

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

BRNO UNIVERSITY OF TECHNOLOGY

FAKULTA STROJNÍHO INŽENÝRSTVÍ ENERGETICKÝ ÚSTAV

FACULTY OF MECHANICAL ENGINEERING ENERGY INSTITUTE

DVOUTĚLESOVÁ KONDENZAČNÍ PARNÍ TURBINA

DOUBLE CASING CONDENSING STEAM TURBINE

DIPLOMOVÁ PRÁCE MASTER'S THESIS

AUTOR PRÁCE

Bc. TOMÁŠ ADÁMEK

VEDOUCÍ PRÁCE SUPERVISOR

doc. Ing. JAN FIEDLER, Dr.

BRNO 2013

Vysoké učení technické v Brně, Fakulta strojního inženýrství

Energetický ústav Akademický rok: 2012/13

ZADÁNÍ DIPLOMOVÉ PRÁCE

student(ka): Bc. Tomáš Adámek

který/která studuje v magisterském studijním programu

obor: Energetické inženýrství (2301T035)

Reditel ústavu Vám v souladu se zákonem č.111/1998 o vysokých školách a se Studijním a zkušebním řádem VUT v Brně určuje následující téma diplomové práce:

Dvoutělesová kondenzační parní turbina

v anglickém jazyce:

Double Casing Condensing Steam Turbine

Stručná charakteristika problematiky úkolu:

Navrhněte dvoutělesovou kondenzační parní turbinu 200 MW s odběry páry pro petrochemický průmysl. Návrh bude zpracován pro následující parametry: množství admisní páry m1 = 1230 t/h / 130 bar(a) / 537 °C požadovaný tlak a množství v třetím regulovaném odběru 55 bar(a), 590 t/h požadovaný tlak a množství ve druhém neregulovaném odběru 9 bar(a), 125 t/h požadovaný tlak a množství v prvním neregulovaném odběru 1,7 bar(a), 85 t/h tlak na výstupu z NT dílu pk = 0,16 bar(a) otáčky turbiny n = 3000 min-1

Cíle diplomové práce:

Turbina je určena pro paroplynový cyklus a nemá žádné regenerační odběry páry. Turbína nebude pokrývat plně kondenzační provozy. Další nespecifikované parametry cyklu vhodně zvolte.

Vhodně zvolte typ regulace turbiny, za předpokladu pevného vstupního tlaku.

Parní turbinu uvažujte s axiálním výstupem do vzduchem chlazeného kondenzátoru. Regulaci odběru uvažujte pomocí vstupních ventilů před druhým turbínovým (NT) tělesem.

Vypracujte bilanční schémata pro 100% provoz.

Určete předpokládaný vývoj tlaků a teplot v neregulovaných odběrech pro 80% a 60% provozy.

Proveď te základní dimenzovací výpočty.

Nakreslete podélný řez NT dílem.

Seznam odborné literatury:

Fiedler, J.: Parní turbiny - návrh a výpočet, CERM- Brno 2004 Škopek, J.: Parní turbina, ZČU Plzeň 2007 Kadrnožka, J.: Tepelné turbiny a turbokompresory, CERM- Brno, 2007 Kolektiv: Strojní zařízení tepelných centrál, PC-DIR, 1999

Dv autžinsov i kundenir čni paral turkina

v angliekém jazyee:

Bouble Contra Condensing Steam Turkier

Vedoucí diplomové práce: doc. Ing. Jan Fiedler, Dr.

Termín odevzdání diplomové práce je stanoven časovým plánem akademického roku 2012/13.

V Brně, dne 19.10.2012

doc. Ing. Zdeněk Skála, CSc. Ředitel ústavu prof. RNDr. Miroslav Doupovec, CSc., dr. h. c. Děkan

Abstrakt

V této diplomové práci je počítána dvoutělesová kondenzační parní turbína o požadovaném výkonu 200 MW s odběry páry pro petrochemický průmysl. Stroj je určen pro paroplynový cyklus. Má jeden regulovaný odběr, umístěný mezi tělesy, 2 neregulované odběry a axiální výstup do vzduchem chlazeného kondenzátoru. Je vypracováno bilanční schéma pro 100 % provoz. Detailní návrh je proveden pouze pro ST/NT těleso a zahrnuje výpočet průtočné části, volbu profilů lopatek a jejich pevnostní kontrolu. Rotor je kontrolován na velikost kritických otáček, spočítána bezpečnostní kontrola spojky a podle reakčních sil jsou navržena radiální ložiska. Závěrem je přiblížena regulace turbosoustrojí a spočítány teploty a tlaky v neregulovaných odběrech při 80 a 60 % provozu. Celá práce byla zadána a vypracována ve spolupráci s firmou Doosan Škoda Power.

Klíčová slova

Dvoutělesová kondenzační parní turbína, paroplynový cyklus, regulovaný odběr, axiální výstup, Doosan Škoda Power

Abstrakt

This thesis is focused on calculation of double casing condensing steam turbine with capacity 200 MW for petrochemical industry's consumptions. Engine is projected for gas-steam cycle. It has one controlled extraction points placed between two bodies, two uncontrolled extraction points and axial output to air-cooling condenser. Balance scheme was made for 100% operation. Detail design is made only for ST/NT casing and it includes calculation of flowing part, selection of blade's profile and its stress control. Rotor is checked for critical speed, safety rigid coupling is calculated and according to reaction forces journal bearing are designed. In the end regulation of turbo-set is discussed more precisely and there are calculation of temperature and pressure in uncontrolled extraction points during 80% and 60% operation. Thesis was written out according to Doosan Skoda Power's instruction and with their cooperation.

Key words

Double casing condensing steam turbine, gas-steam cycle, controlled extraction points, axial output, Doosan Skoda Power

Bibliografická citace mé práce

ADÁMEK, T. Dvoutělesová kondenzační parní turbina. Brno: Vysoké učení technické v Brně, Fakulta strojního inženýrství, 2013. 94 s. Vedoucí diplomové práce doc. Ing. Jan Fiedler, Dr..

Prohlášení

Prohlašuji, že jsem tuto diplomovou práci na téma: Dvoutělesová kondenzační parní turbína vypracoval samostatně. Vycházel jsem při tom ze svých znalostí, odborných konzultací, odborné literatury a zdrojů uvedených na seznamech, které tvoří přílohu práce.

V Brně, dne: 24.5.2013

Bc. Tomáš Adámek

Poděkování

Děkuji panu Ing. Václavovi Urbánkovi ze společnosti Doosan Škoda Power za odborné konzultace a trefné připomínky. Děkuji doc. Ing. Janu Fiedlerovi, Dr. za vedení mé diplomové práce, odbornou pomoc a cenné rady.

Chtěl bych také vyjádřit poděkování své rodině a blízkým, za finanční a psychickou podporu a to nejenom během tvorby této práce, ale i během celého mého studia.

SI

DVOUTĚLESOVÁ KONDENZAČNÍ PARNÍ TURBÍNA

Obsah	
1 Úvod	9
1.1 Popis plánovaného zapojení a funkce	9
1.2 Zavedené předpoklady a zjednodušení1	0
2 Tepelný výpočet1	1
2.1 Parametry VT dílu1	1
2.2 Parametry ST/NT dílu1	3
2.2.1 STa část	3
2.2.2 S1b cast	5 6
2.3 Vzduchový kondenzátor KOND	7
2.4 Předpokládané výkony	8
3 Návrh průtočné části	9
3.1 Nástin postupu výpočtu	0
3.2 Výpočet pro prizmatické lopatky	0
3.2.1 Výpočet parametrů na vstupu a výstupu z	1
3.2.2 Výpočet délkových rozměrů rozváděcích lopatek	3
3.2.3 Výpočet parametrů na vstupu a výstupu z	4
3.2.5 Výpočet ztrát v lopatkové mříži	.6
3.2.6 Výpočet parametrů pro vstup do dalšího stupně2	7
3.3 Výpočet průtočných částí ST/NT dílu pro zborcené lopatky2	8
3.4 Souhrn výsledků	9
3.5 Účinnost a výkon turbosoustrojí	2
4 Rychlostní trojúhelníky3	6
5 Volba profilů	9
6 Pevnostní výpočty4	1
6.1 Namáhání oběžných lopatek na ohyb4	1
6.2 Namáhání oběžných lopatek na tah4	3
6.3 Namáhání závěsů oběžných lopatek4	5
6.4 Namáhání závěsů kol4	9
6.5 Namáhání rozváděcích lopatek na ohyb5	1
6.6 Namáhání rozváděcích kol5	4
7 Ucpávky	6
7.1 Vnitřní ucpávky	6
7.2 Vnější ucpávky	7
7.2.1 Přední ucpávky	7
7.2.2 Zadni ucpavka	1
7.3 Skutečný výkon turbosoustrojí	5
8 Rotor a jeho kritické otáčky	6

ENERGETICKÝ ÚSTAV	Bc. Tomáš Adámek
DVOUTĚLESOVÁ KONDENZAČNÍ PARNÍ TURBÍNA	24.5.2013
8.1 Hmotnost rotoru	66
8.2 Kritické otáčky rotoru	
8.3 Kontrola rotoru na krut	
8.4 Kontrola spojky	
9 Radiální ložiska	69
9.1 Síly působící na radiální ložiska	
9.2 Návrh radiálních ložisek	
9.3 Olejové potrubí radiálních ložisek	71
10 Výkres	
11 Regulace	74
12 Nenávrhové provozní stavy	
13 Závěr	
14 Literatura	
15 Software	
16 Seznam tabulek	
17 Seznam obrázků	
18 Seznam příloh	
19 Přílohy	84

1 Úvod

Cílem této diplomové práce je detailní návrh 200 MW dvoutělesové kondenzační parní turbíny pro použití v paroplynovém cyklu s odběry pro petrochemický průmysl, přičemž turbína plně nepokrývá kondenzační provoz a ze zadání je známý tlak na výstupu z turbíny do kondenzátoru.

Známé parametry:

$m_1 = 1230 \text{ t/h} = 341,67 \text{ kg/s}$	množství páry z kotle do turbosoustrojí
$p_1 = 130 \text{ bar(a)}$	tlak páry z kotle
$t_1 = 537 \text{ °C}$	teplota páry z kotle
$p_k = 0,16 \text{ bar(a)}$	tlak páry na výstupu z turbosoustrojí
$n = 3000 \text{ min}^{-1}$	otáčky turbíny
$\begin{split} m_{03} &= 590 \text{ t/h} = 163,89 \text{ kg/s} \\ p_{03} &= 55 \text{ bar(a)} \\ m_{02} &= 125 \text{ t/h} = 34,72 \text{ kg/s} \\ p_{02} &= 9 \text{ bar(a)} \\ m_{01} &= 85 \text{ t/h} = 23,61 \text{ kg/s} \\ p_{01} &= 1,7 \text{ bar(a)} \end{split}$	požadované množství páry v 3. reg. odběru O3 požadovaný tlak páry v 3. reg. odběru O3 požadované množství páry v 2. nereg. odběru O2 požadovaný tlak páry v 2. nereg. odběru O2 požadované množství páry v 1. nereg. odběru O1 požadovaný tlak páry v 1. nereg. odběru O2

1.1 Popis plánovaného zapojení a funkce

Navrhovaná turbína je součástí parního okruhu paroplynového cyklu a skládá se ze dvou těles. Vzhledem k běžně zažité terminologii se pojmenování jednotlivých dílu zavádí dle provozních tlaků páry v nich zpracovávaných. Hřídele vysokotlakého (VT) a středonízkotlakého dílu (ST/NT) jsou navzájem spojeny pružnou spojkou a jejich kroutící moment je tak společně přenášen do turboalternátoru, který je umístěn vpravo od VT dílu. Směry vstupu a výstupu páry v obou dílech jsou prostorově orientovány proti sobě, aby došlo k částečnému vyručení vzniklé axiální síly.

Celému parnímu cyklu je předřazen okruh se spalovací turbínou (KOMP+GT). Přes vzduchové filtry je do axiálního turbokompresoru (KOMP) nasáván vzduch a je zde stlačován. V připojené spalovací komoře (SK) je pak smísen s palivem a zapálen. Vzniklé spaliny jsou hnány do spalovací turbíny (GT) a jejich energie roztáčí připojený turbokompresor a alternátor. Horké spaliny jsou po průchodu GT vedeny kotlem na odpadní teplo (HRSG). Zde je využito zbytkové teplo obsažené ve spalinách ke generaci vodní páry. Ta je přiváděna parovodem na hlavní uzavírací ventil parní turbíny HUV. Tento způsob sériového zapojení spalovací a parní turbíny vede ke zvýšení celkové tepelné účinnosti zařízení, tedy k vyššímu využití chemické energie obsažené v palivu (tj. na vstupu do GT) a k její efektivnější přeměně na výsledný produkt (tj. výroba elektřiny a tepla).

Z hlavního uzavíracího ventilu HUV je pára vedena přes regulaci RV do tělesa VT dílu. Pára při průchodu lopatkováním VT dílu odevzdá část své energie. Ta je převedena na kroutící moment, který v připojeném alternátoru generuje elektrický výkon. Na výstupu z VT dílu se nachází regulovaný odběr, což znamená, že požadované množství páry je vedeno do místa odběru O3 a zbylá část pokračuje přes přepouštěcí ventil PV do tělesa ST/NT.

Pára při průchodu ST/NT dílem odevzdá většinu své zbylé energii, která je ve společném turboalternátoru opět přeměněna na elektrický výkon. Množství páry procházející jednotlivými částmi ST/NT dílu je však snižováno o požadované množství páry pro odběr O2 a O1. Pára po průchodu celým ST/NT dílem vstupuje do axiálně připojeného vzduchem chlazeného kondenzátoru. Po zkapalnění je napájecím čerpadlem vedena opět do systému HRSG.

DVOUTĚLESOVÁ KONDENZAČNÍ PARNÍ TURBÍNA

Výše zmíněný popis principu funkce zařízení je sestaven pro 100% provoz. Lze však předpokládat, že mohou nastat také situace, kdy při zvýšené spotřebě množství páry v odběru O3, například v některých částech roku nebo při změně požadavků na dodávaný elektrický výkon, bude nutné mimo jiné také snížit přepouštěcím ventilem PV množství páry do ST/NT dílu. Tento pokles však nesmí být nižší než je množství páry pro pokrytí ventilačních ztrát ST/NT dílu. Z bezpečnostních důvodů je vhodné zajistit propojení příslušných odběrů s přiváděcím potrubím z kotle přes tzv. redukčně-chladící stanice. To zajistí alespoň částečný provozu technologií odebírající páru z odběrů při plánovaných i neplánovaných stavech provozu turbosoustrojí (odstávky, poruchy). U odběru O3, kde je odebírané množství a tlak značné, lze předpokládat, že tato pára slouží pro technologické využití. U neregulovaných odběrů O1 a O2 se lze z požadovaných hodnot tlaků jen domnívat, že budou nejspíše sloužit k ohřevu vody či napájení dálkových parovodů. Vzhledem k tomu, že není známá skutečná charakteristika přípojného provozu a ani ze zadání či konzultací nutnost takovéhoto druhu zálohy přímo nevyplynula, je návrh jejího provedení pouze pro názornost na obr. 1 a dále s ní není již ve výpočtu počítáno.

Obr. 1 Zjednodušené schéma zapojení technologického celku paroplynového cyklu

1.2 Zavedené předpoklady a zjednodušení

Po objasnění celého technologického zapojení se diplomová práce dále zabývá detailněji pouze návrhem ST/NT dílu parní turbíny. Návrh VT dílu je v této práci omezen pouze na výpočet předpokládaného entalpického spádu, účinnosti a produkovaného elektrického výkonu.

Zadání diplomové práce obsahovalo pouze základní údaje a požadavky, ostatní parametry jsem proto specifikoval na základě vlastní úvahy či podle doporučení firmy Doosan Škoda Power.

- Hodnoty tlakových ztrát na potrubních trasách, ventilech, vstupech a výstupech byly voleny dle doporučení z firmy Doosan Škoda Power
- Teplotní ztráty na potrubních trasách a zařízení způsobné nedokonalostí izolace byly zanedbány
- Škrcení na všech ventile bylo uvažováno jako izoentalpické
- Požadované hodnoty v odběrech O1, O2, O3 byly brány v místech skutečného odběru, tj. snížené o tlakové ztráty v potrubí vedoucím k odběrům oproti hodnotám v místě příslušného otvoru v tělese skříně turbíny
- Napajecí nádrž s odplyňovákem a požadavkem na jejich následné výpočty a provedení příslušných technologických odběrů v zadání chybí, dle doporučení jsou tedy uvažovány jako integrální součásti HRSG a tudíž jejich výpočty a provedení nejsou předmětem této práce.
- Je zanedbán vliv kondenzátu ucpávkové páry KUP a napajecího čerpadla NČ

2 Tepelný výpočet

Ze vstupních a výstupních hodnot lze vypočítat předpokládané stavy páry v důležitých místech technologického schéma zapojení VT a ST/NT dílů parní turbíny. ST/NT díl je pro snazší orientaci pomyslně rozdělen mezi odběry na tři části: STa, STb a NT.

Příslušné výpočty jsou prováděny postupně pro každou část turbosoustrojí při 100% provozu. Body expanze páry v jednotlivých částech parní turbíny označené indexem *iz* značí izoentropické stavy, tj. termodynamické děje beze ztrát, které jsou v praxi nedosažitelné. Takto neindexované hodnoty pak odpovídají expanzi reálné.

Pro všechny výpočty parametrů v jednotlivých bodech byl použit doplněk programu Excel IAPWS IF97.dll a z jejich výsledků je sestaven návrh předpokládaného bilančního schéma (Příloha 10).

2.1 Parametry VT dílu

Obr. 2 Průběh expanze páry ve VT dílu

Je předpokládáno izoentalpické škrcení na regulaci RV s příslušnou tlakovou ztrátu z_p^{RV} a tlakovou ztrátu z_p^{O3} v potrubí vedoucí od turbíny k místu odběru O3. Dle doporučení z firmy Doosan Škoda Power je volena předpokládaná termodynamická účinnost VT dílu.

$z_p^{RV} = 3,5\% = 0,035[-]$	tlaková ztráta vzniká škrcením na RV
$z_p^{O3} = 5\% = 0.05[-]$	tlakové ztráty v potrubí odběru O3
$\eta_{TDi}^{VT} = 0,90 [-]$	termodynamická účinnost

Bod 1

•	Hmotnosntí tok na vstupu	$m_1 = 341,667 \text{ kg/s}$
•	Tlak na vstupu	$p_1 = 130 \text{ bar}$
•	Teplota na vstupu	$t_1 = 537^{\circ}C$
•	Entalpie na vstupu	$i_1 = f(p_1; t_1) = 3437,1095 \text{ kJ/kg}$

Bod VT1

- Hmotnostní tok VT dílem
 - $m_{VT} = m_1 = 341,667 \text{ kg/s}$
- Tlak na vstupu do VT dílu

 $p_{VT1} = p_1 \cdot (1 - z_p^{RV}) = 130 \cdot (1 - 0.035) = 125.45$ bar

ENERGETICKÝ ÚSTAV Odbor energetického inženýrství

F

DVOUTĚLESOVÁ KONDENZAČNÍ PARNÍ TURBÍNA

- Entalpie na vstupu do VT dílu $i_{VT1} = i_1 = 3437,1095 \text{ kJ/kg}$
- Teplota na vstupu do VT dílu $t_{VT1} = f(p_1; i_1) = 535,119^{\circ}C$
- Entropie na vstupu do VT dílu $s_{VT1} = f(p_1; i_1) = 6,5818 \text{ kJ/kgK}$

Bod VT2_{iz}

• Tlak na výstupu z VT dílu při expanzi beze ztrát

$$p_{VT2_{iz}} = p_{VT2} = \frac{p_{O3}}{1 - z_p^{O3}} = \frac{55}{1 - 0.05} = 57,895$$
 bar

- Entropie na výstupu z VT dílu při expanzi beze ztrát $s_{VT2_{iz}} = s_{VT1} = 6,5818 \text{ kJ/kgK}$
- Entalpie na výstupu z VT dílu při expanzi beze ztrát $i_{VT2_{iz}} = f(p_{VT2_{iz}}; s_{VT2_{iz}}) = 3194,118 \text{ kJ/kg}$
- Zpracovaný izoentropický spád VT dílu $H_{iz}^{VT} = i_{VT1} i_{VT2_{iz}} = 3437,1095 3194,118 = 242,992 \text{ kJ/kg}$

Bod VT2

- Tlak na výstupu z VT dílu $p_{VT2} = p_{VT2_{iz}} = 57,895$ bar
- Skutečný zpracovaný spád VT dílu

$$\eta_{TDi}{}^{VT} = \frac{H^{VT}}{H_{iz}{}^{VT}} \quad \rightarrow \quad H^{VT} = \eta_{TDi}{}^{VT} \cdot H_{iz}{}^{VT} = 0.9 \cdot 242.992 = 218.693 \text{ kJ/kg}$$

- Entalpie po expanzi ve VT dílu $i_{VT2} = i_{VT1} H^{VT} = 3437,1095 218,693 = 3218,417 \text{ kJ/kg}$
- Teplota po expanzi ve VT dílu $t_{VT2} = f(p_{VT2}; i_{VT2}) = 414,425 \text{ °C}$

Odběr O3

• Požadovaný hmotnostní tok do odběru O3

 $m_{03} = 590 \text{ t/h} = 163,889 \text{ kg/s}$

- Požadovaný tlak v odběru O3 $p_{03} = 55$ bar
- Teplota v odběru O3

 $t_{03} = t_{VT2} = 414,425 \ ^{\circ}C$

5

2.2 Parametry ST/NT dílu

Průběh expanze v celém ST/NT dílu je složen ze tří po sobě následujících expanzí v jednotlivých jeho čátech(tj. STa, STb a NT).

Je předpokládáno izoentalpické škrcení na přepouštěcím ventilu PV a určité tlakové ztráty na potrubích vedoucích k odběrům O2, O1. Požadované množství páry v odběrech a tlak na výstupu z NT části je dán zadáním. Dle doporučení z firmy Doosan Škoda Power jsou zvoleny předpokládané termodynamické účinnosti jednotlivých částí.

$$\begin{split} &\eta_{TDi}{}^{STa}=0,91\ [-]\\ &\eta_{TDi}{}^{STb}=0,91\ [-]\\ &\eta_{TDi}{}^{NT}=0,895\ [-]\\ &z_{p}{}^{PV}=2,5\%=0,025[-]\\ &z_{p}{}^{02}=3\%=0,03[-]\\ &z_{p}{}^{01}=2,5\%=0,025[-] \end{split}$$

termodynamická účinnost STa dílu turbíny termodynamická účinnost STb dílu turbíny termodynamická účinnost NT dílu turbíny tlaková ztráta na přepouštěcím ventilu PV tlaková ztráta v potrubí k odběru O2 tlaková ztráta v potrubí k odběru O1

2.2.1 STa část

Obr. 3 Průběh expanze páry v STa části

Bod STa1

V tomto místě vstupuje dílu část páry po expanzi ve VT do prostoru druhého tělesa turbíny (tj. ST/NT díl). Toto množství je sníženo o množství m_{O3} odebrané odběrem O3.

• Hmotnostní tok STa částí

 $m_{STa} = m_{VT} - m_{O3} = 341,667 - 163,889 = 177,778 \text{ kg/s}$

• Entalpie na vstupu do STa části

 $i_{STa1} = i_{VT2} = 3218,417 \text{ kJ/kg}$

• Tlak na vstupu do STa části

$$p_{STa1} = p_{VT2} \cdot (1 - z_p^{PV}) = 57,895 \cdot (1 - 0,025) = 56,447$$
 bar

• Teplota na vstupu do STa části

 $t_{STa1} = f(p_{STa1}; i_{STa1}) = 413,427$ °C

Entropie na vstupu do STa části

 $s_{STa1} = f(p_{STa1}; i_{STa1}) = 6,628 \text{ kJ/kgK}$

ENERGETICKÝ ÚSTAV Odbor energetického inženýrství DVOUTĚLESOVÁ KONDENZAČNÍ PARNÍ TURBÍNA

Bod STa2_{iz}

• Tlak na výstupu z STa části při expanzi beze ztrát

 $p_{STa_{1z}} = p_{STa_2} = \frac{p_{02}}{1 - z_p^{02}} = \frac{9}{1 - 0.03} = 9.278 \text{ bar}$

- Entropie na výstupu z STa části při expanzi beze ztrát $s_{STa2iz} = s_{STa1} = 6,628 \text{ kJ/kgK}$
- Entalpie na výstupu z STa části při expanzi beze ztrát i = f(p) = 2702.115 kľ

 $i_{STa2iz} = f(p_{STa2iz}; s_{STa2iz}) = 2782,115 \text{ kJ/kg}$

• Zpracovaný izoentropický spád v STa části

 $H_{iz}^{STa} = i_{STa1} - i_{STa2_{iz}} = 3218,417 - 2782,115 = 436,302 \text{ kJ/kg}$

Bod STa2

• Tlak na výstupu z STa části

 $p_{STa2} = p_{STa2_{iz}} = 9,278 \text{ bar}$

Skutečný zpracovaný spád v STa části

 $H^{STa} = \eta_{TDi}^{STa} \cdot H_{iz}^{STa} = 0,91 \cdot 436,302 = 397,035 \text{ kJ/kg}$

- Entalpie na výstupu z STa části
 i_{STa2} = i_{STa1} H^{STa} = 3218,417 397,035 = 2821,382 kJ/kg
- Teplota na výstupu z STa části $t_{STa2} = f(p_{STa2}; i_{STa2}) = 195,362 °C$

Odběr O2

• Požadovaný hmotnostní tok do odběru O2

 $m_{02} = 125 \text{ t/h} = 34,722 \text{ kg/s}$

- Požadovaný tlak v odběru O2
 p_{O2} = 9 bar
- Teplota v odběru O2

 $t_{02} = t_{STa2} = 195,362 \,^{\circ}\text{C}$

2.2.2 STb část

Obr. 4 Průběh expanze páry v STb části

Bod STb1

• Hmotnostní tok STb částí

 $m_{STb} = m_{STa} - m_{O2} = 177,778 - 34,722 = 143,056 \text{ kg/s}$

• Tlak na vstupu do STb části

 $p_{STb1} = p_{STa2} = 9,278 \text{ bar}$

- Entalpie na vstupu do STb části
 i_{STb1} = i_{STa2} = 2821,382 kJ/kg
- Teplota na vstupu do STb části $t_{STb1} = t_{STa2} = 195,362 \text{ °C}$
- Entropie na vstupu do STb části

 $s_{STb1} = f(p_{STb1}; i_{STb1}) = 6,713kJ/kgK$

Bod STb2_{iz}

• Tlak na výstupu z STb části při expanzi beze ztrát

$$p_{STb2_{iz}} = p_{STb2} = \frac{p_{O1}}{1 - z_p^{O1}} = \frac{1.7}{1 - 0.025} = 1.744 \text{ bar}$$

• Entropie na výstupu z STb části při expanzi beze ztrát

 $s_{STb2iz} = s_{STb1} = 6,713$ kJ/kgK

• Entalpie na výstupu z STb části při expanzi beze ztrát

 $i_{STb2iz} = f(p_{STb2iz}; s_{STb2iz}) = 2521,309 \text{ kJ/kg}$

• Zpracovaný izoentropický spád v STb části $H_{iz}^{STb} = i_{STb1} - i_{STb2_{iz}} = 2821,382 - 2520,887 = 300,072 \text{ kJ/kg}$

Bod STb2

• Tlak na výstupu z STb části

 $p_{STb2} = p_{STb2_{iz}} = 1,744$ bar

ENERGETICKÝ ÚSTAV

- **5** DVOUTĚLESOVÁ KONDENZAČNÍ PARNÍ TURBÍNA
 - Skutečný zpracováný spád v STb části

 $H^{STb} = \eta_{TDi}{}^{STb} \cdot \ H_{iz}{}^{STb} = 0{,}91 \cdot 300{,}073 = 273{,}066 \ kJ/kg$

• Entalpie na výstupu z STb části

 $i_{STb2} = i_{STb1} - H^{STb} = 2821,382 - 273,066 = 2548,316 kJ/kg$

• Teplota na výstupu z STb části

```
t_{STb2} = f(p_{STb2}; i_{STb2}) = 115,928 \text{ °C}
```

Odběr O1

Požadovaný hmotnostní tok do odběru O1
 m₀₁ = 85 t/h = 23,61 kg/s

• Požadovaný tlak v odběru O1

 $p_{01} = 1,7$ bar

• Teplota v odběru O3

 $t_{01} = t_{STb2} = 115,928$ °C

2.2.3 NT část

Obr. 5 Průběh expanze páry v NT části

Bod NT1

Hmotnostní tok NT částí

 $m_{NT} = m_{STb} - m_{O1}^{STb} = 143,056 - 13,889 = 129,167 \text{ kg/s}$

• Tlak na vstupu do NT části

 $p_{NT1} = p_{STb2} = 1,744$ bar

- Entalpie na vstupu do NT části
 i_{NT1} = i_{STb2} = 2548,316 kJ/kg
- Entropie na vstupu do NT dílu $s_{NT1} = f(p_{NT1}; i_{NT1}) = 6,783 \text{ kJ/kgK}$

ENERGETICKÝ ÚSTAV

Bod NT2_{iz}

- Tlak na výstupu z NT části při expanzi beze ztrát $p_{NT2_{iz}} = p_{NT2} = 0,016$ bar
- Entropie na výstupu z NT části při expanzi beze ztrát $s_{NT2iz} = s_{NT1} = 6,783 \text{ kJ/kgK}$
- Entalpie na výstupu z NT části při expanzi beze ztrát
 i_{NT2iz} = f(p_{NT2iz}; s_{NT2iz}) = 2205,927 kJ/kg
- Zpracovaný izoentropický spád v NT části

$$H_{iz}^{NT} = i_{NT1} - i_{NT2_{iz}} = 2548,316 - 2205,927 = 342,389 \text{ kJ/kg}$$

Bod NT2

• Tlak na výstupu z NT části

 $p_{NT2} = p_{NT2_{iz}} = 0,016$ bar

- Skutečný zpracováný spád v NT části $H^{NT} = \eta_{TDi}^{NT} \cdot H_{iz}^{NT} = 0,895 \cdot 342,389 = 306,438 \text{ kJ/kg}$
- Entalpie na výstupu z NT části

 $i_{NT2} = i_{NT1} - H^{NT} = 2548,316 - 306,438 = 2241,878 \text{ kJ/kg}$

• Teplota na výstupu z NT části

 $t_{NT2} = f(p_{NT2}; i_{NT2}) = 55,314^{\circ}C$

2.3 Vzduchový kondenzátor KOND

Pára po průchodu NT části vstupuje do axiálně umístěného potrubí, kterým je vyvedena ven ze strojovny do vzduchem chlazeného kondenzátoru. V něm je rozvedena do žebrovaných trubek, kolem kterých pomocí ventilátorů nuceně proudí okolní vzduch. Pára zde kondenzuje a stéká do sběračů, odkud je kondenzátním čerpadlem vedena zpět do systému HRSG.

