
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ
BRNO UNIVERSITY OF TECHNOLOGY

FAKULTA ELEKTROTECHNIKY
A KOMUNIKAČNÍCH TECHNOLOGIÍ
FACULTY OF ELECTRICAL ENGINEERING AND COMMUNICATION

ÚSTAV BIOMEDICÍNSKÉHO INŽENÝRSTVÍ
DEPARTMENT OF BIOMEDICAL ENGINEERING

DETEKCE BIOLOGICKÝCH STRUKTUR VE SNÍMCÍCH Z
TEM MIKROSKOPU
DETECTION OF BIOLOGICAL STRUCTURES IN TEM MICROSCOPE IMAGES

DIPLOMOVÁ PRÁCE
MASTER'S THESIS

AUTOR PRÁCE
AUTHOR

Bc. Martin Cikánek

VEDOUCÍ PRÁCE
SUPERVISOR

Ing. Tomáš Potočňák

BRNO 2019

Fakulta elektrotechniky a komunikačních technologií, Vysoké učení technické v Brně / Technická 3058/10 / 616 00 / Brno

Diplomová práce
magisterský navazující studijní obor Biomedicínské a ekologické inženýrství

Ústav biomedicínského inženýrství
Student: Bc. Martin Cikánek ID: 170788
Ročník: 2 Akademický rok: 2018/19

NÁZEV TÉMATU:

Detekce biologických struktur ve snímcích z TEM mikroskopu

POKYNY PRO VYPRACOVÁNÍ:

1) Proveďte literární rešerši metod rozpoznávaní struktur v obraze, včetně průzkumu možností aplikace shlukové
analýzy na nalezené struktury. Prostudujte určující parametry akvizice obrazu pomoci transverzálního
elektronového mikroskopu (TEM). 2) Navrhněte teoreticky nejvhodnější postup optimální detekce biologických
struktur v TEM obraze a jejich následné děleni do shluků. 3) Navrhněte způsob vyhodnocení výsledků a jejich
závislost na akvizičních parametrech elektronového mikroskopu. 4) Proveďte nasnímání obrazů ve spolupráci
s firmou Thermo Fisher Scientific. 5) V prostředí Matlab/Python vytvořte vámi zvolený algoritmus, řešící danu
problematiku. Otestujte metody na reálných obrazech a výsledky porovnejte s dostupnými metodami. 6) Proveďte
diskusi získaných výsledků a zhodnoťte účinnost a využitelnost metod. Diplomová práce je tvořena ve spolupráci
s firmou Thermo Fisher Scientific.

DOPORUČENÁ LITERATURA:

[1] KARLIK M., Úvod do transmisní elektronové mirkoskopie. Praha ČVUT, 2011. ISBN 978-80-01-04729-3.

[2] JAN, J. Digital Signal Filtering, Analysis and Restoration. volume 44. volume 44. London: The Institution of
Electrical Engineers, 2000. 407 s. ISBN: 0-85296-760- 8.

Termín zadání: 4.2.2019 Termín odevzdání: 17.5.2019

Vedoucí práce: Ing. Tomáš Potočňák
Konzultant:

 prof. Ing. Ivo Provazník, Ph.D.
předseda oborové rady

UPOZORNĚNÍ:
Autor diplomové práce nesmí při vytváření diplomové práce porušit autorská práva třetích osob, zejména nesmí zasahovat nedovoleným
způsobem do cizích autorských práv osobnostních a musí si být plně vědom následků porušení ustanovení § 11 a následujících autorského
zákona č. 121/2000 Sb., včetně možných trestněprávních důsledků vyplývajících z ustanovení části druhé, hlavy VI. díl 4 Trestního zákoníku
č.40/2009 Sb.

i

ABSTRAKT
Cílem první části této diplomové práce je vysvětlit teoretické základy transmisní
elektronové mikroskopie and zmínit fundamentální části transmisních elektronových
mikroskopů. Další část této práce je zaměřena na možné metody segmentace obrazu,
využití neuronových sítí při detekci objektů v obraze a na následné shlukování výsledků.
Teoretická část práce je zakončena vysvětlením některých již publikovaných metod
automatické detekce biologických struktur v obrazech z mikroskopu a teoretickým
návrhem algoritmu, který bude následně vypracován. Na začátku praktické části je
vysvětlen postup trénování neuronových sítí za účelem automatické detekce biologických
struktur v obraze. Poté následuje zhodnocení výsledků dosažených těmito sítěmi.
Následně jsou na tyto výsledky aplikovány metody shlukové analýzy, jejichž výsledky
jsou porovnávány mezi sebou a taktéž s výsledky dosaženými již publikovanými
metodami.

KLÍČOVÁ SLOVA
Transmisní elektronová mikroskopie, segmentace obrazu, metody shlukování, neuronové
sítě

ABSTRACT
The aim of the first part of this thesis is to explain the theoretical basis of transmission
electron microscopy and to mention fundamental parts of transmission electron
microscopes. The next part of this work is focused on possible methods of image
segmentation, the use of neural networks in the detection of objects in an image and the
subsequent clustering of results. The theoretical part of the thesis is concluded with an
explanation of some already published methods of automatic detection of biological
structures in microscopic images and theoretical design of the algorithm, which will be
subsequently developed. The process of training neural networks in order to automatically
detect biological structures in an image is described at the beginning of the practical part.
This is followed by an evaluation of the results achieved by these networks. Subsequently,
cluster analysis methods are applied to these results, the products of which are compared
with each other and also with the results obtained by already published methods.

