
T
BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

FACULTY OF INFORMATION TECHNOLOGY
FAKULTA INFORMAČNÍCH TECHNOLOGIÍ

DEPARTMENT OF INTELLIGENT SYSTEMS
ÚSTAV INTELIGENTNÍCH SYSTÉMŮ

STATIC ANALYSIS USING FACEBOOK INFER FOCUSED
ON ERRORS IN RCU-BASED SYNCHRONISATION
STATICKÁANALÝZAV NÁSTROJI FACEBOOK INFERZAMĚŘENÁ NACHYBYV RCU SYNCHRO

NIZACI

BACHELOR'S THESIS
BAKALÁŘSKÁ PRÁCE

AUTHOR DANIEL MAREK
AUTOR PRÁCE

SUPERVISOR prof. Ing. TOMÁŠ VOJNAR, Ph.D.
VEDOUCÍ PRÁCE

BRNO 2022

Brno University of Technology
Faculty of Information Technology

Department of Intelligent Systems (DITS) Academic year 2021/2022

Bachelor's Thesis Specification |||||||||||||||||||||||||
25138

Student: Marek Daniel
Programme: Information Technology
Title: Static Analysis Using Facebook Infer Focused on Errors in RCU-Based

Synchronisation
Category: Software analysis and testing
Assignment:

1. Get acquainted with principles of static analysis based on abstract interpretation. Pay
a special attention to approaches proposed for finding problems in synchronisation of
concurrent threads.

2. Familiarise yourself with the Facebook Infer framework, its support for abstract
interpretation, and analysers for concurrent programs available currently in Infer.

3. Study principles of synchronisation of concurrent threads using RCU.
4. Design and implement an analyser in the Facebook Infer framework targeted at discovering

synchronisation errors in programs using RCU.
5. Experimentally validate your analyser on suitably chosen non-trivial programs.
6. Summarise the achieved results and discuss possibilities of their further enhancements in

the future.
Recommended literature:

• Rival, X., Yi, K.: Introduction to Static Analysis: An Abstract Interpretation Perspective. MIT
Press, 2020.

• Blackshear, S., Gorogiannis, N., O'Hearn, P. W., Sergey, I.: RacerD: Compositional Static
Race Detection. In: Proc. of OOPSLA'18, PACMPL 2(OOPSLA):144:1 -144:28, 2018.

• Gorogiannis, N., O'Hearn, P.W., Sergey, I.: A True Positives Theorem for a Static Race
Detector. In: Proc. of POPL'19, PACMPL 3(POPL):57:1 -57:29, 2019.

• Harmim, D.: Advanced Static Analysis of Atomicity in Concurrent Programs through
Facebook Infer. Master thesis, FIT, Brno University of Technology, 2021.

• Marcin, V.: Static Analysis Using Facebook Infer Focused on Deadlock Detection. Bachelor
thesis, FIT, Brno University of Technology, 2019.

• McKenney, P.E., Fernandes, J., Boyd-Wickizer, S., Walpole, J.: RCU Usage In the Linux
Kernel: Eighteen Years Later. ACM SIGOPS Oper. Syst. Rev. 54(1):47-63, 2020.

• McKenney, P.E., Walpole, J.: What is RCU, Fundamentally? Linux Weekly News, 2007.
Available online: https://lwn.net/Articles/262464/. [checked on 29/9/2021]

Requirements for the first semester:
• The first three items and at least beginning of work on the fourth item.

Detailed formal requirements can be found at https://www.fit.vut.cz/study/theses/
Supervisor: Vojnar Tomas, prof. Ing., Ph.D.
Head of Department: Hanacek Petr, doc. Dr. Ing.
Beginning of work: November 1, 2021
Submission deadline: May 11, 2022
Approval date: November 3, 2021

Bachelor's Thesis Specification/25138/2021/xmarek72 Page 1/1

https://lwn.net/Articles/262464/
https://www.fit.vut.cz/study/theses/

Abstract
Read Copy Update (R C U) is a synchronization mechanism, found mostly i n the L i n u x
kernel. Its sought-after features include almost zero overhead and high speed when reading
shared memory. R C U has a set of rules of use, which need to be followed i n order for
the synchronization to work properly. To the best of our knowledge, there is no analyzer
that sufficiently verifies i f the R C U rules of use are adhered to. To overcome this, we
propose a new analyzer, w i th the focus on finding violations in the use of R C U rules. The
analyzer is based on static analysis and implemented as a module for the static analysis
framework Facebook /Meta Infer. Th is platform was chosen because it provides scalability,
which is needed when dealing wi th such an extensive software as the L i n u x kernel. The
designed analyzer is capable of detecting mult iple different ways i n which the R C U usage
rules can be broken, each causing either a race condit ion or a deadlock. It is also capable of
generating warnings for situations when a deprecated function cal l is used or when the use
of incompatible R C U reader and writer primitives is detected. The analyzer is the first of
its k ind . It may become a basis for future analyzer development in the field of Read Copy
Update . Furthermore, it may be used as a test tool i n the L i n u x kernel development cycle.

Abstrakt
Read Copy Update (R C U) je synchron izačn í mechanismus, k t e r ý se p r i m á r n ě použ ívá
v j á d ř e L i n u x u . M e z i jeho vyh l edáv an é vlastnosti p a t ř í t é m ě ř nulová režie a vysoká rychlost
př i č t en í sdí lené p a m ě t i . R C U m á soubor pravidel použ ívan í , k t e r á je p o t ř e b a dod ržova t ,
aby synchronizace fungovala s p r á v n ě . Náš v ý z k u m ukáza l , že neexistuje ž á d n ý ana lyzá
tor, k t e r ý by p o ř á d n ě kontroloval d o d r ž o v á n í pravidel použ ívan í R C U . K p ř e k o n á n í tohoto
p r o b l é m u jsme navrhl i nový a n a l y z á t o r , k t e r ý se zaměřu je na po rušován í pravidel použ ívan í
R C U . A n a l y z á t o r je založen na s ta t i cké ana lýze a i m p l e m e n t o v á n jako modu l pro n á s t r o j pro
statickou a n a l ý z u Facebook /Me ta Infer. Tato platforma byla v y b r á n a , p ro tože poskytuje
šká lova te lnos t , k t e r á je p o t ř e b n á př i p rác i s tak r o z s á h l ý m softwarem, j a k ý m je Linuxové
j á d r o . N a v r ž e n ý a n a l y z á t o r je schopen detekovat více po rušen í pravidel použ ívan í R C U , z
nichž k a ž d é vede b u d na race condit ion, nebo uváznu t í . Je t a k é schopen generovat varování
pro situace, kdy je p o u ž i t o volání z a s t a r a l é funkce nebo když jsou d e t e k o v á n a nekompat
ibilní p r imi t iva R C U čtec ího a zapisovacího procesu. A n a l y z á t o r je p r v n í svého druhu a
m ů ž e se s t á t z á k l a d e m pro b u d o u c í vývoj a n a l y z á t o r ů v oblasti Read Copy Update . K r o m ě
toho m ů ž e bý t použ i t jako tes tovac í n á s t r o j v cyk lu vývoje j á d r a L i n u x u .

Keywords
Read Copy Update, R C U , R C U rules violat ion, Facebook /Meta Infer R C U analyzer, Static
R C U analyzer, R C U analyzer, R C U checker

Klíčová slova
Read Copy Update , R C U , P o r u š e n í R C U pravidel, Facebook /Me ta Infer R C U a n a l y z á t o r ,
S t a t i cký R C U a n a l y z á t o r , R C U a n a l y z á t o r

Reference
M A R E K , Danie l . Static Analysis Using Facebook Infer Focused on Errors in RCU-Based
Synchronisation. Brno , 2022. Bachelor's thesis. Brno Univers i ty of Technology, Facul ty of
Information Technology. Supervisor prof. Ing. T o m á š Vojnar, P h . D .

Rozšířený abstrakt
Read Copy Update (R C U) je synchron izačn í mechanismus, k t e r ý se stal v ý z n a m n o u součás t í
vývoje l inuxového j á d r a . Své m í s t o si naše l p ř e d e v š í m v k ó d u Driver , F i l e System a Net-
working, ale je p ř í t o m e n i v j iných čás tech l inuxového j á d r a . R C U je v y h l e d á v á n o kvůl i
jeho m i n i m á l n í režii a vysoké rychlosti p ř i č t en í sdí lené p a m ě t i . Je to m o ž n é d íky tomu,
že procesy nebo v lákna , k t e r é č t o u sd í lenou paměť , an iž by v n í p rovádě ly jakékol i změny,
mohou n e u s t á l e běže t . To z n a m e n á , že je nen í p o t ř e b a zastavovat ani v s i tuac ích , kdy
p r o b í h á aktualizace sdí lené p a m ě t i . Je to možné , p r o t o ž e aktualizace sdí lené p a m ě t i se
prováděj í na kopi i sdí lené p a m ě t i , k t e r á bude pub l ikována pro čtecí p rocesů nebo v lákna ,
jakmile bude p ř i p r a v e n a . Tento pr incip sebou př ináš í i dva p rob lémy. K a ž d á z m ě n a sdí lené
p a m ě t i m ů ž e způsob i t nekonzistenciu ve výsledcích, k t e r é d a n ý produkt generuje, p ro tože
něk t e r é procesy anebo v l á k n a m ů ž o u s tá le v idě t starou verzi vzdá lené p a m ě t i a j iné m ů ž o u
pracovat s tou novou. T a k t é ž je po k a ž d é z m ě n ě vzdá lené p a m ě t i p o t ř e b n á synchronizace
s o s t a t n í m i procesy anebo v lákny p ř e d t í m něž m ů ž e bý t s t a r á v z d á l e n á paměť u v o l n ě n á z
p a m ě t i .

Samozře jmě existuj í u r č i t á pravidla , jak se m u s í R C U použ íva t , aby mechanismus fun
goval tak, jak bylo zamýš leno . Lidé jsou však náchy ln í k c h y b á m , k t e r é mohou způsob i t
po rušen í n ě k t e r ý c h z t ě ch to pravidel . Tato p o r u š e n í mohou způsob i t chyby synchronizace.
P o k u d t aková situace nastane, je p o t ř e b a závadu na j í t a odstranit, což je č a s to složitý a
časově n á r o č n ý proces. Cas je však c e n n ý m akt ivem, a proto je nejlepší jej využ í t pro
d u k t i v n ě . Z tohoto d ů v o d u je b ě ž n o u p r a x í použ íva t ná s t ro j e , k t e r é urychluj í a u snadňu j í
proces h l edán í a o d s t r a ň o v á n í defektů .

Našli jsme šest u n i k á t n í c h z p ů s o b ů p o r u š e n í pravidel s p r á v n é h o použ íván í R C U , k te ré
jsme zobecnili do chybových vzorců . Č t y ř i z t ě ch to vzoru jsme klasifikovali jako chyby, kde
k a ž d á z nichž vede b u d na race condit ion, nebo uváznu t í . Dalš í dvě vzory jsme klasifikovali
jako varování , k t e r é je t a k t é ž v h o d n é uživate lovi u k á z a t . Jsou to varování pro situace, kdy
je p o u ž i t o volání z a s t a r a l é funkce nebo když jsou de t ekována n e k o m p a t i b i l n í p r imi t iva R C U
čtec ího a zapisovacího procesu.

Náš v ý z k u m však ukáza l , že exis tuj í velmi omezené možnos t i , pokud jde o na lezení chyb
na zák l ade n á m i n a v r h n u t ý c h chybových vzorů . Až tak, že jsme nebyli schopni na j í t ž á d n é
řešení , k t e r é by bylo schopno odhali t p o r u š e n í R C U pravidel na zák ladě více než jednoho
chybového vzoru. To z n a m e n á , že k p o k r y t í všech šesti z nich by bylo p o t ř e b a použ í t šest
ind iv iduá ln ích řešení , pokud by dokonce existovalo řešení pro k a ž d ý ze šest i chybových
vzorů .

K vyřešen í nedostatku d o b r ý c h řešení navrhujeme s t a t i cký a n a l y z á t o r se z a m ě ř e n í m
na s p r á v n é použ i t í R C U , k t e r ý je schopen detekovat n a r u š e n í na zák ladě k a ž d é h o ze šest i
chybových vzorů . A n a l y z á t o r je i m p l e m e n t o v á n p o m o c í r á m c e Infer.AI, k t e r ý nab íz í vysoce
šká lova te lnou ana lýzu , k t e r á je n e z b y t n á př i p rác i s tak r o z s á h l ý m softwarem, j a k ý m je
l inuxové j á d r o .

Tes tování a n a l y z á t o r u mělo dvě fáze. Z a p rvé b y l t e s tován na r u č n ě v y r o b e n ý c h přík
ladech pro ověření funkčnost i a n a l y z á t o r ů a za d r u h é b y l t e s t o v á n na s a m o t n é m l inuxovém
j á d ř e . A n a l ý z a l inuxového j á d r a se u k á z a l a jako p r o b l e m a t i c k á , p ro tože Infer nen í u r č e n pro
tento úkol . P o d a ř i l o se n á m však zajistit, aby n á š a n a l y z á t o r fungoval na verzi 5-16.14 l in
uxového j á d r a . Bohuže l jsme by l i nuceni přeskoči t čás t soubo rů , p ro tože Infer je nedokáza l
zkompilovat. P ř e s t o se n á m poda ř i l o analyzovat kolem 1300 soubo rů .

A n a l y z á t o r je teda p r v n í svého druhu a m ů ž e se s t á t z á k l a d e m pro b u d o u c í vývoj ana
lyzá to rů v oblasti Read Copy Update . K r o m ě toho m ů ž e bý t použ i t jako tes tovac í n á s t r o j
v cyk lu vývoje j á d r a L i n u x u .

Static Analysis Using Facebook Infer Focused
on Errors in RCU-Based Synchronisation

Declaration
I hereby declare that this Bachelor's thesis was prepared as an original work by the author
under the supervision of prof. Ing. Tomas Vojnar P h . D . I have listed a l l the l i terary sources,
publications and other sources, which were used during the preparation of this thesis.

Danie l Marek
M a y 17, 2022

Acknowledgements
I would like to thank my supervisor prof. Ing. T o m á š Vojnar P h . D . for his guidance.
Further, I would like to thank Be. T o m á š B e r á n e k and Ing. D o m i n i k H a r m i m for providing
supplementary information and assistance.

Contents

1 Introduction 2

2 R e a d C o p y Update 3
2.1 How does R C U work? 3

2.1.1 A Demonstrat ion of the R C U Principles 4
2.1.2 R C U Reader Synchronizat ion 6

2.2 Compar ison wi th Reader-Writer Lock ing 8
2.3 R C U Rules of Use in Code 9
2.4 W h e n to Use R C U ? 11
2.5 R C U Flavors 12

3 O u r R o a d to an R C U Analyzer 14
3.1 Available Solutions 14
3.2 Static P rogram Analys is 17

3.2.1 Abst rac t Interpretation 18
3.3 Facebook /Meta Infer 21

4 RCU-rules-of-use Analyzer original design 24
4.1 Er ro r Patterns 24
4.2 Abst rac t Interpretation Ingredients 29

4.2.1 Abst rac t Context 29
4.2.2 Abst rac t Transformers 31
4.2.3 Operators 31

4.3 Analysis Logic 33

5 Implementation 35
5.1 Abst rac t Interpretation Ingredients 35

5.1.1 Abst rac t Context 35
5.1.2 Abst rac t Transformers 37
5.1.3 Operators 39

5.2 Analys is Logic 40

6 Experimental Evaluat ion 43
6.1 Experiments 43

6.2 Evaluat ions of the Current State and Future Plans 45

7 Conclusion 47

Bibl iography 48

1

Chapter 1

Introduction

Read Copy Update (R C U) is a synchronization mechanism that has become a significant
part of the L i n u x kernel development. It found its place pr imar i ly i n Driver , F i l e System and
Networking code, but it is present in other parts of the L i n u x kernel as well . R C U is sought
after because of its m in ima l overhead and high speed when it comes to reading shared
memory. It is possible thanks to the fact that processes or threads that read the shared
memory without making any changes to i t , are allowed to run constantly. It means that
there is no need to stop them even i n situations when the shared memory is being updated.
It is possible because updates of the shared memory are performed on a copy of the shared
memory, which w i l l be published to the reading processes or threads once it is ready.

