BAKALÁŘSKÁ PRÁCE

Repositář dat pro FCA

2011 Jiří Tempír
Anotace

Cílem práce je vytvořit repositář vstupních datových souborů pro formální konceptuální analýzu (FCA) s online webovým rozhraním. Uživateli bude nabízet data, správci repositáře potom rozhraní pro snadné nahrávání nových datových souborů a editaci metadat.
Na tomto místě bych chtěl poděkovat rodině, která mi byla oporou nejen při tvorbě této práce, ale i během celého studia. Také bych chtěl poděkovat svému vedoucímu bakalářské práce Mgr. Janovi Outratovi, Ph.D., za odborné vedení a cenné rady.
Obsah

1. Úvod ... 7
 1.1. Definice pojmů 7
 1.1.1. Dataset 7
 1.1.2. Skálování (Scaling) 7
 1.1.3. Klíčové slovo (Keyword) 8
 1.1.4. Typ klíčového slova 8
 1.1.5. Charakteristiky a Metadata 8

2. Specifikace aplikace 9

3. Použité technologie 10
 3.1. CSS .. 10
 3.2. JavaScript 10
 3.3. PHP .. 11
 3.4. PostgreSQL 11
 3.5. Apache 11

4. Implementace 12
 4.1. Datový model 12
 4.2. Struktura aplikace 12
 4.2.1. Model 14
 4.2.2. View 14
 4.2.3. Controller 15
 4.3. Data v souborovém systému 15
 4.3.1. Uložení datasetů 15
 4.3.2. Stahování datasetů 17
 4.3.3. Adresářová struktura aplikace 17
 4.4. Web ... 18
 4.4.1. Pohled na datasety 18
 4.4.2. Bezpečnost aplikace 18
 4.5. Vzhled stránek 18
 4.5.1. Záhlaví stránky 20
 4.5.2. Těla stránek 20
 4.5.3. Zápatí stránky 21

Závěr .. 22
Conclusions .. 23
Reference .. 24
A. Manuál

A.1. Úvod .. 25
A.2. Popis .. 25
A.3. Technické požadavky 25
A.4. Instalace .. 25
 A.4.1. Příprava databáze PostgreSQL 25
 A.4.2. Nastavení aplikace 26
 A.4.3. Apache ... 27
 A.4.4. Syslog ... 27
A.5. Odinstalace ... 27
A.6. Veřejná část .. 28
 A.6.1. Datasets 28
 A.6.2. Donate a dataset 29
 A.6.3. Contact 31
A.7. Administrace 31
 A.7.1. Přihlášení 32
 A.7.2. Ovládání 32
 A.7.3. Úprava datasetů 34
 A.7.4. Omezení vkládaných hodnot 36
 A.7.5. Úprava klíčových slov (Keywords) 37
 A.7.6. Úprava uživatelů (Users) 37
A.8. Závěr .. 37

B. Obsah přiloženého CD 39
Seznam obrázků

1. ER-diagram ... 13
2. UML diagram hlavních tříd 16
3. Adresářový strom datasetu. 17
4. Hlavní menu ... 28
5. Seznam datasetů ... 28
6. Darovací formulář .. 30
7. Přihlašovací dialog .. 32
8. Odhlášení .. 32
9. Přehled novinek .. 33
10. Úprava novinky ... 33
11. Detail novinky .. 33
12. Seznam datasetů - Růžové datasety nejsou publikované. 34
13. Nepublikovaná škálování jsou zvýrazněna červeným rámováním. 35
14. Editace klíčového slova typu Enumeration 38
15. Editace uživatele - změna hesla 38
Seznam tabulek

1. Třídy ve vrstvách datového modelu 14
2. Práva rolí, R = zobrazení, W = úprava (editace) 31
3. Omezení hodnot klíčových slov 36
4. Ostatní omezení .. 37
1. Úvod

1.1. Definice pojmů

V předchozím odstavci jsem použil několik pojmů, které je potřeba vysvětlit.

1.1.1. Dataset

Pojem dataset může být chápán ve dvou významech.

1. Dataset jako vlastní datový soubor.

2. Dataset jako celek obsahující datový soubor, charakteristiky a metadata tohoto souboru, spolu se všemi škálovánímí.

Aby se tyto dva pojmy nepletily, budu používat pojem dataset ve druhém významu a pro první význam budu používat fráze „datový soubor“ nebo „soubor datasetu“.

1.1.2. Škálování (Scaling)

Druhý význam pojmu škálování je opět celek sestávající se z datového souboru škálování a jeho metadat.

U pojmu škálování budu postupovat stejně jako u pojmu dataset.
1.1.3. Klíčové slovo (Keyword)

Klíčové slovo označuje v aplikaci jednu charakteristiku nebo metadata datase-etu.

1.1.4. Typ klíčového slova

Typ klíčového slova je datový typ hodnoty, které klíčové slovo obsahuje. Jsou odvozeny od datových typů, které zná PostgreSQL.

