications. ACM Comput. Surv., 47(2):37:1-37:34, 2015

46

Curriculum vitae - Ing. Lukáš Mičulka
• Born on December 15th, 1985 in Uherské Hradiště.

• 2001 - 2005: Secondary school (gymnasium) in Uherské Hradiště.

• 2005 - 2008: Bachelor degree programme Information Technology
at the Faculty of Information Technology at the Brno University of
Technology. The studies finished by state final examination.

• 2008 - 2010: Master degree programme Computer Systems and Net
works at the Faculty of Information Technology at the Brno Univer
sity of Technology. The studies finished by state final examination.

• From 2010: Doctoral degree programme Computer Science and En
gineering at the Faculty of Information Technology at the Brno Uni
versity of Technology. The state doctoral examination passed in
2012.

Activities
• Teaching the tutorials in Peripheral devices course.
• The supervisor of bachelor thesis (4) and master thesis (1).

• The reviewer of bachelor thesis (3) and master thesis (3).

Research projects
• Zvyšování spolehlivost a provozuschopnosti v obvodech SoC, G A C R ,

GA102/09/1668, 2009-2011, team member

• Matematické a inženýrské metody pro vývoj spolehlivých a bezpečných
paralelních a distribuovaných počítačových systémů, G A C R ,
GD102/09/H042, 2009-2012, team member

• Bezpečné, spolehlivé a adaptivní počítačové systémy, B U T , FIT-S-
10-1, 2010, co-solver

• Manufacturable and Dependable Multicore Architectures at Nanoscale,
COST, IC1103, 2011-2015, team member

• Metodiky pro návrh systémů odolných proti poruchám do rekonfig-
urovatelných architektur - vývoj, implementace a verifikace, M S M T ,
LD12036, 2012-2015, team member

• Architektury paralelních a vestavěných počítačových systémů, B U T ,
FIT-S-14-2297, 2014-2016, team member

47