Ze zadání je určen tlak na výstupu z NT dílu $p_k = 0,16bar(a) = p_{NT2}$. Lze předpokládat určité ztráty v přívodní potrubní trasy ke kondenzátoru a tedy i nižší tlak kondenzace v něm. Vzhledem k absenci regeneračních přihříváků není nutné tento tlak znát přesně. Termodynamické parametry turbíny je tedy určen hodnotou ze zadání na konci lopatkování.

Obr. 6 Průběh kondenzace ve vzduchovém kondenzátoru

ENERGETICKÝ ÚSTAV Odbor energetického inženýrství

DVOUTĚLESOVÁ KONDENZAČNÍ PARNÍ TURBÍNA

2.4 Předpokládané výkony

VT díl

- Zpracovaný spád
 H^{VT} = 218,693 kJ/kg
- Hmotnostní tok VT dílem
 - $m_{VT} = 341,667 \text{ kg/s}$
- Předpokládaný vnitřní výkon VT dílu $P^{VT} = m_{VT} \cdot H^{VT} = 341,667 \cdot 218,693 = 74719,971 \text{ kW} = 74,72 \text{ MW}$

ST/NT díl

• Předpokládaný vnitřní výkon STa části

 $\mathbf{P}^{\text{STa}} = \mathbf{m}_{\text{STa}} \cdot \mathbf{H}^{\text{STa}} = 177,778 \cdot 397,035 = 70584,02 \text{ kW} = 70,584 \text{ MW}$

m _{STa} [kg/s]	hmotnostní tok STa částí
H ^{STa} [kJ/kg]	zpracovaný entalpický spád STa části

• Předpokládaný vnitřní výkon STb části

$$\begin{split} P^{STb} &= m_{STb} \cdot H^{STb} = 143,056 \cdot 273,066 = 39063,586 \text{ kW} = 39,064 \text{ MW} \\ m_{STb} [kg/s] & \text{hmotnostní tok STb částí} \\ H^{STb} [kJ/kg] & \text{zpracovaný entalpický spád STb části} \end{split}$$

• Předpokládaný vnitřní výkon NT části

 $P^{NT} = m_{NT} \cdot H^{NT} = 119,444 \cdot 306,438 = 36602 \text{ kW} = 36,602 \text{ MW}$

m _{NT} [kg/s]	hmotnostní tok NT částí
H ^{NT} [kJ/kg]	zpracovaný entalpický spád NT části

• Předpokládaný celkový vnitřní výkon ST/NT dílu

 $P^{ST/NT} = P^{STa} + P^{STb} + P^{NT} = 70,584 + 39,064 + 36,602 = 135,831 MW$

Celkový výkon soustrojí

Předpokládaný celkový vnitřní výkon soustrojí
 P^{celk} = P^{VT} + P^{ST/NT} = 74.72 + 135,831 = 210,55 MW

Svorkový výkon

• Celkový výkon na svorkách turboalternátoru

 $P_{sv}^{\ celk} = P^{celk} \cdot \eta^{mech} \cdot \eta^{gen} = 210,55 \cdot 0,99 \cdot 0,9871 = 205,76 \text{ MWe}$

η^{mech} [-] předpokládaná mechanická účinnost dle [2]
 η^{gen}[-] předpokládaná účinnost generátoru dle doporučení z firmy Doosan Škoda Power

5

3 Návrh průtočné části

Vhodný návrh průtočné části je jedním ze stěžejních procesů při návrhu celé turbíny, je tedy vhodné zúročit poznatky a zkušenosti z praxe. Při návrhu tak byly vzaty na zřetel častá doporučení z firmy Doosan Škoda Power.

Elementární jednotkou parní turbíny je tzv. lopatkový stupeň. Skládá se z rozváděcích a oběžných lopatek. Většina strojů vyšších výkonů se vyrábí v mnohastupňovém axiálním provedení, kdy je jich za sebou řazeno až několik desítek. Pára po vstupu do stupně nejdříve prochází rozváděcími lopatkami. Ty jsou jedna za druhou zasunuty a zajištěny v příslušných drážkách na nosičích rozváděcích lopatek nebo přímo v turbínové skříni. Tvoří tak rozváděcí mříž, která pokud je správně navrhnutá, plynule urychluje páru a přeměňuje tak její tepelnou energii získanou v kotli na energii pohybovou (kinetickou).[3] Po průchodu mezilopatkovým rozváděcím kanálem je pára přivedena k lopatkám oběžným. Ty jsou upevněny v příslušných drážkách na jednotlivých discích hřídele rotoru. V takto vytvořené oběžné lopatkové mříži vyvozuje výsledná kinematická energie proudu točivý moment, který je přenášen přes hřídel do připojeného alternátoru a zde přeměněn na elektrickou energii.

Obr. 7 Princip činnosti rovnotlakého a přetlakového stupně[6]

Jak již bylo řečeno, hlavním principem funkce parní turbíny je přeměna (tzn. snížení určené rozdílem její vstupní a výstupní hodnoty) tepelné energie ve stupni na mechanickou. Pro energetické účely tak byla zavedena entalpie **i**, reprezentující nám hodnotu tepelné energie páry a její změnu v podobě entalpického spádu **h**. Podle poměru rozdělení zpracování entalpického spádu **h** ve stupni na oběžných a rozváděcích lopatkách se historicky vyvinuly dvě základní konstrukční koncepce. Přetlaková, kdy je v oběžných i rozváděcích lopatkách zpracováván přibližně stejný entalpický spád. A naproti tomu rovnotlaká, kdy je veškerý entalpický spád zpracování parních turbín a tedy tzv. stupeň reakce $R = h^{OL}/h = 0$. Tento teoretický předpoklad však dnes již v praxi neplatí a oběžným lopatkám je ke zpracování ponechán malý entalpický spád. Urychlovaný proud je stabilnější a vykazuje menší ztráty. Obvykle se používá stupeň reakce R = 0,02 až 0,25, přičemž větší hodnoty se používají pro lopatky s větší hodnotu poměru L/Ds. [5]

ENERGETICKÝ ÚSTAV

3.1 Nástin postupu výpočtu

Výpočet je vypracován pouze pro ST/NT díl turbíny. Detailní výpočet VT dílu by byl již bohužel nad rozsahový rámec této diplomové práce.

Pro jednotlivé lopatkové stupně je vhodné zvolit optimální rychlostní poměr u/c_{iz}. U stupňů s nepříliš dlouhými lopatkami (tedy nikoliv u posledních stupňů kondenzačních turbín větších výkonů) se volí pro rovnotlaké lopatkování u/c_{iz} = 0,4 až 0,5. Kdy c_{iz} odpovídá rychlosti při izoentropické expanzi z tlaku p₀ před stupněm na tlak p₂ za stupněm. Přičemž pro větší stroje s vyšší účinností se volí vyšší hodnoty.[3] Volba u/c_{iz} také ovlivňuje zpracovaný spád. Při nižších číslech dochází k vyššímu spádu na jeden stupeň a ten je pak zbytečně přetěžován. Snahou tedy také bylo rozdělit rovnoměrně se stoupající tendencí zpracovaný entalpický spád ve stupních mezi pevně danými odběry v závislosti na udržení optimální hodnoty u/c_{iz}.

U algoritmem vzájemně provázaných výpočtů je snaha dosáhnout kombinací volby u/c_{iz} , odpovídajícího izoentropického spádu h_{iz} ve stupni, velikostí středních či patních průměrů D_s (D_p) , stupněm reakce R_s (R_p) a volbou výstupního úhlu z rozváděcí lopatkové mříže α_1 výsledného výstupního úhlu z oběžných lopatek $\alpha_2 \approx 90^\circ$. Je tak činěno z důvodu snahy minimalizovat velikost obvodové složky vystupující rychlosti ze stupně c_{u2} , což umožní dosáhnout co největší možné obvodové práce ve stupni $l_u = u_1 \cdot c_{u1} - u_2 \cdot c_{u2}$.[4]

Patní průměry lopatkování jsou voleny dle doporučení z firmy Doosan Škoda Power a podobné běžným velikostem z praxe. Úhel α_1 je volen v rozmezí 13 až 18°, přičemž byla snaha volit hodnotu blízkou dolní hranici doporučeného rozsahu.[1]

3.2 Výpočet pro prizmatické lopatky

Válcové lopatky mají po celé své délce stejný profilový tvar. Lze je použít za předpokladu, že proudění je na všech válcových plochách stejné a tedy stačí provádět výpočet pouze na středním průměru lopatkování D_s . Tyto předpoklady platí s dostatečnou přesností pro relativní délku lopatky $L/D_s \leq 0,1.[1]$ Pro větší délky lopatek je vhodné použít již lopatky zkrucované s po délce se měnícím profilovým tvarem.

• Z předchozích výpočtů známe parametry páry na vstupu do ST/NT dílu turbíny:

$m = m_{STa} [kg/s]$	hmotností tok páry 1. stupněm
$p_0 = p_{STa1} [bar]$	tlak na vstupu do 1. stupně
$i_0 = i_{STa1} \left[kJ/kg \right]$	entalpie na vstupu do stupně
n [min ⁻¹]	otáčky stroje

• Entropie na vstupu do stupně

 $s_0 = f(p_0; i_0) [kJ/kgK]$

• Teplota na vstupu do stupně

$$t_0 = f(p_0; i_0) [^{\circ}C]$$

- Měrný objem na vstupu do stupně
 v₀ = f(p₀; i₀) [kg/m3]
- Vlhkost páry na vstupu do stupně

 $x_0 = f(p_0; i_0)$ [-]

3.2.1 Výpočet parametrů na vstupu a výstupu z RL

DVOUTĚLESOVÁ KONDENZAČNÍ PARNÍ TURBÍNA

Volím

•	Patní průměr lopatkování	D _s [m]
•	Zpracovaný izoentropický spád ve stupni	h _{iz} [kJ/kg]
•	Výstupní úhel z rozvaděcích lopatek	$\alpha_1[^\circ]$
•	Stupeň reakce na patě lotaky	$R_p[-]$
•	Rychlostní ztrátový součinitel rozvaděcích lopatek	$\phi[-]$

• Obvodová rychlost na středním průměru D_s

$$u_s = \frac{\pi \cdot D_s \cdot n}{60} [m/s]$$

• Stupeň reakce na střením průměru D_s, dle [2]

Výpočet prizmatických (tj. válcových) lopatek je prováděn na střením průměru D_s . Je tedy nutné přepočíst zvolený stupeň reakce R_p na patě, který byl zvolen dle předchozích úvah z [5], na stupeň reakce na středním průměru R_s .[2]

$$R_{s} = 1 - \left(\frac{D_{p}}{D_{s}}\right)^{2 \cdot \phi^{2} \cdot \cos^{2} \alpha_{1}} \cdot \left(1 - R_{p}\right) \qquad [-]$$

• Vstupní rychlost do rozvaděcích lopatek

 $c_0=c_2 \ [m/s]$

Vstupní rychlost do rozvaděcích lopatek 1. stupně není známá. Je tedy doleno $c_0 = 50$ m/s. V dalších stupních je předpokládnáno nezpomalování proudu. Výstupní rychlost ze stupně předchozícho je tak stejná jako vstupní rychlost do stupně po něm následujícího. Za 6. a 9. stupněm, za kterými se nachází odběry O1 a O2 ,lze v tomto místě sice uvažovat (kvůli zaústění výstupních hrdel do odběrů) zvětšený mezistupňový prostor mezi lopatkovými stupni. Lze tak zavést předpoklad, že se přítoková energie do stupně za odběrem ve volném prostoru z části přemění vířením a ztrátami na teplo. Platí tak dle [5]

$$\left(\frac{c_0^2}{2}\right)^{do \ stupn\check{e}} = \left(\kappa_2 \cdot \frac{c_2^2}{2}\right)^{ze \ stupn\check{e}}$$

Součinitel využití výstupní kinetické energie $\kappa_2 \in \langle 0; 1 \rangle$. Vzhledem k tomu, že ale nejsou blíže známy poměry v místech odběrů, je tento vliv zanedbávám a tak $\kappa_2 = 1$.

 Výstupní rychlost odpovídající izoentropické expanzi ve stupni pro čistě rovnotlaké lopatkování

 $c_{iz} = \sqrt{2000 \cdot h_{iz}} \ [m/s]$

h_{iz} zpracovaný izoentropický spád ve stupni [kJ/kg]

• Rychlostní poměr u/c_{iz}

Je-li brána obvodová rychlost na středním prúměru D_s , tedy $u = u_s$, pak je snaha udržet poměr v daném rozmezí dle [3]

$$\frac{u_{\rm s}}{c_{\rm iz}} \ \in < 0,45; 0,5>$$

ENERGETICKÝ ÚSTAV

- DVOUTĚLESOVÁ KONDENZAČNÍ PARNÍ TURBÍNA
- Zpracovaný spád v rozváděcích lopatkách

 $h_{iz}^{RL} = (1 - R_s) \cdot h_{iz} [kJ/kg]$

51

- Zpracovaný spád v oběžných lopatkách $h_{iz}^{OL} = R_s \cdot h_{iz} [kJ/kg]$
- Výstupní rychlost z rozváděcích lopatek po izoentropické expanzi

$$c_{1iz} = \sqrt{2000 \cdot h_{iz}{}^{RL} + c_0{}^2} \ [m/s]$$

• Entalpie na výstupu z rozváděcích lopatek po izoentropické expanzi

 $i_{1iz}=i_0-h_{iz}{}^{RL}\ [kJ/kg]$

- Entropie na výstupu z rozváděcích lopatek po izoentropické expanzi $s_{1iz} = s_0 \ [kJ/kgK]$
- Tlak na výstupu z rozváděcích lopatek po izoentropické expanzi

 $p_{1iz} = f(i_{1iz}; s_{1iz})$ [bar]

• Ztráty v rozváděcích lopatkách

 $\mathbf{z}^{\mathrm{RL}} = (1-\phi^2) \cdot \mathbf{h}_{\mathrm{iz}} \ [\mathrm{kJ/kg}]$

Při průchodu páry mezilopatkovým kanálem rozváděcích lopatek vznikají ztráty, které v nich snižují využitelný entalpický spád h_{iz}^{RL} . Tyto ztráty je nutné vzít v úvahu a jsou tak zahrnutnuty v tzv. rychlostním ztrátovém součiniteli φ pro RL.[2]

 $\varphi = \frac{c_1}{c_{1iz}} = \frac{\text{skutečná výstupní rychlost z RL}}{\text{výstupní rychlost odpovídající izoentropické expanzi}}$

 $c_{1iz} = \sqrt{2 \cdot \mathbf{h}_{iz}} \, [\text{m/s}]$

 $\varphi = 0.97 \text{ a } 0.98 \text{ [-]}$ voleno z grafu závisloti φ na délce lopatky (Příloha 1)

• Skutečná rychlost na výstupu z rozváděcích lopatek

 $c_1 = \phi \cdot c_{1iz} \ [m/s]$

• Skutečná entalpie na výstupu z rozváděcích lopatek

$$i_1 = i_{1iz} + z^{RL} [kJ/kg]$$

• Skutečný tlak na výstupu z rozváděcích lopatek

 $p_1 = p_{1iz}$ [bar]

• Skutečná entropie na výstupu z rozváděcích lopatek

 $s_1 = f(i_1; p_1) [kJ/kgK]$

- Skutečný měrný objem na výstupu z rozváděcích lopatek $v_1 = f(i_1; p_1) \text{ [m3/kg]}$
- Skutečná suchost páry na výstupu z rozváděcích lopatek $x_1 = f(i_1; p_1)$ [-]

CHERGETICKÝ ÚSTAV Odbor energetického inženýrství DVOUTĚLESOVÁ KONDENZAČNÍ PARNÍ TURBÍNA

Obr. 8 Průběh expanze v rozváděcích lopatkách stupně

3.2.2 Výpočet délkových rozměrů rozváděcích lopatek

• Délka výstupní hrany RL lopatky při totálním ostřiku

$$L_{1T}^{RL} = \frac{m \cdot v_1}{\pi \cdot D_s \cdot c_1 \cdot \phi \cdot \sin \alpha_1} \quad [m]$$

Dle literatury [1] je pro zjednodučení výpočtu zanedbáno zaplnění výstupního průřezu konečnou tlouštkou výstupní hrany rozvaděcí lopatky. Délka výstupní hrany rozváděcí lopatky L_{1T}^{RL} na všech stupních vychází dostatečné dlouhá, proto není nutné použít parciální ostřik.

• Skutečná délka výstupní hrany RL lopatky

 $L_1^{RL} = L_{1T}^{RL}$ [m] zaokrouhleno na celé milimetry

• Totální ostřik

ε = 1 [-]

• Volba prizmatické či zborcené lopatky (kontrola počátečního předpokladu)

$$\frac{L_1^{RL}}{D_s} < 0,1 \rightarrow \text{prizmatická} (válcová) lopatka$$

 $\frac{L_1^{RL}}{D_s} > 0,1 \rightarrow \text{zborcená} (zkrucovaná) lopatka$

• Délka vstupní hrany RL lopatky

$$L_0^{RL} = \frac{m \cdot v_0}{\pi \cdot D_s \cdot c_2 \cdot \phi \cdot \sin \alpha_0} \quad [m]$$

ENERGETICKÝ ÚSTAV Odbor energetického inženýrství

DVOUTĚLESOVÁ KONDENZAČNÍ PARNÍ TURBÍNA

Na základě této rovnice lze vypočítat délku vstupní hrany rozváděcích lopatky. Konstrukce výkresu lopatkování si však vynutila od 7. stupně z důvodu plynulosti turbínového lopatkováho kanálu použití větších než vypočtených délek vstupních hran. Bylo tak postupováno na doporučení z firmy Doosan Škoda Power. Díky větším vstupním průřezům do RL a tím i nižším vstupním rychlostem klesnou i ztráty

3.2.3 Výpočet parametrů na vstupu a výstupu z OL

• Entalpie po izoentropické expanzi v oběžných lopatkách

 $i_{2iz} = i_1 - h_{iz}^{OL} [kJ/kg]$

• Entropie po izoentropické expanzi v oběžných lopatkách

 $s_{2iz} = s_1 [kJ/kgK]$

• Tlak po izoentropické expanzi v oběžných lopatkách

 $p_{2iz} = f(i_{2iz}; s_{2iz})$ [bar]

• Relativní výstupní rychlost po izoentropické expanzi v oběžných lopatkách

$$w_{2iz} = \sqrt{2000 \cdot h_{iz}^{OL} + \frac{w_1^2}{2}} \quad [m/s]$$

- w₁ relativní rychlost na vstupu do oběžných lopatek (více v kapitole o výpočtu rychlostních trojuhelníků).
- Ztráty v oběžných lopatkách

$$z^{OL} = (1 - \Psi^2) \cdot \frac{w_{2iz}^2}{2} [kJ/kg]$$

Při průchodu páry mezilopatkovým kanálem oběžných lopatek vznikají také ztráty. které snižují využitelný entalpický spád v oběžných lopatkách h_{iz}^{OL} . Tyto ztráty je opět nutné vzít v úvahu a jsou zahrnutnuty v tzv. rychlostním ztrátovém součiniteli Ψ pro OL počítaném dle [2]

$$\Psi = -1,0714 \cdot 10^{-5} \cdot (\beta_1 + \beta_2)^2 + 0,002964 \cdot (\beta_1 + \beta_2) + 0,7507 \ [-]$$

Vstupní úhel relativní rychlosti do oběžných lopatk β_1 je volen z katalogu lopatek dle rozsahu zvoleného profilu (Příloha 3) a výstupní úhel proudu β_2 je při volbě nerozšiřujících se OL dopočítán dle [1]. Tato vypočtená hodnota úhlu β_2 však musí nabývat pouze hodnot v předepsaném dovoleém rozsahu pro zvolného profilu.

$$\begin{split} \beta_2 &= \arcsin \frac{\dot{m} \cdot v_2}{\pi \cdot D_s \cdot \epsilon \cdot w_2 \cdot {L_2}^{OL}} \begin{bmatrix} \circ \end{bmatrix} \\ v_2 \begin{bmatrix} m^3 / kg \end{bmatrix} & \text{měrný objem na výstupu z OL} \\ w_2 \begin{bmatrix} m/s \end{bmatrix} & výstupní \text{ relativní rychlost z OL} (více v kapitole o výpočtu rychlostních trojúhelníků)} \\ L_2^{OL} \begin{bmatrix} m \end{bmatrix} & výstupní délka OL \end{split}$$

• Skutečná entalpie na výstupu z oběžných lopatek

$$i_2 = i_{2iz} + z^{OL} [kJ/kg]$$

• Skutečný tlak na výstupu z oběžných lopatek

 $p_2 = p_{2iz}$ [bar]

• Skutečná entropie na výstupu z oběžných lopatek

 $s_2 = f(i_2; p_2) [kJ/kgK]$

• Skutečný měrný objem na výstupu z oběžných lopatek

 $v_2 = f(i_2; p_2) [m3/kg]$

• Skutečná suchost páry na výstupu z oběžných lopatek

 $x_2 = f(i_2; p_2)$ [-])

3.2.4 Výpočet délkových rozměrů oběžných lopatek

Délka vstupní hrany oběžné lopatky se na vstupu zpravidla nepočítá a dělá se tzv. přesah $\Delta L = L_1^{OL} - L_1^{RL}$. U kratších loptakek ($L_1^{RL} = 20$ až 32 mm) je ΔL rovno 2 až 4 mm, u dlouhých lopatek posledních stupňů kondenzačních turbín 16 až 20 mm.[3]

Je nutné také zvolit provedení oběžné lopatky, tj. omezení průtočného kanálu.[1] Z výrobního hlediska se jako nejvýhodnější jeví užití válcové bandáže, tzn. válcové omezení průtočného kanálu $L_1^{OL} = L_2^{OL}$ [3].

Obr. 9 Možnosti provedení průtočného kanálu OL dle[1]

• Délka vstupní hrany oběžných lopatek

 $L_1^{OL} = L_1^{RL} + \Delta L \quad [m]$

 $\Delta L~$ voleno 0,002 m u prvních lopatek až 0,02 m u posledních nízkotlakých stupňů

- Délka výstupní hrany oběžných lopatek
 - $L_2^{OL} = L_1^{OL} \quad [m]$
- Patní průměr

$$D_{p} = D_{s} - L_{1}^{RL} [m]$$

DVOUTĚLESOVÁ KONDENZAČNÍ PARNÍ TURBÍNA

3.2.5 Výpočet ztrát v lopatkové mříži

Kromě již uvedených ztrát v RL a OL vyjádřených součiniteli φ a Ψ vznikají v průtočném kanále ještě další ztráty. Jejich výpočtové vztahy se opírají o řadu experimentálních konstant. Existjí tedy různé algoritmy pro jejich stanovení.[1] Při další výpočtech je postupováno dle vzorců v [2] není-li uvedeno jinak.

• Účinnost nekonečně dlouhé lopatky

$$\eta_{\infty} = 3.74 \cdot \left(1 - \frac{u_s}{c_{iz}}\right) \cdot \frac{u_s}{c_{iz}} \quad [-]$$

• Poměrná ztráta konečnou délkou lopatky

$$\xi_L = \frac{_{0,0029}}{_{L_1}{}^{RL}} \cdot \eta_\infty \qquad [\text{-}]$$

Vzniká v důsledku netěsnosti mezi sací a přetlakovou stranou lopatky na jejím konci.[5] Při odečítání hodnoty rychlostního součinitele φ z grafu (Příloha 1) je hodnota ztrát vlivem konečné délky lopatky zahrnuta již v tomto sučiniteli.[1]

• Poměrná ztráta parciálním ostřikem

$$\xi_P = 0.0085 + \frac{0.0137}{D_s \cdot \epsilon} \cdot \frac{u_s}{c_{iz}} \cdot n_{ost} \quad [-]$$

n_{ost} počet segmentů ostřiku [-]

Tato ztráta vzniká rozviřováním proudu po koncích segmentu rozváděcích lopatek vlivem okolní nehybné páry a také spotřebou energie na urychlení páry vnesené do parního proudu oběžnými lopatkami či na zpomalení proudu páry v OL při výstupu z proudu.[3] Vzhledem k použití totálního ostřiku na všech stupních lopatkování je tato ztráta zanedbána a uvažováno $\xi_P = 0$.