1.1.5. Charakteristiky a Metadata

V této aplikaci se termíny Charakteristiky a metadata liší tím, že metadata se ukládají jako texty a charakteristiky jako ostatní datové typy (integer, boolean, real, atd.). Charakteristiky se v aplikaci vypisují do tabulky, kdežto metadata jako odstavce textu.
2. Specifikace aplikace

Požadavky na repositář jsou následující:

- Repozitář bude webová aplikace přístupná komukoliv, ale určená vědcům zabývajícím se formální konceptuální analýzou.
- Zobrazení katalogu dat s řazením podle charakteristik (počet objektů, počet atributů, oblast, atd.)
- Hromadné stažení dat datasetů vybraných v katalogu
- Formulář pro přidání datasetu a editaci jeho charakteristik a metadat správcem repositáře
- Formulář pro zaslání datasetu dárcem
- Uložení původních dat, ze kterých data pro FCA vznikla
- Možnost přidání klíčových slov
- Možnost uložení více škálováních
- Darované datasety ukládat mimo publikované, před zveřejněním je musí zkontrolovat správce repositáře.
- Novinky v datasetech nebo repositáři
- Zpracování dle webových standardů
- Běh pod webovým serverem Apache 2.2, doporučení implementace servrové části na platformě PHP 5.3
- Uživatelský manuál
3. Použité technologie

V této kapitole popíšu použité technologie, což jsou takové základní kameny, na kterých je repositář postaven.

3.1. CSS

Cascading Style Sheets (CSS), česky kaskádové styly, je jazyk pro popis vzhledu dokumentů napsaných značkovacími jazyky HTML, XHTML a XML. Jazyk byl navržen a standardizován organizací W3C, jako reakce na počínání výrobců webových prohlížečů, kteří začaly svévolně rozšiřovat jazyk HTML o formátovací značky. V současné době je nejpoužívanější verze CSS 2.1 a pracuje se na verzi CSS3.

Cílem jazyka CSS je oddělení vzhledu dokumentu od jeho obsahu. Kaskádové styly popisují vzhled elementů (tagů) HTML dokumentu. Jak z názvu vyplývá, jednotlivé definice stylů se na sebe mohou kaskádovitě vrstvit, avšak vždy platí poslední definice. Tímto přístupem je zajištěna snadná modifikace vlastností pro velké množství elementů.

Hlavní výhody použití CSS:

- Rozsáhlé možnosti formátování
- Oddělení vzhledu od obsahu
- Snadná modifikace vzhledu
- Různé styly pro různá výstupní média (screen, print, handheld, braille, atd.)

Snad jedinou nevýhodou kaskádových stylů je špatná implementace nebo nedodržení standardů ve webových prohlížečích. To způsobuje rozdílný vzhled v různých prohlížečích a v horších případech úplný rozpad formátování.

Kompletní specifikaci CSS 2.1 najdete zde [6].

3.2. JavaScript

JavaScript je objektově orientovaný skriptovací jazyk primárně určený k rozšíření funkcí webových stránek. Je interpretován webovým prohlížečem, čili na straně klienta. Používá se ke zvýšení dynamičnosti a interaktivity webových stránek.

JavaScript byl původně vyvinut společností Netscape. Nyní ve vývoji pokračuje Mozilla Foundation a standardizaci pod názvem ECMAScript provádí ECMA (European Computer Manufacturers Association) [3].
3.3. PHP

PHP je skriptovací jazyk navržený pro generování dynamických webových stránek. PHP kód je součástí HTML kódu a je interpretován webovým serverem s PHP modullem, který generuje webové stránky. PHP je platformě nezávislý, i když se najde několik rozdílů v systémově závislých funkcích.

Hlavní výhody PHP:

- Specializace na dynamické webové stránky
- Velké množství knihoven a podpora mnoha protokolů
- Nativní podpora mnoha databázových systémů
- Množství hostingů nabízejících PHP
- Ohromné množství svobodných projektů a knihoven

Podrobnější popis najdete na Wikipedii nebo přímo na webu PHP [4].

3.4. PostgreSQL

PostgreSQL je multiplatformní, spolehlivý a bezpečný databázový systém. Plně podporuje cizí klíče, operace JOIN, pohledy, spouště a uložené procedury. Obsahuje většinu standardních datových typů. Výkonnostně je srovnatelný s komerčními systémy a častokrát je i poráží.

3.5. Apache

4. Implementace

4.1. Datový model

Hlavním požadavkem na repositář bylo, aby mohly být přidávána a ubírána klíčová slova. Toto značně zkomplikovalo návrh databáze. Protože jsem okamžitě zavrhl přidávání a mazání sloupce tabulky, musel jsem můžu jedné tabulky pro celý dataset použít tabulek několik.

První možností, nad kterou jsem přemýšlel, je mít tabulku datasetů se základními atributy, bez kterých dataset nemůže být. Pak tabulku klíčových slov s atributem pro typ klíčového slova a vazební tabulku mezi datasety a klíčovými slovy s atributy pro každý typ klíčového slova. Jelikož v typech klíčových slov převládají typy integer a text, uvažoval jsem o zjednodušení vazební tabulky na dva atributy, s tím, že se jiné typy než integer ukládaly jako text. Co se mi v tomto návrhu nepodařilo uspokojivě vyřešit je ukládání výčtového typu. Ten musí mít vlastní vazební tabulku, což rozšířilo můj snahu o co největší jednoduchost a malý počet tabulek. To už může mít každé klíčové slovo svou vlastní tabulku. Na teto myšlence je založen můj výsledný návrh.

Jak můžete vidět na obrázku číslo 1., kromě výše popsaných tabulek dataset a keyword (klíčová slova), má každé klíčové slovo svou vlastní tabulku, ve které se uchovávají hodnoty konkrétních datasetů. Její název tvoří zkratka kw, podtržítko a identifikační číslo z tabulky klíčových slov. Například kw_2. Typ atributu value je dan typem klíčového slova, který je uložen v samostatné tabulce nazvané kw_type.

Samostatnou tabulku má škálování, které má na rozdíl od datasetu pevně danou a neměnnou strukturu.