KEYWORDS
Transmission electron microscopy, image segmentation, cluster analysis, neural networks

ii

CIKÁNEK, Martin. Detekce biologických struktur ve snímcích z TEM mikroskopu. Brno,
2019. Dostupné také z: https://www.vutbr.cz/studenti/zav-prace/detail/118376. Diplomová
práce. Vysoké učení technické v Brně, Fakulta elektrotechniky a komunikačních
technologií, Ústav biomedicínského inženýrství. Vedoucí práce Tomáš Potočňák.

https://www.vutbr.cz/studenti/zav-prace/detail/118376

iii

PROHLÁŠENÍ
Prohlašuji, že svoji diplomovou práci na téma Detekce biologických struktur ve snímcích
z TEM mikroskopu jsem vypracoval samostatně pod vedením vedoucího diplomové
práce a s použitím odborné literatury a dalších informačních zdrojů, které jsou všechny
citovány v práci a uvedeny v seznamu literatury na konci práce.
Jako autor uvedené diplomové práce dále prohlašuji, že v souvislosti s vytvořením této
diplomové práce jsem neporušil autorská práva třetích osob, zejména jsem nezasáhl
nedovoleným způsobem do cizích autorských práv osobnostních a/nebo majetkových a
jsem si plně vědom následků porušení ustanovení § 11 a následujících zákona č. 121/2000
Sb., o právu autorském, o právech souvisejících s právem autorským a o změně některých
zákonů (autorský zákon), ve znění pozdějších předpisů, včetně možných trestněprávních
důsledků vyplývajících z ustanovení části druhé, hlavy VI. díl 4 Trestního zákoníku č.
40/2009 Sb.

V Brně dne
 (podpis autora)

PODĚKOVÁNÍ
Děkuji vedoucímu diplomové práce Ing. Tomáši Potočňákovi za účinnou metodickou,
pedagogickou a odbornou pomoc a cenné rady při zpracování mé diplomové práce.

 iv

TABLE OF CONTENTS
Abstrakt i

Klíčová slova i

Abstract i

Keywords i

Prohlášení iii

Poděkování iii

Table of Contents iv

List of Figures vii

List of Tables ix

Introduction 1

1 Transmission electron microscopy 2

1.1 Architecture .. 2

1.1.1 Vacuum system ... 2

1.1.2 Electron gun .. 3

1.1.3 Electromagnetic lenses ... 4

1.1.4 Imaging system ... 4

1.2 Image acquisition .. 5

1.2.1 Acquisition of images of biological material .. 5

1.2.2 Acquisition of images of crystal material ... 6

1.3 Cryo-TEM ... 6

1.3.1 Single-particle analysis ... 6

1.3.2 Cryo-Tomography .. 7

2 Complications while using TEM 8

2.1 Lens aberrations .. 8

2.1.1 Chromatic aberration .. 8

2.1.2 Spherical aberration .. 8

2.1.3 Astigmatism .. 9

 v

2.2 Other complications .. 9

3 Segmentation and object detection 11

3.1 Segmentation methods .. 11

3.1.1 Parametric segmentation ... 11

3.1.2 Region-Based Segmentation ... 12

3.1.3 Edge-based segmentation ... 14

3.1.4 Active contour segmentation .. 15

3.2 Segmentation using neural networks .. 15

3.2.1 Based on pixel data ... 15

3.2.2 Based on features .. 15

3.3 Usage of convolutional neural networks .. 16

3.4 Object detection .. 16

3.4.1 Basics of TensorFlow ... 17

3.4.2 Faster RCNN ... 18

3.4.3 MobileNet + SSD.. 19

3.4.4 CUDA ... 20

4 Cluster analysis 22

4.1 Hierarchical clustering methods ... 22

4.1.1 Agglomerative methods .. 22

4.1.2 Divisive methods .. 23

4.2 Non-hierarchical clustering methods .. 23

4.2.1 K-means .. 24

4.3 K-means used for clustering of images ... 24

4.3.1 Feature extraction using Resnet and VGG ... 24

5 Proposed evaluation of results 25

6 Desing of the algorithm 26

6.1 Existing algorithms and their comparison .. 26

6.1.1 SLEUTH ... 26

6.1.2 EMAN2 ... 27

6.1.3 FindEM ... 27

6.1.4 Comparison ... 27

6.2 Theoretical design of the proposed algorithm .. 27

 vi

7 Practical part 30

7.1 Creation of training set and test set ... 30

7.2 Setting up the training ... 32

7.3 A way of evaluating results of the object detection 33

7.4 Results after using versions of Faster RCNN ... 34

7.4.1 Faster RCNN Resnet50 ... 35

7.4.2 Faster RCNN Inception v2 ... 37

7.5 Results after using RFCN model .. 37

7.6 Results after using MobileNet SSD v2 ... 39

7.7 Comparison of methods .. 40

8 Application of cluster analysis 43

8.1 Cluster analysis using Resnet50 network as feature extractor 43

8.2 Cluster analysis using VGG16 network as feature extractor 47

9 Evaluation of the results 50

9.1 Comparison of the two clustering methods .. 50

9.2 Comparison with published methods .. 51

Conclusion 53

Literature 54

List of attachements 57

 vii

LIST OF FIGURES
Figure 1: Electron gun schematic. [23] ... 3
Figure 2: a) tungsten filament, b) LaB6 crystal, c) tip of an auto emitting crystal. [3] 4
Figure 3: Iterative map of single-particle analysis. [8] ... 7
Figure 4: Chromatic aberration illustration. [24] .. 8
Figure 5: Spherical aberration illustration. [24] .. 9
Figure 6: Histograms used during segmentation. (a) a histogram with well-defined

classes, .. 11
Figure 7: Two-class segmentation on a grayscale picture. Darker parts are chosen as the

object, lighter parts are chosen as the background. [25] 12
Figure 8: Graphical representation of watershed segmentation method. [27] 14
Figure 9: An example of the edge-based segmentation (used on an image of coins). [26]

 .. 15
Figure 10: Architecture of a convolutional neural network used for pattern recognition.

[28] .. 16
Figure 11: Example of object detection showing detected objects inside bounding boxes

with class and confidence scores [35] ... 17
Figure 12: Example of a TensorFlow graph with data on the edges and nodes representing

the mathematical operations [30] .. 18
Figure 13: Simplified architecture of the Faster RCNN [44] ... 19
Figure 14: Scheme of one MobileNet block [41] ... 20
Figure 15: Explanation of the function of CUDA. [42] .. 21
Figure 16: An example of a dendrogram created by hierarchical clustering. [29] 22
Figure 17: Workflow of the particle-picking stage of the RELION program algorithm.