• Poměrná ztráta odlišným průměrem kola (pouze pro $D_s < 1m$)

 $\xi_{\rm D} = 0.05 \cdot (1 - D_{\rm s}) \cdot \frac{u_{\rm s}}{c_{\rm iz}}$ [-]

• Poměrná ztráta ventilací neostříknutých lopatek (pouze při parciálním ostřiku)

$$\xi_{\rm V} = \frac{0.0377}{\sin\alpha_1} \cdot \left(\frac{1}{\epsilon} - 1\right) \cdot \left(\frac{u_{\rm s}}{c_{\rm iz}}\right)^3 \quad [-]$$

Vzniká v důsledku tření a rozdílu obvodových rychlostí páry při parciálním ostřiku v prostoru momentálně neostříknutých lopatek.

• Poměrná ztráta rozvějířením proudu

$$\xi_R = 0.4 \cdot \left(\frac{L_1^{RL}}{D_s}\right)^2 \quad [-]$$

Vzniká při použití dlouhých przmatických lopatek s neproměnný profilem po délce. Správné proudové poměry jsou tak pouze ve středu kanálu a na jeho koncích vzniká rozvějíření proudu a tím i ztráty. Je to způsobeno rozevíráním mezilopatkového kanálu, tj. nevýhodnou hodnotou poměrné rozteče t = s/b oproti situaci na středním průměru, odchylným poměrem u/c_{iz} a nerovnoměrnou výstupní rychlostí c₂. Ztráty lze odstranit použitím zkrucovaných lopatek.[3]

• Poměrná ztráta třením disku

$$\xi_T = 0.59 \cdot D_s \cdot \left(\frac{u_s}{c_{iz}}\right)^3 \cdot \frac{1}{1000 \cdot L_1^{RL} \cdot \sin \alpha_1} \quad [-]$$

Tato ztráta vzniká v mezeře mezi statorovými a rotorovými součástmi. Pracovní látka získává v místě styku s pohyblivou části rotoru shodnou obvodovou rychlost a v místě styku se statorovými částmi zase rychlost nulovou. V důsledku toho se v tomto prostoru mění rychlosti a v důsledku rozdílných obvodových rychlostí vzniká tření a sekundární proudění.[5]

• Poměrná ztráta vlhkostí dle [3]

$$\xi_{\rm X} = 2 \cdot \frac{u_{\rm s}}{c_{\rm iz}} \cdot \left[0.9 \cdot (1 - x_0) + 0.35 \cdot (x_0 - x_2) \right] \quad [-]$$

- $x_0[-]$ suchost páry před stupněm
- x₂[-] suchost páry za stupněm

Je způsobená nárazy vodních kapek na hřbet OL a urychlováním těchto vodních kapek proudem páry. [3]Tuto ztrátu lze snížit např. použitím odlučováku vlhkosti či přihříváním páry.[5]

• Ztráta výstupní rychlostí

$$z_c = \kappa_2 \cdot \frac{{c_2}^2}{2} \ [\ kJ/kg]$$

Je dána velikostí kinetická energie, kterou si pára vystupující z OL odnáší s sebou do dalšího stupně. V za sebou řazených stupních je součinitel využité vystupující kinetické energie $\kappa_2 = 1$.

• Vnitřní termodynamická účinnost stupně

 $\eta_{TDi} = \eta_{\infty} - \sum \xi_{n} = \eta_{\infty} - (\xi_{P} + \xi_{D} + \xi_{V} + \xi_{R} + \xi_{T} + \xi_{X})$ [-]

• Užitečný spád stupně

 $h_{u\check{z}} = h_{iz} \cdot \eta_{TDi} \qquad [kJ/kg]$

• Měrná vnitřní práce stupně

$$a_i = h_{u\check{z}} + \frac{c_0^2}{2} - \frac{c_2^2}{2} [kJ/kg]$$

Vnitřní výkon stupně
 P_iST = m · a_i [kW]

3.2.6 Výpočet parametrů pro vstup do dalšího stupně

• Entalpie na vstupu do dalšího stupně

 $i_{2end} = i_0 - h_{u\check{z}}$ [kJ/kg]

• Tlak na vstupu do dalšího stupně

 $p_{2end} = p_2 \quad [bar]$

Teplota na vstupu do dalšího stupně

 $t_{2end} = f(i_{2end}; p_{2end}) \qquad [^{\circ}C]$

ENERGETICKÝ ÚSTAV

DVOUTĚLESOVÁ KONDENZAČNÍ PARNÍ TURBÍNA

• Entropie na vstupu do dalšího stupně

Ы

 $s_{2end} = f(i_{2end}; p_{2end})$ [kJ/kgK]

- Měrný objem na vstupu do dalšího stupně $v_{2end} = f(i_{2end}; p_{2end}) \qquad [m^3/kg]$
- Suchost páry na vstupu do dalšího stupně

 $x_{2end} = f(i_{2end}; p_{2end}) \qquad [-]$

Obr. 10 Průběhu expanze a její konec ve stupni

3.3 Výpočet průtočných částí ST/NT dílu pro zborcené lopatky

Na posledních čtyřech stupních je poměr $L_1/D_s > 0,1$. Rozdíl v optimální rozteči t_{opt} u paty lopatky a na jejím konci je díky rozevírání mezilopatkového kanálu již značně rozdílný. Nestačí provést výpočet na středním průměru, protože poměry na obou koncích lopatky budou vzhledem k její délce jiné. Dohází k rozevření proudu a je zde proto vhodné namísto prizmatických lopatek použit zborcené. Ty mají po délce proměnný tvar profilu, a tedy i stupeň reakce. Kvůli náročnější technologii výroby je jejich cena sice vyšší, ale dosahují lepší účinnosti než by při daném L_1/D_s dosáhly lopatky válcové.[3]

Dle zvyklostí firmy Doosan Škoda Power je jejich předběžný výpočet prováděn na patním průměru D_p . Je pak postupováno dle výše uvedeného algoritmu pro prizmatické lopatky, ale není již nutný přepočet stupně reakce na patě lopatky.

Jako poslední dvě lopatky NT části ST/NT dílu jsou použity unifikované lopatky firmy Doosan Škoda Power. Tyto lopatky jsou vzhledem ke svým délkám nejvíce namáhané. Jejich konkrétní tvar je přizpůsobený náročným podmínkám provozu a výsledkům rozsáhlých firemních výpočtů. Z těchto důvodů je jejich bližší specifikace jakýmsi tajemstvím každé firmy a jejich výpočet je zde proto pouze informativní.

DVOUTĚLESOVÁ KONDENZAČNÍ PARNÍ TURBÍNA

3.4 Souhrn výsledků

Stup	eň	1.	2.	3.	4.	5.	6.
m	kg/s	177,778	177,778	177,778	177,778	177,778	177,778
i _o	kJ/kg	3218,428	3158,343	3095,175	3028,838	2958,375	2885,021
S ₀	kJ/kgK	6,628	6,636	6,644	6,653	6,664	6,675
to	°Č	413.427	380.581	346.037	309.772	271.313	231.385
D ₀	bar	56,447	44.978	35.018	26.540	19.411	13.695
V ₀	m3/ka	0.052	0.062	0.076	0.095	0.121	0.160
X ₀	-	1	1	1	1	1	1
C ₀	m/s	50,000	67,704	71,044	73,848	76,058	78,354
Ds	m	1,064	1,100	1,138	1,180	1,218	1,263
D _p	m	1,02	1,05	1,08	1,11	1,13	1,15
R _p	-	0,02	0,02	0,03	0,03	0,03	0,04
R _s	-	0,091	0,098	0,117	0,130	0,152	0,188
φ	-	0,97	0,97	0,97	0,97	0,97	0,97
α ₁	0	13	13	13	13	13	13
h _{iz}	kJ/kg	65,12	68,34	71,67	76,05	79,09	81,67
h _{iz} RL	kJ/kg	59,180	61,632	63,317	66,133	67,098	66,315
h _{iz} OL	kJ/kg	5,940	6,708	8,353	9,917	11,992	15,355
$u_{s}(u_{p})$	m/s	167,133	172,788	178,757	185,354	191,323	198,392
C _{iz}		360,888	369,703	378,603	390,000	397,718	404,153
U _s /C _{iz}	-	0,463	0,467	0,472	0,475	0,481	0,491
Z	kJ/kg	3,498	3,642	3,742	3,908	3,965	3,919
İ _{1iz}	kJ/kg	3159,248	3096,711	3031,858	2962,704	2891,277	2818,706
S _{1iz}	kJ/kgK	6,628	6,636	6,644	6,653	6,664	6,675
p _{1iz}	bar	45,940	35,909	27,433	20,243	14,463	10,007
i ₁	kJ/kg	3162,746	3100,353	3035,600	2966,613	2895,242	2822,625
p ₁	bar	45,940	35,909	27,433	20,243	14,463	10,007
S ₁	kJ/kgK	6,634	6,642	6,651	6,661	6,671	6,683
V ₁	m3/kg	0,061	0,075	0,092	0,117	0,153	0,205
X 1	-	1	1	1	1	1	1
C _{1iz}	m/s	347,648	357,558	362,879	371,107	374,139	372,517
C ₁	m/s	337,496	347,087	351,706	359,757	362,932	361,340
L_{1T}^{RL}	m	0,043	0,049	0,058	0,070	0,087	0,113
3	-	1	1	1	1	1	1
ostřik	-	TOTÁLNÍ	TOTÁLNÍ	TOTÁLNÍ	TOTÁLNÍ	TOTÁLNÍ	TOTÁLNÍ
	m	0,055	0,046	0,053	0,063	0,074	0,091
L_{1p}^{RL}	m	0,043	0,050	0,059	0,070	0,088	0,113
L_{1p} /D _s	-	0,040	0,045	0,052	0,059	0,072	0,089
Lopatky	-	VALCOVÉ	VALCOVÉ	VALCOVÉ	VALCOVÉ	VALCOVÉ	VALCOVÉ
İ _{2iz}	kJ/kg	3156,805	3093,645	3027,247	2956,696	2883,250	2807,270
S _{2iz}	kJ/kgK	6,634	6,642	6,651	6,661	6,671	6,683
p _{2iz}	bar	44,978	35,018	26,540	19,411	13,695	9,278
W _{2iz}	m/s	209,043	216,285	223,477	231,830	238,721	246,856
Z	kJ/kg	5,412	5,798	6,161	6,583	6,929	/,307
l ₂	kJ/kg	3162,217	3099,443	3033,408	2963,279	2890,179	2814,577
р ₂	bar	44,978	35,018	26,540	19,411	13,695	9,278
t ₂	°C	382,158	347,792	311,664	2/3,350	233,525	192,558
S ₂	kJ/kgK	6,642	6,651	6,661	6,673	6,685	6,699
V ₂	m3/kg	0,063	0,076	0,095	0,122	0,161	0,219
X ₂	-	1	1	1	1	1	1
	m	0,004	0,004	0,005	0,005	0,005	0,006
	m	0,047	0,054	0,064	0,075	0,093	0,119
$L_2^{\circ L}$	m	0,047	0,054	0,064	0,075	0,093	0,119

Tabulka 1 Vypočtené hodnoty pro STa část

ENERGETICKÝ ÚSTAV Odbor energetického inženýrství

DVOUTĚLESOVÁ KONDENZAČNÍ PARNÍ TURBÍNA

Bc. Tomáš Adámek

24.5.2013

η∞	-	0,930	0,931	0,932	0,933	0,934	0,935
ξ _L	-	0,063	0,054	0,046	0,039	0,031	0,024
ξ _P	-	0,000	0,000	0,000	0,000	0,000	0,000
ξ _D	-	0,000	0,000	0,000	0,000	0,000	0,000
ξ _v	-	0,000	0,000	0,000	0,000	0,000	0,000
ξ _R	-	0,001	0,001	0,001	0,001	0,002	0,003
ξ _T	-	0,006	0,006	0,005	0,005	0,004	0,003
ξ _x	-	0,000	0,000	0,000	0,000	0,000	0,000
η_{TDi}	-	0,923	0,924	0,926	0,927	0,927	0,928
h _{už}	kJ/kg	60,093	63,160	66,338	70,462	73,355	75,791
i end I2	kJ/kg	3158,335	3095,183	3028,837	2958,375	2885,020	2809,230
p_2^{end}	bar	44,978	35,018	26,540	19,411	13,695	9,278
t2 end	О°	380,578	346,041	309,772	271,313	231,385	190,376
S2 end	kJ/kgK	6,636	6,644	6,653	6,664	6,675	6,687
V2 end	m3/kg	0,062	0,076	0,095	0,121	0,160	0,217
X2 end	-	1	1	1	1	1	1
a _i	kJ	58,957	62,936	66,218	70,290	73,178	75,608
P _i st	kW	10481,215	11188,597	11772,117	12496,007	13009,454	13441,361

 Tabulka 1 (pokračování) Vypočtené hodnoty pro STa část

Stupeň		7.	8.	9.	10.	11.
m	kg/s	143,056	143,056	143,056	119,444	119,444
i _o	kJ/kg	2809,229	2720,647	2629,979	2540,016	2444,431
S ₀	kJ/kgK	6,687	6,704	6,727	6,762	6,829
t _o	°C	190,375	156,370	136,034	115,932	93,639
p ₀	bar	9,278	5,631	3,227	1,744	0,805
V ₀	m3/kg	0,217	0,330	0,540	0,934	1,874
x ₀	-	1,000	0,984	0,954	0,928	0,903
C ₀	m/s	80,656	88,203	93,286	96,752	82,861
Ds	m	1,365	1,456	1,576	1,915	2,200
Dp	m	1,250	1,290	1,320	1,500	1,500
Rp	-	0,05	0,05	0,060	0,100	0,150
Rs	-	0,188	0,05	0,060	0,100	0,150
φ	-	0,97	0,97	0,98	0,98	0,98
α ₁	0	13	13,3	13,3	16	17
h _{iz}	kJ/kg	95,9	99,95	103,4	120,54	223,09
h _{iz} ^{RL}	kJ/kg	77,849	94,953	97,196	108,486	189,627
h _{iz} ^{OL}	kJ/kg	18,051	4,998	6,204	12,054	33,464
$u_{s}(u_{p})$	m/s	214,414	202,633	207,345	235,619	235,619
C _{iz}		437,950	447,102	454,753	490,999	667,967
u _s /c _{iz}	-	0,490	0,453	0,456	0,480	0,353
z ^{RL}	kJ/kg	4,601	5,612	3,849	4,296	7,509
i _{1iz}	kJ/kg	2731,380	2625,695	2532,783	2431,530	2254,804
S _{1iz}	kJ/kgK	6,687	6,704	6,727	6,762	6,829
p _{1iz}	bar	6,203	3,321	1,812	0,872	0,208
i ₁	kJ/kg	2735,981	2631,307	2536,632	2435,826	2262,313
p ₁	bar	6,203	3,321	1,812	0,872	0,208
S ₁	kJ/kgK	6,698	6,718	6,737	6,773	6,852
V ₁	m3/kg	0,303	0,526	0,899	1,728	6,288
X ₁	-	0,990	0,954	0,925	0,897	0,852
C _{1iz}	m/s	402,746	444,618	450,660	475,745	621,385
C ₁	m/s	390,663	431,279	441,647	466,230	608,957
	m	0,115	0,166	0,256	0,415	0,700

Tabulka 2 Vypočtené hodnoty pro STb a NT část

ENERGETICKÝ ÚSTAV

DVOUTĚLESOVÁ KONDENZAČNÍ PARNÍ TURBÍNA

Bc. Tomáš Adámek

24.5.2013

З	-	1	1	1	1	1
ostřik	-	TOTÁLNÍ	TOTÁLNÍ	TOTÁLNÍ	TOTÁLNÍ	TOTÁLNÍ
L_0^{RL}	m	0,090	0,117	0,167	0,192	0,392
L_{1p}^{RL}	m	0,115	0,166	0,256	0,415	0,700
L_{1p}^{RL}/D_{s}	-	0,084	0,121	0,172	0,230	0,345
Lopatky	-	VÁLCOVÉ	ZBORCENÉ	ZBORCENÉ	ZBORCENÉ	ZBORCENÉ
i _{2iz}	kJ/kg	2717,930	2626,309	2530,428	2423,772	2228,850
S _{2iz}	kJ/kgK	6,698	6,718	6,737	6,773	6,852
p _{2iz}	bar	5,631	3,227	1,744	0,805	0,160
W _{2iz}	m/s	267,318	258,770	268,733	292,917	467,811
Z	kJ/kg	8,544	8,124	8,771	10,267	25,236
i ₂	kJ/kg	2726,474	2634,433	2539,199	2434,039	2254,086
p ₂	bar	5,631	3,227	1,744	0,805	0,160
t ₂	°C	156,370	136,034	115,932	93,639	55,355
S ₂	kJ/kgK	6,718	6,738	6,759	6,801	6,929
V ₂	m3/kg	0,331	0,541	0,934	1,865	8,036
X ₂	-	0,987	0,956	0,927	0,898	0,854
	m	0,007	0,010	0,015	0,020	0,020
	m	0,122	0,176	0,271	0,440	0,760
L_2	m	0,122	0,176	0,271	0,440	0,760
<u></u>	-	0,935	0,935	0,928	0,888	0,934
ξ _L	-	0,024	0,016	0,011	0,006	0,004
ξ _P	-	0,000	0,000	0,000	0,000	0,000
ξ _D	-	0,000	0,000	0,000	0,000	0,000
ξ _v	-	0,000	0,000	0,000	0,000	0,000
ξ _R	-	0,003	0,000	0,000	0,000	0,000
ξ _T	-	0,004	0,003	0,003	0,002	0,001
ξ _x	-	0,004	0,024	0,055	0,092	0,108
η _{τDi}	-	0,924	0,907	0,870	0,793	0,825
h _{už}	kJ/kg	88,582	90,666	89,970	95,579	183,977
i ₂ end	kJ/kg	2720,647	2629,982	2540,009	2444,437	2260,453
p ₂ ^{end}	bar	5,631	3,227	1,744	0,805	0,160
t ₂ ^{end}	°C	156,370	136,034	115,932	93,639	55,355
S2 ^{ena}	kJ/kgK	6,704	6,727	6,761	6,829	6,948
V2 end	m3/kg	0,330	0,540	0,934	1,874	8,061
X_2^{ena}	-	0,984	0,954	0,928	0,903	0,856
ai	kJ	87,945	90,204	89,640	96,826	162,717
Ρ _i st	kW	12581,050	12904,246	12823,571	11565,349	19435,696

Tabulka 2 (pokračování) Vypočtené hodnoty pro STb a NT část

Velikost a rozmístění lopatek je patrná z nákresu lopatkování rotoru (Příloha 9) a z vypočtených skutečných hodnot je sestaveno bilanční schéma 100% provozu. (Příloha 11)

Obr. 11 Lopatkový plán

ENERGETICKÝ ÚSTAV

DVOUTĚLESOVÁ KONDENZAČNÍ PARNÍ TURBÍNA

3.5 Účinnost a výkon turbosoustrojí

VT díl

- Termodynamická účinnost VT dílu $\eta_{TDi}^{VT} = 0.9$ [-]
- Vnitřní výkonVT dílu

 $P^{VT} = 74719,971 \text{ kW} = 74,72 \text{ MW}$

Vysokotlaký VT díl parní turbíny je uvažován pro výpočet celkového skutečného výkonu jako ideální s účinností a výkonem navrženým již při počátečních výpočtech. K určení jeho skutečného výkonu je potřeba znát detailní návrh průtočné části.,

STa část

• Izoentropický celkový spád na celou STa část

$$\begin{split} H_{iz}{}^{STa} &= i^{STa1} - i_{iz}{}^{STa2} + \frac{c_0{}^2}{2} \quad [kJ/kg] \\ i^{STa1}[kJ/kg] & \text{entalpie na vstupu do STa části, odpovídá entalpii na vstupu do RL 1.stupně ST/NT dílu \\ i_{iz}{}^{STa1} &= f(p_0{}^{1.st}; s_0{}^{1.st}) \\ i_{iz}{}^{STa2}[kJ/kg] & \text{entalpie odpovídající izoentropické expanzi celou STa částí } \\ c_0[m/s] & \text{vstupní rychlost do RL 1. stupně} \end{split}$$

• Skutečný celkový spád na celou STa část

$$\begin{split} H^{STa} &= i^{STa1} + \frac{c_0^2}{2} - i^{STa2} - \frac{c_2^2}{2} \quad [kJ/kg] \\ i^{STa2}[kJ/kg] & \text{entalpie na výstupu z OL 6.stupně} \\ c_2[m/s] & \text{výstupní rychlost z OL 6. stupně} \end{split}$$

• Termodynamická účinnost STa části

$$\eta_{TDi}^{STa} = \frac{H^{STa}}{H_{iz}^{STa}} \quad [-]$$

• Vnitřní výkon STa části

$$P^{STa} = m_{STa} \cdot \sum_{i=1}^{6} h_{u\check{z},i} \text{ [MW]}$$

H _{iz} ^{STa}	kJ/kg	437,571
Н ^{STa}	kJ/kg	407,203
η_{TDi}^{STa}	-	0,93
P ^{STa}	MW	72,42

Tabulka 3 Vypočtené výkonnostní hodnoty STa části

E

STb část

• Izoentropický celkový spád na celou STb část

$H_{iz}^{STb} = i^{STb1} - i_{iz}$	$z^{\text{STb2}} + \frac{c_0^2}{2} [kJ/kg]$
i ^{STb1} [kJ/kg]	entalpie na vstupu do STb části, odpovídá entalpii na vstupu do RL 7. stupně ST/NT dílu
i _{iz} ^{STb2} [kJ/kg]	entalpie odpovídající izoentropické expanzi celou STb částí, $i_{iz}^{STb2} = f(p_2^{9.st}; s_0^{7.st})$
c ₀ [m/s]	vstupní rychlost do RL 7. stupně

• Skutečný celkový spád na celou STb část

$$\begin{split} H^{STb} &= i^{STb1} + \frac{c_0^2}{2} - i^{STb2} - \frac{c_2^2}{2} \ [kJ/kg] \\ i^{STb2}[kJ/kg] & \text{entalpie na výstupu z OL 9. stupně} \\ c_2[m/s] & \text{výstupní rychlost z OL 9. stupně} \end{split}$$

• Termodynamická účinnost celé STb části

$$\eta_{TDi}^{STb} = \frac{H^{STb}}{H_{iz}^{STb}} \quad [-]$$

• Vnitřnní výkon STb části

$$P^{STb} = m_{STb} \cdot \sum_{i=7}^{9} h_{u\check{z},i} \quad [MW]$$

H _{iz} ^{STb}	kJ/kg	301,288
H^{STb}	kJ/kg	267,791
η _{TDi} STb	-	0,89
PSTP	MW	38,31

Tabulka 4 Vypočtené výkonnostní hodnoty STb části

Celá ST část

• Izoentropický celkový spád na celou ST část

$$\begin{split} H_{iz}{}^{ST} &= i^{ST1} - i_{iz}{}^{ST2} + \frac{c_0{}^2}{2} \ [kJ/kg] \\ i^{ST1}[kJ/kg]^{`} & \text{entalpie na vstupu do ST části, odpovídá entalpii na vstupu do RL 1. stupně ST/NT dílu \\ i_{iz}{}^{ST2}[kJ/kg] & \text{entalpie odpovídající izoentropické expanzi celou ST částí, } \\ i_{iz}{}^{ST2} &= f(p_2{}^{9.st}; s_0{}^{1.st}) \\ c_0[m/s] & \text{vstupní rychlost do RL 1. stupně} \end{split}$$

• Skutečný celkový spád na celou ST část

$$\begin{aligned} H^{ST} &= i^{ST1} + \frac{c_0^2}{2} - i^{ST2} - \frac{c_2^2}{2} [kJ/kg] \\ i^{ST2}[kJ/kg] & \text{entalpie na výstupu z OL 9. stupně} \\ c_2[m/s] & \text{výstupní rychlost z OL 9. stupně} \end{aligned}$$

Bc. Tomáš Adámek 24.5.2013

• Termodynamická účinnost celé ST části

$$\eta_{TDi}{}^{ST} = \frac{H^{ST}}{H_{iz}{}^{ST}} \quad [-]$$

• Vnitřní výkon ST části

$$P^{ST} = m_{STb} \cdot \sum_{i=7}^{9} h_{u\check{z},i} \quad [MW]$$

H _{iz} ST	kJ/kg	731,520
H ^{S™}	kJ/kg	674,981
$\eta_{\text{TDi}}^{\text{ST}}$	-	0,923
P ST	MW	110,699

Tabulka 5 Vypočtené výkonnostní hodnoty celé ST části

NT část

• Izoentropický celkový spád na celou NT část

$$\begin{split} H_{iz}^{NT} &= i^{NT1} - i_{iz}^{NT2} + \frac{c_0^2}{2} \quad [kJ/kg] \\ i^{NT1}[kJ/kg] & \text{entalpie na vstupu do NT části, odpovídá entalpii na vstupu do RL 10. stupně ST/NT dílu \\ i_{iz}^{NT2}[kJ/kg] & \text{entalpie odpovídající izoentropické expanzi celou NT částí, } \\ i_{iz}^{NT2} &= f(p_2^{11.st}; s_0^{10.st}) \\ c_0[m/s] & \text{vstupní rychlost do RL 10. stupně} \end{split}$$

• Skutečný celkový spád na celou NT část

$$\begin{split} H^{NT} &= i^{NT1} + \frac{c_0^2}{2} - i^{NT2} - \frac{c_2^2}{2} \quad [kJ/kg] \\ i^{NT2}[kJ/kg] & \text{entalpie na výstupu z OL 11. stupně} \\ c_2[m/s] & \text{výstupní rychlost z OL 11. stupně} \end{split}$$

Termodynamická účinnost celé NT části

$$\eta_{TDi}^{NT} = \frac{H^{NT}}{H_{iz}^{NT}} \quad [-]$$

Vnitřní výkon NT části
 P^{NT} = P^{STa} + P^{STb} [MW]

H _{iz} ^{NT}	kJ/kg	345,549
H ^{NT}	kJ/kg	259,556
η _{TDi} NT	-	0,75
P ^{NT}	MW	31

Tabulka 6 Vypočtené výkonnostní hodnoty NT části

Celek ST/NT

• Izoentropický celkový spád na ST/NT díl

$$\begin{split} H_{iz}^{ST/NT} &= i^{ST/NT1} - i_{iz}^{ST/NT2} + \frac{c_0^2}{2} [kJ/kg] \\ i^{ST/NT1}_{iz}[kJ/kg] & \text{entalpie na vstupu do RL 1. stupně ST/NT dílu} \\ i_{iz}^{ST/NT2}_{iz}[kJ/kg] & \text{entalpie odpovídající izoentropické expanzi celým ST/NT dílem} \\ i_{iz}^{ST/NT2} &= f(p_2^{11.st}; s_0^{1.st}) \\ c_0[m/s] & \text{vstupní rychlost do RL 1. stupně} \end{split}$$

• Skutečný celkový spád na ST/NT díl

 $\begin{aligned} H^{ST/NT} &= i^{ST/NT1} + \frac{c_0^2}{2} - i^{ST/NT2} - \frac{c_2^2}{2} \ [kJ/kg] \\ i^{ST/NT2} [kJ/kg] \\ c_2 [m/s] \end{aligned} \qquad entalpie na výstupu z OL 11. stupně výstupní rychlost z OL 11. stupně \end{aligned}$

• Termodynamická účinnost ST/NT dílu

$$\eta_{\text{TDi}}^{\text{ST/NT}} = \frac{H^{\text{ST/NT}}}{H_{\text{iz}}^{\text{ST/NT}}} \ [-]$$

• Celkový vnitřní výkon ST/NT dílu $P^{ST/NT} = P^{STa} + P^{STb} + P^{NT}$ [MW]

$H_{iz}^{ST/NT}$	kJ/kg	1064,314
H ^{ST/NT}	kJ/kg	934,524
$\eta_{TDi}^{ST/NT}$	-	0,878
P ^{ST/NT}	MW	141,728

Tabulka 7 Vypočtené výkonnostní hodnoty celého ST/NT dílu

Celkový výkon soustrojí

 $P^{celk} = P^{VT} + P^{ST/NT} = 74,72 + 141,715 = 216,435 MW$

Svorkový výkon

Celkový svorkový výkon turbo soustrojí

 $P_{sv}{}^{celk} = P^{celk} \cdot \eta^{mech} \cdot \eta^{gen} = 216,435 \cdot 0,99 \cdot 0,9871 = 211,506 \text{ MWe}$

Při užití předpokládaných mechanických účinostní a účinnosti generátoru je po provedení detailního výpočtu parní turbíny dosaženo vyššího výkonu než je požadováno v zadání. Je však třeba připustit, že v některých místech výpočtu byla použita některá zjednodušení a zidealizování probíhajících procesů. V tomto místě výpočtu také není počítáno s tzv. ucpávkovou párou a ztrátou výkonu s ní související. Její zohlednění je provedeno až po výpočtu ucpávek na straně 65.