Možnost přidávat a odebrádat klíčová slova je v diagramu znázorněna entitami, které mají v názvu znak x místo identifikačního čísla a vazební čára je kreslená čárkovaně.

4.2. Struktura aplikace

Při návrhu a následném programování jsem se snažil o dodržení návrhového vzoru MVC Model-View-Controller. Návrhový vzor nebo, chcete-li softwarovou architekturu, Model-View-Controller dělí aplikaci na datový model, uživatelské rozhraní a řídící logiku. Tyto tři části jsou na sobě nezávislé, čímž je umožněna změna jednotlivých částí s minimálním dopadem na části ostatní.

Další návrhový vzor, který jsem se pokusil implementovat je rozdělit datový model do pěti vrstev, jak to popsal Jan Tichý [5]. Jedná se o rozšíření datového modelu Active record o další vrstvy, které odstraňují jeho nevýhody. Mě rozdělení tříd do navrhovaných vrstev ukazuje tabulka číslo 1..
Zastupuje další klíčová slova všech typů vyjma enumeration.

Zastupují další klíčová slova typu enumeration.
<table>
<thead>
<tr>
<th>Vrstva</th>
<th>Třídy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Service</td>
<td>-</td>
</tr>
<tr>
<td>Entita</td>
<td>potomci DomainObjectAbstract</td>
</tr>
<tr>
<td>Repository</td>
<td>potomci RepositoryAbstract</td>
</tr>
<tr>
<td>Mapper</td>
<td>potomci DbMapperAbstract</td>
</tr>
<tr>
<td>Úložiště</td>
<td>Db + PDO</td>
</tr>
</tbody>
</table>

Tabulka 1. Třídy ve vrstvách datového modelu

4.2.1. Model

Model tedy tvoří třídy potomci tříd uvedených v tabulce 1. Všechny jsou uloženy v adresáři models. Třídy mají na starosti ukládání a načítání dat z databáze a mapují je na objekty. V aplikaci jsou tyto třídy objektů ukládající své vlastnosti do databáze:

- Dataset
- Enumeration
- Keyword
- KwType
- News
- Scaling
- User

Jak jste si jistě všimli, názvy tříd se shodují s entitami datového modelu. UML diagram tříd Vám osvětlí vztahy mezi třídami.

Ke komunikaci s databází PostgreSQL jsem využil rozšiřující knihovnu PDO (PHP Data Objects), která poskytuje jednotné API pro různé databázové systémy. Tím je usnadněn přechod k jinému databázovému serveru, jako je například MySQL.

Pro navázání spojení s databází a nejčastější úlohy jsem napsal statickou třídu Db. Třída SqlQuery slouží pro konstrukci SQL dotazů.

4.2.2. View

Pohled tvoří PHP soubory v adresáři views. Jsou to vlastně šablony obsahující HTML kód a PHP kód, kterým se kompletuje celá HTML stránka. Tuto funkci utilizuje třída Template.
Do části pohledu musím také zahrnout statické prvky jako jsou obrázky, JavaScript a CSS. Ty jsou uloženy v podadresářích *css*, *js*, *img* adresáře *public*.

4.2.3. Controller

V adresáři *controllers* najdete potomky abstraktní třídy ControllerAbstract, které řídí zobrazení menu, stahování škálování, přihlášení, darování datasektu a další.

V adresáři *library* jsou společné, pomocné knihovní třídy. Mezi ně patří třídy pro komunikaci s databází, manipulaci s soubory, řízení přístupu, abstraktní třídy, třídy výjimek a tak dále.

Hlavní třídy aplikace jsem nakreslil do UML diagramu tříd na obrázku číslo 2.

4.3. Data v souborovém systému

4.3.1. Uložení datasetů

Datové soubory datasetů se ukládají do souborového systému serveru, na kterém běží webový server Apache. Rozhodl jsem se ukládat všechny soubory publikovaných a nepublikovaných datasetů. Je to z toho důvodu, aby mohly být publikované datasety přístupné přes FTP server. Adresáře publikovaných a darovaných datasetů se nastavují v konfiguračním souboru *config.php*.

Informační soubor obsahuje stejné informace, které vidí návštěvník stránky na stránce datasetu. Není to HTML soubor, ale čistě textový soubor. Informační soubor škálování obsahuje, krom informací o datasetu, informace o konkrétním škálování. Informace o ostatních škálováních v něm nejdou přítomny.

Při publikování se celý adresář datasetu přesune z adresáře pro darované datasecky do adresáře pro publikované datasecky. Opačný postup se realizuje při stažení („odpublikování“) datasetu.

4.3.2. Stahování datasetů

Jelikož stahovaný dataset tvoří minimálně dva soubory, což jsou datový soubor datasetu a informační soubor datasetu, musí být před odesláním uživateli
Obrázek 2. UML diagram hlavních tříd
zabaleny do jediného souboru. Využívám k tomu souborový formát zip. Tento postup má výhodu v tom, že oba soubory jsou zkomprimovány a tudíž se přenáší menší množství dat. Pro lepší manipulaci s datasetem jsou oba dva soubory zabaleny i s adresářem datasetu.

Stejně tak i škálování je posláno uživateli jako zip archiv adresáře škálování s datovým souborem škálování a informačním souborem škálování. Tentokrát však není adresář škálování umístěn v adresáři datasetu, ale je samostatně. Při stahování všech škálování datasetu jsou tyto umístěny v adresáři datasetu. Když uživatel požaduje stáhnout celý dataset, je uživateli poslána celá adresářová struktura, tak jak jsem ji popsal zde, vyjma nepublikovaných škálování.