[19] .. 25
Figure 18: An image of spherical hepatitis B virus cores processed by SLEUTH

algorithm. Detected particles are marked by green circles. [20] 26
Figure 19: An image of Keyhole Limpet Hemocyanin protein units but with different

defocus than Figure 14, which makes the protein units invisible by human
eye ... 29

Figure 20: An image with well visible Keyhole Limpet Hemocyanin protein units 29
Figure 21: Example of a 256x256 image with a well visible protein used for the training

stage .. 31
Figure 22: Top left = true positive, top right = false positive, bottom = false negative . 33
Figure 23: Top image = originally detected proteins, bottom image = newly detected

proteins in 1952_1.png. Original size of the image is 1024x1024 px. ... 34
Figure 24: Sensitivity and precision boxplot graph of Faster RCNN Resnet 50 results 35
Figure 25: Sensitivity and precision boxplot graph of Faster RCNN Inception v2 results

 .. 37
Figure 26: Sensitivity and precision boxplot graph of RFCN results 38
Figure 27: Top image = originally detected proteins, bottom image = newly detected

proteins in 1952_025_3.png. Original size of the image is 512x512 px.
Resize: 0.25 ... 39

Figure 28: Sensitivity and precision boxplot graph of MobileNet SSD v2 results 40

 viii

Figure 29: Sensitivity and precision boxplot graph of all used models 41
Figure 30: Sensitivity, precision and F1 score of Faster RCNN Inception v2 model before

and after clustering with Resnet50 as feature extractor 45
Figure 31: Sensitivity, precision and F1 score of RFCN model before and after clustering

with Resnet50 as feature extractor .. 45
Figure 32: Sensitivity, precision and F1 score of Faster RCNN Resnet50 model before

and after clustering with Resnet50 as feature extractor 46
Figure 33: Sensitivity, precision and F1 score of MobileNet SSD v2 model before and

after clustering with Resnet50 as feature extractor 46
Figure 34: Sensitivity, precision and F1 score of RFCN model before and after clustering

with VGG16 as feature extractor .. 47
Figure 35: Sensitivity, precision and F1 score of Faster RCNN Resnet50 model before

and after clustering with VGG16 as feature extractor 48
Figure 36: Sensitivity, precision and F1 score of Faster RCNN Inception v2 model before

and after clustering with VGG16 as feature extractor 48
Figure 37: Sensitivity, precision and F1 score of MobileNet SSD v2 model before and

after clustering with VGG16 as feature extractor 49

 ix

LIST OF TABLES

Table 1: Comparison of existing methods of particle picking .. 27
Table 2: Results of protein detection using a fine-tuned Faster RCNN Resnet50 model.

Images are in a *.png format. Since the images are square, sizes are given by
the length of one of the 4 equal edges. No. orig. is the number of the originally
detected proteins, No. new is the number of proteins detected by the fine-tuned
model. Sensitivity and precision values are shown in percentage [%]. 36

Table 3: Comparison of average results achieved by object detection models mentioned
in a few previous chapters. ... 41

Table 4: Speed and mAP scores of models used for object detection 42
Table 5: Results of protein detection using a fine-tuned RFCN model before and after

clustering. Images are in a *.png format. Since the images are square, sizes are
given by the length of one of the 4 equal edges. Sensitivity, precision and F1
score values are shown in percentage [%]. .. 44

Table 6: Comparison of sensitivity, precision and F1 scores of all used models before
clustering, after clustering using Resnet50 as feature extractor and after
clustering using VGG16 as feature extractor. .. 50

Table 7: A comparison of methods used in this thesis and previously published methods
using values of FPR: .. 51

 1

INTRODUCTION
Electron microscopy is a scientific method using a beam of electrons for studying

extremely small details of monitored objects at high resolution. This method of
microscopy enabled us to reach a much higher resolution than standard light microscopes.
The basic differentiation of methods divides them into two fundamental groups, scanning
electron microscopy and transmission electron microscopy.

Transmission electron microscopy (TEM) is a modern method used for
characterizing the morphology, crystalline structures or elemental information of the
monitored sample. The transmission electron microscope generates a beam of electrons
that passes through an ultra-thin sample. The electrons hit the examined sample and
interact with it, which may result in a change of their trajectory or even their complete
elimination. The electrons that pass through the sample are then caught on a fluorescent
screen or a camera with scintillator used as an imaging system. Thanks to this, an image
of the sample is created and can be subsequently analysed. Biological samples can also
be visualized using transmission electron microscopy. They are kept in a suspension that
is mounted on a grid and preserved at very low temperatures using liquid forms of
nitrogen or ethylene so they can withstand the high-vacuum environment of the
microscope. This method is used during cancer research, virology or nanotechnology.

The focus of this thesis is to design an algorithm that will detect biological
structures within the image produced by TEM. These images are heavily affected by noise
and can contain a large number of biological structures. This process is vital for further
analysis of the image and the biological structures. Further analysis can include single
particle analysis or cryo-tomography – methods that are used to produce a 3D
representation of biological structures.

The first part of this thesis will contain theoretical research of transmission
electron microscopy including possible complications arising from the use of this type of
microscopy. This will be followed by a chapter on image analysis; more specifically
image segmentation and object detection and the role of convolutional neural networks
during these tasks. Next stage of the theoretical part will include the basics of clustering
that will also play a part in the proposed algorithm. The First part will be concluded by a
short description of the algorithm that is to be designed in the practical part.

 The second part of this thesis will the practical that is going to include the
description of the process of creating the algorithm. It will present the original set of
analysed images and the way to process them to serve as training tools for the developed
algorithm. The fine-tuning of the neural network models used for object detection will be
included in the next stage of the thesis. The results achieved by the algorithm are then to
be described and evaluated. Next phase will be the application of clustering on these
results. Results achieved after clustering will be evaluated and compared to those
achieved before clustering.

There are several already existing methods that deal with the same problem but
working on a different principle. Some of those will be described in the theoretical part
and their results will be compared to results produced by the algorithm developed during
this thesis at the end of the practical part.