DVOUTĚLESOVÁ KONDENZAČNÍ PARNÍ TURBÍNA

4 Rychlostní trojúhelníky

Po výpočtech základních údajů o jednotlivých stupních je možné provést detailní výpočet rychlostí v lopatkové mříži. Je tak získán přehled o velikostech a směrech rychlostí v lopatkování. Z těchto výsledků je pak možné sestrojit tzv. rychlostní trojúhelníky.

Pára vstupující do RL absolutní rychlostí c_0 je průchodem mezilopatkovým kanálem rozváděcí mříže urychlena na rychlost c_1 . Oběžné lopatky se však otáčí otáčkami n spolu s hřídelí tělesa rotoru a mají tak obvodovou rychlost u. Rychlost proudu páry se pak v tomto rotujícím mezilopatkovém kanálu jeví vzhledem ke statickému souřadnému systému statoru jako relativní. Absolutní hodnota rychlosti c_1 je tak tedy vektorově snížena o obvodovou rychlost v daném místě u_1 . Tato relativní rychlost páry vstupující do prostoru OL je označována jako w_1 . Díky malému stupni reakce je v OL také navíc zpracována zbylá část entalpického spádu lopatkového stupně. Relativní rychlost pak nejenom, že mění svůj směr, ale i částečně zrychluje na hodnotu w_2 . Absolutní rychlost c_2 , kterou proud páry opouští OL, je pak vektorovým součtem relativní rychlosti w_2 na výstupu z kanálu a příslušné obvodové rychlosti u_2 . Z rychlostních trojúhelníků lze tedy goniometrickými funkcemi určit úhly proudu na vstupu a výstupu z lopatkových mříží α_1 , α_2 , β_1 a β_2 .

Při návrhu lopatkování daného stupně je snaha vhodným nastavením parametrů docílit co nejmenší velikosti obvodové složky vystupující absolutní rychlosti z oběžných lopatek c_{2u} , tedy snaha dosáhnout $\alpha_2 = 90^{\circ} \pm 20^{\circ}$.

Obr. 12 Rychlostní trojúhelníky pro rovnotlaké lopatkování s malým stupněm reakce

Pro prizmatické lopatky je výpočet prováděn na středním průměru D_s a je tedy nutný přepočet stupeň reakce na patě na hodnotu na středním průměru.[2] Výpočty zborcených lopatek jsou prováděny na patním průměru a přepočet stupně reakce tak není nutný.

$$R_{s} = 1 - \left(\frac{D_{p}}{D_{s}}\right)^{2 \cdot \phi^{2} \cdot \cos^{2} \alpha_{1}} \cdot \left(1 - R_{p}\right) \text{ pro } \alpha_{1} = \text{konst.}$$

Použité vzorce

• Absolutní výstupní rychlost z rozváděcích lotatek

$$c_1 = \phi \cdot \sqrt{2000 \cdot h_{iz}^{RL}} \qquad [m/s]$$
• Axiální složka absolutní výstupní rychlosti z rozváděcích lopatek

 $c_{1ax} = c_1 \cdot \sin \alpha_1$ [m/s]

- Obvodová složka absolutní výstupní rychlosti z rozváděcích lopatek $c_{1u} = c_1 \cdot \cos \alpha_1$ [m/s]
- Obvodová rychlost válcových lopatek

$$u = \frac{\pi \cdot D_s \cdot n}{60} [m/s]$$

• Obvodová rychlost zborcených lopatek

$$u = \frac{\pi \cdot D_p \cdot n}{60} \ [m/s]$$

• Obvodová složka relativní vstupní rychlosti do oběžných lopatek

$$w_{1u} = c_{1u} - u \ [m/s]$$

• Axiální složka relativní vstupní rychlosti do oběžných lopatek

 $w_{1ax} = c_{1ax}$ [m/s]

• Relativní vstupní rychlost do oběžných lopatek

$$w_1 = \sqrt{w_{1u}^2 + w_{1ax}^2} [m/s]$$

- Úhel vstupu relativní rychlosti do oběžných lopatek $\beta_1 = \arcsin \frac{w_{1ax}}{w_1}$ [°]
- Úhel výstupu relativní rychlosti z oběžných lopatek $\beta_2 = \arcsin \frac{m \cdot v_2}{\pi \cdot D_s \cdot w_2 \cdot l_2 \circ L}$ [°] při volbě válcového omezení průtočného kanálu dle [1]
- Ztrátový rychlostní součinitel pro oběžné lopatky dle [2] $\Psi = -1,0714 \cdot 10^{-5} \cdot (\beta_1 + \beta_2)^2 + 0,002964 \cdot (\beta_1 + \beta_2) + 0,7507$ [-]
- Relativní výstupní rychlost z oběžných lopatek

 $w_2 = \Psi \cdot \sqrt{{w_1}^2 + R_s \cdot h_{iz}} \ [\text{m/s}]$

- Axiální složka relativní výstupní rychlosti z oběžných lopatek $w_{2ax} = w_2 \cdot \sin \beta_2 \quad [m/s]$
- Obvodová složka relativní výstupní rychlosti z oběžných lopatek $w_{2u} = w_2 \cdot \cos \beta_2$ [m/s]
- Axiální složka absolutní výstupní rychlosti z oběžných lopatek

 $c_{2ax} = w_{2ax}$ [m/s]

- Obvodová složka absolutní výstupní rychlosti z oběžných lopatek $c_{2u} = w_{2u} u$ [m/s]
- Absolutní výstupní rychlost z oběžných lopatek

$$c_2 = \sqrt{c_{2ax}^2 + c_{2u}^2}$$
 [m/s]

ENERGETICKÝ ÚSTAV Odbor energetického inženýrství DVOUTĚLESOVÁ KONDENZAČNÍ PARNÍ TURBÍNA

• Úhel absolutní rychlosti na výstupu z oběžných lopatek

 $\alpha_2 = \arccos \frac{c_{2u}}{c_2} \ [^\circ]$

5

Je-li zaveden zjednodušující předpoklad, že vystupující proud páry se mezi stupni neodklání, je tento úhel zároveň úhlem vstupním do dalšího stupně α_0 .

 $\alpha_0 = \alpha_2$ [°]

Vzhledem k chybějícím informacím o chování se proudu ve vstupním hrdle turbíny a neznáme hodnotě velikosti úhelu α_0 u prvního stupně, je předpokládán ideální stav a tedy $\alpha_0 = 90^\circ$.

St	upeň	1.	2.	3.	4.	5.	6.	7.	8.	9.	10.	11.
R_p	-	0,02	0,02	0,03	0,03	0,03	0,04	0,05	0,05	0,06	0,10	0,15
R_{s}	-	0,09	0,10	0,12	0,13	0,15	0,19	0,19	0,05	0,06	0,10	0,15
φ	-	0,97	0,97	0,97	0,97	0,97	0,97	0,97	0,97	0,97	0,97	0,97
Ψ	-	0,87	0,87	0,87	0,87	0,87	0,87	0,87	0,87	0,87	0,87	0,88
u	m/s	167,1	172,8	178,8	185,4	191,3	198,4	214,4	202,6	207,3	235,6	235,6
C ₀	m/s	50,0	67,7	71,0	73,9	76,1	78,4	80,7	88,2	93,3	96,8	82,9
C ₁	m/s	337,2	346,8	352,0	360,0	362,9	361,3	390,7	431,3	444,6	466,2	609,0
C _{1ax}	m/s	75,9	78,0	79,2	81,0	81,6	81,3	87,9	99,2	101,6	128,5	178,0
C _{1u}	m/s	328,6	337,9	343,0	350,7	353,6	352,1	380,7	419,7	429,8	448,2	582,3
W ₁	m/s	178,8	182,9	182,3	184,2	181,7	173,9	188,0	238,7	222,5	212,5	346,7
W _{1ax}	m/s	75,9	78,0	79,2	81,0	81,6	81,3	87,9	99,2	101,6	128,5	178,0
W _{1u}	m/s	161,4	165,2	164,2	165,4	162,3	153,7	166,2	217,1	222,5	212,5	346,7
β ₁	0	25	25	26	26	27	28	28	25	25	31	27
β2	0	22	22	22	22	22	22	22	24	24	19	26
W2	m/s	181,2	187,6	194,1	201,4	207,7	215,2	233,2	225,2	233,8	255,5	410,3
W _{2ax}	m/s	69,1	70,9	73,9	76,1	78,3	80,6	88,2	93,3	96,6	82,6	176,8
W _{2u}	m/s	167,5	173,7	179,5	186,5	192,3	199,5	215,9	205,0	212,9	241,7	370,3
C ₂	m/s	67,7	71,0	73,9	76,1	78,4	80,7	88,2	93,3	96,8	82,9	222,2
C _{2ax}	m/s	69,1	70,9	73,9	76,1	78,3	80,6	88,2	93,3	96,6	82,6	176,8
C _{2u}	m/s	0,3	0,9	0,7	1,1	1,0	1,2	1,4	2,3	5,6	6,1	134,7
α ₁	0	13	13	13	13	13	13	13	13,3	13,3	16	17
α2	0	89,7	89,3	89,4	89,1	89,3	89,2	89,1	88,6	86,7	85,8	52,7

Tabulka 8 Velikosti úhlů a rychlostí v OL a RL

5

5 Volba profilů

Při volbě vhodného profilu rozváděcích a oběžných lopatek je vycházeno z katalogu vyráběných normalizovaných profilů (Příloha 3). Každá lopatka je zde označena svou signaturou s uvedenými povolenými rozsahy vstupních a výstupních úhlů proudu. Při použití prizmatických lopatek se profil po délce nemění a výpočet je prováděn na středním průměru D_s . Lopatky zkrucované však mají proměnný tvar profilu a tedy i měnící se stupeň reakce po celé své délce. V praxi to znamená, že zatím co u paty je tvar lopatky podobný rovnotlakému profilu, na jejím konci je již podobný profilům přetlakovým. Je tedy zaveden předpoklad, že lopatka má daný katalogový profil na patním průměru D_p , pro který jsou výpočty těchto lopatek prováděny. Poslední dvě lopatky jsou přímo normalizované firmou Doosan Škoda Power. Pro nedostatek informací tak nejsou blíže řešeny.

Kritérii pro nalezení vhodných profilu jsou vstupní a výstupní úhly proudu do lopatkových mříží. Je však nutná následná kontrola rychlosti proudění z hlediska možného překročení rychlosti zvuku. Při nevhodném návrhu profilu by při tomto stavu docházelo například k odklonu proudu na výstupu z mříže.

• Machovo číslo pro RL a OL

$$Ma^{RL} = \frac{c_1}{a_1} \quad [-]$$
$$Ma^{OL} = \frac{w_2}{a_2} \quad [-]$$

• Rychlost zvuku na výstupu z RL

 $a_1 = \sqrt{\kappa_1 \cdot p_1 \cdot v_1} \qquad [m/s]$

 κ_1 Poissonova konstana na výstupu z RL dle [3]

$\kappa_1 \approx 1,38$	pro proudění v přehřáté párě
$\kappa_1 = 1.035 + 0.1 * X_1$	pro proudění v mokré páře

• Rychlost zvuku na výstupu z OL

 $a_2 = \sqrt{\kappa_2 \cdot p_2 \cdot v_2}$ [m/s] κ_2 Poissonova konstana na výstupu z OL dle [3]

$\kappa_2 \approx 1,38$	pro proudění v přehřáté párě
$\kappa_2 = 1,035 + 0,1 * X_2$	pro proudění v mokré páře

Dle hodnoty Machova čísla jsou definovány tři druhy proudění v lopatkové mříži, přičemž každému náleží jiný typ profilů lopatek.

Ma < 0,9	podzvukové proudění
0,9 < Ma < 1,15	transsonické proudění
Ma > 1,15	nadzvukové proudění

Z výsledků výpočtů (Tabulka 9, Tabulka 10) je patrno, že k proudění blízkému rychlosti zvuku dochází v rozváděcích lopatkách až na 8. stupni. Tento fakt vede k použití na 8. a 9. stupni tzv. transsonických profilů RL s typovým označením S-90-XX-B. Je zřejmé, že na posledních dvou stupních s normalizovanými profily LSB-1 a LSB je již proudění nadzvukové.

ENERGETICKÝ ÚSTAV Odbor energetického inženýrství

151

DVOUTĚLESOVÁ KONDENZAČNÍ PARNÍ TURBÍNA

V příslušných tabulkách jsou ke zvoleným výsledným profilům uvedeny odpovídající mechanické vlastnosti z katalogu (Příloha 3), které jsou následně použity při pevnostních výpočtech lopatkování.

Stup	eň	1.	2.	3.	4.	5.	6.	7.	8.	9.	10.	11.
К	-	1,38	1,38	1,38	1,38	1,38	1,38	1,38	1,13	1,13	1,12	1,12
C ₁	m/s	337,2	346,8	352,0	360,0	362,9	361,3	390,7	431,3	441,6	466,2	609,2
а	m/s	623,4	607,8	591,1	572,6	552,7	531,5	509,0	444,2	428,8	411,9	382,6
Ма	-	0,54	0,57	0,60	0,63	0,66	0,68	0,77	0,97	1,03	1,13	1,59
α ₀	0	90,00	89,06	89,19	89,44	89,14	89,26	89,18	89,06	88,56	88,63	85,76
α1	0	13	13	13	13	13	13	13	13,3	13,3	16	17
PRO	FIL			S	-90-12-	A			S-90-	-12-B	LSB-1	LSB
Ma	-				do 0,85	;			0,85 a	ž 1,15	-	-
α_0^{OPT}	0			7	'0 až 12	0			70 až	ź 120	-	-
α_1^{OPT}	0			1	10 až 14	4			10 a	ž 14	-	-
(t/c) ^{OPT}	-			0,7	72 až 0,	87			0,72 a	z 0,87	-	-
C ₀	cm				6,25				5,	66	-	-
S ₀	cm2				4,09		3,	31	-	-		
J_0^{min}	cm4				0,591	0,3	38	-	-			
W ₀ ^{min}	cm3				0,575	0,	42	-	-			
B ₀	cm				2,5				2	,5	-	-

 Tabulka 9 Parametry proudění v RL a příslušné profily

Stup	eň	1.	1. 2. 3. 4. 5. 6. 7. 8. 9.					10.	11.			
к	-	1,38	1,38	1,38	1,38	1,38	1,38	1,38	1,13	1,13	1,12	1,12
W2	m/s	181,2	187,6	194,1	201,4	207,7	215,2	233,2	225,2	233,8	255,5	410,3
а	m/s	623,3	607,7	590,6	571,8	551,3	529,1	507,0	444,3	428,6	411,8	379,9
Ма	-	0,29	0,31	0,33	0,35	0,38	0,41	0,46	0,51	0,55	0,62	1,08
β ₁	0	25	25	26	26	27	28	28	25	25	31	27
β2	0	22	22	22	22	22	22	22	24	24	19	26
PRO	FIL				R	-30-21/	4				LSB-1	LSB
Ma	-				(do 0,90					-	-
α_0^{OPT}	0				2	5 až 40)				-	-
α_1^{OPT}	0				1	9 až 24	ŀ				-	-
(t/c) ^{OPT}	-				0,5	8 az 0,	68				-	-
C ₀	cm					2,56					-	-
S ₀	cm2		1,85									-
J_0^{min}	cm4	0,205									-	-
W ₀ ^{min}	cm3					0,234					-	-
B ₀	cm					2,5					-	-

Tabulka 10 Parametry proudění v OL a příslušné profily

Stupe	eň	10.	11.
Prof	il	LSB-1	LSB
Typ zá∖	/ěsu	stromeček	stromeček
Dp	m	1,5	1,5
Lp	mm	440	760
В	mm	110	208
Z _{skut}	-	76	64
m _{celk}	kg	9,042	19,362

Tabulka 11 Základní dostupné parametry normalizovaných OL dvou posledních stupňů

6 Pevnostní výpočty

Při návrhu parní turbíny je nutné vzít v úvahu omezující pevnostní kritéria použitých komponentů. Nepříznivé výsledky pevnostních výpočtů vedou i k přepracování celého termodynamického návrhu průtočné části. Při zpracování pevnostních výpočtů byl současně realizován výkres a byla tak zajištěna kontrola prostorového umístění většiny komponentů. Při výpočtu bylo použito podkladů dodaných z firmy Doosan Škoda Power.

6.1 Namáhání oběžných lopatek na ohyb

Příslušné hodnoty pro zvolený profil lopatkování z katalogu (Příloha 3) jsou pro šířku lopatky $B_0=25$ mm. Skutečné šířky lopatek budou ale jiné. Je proto nutné ve výpočtech přepočítat dovolené pevnostní veličiny na skutečnou šířku dle níže uvedených vzorců.

• Úhel nastavení oběžné lopatky γ

$$B_0 = c_0 \cdot \sin \gamma \rightarrow \gamma = \arcsin \frac{B_0}{c_0} \ [^\circ]$$

c₀ [mm] délka tětivy profilu oběžné lopatky o šířce B₀
 B₀[mm] výpočtová šířka oběžné lopatky uvedená v katalogu (Příloha 3)

• Délka tětivy c pro skutečnou šířku profilu B

 $B = c \cdot \sin \gamma \rightarrow c = B \cdot \sin \gamma \ [mm]$

B[mm] šířka skutečně použité oběžné lopatky

• Plocha profilu skutečně použité oběžné lopatky

$$S_0' = S_0 \cdot \left(\frac{c}{c_0}\right)^2 \ [mm^2]$$

 $S_0 \text{ [mm}^2$] plocha profilu při šířce lopatky B_0 uvedená v katalogu (Příloha 3)

• Modul pružnosti skutečně použité oběžné lopatky

$$W_0' = W_0 \cdot \left(\frac{c}{c_0}\right)^3 [mm^3]$$

 W_0 modul pružnosti při šířce oběžné lopatky B_0 uvedený v katalogu (Příloha 3)

Volba šířky lopatky je závislá na jejím dovoleném napětí. Dle doporučení z firmy Doosan Škoda Power je volena smluvní hodnota dovoleného napětí v ohybu $\sigma_{o,DOV} = 20$ MPa pro lopatky řadových stupňů a $\sigma_{o,DOV} = 16$ MPa pro lopatky stupňů před odběry. V těchto místech lze vzhledem k možnému poklesu tlaku v odběrech předpokládat možné krátkodobé zvýšení ohybového momentu a následné přetěžování.

• Přibližná rozteč oběžných lopatek

 $t = t_{opt} \cdot c[mm]$

t_{opt}[-] optimální poměrná rozteč volená v rozsahu pro daný profil lopatky uvedený v katalogu (Příloha 4)

Celkový počet oběžných lopatek v oběžné lopatkové mříži

$$z = \frac{\pi \cdot D_s}{t} \quad [-]$$

Počet lopatek je zaokrouhlen směrem nahoru na nejbližší sudé číslo

Bc. Tomáš Adámek 24.5.2013

DVOUTĚLESOVÁ KONDENZAČNÍ PARNÍ TURBÍNA

• Počet ostříknutých oběžných lopatek v mříži

 $\mathbf{z}_{\mathsf{skut}} = \varepsilon \cdot z \, [-]$

5

V případě totálního ostřiku na celém ST/NT tělese $z_{\rm skut} = z.$

• Skutečná rozteč

 $t_{skut} = \frac{\pi \cdot D_s \cdot 1000}{Z_{skut}} \text{ [mm]}$

Stup	beň	1.	1. 2. 3. 4. 5. 6. 7.							9.				
Typ lop	oatek		Zkrucované											
Pro	ofil		R-30-21A											
Y	0	77,6	77,6	77,6	77,6	77,6	77,6	77,6	77,6	77,6				
В	mm	30	40	40	40	40	50	50	60	70				
(t/c) _{opt}	-	0,6	0,65	0,65	0,65	0,55	0,55	0,65	0,55	0,55				
С	mm	30,7	41,0	41,0	41,0	41,0	51,2	51,2	61,4	71,7				
W ₀ ʻ	mm3	404,4	958,5	958,5	958,5	958,5	1872	1872	3234,8	5136,8				
S ₀ '	mm2	266,4	473,6	473,6	473,6	473,6	740	740	1065,6	1450,4				
$D_{S}(D_{p})$	m	1,064	1,1	1,138	1,18	1,218	1,263	1,365	1,29	1,32				
P _i ST	kW	10481,2	11188,6	11757,5	12496,7	13010,1	13441,3	12581	12904,3	12839,1				
n	1/s	50	50	50	50	50	50	50	50	50				

Tabulka 12 Přepočet katalogových parametrů na skutečně použité šířky OL

• Kroutící moment na celý stupeň

$$M_{K}^{stup} = \frac{P_{ST}}{2 \cdot \pi \cdot n} [Nm]$$

$$P_{ST}[kW] \quad výkon \ daného \ stupně$$

$$n[1/s] \qquad otáčky \ rotoru \ turbíny$$

• Kroutící moment na jednu lopatku

$$M_{K}^{lop} = \frac{M_{K}^{stup}}{z_{skut}} \ [Nm]$$

• Obvodová síla na jednu lopatku

$$F_u^{lop} = \frac{2 \cdot M_K^{lop}}{D_s} [N]$$

• Ohybový moment na jednu lopatku

$$M_o^{lop} = F_u^{lop} \cdot \frac{L_2^{OL}}{2} [Nm]$$

L₂^{OL}[m] délka výstupní hrany oběžné lopatky

- Napětí oběžné lopatky v ohybu $\sigma_o^{lop} = \frac{M_o^{lop}}{W_o'}$ [MPa]
- Pevnostní kontrola na ohyb $\sigma_o < \sigma_{o,DOV}$ [MPa]

ENERGETICKÝ ÚSTAV

Bc. Tomáš Adámek

	DVOUTĚLESOVÁ KONDENZAČNÍ PARNÍ TURBÍNA 24.5.2013												
	Stupeň 1. 2. 3. 4. 5. 6. 7.									8.	9.		
Tvp lopatek				Zkrucované									
	t	mm	16,9	26,6	26,6	26,6	22,5	28,2	33,3	33,8	39,4		
	Z	-	197,7	129,8	134,3	139,2	169,9	140,9	128,9	119,9	105,2		
	Z _{skut}	-	198	130	136	140	170	142	130	120	106		
	t _{skut}	mm	16,9	26,6	26,3	26,5	22,5	27,9	33,0	33,8	39,1		
	M _k ^{stup}	Nm	33358,6	35666,2	37423,4	39778,3	41412,3	42785,0	40046,8	41075,5	40818,8		
	M _k ^{lop}	Nm	168,48	274,36	275,17	284,13	243,60	301,30	308,05	342,30	385,08		
	F ^{lop}	Ν	316,99	498,83	483,61	481,58	400,00	477,12	451,36	530,69	583,46		
	M _o lop	Nm	7,45	13,47	15,11	18,06	18,60	28,27	27,53	46,70	79,06		
	σ。	MPa	18,42	14,05	15,77	18,84	19,41	15,10	14,71	14,44	15,39		
	$\sigma_{o,DOV}$	MPa	20	20	20	20	20	16	16	20	16		
	$\sigma_{o} < \sigma_{o,DOV}$	-	OK	OK	OK	OK	OK	OK	OK	OK	OK		

DVOUTĚLESOVÁ KONDENZAČNÍ PARNÍ TURBÍNA

Tabulka 13 Výsledky pevnostní kontroly OL na tah

6.2 Namáhání oběžných lopatek na tah

Výpočet namáhání rotujících oběžných lopatek je velmi důležitý, protože působící odstředivé síly (hlavně u posledních stupňů) jsou značné. Je třeba znát hmotnost samotných lopatek a jejich případných bandáží. Výpočet je prováděn pro o 10% zvýšenou hodnotu provozních otáček. Při určení dovolených namáhání je vycházeno z přepočtu pevnostních parametrů lopatkování z katalogu (Příloha 3) na skutečné šířky lopatek a doporučení z firmy Doosan Škoda Power. Důležitým faktorem ovlivňujícím pevnostní charakteristiku použitých materiálů je také provozní teplota. Její hodnota je brána v místě vstupu páry do oběžných kol, kde je nejvyšší.

Obr. 13 Skutečný a náhradní tvar oběžné lopatky a bandáže pro výpočet

Objem oběžné lopatky

 $V^{OL} = S \cdot L_2^{OL}$ $[m^3]$ $S[m^2]$ plocha profilu lopatky $L_2^{OL}[m]$ délka oběžné lopatky

Hmotnost oběžné lopatky ٠

 $m^{OL} = V^{OL} \cdot \rho [kg]$

 $\rho[\text{kg/m}^3]$ hustota materiálu lopatky (voleno $\rho_{\text{ocel}} = 7850 \text{ kg/m}^3$)

ENERGETICKÝ ÚSTAV Odbor energetického inženýrství

• Objem bandáže

Ы

 $V_{b} = 0 \cdot b \cdot v = \pi \cdot (D_{s} + L_{2}^{OL} + v) \cdot b \cdot v \quad [m^{3}]$ $D_{s}[m] \qquad \text{střední průměr lopatkování}$

DVOUTĚLESOVÁ KONDENZAČNÍ PARNÍ TURBÍNA

Ds[m]střední průměr lopatkb[m]šířka bandážev [m]výška bandáže

• Hmotnost bandáže

 $m_{b} = \frac{V_{b} \cdot \rho}{z} \quad [kg]$ $z_{skut}[-] \qquad \text{počet oběžných lopatek ve stupni}$

• Celková hmotnost (lopatka + bandáž)

 $m_{celk}^{OL} = m^{OL} + m_b$ [kg]

• Odstředivé zrychlení

$$a_{OD} = r^2 \cdot \omega = \frac{D_s + v}{2} \cdot (2 \cdot \pi \cdot n_{110\%})^2 \ [m/s^2]$$

 $n_{110\%}[s^{-1}]$ bezpečnostní hodnota otáček oběžných lopatek,(tj. zvýšená o 10%)

• Odstředivé síla

 $F_{OD} = m_{celk}^{OL} \cdot a_{ODt} [N]$

• Součinitel odlehčení

Zborcené OL mají po své délce proměnlivý tvar profilu. Díky tomuto dochází směrem k jejich konci k hmotnostnímu odhlehčení, které je potřeba vzít v úvahu. Jeho hodnotu vyjadřuje keficient odlehčení $k = f(L_2^{OL})$ (Příloha 2)

$$k = \sqrt{\frac{S_p}{S_{\tilde{s}}}} \quad [-]$$

$$S_p[m^2] \qquad \text{plocha profilu lopatky na její patě}$$

$$S_{\tilde{s}}[m^2] \qquad \text{plocha profilu lopatky na její špici}$$

• Napětí v tahu pro prizmatické lopatky

$$\sigma_t^{lop} = \frac{F_{odst}}{S} [MPa]$$

• Napětí v tahu pro zkrucované lopatky

$$\sigma_t^{lop} = \frac{F_{odst}}{S \cdot k} [MPa]$$

• Pevnostní kontrola lopatky

 $\sigma_t^{lop} < \sigma_{t,DOV}$ [MPa]

Dovolené napětí je dáno lineární interpolací maximálních dovolených napětí zvoleného materiálu oběžných lopatek (Příloha 4) v závislosti na provozní teplotě t₁.