There are of course some rules on how the R C U has to be used, for the mechanism
to work as intended. However, humans are prone to making mistakes which can cause
some of these rules to be violated. These violations may cause defects to the synchroniza
t ion, which most often result in a race condit ion and sometimes in a deadlock. If such
situation happens, the defect needs to be found and removed, which is often a complex
and t ime-consuming process. However, t ime is a valuable asset and therefore, it is best
used productively. For this reason, it is a common practise to use tools that make the pro
cess of finding and removing defects faster and easier.

We found six unique ways of viola t ing the rules of R C U s ' proper use, which we gen
eralized into error patterns. However, our research has shown that there are very l imited
options when it comes to finding violations corresponding to these patterns. To the point,
where we were not able to find any solution that is able to detect violations based on more
than a single error pattern. It means that to cover a l l six of them, six ind iv idua l solutions
would need to be used, i f there even were solutions for each of the six error patterns.

To solve the lack of good solutions, we propose an static analyzer w i th focus on proper
use of R C U that is capable of detecting violations based on each of the six error patterns.
The analyzer is implemented using the Infer.AI framework that offers highly scalable anal
ysis that is necessary when dealing wi th such an extensive software as the L i n u x kernel.

2

Chapter 2

Read Copy Update

Read Copy Update (R C U) is a synchronization mechanism, commonly found in the L i n u x
kernel. It is often regarded as the successor of reader-writer locking because of their exten
sive s imilar i ty and the fact that R C U tends to outperform its counterpart. The comparison
of these two mechanisms is discussed i n Section 2.2.

R C U is compatible w i t h bo th processes and threads, so the same principles can be ap
plied i n both of these cases. We w i l l concentrate this thesis mainly on threads to avoid
repetition. In R C U terminology, threads that only read from the shared memory are re
garded as R C U readers and threads that also modify the shared memory are regarded as
R C U writers or more commonly R C U updaters. There is one more type of threads in
the R C U terminology they are regarded as R C U reclaimers and their purpose is to free
the shared memory that is no longer accessible to any other threads. Reclamat ion of the
shared memory is connected wi th nearly every update, and for this reason, it is common
for a thread to start as an R C U updater and end as an R C U reclaimer. There are a few
exceptions where no reclamation is needed, for example, an insertion of a new node to a
list.

R C U uses a unique technique to synchronize its readers and updaters, which allows R C U
readers to run i n parallel w i th R C U updaters. Th is effectively means that R C U readers
may work continually, and it is often regarded as the most significant advantage of R C U .
The R C U synchronization is discussed in Section 2.1.2. R C U offers mult iple flavors for both
the L i n u x kernel and for the Userspace, each buil t for a specific need. R C U flavours are
discussed in Section 2.5.

However, R C U is not always suitable its readers are the strong point of this synchro
nizat ion mechanism, but its updaters and reclaimers not so much. They have to commit
more resources to make continuous reads possible. Furthermore, R C U readers working in
parallel w i th R C U updaters introduce inconsistency, as some R C U readers may s t i l l be
working wi th no longer val id data. Types of applications suitable for the use of R C U are
discussed in Section 2.4.

2.1 How does R C U work?

Read Copy Update introduces a unique technique of synchronization between its readers
and updaters by adding new principles to both of them. The meaning of R C U readers and
updaters is explained above. These principles need to deal w i th the fact that updaters work
in parallel w i th readers.

3

If R C U updaters tr ied to change values in the shared memory directly, a race condit ion
would be introduced. Read copy update as its name suggests, proposes a solution based
on copying. So, when any R C U updater wants to update, for example, a certain data
structure, it makes an exact copy first and leaves the current one intact. The R C U updater
can make any changes to the copy without causing any problems as it is the only process
wi th access to the copied data structure.

However, the problem has not been resolved just yet. There is a data structure wi th
updated values, but R C U readers see the outdated one. R C U resolves this second problem
just by swapping these two data structures. This swap is done by changing the value of a
pointer, through which the R C U readers access the data structure. It is done atomical ly to
eliminate any problems connected wi th situations where the value of the pointer is being
read and changed at the same time.

A t this point, it would seem that the update is done as the data structure has been
updated and published to the R C U readers, but one important step remains. The now
outdated data structure needs to be freed from the memory, but another problem is en
countered. There is a chance that some R C U reader is s t i l l working wi th the outdated data
structure, because R C U readers usually work wi th a locally saved pointer. They store the
pointer local ly because the one accessible to a l l the readers may be swapped anytime by
any R C U updater.

If an R C U updater freed the memory as soon as he published the new data structure,
there is a chance that some R C U reader would t ry to access this already freed memory,
which would cause problems. R C U avoids this si tuation by put t ing the R C U updater to
sleep and waking it up when the updater is the only process wi th access to the outdated
data structure. The explanation of how this process works can be found i n Section 2.1.2.
After waking up, the updater frees the memory and the update is complete.

These R C U principles are demonstrated on an example in Section 2.1.1, and a more
in-depth explanation of how the R C U mechanism works can be found i n the L i n u x kernel
documentation [15].

2.1.1 A D e m o n s t r a t i o n of the R C U P r i n c i p l e s

We w i l l demonstrate the main R C U principles using a series of figures. These figures
represent an example of an update, namely an update of a node in a l inked list. Th is
combination was chosen, because an update of the R C U protected memory shows most of
the key R C U principles and a l inked list was chosen, because it clearly shows the implicat ions
of the R C U updates. The example is inspired by an article [32] wri t ten by one of the R C U
founders P a u l E . McKenney .

The figure below demonstrates the in i t i a l state. We start w i th a simple l inked list,
where we want to update a node pointed by the variable „p" . The red border symbolises
that the node is accessible to at least one R C U reader.

4

A s discussed i n Section 2, R C U readers may work continually, so an update of the
current node would introduce a race condit ion. To avoid this race conditions, a copy of the
old node is created for the R C U updater to work wi th . Th is si tuation is demonstrated in
Figure below.

Head
" N ^

>| 8 6 3 > 1 5 2 ^ 9 4 7

A s this copy is only visible to the R C U updater, its values can be freely changed as
shown i n Figure below. After the update, the new node is ready to be published to the
R C U readers.

Head >| 8 6 3 |

Using the
 M
rcu_assign_pointer(. . .)" A P I cal l , the l inked list is changed to contain

the updated node. However, the memory that the old node uses, cannot be reclaimed yet.
It may s t i l l be accessible to some of the R C U readers as demonstrated i n Figure below.
Another R C U A P I ca l l is used, which puts the R C U updater to sleep and waits un t i l the old
node is no longer accessible to any R C U readers. It is worth not ing that, at this point, R C U
readers may see two different variants of the l inked list. Th is fact introduces inconsistency
to results produced by R C U readers, it is another sacrifice made to make the continuous
reads possible.

Head •0 8 6 3

V

3 5 0

2 9 4 7

5

The old node is no longer accessible to any R C U readers as shown i n Figure below, so
the R C U updater is awaken and it is free to reclaim the memory.

Head

7
P

The memory is reclaimed and the R C U updater (or rather reclaimer) ends. There is
once again only one version of the l inked list as demonstrated i n Figure below. A s we can
see, the inconsistency occurs only during a certain t ime after an update. It is one of the
reasons why R C U is not recommended to be used i n applications wi th frequent updates.

2.1.2 R C U Reader Synchronization

R C U reader synchronization is a process done by R C U updaters and it is needed i n situ
ations where an outdated element needs to be reclaimed. Reclamat ion of an element is a
term from R C U terminology, it means that an element needs to be freed from memory, so
the memory can be used again for other actions, usually other updates. A deletion and an
update of an element are the situations where the R C U reader synchronization is needed.

The principles of the R C U update were explained i n Section 2.1 and demonstrated in
Section 2.1.1. We w i l l concentrate on just the last part of the update, from the moment
when the updated result is published to the readers un t i l the reclamation of the outdated
element happens. R C U divides this last part into three phases, as demonstrated i n Figure
2.7.

The first phase is called „Removal" . It is the part of the update that makes the element
no longer accessible to any new R C U readers. For example, i n a l inked list, deletion of a
node or a swap of a node for a new one would be considered as actions belonging to the
„Removal" phase. This phase begins wi th the first action that makes an element inaccessible
to the R C U readers and ends just before the reader synchronization starts.

The second phase is the heart of the R C U reader synchronization and it is called a
„Grace Per iod" . Its role is to make sure that the outdated element can be safely reclaimed.
This section tends to be the longest time-wise, but it usually consists of a single R C U A P I
cal l i n R C U updaters. F i rs t action that this A P I cal l does is that it puts the R C U updater
to sleep and the whole synchronization wi th the R C U readers is done by the R C U internally.
If the si tuation does not allow for a process to be put to sleep, the si tuat ion is resolved
through a callback function. In this scenario, the R C U updater ends by the R C U reader

G

Pre-existing reads

rcu_read_lock() / / rcu_read_uritack()

Reader 1

Reader 2

Reader 3

Reader 4

X / / S \
reads Jre a'ds | reads

i i

read£ j reads
i /

reads I / reads
i j

reads ! reads

Updater removal grace period reclamation

Time y J Time

_assign_pointer(Grace period
synch ronizercu () waits for completion

of pre-existing reads

Figure 2.7: R C U reader synchronization is d ivided into 3 phases that represent steps needed
for an outdated element to be safely freed from the memory. The „Removal" section makes
the outdated element inaccessible to a l l R C U readers that are not inside their cr i t ical section.
However, there may be some readers whose cr i t ica l sections started before the element was
made inaccessible and thus may hold a reference to i t . For this reason, the R C U updater,
has to wait un t i l a l l such R C U readers exit their cr i t ica l section. The t ime spent wait ing is
regarded as a „Grace period", and after it ends, the outdated element can be freed from the
memory without causing any problems. The section responsible for cleaning the memory
is regarded as the „Rec l ama t ion" section. [Figure taken from [20].]

synchronization A P I cal l used and specifies which function should be called to reclaim the
memory, when it is safe to do so.

The R C U reader synchronization is based on two principles. Firs t ly , R C U readers access
the R C U protected memory exclusively through a local copy of the global R C U protected
pointer, which they acquire inside their cr i t ica l section. Secondly, they are allowed to access
the shared memory through this local pointer only inside the cr i t ica l section i n which it
was acquired. If a l l R C U readers adhere to these principles, it is safe to assume that only
the R C U readers that entered their cr i t ica l section before the Grace period started, may
be holding a reference to the outdated memory. Therefore, the whole point of R C U reader
synchronization is to wait, un t i l a l l the R C U readers, that entered their cr i t ica l section
before the Grace period started, declare the end of their cr i t ica l section. A s a consequence
the Grace period has no fixed length. Th is si tuation is demonstrated i n Figure 2.7.

B u t an important question s t i l l remains, how does R C U determine that a l l the relevant
R C U readers left their cr i t ica l sections? There is a naive solution and then there is the real
solution implemented i n the L i n u x kernel. Lets start w i th the naive one. It relies on the
fact that the classic R C U does not allow context switching during the R C U reader cr i t ical
section and the fact that a l l R C U tasks need to run on a C P U . N o context switching means
that once the R C U reader cr i t ica l section starts, the thread that started it holds the C P U
unt i l its cr i t ica l section ends. A l l that the naive solution does, is that it tries to invoke a
context switch on a l l of the existing C P U s by running an empty task on them. Once it

7

succeeds, it can be sure that there is no active cr i t ica l section that started before the R C U
reader synchronization. The L i n u x kernel implementat ion is much more complex, because it
needs to support a l l R C U flavors and interrupts, implement timers and be robust and secure
enough to survive the L i n u x kernels environment. The explanation of how the L i n u x kernel
implementation works is explained i n a v ideo 1 from the 2019 Kerne l Recipes conference.

Last but not least, the last phase is called „Rec l ama t ion" and consists purely of actions
needed to reclaim a l l of the no longer accessible memory. It usually consists purely of one
or more „free" or „kfree" statements, however, the procedure may be more complex i n some
cases.

2.2 Comparison with Reader-Writer Locking

R C U is most often compared to the reader-writer locking because both synchronization
mechanisms t ry to achieve the same goals, but i n a different fashion as demonstrated in
Figure 2.8. B o t h mechanisms divide processes and threads into those that only read from
the shared memory (Readers) and those that also make updates to the shared memory
(Writers). B o t h allow readers to work i n parallel w i th other readers, but they deal w i th
updates differently.

In the case of reader-writer locking, the writer needs the shared memory just for itself,
so it locks i t . If any readers or writers want to work wi th the same memory, they have to
wait un t i l the current writer unlocks i t . However, even i f the writer holds the lock to this
memory, it is not guarantied to be the only process wi th access to i t . There may be some
readers that started working wi th this memory before the updater managed to lock i t . The
fact that the writer needs the memory just for itself can create an awkward state where most
of the readers and writers cannot work wi th the memory because it is locked. However, not
even the writer holding the lock to this memory can work wi th it because it needs to wait
for some readers, namely those that started reading before the writer expressed its interest
into wri t ing. To make the matters worse, the wai t ing is usually active, which means that
it costs C P U time.

R C U treats updates differently, the main difference is that R C U updaters do not work
wi th the shared memory directly. They first create a copy of the shared memory, for
example, a copy of a node i n a l inked list, and this copy is only visible to the updater that
created i t . Th is allows changes to happen without stopping the readers or introducing a
race condit ion. Once the memory is ready, it is a tomical ly switched wi th the now outdated
memory. Th i s operation is performed by changing the value of a pointer, used by other
processes to access this memory, to point to the new memory instead of the old one. The
last step of the update involves freeing the outdated memory that involves synchronization
w i t h the reader and it is discussed i n Section 2.1.2.

B o t h approaches have their own strengths and weaknesses. R C U managed to lower
the overall overhead by put t ing a l l of it onto the updater /wri ter but not without a cost.
R C U has a higher memory overhead and may produce inconsistent results, because some
R C U readers may s t i l l be working wi th the outdated element. O n the other hand, reader-
writer locking suffers in performance as demonstrated in the article [25] by one of the R C U
founders P a u l E . McKenney .

xhttps: / / y o u t u . b e / b s y X D A o u K E

8

| Reader | Reader Reader | Reader | Reader |

| Reader | Reader Reader | Reader |

Reader 1 Reader Updater Reader Reader |

| Reader | Reader Reader Reader |

Reader 1 Reader 1 1 Reader Reader Reader

| Reader | Reader | Reader | Reader | Reader | Reader | Reader]

| Reader | Reader Reader Reader Reader |

Reader 1 Reader 1 Updater 1 Reader | Updater 2 Reader I

| Reader | Reader Reader | Reader Reader Reader|

| Reader | Reader | Reader | R e a d e r | Reader | Reader | Reader|

Figure 2.8: R C U and reader-writer locking have a different approach to updates. A n
updater i n the Reader-Writer Lock ing mechanism needs an exclusive access to the soon to
be updated memory, so it blocks other processes from using it . However, sometimes even
the writer itself needs to wait because some readers started reading this shared memory
before the writer expressed an interest into wr i t ing . A l l of this creates a significant overhead
as there is only a single thread allowed to work w i t h the shared memory during its update.
A n R C U updater on the other hand does not work wi th the element directly. A l l the
changes are done to a copy of the element that switches places wi th the old element once
it is prepared. It allows the R C U readers to work constantly because they always have an
element to work wi th . There are however two problems. Some readers may be s t i l l working
wi th the old element even after the new one becomes available, which means that they may
produce outdated results and it also means that the updater cannot free the old element
before it synchronizes w i t h the readers. The synchronization represents an overhead, but
it affects only the one updater. [Figure taken from [31].]