 2

1 TRANSMISSION ELECTRON
MICROSCOPY
Transmission electron microscopy is a method that allows us to show the microstructure
of an examined material in scale from microns to single atoms. It is also capable to
determine the symmetry of crystal structure using electron diffraction and to locally
analyse the chemical composition of the examined sample. Transmission electron
microscopes are fairly similar to optical microscopes. However, unlike optical
microscopes, the sample used in electron microscopes is transparent and they also use
radiation on larger frequencies. During the procedure, a very thin sample of examined
material is irradiated by a beam of electrons that have energy up to hundreds of keV.
Electrons change their trajectory and energy when they interact with the observed
material. Thanks to these changes, we are able to reconstruct the image of the examined
sample and observe its composition. [1]

1.1 Architecture

The Body of a transmission electron microscope is usually made of several functional
parts. These parts include an electron gun as a source of an electron beam,
electromagnetic lenses used to focus the electron beam, an imaging system and a vacuum
system. [2]

1.1.1 Vacuum system
A vacuum system is needed in transmission electron microscopes for more than one
reason. One of the reasons is that the air is not an ideal insulator, which means that there
is a risk of ionization of particles present in the air and that would result in electrical
discharges between the anode and the cathode of the electron gun. Air also contains atoms
of oxygen, nitrogen and carbon dioxide. These elements can contaminate the examined
sample and the body of the microscope and that is another reason why the vacuum system
must be present. It is also needed to eliminate collisions between electrons and particles
in air and subsequent changes in energy and trajectories of the electrons. Under standard
conditions, vacuum reached in the microscope should be around 10-7 Pa. In order to
achieve these values, the microscope must be equipped with adequate pumps. [2],[3]

The rotary pump is the first pump used and it is capable to reach pressure of around
10-1 Pa. After the rotary pump has finished its job, the diffusion pump is used. Thanks to
evaporation and subsequent condensation of special oil, the diffusion pump is able to get
the pressure down to about 10-3 Pa. The ion pumps are used afterwards, and they can
achieve pressure inside the body of the microscope of 10-7 Pa. [3]

The turbomolecular pump is a special type of pump and is used together with the
cryo-pump. Even though the pressure inside the microscope body is very low, there are
still some steam and carbohydrate molecules present. However, these potential
contamination agents can be dealt with using the cold finger, which is a long copper rod
extended along the body of the microscope and is cooled down to liquid nitrogen
temperatures. The contaminants are then attracted to the rod and they condensate without
damaging the body. [3]

 3

1.1.2 Electron gun
An electron gun is composed of a cathode, an anode and the Wehnelt cylinder. The
electron gun is supposed to emit electrons from a single point. These electrons also need
to have the same phase and energy. The cathode is the source of electrons while the anode
attracts the electrons. The Wehnelt cylinder is biased to negative voltage, which means
that a cloud of electrons is created around the cathode. Single electrons are then launched
towards the anode. After the electrons have passed through the Wehnelt cylinder, they
are focused to a single point called crossover. This point can be thought of as the single
point from which the electrons are emitted. [1],[2],[4]

Function of electron guns can be based on three different principals. First of these
principles is secondary emission. If secondary emission is used, the cathode filament is
cold and is being bombarded by accelerated ions that give energy to the electrons on the
surface of the used material. In case the energy is large enough, electrons leave the
material. This principle is not used in modern transmission electron microscopes. [3]

The most popular principle is thermionic emission. The cathode is heated up to
very high temperature. Thermic energy passed on to the electrons is high enough for
emission. Tungsten is mostly used as the material for the cathode since the electrons on
the surface of tungsten need smaller amount of energy to achieve emission, compared to
other materials. The tungsten filament is shaped into the letter V and is heated up to circa
3000 K. Another option is to use a crystal of lanthanum hexaboride. Electrons on the
surface of this material need much lower energy for emission than tungsten and a beam
of higher current density can be produced as well. [1]

Auto emission is the last principle used in electron guns. In this case, an anode
with very high voltage is placed opposite to a tip of a cold cathode. A very powerful
electric field (up to 109 Vm-1) that has the power to rip out the electrons from the material,
is then generated around the tip of the cathode. This type of emission is used in electron
guns called FEG – Field emission gun and has the power to generate much more coherent
electrons and higher current density beams, compared to thermionic emission. However,
these need very high level of vacuum (ultravacuum) that has pressure of 10-8 Pa. The
cathodes used in the FEG type are made of a tungsten mono-crystal. [3]

Figure 1: Electron gun schematic. [23]

 4

1.1.3 Electromagnetic lenses
As electrons are streaming through the body of the microscope, they must pass through
several electromagnetic lenses. These lenses are used to influence the trajectory of those
electrons. It is very similar to a situation when glass lenses are used to influence stream
of light. The electromagnetic lenses are mostly solenoids. [3]

The first pair of lenses the electron beam passes through are condenser lenses. The
first condenser lens is able to create the image of crossover and to change the size of the
image by changing its focus. The second condenser lens is used to focus this image to the
level at which the specimen is located. Both lenses have apertures and while the aperture
size of the first lens is fixed, the aperture size of the second lens can be selected between
100 and 500 µm. These apertures are often contaminated because of bombardments by
electrons which leads to deterioration of their function. The condenser lenses and the
electron gun are considered as the irradiating part of transmission electron microscope.
[3]

Right after the electron beam passes through the specimen, it is focused by another
electromagnetic lens – the objective lens. This lens is the most powerful lens of the entire
microscope because it can achieve the largest zoom and has the shortest focal length. The
objective lens coil is often cooled because it is prone to overheating since large currents
pass through it. The objective lens is placed near the examined specimen and the cold
finger anticontamination device is located near it as well. Projective lenses and
intermediate lenses are used to zoom in the image created by the objective lens. Even
though the image is only 100x zoomed, thanks to the projective and intermediate lenses,
the transmission electron microscope is able to achieve zoom of 106. [2]

1.1.4 Imaging system
The human eye is not able to see the electrons that have passed through the specimen. To
be able to see the result of the specimen examination, we need to convert it to the visible
light spectra. A fluorescent screen is used for this purpose. This screen is covered in
luminophore, which is a substance that can emit light of intensity and wavelength
dependant on the amount and energy of electrons hitting the screen. The most popular
luminophore is ZnS. Light emitted by this luminophore is usually circa 550 nm. [2]