4.3.3. Adresářová struktura aplikace

Obsah většiny adresářů jsem již popsal v předešlém textu. Teď nadešel čas představit celou adresářovou strukturu. Názvy adresářů jsou všeříkající.

dataset/repository
 /donated

web/app/controllers
 /models
 /views
/config
/library
/public/css
 /img
 /js
4.4. Web

Vkládání informací do aplikace se provádí prostřednictvím webových formulářů, které tvoří grafické uživatelské rozhraní aplikace. Není doporučen jiný způsob manipulace s daty, než pomocí aplikace.

4.4.1. Pohled na datasety

Pro snížení zátěže databázového serveru PostgreSQL se seznam datasetů načítá z pohledu whole_dataset. I všechna řazení, krom jednoho, se provádí nad tímto pohledem. V tomto pohledu se výčtové položky a počty naškálovaných atributů škálování datasetu ukládají do jednoho sloupce jako text oddělený čárkami. Celý SQL příkaz, kterým se pohled vytváří najde zde.

4.4.2. Bezpečnost aplikace

JavaScript kontroluje vložená data pomocí regulárních výrazů. Na serveru jsem využil vestavěné funkce PHP. Například ctype_alnum, is_numeric nebo intval. Pro kontrolu data, URL a názvů souborů jsem použil regulární výrazy i na straně serveru.

V případě, že vstupní data projdou kontrolou, jsou uložena do databáze. Speciální znaky jsou ošetřeny technikou vázání proměnných dostupnou v PDO.

Protože uložený text může obsahovat nechtěné HTML znaky, nahrazuji nebezpečné znaky funkcí htmlspecialchars při zobrazení HTML stránky. Ve stejný čas také nahrazuji DokuWiki syntaxi externího linku (s dvojitými hrannými závorkami) HTML značkou ``.

Omezení přístupu do adresářů s knihovnami aplikace je realizována zákazem v konfiguračním souboru Apache .htaccess, který platí pro aktuální adresář a jeho podadresáře. Uživatelé se do zakázaných adresářů nedostanou, kdežto webový server ano.

Aplikace, ve výchozím nastavení, používá pro přihlášení protokol HTTPS. Uživatel, který nemá webový server patřičně nastaven, si jej může vypnout v konfiguračním souboru.

4.5. Vzhled stránek

Snažil jsem se navrhnout jednoduchý libivý vzhled, který nebude zbytečně
CREATE OR REPLACE VIEW whole_dataset (
id,
name,
file_name,
published,
kw_attribute_types,
kw_area,
kw_number_of_instances,
kw_number_of_attributes,
kw_number_of_scaled_attributes
) AS
SELECT
dataset.id,
dataset.name,
dataset.file_name,
dataset.published,
(SELECT array_to_string(array(
 SELECT CAST(enum_1.name AS text)
 FROM enum_1, kw_1 as kw
 WHERE kw.enum_1_id = enum_1.id
 AND kw.dataset_id = dataset.id
), ', ')
),
kw_5.value,
kw_2.value,
kw_3.value,
(SELECT array_to_string(array(
 SELECT CAST(scaling.number_of_attributes AS text)
 FROM scaling
 WHERE scaling.dataset_id = dataset.id
 AND scaling.published = true
), ', ')
FROM
(((dataset
LEFT OUTER JOIN kw_5 ON dataset.id = kw_5.dataset_id)
LEFT OUTER JOIN kw_2 ON dataset.id = kw_2.dataset_id)
LEFT OUTER JOIN kw_3 ON dataset.id = kw_3.dataset_id)
;
poutat pozornost při práci. Za základní barvu jsem zvolil modrou a použil pře-
vážně její světlejší odstíny, které doplňuje šedá barva. Pro zvýraznění chybových
hlášení jsem vybral červenou a odkazů žluto-hnědou barvu. Základní rozdělení
stránky repositaře je provedeno šablonou Page.php. V šabloně je stránka rozdě-
lena na:

Hlavičku obsahující pouze hlavní nadpis.

Menu sloužící k navigaci v repositaři.

Oblast uživatele kde se zobrazuje přihlášený uživatel.

Oblast zpráv kde se zobrazují varování a chybové zprávy.

Obsah kam se vkládá obsah ostatních stránek.

Patičku obsahující copyright.

Vzhled stránek se řídí kaskádovými styly CSS verze 2.1 uloženými v souboru styte.css.

Pevná šířka stránky se mi pro aplikaci nezdála být vhodná. Nastavil jsem
pouze minimální šířku a to takovou, která dovoluje zobrazit celé hlavní menu.
Maximální šířku stránky si tedy může každý řídit šířkou okna prohlížeče, jak mu
to vyhovuje.

Obrázky některých stránek nebo jejich částí najdete v příloze A. Z nich si
uděláte lepší představu o vzhledu aplikace.

4.5.1. Záhlaví stránky

V hlavičce, blíže k levé straně je umístěn velký název aplikace. Je to také od-
kaz na úvodní stránku aplikace. Viditelnou, ale ne skutečnou, součástí hlavičky
je hlavní menu. Aktivní položka menu má bílé pozadí, čímž uživateli oznamuje,
v které části aplikace se nachází. Pod hlavním menu, u pravého okraje, je od-
kaz pro přihlášení do aplikace. Po přihlášení se na tomto místě zobrazí jméno
přihlášeného uživatel a odkaz pro odhlášení.

Dále následuje část stránky, kde se zobrazují chybové hlášení. Text hlášení
je zobrazen centrovaně, tučným písmem a jak je uvedeno výše, tmavě červenou
barvou. V případě, že není třeba nic oznamovat, není tato sekce ve stránce pří-
tomna.