2.3 R C U Rules of Use in Code

In order for the R C U to work as intended, a set of rules of use has to be adhered to when
wr i t ing an applicat ion. We w i l l once again use the terminology of R C U readers, updaters
and reclaimers, which is explained at the start of this chapter. These R C U rules of use in
code w i l l be explained on simple examples of R C U reader (Figure 2.9) and R C U updater
(Figure 2.10) functions. These examples are inspired by the L i n u x kernel manual [15].

R C U Reader Rules of Use

A n R C U reader follows just a few basic rules. In order to work wi th shared data, it needs
to declare the start of a cr i t ica l section. This prevents R C U reclaimers from reclaiming the
memory immediately after an update. R C U readers should store a pointer to the shared
memory locally as the value of the global pointer may change i n the course of the cr i t ical
section durat ion. The global pointer should be saved using the „rcu_dereference(. . .)"

9

A P I cal l , which ensures atomici ty of this operation. It is needed because an R C U updater
may t ry to change the pointers value at the same time as it is read.

Furthermore, it is important for a l l of the accesses to the shared memory to be performed
inside the cr i t ica l section because the shared memory may be reclaimed as soon as the
cr i t ical section ends. However, any other operations should be performed outside the cr i t ical
section to make the wait of the R C U reclaimer as short as possible. Last but not least, the
cr i t ical section needs to be expl ic i t ly ended, for the same reason. A n example of an R C U
reader function is shown in Figure 2.9.

r c u _ r e a d e r () {
// d e f i n i t i o n of l o c a l v a r i a b l e s
rcu_data_type * p = NULL;

// the beginning of the c r i t i c a l s e c t i o n
r c u _ r e a d _ l o c k () ;
// s a f e l y s t o r e the value of the g l o b a l RCU p o i n t e r
p = r c u _ d e r e f e r e n c e (g _ p t r) ;
// o p e r a t i o n s w i t h the l o c a l p o i n t e r

// the end of the c r i t i c a l s e c t i o n
r c u _ r e a d _ u n l o c k () ;
// other o p e r a t i o n s

}

Figure 2.9: A simple function demonstrating R C U reader principles.

R C U Updater Rules of Use

A n R C U updater introduces just a few new rules. Basic R C U allows only a single update
at one time, so synchronisation between mult iple R C U updaters (if used) is needed. There
is no R C U specific writer synchronization, so a spin lock is commonly chosen. The R C U
updater needs to create a copy of an element that needs to be updated and work exclusively
wi th it to not affect any R C U readers. Furthermore, after the new element is prepared,
a pointer to it needs to be published to both the R C U readers and updaters and the old
pointer needs to be made inaccessible to a l l processes. The „rcu_assign_pointer(. . .)"
A P I cal l is used to perform both of these actions atomically.

The next action is to reclaim memory containing the old data. However, some readers
may s t i l l have a pointer to this memory saved locally, so the R C U updater needs to wait
un t i l they end their cr i t ica l section. For this reason the

 M
synchronize_rcu()" A P I cal l

is used. It puts the cal l ing process to sleep and wakes it up after a l l cr i t ica l sections that
started before the ca l l to

 M
synchronize_rcu()" have ended. This operation may take a

long time, therefore the R C U updater should unlock the spin lock before it starts, allowing
other R C U updaters to work while it is sleeping. The process of synchronization wi th
readers and subsequent reclamation of memory may be delegated to a different process i f
desired or needed. A n example of an R C U updater function is shown in Figure 2.10.

10

rcu_updater() {
// a l l o c a t e new memory f o r a new element
rcu_data_type * new = k m a l l o c (s i z e o f (r c u _ d a t a _ t y p e) , GFP_KERNEL);
// l o c k updates f o r other RCU updaters
spin_lock(&update_mutex);
// s a f e l y s t o r e the value of the current g l o b a l p o i n t e r
rcu_data_type * o l d = r c u d e r e f e r e n c e (g _ p t r) ;
// i n i t i a l i z a t i o n of the new element by copying the o l d one
memcpy(new, o l d , s i z e o f (r c u _ d a t a _ t y p e)) ;
// update the new element

// s a f e l y p u b l i s h the new element
r c u _ a s s i g n _ p o i n t e r (g _ p t r , new);
// unlock updates f o r other RCU updaters
spin_unlock(&update_mutex);
// synchronize w i t h RCU readers
s y n c h r o n i z e _ r c u () ;
// f r e e the o l d element
k f r e e (o l d) ;

R C U s strengths revolve around its m in ima l reader-side overhead and its weaknesses focus
mainly on the updates. Therefore, the v iabi l i ty of the R C U rises the more reads outmatch
the updates when it comes to operations wi th the shared memory. Other important factors
are consistency and freshness of results. Because of how updates i n R C U work, it is common
to have 2 or more versions of the shared memory at the same t ime, where different R C U
Readers may see different versions of i t . Therefore it is apparent that they w i l l most l ikely
not produce consistent results. The more the applicat ion needs fresh and consistent data,
the more R C U struggles. To be fair, R C U provides support for fully fresh and consistent
data, however it then suffers i n performance. The Figure 2.11 displays the R C U viabi l i ty
using a graph.

Figure 2.11: V i a b i l i t y of the Read Copy Update principle. [Figure taken from [30].]

}

Figure 2.10: A simple function demonstrates the R C U updater principles.

2.4 When to Use RCU?

11

2.5 R C U Flavors

R C U as a synchronization mechanism has been constantly evolving since its int roduct ion
into the L i n u x kernel back i n the year 2002. A s it started gaining popularity, it became
apparent that just a single variant of R C U would not be enough to cover a l l of the developers
needs. One of the biggest problems that was encountered revolved around the fact that
the classic variant of R C U does not support sleeping or any kinds of interrupts inside the
R C U reader cr i t ica l section because it registers them as the end of the cr i t ica l section.
This l imi ta t ion hindered a wider spread of R C U use, therefore the founders of R C U came
wi th a solution. They implemented different variants of R C U according to the needs of the
L i n u x kernel developers. These different variants of R C U are regarded as R C U flavors in
its terminology. Moreover, despite the R C U was originally developed for use i n the L i n u x
kernel, there have been attempts to bring it to the Userspace as well, which led to an
introduct ion of a new R C U variant. E a c h R C U variant offers mult iple flavors to choose
from and they w i l l be introduced i n the following sub-sections.

Linux kernel R C U flavors

According to the R C U A P I table [29] from the year 2019, there are currently 6 flavors in
the L i n u x kernel version of R C U , which are displayed in Figure 2.12.

Attribute RCU RCU BH RCU Sched SRCU RCU Tasks

Purpose
Wait for RCU read-side critical
sections

Wait for RCU-bh read-side critical
sections & irqs

Wait for RCU-sched read-side
critical sections, preempt-disable
regions, hardirqs, & NMIs

Wait for SRCU read-side
critical sections, allow
sleeping readers

Wait for all non-idle
tasks to be seen in
userspace or to
execute a voluntary
context switch

Figure 2.12: Various R C U flavors [Figure taken from [29].]

The first flavor is the classic R C U where sleeping and interrupts act as the end of the
readers cr i t ical section, which may end the Grace period. If such si tuat ion occurs, the
shared memory may be reclaimed sooner than it should be, and the interrupted reader may
t ry to access an already freed memory once it resumes.

The R C U B H flavor adds support for hardware interrupts by not treating them as the
end of the cr i t ica l section, and the R C U Sched flavor extends this support to even more
kinds of interrupts.

The S R C U flavor or Sleepable R C U is a unique flavor that allows sleeping inside the
R C U reader cr i t ical section. This flavor requires the user to perform a few extra steps
when wr i t ing an applicat ion. F i rs t of a l l , the user has to manual ly create and init ial ize
at least a single srcu structure. Th i s structure is used for synchronization between the
R C U readers and updaters that need to specify which instance of the structure they are
using. A n updater would, for example, use the

 M
synchronize_srcu(&ssl)" statement to

synchronize using the srcu structure s s l . Secondly, when the R C U reader declares a start
of the cr i t ica l section, it receives an integer value that indicates during which Grace period
the cr i t ical section started. This number is later used to determine for which Grace period
was the cr i t ica l section ended, and it is needed because the R C U cr i t ical sections can be
nested. A n R C U reader would, for example, use the „int i d = srcu_read_lock(&ssl)"

statement to declare the start of the cr i t ica l section and the „ s r c u _ r e a d _ u n l o c k (& s s l , id)"

12

statement to declare the end of its cr i t ica l section. A more detailed explanation of S R C U
can be found in the article [26], which was taken as an inspirat ion for this summary.

The last R C U flavor is R C U Tasks that allows any tasks to run as long as they please,
which can cause significantly long Grace periods, sometimes even i n magnitudes of several
minutes.

Userspace R C U Flavors

W h e n it comes to Userspace R C U , threads that p lan to use R C U need to expl ic i t ly declare it.
For this reason, each such thread should start by using the

 M
urcu_<f lavor>_register_thread()"

statement, which declares the point from which the Userspace R C U mechanism w i l l keep
track of a l l of its R C U - r e l a t e d statements. Furthermore, a l l of the threads using R C U
should expl ici t ly unregister from the R C U mechanism once they do no longer p lan to use
it. The L i n u x kernel variant infers these information automatically, and therefore el imi
nates problems where a thread using R C U does not synchronize wi th the others because
the author forgot to register it .

According to the official website [21], the Userspace R C U offers 5 flavors: memb, qsbr,
mb, s i g n a l , bp. The mb and memb R C U flavors both internally use memory barriers for
synchronization on both updaters and readers sides and their primitives are used exactly
the same way as the classic R C U L i n u x kernel variant. The official website [21] states that
the use of memory barriers on both sides results i n faster Grace period detection, but this
approach loses some performance on the reader-side. The memb R C U is regarded as the
more efficient and more flexible version of the mb flavor and it is the recommended choice
when creating Userspace R C U applications. However, this flavor is only available i f the
kernel supports „sys_membarrier()". Otherwise, this flavor behaves exactly like the mb
one i f not defined differently.

The qsbr flavor handles reader-side synchronization the opposite way than a l l the other
flavors. Qsbr does not declare the start and end of the cr i t ical section, but it rather declares
whenever the reader enters a quiescent state. The quiescent state is a state that R C U readers
enter whenever they leave their cr i t ical section, and it lasts un t i l their next cr i t ical section
begins. For this approach to work each R C U reader thread has to periodical ly declare that
it entered a quiescent state to allow Grace periods to end. Accord ing to the official website
[21], this approach offers the best performance for the reader-side, however, it introduces
more intrusiveness to the code.

The signal flavor has the reader and writer synchronization internally based on sending
signals instead of using memory barriers or declaration of a quiescent state, but it is used
in the same way as both memb and mb flavors.

Final ly , the bp flavor stands for the bulletproof flavor, and it was designed i n order to
make hooking to appl icat ion easier for a tracing l ibrary by allowing it to hook itself onto an
application without a need to change the code. This approach introduces more overhead,
and therefore suffers i n performance on both reader and updater sides.

13

Chapter 3

Our Road to an R C U Analyzer

N o product just magically appears, it starts w i th an idea and requires a lot of research,
determination and hard work before it sees the light of the day. O u r analyzer is no exception,
our road started w i t h a curiosity about a synchronization mechanism called Read Copy
Update . It was a topic that nobody i n our surrounding knew anything about, and therefore
it became a main focus for our research. O u r most important findings about R C U were
discussed in Chapter 2.

The next step was to identify what k ind of an analyzer would be beneficial for R C U
developers. To achieve this, the website [24] maintained by one of the R C U founders
P a u l E . M c K e n n e y was scouted. Th is website serves as a crossroad to most of the R C U
related work that is available online. We discovered that, when it comes to verification and
validation, the articles concentrate on R C U itself, mainly on checking i f R C U functions as
expected. However, means for tes t ing/analyzing the way R C U is used are rather l imi ted as
discussed i n Section 3.1. So, we decided to develop such an analyzer, but there were s t i l l
several steps needed before the development of the analyzer itself could start.

Firs t ly , there was a need to familiarize ourselves w i th even these rather l imi ted solutions.
Th is step was important to make sure that we would not just create a replica of an already
existing product and also to obtain a product to compare our solution wi th . O u r findings
are discussed in Section 3.1.

Secondly, since we decided to create a static analyzer, there was a need to research static
analysis and its techniques, so we could choose one that fits our needs. Static analysis is
discussed i n Section 3.2, and our chosen static analysis technique Abst rac t Interpretation
is discussed i n Section 3.2.1.

The next important step was to decide which Static Analys is framework to choose for
the development. We decided upon Facebook (now Meta) Infer because it is based on
Abst rac t Interpretation and offers high scalability, which is needed when dealing wi th such
a huge software as the L i n u x kernel. More about Infer is discussed in section 3.3.

The last step was to determine error patterns and design for our analyzer. The design
and error patterns are introduced in Chapter 4.

3.1 Available Solutions

A s R C U is used pr imar i ly i n the L i n u x kernel, we decided to focus on solutions that offer
support for the L i n u x kernel testing and analysis. Accord ing to the Ke rne l Testing Guide
[10], there are several options available.

14

First ly , the L i n u x kernel provides the kselftest and KUnit frameworks, which are
used to create tests that focus on isolated parts of the L i n u x kernel. The focus on isolated
parts can be seen as both the pro and con according to the situation. O n one hand, it
helps to make tests more efficient as they can be opt imized for a certain si tuation. O n
the other hand, when one decides to apply it for testing the use of R C U , it means that
every t ime R C U is used in a different si tuation or different environment, new tests need to
be wri t ten. Furthermore, these frameworks do not directly offer support for R C U , so i f a
developer wants to track the R C U state, he or she would need to use another l ibrary or
tool to achieve this goal.

Secondly, there are testing tools w i th various functionality separated into Code Coverage
and Dynamic Analys is tools, according to the Kerne l Testing Guide [10]. Code Coverage
tools are not relevant for our use case, so we w i l l concentrate exclusively on the second
group. The guide [10] provides us w i t h a long list of Dynamic Analys is tools, out of which
we decided to pick KCSAN, KFENCE and lockdep as they are the most relevant.

KCSAN (The Kerne l Concurrency Sanitizer) [8] is a tool that focuses on finding data
races and KFENCE (Kernel Electric-Fence) [9] provides a low-overhead detector of memory
issues, which is able to detect use-after-free errors among other memory errors. D a t a races
and use-after-free errors are common consequences of R C U rules of use violations, and these
dynamic analyzers provide a way of detecting them. Furthermore, these analyzers are able
to perform the analysis efficiently because they were developed and opt imized for use in
the L i n u x kernel. However, neither of these analyzers is able to determine which R C U rules
of use violations caused these defects. The whole process of finding the root cause is on
the developers' shoulders. This may be a significantly t ime consuming activity, especially
in situations where the problem was caused by an R C U rules of use violat ion, some time
before the defect was encountered.

Lockdep [13] is a locking correctness validator that can detect deadlocks and other
locking-related defects. R C U itself is immune to lock-based deadlocks, but lockdep can be
used to find other types of defects caused by R C U rules-of-use violations. Lockdep knows
the current R C U state because it tracks which tasks enter and leave their R C U reader
cr i t ical section and it keeps this state separately for each R C U L i n u x kernel flavor used in
the code, according to its L i n u x kernel documentation [12]. Furthermore, lockdep keeps
track of other types of locks too, so it knows about cr i t ica l sections on the R C U updater
side as well . There are even mult iple R C U A P I calls capable of working wi th the lockdeps
R C U state. A n overview of them can be found i n the R C U A P I table in the article [29] in
the section „Val ida t ion" . For example, the „rcu_read_lock_held() " statement returns a
positive boolean value if it determines that it is called wi th in an R C U reader cr i t ica l section.
This bool value can be used for other R C U statements that check i f the given condi t ion is
fulfilled to decide whether they can securely perform their tasks.