Figure 2: a) tungsten filament, b) LaB6 crystal, c) tip of an auto emitting crystal. [3]

 5

There are a few ways we can record the image created on the fluorescent screen. One of
these ways is the use of special photographic material that must meet certain conditions.
First of the conditions is that the material needs to be sensitive to very short waves and
the second condition is that it must be able to withstand the extreme vacuum conditions
that prevail in the microscope. Because of these restrictions, not all photosensitive
materials can be used. The most popular system used as fluorescent screen is a polyester
pad covered in small crystals of silver chloride. [2],[3]

Another way to record images created by the microscope is to record using digital
technology. In this case, the information created by electrons hitting a scintillator. The
scintillator can convert the information into a digital format, which can be visualized
using a computer. An ideal scintillator should be able to record image as quickly as
possible, with very little distortion and with very high resolution. CCD (charge-coupled
device) cameras using YAG (yttrium aluminium garnet) crystal as scintillator are often
used in practice. Some of the popular CCD cameras are high-definition Morada and
KeenView camera, which is used thanks to its compatibility with nano-samples. [2],[3]

1.2 Image acquisition

As soon as electrons reach the examined material, they interact with it. These interactions
can be divided into two basic groups – elastic and inelastic. When an elastic reaction
occurs, electrostatic potential of atomic cores is interacting with electrons and so
changing their original trajectory and energy. However, because there is a large weight
difference between the static atom and the moving electron, the change in energy is very
small, near zero. The electrons are more deflected from their original trajectories when
they get very close to the nuclei of the atoms than when they are further away. In case of
great proximity, the electrons can be deflected back to the source of the electron beam.
[1],[3]

An inelastic reaction occurs when the moving electrons interact with the electron
shell of the static atoms. During this interaction, the moving electrons pass on a portion
of their energy to the electrons in the electron shell. This action makes the static electrons
excited, which means that they subsequently radiate with characteristic x-ray radiation.
During these inelastic reactions, the energy of moving electrons is reduced, and their
wavelength extended. This change can result in an unwanted chromatic aberration. [1]

1.2.1 Acquisition of images of biological material
Transmission electron microscope can be used in more operating modes. Which mode to
use depends on what sort of material is examined. When examining biological specimens,
a problem arises. The specimen mostly consists of light elements, and these light elements
do not interact with the electrons strongly enough to change their energy. For that reason,
biological specimens are usually sealed in cases, to which heavier elements are artificially
added. These elements are usually lead or osmium and their function is to enhance the
contrast of the resulting image. [3]

Diffraction can also be used during the examination of biological specimens.
Diffraction of the electron wave occurs on the edges of the specimen. The diffracted beam
subsequently interferes with the original non-diffracted waves. Lighter areas are then
created on the fluorescent screen in case of interference maxima. Darker areas are created
in case of interference minima. Ideal interference is only possible when the waves are

 6

perfectly coherent. Since the coherence of the electron waves is not ideal in real
microscopes, only one interference maximum and minimum is created and that is referred
to as the Fresnel fringe. These fringes can be then used to create more focused image or
to correct astigmatism. [3]

1.2.2 Acquisition of images of crystal material
In the case of a crystalline material specimen, the diffraction of the passing electrons
occurs on the crystal planes. This operating mode of the microscope is referred to as a
diffractogram. If the electrons interacting with the sample are parallel to one another, the
diffracted electrons that have passed through the sample are also parallel. After passing
through the objective lens, these electrons are concentrated to the points in the back focal
plane. These electrons create the Fraunhofer diffraction image, which depicts the Fourier
transform of the electron wave that emerges from the sample. This image can be
considered a primary image as it is a source of waves that, after an inverse Fourier
transform, create an image of the subject in the image plane. [1],[3]

When operating in the diffractogram mode, or using a diffractive contrast display,
a small objective lens aperture is used. This aperture lets through only one beam of
electrons, either non-diffracted (T) or diffracted (D). When using a large aperture, the
information about the phase interference contrast is obtained. The image A' of point A is
the result of the interference of waves ψ (g), ψ (-g), ψ (0) and other waves that have passed
through the objective lens aperture. Thanks to this principle, the crystal lattice image can
be achieved at atomic resolution. [1],[3]

1.3 Cryo-TEM

Cryo-TEM is a form of cryogenic electron microscopy where the sample is examined at
very low temperatures. These temperatures are usually achieved with the use of liquid
nitrogen or liquid ethylene cooling. Unlike X-ray crystallography, in which biological
samples are crystallized, samples can be examined in their natural environment and
without the need for fixation. [5]

In this process, the biological material is spread on a grid and stored in a frozen
state. Fast freezing does not create ice crystals that could disturb the flow of electrons and
are therefore suitable for this type of microscope; this process is referred to as
vitrification. The samples produced this way are able to withstand the extreme vacuum
conditions that prevail in the transmission electron microscope. Most biological samples
are extremely sensitive to radiation, so they must be observed using smaller doses of
electrons. As a result, the crated images are heavily affected by noise. For some biological
images, multiple images can be captured and subsequently averaged, resulting in
improved signal-to-noise ratio and resolution. These adjustments and improvements are
achieved through the multi-element single-particle analysis method. Three-dimensional
reconstruction of protein complexes and viruses has already been achieved with near
atomic resolution. [6]

1.3.1 Single-particle analysis
Single-particle analysis is an algorithm that can be applied to images of vitrified samples
taken by a TEM. This analysis is able to determine the structure of biological entities such

 7

as proteins of viruses. As mentioned earlier, images of biological specimens are usually
heavily affected by noise. When more images of the same specimen are taken, we can
then average these images and get rid of the random noise. However, the biological
structures on the taken images have often different orientation in each image, so it is
necessary to align them. This can be achieved by statistical clustering methods such as k-
means but a large number of images of the specimen in question are needed. It is also
useful to filter the images before alignment and classification. Low-pass filters get rid of
high spatial frequencies and some portion of noise while high-pass filters remove low
spatial frequencies such as gradients. [8]