4.5.2. Těla stránek

Obsah stránky tvoří většinou tabulka se seznamem všech datasetů, klíčových
slov, uživatelů a ostatních entit aplikace. Přes odkaz tvořený názvem položky se
uživatel dostane na její detail. Uživateli s rolí Editor nebo Administrátor přibudou
v tabulce dva sloupce s odkazy pro editaci a smazání položky.
Při zobrazení detailu se v levé dolní části nachází odkaz pro návrat na seznam, ze kterého si uživatel detail zobrazil. Součástí detailu je také „editační menu“. Jsou to textové odkazy TOP, EDIT a DELETE oddělené znakem |. Je-li přihlášen uživatel s rolí editora. V opačném případě se uživateli zobrazí pouze odkaz TOP.

4.5.3. Zápatí stránky

Zápatí je od těla odděleno tenkou šedou čárou. V současné době obsahuje pouze copyright. Nenapadlo mne, co jiného do zápatí dát. Při implementaci se obsah jistě změní.
Závěr

Cílem práce je vytvořit repositář vstupních datových souborů pro formální konceptuální analýzu (FCA) s online webovým rozhraním. To se podle mého názoru podařilo. Aplikace splňuje všechny funkční a nefunkční požadavky.

Při vývoji této aplikace jsem získal spoustu zkušeností a rozšířil své vědomosti o všech použitých technologiích, architektuře webových aplikací a modelech ukládání objektů v relačních databázích. Tyto vědomosti zajisté v budoucnu využiji.

Jako pokračuje vývoj většiny aplikací, mohl by a může pokračovat vývoj i této. V případě větší návštěvnosti by stálo za to realizovat anonymní diskusi k datasetům. Velký počet datasetů může vyvolat potřebu implementovat vyhledávání. Teprve praxe ukáže, zda je aplikace kvalitní a jaká rozšíření nebo úpravy budou třeba.
Conclusions

The aim of this bachelor’s diploma thesis is to create a data repository for Formal Concept Analysis (FCA) with an online web interface. In my humble opinion, it succeeded. The application implements all functional and non-functional requirements.

During development, I gained a lot of experience and extended my knowledge about all used technologies, web application architecture, and data source architectural patterns. I will certainly use this knowledge in the future.

As the continued development of most of the application is possible and could continue, development of this one is possible. In the case of a larger number of users, the implementation of anonymous discussion would be appreciated. A large number of data sets may necessitate the implementation of searching. Only practice will show whether the application is good and what extensions or modifications are needed.
Reference

A. Manuál

A.1. Úvod

Jsem rád, že hodláte používat mnou napsanou aplikaci Repodat. Aplikace vznikla jako bakalářská práce při studiu Aplikované informatiky na katedře informatiky, Přírodovědecké fakulty Univerzity Palackého v Olomouci.

A.2. Popis

Aplikace slouží jako veřejný sklad datasetů a jejich škálování, s možností jejich stažení a formulářem pro darování datasetu. Administrační rozhraní umožňuje úpravu metadat o datasetu a jeho škálováních nebo nahrání datasetů a škálování do aplikace. Aplikace rovněž obsahuje stránku s formulářem pro darování datasetu do aplikace. Aplikace rovněž obsahuje stránku s formulářem pro darování datasetu a jejich škálování. Dataset je vstupní datový soubor pro FCA (Formal Concept Analysis) a škálování (binarizování) je jeho převedení do binární podoby (objekt buď atribut má nebo nemá). Těchto škálování může mít dataset více. Záleží na výběru způsobu škálování a datovém formátu. V této aplikaci pojem dataset také označuje souhrn všech informací (charakteristik a metadat) o datovém souboru spolu s ním a jeho škálováním.

A.3. Technické požadavky

A.4. Instalace

Instalace se skládá z konfigurace serverů, které aplikace používá, vytvoření tabulek v databázi a nakopírování php skriptů do adresáře webového serveru. Nebudu zde popisovat instalaci a nastavení jednotlivých serverů, ale pouze věci týkající se této aplikace. Popisuji instalaci na stroji s Linuxem (Debian Squeeze).

A.4.1. Příprava databáze PostgreSQL

V adresáři scripts jsou SQL soubory pro instalaci databázové části aplikace. V souboru createDB.sql jsou příkazy, pomocí kterých lze vytvořit novou databázi a uživatele. Tyto příkazy musí provádět uživatel s patřičnými právy. Jestliže už máte databázi připravenou, není potřeba tyto příkazy použít.
• vytvoří nového uživatele:
 CREATE USER jouza WITH PASSWORD 'peslw-';
• vytvoří novou databázi:
 CREATE DATABASE repodat OWNER jouza;
• přidělí práva na databázi uživateli:
 GRANT ALL PRIVILEGES ON DATABASE repodat TO jouza;

 psql --file createTables.sql --log-file createTables.log \
 --output createTable.out -U jouza repodat > createTables.err 2>&1

A.4.2. Nastavení aplikace

Soubor config.php v adresáři config obsahuje konfiguraci aplikace. V tomto souboru musíte nastavit údaje pro připojení k databázi a cesty k adresářům, kam se budou ukládat datasety s jejich škálováním. Jedná se o proměnné:

 dbHost - jméno stroje s databází
 dbPort - port, na kterém databáze poslouchá
 dbName - jméno databáze
 dbUser - uživatel databáze, který má právo vytvářet tabulky
 dbPassword - uživatelovo heslo
 DIR_TMP - adresář pro dočasné soubory (Při PHP "save_mode:On" není /tmp přístupný.)
 DIR_REPOSITORY - adresář pro datasety
 DIR_DONATED - adresář pro darované (nezveřejněné) datasety
Do všech těchto adresářů musí mít právo zápisu uživatel, pod kterým běží Apache. Také by bylo dobré nastavit těmto adresářům taková práva, aby ostatní uživatelé serveru nemohly s uloženými datady a škálováním manipulovat.