Addi t ional ly , i f the L i n u x kernel is buil t w i th the
 M
C0NFIG_PR0VE_RCU" flag, lockdep

w i l l dynamical ly check whether conditions for use of the R C U dereference primitives are
met before executing them. If, for example, the

 M
rcu_deref erence()" statement is used,

lockdep checks whether at least one condit ion for the safe dereference of a global pointer is
met. The dereference is safe i f the accessed memory cannot be reclaimed while accessing i t ,
which is guaranteed if it is done inside a correct R C U reader cr i t ica l section. There are of
course other methods of stopping the shared memory from being reclaimed, such as holding
a writer lock for the corresponding shared memory. If the lockdep determines that it is
not safe to access the memory, it creates a Lockdep-RCU Splat, which holds information
that is useful for debugging, such as stack backtrace and overview of locks that were held

15

by the process or thread at that t ime. A n example of a Lockdep-RCU splat can be found
on its documentation website [11]. A more in-depth explanation of lockdeps support for
R C U can be found i n the L i n u x kernel documentation [12] that served as an inspirat ion for
this overview.

A n advantage of the lockdep dynamic analyzer is that its support for R C U was added
by the founders of this synchronization principle. They expanded the lockdep w i th the
R C U reader cr i t ical section detection and developed new R C U A P I calls that would make
use of the information gathered by the lockdep. The steps leading to the lockdep adaption
by the R C U founders can be found and explained i n the article [27] by P a u l E . McKenney .
The support started i n the year 2010, and the idea was to use this tool to detect the missing
starts of R C U reader cr i t ica l sections by finding situations where the „rcu_deref erence"
statements were used without any protection. The R C U A P I has had 2 major updates
since that year and there have been a few changes to the lockdep R C U A P I calls, but the
idea and functionality of the lockdep remains the same. The fact that lockdep is s t i l l
maintained by the R C U developers in addi t ion to it being designed and opt imized for use
in the L i n u x kernel make it an excellent candidate for use.

O n the other hand, keeping the information about locks and the R C U state by the
lockdep introduces overhead and this overhead hinders performance of the product, espe
cial ly i f the „C0NFIG_PR0VE_RCU" flag is set. In this case there is an added overhead to
every

 M
rcu_deref erence ()" , which is a very common operation for products using R C U .

Furthermore, the tool is able to detect just a single type of R C U rules of use violations,
which greatly l imits its usefulness. Moreover, the lockdep tool is a dynamic analysis tool ,
so it suffers the shortcomings of the dynamic analysis itself, such as the fact that the dy
namic analysis can miss problematic situations because the paths leading to them may
not be executed during the analysis. Last ly, when lockdep detects a defect, it creates a
Lockdep-RCU splat that can be used to find the error, but the finding of the root cause is
once again on the developers' shoulders.

The Development tools for the kernel [7] section of the L i n u x kernel manual expands
the Ke rne l Testing Guide [10] wi th three more tools, namely Checkpatch, Coccinelle,

and Sparse. Checkpath is a P e r l script, capable of detecting t r iv ia l style violations, one of
them being the use of R C U deprecated A P I calls i n the code. This feature can be useful
i n some cases, however, it covers just a t iny por t ion of R C U related defects, and therefore
Checkpath cannot sufficiently cover the developers' needs.

Coccinelle [6] is a tool for pattern matching and text transformation, it has many uses
in the L i n u x kernel, but none related to R C U .

Sparse [14] is a static semantic checker for C programs and it is used mostly for lock and
type checking. Accord ing to the article [27], Sparse offers support for a single type of R C U
defects. It can detect situations where the global R C U pointer is accessed without the use of
the R C U dereference pr imit ive. This is a valuable information because it covers one of the
R C U rules of use. However, using Sparse for this task is inconvenient i n that the user has
to manual ly tag a l l the relevant R C U pointers w i t h the „ rcu" tag i n order for Sparse to
take them into account. It requires more than a basic understanding of R C U to determine
which pointers are relevant, and it also requires to make direct changes to the code, which
may be significantly t ime-consuming or forbidden. Sparse uses static analysis, which means
that it does not suffer the same problems as the tools before, but, of course, static analysis
has its own shortcomings too. It is more inclined to finding false posi t ives 1 , which can lead

incor rec t ly identified defects.

16

to waste of t ime i n situations where the developers t ry to find problems that do not exist.
Our analyzer is also based on static analysis. However we cannot compare our solution
wi th that of Sparse because they both specialize i n different k ind of problems. Sparse

concentrates solely on the R C U pointers, while our analyzer detects problems connected
wi th improper use of R C U function calls.

There is one more way of testing R C U infrastructure i n the L i n u x kernel. There are a
few kernel modules that are available under the „RCU Debugging" category i n the L i n u x
kernel Configuration. There is the RCU_SCALE_TEST kernel module that runs performance
tests, there is the RCU_TORTURE_TEST kernel module that runs torture tests 2 , and there is
the RCU_REF_SCALE_TEST kernel module that runs performance tests on various read-side
synchronization mechanism and compares their results w i th R C U . These kernel modules
test R C U but i n a different way than we need.

To summarize, there are mult iple ways of testing and analyzing applications using R C U
in the L i n u x kernel, but only two of them are related to the R C U rules of use namely,
lockdep & Sparse. B o t h of them offer support for the same R C U rules of use violat ion,
namely, „ U n p r o t e c t e d R C U dereference" of global R C U pointers, but each detects these
violations i n different circumstances. F r o m this research we came to a conclusion that an
R C U analyzer that would be able to cover most of the R C U rules of use 'would be the most
useful.

3.2 Static Program Analysis

According to [33] publicat ion, static program analysis is the art of reasoning that focuses on
the behavior of computer programs and it is able to do so without actually running them.
It has found its place in mult iple products such as compilers and standalone static program
analysis tools. In compilers, it is used for both syntactic and semantic analysis as well as
for the opt imizat ion of the final machine code. W h e n it comes to the standalone static
program analysis tools, static analysis can be used for detection of many kinds of defects,
like unreachable lines of code, unini t ia l ized variables, potential data races, deadlocks, and
many more.

The important factors when it comes to static program analysis are soundness and
completeness as well as the speed of the analysis. Star t ing w i t h the speed, if the time
needed for an analysis i n a static program analysis tool is too high, nearly nobody w i l l
want to use i t . One of the reasons being that it w i l l not be fast enough to fit into the
real-world software development cycle as stated i n [33].

Secondly, the completeness of an analysis is the factor that shows what percentage of
the found defects corresponds to the real defects in the code. In other words, it answers the
question: „If a defect was found, how likely was it detected correctly ?" If the completeness
is too low, a lot of errors may be identified incorrectly, which can lead to developers wasting
their t ime t ry ing to fix problems that do not actually exist. A s a result, they may not want
to use the product i n the future.

Lastly, soundness of an analysis states what percentage of defects i n the code w i l l be
found by the analysis. In other words, it answers the question: „If there is a defect i n the
code, how likely w i l l it be found ?" Once again i f the soundness is too low, the analysis may
miss a significant por t ion of defects, and therefore lose attractiveness for the developers.

2Tests that make the product run at or near full capacity for an extended length of time. Definition
inspired by [34].

17

Ideally, every static program analysis should achieve perfect soundness, completeness
wi th l i t t le t ime needed for the analysis, but it is unreachable in the real life and the tools
using static program analysis need to achieve some balance of these factors. If the soundness
and completeness are a priority, very detailed analysis needs to be performed. This involves
keeping highly detailed information about the source code and its state as well as deploying
mult iple heuristics to reduce the number of incorrectly identified defects. The problem is
that the detailed information can create a significant memory overhead, and the use of
mult iple heuristics may require a significant processing time. This may create a si tuation
where the analysis is able to produce highly accurate results for smaller-size products but
fails to produce any results for bigger and more complex applications where the memory
and processing t ime requirements become unacceptable or even unsatisfiable.

Therefore, it is common for the analysis to keep less detailed information and carefully
select which heuristics w i l l be used, but this approach creates another problem. For some
defects, it may be impossible to determine if they are real or if they are just consequences
of the analysis inaccuracies. If the analysis tends more towards higher soundness, it w i l l
report these types of defects even i f there is a risk that they may be incorrectly identified.
O n the other hand, the analysis w i th focus on completeness would report exclusively the
defects that are highly probable to be confirmed and ignore the rest. It is common for real
life static program analysis tools to priorit ize one of this factors at the cost of the other.

The analysis inaccuracies happen w i t h the more detailed analysis too, but in smaller
amount. The inaccuracies happen because it is not always possible to determine the state
of the source code accurately, especially if it relies on data that is not available before the
code is executed. There are of course other factors that contribute to the static program
analysis success, such as computat ional complexity, scalabili ty or memory overhead, but
we w i l l not discuss them in this thesis.

According to [33], static program analysis may be based on various different principles,
but we are using the abstract interpretation because the static analysis framework Infer.AI
that we decided to use for the implementat ion is based on this principle.

3.2.1 Abstract Interpretation

Our overview of abstract interpretation is inspired by the article [19]. A more formal and
detailed explanation can be found, e.q., i n [17, 18, 16]. We first i l lustrate principles of
abstract interpretation on a series of figures. Star t ing wi th a demonstration of concrete
semantics of a program i n Figure 3.1, followed by a demonstration of abstract interpre
tat ion of these concrete semantics i n Figure 3.2 to better demonstrate how the abstract
interpretation works. The last two figures demonstrate two problematic situations where
the Abst rac t state is too broad, shown i n Figure 3.3(a) and not broad enough, shown in
Figure 3.3(b). Subsequently, we then present abstract interpretation and its ingredients
more formally.

18

Figure 3.1: This figure represents the concrete semantics of programs. The lines demon
strate trajectories of a l l possible program executions for a l l environments where the program
can be executed. There may be zones that introduce a safety or other vulnerabili t ies i f any
program execution trajectory crosses them. These zones are demonstrated wi th the red
color i n Figure. [Figure taken from [19].]

+
F o r b i d d e n z o n e

P o s s i b l e
t r a j e c t o r i e s

Figure 3.2: This figure illustrates the impact of an abstraction of a l l the possible trajectories.
It is apparent that this abstraction includes some trajectories that cannot happen during
concrete program execution. This is caused by the fact that abstract interpretation usually
over-approximates the concrete program state. [Figure taken from [19].]

(a) Too broad (b) Not broad enough

Figure 3.3: These figures represent two possible problems of abstract state approximation.
In the first case(a), the analysis would find a non-existing vulnerabili ty, and i n the other
case(b), a real vulnerabi l i ty would be missed. It is possible for both of the problems to
appear at the same time because the approximation may be too broad for some parts of
the program and not broad enough for others. The challenge of abstract interpretation is
finding the right approximation for the given situation. [Figures taken from [19].]

19

Ingredients of the Abstract Interpretation

There are mult iple Ingredients of the Abst rac t interpretation, according to the [22, 23].
Our overview is taken from [23] wi th smal l changes.

• Abstract domain

— a set of abstract contexts,

— an abstract context represents a set of program states (typically used to represent
a set of program states reachable at some program location).

• Abstract transformers

— for each program operation there is a corresponding transformer that represents
the effect of the operation performed on an abstract context.

• Join operator

— combines abstract contexts from several branches into a single one.

• Widening

— performed on a sequence of abstract contexts appearing at a given location to
accelerate obtaining a fixpoint'^

• Narrowing

— may be used to refine the result of widening.

Abstract Interpretation formally

Abstract interpretation / of a program P w i th the instruct ion set Instr is a tuple

/ = (Q , U , C , T , ± , r)

where

• Q is the abstract domain (domain of abstract contexts),

• U : Q x Q —>• Q is the join operator for accumulat ion of abstract contexts,

• E E Q x Q is an ordering defined as x E y •£=>• x U y = y where

— (Q, E) is a complete (join semi-)lattice,

• T G Q is the supremum of (Q, C),

• _L G Q is the (single) i nnmum of (Q, C),

• r : Instr x Q —> Q defines the abstract transformers for part icular instructions
required to be monotone on Q for each instruction from Instr.

The soundness of abstract interpretation may be guaranteed using Galois connections.
[This subsection is taken from [23] wi th smal l changes.]

3 A fixpoint of a function / : A —> A is an element a G A if and only if f(a) = a. [Taken from [22].]

20

Galois Connections

Galois connection is a quadruple 7r = (V, a, 7, Q) such that:

• V = (P, <) and Q = (Q, C) are partially ordered sets (posets),

• a : P —>• Q and 7 : Q —> -P are functions such that Vp G P and Vq e Q :

P < l(q) <^ a(p) C g

[This subsection is taken from [23] w i th smal l changes.]

3.3 Facebook/Meta Infer

The official Infer website [1] classifies Infer as a static program analyzer, which supports
Java, C , C + + and Object ive-C. It is wri t ten i n the O C a m l programming language and it
offers two types of analysis frameworks. There is a separation logic bi-abductive analysis
framework, which is pr imar i ly used to detect problems caused by nu l l pointer dereferences
and resource and memory leaks. The second analysis framework is based on abstract
interpretation and it is pr imar i ly used for finding a wide range of problems (over/under-
overflow, unini t ia l ized variables, dead code, concurrency-related issues, performance-related
issues, etc.). R C U rules of use violations fall into the concurrency category, and therefore
we decided to use the second one.

Abstract Interpretation Framework

According to [2], the Infer.AI (Infer Abst rac t Interpretation) is a framework for quickly
developing analyzers based on abstract interpretation. It provides a l l the necessary archi
tecture for the analysis and the developer needs to define only an abstract domain and
abstract transformers in addi t ion to jo in , widen and less or equal operators. The less or
equal operator is used to determine the order of abstract states i n the abstract domain. If
for example, the abstract state is represented by a set, the less or equal operator determines
if one set is a subset of the second one. A set is a subset of another i f a l l of its elements are
contained in the other set.

The analyzers can be developed to be intraprocedural or interprocedural. The intrapro-
cedural analyzers are only capable of finding defects contained i n a single procedure as
these types of analyzers do not save information about the procedures that have already
been analysed. If, for example, a lock was locked i n one procedure, but unlocked i n a
different one that was called from it, these analyzers would report a defect for both of these
procedures although there is of course no defect as one is allowed to work wi th locks across
mult iple procedures.

O n the other hand, interprocedural analyzers create a summary of the procedure once
it is analysed. A big advantage of the Infer.AI is that it stores this summary in the results
database and this procedure does not need to be analyzed again because the caller needs just
its summary. Thanks to this, the first analysis of a program is the most t ime and resource
demanding because a l l procedures need to be analyzed in order to get their summary. B u t
after, the cost of the analysis is only determined by the number of procedures that need
to be reanalysed, which can be a much smaller number. There are just two reasons why
a procedure needs to be reanalysed, either it has been direct ly changed or it is a direct or
indirect caller of a changed procedure. The change in a procedure may cause its summary

21

to change and because the caller uses it to determine its abstract state, its summary may
change as well.

A summary is a pair consisting of an abstract pre-state and an abstract post-state.
The pre-state specifies under which conditions the function may be called while the post
condit ion then describes the result. However, i n some cases, the pre-state does not need to
be used. If an interprocedural analyzer is faced wi th the same si tuation as above, where
a lock is locked in one procedure and unlocked i n a procedure called from it , this type of
analyzer may be designed such that it w i l l handle the si tuation correctly. It is possible
thanks to the fact that Infer.AI analyses procedures according to the cal l graph from the
bot tom up. This means that when the Infer.AI analyzes the procedure where a lock is locked
and encounters a procedure cal l , it analyzes this called procedure first before continuing
the analysis of the caller. So i f it encounters a cal l to a procedure that unlocks the lock, it
analyzes this procedure and its summary can be used i n the caller to determine that the
lock was correctly unlocked before the procedure that d id the locking ended. The bot tom
up approach is shown and explained i n Figure 3.4 on a cal l graph.

Figure 3.4: This figure represents a ca l l graph where the arrows point from the caller to the
called procedure. Infer.AI implements a bot tom-up approach for the analysis, which means
that the procedures that are not callers themselves are analysed first, followed by their
callers and they are followed by their callers and so on. If there are mult iple procedures
called from a single caller, the order of their analysis is determined by their cal l order,
meaning that the procedure that is called first w i l l be analysed first as well . Furthermore,
if a procedure has more than one caller, it is only analyzed once, because after it already
has a summary that can be used. In case of an recursive cal l , Infer.AI analyzes only the
caller and ignores the recursion. If it d id not, Infer.AI would analyze the function unt i l
the whole analysis crashed because there would be nothing stopping it from div ing into the
same function over and over again. [Figure taken from [22].]