Alternatively, an iterative map-based refinement can be used to align the
orientation of the shown samples. The map uses two position parameters and three
particle orientation parameters. These parameters are then altered and scored by a scoring
criterion. Some problems may occur when using this procedure. For example, when an
incorrect starting map does not match the signal in the taken images and proceeds to the
end of the refinement algorithm, incorrect results will occur. [8]

1.3.2 Cryo-Tomography
Using cryo-tomography, researchers are able produce high-resolution 3D models of
observed samples. These samples are usually biological, such as macromolecules and
cells. The process includes creating 2D images of the observed sample, which is then
tilted by about 1 or 2 degrees for every shot between the range of -60° to +60°. After
obtaining a series of 2D images, single-particle analysis algorithm can be used to create
a 3D model of the observed specimen. The achieved resolution depends also on the
thickness of the monitored specimen. Samples less than 500 nm thick need to be used in
order to get a macromolecular resolution of 4 nm or smaller. That is the main reason why
small organisms like bacteria, viruses or archaea are usually used for this type of imaging.
Larger organisms need to be cut into appropriate samples by cryo-sectioning or by focus
ion beam milling. [11],[12]

Figure 3: Iterative map of single-particle analysis. [8]

 8

2 COMPLICATIONS WHILE USING TEM

2.1 Lens aberrations

Similar to optical lenses, electromagnetic lenses tend to cause aberrations in the resulting
image. Most often this is due to the imperfect homogeneity of the magnetic field within
the lens. [3]

2.1.1 Chromatic aberration
The first common type of aberration is chromatic aberration. This is caused by the
instability of the exciting current and the accelerating voltage of the lens. This results in
uneven energy of the emitted electrons, and thus unequal energy loss and change in
momentum after passing through the specimen. Electrons with lower energy are bent in
the magnetic field of the coils more strongly than the faster and more energetic electrons
and pass through the axis of the coil at a different point. This defect can be corrected by
stabilizing the accelerating voltage, thereby making the electron beam more coherent and
monochromatic. [3]

2.1.2 Spherical aberration
The second common form of aberration is spherical aberration. This aberration occurs
when a wide monochromatic beam of electrons enters the lens. The electrons that pass
through the peripheral points of the lens do not converge at the same point as the electrons
that pass through the electron-optic axis of the lens. This defect can be alleviated by
adjusting the aperture diameter. [3]

In the figure below, an illustration of the spherical aberration is shown. Cs is a
spherical aberration coefficient which is constant for every lens. β represents the

Figure 4: Chromatic aberration illustration. [24]

 9

maximum semi-angle of the lens aperture collection. Disc of the least confusion is a
compromise of sort that shows the plane where the aberration is least visible. [3]

2.1.3 Astigmatism
The astigmatism aberration is the last form of common aberrations. It is created when the
beam of electrons passes through an inhomogeneous magnetic field inside the lens. This
leads to non-uniform focus of the beam. This aberration can be easily solved by
stigmators. These small components can compensate the magnetic field and fix the
inhomogeneities. [3]

2.2 Other complications

Other complications caused by using a transmission electron microscope are usually
linked to biological sample preparation for a non-cryo-TEM. All water would
immediately vaporize inside the body of the microscope, so the sample needs to be
dehydrated. The samples must also be chemically stabilised and fixed. This step must be

Figure 5: Spherical aberration illustration. [24]

 10

done as soon as possible after removing the tissue out of its natural environment because
some parts of the tissue like mitochondria of micelles start changing their appearance
right after the removal. If the chemical procedure is not carried out quickly enough,
reshaped mitochondria and micelles need to be regarded as artefacts. [13]

The next possible source of problems is cutting the samples. They need to be cut
into very thin (100 nm or less) layers or they cannot be used in the microscope. As
mentioned in previous chapters, biological samples are very radiosensitive, so they must
be irradiated by low dosage of electrons. Even though the dosage of electrons is low,
temperatures caused by beam hitting the sample can be up to 150 °C in non-cryo-TEMs,
which can be a cause of other problems as well. [13]

 11

3 SEGMENTATION AND OBJECT
DETECTION
Segmentation is a procedure in which interest objects can be defined in the image. These
objects can be segmented in the image using automatic or interactive methods. Thanks to
segmentation, it is possible to separate objects by defined parameters and to determine
what is an object and what is background. Object detection is a process that is capable of
recognition and classification of the objects. [7]

3.1 Segmentation methods

There are many principles that can be used during segmentation. There are algorithms
using some parameters of the image (such as intensity), region-based segmentation or
edge-based segmentation. Other techniques use explicit or implicit models. [7]

Techniques using explicit or implicit models may have certain parameters of the
segmented object predefined and further specified by additional information. The models
are based on three basic algorithms. These algorithms include a geometric algorithm,
statistically active algorithm and active contour algorithm. However, these algorithms are
time consuming, computationally demanding and require input from the user, either in
the form of manual initialization or in the form of a training set. [7]

3.1.1 Parametric segmentation
This type of segmentation is based on the idea, that object segmented in an image should
be homogenous regarding a defined parameter. Often, the parameter chosen is brightness
or grayscale intensity of the pixels contained in the object. However, intensity is not the
only parameter that can be defined. Other defined parameters may be a scalar or a vector,
but the idea is pretty much the same. Scalar parameters within the segmented object must
have values in some pre-defined range and similarly, vector parameters inside the object
also need to belong to some spatial area. This sort of approach logically has some
limitations. For example, non-uniform illumination can disrupt segmentation using
intensity as a parameter. [10]

When using intensity as the defined parameter, the simplest way to choose the
range of values is just to define and interval using the largest and smallest value of
intensity that the object can obtain. This approach is used for some medical images such

Figure 6: Histograms used during segmentation. (a) a histogram with well-defined classes,
(b) a histogram with poorly defined classes. [10]

 12

as a CT image where the different tissues have different grayscale values. When ranges
of intensity values are set, every range depicts a different class of segmented objects. The
ranges of these classes should be disjunctive – no two classes should have the same
intensity values. However, this is not as easy as it sounds. The ranges of values can be set
interactively by the user or automatically by an algorithm. When the limits between
classes are set correctly without any overlaps, the segmentation is carried out without any
major errors. When overlaps occur, high error rate should be expected. [10]