ENERGETICKÝ ÚSTAV

Bc. Tomáš Adámek

24.5.2013

Stup	eň	1.	2.	3.	4.	5.	6.	7.	8.	9.
Typ lop	oatek		Zkrucované							
VOL	cm ³	12,52	25,57	29,60	35,52	44,04	87,69	90,28	187,55	393,06
ρ	m³/kg	7850	7850	7850	7850	7850	7850	7850	7850	7850
m ^{ol}	kg	0,098	0,201	0,232	0,279	0,346	0,688	0,709	1,472	3,086
V	mm	5	6	6	6	6	6	6	6	6
b	mm	30,4	40,4	40,4	40,4	40,4	50,4	50,4	40,8	57,8
Vb	mm3	0,532	0,883	0,919	0,960	1,003	1,318	1,418	1,267	2,035
m _b	kg	0,021	0,053	0,053	0,054	0,046	0,073	0,086	0,083	0,151
m _{celk} OL	kg	0,119	0,254	0,285	0,333	0,392	0,761	0,794	1,555	3,236
n _{110%}	1/s	55	55	55	55	55	55	55	55	55
a _{OD}	m/s ²	6,38·10 ⁴	6,60·10 ⁴	6,83·10 ⁴	7,08·10 ⁴	7,31·10 ⁴	7,58·10 ⁴	8,19·10 ⁴	7,74·10 ⁴	7,92·10 ⁴
F _{OD}	kN	7,614	16,781	19,495	23,559	28,654	57,681	65,028	120,346	256,235
k	-	-	-	-	-	-	-	-	1,2	1,5
σ_t^{lop}	MPa	28,58	35,43	41,16	49,75	60,50	77,95	87,88	94,11	117,78
t ₁	С°	383,09	349,01	313,60	275,93	237,06	197,70	160,14	137,03	117,11
Mate	riál			R-M-AK	1.6			R-M-AK1	.6 vyk.	
$\sigma_{t,DOV.}$	MPa	111,67	137,40	151,56	160,61	166,44	172,32	177,58	198,594	202,577
$\sigma_t < \sigma_{t,DOV}$	-	OK								

DVOUTĚLESOVÁ KONDENZAČNÍ PARNÍ TURBÍNA

 Tabulka 14 Výsledky pevnostní kontroly OL na ohyb

6.3 Namáhání závěsů oběžných lopatek

Dle doporučení z firmy Doosan Škoda Power bylo použito na 2. až 6. stupni závěsů s tzv. T-nožkou. Oproti tomu na 1. a od 7. stupně (z důvodu vyššího namáhání) je použito rozvidlených závěsů. Ty jsou s rotorem spojeny pomocí kolíků. Poslední dva stupně jsou normalizované se stromečkovým závěsem, bližší specifikace jejich závěsů však není známa.

Obr. 14 Charakteristické rozměry rozvidleného závěsu a T-nožky

• Průměr k těžišti závěsu

 $D_t = D_p - 2 \cdot T_t \ [m]$

Dp[m]patní průměr lopatkyTt[m]vzdálenost těžiště závěsu od patního průměru

Color energetického inženýrství DVOUTĚLESOVÁ KONDENZAČNÍ PARNÍ TURBÍNA

• Těžištní rozteč

$$t_t = \frac{\pi \cdot D_t}{z_{skut}} \quad [m]$$

z_{skut}[-] počet oběžných lopatek na příslušném rotorovém disku

• Hmotnost závěsu

$$\begin{split} m_z &= S_z \cdot t_t \cdot \rho_{ocel} \ [kg] \\ S_z \cdot [m^2] \qquad \text{prut} \end{split}$$

 $S_z \cdot [m^2]$ průřezová plocha závěsu (díry pro pojistné kolíky zanedbáváme) $\rho_{ocel} [kg/m^3]$ hustota materiálu závěsu, volím $\rho_{ocel} = 7850 \text{ kg/m}^3$

• Hmotnost celé zkompletované lopatky(lopatka + bandáž + závěs)

 ${m_{komp}}^{OL} = {m_{celk}}^{OL} + {m_z}$ [kg] ${m_{celk}}^{OL}$ [kg] hmotnost lopatky s bandáží

• Odstředivá síla působící na skutečnou lopatku $F_{OD,komp} = m_{komp}^{OL} \cdot (2 \cdot \pi \cdot n_{110\%})^2 \cdot \frac{D_t}{2} [N]$

Závěs s T-nožkou

- Plocha závěsu namáhaná na tah $S_{TAH} = Y \cdot t_t \text{ [mm}^2\text{]}$
- Plocha závěsu namáhaná na střih $S_{ST\check{R}IH} = 2 \cdot X \cdot t_t \ [mm^2]$
- Plocha závěsu namáhaná na otlačení $S_{OTL} = C \cdot t_t \ [mm^2]$

Rozvidlený závěs

• Plocha závěsu namáhaná na tah

 $S_{TAH} = (t_t - d_k) \cdot (n_a \cdot a + n_b \cdot b + n_c \cdot c) \quad [mm^2]$ $n_a[ks] \qquad \text{počet částí nožek o šířce a}$

 $n_{\rm b}[{\rm ks}]$ počet částí nožek o šířce b

- $n_c[ks]$ počet částí nožek o šířce c
- Plocha závěsu namáhaná na střih

 $S_{ST\check{R}IH} = 2 \cdot n_{ST\check{R}} \cdot \frac{\pi \cdot d_k}{4} \quad [mm^2]$ $n_{ST\check{R}}[ks] \quad \text{počet střižných ploch}$

• Plocha závěsu namáhaná na otlačení $S_{OTL} = d_k \cdot (n_a \cdot a + n_b \cdot b + n_c \cdot c) \ [mm^2]$

5

ENERGETICKÝ ÚSTAV

Namáhání závěsů

• Tahové napětí závěsu

 $\sigma_{\text{TAH}} = \frac{F_{\text{OD,komp}}}{S_{\text{TAH}}} \quad [\text{MPa}]$

- Střihové napětí závěsu $\tau_{STŘIH} = \frac{F_{OD,komp}}{S_{STŘIH}}$ [MPa]
- Namáhání závěsu otlačením $\sigma_{OTL} = \frac{F_{OD,komp}}{S_{OTL}}$ [MPa]

Pevnostní kontrola

• Dovolené tahové napětí závěsu

 $\sigma_{TAH,DOV}$ [MPa] určeno materiálem závěsu z katalogu (Příloha 4) a provozní teplotou t₁

• Dovolené střihové napětí závěsu

 $\tau_{\text{STŘIH,DOV}} = 0.6 \cdot \sigma_{\text{TAH,DOV}}$ [MPa]

• Dovolené střihové napětí závěsu

 $\sigma_{\text{OTL,DOV}} = 1.5 \cdot \sigma_{\text{TAH,DOV}} \text{ [MPa]}$

Stupeň	i	2.	3.	4.	5.	6.
Bz	mm	40	40	40	40	50
T _t	mm	16,2	16,2	16,2	16,2	23,5
Sz	mm ²	946	946	946	946	1645
ρ	kg/m ³	7850	7850	7850	7850	7850
Х	mm	11,3	11,3	11,3	11,3	16,5
Y	mm	14	14	14	14	18
С	mm	11,2	11,2	11,2	11,2	14,4
Dt	m	1,018	1,048	1,078	1,098	1,103
t _t	m	0,025	0,024	0,024	0,020	0,024
m _z	kg	0,183	0,180	0,180	0,151	0,315
m _{komp} OL	kg	0,437	0,465	0,512	0,543	1,076
F _{OD,komp}	kN	11,096	11,241	11,555	9,872	20,754
S _{TAH}	mm ²	344,280	338,793	338,538	283,970	439,248
S _{STŘIH}	mm ²	555,766	546,909	546,497	458,409	805,288
S _{OTL}	mm ²	275,424	271,034	270,830	227,176	351,398
σ _{ταμ}	MPa	80,97	90,72	103,72	135,67	178,57
τ _{stř}	MPa	50,16	56,20	64,25	84,04	97,40
σ_{OTL}	MPa	101,22	113,40	129,65	169,59	223,21
t ₁	°C	349,01	313,60	275,93	237,06	197,70
Materiá	l		R-M-A	AK1.6		R-M-AK2 vyk.
$\sigma_{TAH,DOV.}$	MPa	137,40	151,56	160,61	166,44	186,46
$\tau_{\text{STŘ,DOV}}$	MPa	82,44	90,94	96,37	99,86	111,88
σ _{otl,dov}	MPa	206,10	227,34	240,92	249,66	279,69
$\sigma_{TAH} < \sigma_{TAH,DOV}$	-	OK	OK	OK	OK	OK
$\tau_{\text{STR}} < \tau_{\text{STR},\text{DOV}}$	-	OK	OK	OK	OK	OK
$\sigma_{OTL} < \sigma_{OTL,DOV}$	-	OK	OK	OK	OK	OK

Tabulka 15 Pevnostní kontrola závěsů s T-nožkou

FI

ENERGETICKÝ ÚSTAV

DVOUTĚLESOVÁ KONDENZAČNÍ PARNÍ TURBÍNA

Bc. Tomáš Adámek

24.5.2013

Stupeř	i	1.	7.	8.	9.
Bz	mm	30	50	60	70
Tt	mm	25,6	33,09	33,09	36,36
Sz	mm ²	1231,85	3091	3091	4053
ρ	kg/m ³	7850	7850	7850	7850
а	mm	11	13	13	11
b	mm	0	15	15	13
С	mm	8	10	10	9
n _a	ks	2	2	2	2
n _b	ks	0	1	1	2
n _c	ks	2	3	3	4
d _k	m	0,008	0,012	0,014	0,016
Dt	m	0,969	1,184	1,224	1,247
t _t	m	0,015	0,029	0,032	0,037
m _z	kg	0,248	0,803	0,803	1,157
m _{komp} OL	kg	0,367	1,597	2,358	4,393
F _{OD,komp}	kN	21,227	112,905	172,316	327,180
STAH	mm ²	280,120	1179,190	1280,807	1761,183
S _{STŘIH}	mm ²	402,124	1357,168	1847,256	3216,991
S _{OTL}	mm ²	304	852	994	1344
σ_{TAH}	MPa	75,78	95,75	134,54	185,77
T STŘ	MPa	52,79	83,19	93,28	101,70
σ_{OTL}	MPa	69,83	132,52	173,36	243,44
t ₁	°C	383,09	160,14	137,03	117,11
Materiá	il 👘	R-M-AK1.6		R-M-AK1.6 vy	′k
$\sigma_{TAH,DOV.}$	MPa	111,67	193,97	198,59	202,58
T _{STŘ,DOV}	MPa	67,00	116,38	119,16	121,55
$\sigma_{\text{OTL,DOV}}$	MPa	167,51	290,96	297,89	303,87
$\sigma_{TAH} < \sigma_{TAH,DOV}$	-	OK	OK	OK	OK
T _{STŘ} < T _{STŘ,DOV}	-	OK	OK	OK	OK
$\sigma_{\text{OTL}} < \sigma_{\text{OTL,DOV}}$	-	OK	OK	OK	OK

Tabulka 16 Pevnostní kontrola rozvidlených závěsů

6.4 Namáhání závěsů kol

Oběžné lopatky s rozvidlenými závěsy jsou zajištěny v příslušných drážkách na rotorových discích pojistnými kolíky. Tyto místa jsou kontrolovány na tahové namáhání od odstředivé síly a na otlačení v místě závěsu. Je postupováno dle výpočetních vztahů dodaných z firmy Doosan Škoda Power.

Obr. 15 Zajištění oběžné lopatky pomocí pojistných kolíků

Použité vzorce

• Plocha na oběžném kole namáhaná na tah v místě 1.kolíku

$S_{1k,tah} = \left(\frac{\pi \cdot D_{k1}}{Z_{skut}} - \right)$	d_k) · (2 · B _z - n _a · a + n _b · b + n _c · c) [mm ²]
D _k [mm]	roztečný průměr kolíku
d _k [mm]	průměr pojistných kolíků
z _{skut} [-]	počet oběžných lopatek na příslušném rotorovém disku
B _z [mm]	šířka závěsu oběžné lopatky rotorovém disku
n _a , n _b , n _c [ks]	počet částí nožek o šířce a, b či c

• Plocha na oběžném kole namáhaná na otlačení v místě 1.kolíku

$$S_{1k,otl} = (d_k) \cdot (2 \cdot B_z - n_a \cdot a + n_b \cdot b + n_c \cdot c) \quad [mm^2]$$

• Napětí v tahu v místě 1.kolíku

$$\sigma_{1k,tah} = \frac{F_{OD,komp}}{S_{1k,tah}} \quad [MPa]$$

F_{OD,komp}[N] odstředivá síla na zkompletovanou lopatku (lopatka+bandáž+závěs)

• Namáhání na otlačení v místě 1.kolíku

$$\sigma_{1k,otl} = \frac{F_{OD,komp}}{S_{1k,otl}} \quad [MPa]$$

ENERGETICKÝ ÚSTAV Odbor energetického inženýrství DVOUTĚLESOVÁ KONDENZAČNÍ PARNÍ TURBÍNA

• Plocha na oběžném kole namáhaná na tah v místě 2.kolíku

$$S_{2k,tah} = \left(\frac{\pi \cdot D_{k2}}{Z_{skut}} - d_k\right) \cdot (2 \cdot B_z - n_a \cdot a + n_b \cdot b + n_c \cdot c) \quad [mm^2]$$

• Plocha na oběžném kole namáhaná na otlačení v místě 2.kolíku

$$S_{2k,otl} = (d_k) \cdot (2 \cdot B_z - n_a \cdot a + n_b \cdot b + n_c \cdot c) \quad [mm^2]$$

• Napětí v tahu v místě 2.kolíku

$$\sigma_{2k,tah} = \frac{F_{OD,komp}}{S_{2k,tah}} \quad [MPa]$$

• Namáhání na otlačení v místě 1.kolíku

$$\sigma_{2k,otl} = \frac{F_{OD,komp}}{S_{2k,otl}} \quad [MPa]$$

Pevnostní kontrola

51

- Dovolené napětí v tahu
 - $\sigma_{tah,DOV}$ [MPa] určeno z tabulky (Příloha 4) pro materiál disku při provozní teplotě t₁
- Dovolené napětí na otlačení

 $\sigma_{k,otl,DOV} = 1,5 \cdot \sigma_{tah,DOV}$ [MPa]

- Pevnostní podmínka na tah v místě 1. kolíku $\sigma_{1k,tah} < \sigma_{tah,DOV}$ [MPa]
- Pevnostní podmínka na tah v místě 2. kolíku
 σ_{2k,tah} < σ_{tah,DOV} [MPa]
- Pevnostní podmínka na otlačení v místě 1. a 2.kolíku
 σ_{1k,otl} < σ_{k,otl,DOV} [MPa]
- Pevnostní podmínka na otlačení v místě 1. a 2.kolíku
 σ_{2k,otl} < σ_{k,otl,DOV} [MPa]

Stupeň		1.	7.	8.	9.	
Bz	mm	30	50	60	70	
Z _{skut}	-	198	130	120	106	
Dk ₁	mm	975	1181	1226	1252	
Dk ₂	mm ²	929	1121	1166	1182	
n _a	ks	2	2	2	2	
n _b	ks	0	1	1	2	
n _c	ks	2	3	3	4	
d _k	m	0,008 0,012 0,014 0,016				
Materiál ko	Materiál kolíků X19CrMoVNbN					
Materiál di	sků		16 53	36.6a		

Tabulka 17 Pevnostní kontrola namáhání závěsů kol

ENERGETICKÝ ÚSTAV

Bc. Tomáš Adámek 24.5.2013

DVOUTĚLESOVÁ	KONDENZAČNÍ	PARNÍ	TURBÍNA
D100122001/1			

F _{OD,komp}	kN	21,228	112,905	172,316	327,180
S _{1k,tah}	mm ²	403,378	1968,279	2515,428	3799,145
S _{1k,otl}	mm ²	432	1428	1946	2880
S _{2k,tah}	mm ²	363,965	1795,733	2297,087	3425,710
S _{2k,otl}	mm ²	432	1428	1946	2880
$\sigma_{1k,tah}$	MPa	52,63	57,36	68,50	86,12
$\sigma_{1k,otl}$	MPa	49,14	79,07	88,55	113,60
$\sigma_{2k,tah}$	MPa	58,33	62,87	75,02	95,51
$\sigma_{2k,otl}$	MPa	49,14	79,07	88,55	113,60
t ₁	С°	383,09	160,14	137,03	117,11
$\sigma_{tah,DOV}$	MPa	140,70	160,78	163,56	165,95
$\sigma_{otl,DOV}$	MPa	211,05	241,18	245,33	248,92
$\sigma_{1k,tah} < \sigma_{tah,DOV}$	-	OK	OK	OK	OK
$\sigma_{1k,otl} < \sigma_{otl,DOV}$	-	OK	OK	OK	OK
$\sigma_{2k,tah} < \sigma_{tah,DOV}$	-	OK	OK	OK	OK
$\sigma_{2k,otl} < \sigma_{otl,DOV}$	-	OK	OK	OK	OK

6.5 Namáhání rozváděcích lopatek na ohyb

Tlak před rozváděcí mříží stupně je vyšší než tlak za mříží. Tato diference vytváří sílu, která působí na lopatku v místě jejího uložení ve statorové skříni a lopatky je tak ohybově namáhána. Odolnost rozváděcích lopatek vůči tomuto namáhání je dána tvarem jejich profilu. Ty jsou vybírány z katalogu (Příloha 3) pro šířku lopatky $B_0=25$ mm a následně přepočteny na skutečnou šířku rozváděcí lopatky B. Větší část výpočtů vychází z podobnosti s výpočtem namáhání oběžných lopatek.

Obr. 16 Vznik ohybového namáhání RL

• Úhel nastavení rozváděcí lopatky γ

 $B_0 = c_0 \cdot \sin\gamma \ \rightarrow \gamma = \arcsin \frac{B_0}{c_0} \ [^\circ]$

Délka tětivy c pro skutečnou šířku profilu B
 B = c · sin γ → c = B · sin γ [mm]

ENERGETICKÝ ÚSTAV Odbor eneraetického inženýrství

DVOUTĚLESOVÁ KONDENZAČNÍ PARNÍ TURBÍNA

• Plocha profilu skutečné použité rozváděcí lopatky

$$S_0' = S_0 \cdot \left(\frac{c_0}{c}\right)^2 \ [mm^2]$$

• Modul pružnosti skutečné použité rozváděcí lopatky

$$W_0' = W_0 \cdot \left(\frac{c_0}{c}\right)^3 \text{ [mm^3]}$$

• Přibližná rozteč rozváděcích lopatek

 $t = t_{opt} \cdot c[mm]$

Celkový počet lopatek v rozváděcí mříži

$$z = \frac{\pi \cdot D_s}{t} \quad [-]$$

Počet zaokrouhlíme směrem nahoru na nejbližší sudé číslo. V případě totálního ostřiku všech stupňů ST/NT dílu, $z_{skut} = z$.

Skutečná rozteč

$$t_{skut} = \frac{\pi \cdot D_s \cdot 1000}{z_{skut}} \ [mm]$$

• Rozdíl tlaku před a za rozváděcí mříží

$$\Delta p = p_0 - p_1 \ [MPa]$$

p0[MPa]tlak před rozváděcí lopatkovou mřížíp1[MPa]tlak za rozváděcí lopatkovou mříží

Plocha S na kterou působí přetlak Δp

$$S = \frac{\pi}{4} (D_2^2 - D_1^2) [m^2]$$

$$D_1[m^2] \qquad \text{horní průměr rozváděcí lopatkové mříže}$$

$$D_2[m^2] \qquad \text{dolní průměr rozváděcí lopatkové mříže}$$

• Síla vzniklá od rozdílu tlaků

 $F_{\Delta p} = \Delta p \cdot S [N]$

p₀[MPa] tlak před rozvaděcí lopatkovou mříží

• Ohybový moment na jednu RL

 $M_o^{lop} = F_{\Delta p} \cdot \frac{L}{2} [Nm]$

L[m] vzdálenost paty lopatky a stěny turbínové skříně

• Maximální ohybový moment RL působící v ose J_{min}

 $M_{o,MAX}^{lop} = M_o^{lop} \cdot \cos \gamma \text{ [Nm]}$

F

• Napětí RL v ohybu

$$\sigma_{o}^{lop} = \frac{M_{o,MAX}^{lop}}{W_{o}'} [MPa]$$

• Pevnostní kontrola lopatky na ohyb

 $\sigma_{o} < \sigma_{o,DOV}$ [MPa]

Lopa	atky		Válcové									
Stup	beň	1.	2.	3.	4.	5.	6.	7.	8.	9.		
Pro	ofil				S-90-12-A	١			S-90	-12B		
γ	0	23,6	23,6	23,6	23,6	23,6	23,6	23,6	26,2	26,2		
В	mm	65,0	65,0	65,0	65,0	60,0	60,0	60,0	70,0	70,0		
(t/c) _{opt}	-	0,7	0,7	0,7	0,7	0,7	0,7	0,7	0,7	0,7		
С	mm	162,5	162,5	162,5	162,5	150,0	150,0	150,0	158,5	158,5		
W ₀ ʻ	cm3	10,11	10,11	10,11	10,11	7,95	7,95	7,95	9,22	9,22		
S ₀ '	cm2	27,65	27,65	27,65	27,65	23,56	23,56	23,56	25,95	25,95		
$D_{S}(D_{p})$	m	1,063	1,1	1,138	1,18	1,218	1,263	1,365	1,456	1,576		

Tabulka 18 Přepočet katalogových hodnot na skutečnou velikost RL

Stupe	ň	1.	2.	3.	4.	5.	6.	7.	8.	9.
t	mm	117	117	117	117	108	108	108	114	114
Z	-	29	30	31	32	35	37	40	40	43
Z _{skut}	-	30	30	32	32	36	38	40	42	44
t _{skut}	mm	111	115	112	116	106	104	107	109	113
Δр	MPa	1,052	0,907	0,758	0,630	0,495	0,369	0,307	0,231	0,142
D ₁	m	1,02	0,71	0,71	0,71	0,71	0,71	0,71	0,75	0,75
D_2	m	1,13	1,24	1,32	1,38	1,42	1,49	1,58	1,71	1,94
S	m ²	0,186	0,814	0,985	1,098	1,197	1,357	1,562	1,845	2,522
$F_{\Delta p}$	kN	195,47	738,42	747,32	691,29	592,15	500,49	480,21	426,15	356,98
L	m	0,117	0,125	0,132	0,143	0,154	0,178	0,196	0,239	0,336
M _o ^{lop}	Nm	762,3	3076,8	3082,7	3089,2	2533,1	2344,4	2353	2425	2726
M _{o,max} lop	Nm	698,7	2819,9	2825,4	2831,3	2321,6	2148,7	2156,6	2175,6	2445,7
σ。	MPa	69,13	279,03	279,57	280,15	292,07	270,32	271,31	235,97	265,26
t ₁	°C	413,43	380,58	346,04	309,77	271,31	231,39	190,38	156,37	136,03
Materi	ál	X22CrN	loV12-1	X	10CrMoV9	-1	15 335.3			
$\sigma_{o,DOV}$	MPa	327,41	345,32	280,63	286,446	292,59	277,29	283,64	289,42	292,87
$\sigma_{o} < \sigma_{o,DOV}$	-	OK	OK	OK	OK	OK	OK	OK	OK	OK

Tabulka 19 Výsledky pevnostní kontroly RL na ohyb

ENERGETICKÝ ÚSTAV Odbor energetického inženýrství

DVOUTĚLESOVÁ KONDENZAČNÍ PARNÍ TURBÍNA

6.6 Namáhání rozváděcích kol

Rozváděcí kolo slouží jako nosič rozváděcích lopatek a je uchyceno v drážkách nosiče či turbínové skříně. Toto kolo je namáháno na ohyb, způsobené rozdílem tlaku před a za kolem. Při jeho pevnostních výpočtech je považováno za tuhou desku podepřenou po obvodu. Tuhost této desky je narušena kanály rozváděcích lopatek. Výpočet podle Timoshenka [2] předpokládá nahrazení rozváděného kola kotoučem s ekvivalentní šířkou h_0 . Ta je určena z kvadratických momentů všech částí kola. Deska o této ekvivalentní tloušťce je pak kontrolována na maximální přípustné napětí σ_{MAX} a průhyb y_{MAX} . Výpočty jsou prováděny pro všechny stupně kromě 10. a 11, které jsou normalizované a 1. stupně, který je řešen konstrukčně jinak.