Dále se v konfiguračním souboru nastavuje, zda bude přihlášení do aplikace probíhat zabezpečenou komunikací, protokolem HTTPS nebo nezabezpečeným HTTP. Při výchozím nastavení bude použit zabezpečený protokol ('HTTPS', 'YES').

A.4.3. Apache

A.4.4. Syslog

A.5. Odinstalace

POZOR !!! Odinstalováním smažete všechny datady a jejich škálování. Odinstalace je vlastně zrušení toho, co jste vytvořili při instalaci. Číli:

1. smazání databáze

 DROP DATABASE IF EXISTS repodat ;

2. smazání databázového uživatele

 DROP USER IF EXISTS jouza ;

3. Je-li třeba, zrušení nastavení pro aplikaci v konfiguraci Apache

4. smazání aplikace z adresáře Apache

5. smazání adresářů DIR_TMP, DIR_REPOSITORY a DIR_DONATED z disku

6. smazání souboru /etc/rsyslog.d/repodat.conf
A.6. Veřejná část

Návštěvník webu se většinou dostane na úvodní stránku, která je tvořena přivítáním a posledními novinkami. Pro následnou navigaci po aplikaci je určeno hlavní menu, které je v horní části okna prohlížeče (Obrázek číslo 4.).

Obrázek 4. Hlavní menu

Odkazy mají v aplikaci světle modrou barvu, která se po najetí myší změní na světle hnědou. Chybové hlášení se zobrazují pod hlavním menu.

A.6.1. Datasets

Stránka Datasets obsahuje přehled publikovaných datasetů ve formě tabulky. Můžete ji vidět na obrázku číslo 5..

Obrázek 5. Seznam datasetů

Dataset list

<table>
<thead>
<tr>
<th>Name</th>
<th>Attribute types</th>
<th># Instances</th>
<th># Original attributes</th>
<th>Area</th>
<th># Scaled attributes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arrhythmia</td>
<td>Categorical, Integer, Real</td>
<td>452</td>
<td>273</td>
<td>Life</td>
<td>542</td>
</tr>
<tr>
<td>Contraceptive Method Choice</td>
<td>Categorical, Integer</td>
<td>1473</td>
<td>9</td>
<td>Life</td>
<td>51</td>
</tr>
<tr>
<td>Image Segmentation</td>
<td>Real</td>
<td>2910</td>
<td>19</td>
<td>Image</td>
<td>95</td>
</tr>
<tr>
<td>Mushroom</td>
<td>Categorical</td>
<td>8324</td>
<td>22</td>
<td>Nature</td>
<td>120</td>
</tr>
<tr>
<td>Sparrow</td>
<td>Integer, Real</td>
<td>4601</td>
<td>57</td>
<td>Computer</td>
<td>228</td>
</tr>
<tr>
<td>Sponge</td>
<td>Categorical, Integer</td>
<td>76</td>
<td>45</td>
<td>Nature</td>
<td>212</td>
</tr>
<tr>
<td>Tic-Tac-Toe Endgame</td>
<td>Categorical</td>
<td>858</td>
<td>9</td>
<td>Game</td>
<td>36</td>
</tr>
<tr>
<td>Water Treatment Plant</td>
<td>Integer, Real</td>
<td>527</td>
<td>38</td>
<td>Physical</td>
<td>190</td>
</tr>
</tbody>
</table>

Kliknutím na název datasetu přejdete na stránku s podrobnými informacemi (metadaty) o tomto datasetu. Najdete zde také tlačítka pro stažení původního datasetu, jednotlivých škálování, všech škálování i všech souborů datasetu. Ať vyberete kteroukoliv z výše uvedených možností, vždy si získáte zkomprimovaný (zip) adresář, který krom datového souboru, obsahuje i textový soubor s informacemi o datasetu. I každé škálování má svůj informační soubor, jehož součástí jsou informace o původním datasetu.

Do počtu stažení se počítá kliknutí na jakékoliv tlačítko stáhnout na stránce datasetu.

A.6.2. Donate a dataset

Stránka Donate a dataset je určená pro darování datasetů. Kdokoliv může formulář vyplnit a darovat dataset.

Hvězdičkou označené položky jsou povinné a je nutné je vyplnit.

Popis darovacího formuláře

Darovací formulář je zobrazen na obrázku číslo 6. Uvádím popis jednotlivých položek formuláře.

Name - jméno datasetu

Attribute type - datový typ atributů

Number of instances - počet záznamů v datasetu

Number of original attributes - počet atributů (položek) jednoho záznamu

Missing values - chybí nějaké položky?

Dataset description - popis datasetu

Attribute description - popis atributů (položek) datasetu
Donate a Dataset

Name:

Attribute type:
- Categorical
- Integer
- Real
- Boolean

Number of instances:

Number of original attributes:

Missing values:
- Yes
- No

Dataset description:

Attribute description:

Source:

Relevant papers:

Data file:

Scaling

Name of scaling:

Number of scaled attributes:

Scaling description:

Scaling data file:

Obrázek 6. Darovací formulář

31
Source - kontakt a další informace o dárci

Relevant papers - odkazy na dokumenty, které už dříve darovaný dataset cítovaly

Data file - soubor s daty

Name of scaling jméno škálování

Number of scaled attributes - počet naškálovaných atributů

Scaling description - popis škálování a atributů škálování

Scaling data file - soubor s naškálovanými daty

A.6.3. Contact

Jak název napovídá, na stránce Contact je kontakt na správce aplikace. Na něj je možné zastal své připomínky, náměty nebo dotazy.