The most basic case of this type of segmentation occurs when only one threshold
is set for a grayscale image. When this happens, only two classes are created, and the
original grayscale image is transformed into a binary image. All pixels that possess value
higher than the mentioned threshold are white and the other pixels are black. It can be of
course done the other way around, depending on the user’s preference. When more than
two classes are set, pseudo-colouring can be used to show the final segmentation. [10]

Grayscale images are not the only ones that can be segmented using parametric

methods. Fused multimodal or colour images can also be processed. Pixels of these
images are not scalar values but multidimensional vectors. However, a segmentation
histogram created for multidimensional vectors is quite similar to the one created for
grayscale images. In case of bimodal images that contain two-dimensional values in
pixels, the created histogram contains two-dimensional intensity scale. Classes are then
created and are represented as intensity clusters in the histogram. During the
segmentation, both components must fit into a certain class. The pixels of certain intensity
values are therefore excluded, when one of the components does not fit in. [10]

3.1.2 Region-Based Segmentation
This type of segmentation techniques also works with the idea of homogeneity. However,
it is usually applied more locally, so it can be more precise than parametric segmentation
techniques that are mostly applied on the whole image. [10]

• Region growing
Region growing is a region-based segmentation procedure, during which a pixel in a
potential region is interactively of stochastically determined. This pixel is referred to as a

Figure 7: Two-class segmentation on a grayscale picture. Darker parts are chosen as the
object, lighter parts are chosen as the background. [25]

 13

seed. A parameter p that can represent intensity value, local mean, local variance etc. is
then chosen as well. Pixels surrounding the seed are then put to the test of homogeneity:

|𝑝𝑝𝑠𝑠 − 𝑝𝑝𝑗𝑗| ≤ 𝑇𝑇 Equation 1

Where ps is the seed value of the chosen parameter, pj is the value of the tested
pixel and T is the used threshold. If the calculated value is smaller than or equal to T, the
pixel does fit into the same region as the seed. This algorithm logically applies not only
to direct neighbours of the seed pixel but also to neighbours of the pixels that were
deemed good enough to join the region. The procedure stops where no surrounding pixels
can be added to the region. This not only means that they do not meet the condition
presented in Equation 1 but also that they may belong to a previously segmented region.
Because of this, in case that parameter values for neighbouring regions overlap, pixels
are added to the region that was processed first. [10]

This approach can be modified when the parameter value of a new candidate pixel
is not compared to the value of the seed but to the value of a pixel neighbouring the
candidate pixel but already belonging to the region:

|𝑝𝑝𝑖𝑖 − 𝑝𝑝𝑗𝑗| ≤ 𝑇𝑇 Equation 2

Where pi is the parameter value of the already belonging pixel, pj is the parameter
value of the candidate pixel and T is the threshold. Using this modification, slow changes
in the pi value can be observed in case the pixels in the region are not the same as the
seed. When a very swift change of the pi value occurs, the algorithm should stop since the
calculated difference will be higher than the threshold value. This usually occurs when a
border edge is met. However, this can be influenced by the order, in which the pixels are
processed. The value growth may not seem as large when compared to a different pixel
of the region. [10]

• Region merging
Region merging segmentation algorithm starts very similarly to the previously mentioned
region growing. Image is separated into primary homogeneous regions. These regions are
usually very small, they also might be only single pixels. Two regions located next to
each other can be merged if some given homogeneity condition is met. This condition
may be defined statically, which means that a precise range of a selected parameter is set
and all pixels in the given region must have values within this range. Another region
merging procedure includes more dynamic definition of the homogeneity condition.
During this dynamical type of region merging, mean values of chosen parameter in both
regions are compared and then it is assessed whether they merge or not. The mean values
change during the region growth and that makes it possible to create bigger and more
relevant regions compared to the static condition. [10]

Even more dynamic approach to region merging can be achieved by considering
strength of the borders between created regions. Parameter values of two adjacent pixels
from two different regions are compared. So-called crack in the boundary is created, when
the difference between two pixels is smaller than a defined threshold. This comparison is
calculated for all pairs of pixels along the border. Strength Si,j of the common border along
N pixels is then considered to be:

𝑆𝑆𝑖𝑖,𝑗𝑗 = 𝑁𝑁𝑠𝑠
𝑁𝑁

 Equation 3

 14

where Ns is number of cracks in the border. When the border strength Si,j is smaller
than a defined threshold, the border is than removed and the adjacent regions merge. [10]

• Region splitting and merging
This segmentation procedure starts when image is divided into quarters. These quarters
are then subsequently divided into smaller square regions until each region is
homogeneous by a given criterion. This however usually is not the end of the
segmentation process. Some neighbouring regions may be homogeneous but since they
were not in the same parental region, they are not merged. This means that after splitting
process is finished, merging process commences and goes on until no region can be
merged. The merging steps can be also included to the splitting process. [10]

• Watershed segmentation
The watershed method is fairly different from the other region-based segmentation
methods. During the watershed process, local minima are found inside the image. These
local minima can be in this case taken as the deepest parts of a topographical map of the
image. The next step of this metaphorical approach is that it starts to rain upon this
topographical area. The local minima and surrounding catchment basins (regions) are
then flooded by water and borders between these regions act like dams that do not let the
water through. [10]

3.1.3 Edge-based segmentation
The edge-based segmentation does not investigate the homogeneity of segmented
regions, but it rather tries to find borders between them. The procedure finds areas in the
image, where rapid changes of the defined parameter happen. As said earlier, the
homogeneity of segmented regions is not considered, it is only known that the changes
within the regions happen more slowly than at the edges. In order to have a correctly
segmented image, these borders need to be closed curves and must clearly define the
regions. This, however, is not always the case. [10]

The edges are very often too thick, disconnected and many of the edges do not
represent the real borders between the regions. Some modifications thus need to take
place in order to achieve a correct result. Every border should only be one pixel thick and
no blind spaces can be present. These modifications are usually done via morphological
operators. Hough transformation can also be used to perform an edge-based
segmentation. [10]

Figure 8: Graphical representation of watershed segmentation method. [27]