Bc. Tomáš Adámek

24.5.2013

Obr. 17 Schematický nákres rozváděcího kola

• Celkový kvadratický moment průřezu rozváděcího kola

$$J = \frac{a_1 \cdot h_1^3}{12} + \frac{a_2 \cdot h_2^3}{12} + \frac{a_3 \cdot h_3^3}{12} \quad [mm^4]$$

a [mm] výška příslušné plochy
h [mm] šířka příslušné plochy

• Tloušťka ekvivalentího rovinného kotouče rozváděcího kola

$$J = \frac{(R_2 - R_1) \cdot h_0^3}{12} \rightarrow h_0 = \sqrt[3]{\frac{12 \cdot J}{1(R_2 - R_1)}} \quad [mm]$$

R₂ [mm] největší poloměr rozvaděcího kolaR₁ [mm] nejmenší poloměr rozvaděcího kola

F

• Tlakový spád na kolo

 $\Delta \mathbf{p} = (\mathbf{p}_0 - \mathbf{p}_1) \quad [MPa]$

p₀ [mm] tlak před vstupem do RL

p₁ [mm] tlak na výstupu z RL

• Maximální ohybové napětí na rozváděcí kolo

$$\sigma_{MAX} = \varphi \cdot \Delta p \cdot \left(\frac{R_2}{h_0}\right)^2 \quad [MPa]$$

$$\varphi [-] \qquad \text{součinitel pro výpočet namáhání rozvaděcího kola, } \varphi = f(r/R) = f(R_1/R_2)$$

(Příloha 5)

• Maximální dovolené ohybové napětí na rozváděcí kolo

 $\sigma_{MAX,DOV}$ [MPa] určeno pro daný materiál rozvaděcího kola z katalogu (Příloha 4) a příslušnou provozní teplotu t₀

• Maximální průhyb rozváděcího kola

$$y_{MAX} = \mu \cdot \Delta p \cdot \frac{R_2^4}{E \cdot h_0} \quad [mm]$$

E [MPa] modul pružnosti

Pa] modul pružnosti materiálu pro danou teplotu (Příloha 7)

- $\mu [-] \qquad součinitel pro výpočet průhybu rozváděcího kola, \mu=f(r/R)=f(R_1/R_2)$ (Příloha 6)
- Maximální dovolený průhyb rozváděcího kola

 $y_{MAX,DOV} = 0,002 \cdot R_2 \text{ [mm]}$

Stupeň		2.	3.	4.	5.	6.	7.	8.	9.
a ₁	mm	170	180	195	200	215	245	260	280
a ₂	mm	65	67	67	65	65	70	70	80
a_3	mm	23,5	23,5	23,5	23,5	23,5	2,55	33,5	33,5
h ₁	mm	65	78	65	65	63	72	78	70
h ₂	mm	146	146	136	136	146	156	176	176
h ₃	mm	85	85	95	95	105	105	105	105
R ₂	mm	657	680	707	731	765	807	899	1016
R ₁	mm	353	353	353	353	353	353	377	377
J∙10 ⁷	mm^4	2,20	2,57	2,02	1,99	2,36	3,00	4,53	4,76
h _o	m	95,33	98,06	88,12	85,78	88,26	92,57	101,37	96,32
Δр	MPa	0,907	0,758	0,630	0,495	0,369	0,307	0,231	0,142
$r/R=R_1/R_2$	-	0,537	0,519	0,499	0,483	0,461	0,437	0,419	0,371
φ	-	1,575	1,62	1,675	1,75	1,825	1,9	1,9	2,025
μ	-	0,92	0,96	1	1,2	1,1	1,18	1,2	1,26
E • 10 ⁵	MPa	1,96	1,97	1,98	2,03	2,08	2,1	2,14	2,16
σ_{MAX}	MPa	67,839	59,082	67,898	62,889	50,574	44,399	34,520	31,899
to	°C	380,58	346,04	309,77	271,31	231,39	190,38	156,37	136,03
Materiál					42274	42.6			
$\sigma_{\text{max,dov}}$	MPa	97,554	103,396	107,023	110,008	112,803	116,155	120,236	122,676
$\sigma_{\text{MAX}} < \sigma_{\text{MAX,DOV}}$	-	OK	OK	OK	OK	OK	OK	OK	OK
Умах	mm	0,915	0,838	1,161	1,323	0,972	0,924	0,812	0,985
Y MAX,DOV	mm	1,314	1,36	1,414	1,462	1,53	1,614	1,798	2,032
$y_{\text{max}} < y_{\text{max,dov}}$	-	OK	OK	OK	OK	OK	OK	OK	OK

Tabulka 20 Výsledky pevnostní kontroly namáhání rozváděcích kola

7 Ucpávky

7.1 Vnitřní ucpávky

Tyto ucpávky těsní prostor před a za rozváděcími koly. Jsou použity normalizované ucpávkové segmenty s kombinovaným typem labyrintu a 12 těsnícími břity. Pro zjednodušení výpočtu je část s nepravým labyrintem zanedbána a ucpávka počítána jako s 8 břity seskládanými do pravého labyrintu. Na 1. stupni vzhledem k odlišnému konstrukčnímu řešení vnitřní ucpávka chybí a její funkci přebírá pravá ucpávka vnější.

Na posledním břitu všech ucpávek nedochází ke kritickému proudění. Pára, která protéká přes labyrint vnitřní ucpávek, neprochází rozváděcí mříží a nemá tedy danou rychlost hlavního proudu páry. Při smísení s ucpávkovou parou, je tak hlavní proud do určité míry brzděn a narušován jeho požadovaný charakter proudění.[5]

Obr. 18 Schéma, rozměry a umístění vnitřní ucpávky

• Průtočná plocha ucpávky

 $S = \pi \cdot D \cdot \delta_r \ [m^2]$

- D [m] průměr menšímu břity ucpávky
- $\delta_r[m]$ radiální vůle ucpávky, voleno dle doporučení z firmy Doosan Škoda Power, lze také vypočítat dle literatury [1] či [2]
- Charakter proudění na posledním břitu ucpávky

$$\pi_p = \frac{p_1}{p_0} \quad [-]$$

p₀ [bar] tlak na vstupu do labyrintové ucpávky

p1 [bar] tlak na výstupu z labyrintové ucpávky

Pokud $\pi_p \ge \frac{0.82}{\sqrt{z+1.25}}$ dochází na posledním břitu ke kritickému proudění

$$\pi_p \ge \frac{0.82}{\sqrt{z+1.25}}$$
 nedochází na posledním břitu ke kritickému proudění[1]

G

• Hmotnostní tok ucpávkou s pravým labyrintem při podkritickém proudění

$$\begin{split} m_{u} &= \mu \cdot S \cdot \sqrt{\frac{p_{0}^{2} - p_{1}^{2}}{z \cdot p_{0} \cdot v_{0}}} \quad [kg/s] \ [1] \\ \mu &= f(\delta_{r}/b) \ [-] & průtokový součinitel ucpávkou (Příloha 8) \\ b[m] & šířka špičky břitu ucpávky \\ p_{0} \ [MPa] & tlak před rozváděcím kolem \\ p_{1} \ [MPa] & tlak za rozváděcím kolem \\ v_{0} \ [m^{3}/kg] & měrný objem před rozváděcím kolem \\ z \ [-] & počet břitů v ucpávce \end{split}$$

• Ztrátový výkon vnitřní ucpávkou

$$P_{Z}^{u,VNI} = m_{u} \cdot H_{U\check{Z}}$$
 [kW]

Stup	oeň	2.	3.	4.	5.	6.	7.	8.	9.	10.	11.
p_0	bar	44,98	35,02	26,54	19,41	13,70	9,28	5,63	3,23	1,74	0,80
p ₁	bar	35,91	27,43	20,24	14,46	10,01	6,20	3,32	1,81	0,87	0,21
π _p	-	0,80	0,78	0,76	0,75	0,73	0,67	0,59	0,56	0,50	0,26
Kritick	é pr.	NE									
S	mm ²	1950,9	1950,9	1950,9	1950,9	1950,9	1950,9	2086,7	2086,7	2086,7	2086,7
D	m	0,69	0,69	0,69	0,69	0,69	0,69	0,738	0,738	0,738	0,738
σr	mm	0, 9	0, 9	0, 9	0, 9	00, 9	0, 9	0, 9	0, 9	0, 9	0, 9
b	mm	0, 3	0, 3	0, 3	0, 3	0, 3	0, 3	0, 3	0, 3	0, 3	0, 3
Z	-	8	8	8	8	8	8	8	8	8	8
σ _r /b	-	3	3	3	3	3	3	3	3	3	3
μ	-	0,74	0,74	0,74	0,74	0,74	0,74	0,74	0,74	0,74	0,74
m _u	kg/s	2,610	2,152	1,746	1,361	1,020	0,784	0,576	0,349	0,204	0,109
P _z ^{U,VNI}	kW	164,82	142,73	123,0ř	99,84	77,29	69,47	52,23	31,43	19,52	20,10

Tabulka 21 Vypočtené hodnoty průtoku vnitřními ucpávkami

7.2 Vnější ucpávky

Tyto ucpávky jsou rozděleny na přední a zadní, přičemž jejich princip činnosti je podobný, ale účel rozdílný. V obou případech je použito normalizovaných ucpávkových kroužků, ze kterých je poskládán příslušný labyrint.

7.2.1 Přední ucpávky

Přední ucpávky se nacházejí u vstupu páry do turbíny a zabraňují úniku páry do okolí. V tomto místě je v prostoru turbíny mnohem větší tlak než atmosferický tlak okolí. Unikající pára je ve volném prostoru kolem otáčející se hřídele nucena proudit labyrintem ucpávky. Je v ní škrcena a daných místech mezi ucpávkovými sekcemi po částech odebírána. Ucpávka je dle doporučení firmy Doosan Škoda Power rozdělena na 5 sekcí postupně za sebou seskládaných z normalizovaných ucpávkových segmentů s pravým labyrintem. Každý segment je konstruován tak, aby těsnil přetlak 8 až 10 barů.

DVOUTĚLESOVÁ KONDENZAČNÍ PARNÍ TURBÍNA

I. ucpávková sekce

Unikající pára je seškrcena ucpávkovými segmenty a příslušným otvorem je vyvedena za 1. nosič rozváděcích lopatek. Ucpávková pára pak proudí mezi nosičem a skříní až do místa, kde je vtáhnuta do mezery mezi stupni 2. a 3. stupněm lopatkování. Zde je smísena opět s hlavním proudem páry. Tlakový spád zpracovaný I. ucpávkovou sekcí pak je

 $\Delta p^{I} = p_{0} - p_{I} = p_{0} - Z \cdot p_{2}^{2.st} = 56,447 - 1,05 * 35,017 = 19,52 \text{ bar} \rightarrow 2 \div 3 \text{ segmenty}$

- p_0 [bar] tlak na vstupu do 1.stupně ST/NT dílu tlak v místě kam je zaváděna část páry seškrcené v I. ucpávkové sekci, p_I [bar] tj. tlak mezi 2. lopatkovým stupněm $p_2^{2.st}$ [bar] tlak na výstupu z 2. stupně lopatkování
- Z [-] zohlednění tlakových ztrát v odběru ucpávkové páry

Obr. 19 Přední vnější labyrintová ucpávka

Aby se zamezilo stavům zpětného proudění I. sekcí ucpávky, ke kterým by mohlo nastat, bude-li pára po průchodu ucpávkou seškrcena na tlak nižší než je v místě zavádění v lopatkování - je použito raději pouze 2 ucpávkových segmentů.

Průtočná plocha ucpávky

$$S = \pi \cdot D \cdot \delta_r \ [m^2]$$

- D [m] průměr menšího břitu ucpávky
- voleno dle doporučení z firmy Doosan Škoda Power, lze také vypočítat $\delta_r[m]$ dle literatury [1],[2]
- Charakter proudění na posledním břitu ucpávky

$$\pi_{\rm p} = \frac{\rm p_{\rm I}}{\rm p_{\rm o}} \quad [-]$$

tlak na vstupu do sekce labyrintové ucpávky p_0 [bar]

p_I [bar] tlak na výstupu z sekce labyrintové ucpávky

Pokud $\pi_p \leq \frac{0.82}{\sqrt{z+1.25}}$ dochází na posledním břitu ke kritickému proudění

$$\pi_{p} \geq \frac{0.82}{\sqrt{z+1.25}}$$
 nedochází na posledním břitu ke kritickému proudění[1]

• Hmotnostní tok ucpávkou s pravým labyrintem při podkritickém proudění

$$\begin{split} m_{u} &= m_{u}^{-I} = \mu \cdot S \cdot \sqrt{\frac{p_{vstup}^{2} - p_{vystup}^{2}}{z \cdot p_{vstup} \cdot v_{vstup}}} \quad [kg/s] \ dle \ [1] \\ \mu &= f(\delta_{r}/b) \ [-] & průtokový součinitel ucpávkou (Příloha 8) \\ p_{vstup} \ [bar] & tlak na vstupu do ucpávkové sekce labyrintové ucpávky \\ p_{vystup} \ [bar] & tlak na výstupu z ucpávkové sekce labyrintové ucpávky \\ v_{vstup} \ [m^{3}/kg] & měrný objem na vstupu do sekce labyrintové ucpávky \\ s \ [m^{2}] & průtočná plocha ucpávky \\ z \ [-] & počet břitů v ucpávce \end{split}$$

• Hmotnostní tok ucpávkou s pravým labyrintem při kritickém proudění

$$m_{u} = \mu \cdot S \cdot \sqrt{\frac{1}{z + 1.25} \cdot \frac{p_{vstup}}{v_{stup}}} \quad [kg/s] \quad dle [1]$$

II. ucpávková sekce

Zbylá pára je seškrcena na hodnotu tlaku p_{02} v odběru, navýšenou o tlakové ztráty v potrubí, kterým je odebraná ucpávková pára za touto sekcí zaváděna do odběru O2. Postup výpočtu hmotnostního toku páry m_u^{II} touto sekcí je proveden dle již výše uvedených vzorců jako u I. sekce. Zpracovaný tlakový spád ucpávkou je

III. ucpávková sekce

Pára je dále škrcena až na tlak 1,2 bar (dle doporučení z firmy Doosan Škoda Power). Je pak následně odvedena do ucpávkového okruhu turbíny a slouží k zahlcování zadní ucpávky ST/NT dílu. Výpočet hmotnostního toku páry m_u^{III} touto sekcí ucpávky je opět obdobný. Zpracovaný tlakový spád tak je

 $\Delta p = p_{II} - p_{III} = 10,21 - 1,2 = 9 \text{ bar} \rightarrow 2 \text{ segmenty}$

p_{III} [bar] tlak na výstupu z III. ucpávkové sekce, tj. tlak v ucpávkovém okruhu[2], hodnota tlaku a počet segmentů voleno dle doporučení firmy Doosan Škoda Power

IV. ucpávková sekce

V prostoru mezi IV. a V. sekcí ucpávek je udržován slabý podtlak (0,98 bar) a je zde mísena zbylá pára unikající přes čtvrtou ucpávkovou sekci s nasávaným vzduchem z okolí přes sekci pátou. Tato směs je odsáta do tzv. komínkového okruhu s kondenzátorem ucpávkových par (KKP). Hmotnostní tok m_u^{IV} čtvrtou ucpávkovou sekcí lze spočítat dle již výše uvedených vztahů, přičemž tlakový spád zpracovaný v této sekci je

$$\Delta p = p_{III} - p_{IV} = 1,2 - 0,98 = 0,22 \text{ bar} \rightarrow 1 \text{ segment}$$

p_{IV} [bar] tlak na výstupu z IV. ucpávkové sekce, tj. tlak v KKP, hodnota udržovaného podtlaku volena dle doporučení z firmy Doosan Škoda Power

ENERGETICKÝ ÚSTAV Odbor energetického inženýrství DVOUTĚLESOVÁ KONDENZAČNÍ PARNÍ TURBÍNA

V. ucpávková sekce

Je přes ni nasáván vzduch z okolního prostoru parní trubíny. Tak je zamezeno úniku páry z turbíny do strojovny. Tlakový spád na tuto sekci

 $\Delta p = p_{atm} - p_{IV} = 1,01325 - 0,98 = 0,033 \text{ bar} \rightarrow 1 \text{ segment}$

p_{atm} [bar] tlak v okolí strojovny

• Měrný objem nasávaného vzduchu

$$v_{vz} = \frac{r \cdot T}{p_{atm}} [m^3/kg]$$

 $\begin{array}{ll} r \; [kJ/kgK] & plynová konstanta, r = 287 \; kJ/kgK \\ T \; [K] & teplota vzduchu ve strojovně, voleno T = 313,15 K \\ p_{atm} \; [bar] & atmosterický tlak, voleno p_{atm} = 1,01325 \; bar \end{array}$

• Hmotnostní tok nasávaného vzduchu ucpávkou s pravým labyrintem při podkritickém proudění

$$m_{vz}^{V} = \mu \cdot S \cdot \sqrt{\frac{p_{atm}^{2} - p_{IV}^{2}}{z \cdot p_{atm} \cdot v_{vz}}} \quad [kg/s] \quad [1]$$

Sekce ucpa	ávek	Ι.	II.	III.	4.	5.
P vstup	bar	56,45	36,77	10,21	1,20	1,01
V _{vstup}	m ³ /kg	0,052	0,076	0,217	1,679	0,887
p _{výstup}	bar	36,77	10,21	1,20	0,98	0,98
Δр	bar	19,68	26,56	9,01	0,22	0,03
Kritické pro	udění	NE	NE	ANO	NE	NE
Z	-	16	24	16	8	8
D	m	0,723	0,723	0,566	0,566	0,566
σ _r	mm	0,6	0,6	0,6	0,6	0,6
b	mm	0,3	0,3	0,3	0,3	0,3
σ _r /b	-	2	2	2	2	2
μ	-	0,76	0,76	0,76	0,76	0,76
S	mm ²	136,36	136,36	106,59	106,59	106,59
m _u	kg/s	2,05	1,41	0,42	0,04	0,02

Tabulka 22 Parametry proudění páry všemi sekcemi přední vnější ucpávky (index _{vstup} = na vstupu do sekce; _{výstup} = na stav na výstupu ze sekce)

Ztráta výkonu vlivem přední ucpávky

Přes přední hřídelovou ucpávku uniká množství páry m_u. Je tak způsobena ztráta výkonu, kterou je třeba ve výpočtech zahrnout. Bude-li uniklé množství použito k zahlcení zadní ucpávky a nadbytečná část vedena do kondenzátoru ucpávkových par, bude ztráta výkonu přední hřídelovou ucpávkou $\Delta P_{U,VNE}$. [2] (je zanedbáno zavedení části ucpávkové páry zpátky do lopatkování)

 $\begin{array}{ll} \Delta P_z^{U,VN\check{E}} = m_u \cdot (i_1 - i_k) = 2,05 \cdot (3162,652 - 2260,461) = 1,8495 kW \\ i_1 \ [kJ/kg] & \mbox{entalpie páry na výstupu z RL 1. stupně lopatkování entalpie páry na výstupu z turbíny odpovídající výpočtu \end{array}$

7.2.2 Zadní ucpávka

Nachází se v blízkosti místa, kde pára opouští prostor turbíny a vstupuje do kondenzátoru. Svým provedením je podobná přední ucpávce, ale vzhledem k tomu, že těsní místo v turbíně, kde je tlak nižší než atmosférický tlak v okolí, je nutné tyto ucpávky trvale zahlcovat, aby nedošlo k nasátí okolního vzduchu do turbíny. Celá ucpávka je složena ze tří sekcí, které jsou za sebou poskládaných normalizovaných ucpávkových segmentů s nepravým labyrintem.

1. ucpávková sekce

Je zahlcována párou z ucpávkového okruhu o tlaku 1,2 bar, která je přiváděna do prostoru mezi 1. a 2. sekcí. Část této páry je nasávána přes 1. ucpávkovou sekci do prostoru turbíny a zbylá část prochází 2. sekcí a snaží se uniknout do okolí. Výpočet hmotnostního toku páry 1. sekcí zadní ucpávky m_u^1 je prováděn podle podobných vzorců jako u ucpávky přední. Tlakový spád na 1. sekci je

 $\begin{array}{l} \Delta p = p_{III} - p_k = 1,2 - 0,16 = 1,04 \text{ bar} \rightarrow \text{voleny 3 segmenty dle doporučení z} \\ firmy \text{ Doosan Škoda Power} \end{array}$

• Průtočná plocha ucpávky

 $S = \pi \cdot D \cdot \delta_r \ [m^2]$

D [m] průměr břitu kroužku ucpávky

- $\delta_r[m]$ voleno dle doporučení z firmy Doosan Škoda Power, lze vypočítat dle literatury [1],[2]
- Hmotnostní tok ucpávkou s nepravým labyrintem při podkritickém proudění

$$\begin{split} m_{u} &= k \cdot \mu \cdot S \cdot \sqrt{\frac{p_{vstup}^{2} - p_{vystup}^{2}}{z \cdot p_{vstup} \cdot v_{vstup}}} \quad [kg/s] \quad [1] \\ \mu &= f(\delta_{r}/b) \quad [-] \qquad průtokový součinitel ucpávkou (Příloha 8) \\ p_{vstup} \quad [bar] \qquad tlak na vstupu do ucpávkové sekce labyrintové ucpávky \\ p_{vystup} \quad [bar] \qquad tlak na výstupu z ucpávkové sekce labyrintové ucpávky \end{split}$$

ENERGETICKÝ ÚSTAV Odbor energetického inženýrství DVOUTĚLESOVÁ KONDENZAČNÍ PARNÍ TURBÍNA

v_{vstup} [m³/kg]měrný objem na vstupu do sekce labyrintové ucpávkyz [-]počet břitů v ucpávcet[-]rozteč břitů ucpávkyk[-]součinitel pro přepočet proudění na nepravý labyrint

$$k = \sqrt{\frac{z}{(1-q)\cdot z+q}} \quad [-][1], \quad kde \quad q = 1 - \frac{1}{\left(1+16,6\cdot\frac{\delta_{\Gamma}}{t}\right)^2} \quad [-]$$

• Hmotnostní tok ucpávkou s nepravým labyrintem při kritickém proudění

$$m_{u} = m_{u}^{1} = k \cdot \mu \cdot S \cdot \sqrt{\frac{1}{z + 1.25} \cdot \frac{p_{vstup}}{v_{vstup}}} \quad [kg/s] \quad dle \quad [1]$$

2. ucpávková sekce

V prostoru mezi 2. a 3. sekcí je udržován mírný podtlak a unikající pára je zde smísena s nasátým vzduchem z okolí přes 3. ucpávkovou sekci. Tato směs je odváděna do KUP. Postup výpočtu hmotnostní toku přes 2. sekci zadní ucpávky m_u^2 je stejný jako pro předchozí sekce a tlakový spád je

 $\Delta p = p_{III} - p_{IV} = 1,2 - 0,98 = 0,22$ bar \rightarrow volím 1 segment

3. ucpávková sekce

Přes 3. sekci je nasáván okolní vzduch z prostoru strojovny. Tlakový spád je

 $\Delta p = p_{atm} - p_{IV} = 1,01325 - 0,98 = 0,033 \text{ bar} \rightarrow \text{vol}\textsc{im} 1 \text{ segment}$

• Hmotnostní tok nasávaného vzduchu ucpávkou s nepravým labyrintem při podkritickém proudění

$$m_{vz}^{3} = k \cdot \mu \cdot S \cdot \sqrt{\frac{p_{atm}^{2} - p_{IV}^{2}}{z \cdot p_{atm} \cdot v_{vz}}} \quad [kg/s] \ dle [1]$$

Sekce ι	Sekce ucpávek		2.	3.
p _{vstup}	bar	1,2	1,2	1,01325
V _{vstup}	m³/kg	1,679	1,679	0,887
p _{výstup}	bar	0,16	0,98	0,98
Δр	bar	1,04	0,22	0,03
Kritické	oroudění	ANO	NE	NE
Z	-	24	8	8
D	m	0,5387	0,5387	0,5387
σr	mm	0,6	0,6	0,6
b	mm	0,5	0,5	0,5
σ _r /b	-	1,2	1,2	1,2
μ	-	0,71	0,71	0,71
t	mm	6	6	6
q	-	0,859	0,859	0,859
k	-	2,376	2,376	2,376
S	mm ²	1015,43	1015,43	1015,43
m _u	kg/s	0,091	0,079	0,044

Tabulka 23 Parametry proudění páry všemi sekcemi zadní vnější ucpávky (index _{vstup} = na vstupu do sekce; _{výstup} = na stav na výstupu ze sekce)

7.2.3 Potrubí k vnějším ucpávkám

Potrubí je dimenzováno na 1,8 násobek vypočítaného průtočného množství. Je to z důvodu předpokládaného opotřebovávání ucpávek za dobu jejich provozu. Průměr potrubí je navržen tak, aby byla splněna podmínka maximální rychlosti proudění $w_{max,DOV} = 50$ m/s s ohledem na vyráběné normalizované průměry potrubí.

Obr. 21 Zjednodušené schéma zapojení ucpávkové páry

V obou ucpávkových okruzích se udržuje požadovaný tlak plně automatickou regulací Tlakově nevhodná anebo nespotřebovaná pára pro zahlcování je pak zaváděna do KUP. Nezkondenzovaná pára a především vzduch z okruhu KUP je odsáván ventilátorem.[2]

Odběr Ol.

Je zde odebírána část páry po průchodu I. sekcí přední ucpávky a je zaváděná mezi 2. a 3. lopatkový stupeň

• Hmotnostní tok páry do odběru

$$m_{OI} = 1.8 \cdot (m_u^{I} - m_u^{II}) = 1.8 \cdot (2.05 - 1.41) = 1.152 \text{ kg/s}$$

• Vhodný průměr protrubí

$$d_{OI} = \sqrt{\frac{4 \cdot m_{OI} \cdot v_{OI}}{\pi \cdot w_{max,DOV}}} = \sqrt{\frac{4 \cdot 1,152 \cdot 0,076}{\pi \cdot 50}} = 0,047 \text{ m} \rightarrow \text{ volím až 12 otvorů d=17 mm}$$
$$v_{OI} \text{ [m}^3/\text{kg]} \quad \text{měrný objem ucpávkové páry v odběru}$$

Odběr Oll.

Je zde odebírána část páry po průchodu II. sekcí přední ucpávky a je zaváděná do odběru

• Hmotnostní tok páry do odběru

 $m_{OII} = 1.8 \cdot (m_u^{II} - m_u^{III}) = 1.8 \cdot (1.41 - 0.42) = 1.782 \text{ kg/s}$

• Vhodný průměr protrubí

$$d_{OII} = \sqrt{\frac{4 \cdot m_{OII} \cdot v_{OII}}{\pi \cdot w_{max,DOV}}} = \sqrt{\frac{4 \cdot 1,782 \cdot 0,217}{\pi \cdot 50}} = 0,099 \text{ m} \rightarrow \text{vol}\text{im DN 125}$$
$$v_{OII} \text{ [m}^{3}/\text{kg]} \qquad \text{měrný objem ucpávkové páry v odběru}$$

ENERGETICKÝ ÚSTAV

Odběr OIII.

Je zde odebírána část páry po průchodu III. sekcí přední ucpávky a je zaváděná do ucpávkového okruhu kde slouží k zahlcování 1. a 2. sekce zadní vnější ucpávky.

- Hmotnostní tok páry do odběru $m_{OIII} = 1.8 \cdot (m_u^{III} - m_u^{IV}) = 1.8 \cdot (0.42 - 0.044) = 0.677 \text{ kg/s}$
- Vhodný průměr protrubí

$$d_{OIII} = \sqrt{\frac{4 \cdot m_{OIII} \cdot v_{OIII}}{\pi \cdot w_{max, DOV}}} = \sqrt{\frac{4 \cdot 0,677 \cdot 1,679}{\pi \cdot 50}} = 0,170 \text{ m} \rightarrow \text{volim DN 180}$$

v_{OIII} [m³/kg] měrný objem ucpávkové páry v odběru

Odběr OIV.

Je zde odebírána směs páry po průchodu IV. sekcí přední ucpávky a nasátého vzduchu přes V. sekci. Tato pára je odváděna do KUP.

- Hmotnostní tok páry do odběru $m_{OIV} = 1.8 \cdot (m_u^{IV} + m_{vz}^{V}) = 1.8 \cdot (0.044 + 0.025) = 0.124 \text{ kg/s}$
- Měrný objem parovzdušné směsy

$$v_{OIV} = \frac{m_u^{IV} \cdot v_u^{IV} + m_{vz}^{V} \cdot v_{vz}^{V}}{m_u^{IV} + m_{vz}^{V}} = \frac{0,069 \cdot 1,679 + 0,025 \cdot 0,887}{0,069 + 0,025} = 1,468 \text{ m}^3/\text{kg}$$

$$v_u^{IV} [\text{m}^3/\text{kg}] \qquad \text{měrný objem páry v IV. sekci přední vnější ucpávky}$$

$$v_{vz}^{V} [\text{m}^3/\text{kg}] \qquad \text{měrný objem vzduchu v V. sekci přední vnější ucpávky}$$

• Vhodný průměr potrubí $d_{OIV} = \sqrt{\frac{4 \cdot m_{OIV} \cdot v_{OIV}}{\pi \cdot w_{max,DOV}}} = \sqrt{\frac{4 \cdot 0,124 \cdot 1,468}{\pi \cdot 50}} = 0,068 \text{ m} \rightarrow \text{volím DN 80}$

Odběr O1.

Je zde zaváděna pára z ucpávkového okruhu k zahlcení 1. a 2. sekce zadní ucpávky.