Analyzers Available in Facebook Infer

The Facebook Infers documentation [1] has a page for each type of analysis that is avail
able for use. There is around twenty-six official analyzers, but some of them are no longer
maintained, some are experimental and new ones keep appearing. The focus of the ana
lyzers spreads across mult iple areas, such as out-of-bounds array accesses, memory safety,
cost, functions side effect detection and more. The whole list of available analyzers along
wi th their description, types of detectable defects and examples can be found i n the Infers

22

documentation [1] on the Infers' official website. Some of these analyzers are more relevant
for our research, namely Pulse, Race rD and Starvation.

Start ing wi th Pulse, its documentation page [3] states that it is used for memory and
lifetime analysis. It is able to detect defects like use-after-free, constant-address-dereference,
null-pointer-dereference, memory leaks, and more. The only relevant type of defect detected
by Pulse is use-after-free because it can be caused by a violat ion of R C U rules of use on
either the R C U reader or updater side. However, Pulse is not designed for analysis of
concurrent applications which means that it would most l ikely produce inaccurate results.

Secondly, the RacerD documentat ion page [4] classifies it as an analyzer for thread
safety. It also states that it is used to identify data races, which are the most common
consequences of viola t ing R C U rules of use. The problem is that this analyzer does not
support analysis for code wri t ten i n the C language, according to its documentation [4].
A s R C U is used pr imar i ly in the L i n u x kernel, where the C language code is prevalent, it
means that RacerD cannot be used for our needs. Moreover, the analysis it implements is
heavily tuned for programs that synchronize by classical locks.

Final ly , Starvation is, according to its documentation page [5], used to detect situations
where no progress is being done because of concurrency errors. Deadlock and starvation are
typica l errors detected by this analyzer. Starvation as an analyzer supports concurrency,
but none of its detectable defect are connected w i t h violations of R C U rules of use, because
R C U does not use typica l locks for its reader-side synchronization. A deadlock can happen
but i n an RCU-spec i f ic way, which is not supported by this analyzer. However, even i f
these si tuation were relevant for R C U , Starvation once again does not support its defect
detection for code wri t ten i n C language.

23

Chapter 4

RCU-rules-of-use Analyzer original
design

We now proceed to the original design of our analyzer. We start by describing various error
patterns related to violations of R C U rules of use that we identified and that our analyzer
w i l l look after in Section 4.1. Secondly, we describe how we apply abstract interpretation
to check for identified error patterns. Th is is done by describing our design for various
ingredients of abstract interpretation in Section 4.2. Last ly, we describe the design of the
top-level logic i n Section 4.3. Th is top-level logic describes the algorithms and principles
used to determine defects and eliminate false positives.

4.1 Error Patterns

The R C U rules of use that are discussed i n Section 2.3 determine the proper way this
synchronization mechanism should be used when wri t ing code. We found mult iple ways
in which they can be violated and we decided to generalize them into error patterns that
w i l l be used by our analyzer to detect violations of the correct way of using R C U . There
are four error patterns that we decided to classify and report as errors and two that we
classified as warnings because they represent situations where R C U is used i n a not advised
manner. We decided that it is better to report these situations as well because they may
become problematic in the future.

Incomplete R C U Reader Cr i t i ca l Section

There are three types of problems when it comes to R C U reader cr i t ical sections complete
ness. E i the r there is a si tuation where the cr i t ica l section is not properly started or it is not
properly ended or possibly both . Th is type of problem happens mostly i n functions that
alter the R C U reader cr i t ica l section and have more than a single exit point or where the
start or the end of the cr i t ica l section is hidden behind a condit ion, or when these functions
do not behave consistently when it comes to the cr i t ica l section start and end.

W h e n a function has more exit points, it becomes more likely that one can miss the
declaration of the end of the cr i t ica l section. This is true especially i n situations when a
function is complex, long and when some of these exit points were added in the later devel
opment, possibly by a different developer than the one who created the original function.

W h e n it comes to the declaration of the cr i t ica l section start or end being hidden behind
a condit ion, it is fair to say that it brings more trouble than worth. It can easily happen

24

that the conditions used in the code do not do not work as expected because there is a
program state that the developer d id not account for. Moreover even if the conditions work
as expected i n the current version of the program, it may not be the case i n the later ones.

Final ly , when functions that alter the R C U reader cr i t ica l section do not alter the cr i t ical
section consistently, it becomes increasingly harder for developers to keep track of when
the cr i t ica l section needs to be started and ended. Some functions may require to be called
wi th in the callers cr i t ica l section, some may declare their own cr i t ica l section, some may
declare just the start of the cr i t ica l section and expect another function to declare the end
or the other way around. There is also a si tuation where the called function declares the
end of the cr i t ica l section only i f it returns a negative result, which forces the caller to hide
the end of the cr i t ica l section behind a condit ion.

There are different problems associated wi th missing declaration of the start and the
end of an R C U reader cr i t ica l section. If the cr i t ica l section is not properly ended, it
prevents the R C U reclaimer from being awaken after a cal l to

 M
synchronize_rcu()" . If

the
 l p

c a l l _ r c u (. . .)" statement is used instead, the callback function cannot be invoked,
meaning that there w i l l be no reclamation of no longer used memory. Mos t of the R C U
flavors use a t imer that invokes a function that forcefully ends R C U reader-side synchro
nizat ion and allows the memory reclamation once the synchronization durat ion exceeds a
set upper bound, but this solution should be used only as a fallback and fixing the missing
end of the cr i t ical section should be a priority. A function that both misses the end of crit
ical section and contains an inconsistent cr i t ica l section behavior is shown and explained in
Figure 4.1.

rcu_data * g e t _ r c u _ d a t a (i n t key) {
• rcu_read_lock();

s t r u c t Node * p = rcu_dereference(head);
f o r (; p != NULL; p = p->next) {

i f (p->key == key) {
• r e t u r n p->data;
>

}
• r c u _ r e a d _ u n l o c k () ;

r e t u r n NULL;
}

Figure 4.1: Th is figure represents a function that handles an R C U reader cr i t ica l section
differently when it finished successfully and when it does not. The developer either forgot to
add the declaration of the end of cr i t ica l section to the red-marked exit point or more likely
thought that the caller w i l l want to work wi th the returned data. W h i l e this presumption
may be correct, it does not make the design of this function justified. The caller has most
l ikely already its own cr i t ica l section started and it may want to ca l l this function multiple
times, i f it wants to get data from mult iple nodes of the l inked list that is used to store
R C U data in this program. If this is the case, the caller is forced to declare the end of the
cr i t ical section after each successful cal l to this function. If the developer does not notice
this fact, the caller may start mult iple cr i t ica l sections without even knowing i t . A much
better design for this function would be to either not work wi th the cr i t ica l section at a l l
or declare its end at a l l exit points from the function.

25

O n the other hand, If the cr i t ica l section is not properly started and its end is declared
anyway, it causes two types of problems. It results in an unprotected R C U dereference that
is discussed i n Section 4.1, and the declaration of the end can disrupt a different cr i t ical
section. R C U reader cr i t ica l sections can be nested, so the addi t ional declaration of the
end may cause the callers cr i t ical section to end prematurely, leading to other problems.
There is also a si tuation where no cr i t ical section is active but its end is declared. This
leads to a sort of weird si tuation where it ends the next cr i t ica l section as soon as it starts,
which is a sort of an unexpected behavior. Thankfully, R C U reports these situations to the
user w i th a warning message every t ime the applicat ion tries to end a non-existing cr i t ical
section. However, that happens only at run-time and it can happen that such a si tuation
arises only rarely and so the si tuation would be unnoticed for a long time.

Unprotected R C U Dereference

A s discussed in Section 4.1, this problem happens when the start of the R C U reader cr i t ical
section is missing. However, this is not the only way this problem can happen as the
R C U dereference is also used on the R C U updater side. Th is error pattern covers a l l the
situations where R C U protected memory is accessed without any protection, which usually
means that it is accessed outside of a cr i t ical section. This type of problem usually happens
either because of problems associated wi th the cr i t ica l section or when the developer is not
aware that the R C U dereference needs to be protected. The developer may know that the
dereferences i n R C U readers need to be protected from the R C U reclaimers but he or she
can miss the fact that the dereferences i n the R C U updaters need to be protected as well.
Figure 4.2 presents an unprotected R C U dereference on the R C U updater side and explains
why it is problematic.

W h e n an Unprotected R C U dereference happens, it introduces a race condit ion between
an R C U reclaimer and the process or thread where the unprotected dereference happened.
A s is discussed in Section 2.3, it is only safe to access the R C U protected shared memory
inside a cr i t ica l section or when there is a guarantee that the accessed shared memory
cannot be reclaimed while the process or thread s t i l l uses i t .

If the R C U reclaimer „wins" the race, meaning that the reclamation happens before
the access to the shared memory, the thread or process accessing the shared memory w i l l
t ry to access an already freed memory, which can be highly problematic. The behavior of
accessing already freed memory is undefined, meaning that different machines and systems
may behave differently.

In an ideal case, this access w i l l not result i n a crash. Reads i n this case w i l l result in
obtaining nonsensical values, while writes w i l l not overwrite anything important .

In a less ideal case, the system forbids this access and the program crashes w i t h a
segmentation fault because the process or thread t r ied to restricted Ml CB. of the
memory.

In the worst case, the product does not crash immediately but only after there has been
some damage done. Ei ther the nonsensical read values cause an undefined state, that the
program cannot handle or the write to the freed memory overwrites something important .

Miss ing R C U Reader Synchronization

A s is explained i n Section 2.1 and shown on an example i n Section 2.1.1, R C U needs
to execute reader-side synchronization before it reclaims the outdated memory. If this
synchronization is missing, there is no protection for R C U readers, who are s t i l l work-

26

void change_rcu_data(int key, rcu_data * new_data) {
struct Node * new = kmalloc(sizeof(struct Node), GFP_KERNEL);

• struct Node * old = rcu_dereference(find_rcu_node(head, key));
• spin_lock(&updater_mutex);

memcpy(new, old, s i z e o f (s t r u c t Node));
new->data = new_data;
replace_rcu_node(head, key, new);

• spin_unlock(&updater_mutex);
synchronize_rcu();
kfree(old);

}

Figure 4.2: This figure shows a dangerous si tuation where the „ r c u _ d e r e f e r e n c e () " state
ment is called before the cr i t ica l section starts. It introduces a possibil i ty for two or more
R C U updaters to hold a pointer to the same memory. This si tuation happens every time
when two updaters want to find the same R C U node and the updater that was called sec
ond manages to obtain the pointer to this R C U node w i t h a cal l to „ r cu_de re fe r ence () "
before the first one manages to update the pointer by publishing a new element w i th a cal l
to „ r e p l a c e _ r c u _ n o d e (. . .) " . If two or more updaters managed to obtain a pointer to the
same shared memory, there are two ways it can become problematic, depending on when
the first updater manages to free the memory. If it manages to free the memory before the
second one enters the cr i t ica l section, the second updater w i l l t ry to copy from an already
freed memory. This may lead to either the new node having nonsensical values that w i l l be
published or to a crash caused by a segmentation fault. O n the other hand, if the second
updater manages to copy the data before it is freed, it can happen that the new node
has some outdated data as it is not copying the newest version. However, bo th of these
situations result in a problem because both w i l l t ry to free the same memory at the end.
This behavior is undefined, but i n most cases, it results i n a crash.

ing w i th the outdated element. The synchronization is performed wi th a cal l to either
„synchronize_rcu() " or „call_rcu(. . .)" or similar statements for other R C U flavors.

This type of mistake happens as an error from the side of a developer. E i the r he or she
is not aware that this synchronization is needed for R C U or it is s imply forgotten. Miss ing
R C U reader synchronization results i n unprotected R C U dereference, which is discussed in
Section 4.1 wi th a l l of its consequences.

R C U deadlock

R C U introduces a special k ind of deadlock. A s discussed i n Section 2.1.2, the cal l to

M
synchronize_rcu()" puts the caller to sleep, and it is awaken when a l l the cr i t ical sections

that started before this cal l declare an end of their cr i t ica l section. However, what happens
if the synchronization itself is invoked wi th in a cr i t ica l section?

It depends on the R C U flavor. In some flavors, this causes a deadlock of the R C U
reclaimer process or thread because the synchronization waits for the end of the cr i t ical
section from which it is called, but this cr i t ica l section w i l l end only i f the synchronization
finishes. It is a mutua l exclusion because both actions need the other action to finish first.

27

For other flavors, the ca l l to a synchronization statement behaves as a context switch
that causes an end of the cr i t ica l section wi th in which it is called. Th is situation, on the
other hand, creates problems connected wi th premature terminat ion of the cr i t ical section,
leading most commonly to an unprotected R C U dereference, which is discussed i n Section
4.1, or to an addi t ional declaration of the end of the cr i t ical section, which is discussed in
Section 4.1.

Synchronization inside an R C U reader cr i t ica l section happens mostly i n situations when
an R C U updater function is called by an R C U reader. The developer may not realize that
there is a reader-side synchronization hidden wi th in the updater function and therefore he
or she may cal l this function from the readers cr i t ical section. A n example of this type of
defect is shown and explained in Figure 4.3.

bool validate_rcu_node(int key, const char * hash, s i z e _ t len) {
• rcu_read_lock();

st r u c t Node * p = rcu_dereference(find_rcu_node(head, key));
bool r e s u l t = true;
i f (strncmp(p->hash, hash, len) != 0) {

// Repair the rcu node i n the l i s t
• r e s u l t = repair_rcu_node(key);

}

• rcu_read_unlock();
return r e s u l t ;

}

Figure 4.3: Th is figure presents a problematic si tuation where a function that makes changes
to the R C U protected memory is called w i th in a reader cr i t ical section. We can assume
that the „ r e p a i r _ r c u _ n o d e (. . .) " function tries to replace an inval id node wi th a new valid
one. However, as is known, the inval id node cannot be freed from the memory without
synchronizing w i t h the R C U readers first. So, if the „ r e p a i r _ r c u _ n o d e (. . .) " manages to
repair a node, synchronization is invoked wi th in a cr i t ica l section. In this case, it would
not cause a deadlock because the classic R C U flavor is used. Instead, the synchronization
would act as the end of the cr i t ica l section because it represents a context switch that the
classic R C U flavors does not follow. In this part icular example, no unprotected dereference
would be caused, however, the declaration of the end of the cr i t ica l section at the end of
the function would cause problems explained i n Section 4.1.

Use of Deprecated R C U A P I Calls

One of the warnings that we decided to show to the user represents a si tuation where an
R C U A P I ca l l is encountered that is marked as deprecated or removed i n the latest R C U
A P I table. Th is si tuation happens mostly when code was wri t ten a significant t ime ago and
there have been just a few or no updates since. Th is warning can be useful i n a si tuation
where the appl icat ion wants to start using a new version of R C U to check whether the
update does not cause any problems i n this manner.

28

M i s m a t c h of R C U Flavours

Final ly , yet another warning that we decided to display represents a si tuation where two or
more R C U flavors are used at the same time. It usually means that the flavour of R C U used
to declare the reader cr i t ica l section is not compatible w i th the flavor of the pr imit ive used
for reader-side synchronization. This type of problem commonly happens wi th updates
that decide to switch from the used R C U flavor to a new one because it suits their needs
better. The problem may be caused a lack of understanding of R C U and its flavors or
s imply because some of the R C U statements were missed dur ing the switch to a different
version.

This exact situations happened i n the L i n u x kernel development i n the year 2018, where
after switching from the classic R C U to the R C U - S c h e d flavor, the synchronization stopped
working because only the reader-side primitives were changed. A n email from Linus Tor-
valds asking for help wi th this s i tuat ion can be found i n both [28] and [30] presentations.
A s a consequence, changes were made to make the use of R C U easier i n order to prevent
the mismatch of R C U flavors.

We decided to classify this defect just as a warning, because it is not forbidden to use
more than one R C U flavor at the same t ime, it is just not advised.