A.7. Administrace

<table>
<thead>
<tr>
<th>Oblast</th>
<th>Editor</th>
<th>Administrátor</th>
</tr>
</thead>
<tbody>
<tr>
<td>News</td>
<td>W</td>
<td>W</td>
</tr>
<tr>
<td>Dataset</td>
<td>W</td>
<td>W</td>
</tr>
<tr>
<td>Keywords</td>
<td>R</td>
<td>W</td>
</tr>
<tr>
<td>Users</td>
<td>-</td>
<td>W</td>
</tr>
</tbody>
</table>

Tabulka 2. Práva rolí, R = zobrazení, W = úprava (editace)
A.7.1. Přihlášení

V případě, že máte svůj účet, můžete se do aplikace přihlásit. Kliknutím na odkaz Administration se Vám zobrazí přihlašovací obrazovka, kam vyplňte své přihlašovací údaje a potvrdíte enterem nebo kliknutím na tlačítko Login. Přihlašovací dialog je na obrázku číslo 7.

![Přihlašovací dialog](image7.png)

Obrázek 7. Přihlašovací dialog

Po přihlášení Vás aplikace vrátí na stránku, na které jste byli před kliknutím na odkaz Administration. Její název plně odpovídá tomu, co se stane, když na odkaz kliknete. Odkaz pro přidání nové zprávčky je vpravo od tabulky. Kliknutím na název novinky si zobrazíte její detail.

V editaci provedené změny uložíte kliknutím na tlačítko Submit. Jestliže nechcete změny uložit, můžete se vrátit zpět na seznam novinek kliknutím na odkaz Back to list.

A.7.2. Ovládání

Máte-li roli editora nebo administrátora, změní se stránka s novinkami na tabulku se sloupci EDIT a DELETE (viz. obrázek 9). jejich název plně odpovídá tomu, co se stane, když na odkaz kliknete.

Obrázek 9. Přehled novinek

News list

<table>
<thead>
<tr>
<th>Added</th>
<th>Title</th>
<th>Add news</th>
<th>TOP</th>
</tr>
</thead>
<tbody>
<tr>
<td>07/17/11</td>
<td>Aplikace připravena na vydání</td>
<td></td>
<td></td>
</tr>
<tr>
<td>06/05/11</td>
<td>Přidán první dataset</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11/21/10</td>
<td>Aplikace poprvé spuštěna</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Obrázek 10. Úprava novinky

Edit news: "Aplikace připravena na vydání"

Title:
Aplikace připravena na vydání

Text:
Myslím, že je aplikace připravena. Samozřejmě se najdou věci, které by šly ještě vylepšit, ale to bych stále vylepšoval a nikdy nebyl hotov.

Obrázek 11. Detail novinky

Aplikace připravena na vydání

07/17/11

Myslím, že je aplikace připravena. Samozřejmě se najdou věci, které by šly ještě vylepšit, ale to bych stále vylepšoval a nikdy nebyl hotov.

View list
Odkazy, popsané u detailu, editace a seznamu novinek, najdete také u datasetů, klíčových slov a uživatelů.

A.7.3. Úprava datasetů

Jste-li přihlášený a máte roli editor nebo administrátor, uvidíte v seznamu datasetů nezveřejněné (nepublikované) daty výrazně růžovým podbarvením. Mezi nezveřejněné datasety patří darované a přidané datasety. Pokud se editor podívá na detail kteréhokoliv datasetu, uvidí jej i se všemi jeho škálováním, tedy i s těmi nepublikovanými.

Nepublikovaná škálování jsou v editaci datasetu zvýrazněna červeným rámováním. (Obrázek 13.) Škálování, kterému chybí datový soubor, nemá tlačítko Download Scaling pro stažení škálování. Pod posledním škálováním je tlačítko Add Scaling pro přidání dalšího škálování.

Darovaný nebo přidaný soubor datasetu se uloží do adresáře s názvem podle ID datasetu. Tento adresář bude umístěn spolu s ostatními nepublikovanými datasy v adresáři DIR_DONATED, nastaveném v konfiguračním souboru. Při publikování se celý adresář datasetu přesune do adresáře DIR_REPOSITORY. Adresář datasetu je možné přejmenovat v editaci datasetu. Doporučuji tuto možnost využít a pojmenovat adresář tak, aby bylo hned jasné, který dataset obsahuje. Pozor na omezení použitelných znaků v názvu adresáře. Jak je uvedeno v tabulce ostatních omezení, mohou se použít pouze čísla, malá a velká písmena anglické abecedy a znaky „‘“ a “‘“. Pokud znaky v názvu datasetu vyhovují omezením, bude Vám pro jméno adresáře nabídnut název datasetu převedený na malá písmena s podtržitky místo mezer. Jméno adresáře se použije i při stahování datasetu pro stahovaný soubor.

Každé škálování datasetu je uloženo v samostatném adresáři. Jméno adresáře je podle identifikačního čísla škálování.

Smazáním škálování smažete krom metadat škálování i soubory škálování (datový a informační). Tlačítko na smazání škálování se nachází v pravém dolním rohu rámečku škálování. Smazáním datasetu smažete celý dataset i s jeho soubory a všemi jeho škálováním s jejich soubory. Odkaz na smazání Datasetu najdete v seznamu datasetů nebo v detailu datasetu.