- Hmotnostní tok páry do odběru $m_{01} = 1.8 \cdot (m_u^{1} + m_u^{2}) = 1.8 \cdot (0.091 + 0.079) = 0.306 \text{ kg/s}$
- Vhodný průměr protrubí

$$d_{OIII} = \sqrt{\frac{4 \cdot m_1 \cdot v_{01}}{\pi \cdot w_{max,DOV}}} = \sqrt{\frac{4 \cdot 0,306 \cdot 1,679}{\pi \cdot 50}} = 0,114 \text{ m} \rightarrow \text{volim DN 125}$$
$$v_{01} = v_{OIII} \text{ [m}^3/\text{kg]} \qquad \text{měrný objem ucpávkové páry v odběru}$$

Odběr O2.

Je zde odebírána směs páry po průchodu 2. sekcí zadní ucpávky a nasátého vzduchu přes 3. sekci. Tato pára je odváděna do KUP.

• Hmotnostní tok páry do odběru $m_{02} = 1.8 \cdot (m_u^2 + m_{vz}^3) = 1.8 \cdot (0.079 + 0.044) = 0.221$

• Měrný objem parovzdušné směsy

$$v_{02} = \frac{m_{u}^{2} \cdot v_{u}^{2} + m_{vz}^{3} \cdot v_{vz}^{3}}{m_{u}^{2} + m_{vz}^{3}} = \frac{0.079 \cdot 1.679 + 0.044 \cdot 0.887}{0.079 + 0.044} = 1,396 \text{ m}^{3}/\text{kg}$$

$$v_{u}^{2} [\text{m}^{3}/\text{kg}] \qquad \text{měrný objem páry v 2. sekci zadní vnější ucpávky}$$

$$v_{vz}^{3} [\text{m}^{3}/\text{kg}] \qquad \text{měrný objem vzduchu v 3. sekci zadní vnější ucpávky}$$

• Vhodný průměr potrubí

$$d_{O2} = \sqrt{\frac{4 \cdot m_{O2} \cdot v_{O2}}{\pi \cdot w}} = \sqrt{\frac{4 \cdot 0.221 \cdot 1.396}{\pi \cdot 50}} = 0,089 \text{ m} \rightarrow \text{volim DN } 125$$

7.3 Skutečný výkon turbosoustrojí

Jsou-li brány v úvahu všechny vypočítané ztráty včetně ztrát vnitřními a vnějšími ucpávkami, je možné získat skutečný svorkový výkon počítané parní turbíny P_{sv,skut}^{celk}.

• Uvažovana mechanická účinnost

 $\eta^{mech} = 0,99[-]$

• Uvažovaná učinnost generátoru

 $\eta^{\text{gen}} = 0,9871[-]$

• Celkové snížení výkonu vlivem vnitřních a vnějších ucpávek

$$\Delta P_{u,celk} = P_z^{U,VN\check{E}} + \sum_2^{11} P_z^{U,VNI}$$
 [MW]

- Celkový vnitřní výkon ST/NT dílu $P_{skut}^{ST/NT} = P^{ST/NT} - \Delta P_{u,celk}$ [MW]
- Předpokládaný celkový vnitřní výkon soustrojí (VT+ST/NT)

 $P_{skut}^{celk} = P^{VT} + P_{skut}^{ST/NT} \text{ [MW]}$

• Celkov svorkový výkon turbosoustrojí

$$P_{sv,skut}{}^{celk} = P_{skut}{}^{celk} \cdot \eta^{mech} \cdot \eta^{gen} \text{ [MWe]}$$

ΣPz ^{U,VNI}	MW	0,800
Pz ^{U,VNE}	MW	1,8495
$\Delta P_{u,celk}$	MW	2,65
P _{skut} ST/NT	MW	139,079
P _{skut} celk	MW	213,799
P _{sv,skut} celk	MW	208,931

Tabulka 24 Výsledné výkonové hodnoty turbosoustrojí se zahrnutím ucpávkových ztrát

ENERGETICKÝ ÚSTAV

DVOUTĚLESOVÁ KONDENZAČNÍ PARNÍ TURBÍNA

8 Rotor a jeho kritické otáčky

8.1 Hmotnost rotoru

Rotor ST/NT dílu je složen ze dvou částí, které jsou k sobě navzájem v prostoru mezi 9. a 10. stupněm svařeny. První část je vyrobena z materiálu 16236.6 a druhá z materiálu 16537.6. V místě svaru je na obou částech rotoru předem vyhotovena dutina umožňující vytvořit kvalitní svárový spoj těchto komponentů.

• Hmotnost hřídele rotoru s diskovými koly

m^{hřídel} [kg] pro výpočet hmotnosti hřídele turbíny bez lopatek bylo použito programu AutoCAD, výsledek je nutné brát pouze jako přibližný

• Hmotnost lopatkování

 $m^{\text{celk,lop}} = \sum z_{\text{skut}} \cdot m_{\text{komp}}^{\text{OL}}$ [kg]

m _{komp} ^{OL} [kg]	celková hmotnost kompletní lopatky 1. až 11. stupně
-	(tj. lopatka + bandáž + závěs)
z _{skut} [-]	počet oběžných lopatek v jednotlivých stupních 1. až 11

• Hmotnost celého rotoru

 $m^{rotor} = m^{h\check{r}(del} + m^{celk,lop}$ [kg]

m ^{hřídel}	kg	20253
m ^{celk,lop}	kg	3392
m ^{rotor}	kg	23645

Tabulka 25 Vypočtené hmotnosti rotoru

8.2 Kritické otáčky rotoru

Aby byl zaručen klidný chod turbíny, je nutné provozovat parní turbínu na otáčkách dostatečně vzdálených od vlastních kritických otáček. Při provozních otáčkách nižších mluvíme o tzv. tuhém rotoru. Těchto vlastností dociluje zejména bubnová koncepce zpravidla přetlakových rotorů. V našem případě při použití diskové koncepce rotoru a rovnotlakého lopatkování, lze spíše očekávat hodnotu kritických otáček nižší než provozní a bude se tedy s nejvyšší pravděpodobností jednat o rotor tzv. elastický. U těchto rotorů vychází hřídel tenčí a oběžná kola lehčí vlivem menšího průměr uvrtání a tím i nižšího namáhání. Vlivem menšího průměru ucpávek jsou také nižší i ztráty netěsnostmi. Použití elastických hřídelí je však omezeno statickým prohnutím hřídel[3]

U parních turbín s tímto typem rotoru je nutno při najíždění kritické otáčky rychle překročit, což však nedělá potíže, je-li rotor dobře vyvážen. Hodnota kritických otáček je u těchto "lehkých" rotorů volena asi o 20 až 30 procent nižší či vyšší než otáčky provozní[3].

U rotorů spojených pevnými spojkami a uložených v několika ložiscích je nutno počítat kritické otáčky pro celý systém, což je značně náročné. Nestačí totiž jejich stanovení pouze pro jednotlivé rotory, protože ty se navzájem ovlivňují a vznikne tak celá řada kritických otáček.[3] Vzhledem k tomu, že nejsou známy detailní parametry konstrukce rotoru VT dílu tohoto turbosoustrojí a také hřídele turboalternátoru, je níže uvedený výpočet kritických otáček ST/NT rotoru pouze informativní.

• Přibližný výpočet kritických otáček hřídele dle [3]

$$n_{krit} = 7.5 \cdot \frac{\left(\frac{d_{max}}{L}\right)^2}{\sqrt{\frac{m^{rotor}}{L}}} [min^{-1}]$$

$$d_{max} [mm] \qquad maximální průměr hřídele rotoru$$

$$L [m] \qquad ložisková vzdálenost v metrech, odečteno z výkresu L=5,24 m$$

• Podmínka provozu parní turbíny

 $n_{krit} \le 0.7 \cdot n_{jmen} \ [min^{-1}] \rightarrow \frac{n_{krit}}{n_{jmen}} \le 0.7$

 n_{jmen} [min⁻¹] jmenovité otáčky parní turbíny, $n_{jmen} = 3000 \text{ min}^{-1}$

d _{max}	m	0,716	
L	m	5,24	
n _{krit}	min⁻¹	2083,8	
n _{krit} /n _{jmen}	-	0,6946	

Tabulka 26 Výsledky výpočtu kritických otáček

Hodnota kritických otáček rotoru je nižší než hodnota 70 % otáček jmenovitých a podmínka kritičnosti je tedy splněna, turbínu lze provozovat.

Vzhledem k pravděpodobnosti zapojení turbíny přes spojku do soustrojí je však možné předpokládat zvýšení tuhostí soustrojí a nárůstu hodnoty kritických otáček mimo požadovaný bezpečnostní rozsah. Protože výpočet kritických otáček je zde proveden pouze podle přibližných vztahů (pro předběžný výpočet však dostatečně přesných), je pro věrohodnější výsledky vhodné využít některý ze specializovaných výpočetních programů.

8.3Kontrola rotoru na krut

Je vhodné zkontrolovat nejmenší průřez hřídele na straně spojky na krut. V tomto místě je vyváděn kroutící moment z turbíny do připojeného VT dílu a alternátoru. Hřídel je tak právě zde nejvíce takto namáhána.

Kroutící moment

$$\begin{split} M_{k} &= \frac{P^{ST/NT}}{2 \cdot \pi \cdot n} = \frac{139,079 \cdot 10^{6}}{2 \cdot \pi \cdot 50} = 442702,213 \text{ Nm} \\ P^{ST/NT} \text{ [MW]} \qquad \text{skutečný celkový výkon ST/NT dílu} \\ n \text{ [s^{-1}]} \qquad \text{provozní otáčky turbíny} \end{split}$$

• Zkratový moment

 $M_{zk} = k \cdot M_k = 8 \cdot 442702,213 = 3541617,653 \text{ Nm}$ k [-] zkratový součinitel, volím k = 8

• Modul průřezu v krutu

$$W_{k} = \frac{\pi \cdot d^{3}}{16} = \frac{\pi \cdot 0.4^{3}}{16} = 0,0126 \text{ m}^{3}$$

d [m] nejmenší průměr hřídele u spojky

ENERGETICKÝ ÚSTAV Odbor energetického inženýrství

• Maximální napětí v krutu

$$\tau_{\rm zk} = \frac{M_{\rm zk}}{W_{\rm k}} = \frac{3541617,653}{0,0126} = 281,081 \text{ MPa}$$

• Maximální dovolené napětí v krutu

 $\tau_{zk,DOV} = R_{p,02} \cdot 0,65 = 539 \cdot 0,65 = 350,35 \text{ MPa}$

R_{p,02} [MPa] mez kluzu pro materiál hřídele 16 236.6 z tabulky (Příloha 4) pro provozní teplotu 50 °C

• Bezpečnost

 $k_k = \frac{\tau_{zk,DOV}}{\tau_{zk}} = \frac{350,35}{281,081} = 1,246 \rightarrow h$ řídel o průměru 0,4 m kontrole na krut vyhovuje

8.4 Kontrola spojky

Hřídel rotoru ST/NT dílu je přes pevnou spojku spojena s rotorem VT dílu. V místě spoje je působením přítlačných šroubů vyvoláno značné tření, které přenáší kroutící moment turbíny dále až do alternátoru. Pevnostní parametry šroubů ve spojce určuje materiál X19proT, ze kterého jsou vyrobeny.

R _{p0,2}	MPa	780
$\tau_{zk,DOV}$	MPa	507
σ_{ptah}	MPa	390

Tabulka 27 Pevnostní parametry šroubů z materiálu X19proT

• Minimální průměr šroubů

$$d_{\min}^{\text{šroub}} = \sqrt{\frac{8 \cdot M_k \cdot k}{\pi \cdot \sigma_{tah, DOV} \cdot f \cdot n \cdot D_{roz}^{\text{šroub}}}} = \sqrt{\frac{8 \cdot 442702,213 \cdot 2}{\pi \cdot 390 \cdot 10^6 \cdot 0,2 \cdot 10 \cdot 0,63}}$$

 $d_{\min}^{sroub} = 0,0677 \text{ mm} \rightarrow \text{voleno } 10 \text{ sroubů M } 72 \text{ x } 4 \text{ o skutečném průměru} d_{skut}^{sroub} = 68 \text{ mm}$

M _k [MPa]	kroutící moment hřídele
k [-]	součinitel bezpečnosti proti prokluzu, voleno $k = 2[-]$
f [-]	součinitel tření v rozmezí (0,15 až 0,2), voleno f = 0,2 [-]
n [-]	počet šroubů, voleno n = 10 [-]
σ _{ptah} [MPa]	tahové předpětí šroubu, $\sigma_{\text{ptah}} = 0.5 \cdot R_{\text{p0,2}}$ (Tabulka 27)
D _{roz} ^{šroub} [m]	roztečný průměr, D _{roz} ^{šroub} =0,63 m

• Kontrola šroubů na ztratový moment

$$\tau_{zk}^{\text{šroub}} = \frac{8 \cdot M_{zk}}{\pi \cdot (d_{skut}^{\text{šroub}})^2 \cdot n \cdot D_{roz}^{\text{šroub}}} = \frac{8 \cdot 3541617,653}{\pi \cdot (0,068)^2 \cdot 10 \cdot 0,63} = 309,587 \text{ MPa}$$

• Bezpečnostní podmínka

 $\tau_{zk}{}^{\check{s}roub} < \tau_{zk,DOV} \ \rightarrow \ \check{s}rouby \ M \ 72 \ x \ 4 \ vyhovují$

9 Radiální ložiska

9.1 Síly působící na radiální ložiska

Obr. 22 Síly působící na radiální ložiska rotoru ST/NT dílu parní turbíny

• Síla od hmotnosti A části rotoru před předním ložiskem

 $F_{II} = m_{II} \cdot g$ [N]

 m_{II} [kg] hmotnost A části rotoru, zjištěna orientačně pomocí programu AutoCAD g [m/s²] tíhové zrychlení, g = 9,80665 m/s²

• Síla od hmotnosti B části rotoru za předním ložiskem

 $F_I = m_I \cdot g \quad [N]$

m_I [kg] hmotnost B části rotoru, zjištěna orientačně pomocí programu AutoCAD

• Podmínka momentová rovnováhy

 $L_{I} \cdot F_{I} = L_{II} \cdot F_{II} + L \cdot R_{B}$

L _I [m]	vzdálenost k těžišti B části rotoru za předním ložiskem,
	zjištěno orientačně pomocí programu AutoCAD
L _{II} [m]	vzdálenost k těžišti A části rotoru před předním ložiskem, zijštěno orientačně pomocí programu AutoCAD
R _B [N]	reakce od hmotnosti v zadním ložisku

Těžiště a jejich vzdálenosti od středu předního ložiskového stojanu pro jednotlivé rotorové části jsou zjištěna pomocí programu AutoCAD. V podmínce momentové rovnováhy je zanedbán volný konec za zadním ložiskem, jehož hmotnost má na momentovou rovnováhu minimální vliv. Z této podmínky je pak možné dopočítat reakce v zadním ložisku a z rovnice silové rovnováhy pak i reakci v ložisku předním.

F

• Reakce od hmotnosti v zadním ložisku

 $R_{B} = \frac{L_{I} \cdot F_{I} - L_{II} \cdot F_{II}}{L} [N]$

L [m] meziložisková vzdálenost

• Reakce od hmotnosti v předním ložisku

 $R_A = F_I + F_{II} - R_B [N]$

mı	kg	22 443	
m _{II}	kg	1 202	
L	m	2,92	
L	m 0,447		
L	m	5,24	
Fı	kN	220,09	
F_	kN	11,788	
R _A	kN	121,64	
R _B	kN	110,238	

Tabulka 28 Reakce v radiálních ložiscích

9.2 Návrh radiálních ložisek

Segmentová radiální ložiska jsou volena z katalogu firmy Kingsbury [7]. Byly zohledněny doporučení z firmy Doosan Škoda Power o běžně užívaných rozměrech a provedení ložisek pro podobné typy parních turbín. Průměr předního radiálního ložiska určuje vypočtený průměr hřídele rotoru v blízkosti spojky namáhaný na krut.

Ložiska jsou volena mírně předimenzovány, což nemusí být nutně chybou, jelikož lze počítat s nárůstem hmotnosti a tím i reakcí v ložiscích při zkompletování turbosoustrojí, tj. připojení hřídele VT dílu a turboalternátoru, jejichž hmotnosti bohužel neznáme.

Průměr hřídele	D	mm	400
Šířka segmentu	В	mm	280
Max. dovolený měrná tlak	p _{max,DOV}	MPa	2,2
Ztrátový výkon	Pz	kW	800
Jmenovité zatížení	Rj	kN	222,381

 Tabulka 29 Parametry předního radiálního ložiska dle katalogu firmy Kingsbury[7]

Průměr hřídele	D	mm	350
Šířka segmentu	В	mm	245
Max. dovolený měrná tlak	p _{max,DOV}	MPa	2
Ztrátový výkon	Pz	kW	48
Jmenovité zatížení	Rj	kN	170,26

Tabulka 30 Parametry zadního radiálního ložiska dle katalogu firmy Kingsbury[7]

• Měrný tlak v předním ložisku

$$p_A = \frac{R_A}{B \cdot D} = \frac{121,64 \cdot 10^3}{0,280 \cdot 0,400} = 1,086 \text{ MPa}$$

Tato hodnota měrného tlaku je blízká spodní hranici přípustného měrného tlaku $p_A = 0,8$ až 2,0 MPa dle [2] s ohledem na stabilitu rotoru (čepu ložiska). Vzhledem k předpokládanému nárůstu síly reakce v ložisku při zkompletování sestavy se hodnota měrného tlaku s největší pravděpodobností zvýší.

• Měrný tlak v zadním ložisku

$$p_B = \frac{R_B}{B \cdot D} = \frac{110,238 \cdot 10^3}{0,245 \cdot 0,350} = 1,286 \text{ MPa}$$

9.3 Olejové potrubí radiálních ložisek

Ztrátový výkon v ložiscích je přenášen do chladícího oleje. V závislosti na zvolené velikosti jeho oteplení je nutné určit průměr olejového potrubí v závislosti na rychlosti proudění oleje. Vypočteným průměrům potrubí jsou pak přiřazeny nejbližší vyráběné normalizované rozměry potrubí.

• Měrný objemový průtok oleje

$v_{olej} = \frac{P_Z}{\rho_{olej} \cdot c_{olej} \cdot \Delta t}$	[m ³ /s]
P _Z [W]	ztrátový výkon ložiska
ρ _{olei} [kg/m ³]	hustota oleje
c _{olej} [kJ/kgK]	měrná tepelná kapacita oleje
Δt [°C]	zvolené oteplení oleje

• Průměr olejového potrubí

$$d_{olej} = \sqrt{\frac{4 \cdot v_{olej}}{\pi \cdot w_{olej}}} \quad [m]$$

w [m/s]

zvolená rychlost proudění oleje v potrubí

Ložisko	P _z [kW]	ρ _{olej} [kg/m³]	c _{olej} [kJ/kgK]	∆t [°C]	v _{olej} [m ³ /kg]
Přední	80	900	1,674	15	0,0035
Zadní	48	900	1,674	15	0,0021

Tabulka 31 Vlastnosti oleje radiálních ložisek

Potrubí	w _{olej} [m/s]	d _{olej} [m]	Normalizovaný rozměr
Přívod	1	0,067	DN 70
Odvod	0,25	0,133	DN 140

Tabulka 32 Rozměry a rychlosti pro olejové potrubí předního radiálního ložiska

Potrubí	w _{olej} [m/s]	d _{olej} [m]	Normalizovaný rozměr
Přívod	1	0,052	DN 60
Odvod	0,25	0,103	DN 125

Tabulka 33 Rozměry a rychlosti pro olejové potrubí zadního radiálního ložiska

10 Výkres

Při realizaci výkresu řezu ST/NT dílu parní turbíny bylo postupováno dle doporučení z firmy Doosan Škoda Power. Kvůli snadnějšímu umístění hrdel odběrů O1 a O2 byla zvolena dvouplášťová koncepce skříně. Rozváděcí lopatky jsou tak ke skříni upevněny v příslušných nosičích. S drobnými komplikacemi (vytvoření průchodů a kapes pro umístění potrubí odběru O1) by bylo možné použít také i jednoplášťové provedení turbínové skříně. Provedení skříně s nosiči RL, ale poskytuje jednodušší výrobu odlitku a jeho opracování. Je také možné v budoucnu po změnách tvarů nosičů použít skříň pro jiné obdobné typy turbín.

Obr. 23 Náznak možnosti provedení turbíny s jednoplášťovou skříní

Mezi disky oběžných lopatek byl ponechán dostatečný prostor pro možnost zkompletování rotoru turbíny, zajištění závěsů oběžných lopatek a V prostoru mezi STb a NT částí k provedení svaru rotoru. Tvar a rozměr výstupního axiálního hrdla do kondenzátoru byly převzaty z firemních podkladů a provedení realizováno ve formě svařence. Je tak voleno z důvodů nižší ceny a jednodušší výroba oproti odlitku. Komponenty jako ložiskový stojan a spojka turbíny s VT dílem byly použity z v praxi užívaných obdobných strojů a z důvodu absence konkrétních výpočtů jsou tak na výkrese umístěny pouze pro informaci a dokreslení celkového vzhledu parní turbíny.

Výpočet potrubí

Velikosti průměrů přiváděcí ho potrubí a potrubí vedoucí páru do míst odběrů O1 a O2 je nutné vhodně zvolit. V těchto potrubích je nutné vzhledem k nárůstu tlakových ztrát a zvýšení erozivního účinku protékající páry dodržovat doporučené maximální rychlosti proudění w_{max} . K vypočítaným průměrům pak je nalezen v katalogu normalizovaných potrubí nejbližší větší rozměr průměru potrubí, tak aby bylo splněno, že skutečná rychlost proudění páry v potrubí $w_{skut} < w_{max}$.

• Přivaděcí potrubí na vstupu

$d_{\rm vstup ST/NT} = \sqrt{-\frac{4}{3}}$	$h \cdot m_{STa1} \cdot v_{STa1}$ $\pi \cdot n \cdot w_{max}$
m _{STa1} [kg/s]	hmotnostní tok páry na vstupu do ST/NT dílu
v _{STa1} [m ³ /kg]	měrný objem páry na vstupu do ST/NT dílu
n [-]	počet trubek na vstupu do ST/NT dílu
w _{max} [m/s]	doporučená maximální rychlost v potrubí, dle doporučení
	z firmy Doosan Škoda Power voleno w _{max} =50 m/s
G

• Potrubí pro odběr O2

$d_{O2} = \sqrt{\frac{4 \cdot m_{O2} \cdot}{\pi \cdot n \cdot w_{P2}}}$	V _{O2} max
m ₀₂ [kg/s]	hmotnostní tok páry do odběru O2
v ₀₂ [m ³ /kg]	měrný objem páry na vstupu do odběru O2
n [-]	počet trubek do odběru O2
w _{max} [m/s]	doporučená maximální rychlost v potrubí, dle doporučení
	z firmy Doosan Škoda Power voleno w _{max} =65 m/s

• Potrubí pro odběr O1

$d_{01} = \sqrt{\frac{4 \cdot m_{01} \cdot v_0}{\pi \cdot n \cdot w_{max}}}$	<u>)1</u> x
m ₀₁ [kg/s]	hmotnostní tok páry do odběru O1
v ₀₁ [m ³ /kg]	měrný objem páry na vstupu do odběru O1
n [-]	počet trubek do odběru O1
w _{max} [m/s]	doporučená maximální rychlost v potrubí, dle doporučení z firmy Doosan Škoda Power voleno w _{max} =65 m/s

		Vypočítáno						
	m [kg/s]	v[m³/kg]	w _{max} [m/s]	n [-]	d [mm]	DN		
Vstup	177,78	0,052	50	2	343	DN 350		
Odběr O2	34,72	0,218	65	1	385	DN 400		
Odběr O1	23,61	0,937	65	2	466	DN 500		

Tabulka 34 Volby rozměrů potrubí v závislosti na doporučených rychlostech

Přiváděcí potrubí je vzhledem ke svým rozměrům připojeno k horní a dolní polovině tělesa skříně a prostorově umístěno mimo vlastní osu turbíny. Při osovém umístění by hrdlům potrubí na začátku turbíny překážely čepy nosičů vnitřních částí a ucpávkové potrubí. Při požadavku přísného dodržení situování přiváděcích potrubí v ose by mohl být tento problém nejspíše vyřešen zvětšením ložiskové vzdálenosti, což by vedlo např. ke zvětšení průhybu hřídele, poklesu tuhosti, atd. Vzhledem k absenci toho požadavku je ponecháno vstupní potrubí mimo osu.

Potrubí odběru O2 je umístěno v ose turbíny a to ve spodní části skříně. Dvě hrdla potrubí odběru O1 jsou vyvedené blíže k odběru O2 a opět mimo osu turbíny. Toto řešení je zapříčiněno velký vypočteným průměrem potrubí při jednohrdlovém provedení, které by z důvodu v těsné blízkosti připojeného axiálního výstupního hrdla do kondenzátoru nebylo možné k tělesu skříně připojit bez dalšího rozšíření příslušeného mezistupňového prostoru. To by opět vedlo ke zbytečnému zvětšení meziložiskové vzdálenosti.

11 Regulace

U parní turbíny s jedním regulovaným odběrem pracující v kondenzačním režimu jsou dvě regulované veličiny. Jsou to otáčky a tlak odebírané páry v odběru O3. Turbína tak má vysokotlaké regulační ventily RV, které řídí celkové množství páry jdoucí do turbíny z kotle a posléze procházející přímo celým VT dílem (m_{VT}) a přepouštěcí ventily PV řídící množství páry do ST/NT dílu ($m_{ST/NT}$), tak aby v místě odběru O3 byl stálý tlak při odebíraném množství m_{O3} .

 $m_{ST/NT} = m_{VT} - m_{O3}$

Z důvodů omezení kývavého jevu regulace se používá tzv. vázaná regulace.[3] Každý regulátor (otáček, tlaku) tak působí současně na oba ventily RV i PV. Díky tomu regulují současně. Vazba mezi regulátorem otáček a ventily je provedena tak, že při změně zatížení se obojí ventily pohybují současně a souhlasně a tak, aby přitom propouštěly o stejné množství páry více nebo méně. Změna množství páry procházející VT dílem je tak vyrovnána změnou množství páry přepouštěné do ST/NT dílu.[3] Za této podmínky se tlak a odebírané množství v odběru O3 nezmění a regulátor tlaku zde tak nezasáhne. Ten začne působit na ventily až při změně odběru páry m_{O3}. Oba ventily se opět pohybují současně, ale navzájem v opačném smyslu. Tak je zaručeno, že se výkon turbíny nezmění, protože například při zvětšení m_{O3}, které je provázeno poklesem tlaku v odběru O3 se zvětší zásahem tlakového regulátoru množství m_{VT} jdoucí do turbíny díky pootevření ventilů RV. V ST/NT části turbíny se naopak přivřením ventilů PV protékající množství m_{ST/NT} zmenší. Je tak splněna podmínka pro udržení stabilního výkonu turbosoustrojí, kdy přírůstek výkonu ve VT díle je kompenzován úbytkem výkonu na ST/NT díle. [3]

Obr. 24 Běžné provedení vázané regulace turbíny s 1 regulovaným odběrem[3]

Bližší návrh VT dílu a tím i jeho regulace není předmětem této diplomové práce. Z běžných v praxi užívaných provedení však lze předpokládat, že na jeho vstupu bude kvůli nutnosti zvětšení délky lopatek použit parciální ostřik. Bude tedy vhodné použití dýzové skupinové regulace. U strojů větších výkonů je nejčastěji provedena s rozdělením na 4 segmenty. Dosahování nižších než jmenovitých provozních stavů je zajištěno postupným

ENERGETICKÝ ÚSTAV Odbor energetického inženýrství DVOUTĚLESOVÁ KONDENZAČNÍ PARNÍ TURBÍNA

Bc. Tomáš Adámek 24.5.2013

škrcení a zavíráním ventilů přivádějící páru do jednotlivých segmentů. Vyplynul-li by ze zadání požadavek na krátkodobý provoz na zvýšené hladině výkonu než jmenovité, lze regulaci napočítat pro 100% provoz na 3 plně otevřené dýzové segmenty, přičemž zvýšeného výkonu bude docilováno otevíráním segmentu čtvrtého. Na vstupu do ST/NT dílu je pak totální ostřik a jeho regulace je svázána s regulací VT dílu. Samotný tlak a množství páry je tak konkrétně upravováno přepouštěcím ventilem.