4.2 Abstract Interpretation Ingredients

We now proceed to our proposal of using abstract interpretation to detect the above de
scribed problems. In part icular Section 4.2.1 presents the abstract context, Section 4.2.2
presents abstract transformers and Section 4.2.3 presents abstract operators.

4.2.1 Abstract Context

The first component that we needed to design is the abstract context where the design was
based upon on a few assumptions. We assumed that we need to hold 3 types of information.

Firs t ly , we need to keep track of the R C U state during a functions analysis. Further we
also need to save the final R C U state reached i n the analysed function for other functions
to use. We realized that a single part of the abstract context would be enough for both,
because dur ing the analysis of the given function it can hold the current state, and after the
analysis is finished, it automatical ly holds the final R C U state i n the given function. In our
design this part of the abstract context is called „Pos t cond i t i ons" or shortly „Pos t " . It is
used for two purposes: first it is used by the abstract transformers to determine violations
of R C U rules of use during the analysis of the given function and second it is used to check
what the analyzed function left behind after it ended. For example, it may hold information
that a function ended wi th a s t i l l active R C U reader cr i t ica l section. This may be a defect
or an intended result, it is up to the caller to decide. W i t h o u t this information, it would
be impossible to keep track of R C U reader cr i t ica l sections that begin in one function and
end i n another.

Secondly, there needs to be a part of the abstract context that keeps information about
what needs to happen before the function is called. If for example, the analyzed function de
clares only the end of the cr i t ical section it is safe to assume that it needs to be called wi th in
an active cr i t ica l section. Similarly, if the function contains a cal l to

 M
rcu_deref erence ()"

without declaring the start of the cr i t ica l section, it is once again safe to assume that the

29

cr i t ical section needs be active before this function is called. In our design this part of the
abstract context is called p recond i t i ons" or shortly „Prec" .

Lastly, there needs to be a part of the abstract context that holds information about the
problems that were found i n the analyzed function. In out design this part of the abstract
context is called „ P r o b l e m s " . There was also a need to determine how these 3 parts of the
abstract context w i l l be saved, and we decided to create a structure containing them. So
the Abstract Context is a structure containing three parts and it looks like this:

• Postconditions: the R C U state during and at the end of the function,

• Preconditions: the R C U state needed to ca l l this function,

• Problems: problems detected wi th in the function.

Preconditions and Postconditions

There was also a need to determine how the parts of the abstract contexts w i l l look like.
B o t h the pre and post conditions need to store the R C U state, and since there are multiple
R C U flavors, we needed to use a data structure that can hold mult iple R C U states. We were
deciding between a hash table and a set, where the set was chosen because it allows each
element to be stored exactly once, which is beneficial, because we want to keep exactly one
R C U state for each R C U flavor that is used inside the analyzed function or across multiple
functions.

The R C U state itself is composed of two parts namely, lock name to determine which
lock is used and lock score that tells us the locks state meaning how many times it is
locked/unlocked. For example, lock score equal to two tells us that the lock is locked twice
and it also needs to be unlocked twice in order for a l l the cr i t ica l sections to end. The RCU
state structure hast two parts and looks like this:

• Lock name: lock identification,

• Lock score: state of the lock.

Problems

W h e n it comes to problems, mult iple of them can be detected wi th in the analyzed function.
For this reason, a set was used because we want to keep each problem exactly once to avoid
reporting of the same problem mult iple times. E a c h problem is composed of a few parts
that hold the necessary information.

Firs t ly , a problem needs to keep its description that w i l l be reported to the user. Sec
ondly, it needs to hold information about where the defect happened. We decided to save
the name of the function and the line of code where the problem was detected. Last ly,
we needed to save the error pattern under which the problem falls to report more useful
information to the user. The Problem is a structure that hold four parts and looks like this:

• Description: description of the problem for the user,

• Function name: the name of the function where the problem was found,

• LoC: line of code where the problem was found,

• Error pattern: the corresponding error patter.

30

4.2.2 Abstract Transformers

Next , we needed to design the abstract transformers. We started by determining which
concrete statements are relevant for our analysis and we came wi th two main categories.

Crit ica l Section R C U statements

The first b ig category consists of R C U statements that start and end the R C U reader cr i t ical
section. This concerns R C U read locks and unlocks for every single R C U flavor including
the user-space ones. The transformers for this category are as follows:

• RCU read lock: increment the corresponding lock score,

• RCU read unlock: decrement the corresponding lock score; i f it reaches a negative
value, create a precondit ion and a problem.

We decided to create a problem for the situations where the lock score reaches negative
values because it introduces undesirable behavior. However, i f this function is called by a
caller w i th an active cr i t ical section, the score is not actually negative. For this reason, we
decided to create a precondition that once met allows the detected problem to be removed.

Other R C U Statements

The second big category consists of other relevant R C U statements. R C U dereferences,
reader synchronization primitives, and the deprecated or removed R C U statements are
al l relevant and the category once again incorporates these statements from a l l the R C U
flavors. The transformers for this category are as follows:

• RCU dereference: check whether it is called wi th in a corresponding cr i t ica l section:
if it is not, create a precondition and a problem.

• RCU reader synchronization: check whether it is invoked wi th in a corresponding
cr i t ical section; if it is, create a problem.

• Deprecated and removed RCU statements: create a problem.

If an R C U dereference is called without a protection of the cr i t ica l section, the si tuation
can s t i l l be resolved if the cr i t ical section was started by the caller. For this reason, we
create both a problem and a precondition. If the precondition is resolved, the problem is
removed as well.

O n the other hand, when an R C U reader synchronization is invoked wi th in an active
cr i t ical section, it is s tr ict ly a problem. Theoretically, it could be resolved i f the caller
„pre-unlocked" the cr i t ica l section by using an addi t ional R C U read unlock, but this type
of behavior is not wanted. For this reason, we create just a problem to report.

4.2.3 Operators

The abstract interpretation framework of Infer supports three types of operators: jo in ,
widen, and less or equal. It does not support the narrowing operator, so there is no need
to design it.

31

Jo in operator

We needed to decide what to do when different states come from different branches for a l l
three parts of an abstract context. The join operation behaves differently for the different
parts of abstract context, we discuss below why it behaves as we now describe:

• Post: create a new set, where lock score is picked for each flavor from one of the sets
according to the following condition:

— if bo th scores are positive, take the higher value,

— if bo th scores are negative, take the lower value,

— if one score is equal to zero and the other is not, take the non-zero value,

— if one score is positive and the other is negative, create an error and take the
value from either set.

• Prec: create a new set containing a l l preconditions from both sets.

• Problems: create a new set containing a l l problems from both sets.

W h e n it comes to postconditions, we decided to always take the state that is more prob
lematic because we do not want to miss a potential error. For example, i f one set declares
that the R C U cr i t ica l section was started twice and the other declares that it started only
once, the twice started cr i t ica l section is more problematic, so it w i l l be taken as the final
joined state.

A si tuation where one set holds a negative score and the other holds a positive one
is highly unusual and rather problematic because both scores lead to different kinds of
problems. We decided to create an error to inform the developer of this strange behavior
and take either of these values.

W h e n it comes to problems and preconditions, the two sets can have some of the same
items, but thanks to the fact that it is a set, there w i l l be no duplicates i n the final combined
result.

Widen ing operator

Widen ing operator is used when a loop or recursion is encountered to shorten or enforce the
final state computat ion. We, however, do not expect the R C U operations to be repeated
in such volumes that it would cause a problem. Therefore, our widening operator calls
the jo in operator instead. This way the end result is much more accurate than i f it was
over-approximated.

Less or equal operator

This operator has a simple design. It compares a l l three parts of abstract contexts for
both abstract contexts that it was given to compare. If it finds that a l l the elements of
one abstract contexts are already contained in the second abstract contexts, it declares the
first abstract contexts as a lesser one or as a equal one if bo th contexts contain the same
elements. However, i f there is even a single element that is unique for both of these abstract
contexts, these two sets are taken as not comparable and therefore neither is lesser.

32

4.3 Analysis Logic

The analysis logic can be divided into three parts. There is the logic of the analysis as a
whole, there is a logic that dictates how the abstract contexts reached at the end of analyzed
functions w i l l be turned into a summary, and lastly there is a logic that focuses on what
the caller takes and uses from the summary of a called function for its own abstract context
computation.

Overal l Logic

The overall logic builds upon the Infer.AI core principles, mainly the fact that a program is
analyzed according to the ca l l graph from bo t tom up. This pract ical ly means that if a cal l
to a function f2 is encountered dur ing analysis of function fl, Infer w i l l dive into the called
function / 2 and analyze it before continuing wi th the analysis of the caller fl. Infer can
and often does dive several levels deep because during the analysis of the called function
that it dived into, another cal l to a function is encountered and so on. The main advantage
of this approach is that, dur ing the analysis of a function we already know how the called
functions alter the R C U state.

According to these principles, we assumed that a l l that is needed is to start the analysis
for a single function that serves as an entry point, and a l l the functions called from it w i l l be
analyzed too because they have to be called direct ly or indirect ly from this entry point. A n d
we assumed that the entry function w i l l be obtained from Infer. After the analysis of the
entry function ends, we w i l l have a l l the unresolved problems to report, because the resolved
problems w i l l not be propagated higher as they w i l l be removed by the callers. Furthermore
we assumed that the functions that are unused do not need to be analysed. The reason
being that an analysis of such functions could be part icular ly inaccurate. For instance, If
we analyzed a wrapper function, which is used to start the cr i t ica l section without its caller
we would get a false error, saying that the cr i t ica l section was not properly ended. The
steps of the overall logic are as follows:

1. Start the analysis on the entry point function w i t h an empty abstract context, the
analysis performs these tasks:

• Let Infer.AI dive into the called functions and analyze them.

• Create summaries of the called functions after their analysis finishes.

• Use summaries of the called functions i n the callers.

2. Finish the analysis of the entry point function.

3. Join abstract contexts from a l l entry functions exit points.

4. Check if there are any active critical sections; i f there are, create a problem for each
of them.

5. Report all problems to the user.

Summary Computat ion

The summary computat ion consist just of a single operation. It checks the current R C U
state, and if it finds that the R C U reader cr i t ica l section is s t i l l active, it creates a problem.
A l l other parts of the abstract context stay the same, because they are used and altered
during the analysis.

33

A p p l y i n g Summary

Callers apply summaries of a l l the functions that were called from them i n the order i n which
they were called. Th is needs to be done to determine how the called functions affected the
abstract state. The steps of applying the summary are as follows: (we discuss them a bit
more below)

1. Check which preconditions were met and remove problems resolved this way.

2. Add the unresolved problems and preconditions into the callers abstract state.

3. Update the callers abstract state according to the callers postconditions.

A p p l y i n g a summary starts by removing problems that have been resolved, because they
should not be propagated to the caller. This action is done by checking the preconditions
against the callers current R C U state. If, for example, the precondition stated that the
caller needs to have an active cr i t ica l section and it is really the case, this precondition can
be removed and a l l the corresponding problems wi th i t .

The next step consists of propagating the unresolved problems and preconditions to the
caller. The unresolved problems need to be propagated because they need to get to the
entry function to be reported at the end of the analysis. The unresolved preconditions need
to be propagated too because some of the problems may s t i l l be resolved by another caller.

Lastly, the caller needs to adjust its R C U state according to the final state of the called
function. For example, the function may cause the end of the callers cr i t ica l state, and i f
the analysis d id not account for this change, it might either miss out on some errors or
detect non-existing ones.

34

Chapter 5

Implementation

This section describes the implementat ion of the RCU-rules-of-use Ana lyzer which is based
on the original design that was presented i n the previous chapters. It focuses on the
problems that we faced during the implementat ion and how we managed to solve them. A s
a result, the final analyzer somewhat differs from the original design. So, the implemented
version can be taken as the latest design of our analyzer. The reasons for these changes are
one of the points discussed in this chapter.

Furthermore, this chapter contains a section focusing on the parts of the abstract context
(Section 5.1) and the Analys is Logic (Section 5.2). These sections have the same titles as
in the previous chapter that focuses on the design of this analyzer. This is done to make it
easier to draw parallels between the original design and the latest implemented design for
these parts.

5.1 Abstract Interpretation Ingredients

The abstract interpretation ingredients are once again divided into three parts. The imple
mented abstract context is discussed i n Section 5.1.1, the abstract transformers i n Section
5.1.2, and the abstract interpretation operators are discussed in Section 5.1.3.

5.1.1 Abstract Context

We start w i t h how the implemented abstract context, it is a structure containing four parts
and it looks like this:

• Problems: problems detected wi th in the function.

• Postconditions: R C U state during and at the end of the function.

• Function Calls: a l l function calls wi th in the function.

• Process Description: Infer.AIs C F G node of the function.

The problems and postconditions are the only parts that are i n both the original design
and i n the final implementat ion of the Abst rac t Context . The i r importance is discussed in
Section 4.2.1.

The abstract context original design also contained a member called preconditions that
was later removed. We realized that it w i l l be better i f the problems themselves contained
their cause, which can be used to determine if the problem has been resolved. Removing

35

the pre-conditions has even made removing problems less complicated because before, once
a precondition was met, there was a need to determine which problems were associated
wi th this precondition. Now, a l l that is needed is to check for each problem if its cause is
s t i l l val id and if it is, propagate this problem to the caller.

There are two new parts of the abstract context. The first part is called „Func t ion
Cal l s" or shortly „FunCal l s " , and, as its name suggests, it holds a l l function calls that were
encountered inside the analyzed function. This part is used to determine which functions
are „top-level" , meaning which functions do not have a caller. The need for this new part
w i l l be explained i n Section 5.2. The second new part of abstract context is called „Process
Descript ion" or shortly „ProcDesc" , and it is the Con t ro l F l o w G r a p h node representing
the analyzed function. It holds information about the analyzed function, such as its name,
starting line of its code, parameters, return type and more. It is used during defect reporting
to supply the information that the Infer.AI needs.

Postconditions

Postconditions need to hold the R C U state during the analysis. We decided to keep this
part as a set as discussed i n Section 4.2.1. The set holds a l l encountered RCU states, which
consist of the following parts:

• Lock name: lock identification.

• Maximal score: max ima l state of the lock.

• Minimal score: m in ima l state of the lock.

• Access Path: Infer.AIs specific identification that states how the lock was accessed.

• Line of Code: locat ion of the lock i n the source code.

The lock name is used to dist inguish between different types of locks, sometimes between
mult iple R C U locks and nearly always between the reader- and updater-side locks.

There has been a notable diversion from the original design when it comes to the lock
score part of the R C U state. It got divided into two parts that represent an interval of
possible lock scores. We decided for this change because it represents the lock score more
accurately.

There are two new parts that both identify the lock i n the code. The access path is an
Infer.AI specific identifier of the code elements. For a lock, the access path represents the
way this lock was accessed in the code. For example, an access path may be X.Y which
means that the element Y was access through the element X. The element X is usually a
structure that holds a lock. It is kept because Infer.AI requires it for reporting. The second
new part is the line of Code where the lock was first encountered. It may hold the L ine of
Code of the start or the end of the cr i t ica l section according to what is encountered first.

Problems

Problems are also represented as a Set. Where each of its items is a structure containing
seven parts that £1X6 ctS follows:

• Js Lock Problem: determines whether the problem is connected wi th locking.

• Js Lock Needed: determines whether the problem is a missing lock.

36

• Problematic Lock: a problematic lock wi th its score (if the problem is connected w i t h
locking).

• Process Name: the name of the function where the problem was encountered.

• Problems Line of Code: the location of the problem i n the code.

• Problem Name: description of the problem to report to the user.

• Issue: Infer.AI specific problem classification.

Problems now hold significantly more parts than it was the case i n the original design.
It s t i l l contains a l l of the original parts, the „Func t ion name" from the original design is
now called „Process Name", the „LoC" is „P rob l ems L ine of Code" , the „Descr ip t ion" is
„ P r o b l e m Name" and „Er ror pattern" is „Issue". There are however three new parts, which
are here because the cause of the problem was moved from pre-conditon to the problem
itself.