A.7.4. Omezení vkládaných hodnot

Hodnoty vkládané do formulářových políček jsou omezené aplikací nebo vlastnostmi PHP. Po vložení údaje do políčka je obsah zkontrolován, a když neodpovídá typu políčka, je na to uživatel upozorněn. Do políčka nejde vložit větší počet znaků, než je uveden v následujících tabulkách číslo 3. a 4..

<table>
<thead>
<tr>
<th>Typ klíčového slova</th>
<th>Omezení</th>
</tr>
</thead>
<tbody>
<tr>
<td>integer</td>
<td>Max. 2147483647 (na 32bit. systému)</td>
</tr>
<tr>
<td></td>
<td>Max. 100 znaků</td>
</tr>
<tr>
<td>varchar(255)</td>
<td>Při použití US formátu 01/01/1970-01/19/2038 (na 32bit. systému)</td>
</tr>
<tr>
<td>date</td>
<td>Max. 10000 znaků</td>
</tr>
<tr>
<td>text</td>
<td>Max. 14 znaků</td>
</tr>
</tbody>
</table>

Tabulka 3. Omezení hodnot klíčových slov

Aplikace používá kódování znaků UTF-8.
Tabulka 4. Ostatní omezení

<table>
<thead>
<tr>
<th>Formulářové pole</th>
<th>Omezení</th>
</tr>
</thead>
<tbody>
<tr>
<td>Login</td>
<td>Max. 32 znaků</td>
</tr>
<tr>
<td>Password</td>
<td>Max. 32 znaků</td>
</tr>
<tr>
<td>News title</td>
<td>Max. 100 znaků</td>
</tr>
<tr>
<td>News text</td>
<td>Max. 10000 znaků</td>
</tr>
<tr>
<td>Keyword name</td>
<td>Max. 100 znaků</td>
</tr>
<tr>
<td>Enumeration item name</td>
<td>Max. 50 znaků (název položky výčtového typu)</td>
</tr>
<tr>
<td>Dataset name</td>
<td>Max. 100 znaků</td>
</tr>
<tr>
<td>Dataset directory name</td>
<td>Max. 50 znaků, možné znaky (0-9a-zA-Z.-_)</td>
</tr>
<tr>
<td>Name of scaling</td>
<td>Max. 100 znaků</td>
</tr>
<tr>
<td>Number of Scaled attributes</td>
<td>Max. 2147483647 (na 32bit. systému)</td>
</tr>
<tr>
<td>Scaling description</td>
<td>Max. 10000 znaků</td>
</tr>
</tbody>
</table>

A.7.5. Úprava klíčových slov (Keywords)

V aplikaci jsou klíčová slova, které jsou vestavěná (použitá v darovacím formuláři nebo tabulce datasetů), proto je není možné smazat ani změnit jejich typ. Můžete pouze změnit pouze jejich název.

Klíčová slova můžete přidávat i mazat. Mazat jen v případě, že žádný dataset toto klíčové slovo nepoužívá. To samé platí i pro změnu typu (integer, boolean, real, atd.) klíčového slova. Nově přidaná klíčová slova se přidávají na konec základních charakteristik nebo textových popisů datasetu. Jestliže je klíčové slovo typu text, přidá se jako poslední textový popis, v opačném případě se přidá na konec tabulky charakteristik.

Také položky typu enumeration jdou smazat pouze pokud žádný dataset tuto položku nemá nastavenou. Nové položky jdou přidat bez omezení. Ukázka editace klíčového slova je na [obrázku].

A.7.6. Úprava uživatelů (Users)

Změna hesla uživatele se provádí v editaci uživatele. Tam také může změnit roli uživatele. Heslo může být i prázdné, to však důrazně nedoporučuji. [obrázek představuje úpravu uživatele aplikace].

A.8. Závěr

Pevně věřím, že se Vám s aplikací bude snadno pracovat a přinese Vám řadu zlepšení oproti dosavadní praxi.
Obrázek 14. Editace klíčového slova typu Enumeration

Obrázek 15. Editace uživatele - změna hesla
B. Obsah přiloženého CD

V samotném závěru práce je uveden stručný popis obsahu přiloženého CD/DVD, tj. závazné adresářové struktury, důležitých souborů apod.

bin/
Kompletní adresářová struktura webové aplikace REPODAT (v ZIP archivu) pro zkopírování na webový server. Adresář obsahuje i všechny další potřebné soubory pro bezproblémový provoz na webovém serveru.

doc/
Dokumentace práce ve formátu PDF, vytvořená dle závazného stylu KI PrF pro diplomové práce, včetně všech příloh, a všechny soubory nutné pro bezproblémové vygenerování PDF souboru dokumentace (v ZIP archivu), tj. zdrojový text dokumentace, vložené obrázky, apod.

src/
Kompletní zdrojové texty programu webové aplikace REPODAT se všemi potřebnými zdrojovými texty a dalšími soubory pro bezproblémové vytvoření adresářové struktury pro zkopírování na webový server (v ZIP archivu).

readme.txt
Instrukce pro nasazení webové aplikace REPODAT na webový server, včetně požadavků pro její provoz, a webová adresa, na které je aplikace nasazena pro účel obhajoby práce.

Navíc CD/DVD obsahuje:

data/
Ukázková a testovací data použitá v práci a pro potřeby obhajoby práce.

install/
Instalátory aplikací, knihoven a jiných souborů nutných pro provoz webové aplikace, které nejsou standardní součástí operačního systému.