ENERGETICKÝ ÚSTAV Odbor energetického inženýrství

DVOUTĚLESOVÁ KONDENZAČNÍ PARNÍ TURBÍNA

12 Nenávrhové provozní stavy

Při provozu turbosoustrojí se lze jen obtížně vyhnout jeho nenávrhových stavům. Při poklesu tlaku před turbínou či při změně množství páry přiváděné do turbíny se při stálých průřezech kanálů s protékajícím množství mění také rozdělení tlaku a tepelných spádů na stupních. Změnu rozdělení tlaků za stupni je nutné znát pro kontrole namáhání a průhybu rozváděcích kol. [2]

Závislost protékajícího množství na vstupním tlaku p_1 do libovolného stupně a tlaku kondenzace p_k je dána tzv. kuželem protékajícího množství[3], či jinak zkráceně nazýváno také rovnicí parního kužele[2]. Hodnoty s indexem 0 se vztahují na normální stavy a množství, pro něž je turbína navrhována. Hodnoty s indexem 1 značí jejich stavy nové.

$$\frac{m}{m_0} = \sqrt{\frac{p_1^2 - p_k^2}{p_{1,0}^2 - p_{k,0}^2}}$$

Zvětší-li se tedy množství páry na vstupu do uvažované části turbíny, zvýší se tak ti tlak na vstupu do uvažovaného stupně a obráceně.

Obr. 25 Závislost tlaku na vstupu do stupně na změně hmotnostního toku páry dle [2]

Při výpočtu nenávrhových stavů parní turbíny jsou přepokládána jistá zjednodušení:

- Konstatní teplotu a tlak na vstupu do turbosoustrojí v místě HUV
- Uměrný pokles množství páry na vstupu do turbíny a odebírané v odběrech

100% provoz	80% provoz	60% provoz
m ₁	0,8∙m₁	0,6∙m₁
m _{O3}	0,8∙m _{O3}	0,6∙m _{O3}
m _{O2}	0,8∙m ₀₂	0,6∙m _{O2}
m _{O1}	0,8·m ₀₁	0,6·m ₀₁

Tabulka 35 Procentuální změny hmotnostních toků při nenávrhových stavech

- Neměnnost průtočných průřezů stupňů turbíny při změně množství
- Stálý tlak kondenzace na výstupu z ST/NT dílu
- Změna termodynamické účinnosti VT dílu dle doporučení firmy Doosan Škoda Power

	100% provoz	80% provoz	60% provoz	
η _{τDi} ^{V1} [-]	0,9	0,71	0,43	

Tabulka 36 Změna termodynamické účinnosti VT dílu

ENERGETICKÝ ÚSTAV

DVOUTĚLESOVÁ KONDENZAČNÍ PARNÍ TURBÍNA

Výpočet je prováděn od posledního stupně ST/NT dílu. Z rovnice parního kužele lze za předpokladu nemněného tlaku kondenzace ($p_k^2 = p_{k,0}^2 = p^{NT2}$) dopočítat nové hodnoty tlaku před každým stupněm p_1 .

$$p_1 = \sqrt{\left(\frac{m}{m_0}\right)^2 \cdot p_{1,0}^2 - p_{k,0}^2 + p_k^2}$$
 [bar]

Jsou tak získány hodnoty tlaků na vstupech do jednotlivých stupňů a odběrů při změně hmotnostního toku páry turbínou. Pro tyto hodnoty pak je pak proveden celý výpočet parní turbíny znovu při neměnných rozměrech průtočného kanálu.

Přiváděná pára o konstantním tlaku se na regulaci RV škrtí na tlak na vstupu do VT dílu určení z rovnice parního kužele. Pro snížené tlaky je zkontrolován pevnostní výpočet ohybového namáhání rozváděcích lopatek a kol. Vypočtené parametry páry při nenávrhových stavech jsou sestaveny příslušné bilančních schémata (Příloha 12, Příloha 13)

		100% provoz	80% provoz	60% provoz
t ^{O1}	°C	115,93	109,26	101,08
р ⁰¹	bar	1,7	1,356	1,022
t ⁰²	О°	191,67	216,71	216,27
p ⁰²	bar	9	7,052	5,29

Tabulka 37 Teplota a tlak v místech odběrů O1 a O2 v závislosti na provozním stavu

G

13 Závěr

Celá diplomová práce se zabývala návrhem dvoutělesové parní turbíny. V první části bylo sestaveno návrhové bilanční schéma. K jeho výpočtu byly použity předpokládané účinnosti jednotlivých turbínových částí odporučené z firmy Doosan Škoda Power. Tak mohly být stanoveny předpokládané vnitřní výkony jednotlivých dílů a vstupní či výstupní parametry páry v důležitých místech. Na základě běžných hodnot mechanických ztrát a účinnosti generátoru byl vypočten celkový elektrický výkon na svorkách. Vzhledem k rozsáhlosti zadání se na doporučení další kapitoly soustřeďují na detailní návrh pouze druhého turbínového tělesa ST/NT.

Byly provedeny termodynamické výpočty průtočné části. Odpovídající lopatkové profily byly vybrány z katalogu (Příloha 3) v závislosti na velikostech vypočítaných úhlů a rychlostí. Na první půlce rotoru byly vzhledem k malým délkám lopatkování použity prizmatické profily lopatek, ale od 8. stupně již bylo nutné použít lopatky zkrucované. Poslední 2 stupně pak tvoří normalizované lopatky firmy Doosan Škoda Power.

Všechny nenormalizované lopatky a stejně tak i jejich závěsy a rozváděcí kola byly podrobeny pevnostním kontrolám na příslušná namáhání, přičemž bylo postupováno dle výpočetních algoritmů dodaných z firmy Doosan Škoda Power.

Hmotnost celého rotoru ST/NT dílu parní turbíny byla orientačně stanovena pomocí programu AutoCAD. Na jejím základě byla předběžně zkontrolována hodnota kritických otáček rotoru vůči doporučeným mezím. Podle velikosti vyvolaných reakčních sil byly provedeny základní dimenzovací výpočty předních a zadních radiálních ložisek na jejich základě pak byla vybrána odpovídající ložiska z katalogu firmy Kingsburry[7].

Utěsnění parní turbíny bylo provedeno pomocí předních a zadních labyrintových ucpávek. Byl také proveden návrh a vhodná volba velikosti potrubí jejich ucpávkových okruhů. Na utěsnění rozváděcích kol vůči rotoru byly použity vnitřní labyrintové ucpávky. Ztrátový výkon všemi ucpávkami byl pak vzat v úvahu při výpočtu výkonu a účinnosti turbíny pro skutečné parametry získané na základě výsledků detailního návrhu průtočné části.

Pro objasnění vzájemné součinnosti VT a ST/NT dílu turbosoustrojí byl přiblížen princip regulace a nastíněna možnost jejího provedení. Dle požadavku zadání byly spočítány pro snížené provozní stavy hodnoty tlaků a teplot v místech neregulovaných odběrů. Tento výpočet byl proveden zjednodušeně podle rovnice parního kužele a následného znovu provedení termodynamických výpočtů pro změněné parametry páry při konstantním tlaku páry na vstupu ze zadání.

Na závěr byl vypracován podélný řez ST/NT částí parní turbíny se základními rozměry

Při provádění některých výpočtů bylo použito experimentálně ověřených koeficientů a zjednodušujících předpokladů podle literatury uvedené v seznamu na konci diplomové práce. Dlouhé a zkrucované lopatky jsou počítány pouze na patním průměru a není proveden výpočet po celé jejich délce. Normalizované lopatky posledních dvou stupňů nejsou vzhledem k omezenému poskytnutí bližších informací detailněji rozebírány. Vzhledem těmto faktům se hodnoty vypočtených termodynamických účinností mohou od skutečných hodnot lišit. Všechny výpočty byly průběžně konzultovány a kontrolovány vedoucím práce a zástupcem firmy Doosan Škoda Power.

Bylo dosaženo svorkového výkonu 208,931 MWe, tedy vyššího než se požaduje. Vzhledem k zadáním zadané velikosti hmotnostního toku na vstupu do turbíny a požadované hodnoty elektrického výkonu tak došlo k určitému přeurčení řešené úlohy. Žádaného nižšího výkonu by bylo možné docílit snížením termodynamické účinnosti navrhované turbíny. Tento krok však nebyl na základě konzultací diplomové práce považován za vhodný. Je také pravděpodobné, že po odstranění zjednodušujících podmínek, se kterými bylo počítáno, by nakonec výsledný výkon klesl.

Výpočet parní turbíny v této práci je tedy možné považovat pouze za určitý "hrubší" návrh parametrů dané parní turbíny. Pro přesnější výsledky by bylo nutné minimalizovat zjednodušující předpoklady, použit přesnější koeficienty (získané nejlépe z měření podobného typu turbíny) a sofistikovanější výpočetní software. Velkou a nezanedbatelnou výhodou by také byly větší praktické zkušenosti samotného výpočtáře.

DVOUTĚLESOVÁ KONDENZAČNÍ PARNÍ TURBÍNA

14 Literatura

- [1] Fiedler, J. *Parní turbíny Návrh a výpočet*. 1.vyd. Brno: Akamdenické nakladatelství CERM, s.r.o., 2004. str 66. ISN 80-214-2777-9.
- [2] Škopek, J. *Parní turbíny Tepelný a pevnostní výpočet*. Plzeň: Západočeská univerzita v Plzni, 2007. str 160.
- [3] BEČVÁŘ, J. a kol.: *Tepelné turbíny*, SNTL Praha, 1968
- [4] KADRNOŽKA, Jaroslav. *Lopatkové stroje*, 2003. 1. vydání, upravené. Brno: Akademické nakladatelství CERM, s.r.o., ISBN 80–7204–297–1.
- [5] KADRNOŽKA, Jaroslav. *Tepelné turbíny a turbokompresory*, 2004. 1. vydání. Brno: Akademické nakladatelství CERM, s.r.o., ISBN 80–7204–346–3.
- [6] *Historie a současnost výroby parních turbín v Brně*. Brno: Siemens Industrial Turbomachinery s.r.o., 2007. ISBN 978-80-902681-3-5.
- [7] Kingbury, Inc. [online]. *Katalog radiálních ložisek* [18.5.2013]. Dostupné na WWW: http://www.kingsbury.com/pdf/catalog-leg.pdf.

15 Software

Doplněk programu Excel IAPWS IF97.dll Microsoft Office Excel 2003 Microsoft Office Word 2003 Autodesk AutoCAD 2008 Turbina-delphi 1.2.0

5

DVOUTĚLESOVÁ KONDENZAČNÍ PARNÍ TURBÍNA

16 Seznam tabulek

Tabulka 1 Vypočtené hodnoty pro STa část	
Tabulka 2 Vypočtené hodnoty pro STb a NT část	
Tabulka 3 Vypočtené výkonnostní hodnoty STa části	
Tabulka 4 Vypočtené výkonnostní hodnoty STb části	
Tabulka 5 Vypočtené výkonnostní hodnoty celé ST části	
Tabulka 6 Vypočtené výkonnostní hodnoty NT části	
Tabulka 7 Vypočtené výkonnostní hodnoty celého ST/NT dílu	
Tabulka 8 Velikosti úhlů a rychlostí v OL a RL	
Tabulka 9 Parametry proudění v RL a příslušné profily	40
Tabulka 10 Parametry proudění v OL a příslušné profily	40
Tabulka 11 Základní dostupné parametry normalizovaných OL dvou posledních str	upňů 40
Tabulka 12 Přepočet katalogových parametrů na skutečně použité šířky OL	
Tabulka 13 Výsledky pevnostní kontroly OL na tah	43
Tabulka 14 Výsledky pevnostní kontroly OL na ohyb	45
Tabulka 15 Pevnostní kontrola závěsů s T-nožkou	47
Tabulka 16 Pevnostní kontrola rozvidlených závěsů	
Tabulka 17 Pevnostní kontrola namáhání závěsů	50
Tabulka 18 Přepočet katalogových hodnot na skutečnou velikost	
Tabulka 19 Výsledky pevnostní kontroly RL na ohyb	
Tabulka 20 Výsledky pevnostní kontroly namáhání rozváděcích kola	
Tabulka 21 Vypočtené hodnoty průtoku vnitřními ucpávkami	
Tabulka 22 Parametry proudění páry všemi sekcemi přední vnější ucpávky	
Tabulka 23 Parametry proudění páry všemi sekcemi zadní vnější ucpávky	
Tabulka 24 Výsledné výkonové hodnoty turbosoustrojí se zahrnutím ucpávkových	ztrát 65
Tabulka 25 Vypočtené hmotnosti rotoru.	
Tabulka 26 Výsledky výpočtu kritických otáček	
Tabulka 27 Pevnostní parametry šroubů z materiálu X19proT	
Tabulka 28 Reakce v radiálních ložiscích	
Tabulka 29 Parametry předního radiálního ložiska dle katalogu firmy Kingsbury[7]]70
Tabulka 30 Parametry zadniho radialniho ložiska dle katalogu firmy Kingsbury[7].	
Tabulka 31 Vlastnosti oleje radialnich ložisek	
Tabulka 32 Rozměry a rychlosti pro olejove potrubi předniho radialního ložiska	
Tabulka 33 Rozmery a rychlosti pro olejove potrubi zadniho radialniho ložiska	
Tabulka 34 Volby rozmérů potrubi v zavislosti na doporučených rychlostech	
LADUIKA 55 Procentualni zmeny nmotnostnich toku	
I adulka 36 Zmena termodynamicke ucinnosti VI dilu	
LADUIKA 5 / Leplota a tlak v mistech odberů Ol a O2 v zavislosti na provozním stav	vu 77

5

DVOUTĚLESOVÁ KONDENZAČNÍ PARNÍ TURBÍNA

17 Seznam obrázků

Obr. 1 Zjednodušené schéma zapojení technologického celku paroplynového cyklu	10
Obr. 2 Průběh expanze páry ve VT dílu	11
Obr. 3 Průběh expanze páry v STa části	13
Obr. 4 Průběh expanze páry v STb části	15
Obr. 5 Průběh expanze páry v NT části	16
Obr. 6 Průběh kondenzace ve vzduchovém kondenzátoru	17
Obr. 7 Princip činnosti rovnotlakého a přetlakového stupně[6]	19
Obr. 8 Průběh expanze v rozváděcích lopatkách stupně	23
Obr. 9 Možnosti provedení průtočného kanálu OL dle[1]	25
Obr. 10 Průběhu expanze a její konec ve stupni	28
Obr. 11 Lopatkový plán	31
Obr. 12 Rychlostní trojúhelníky pro rovnotlaké lopatkování s malým stupněm reakce	36
Obr. 13 Skutečný a náhradní tvar oběžné lopatky a bandáže pro výpočet	43
Obr. 14 Charakteristické rozměry rozvidleného závěsu a T-nožky	45
Obr. 15 Zajištění oběžné lopatky pomocí pojistných kolíků	49
Obr. 16 Vznik ohybového namáhání	51
Obr. 17 Schematický nákres rozváděcího kola	54
Obr. 18 Schéma, rozměry a umístění vnitřní ucpávky	56
Obr. 19 Přední vnější labyrintová ucpávka	58
Obr. 20 Zadní vnější labyrintová ucpávka	61
Obr. 21 Zjednodušené schéma zapojení ucpávkové páry	63
Obr. 22 Síly působící na radiální ložiska rotoru ST/NT dílu parní turbíny	69
Obr. 23 Náznak možnosti provedení turbíny s jednoplášťovou skříní	72
Obr. 24 Běžné provedení vázané regulace turbíny s 1 regulovaným odběrem[3]	74
Obr. 25 Závislost tlaku na vstupu do stupně na změně hmotnostního toku páry dle [2]	76

DVOUTĚLESOVÁ KONDENZAČNÍ PARNÍ TURBÍNA

18 Seznam příloh

Příloha 1 Závislost rychlostního součinitele φ na délce lopatky[1]	84
Příloha 2 Určení součinitele odlehčení zkrucovaných lopatek dle [2]	84
Příloha 3 Výběr z katalogu lopatkových profilů[2]	85
Příloha 4 Katalog materiálů a jejich pevnost se započítanou bezpečností	86
Příloha 5 Součinitel φ pro výpočet namáhání rozváděcího kola [2]	87
Příloha 6 Součinitel μ pro výpočet průhybu rozváděcího kola [2]	88
Příloha 7 Závislosti modulu pružnosti v tahu E na provozní teplotě [2]	89
Příloha 8 Průtokový součinitel v mezeře labyrintové ucpávky[1]	89
Příloha 9 Lopatkový plán pro ST/NT díl turbíny	90
Příloha 10 Návrhové bilanční schéma s předpokládanými hodnotami	91
Příloha 11 Bilanční schéma se skutečnými hodnotami pro 100% provoz	92
Příloha 12 Bilanční schéma pro 80% provoz	93
Příloha 13 Bilanční schéma pro 60% provoz	94

19 Přílohy

151

Příloha 1 Závislost rychlostního součinitele φ na délce lopatky[1]

Příloha 2 Určení součinitele odlehčení zkrucovaných lopatek dle [2]

Příloha 3 Výběr z katalogu lopatkových profilů[2]

Označení Profilu	α ₁	α_0	t	M. opt M. opt	b ₀	S_0		Womin (cm ³)
. romu	0	0	40pt	1011s , 1011s	(cm)	(cin)	((()))	
S - 90 - 09A	8 až 11	70 až 120	0,72 až 0,85	do 0,90	6,06	3,45	0,416	0,471
S - 90 - 12A	10 až 14	70 až 120	0,72 až 0,87	do 0,85	6,25	4,09	0,591	0,575
S - 90 - 15A	13 až 14	70 až 120	0,70 až 0,85	do 0,85	5,15	3,3	0,36	0,45
S - 90 - 18A	16 až 20	70 až 120	0,70 až 0,80	do 0,90	4,71	2,72	0,243	0,333
S - 90 - 22A	20 až 24	70 až 120	0,70 až 0,80	do 0,90	4,5	2,35	0,167	0,265
S - 90 - 27A	24 až 30	70 až 120	0,65 až 0,75	do 0,90	4,5	2,03	0,116	0,195
S - 90 - 33A	30 až 36	70 až 120	0,62 až 0,75	do 0,90	4,5	1,84	0,09	0,163
S - 90 - 38A	35 až 42	70 až 120	0,60 až 0,73	do 0,90	4,5	1,75	0,081	0,141
S - 55 - 15A	12 až 18	45 až 75	0,72 až 0,87	do 0,90	4,5	4,41	1,195	0,912
S - 55 - 20A	17 až 23	45 až 75	0,70 až 0,85	do 0,90	4,15	2,15	0,273	0,275
S - 45 - 25A	21 až 28	35 až 65	0,60 až 0,75	do 0,90	4,58	3,3	0,703	0,536
S - 60 - 30A	27 až 34	45 až 85	0,52 až 0,70	do 0,90	3,46	1,49	0,118	0,154
S - 65 - 20A	17 až 23	45 až 85	0,60 až 0,75	do 0,90	4,5	2,26	0,338	0,348
S - 70 - 25A	22 až 28	55 až 90	0,50 až 0,67	do 0,90	4,5	1,86	0,242	0,235
S - 90 - 12B	10 až 14	70 až 120	0,72 až 0,87	0,85 až 1,15	5,66	3,31	0,388	0,42
S - 90 - 15B	13 až 17	70 až 120	0.70 až 0,85	0,85 až 1,15	5,2	3,21	0,326	0,413
S - 90 - 12D	10 až 14	70 až 120	0,58 až 0,68	1,40 až 1,80	4,09	2,3	0,237	0,324
S - 90 - 15D	13 až 17	70 až 120	0,55 až 0,65	1,40 až 1,70	4,2	2	0,153	0,238

NĚKTERÉ CHARAKTERISTIKY PROFILŮ - rozváděcí

α₀ vstupní úhel

Bin C.

NĚKTERÉ CHARAKTERISTIKY PROFILŮ - oběžné

Označení	β2	βι			bo	S ₀	J _{0 min}	W _{0 min}
Profilu	(°)	(°)	t _{opt}	M _{1s} ^{opt} , M _{1s} ^{opt}	(cm)	(cm ²)	(cm⁴)	(cm ³)
R - 23 - 14A	12 až 16	20 až 30	0,60 až 0,75	do 0,95	2,59	2,44	0,43	0,39
R - 26 - 17A	15 až 19	23 až 35	0,60 až 0,70	do 0,95	2,57	2,07	0,215	0,225
R - 30 - 21A	19 až 24	25 až 40	0,58 až 0,68	do 0,90	2,56	1,85	0.205	0,234
R - 35 - 25A	22 až 28	30 až 50	0,55 až 0,65	do 0,85	2,54	1,62	0,131	0,168
R - 46 - 29A	25 až 32	44 až 60	0,45 až 0,58	do 0,85	2,56	1,22	0,71	0,112
R - 60 - 33A	30 aż 36	47 až 65	0,43 až 0,55	do 0,85	2,56	1,02	0,044	0,079
R - 60 - 38A	35 až 42	55 až 75	0,41 až 0.51	do 0,85	2,61	0,76	0,018	0,035
R - 23 - 14A _k	12 až 16	20 až 30	0,60 až 0,75	do 0,95	2,59	2,35	0,387	0,331
R - 26 - 17A _k	15 až 19	23 až 45	0,60 až 0,70	do 0,95	2,57	1,81	0,152	0,165
R - 27 - 17B	15 až 19	23 až 45	0,57 až 0,65	0,80 až 1,15	2,54	2,06	0,296	0,296
R - 27 - 17B _k	15 až 19	23 až 45	0,57 až0,68	0,85 až 1,15	2,54	1,79	0,216	0,216
R - 30 - 21B	19 až 24	25 až 40	0,55 až 0,65	0,85 až 1,10	2,01	1,11	0,073	0,101
R - 35 - 25B	22 až 28	30 až 50	0,55 až 0,65	0,85 až 1,10	2,52	1,51	0,126	0,159
R - 21 - 18D	16 až 20	19 až 24	0,60 až 0,70	1,30 až 1,60	2	1,16	0,118	0,142
R - 25 - 22D	20 až 24	23 až 27	0,54 až 0,67	1,35 až 1,60	2	0,99	0,084	0,1

Platí pro profily o šířce B₀ = 25 mm

(jen pro oběžné lopatky)

Typ A (podzvukové) pro M < 0.7 - 0.9

B (transonické) 0.9 < M < 1.15

C (nadzvukové) 1,1 < M <1,3

D (rozšiřující se, Lavalovy dýzy M > 1,3 - 1,5

Příloha 4 Katalog materiálů a jejich pevnost se započítanou bezpečností

Materiál	Sgkm	Tmax	\$20.100.200.300.350.375.400.420.440.460.480.500.510.520.530.540.550.560
Rozváděcí kola			
15 128.5	363.	550.	181.172.159.147.139.135.132.128.125.121.109. 84. 75. 66. 56. 50.44
11 523.1	304.	400.	152.132.118.103. 93. 87. 62.
422747.6	410.	550.	216.196.181.172.167.164.162.160.152.125.100. 80. 71. 65. 57. 50.44
X10CrMoV9-1	450.	600.	225.205.190.180.175.172.170.166.162.152.137.123.113.104.94.85.77.
422742.6	314.	500.	157.142.127.115.108.103. 98. 96. 94. 86. 78. 59.
422713.5	245.	400.	123.113. 98. 83. 69. 59. 49.
422904.5	294.	350.	147.132.118.108.103.
SN 422903.6	360.	400.	180.145.140.135.132.131.130.
422425	245.	250.	59. 59. 59.
Rozváděcí lopatky	y		
15 335.3	392.	550.	314.299.282.267.259.255.251.235.219.204.188.172.156.141.125.110.94
X10CrMoV9-1	450.	600.	360.328.304.288.280.276.272.265.256.244.220.196.181.166.151.136.123.111
17 021.2	274.	400.	220.204.188.180.176.174.172.
Alsth.C51R-J	441.	550.	353.328.309.279.269.263.258.247.236.214.181.147.134.121.110. 99.88
422904	294.	400.	235.220.206.191.189.187.186.
422905	245.	400.	196.180.169.161.157.155.153.
SN 422903	360.	400.	284.231.223.216.212.210.208.
Rotory			
15 320.9	490.	550.	196.186.176.157.147.142.137.133.129.123.108. 83. 70. 59. 50. 42.35
16 236.6	539.	560.	216.201.186.167.157.155.152.142.132.123.108.93.86.78.72.65.57.50
16 431.6	588.	500.	235.216.196.176.167.162.157.152.137.118.98.73.
16 431.9	637.	500.	255.235.216.196.186.181.176.172.137.118.98.73.
16 537.6	686.	500.	276.260.235.216.206.191.176.160.140.110. 80. 60.
16 444.6(.9)	735.	420.	294.279.255.230.216.196.176.147.
16 536.6	686.	500.	276.260.235.216.206.191.176.147.
16 536.6 a	314.	420.	314.299.276.245.230.206.176.147.
Oběžné lopatky			
R-M-AK1.6	490.	460.	196.186.172.157.137.123. 88. 69. 53. 37.
R-M-AK1.6 vyk	539.	420.	216.206.186.172.152.132. 98. 78.
R-M-AK2 MV.7	570.	550.	230.221.211.201.191.186.181.176.172.167.162.142.123.103. 88. 74.59
Т 552	750.	100.	320.300.
R-M-AK2 NM	735.	560.	294.294.278.269.264.256.250.246.240.218.180.148.132.114.102. 89.76.67
Kolíky			
15 320.9	588.	550.	157.150.144.125.115.110.105.102. 99. 96. 82. 63. 52. 44. 37. 31.26
X19CrMoVNbN	780.	600.	180.168.156.150.146.142.138.135.132.128.123.110. 97. 84. 69. 57.43.34
R-M-AK2 NM	735.	560.	176.176.167.161.158.154.151.148.144.139.135.111. 99. 87. 77. 67.58.50

Příloha 5 Součinitel φ pro výpočet namáhání rozváděcího kola [2]

Příloha 6 Součinitel μ pro výpočet průhybu rozváděcího kola [2]

Příloha 7 Závislosti modulu pružnosti v tahu E na provozní teplotě [2]

a,b – uhlíkové oceli $500-600~\rm{Mpa}$, c-ocel $0.3~\rm{C},\,0.11~\rm{Ni},\,007~\rm{Cr},~d-$ ocel $0.35~\rm{C},\,4.21~\rm{Ni},\,1.22~\rm{Cr},$ e-austenitická ocel $18~\rm{Cr},\,8~\rm{Ni},$ stabilizovaná Ti,~f-litina

Příloha 8 Průtokový součinitel v mezeře labyrintové ucpávky[1]

Příloha 9 Lopatkový plán pro ST/NT díl turbíny

Příloha 10 Návrhové bilanční schéma s předpokládanými hodnotami

ENERGETICKÝ ÚSTAV Odbor energetického inženýrství DVOUTĚLESOVÁ KONDENZAČNÍ PARNÍ TURBÍNA

Příloha 11 Bilanční schéma se skutečnými hodnotami pro 100% provoz

Příloha 12 Bilanční schéma pro 80% provoz

Příloha 13 Bilanční schéma pro 60% provoz