The first part is called „Is Lock Prob lem" , and it tells us whether the problem is related
to locking. If it is not, the analysis knows that it the problem can represent either the
„missing R C U reader synchronization" or the „depreca t ed or removed R C U A P I ca l l " error
only. Therefore, it does not need to check the problematic lock.

The second part is called „Is Lock Needed", and it tells us whether the cause of the
problem is a missing start of the cr i t ica l section. If it is the case, it has to represent the
„ U n p r o t e c t e d R C U dereference" error and once again the analyzer does not need to check
the problematic lock.

The th i rd part is called „ P r o b l e m a t i c Lock" , and it stores the problematic R C U state i f
there is any. In the case of an unended cr i t ica l section, it would hold a R C U state containing
a lock wi th either both min ima l and max ima l scores or just the max ima l score higher or
equal to one. If the previous two parts do not determine the error type this part w i l l be
checked to see if the problem was not resolved.

These three new parts w i l l be l ikely reworked i n the future development because the
current solution is rather overly complicated. The „Issue" part is capable of determining
whether the problematic lock needs to be checked. It is therefore likely that only the
p r o b l e m a t i c Lock" part w i l l stay.

Funct ion Calls and Process Description

The Funct ion Cal ls are represented as a set, where each i tem consists purely of a func
tions name. The process description is the C F G node of the analyzed function, which is
implemented internally i n the Infer.AI and not by us, so we w i l l not dive further into it.

5.1.2 Abstract Transformers

The abstract transformers underwent some changes that expand their behavior. There is
also another category added to the original two.

Crit ica l Section Statements

Transformers for the R C U reader cr i t ica l statements were expanded wi th other n o n - R C U
locking statements. So, the new transformers support the typ ica l locking statements for

37

both the L i n u x kernel and the user-space along wi th the R C U specific reader-side lock
ing. It was done because the original design would detect non-existing „ U n p r o t e c t e d R C U
dereference" errors on the updater-side. The problem was that the original design d id not
account for other than R C U cri t ical sections. A n d since R C U updaters use R C U deref
erence but not the R C U cr i t ica l sections, their dereferences would be falsely classified as
unprotected. The expanded version is as follows:

• Any lock: increment the corresponding lock score,

• Any unlock: decrement the corresponding lock score.

It is worth noting that we also do no longer immediately create a problem if, after an
unlock, the lock score reaches a negative value immediately because these types of problems
are now created during a summary computat ion. This behavior may change in the future
if we determine that it is important to create a problem immediately.

Other R C U - R e l a t e d Statements

This category both expands the original design and changes some of its behavior. The
original design was discussed in Section 4.2.2. The transformers for this category now
support statements that free memory. W h e n it comes to changes, the R C U dereference does
not longer create a precondition, because this member does not exist anymore. Similarly,
situations where a problem can be resoled are now determined solely based on the type of
the problem itself because there are no precondition. There is one more expansion, a l l of
these transformers now add statements to the „Func t ion Cal l s" part of the abstract context.
The updated transformers £1X6 ctS follows:

• RCU dereference: check if it is called w i t h i n a corresponding cr i t ica l section; if it is
not, create a problem.

• RCU reader synchronization: check i f it is invoked wi th in a corresponding cr i t ical
section; i f it is, create a problem.

• Deprecated and removed RCU statements: create a problem.

• Free and Kfree statements: check i f there are both a R C U dereference and a R C U
reader synchronization pr imit ive in the „Func t ion Cal l s" member; i f not, create a
problem.

A s discussed in Chapter 2, R C U needs to synchronize wi th the readers before it can
safely free the outdated memory. The purpose of the new transformers is to verify whether
this happened. It checks whether the „Func t ions calls" member contains the R C U reader
synchronization pr imit ive. If it does not, there are two possible reasons. It is either an
error or the free statement is not related to R C U at a l l . If we created a problem for each
situation where a free statement is not accompanied by a R C U synchronization primit ive
we would get a lot of false positives. For example, i f we analyzed an applicat ion that does
not use R C U at a l l , but uses several free statement, we would get an error for each one
of these free statement. A n d of course none of these errors would be identified correctly.
To combat this, we wanted to determine i f the analyzed function uses R C U before creating
this type of problem. It is done by check whether the analyzed function contains an R C U
dereference statement in its abstract domain. We may miss some of the errors i f the R C U

38

updater does not use the R C U dereference statement but we eliminate a l l situations where
this problem was identified incorrectly.

Other Statements

The new category includes a l l the other statements not included i n the first two groups.
The transformer for them is very simple, it just adds these statements to the „Func t ions
Cal led" member of the functions abstract context.

5.1.3 Operators

The implemented operators were changed to reflect the changes to the abstract context.

Jo in operator

The jo in operator needs to combine a l l four parts of the abstract context. The actions are
as follows:

• Problems: create a new set containing a l l problems from both sets.

• Postconditions: create a new set, where for each lock determine its lock score based
on the following conditions: (reasons for this conditions are discussed below)

— if there is only a single lock score, take its score.

— if there are two lock scores, compare them and take the higher „ M a x i m a l score"
and the lower „Min imal score".

• Function Calls: create a new set containing a l l function calls from both sets.

• Process Description: take process description from either abstract context.

We decided to combine a l l the problems and function cal l from both of the abstract
contexts into one set, because we do not want to miss out on any of them. W h e n it comes
to the process description, bo th abstract contexts should hold the same one, meaning that
either can be taken. We take it from the abstract context that comes as the first operand
to the jo in operator.

The postconditions need to be combined together too, but it cannot be done just by
simply taking a l l of the elements from both abstract contexts and put t ing them into a single
one. The different lock scores need to be taken into account and it is done by taking the
worst case scenario from the two values. Thanks to this fact, no locking errors should be
missed. However, it can introduce falsely identified errors, because the worst case scenario
may not be possible to be reach.

Widen ing operator

The widening operator s t i l l consists s imply of cal l ing the jo in operator because we d id not
determined it to cause problems. If this fact changes, we w i l l most l ikely put an upper
bound on the amount of times the jo in operator can be used and after over-approximate
the result.

39

Less or equal operator

This operator just checks i f a l l postconditions, problems and functions calls of one abstract
context are contained in the second one. If it is the case, the first context w i l l be taken as
the lesser one. A n d once again i f there is even a single element that is unique for both of
these abstract contexts, it means that they cannot be ordered because they are different.

5.2 Analysis Logic

The Analys is Logic also underwent major changes i n a l l three categories. The main reason
for this changes were wrong assumptions during the original design of the analysis.

Overal l Logic

W h e n we designed the overall logic, we assumed that because of Infer.AI core principles it
would be sufficient to run the analysis just on an entry point function for the given source
code, which would result i n a l l the relevant functions to be analyzed too, because they need
to be directly or indirect ly called from this entry function. This assumption turned out to
not be correct because Infer.AI does not always behave as expected.

For example the pthread_create (. . .) statement, used to create new threads, takes
a pointer to a function as a parameter. Th is function w i l l be called by the newly created
thread, but Infer.AI does not dive into this function. It means that i f we analyzed only the
entry point function, then a l l of the functions that were called by the thread both directly
or indirect ly may not be analysed. A s a result, the analysis may fail to detect some of the
errors.

The new logic divides the analysis into two parts. Fi rs t ly , the analysis is started for
al l of the functions declared i n the source code. This does not mean that the Infer.AI
does no longer dive and analyze the called functions once it encounters them. It s t i l l does,
we just make sure that no function is skipped during the analysis. Furthermore, Infer.AI
guarantees that no function w i l l be analyzed twice, because summary of every analyzed
function is saved i n a database. The first part has four steps that are repeated for every
function declared i n the source code:

1. Check if the function already has a summary, if it does, skip rest of these steps.

2. Start the analysis of the function, which contains the following actions:

• Apply Abstract Transformers for the functions statements.

• Let Infer.AI dive into the called functions and analyze them.

• Create summaries of the called functions after their analysis finishes.

• Apply summaries of these called functions in the callers.

3. Finish the analysis of the function

4. Create a summary for the function

After this first part, the analysis has summaries for a l l of the declared functions, meaning
that the second part may start. The second part needs to determine which function are
„top-level" or without a caller and report errors from a l l of them. The second part has
these steps:

40

1. Get list of the functions that were declared i n the source file.

2. Get summaries of a l l functions in the list.

3. Add a l l function calls saved i n the summaries into a single a l l function calls set.

4. Decide which functions from the list should be added to a new top-Level function,
list according to the following conditions:

• If the function is a member of the a l l function calls set, do not add it.

• If it is not a member, add it to to top-Level function list.

5. Report problems from summaries of a l l the functions i n the top-level function list.

Summary computation

The Summary computat ion has been expanded but s t i l l remains simple. It contains just
two actions that ctre cts follows:

• Check i f the problems related caused by unended cr i t ica l section have been resolved:
it they were, remove them.

• Check i f the current cr i t ica l section is s t i l l active; i f it is, create a problem.

B o t h of these si tuation can be checked at the end of the function, because the analysis
holds a l l the necessary information. If the analysis finished wi th properly ended cr i t ical
sections, meaning that both the M i n i m a l and M a x i m a l lock scores were equal to zero, it is
safe to say that the previously unended cr i t ical sections d id not cause issues for the caller,
so the related Problems can be removed.

If on the other hand the caller is faced wi th a situation, where the cr i t ica l section is
s t i l l active at the end of the analysis, it creates a Prob lem. A s a consequence, there may
be mult iple unended cr i t ica l section errors i n the callers P rob lem Set, each representing a
different function, where this problem was encountered. M u l t i p l e errors are kept, because
we cannot say for sure that the unended cr i t ica l section error i n the caller was caused by the
called function. There may as well be an error i n the caller, who should have resolved this
problem. There is an another advantage of keeping mult iple related problems. It makes it
easier to follow how the problem traveled throughout the product.

A p p l y i n g summary

The process of applying summary was expanded and adjusted to fit the new abstract context
as was the case w i t h mult iple other parts discussed above. The expanded steps of Applying
summary are as follows: (Discussed a bit more below.)

1. Check which problems are resolved and can be removed.

2. A d d the unresolved problems into the callers abstract state.

3. A d d the function calls of the function into the callers abstract state.

4. Update the callers abstract state according to the callers postconditions.

41

The caller needs to first check which problems were resolved, so it does not add them into
its own abstract state. O n the other hand, the unresolved problems need to be propagated
to the caller so they can be reported to the user at the end of the whole analysis. A s
discussed earlier, the problems are reported only for the functions that do not have a caller,
which is obviously not the case for the function whose summary is being applied. It is of
course not guaranteed that they w i l l be reported to the user, because they may be resolved
by a different caller.

W h e n it comes to function calls, the caller should add the one used in the function,
because there is one situation, where it is crucial . It concerns the „Missing R C U reader
synchronization" error. It is possible that the synchronization wi th R C U readers happens in
this called function. If the function calls were not propagated to the caller, the analysis may
think that the synchronization d id not happen at a l l , because the caller does not contain
any such cal l in its function calls set.

Lastly, the R C U state of the caller needs to be updated to reflect the functions actions.
It is done by adding the lock scores for each lock contained i n either or both sets. If for
example, the called function declared that a lock has min ima l score equal to zero and
max ima l score equal to one, and the caller declared that the lock has both min ima l and
max ima l score equal to one, the final lock would have min ima l score equal to one and
max ima l score equal to two after applying summary. It would mean that there is a worst
case scenario, where the cr i t ica l section is started twice after the ca l l to this function.

42

Chapter 6

Experimental Evaluation

This chapter focuses on the experimental evaluation of our analyzer, where it tests its
scalability, soundness and completeness.

6.1 Experiments

We have experimentally evaluated our analyzer on (i) handmade and real user-space exam
ples and (ii) the L i n u x kernel.

Handmade and real user-space examples

Our handmade and real user-space examples constitute a test suite containing twenty-five
simple programs, where fifteen of them contain one or mult iple violations of R C U rules and
the other ten are used to verify that our analyzer does not detect violations i n situations
when there are none. O u r analyzer supports both the Kerne l an the User-space variants of
R C U . Bu t , we decided to create these examples using the User-space variant, because it was
easier and it also allowed us to verify our analyzer on bo th variants as the the handmade
examples use the User-space variant and the L i n u x kernel uses the kernel variant.

The examples containing defects were created by us to test the analyzers' abi l i ty to
detect violations in situations where the they are contained wi th in a single function and
situations where they are spread across mult iple functions. There is at least a single test
corresponding to each of the error pattern we identified. The patterns that are classified
as warnings have one example each. E a c h pattern that is classified as an error has one
example where it is the only defect, and it is also present i n examples containing several
defects from various error patterns.

A s for the examples without a defect, they are taken from the user-space R C U official
reposi tory 1 and they are used to test whether the R C U state is properly propagated across
functions. For example, some of them focus on using wrappers because wrappers represent
situations where a function either leaves an active cr i t ica l section at the end of the function
or situations where a cr i t ica l section is ended without being started. These examples act as
a control group because there is a need to verify that our analyzer does not report errors
randomly.

Tests on these handmade and real user-space examples resulted i n twenty-four examples
analyzed correctly and a single example analyzed incorrectly. The one incorrectly analyzed

xhttps: / / github.com/urcu/userspace-rcu

43

http://github.com/urcu/userspace-rcu

example contains a problem corresponding to the „ M i s m a t c h of R C U flavours" error pattern.
It is an expected result, because our analyzer does not support detection of warnings based
on this pattern i n the current version. It is our goal to add support for this pattern i n the
following update.

The handmade examples usually contained around a hundred lines of Code and some
of the read examples contained even higher hundreds of lines of Code.

T h e Linux K e r n e l

Verifying our analyzer on the L i n u x kernel proved to be challenging because several problems
were encountered. The first one is connected wi th the way Infer compiles source files. In
particular, Infers' infrastructure relies on Clang and a custom Infers' plugin for this compiler
for source file compilat ion. Infer requires compilat ion of files that should be analyzed to
gather data that are needed for the analysis. It does not require them to be compiled into
executable files, it just needs them to be complied into object files. The problem is that the
L i n u x kernel is not meant to be complied wi th Clang, but rather w i th the GCC compiler.
There is some support for Clang, but it usually requires the newest version of this compiler
and even then it might be problematic.

That is where a second problem was encountered. The latest Infer release at the time
when we were t ry ing to analyze the L i n u x kernel was v l . 1.0, which supports Clang 11.1.0.
However, at this t ime there already was the 13.0.1 version of this compiler. Since we were
analyzing the latest L i n u x kernel at that t ime, which was the 5.16-14 version, it already
required the higher version of Clang for successful compilat ion. We even t r ied to get an
experimental bu i ld of Infer, which supports the latest Clang. However, this attempt was
unsuccessful, because the experimental bu i ld was labeled as „failing", which proved to be
true as it failed to compile.

So, we tr ied to compile the L i n u x kernel w i th what was available. Clang was selected as
the desired compiler i n the kernels' Makefile, but some issues were s t i l l encountered. The
first one was related to compilat ion flags that were not supported by Clang. Thankfully, we
found out a way to blacklist these unsupported flags, where each flag had to be blacklisted
separately.

However soon after, another problem was encountered, the compiler was unable to
compile any files that contained Assembler code because it d id not support the used syntax.
We were unable to make the compilat ion work for these files. A s a result, we decided to
skip them by passing the ,,-keep-going" flag to the kernels' Makefile, which forced the
compilat ion to continue even after a file failed to be compiled.

This proved to be a winning combo that allowed Clang to compile a significant por t ion
of the L i n u x kernels' source files. The compilat ion itself d id not finish successfully because it
could not deal w i th a l l of the skipped files. However, Infer does not m i n d because it already
captured data for the files that were compiled successfully into object files. Th is method
captured successfully 2,557 out of 2,710 files, which represents around 94.35 % success rate.

However, using the GNU find and wc util i t ies, it was determined that there are 30 700
tota l source files i n the entire L i n u x kernel. A n d less than one tenth of them was used for
this part icular L i n u x kernel compilat ion. The selection of which source files w i l l be used is
based on the L i n u x kernel configuration, which can be used for our benefit. W i t h proper
knowledge, it should be possible to create a configuration i n such a manner, where most
of the compiled source files use R C U . It can result in a less resource-demanding analysis
because resources w i l l be spent more wisely.

44

Now that the source files had been captured, it was t ime to analyze them. However
once again, a problem was encountered. The analysis found thousands of problems, which
it t r ied to report on the command line. Unfortunately, as it turned out, Infer was not bu i ld
to report thousands of messages at such a rapid rate, which resulted i n Infer to become
stuck and not responsive after around a thousand of them. For this reason, we were forced
to change the way Infer reports defects to users. It was changed to create an E r r o r Log ,
which is a file containing defects, for each source file separately. W i t h this change the
analysis was able to finish successfully, but the Er ro r Logs had their shortcomings too.

They made it harder to determine which source file contained the errors because the
file names of the E r r o r logs were composed of the analyzed source file name and a random
ID. It means that there was no information about a path to these analyzed source files. It
was especially problematic because some source files have the same file name. Moreover,
the error messages in the Er ro r logs themselves had a problem because they contained
either a series of unreadable characters or information about Includes, which were only
then followed by the desired error message. However, we were unable to change these error
messages because the first part of the message is generated by Infer internally.

Nevertheless, on the positive side, we have successfully captured defects that can be
analyzed. It proved to be a complex task because there are 1,852 E r r o r logs each contain
ing somewhere from ten to several hundreds of error messages. Moreover, we came to a
realization that the errors themselves are reported for a pre-processed version of the source
files and not the original version of source files because various errors were reported for
functions that are not present i n the original source file or for lines of code that are empty
in the original source file.

A s a result, we tr ied to obtain the pre-processed versions of these source files. We tried
running the L i n u x kernel compilat ion wi th the -save-temps flag that saves the temporary
files dur ing the compilat ion, where the pre-processed version of the compiled files is one of
them. However, this attempt failed because the use of this flag introduced errors to the
kernels' compilat ion that could not be skipped because the compilat ion d id not allow it.

Then we came up wi th an idea to t ry and pre-process these files manually, but this plan
was postponed un t i l a way w i l l be found that w i l l automate this process, because it would
require a significant t ime investment. A s a result, the analysis of the L i n u x kernel cannot
be labeled as successful just yet. However, we managed to lay significant bui ld ing blocks
for the analysis to work i n the future.

6.2 Evaluations of the Current State and Future Plans

Thanks to the handmade examples we were able to verify that our analyzer is capable
of detecting most of the situations when R C U is used i n a different manner than it was
designed to be. Moreover, the evaluation on the L i n u x kernel showed us that our analyzer
is capable of analyzing even a much more complex applicat ion composed of thousands of
files. However, our analyzer has some shortcomings too. Repor t ing of the found defects
to the user is problematic for larger applications. Furthermore, the analysis of the L i n u x
kernel found thousands of defects, which is a rather large number that can mean that
a significant por t ion of these defects are duplicates or false positives. It would however,
require an analysis to determine what is the exact cause.

A s a result we plan on making several updates to the analyzer, like improving and
expanding the analyzers support for error patterns defect detection, increasing both the
completeness and soundness of the analysis and making the analysis pract ical on the L i n u x

45

kernel. W h e n it comes to error patterns, we would like to add support for at least the
missing „ M i s m a t c h of R C U Flavors" error pattern that is already identified. Moreover, we
would like to analyze real R C U code to better identify how it is used, which may result in
new error patterns that can expand our analyzers functionality and wi th it its usefulness.
For soundness and completeness, we would like to determine the causes of false positives
and miss the errors. Then we plan to change the analyzer to eliminate these causes to make
our analyzer more reliable.

We also plan to continue wi th the evaluation of our analyzer on the L i n u x kernel, where
we want to make the analysis work on any kernel version. We plan on reworking the
reporting por t ion of our analyzer to make the error messages easy to understand and to
make it easier to find these defects i n their source files. Furthermore, we would like to
introduce a solution that would create pre-processed version of compiled source files for the
developers to analyze after the analysis finishes. There are also some overall improvements
that we would like to make to the analyzer. We plan on redesigning the abstract context
and transformers to be more effective by removing a l l unnecessary information that is kept
by the analyzer during the analysis.

46

Chapter 7

Conclusion

The goal of this thesis was to study the principles of synchronisation of concurrent threads
using R C U and using this knowledge to design and implement an analyser in the Facebook
Infer framework targeted at discovering synchronisation errors i n programs using R C U .

To satisfy this goal we had to overcome several challenges along the way. The first
step was to get familiar w i th Read Copy Update to understand how this synchronization
mechanism works. Th is step was important to understand what types of errors may happen
during the R C U synchronization and what is their typica l cause. Therefore, our main
focus was to determine how R C U needs to be used while wr i t ing an applicat ion for its
synchronization to work as desired.

The second step involved researching available solutions for error detection involving
R C U and getting familiar w i th both the abstract interpretation and the Facebook (now
Meta) Infer framework. This step was necessary to make sure that we were not „re invent ing
a wheel" or rather creating and already existing and used analyzer. It was also needed to
get familiar w i th the principles of abstract interpretation so we would be able to design the
analysis around it, the same can be said for Infer.

The th i rd step focused on the original design of our analyzer that involved two separate
parts. We introduced error patterns that we identified and which are used for the error
defection by out analyzer. Secondly, we discussed how we imagined our analyzer to work.
The fourth step then focused on the real implementat ion of our analyzer, where we showed
how and why we were forced to change the original design. Here, we also discussed the
changes that expanded our analyzer to produce more accurate results. The last very im
portant step focused on the experimental evaluation of our product, where we proved that
it is capable of analysing even complex real-life applications.

We managed to create an analyzer that can be used to detect synchronisation errors
based R C U not being used as it was intended to be. It provides support for a l l possible
R C U flavors in both user-space and the L i n u x kernel. Furthermore, it was proven to work
on smaller both handmade and real examples and it also managed to analyse the L i n u x
kernel despite numerous challenges along the way. A n even more improved support for
large and complex applications is one of our main goals for the future. We also hope that
it may become a part of either the L i n u x kernel or user-space R C U projects development.

47

Bibliography

[1] About Infer [online], [cit. 2022-05-03]. Available at:
https: / / f binfer.com/docs/about-Infer.

[2] Building checkers with the Infer.AI framework [online], [cit. 2022-05-05]. Available at:
https: / / f binf er. com/docs/absint- framework/.

[3] Pulse [online], [cit. 2022-05-06]. Available at:
https: / / fbinfer.com/docs/checker-pulse/.

[4] RacerD [online], [cit. 2022-05-06]. Available at:
https: / / fbinfer.com/docs/checker-racerd/.

[5] Starvation [online], [cit. 2022-05-06]. Available at:
https: / / fbinfer.com/docs/checker-starvation/.

[6] C O M M U N I T Y , T. kernel development. Coccinelle. [online], [cit. 2022-04-24]. Available
at: https : //www.kernel.org/doc/html/latest/dev-tools/coccinelle.html.

[7] C O M M U N I T Y , T. kernel development. Development tools for the kernel, [online], [cit.
2022-04-24]. Available at:
https: //www.kernel.org/doc/html/latest/dev-tools/index.html.

[8] C O M M U N I T Y , T. kernel development. The Kernel Concurrency Sanitizer (KCSAN).
[online], [cit. 2022-04-24]. Available at:
https: //www.kernel.org/doc/html/latest/dev-tools/kcsan.html.

[9] C O M M U N I T Y , T. kernel development. Kernel Electric-Fence (KFENCE). [online], [cit.
2022-04-24]. Available at:
https: //www.kernel.org/doc/html/latest/dev-tools/kf ence.html.

[10] C O M M U N I T Y , T. kernel development. Kernel Testing Guide, [online], [cit.
2022-04-24]. Available at:
https: //www.kernel.org/doc/html/latest/dev-tools/testing-overview.html.

[11] C O M M U N I T Y , T. kernel development. Lockdep-RCU Splat [online], [cit. 2022-04-28].
Available at: https: //www. kernel.org/doc/html/latest/RCU/lockdep-splat .html.

[12] C O M M U N I T Y , T. kernel development. RCU and lockdep checking [online], [cit.
2022-04-28]. Available at: https://www.kernel.org/doc/html/latest/RCU/lockdep.html.

[13] C O M M U N I T Y , T. kernel development. Runtime locking correctness validator, [online],
[cit. 2022-04-24]. Available at:
https: //www.kernel.org/doc/html/latest/locking/lockdep-design.html.

18

http://binfer.com/docs/about-Infer
http://fbinfer.com/docs/
http://fbinfer.com/docs/
http://fbinfer.com/docs/
http://www.kernel.org/doc/html/latest/dev-tools/coccinelle.html
http://www.kernel.org/doc/html/latest/dev-tools/index.html
http://www.kernel.org/doc/html/latest/dev-tools/kcsan.html
http://www.kernel.org/doc/html/latest/dev-tools/kf
http://www.kernel.org/doc/html/latest/dev-tools/testing-overview.html
http://kernel.org/doc/html/latest/RCU/lockdep-
https://www.kernel.org/doc/html/latest/RCU/lockdep.html
http://www.kernel.org/doc/html/latest/locking/lockdep-design.html

[14] C O M M U N I T Y , T . kernel development. Sparse, [online], [cit. 2022-04-24]. Available at:
https: //www.kernel.org/doc/html/latest/dev-tools/sparse.html.

[15] C O M M U N I T Y , T . kernel development. What is RCU? - "Read, Copy, Update"
[online], [cit. 2022-04-16]. Available at:
https: //www.kernel.org/doc/html/latest/RCU/whatisRCU.html.

[16] C O U S O T , P . Semantic Foundations of Program Analys i s . In: M U C H N I C K , S.
and J O N E S , N . , ed. Program Flow Analysis: Theory and Applications. Prent ice-Hal l ,
Inc., Englewood Cliffs, New Jersey, 1981, chap. 10, p. 303-342 [cit. 2022-05-03].

[17] C O U S O T , P . Interpretation abstraite. Technique et science informatique. Paris ,
France: Hermes. January 2000, vol . 19, 1-2-3, p. 155-164, [cit. 2022-05-03].

[18] C O U S O T , P . Abst rac t Interpretation Based Formal Methods and Future Challenges,
invi ted paper. In: W I L H E L M , R . , ed. « Informatics — 10 Years Back, 10 Years
Ahead ». Springer-Verlag, 2001, vol . 2000, p. 138-156 [cit. 2022-05-03]. Lecture Notes
i n Computer Science.

[19] C O U S O T , P . Abst rac t Interpretation in a Nutshel l , [online], [cit. 2022-05-03].
Available at: https://www.di.ens.fr/~cousot/AI/IntroAbsInt.html#CousotAIMIT.

[20] D E S N O Y E R S , M . , D A G E N A I S , M . R . , W A L P O L E , J . , M C K E N N E Y , P . E . and S T E R N ,

A . S. User-Level Implementations of Read-Copy Update . IEEE Transactions on
Parallel & Distributed Systems. Los Alami tos , C A , U S A : I E E E Computer Society,
feb 2012, vol . 23, no. 02, p. 375-382, [cit. 2022-04-16]. D O I : 10.1109/TPDS.2011.159.
I S S N 1558-2183.

[21] D E S N O Y E R S , M . and M C K E N N E Y , P . E . Userspace RCU [online], [cit. 2022-04-21].
Available at: https://liburcu.org/.

[22] H A R M I M , D . Static Analysis Using Facebook Infer To Find Atomicity Violations.
Brno , 2019. [cit. 2022-05-03]. 5-7 p. Bachelors Thesis. B rno Univers i ty of Technology,
Facul ty of information technology. Supervisor I N G . T O M A S V O J N A R , P . prof.
Available at:
https: //www.vut.cz/www_base/zav_prace_soubor_verejne.php?f ile_id=197619.

[23] L E N G A L , O . and V O J N A R , T . Abstract Interpretation: Ingredients of Abstract
Interpretation [online]. Presentation. Brno Univers i ty of Technology, Facul ty of
Information Technology, 2022 [cit. 2022-05-03]. 6-12 p. Available at:
https: //www. f i t . vutbr.cz/study/courses/SAV/public/Lectures/sav-lecture-06.pdf.

[24] M C K E N N E Y , P . E . RCU [online], [cit. 2022-04-24]. A crossroad to most of the R C U
related sources maintained by one of the R C U founders Paul E . McKenney. Available at:
http ://www2.rdrop.com/users/paulmck/RCU/.

[25] M C K E N N E Y , P . E . W h a t is R C U ? Par t 2: Usage. LWN.net. Ek lek t ix , Inc. december
2007, [cit. 2022-04-06]. Available at: https://lwn.net/Articles/263130/.

[26] M C K E N N E Y , P . E . Sleepable Read-Copy Update . October 2009, p. 2-4, [cit.
2022-04-20]. Available at:
https: //www.researchgate.net/publication/255592374_Sleepable_Read-Copy_Update.

49

http://www.kernel.org/doc/html/latest/dev-tools/sparse.html
http://www.kernel.org/doc/html/latest/RCU/whatisRCU.html
https://www.di.ens.fr/~cousot/AI/IntroAbsInt.html%23CousotAIMIT
https://liburcu.org/
http://www.vut.cz/www_base/zav_prace_soubor_verejne.php?f
http://vutbr.cz/
http://rdrop.com/users/paulmck/RCU/
http://LWN.net
https://lwn.net/Articles/263130/
http://www.researchgate.net/publication/255592374_Sleepable_Read-Copy_Update

[27] M C K E N N E Y , P . E . The R C U A P I , 2010 E d i t i o n . LWN.net. Ek lek t ix , Inc. december
2010, [cit. 2022-04-28]. Available at: https://lwn.net/Articles/418853/.

[28] M C K E N N E Y , P . E . A C r i t i c a l R C U Safety Proper ty Is... Ease of Use!!! In: I B M
Corporat ion, [online]. M a y 2019, p. 25,29 [cit. 2022-04-24]. D O I :
10.1145/3319647.3325836. Available at:
http ://www2. rdrop.com/users/paulmck/RCU/rcu-exploit.2019.06.05d.pdf.

[29] M C K E N N E Y , P . E . The R C U A P I tables, 2019 edit ion. LWN.net. Ek lek t ix , Inc.
January 2019, [cit. 2022-04-20]. Available at: https://lwn.net/Articles/777165/.

[30] M C K E N N E Y , P . E . Does R C U Real ly Work? : A n d i f so, how would we know? In:
Facebook Corporat ion, [online]. M a r c h 2021, p. 23 [cit. 2022-04-20]. Available at:
http ://www.rdrop.com/user s/paulmck/RCU/Validat ion.2021.03.24a.pdf.

[31] M C K E N N E Y , P . E . Unravel ing R C U - U s a g e Mysteries: A d d i t i o n a l Use Cases. In:
Facebook Corporat ion, [online]. February 2022, p. 12 [cit. 2022-04-16]. Available at:
https: //events, linuxfoundation.org/wp-content/uploads/2022/02/

RCUusageAdditional.2022.02.22b.LF-l.pdf.

[32] M C K E N N E Y , P . E . and W A L P O L E , J . W h a t is R C U , Fundamental ly? LWN.net.
Eklek t ix , Inc. december 2007, [cit. 2022-04-17]. Available at:
https: //lwn.net/Articles/262464/.

[33] M0LLER, A . and S C H W A R T Z B A C H , M . I. Static Program Analysis. February 2022 [cit.
2022-05-02]. Department of Computer Science, Aarhus University.

[34] T E C H O P E D I A . Torture Test [online], [cit. 2022-05-10]. Available at:
https: //www.techopedia.com/definit i o n / 16336/torture-test.

50

http://LWN.net
https://lwn.net/Articles/418853/
http://rdrop.com/users/paulmck/RCU/rcu-exploit
http://LWN.net
https://lwn.net/Articles/777165/
http://www.rdrop.com/user
http://linuxfoundation.org/wp-content/uploads/2022/02/
http://LWN.net
http://www.techopedia.com/definit