 15

3.1.4 Active contour segmentation
Classical segmentation methods do not cope well with images heavily affected by noise.
The obtained regions and borders between them may not correspond to reality at all.
Active contour segmentation attempts not to be affected by noise by allowing the
segmentation curves to be deformed a little and by not considering small details and errors
created by the noise. [10]

3.2 Segmentation using neural networks

Neural networks usually use more of the previously mentioned methods combined. It is
possible to divide the function of segmentation using neural networks into two larger
groups – segmentation based on pixel data and segmentation based on features. [14]

3.2.1 Based on pixel data
These methods generate segmented result directly from the image that was presented to
them in pixel form. Several types of neural networks can be designed and created for this
type of segmentation such as: acyclic neural networks, self-organizing maps, cellular
networks, Hopfield networks and others. These networks can have hierarchic
organization, where lower-level networks are specialized on finding certain features in
the data and provide only partially segmented image. Higher-level networks connect these
results provided by lower-level networks and perform a complete segmentation. Usually,
these networks are trained for segmentation based on differences in texture or in texture
and shapes. [14]

3.2.2 Based on features
This type of segmentation does not concentrate on attributes of only one pixel like the
previous method, but also on its surroundings. Same types of neural networks may be
used for feature-based as for pixel-based segmentation. Hierarchic networks used to
classify optic features and to determine distance in the image may also be included in this
group. Feature-based networks can use more features than just texture and shape
differences to perform segmentation but also histogram thresholding, region growth,
region merging and edge connecting. They also have the advantage that unlike pixel-
based procedures, they work regardless image rotation and scale. [14]

Figure 9: An example of the edge-based segmentation (used on an image of coins). [26]

 16

3.3 Usage of convolutional neural networks

Convolutional neural networks can be taught to extract features from pixels of given
images and subsequently recognize patterns, which is very useful during image
segmentation and object detection. Convolutional neural networks are built from layers
of perceptrons that consist of one or more planes. Because of this, every layer has three
major attributes: height, width and depth. These layers also can have different purpose,
such as convolutional layers (CONV), rectifiers (RELU), pooling layers (POOL), or fully
connected layers (FC). The layers are then connected to create a convolutional neural
network. CONV and FC layers carry out transformations of the input data which depend
on weights and biases of present neurons, while POOL and RELU layers perform a fixed
function such as subsampling. Thanks to these layers and their function, the network is
able to transform an input image from original pixels into a feature vector, which can be
subsequently classified. [15]

3.4 Object detection

Object detection is a process that is able to recognise multiple different objects within an
image. This helps us understand, what the image is containing and can also be applied in
real life uses such as face recognition, security surveillance or driving assistance.
[33],[34]

First part of the object detection process is training a model. Models are predefined
structures that are able to extract features from an image and then classify those features.
Several models will be presented in the next chapter. In order for the model to detect
images suitable for our purposes, it has to be trained using our set of images. The general
rule is that more training images can help create better detecting models. Around 15% of
all used images should be so-called test images, on which the training process calculates
error and determine when the model is trained ideally. When the error is converging for
some time, the graph of the trained model is exported and can be used as a detector.
[33],[34]

Figure 10: Architecture of a convolutional neural network used for pattern recognition. [28]

 17

As mentioned before, features must be extracted from an image before the
detection itself happens. The detection is separated into several blocks within the model.
Each block reduces feature maps, which helps concentrate on useful features and then
passes the reformed data onto next block, until the final block is reached. Every detection
block has three major tasks. First task is to resize the boxes, in which the model is
predicting an object. Second task is to predict confidence scores for these boxes and the
third is to move the boxes as well as it can with the provided information and then pass
these calculations onto the next block. [33],[34]

When the object detection is over, the algorithm shows the image with detected
objects and their confidence score. The confidence score threshold, when an object is
classified and marked in the image can be manually determined. Usually the threshold is
set at around 50% confidence score. [33],[34]

3.4.1 Basics of TensorFlow
TensorFlow is and open source library that can design and train models used for object
detection. First version of TensorFlow was created by Google in 2015 and it has been
updated and used ever since. It is an open-source software library that is mainly used for
machine learning operations. The name ‘TensorFlow’ is derived from its key functional
part - tensors. A tensor is an object that can be a matrix or a vector of multiple dimensions
that can represent different type of data with a specified shape. This shape can be
described as the dimensionality of the data stored within the tensor. The tensor can be
specified by the input data or it can also be calculated. Computations inside TensorFlow
are done with data flow graphs. Edges of these graphs describe the data while nodes of
these graphs represent mathematical operations carried out among the data. [31], [32]

For our purpose, the input data of the TensorFlow graphs will be feature vectors
of images, which are vectors extracted by a model from an image and fed into the input
tensors. After mathematical operations are performed within the nodes of the graph, a
new tensor is created, which can be also a starting point for another node operation and
this process can be repeated as many times as necessary. [31],[32]

Figure 11: Example of object detection showing detected objects inside
bounding boxes with class and confidence scores [35]

 18

3.4.2 Faster RCNN
Faster RCNN (Regional Convolutional Neural Network) together with MobileNet SSD
(described in the following chapter) are one of the most used object detection models and
can also serve as a basis for neural networks designed for segmentation of even 3D object
detection. Faster RCNN is comprised of three fundamental parts – Feature Network,
Region Proposal Network and Detection Network. [36]

The Feature Network is mostly some kind of a pre-trained image classification
network such as VGG or Resnet that was slightly changed to fit into the RCNN scheme.
This part of the RCNN provides us with features describing basic shapes and structures
from the given image. Region Proposal Network (RPN) consists of 3 convolutional
layers. First of them is a common layer that distributes data into two subsequent layers,
one designed for classification and the other for bounding box regression. RPN creates
bounding boxes that are called Regions of Interest (ROI), in which there are higher
chances of containing a desired object. Output provided by the RPN is a list of coordinates
of bounding boxes and values that determine whether the box can be ignored or should
be considered for further investigation. The last stage of the RCNN – the Detection
Network then takes outputs from both previous parts and generates final position and size
of bounding boxes and respective classes. To make this process easier, the features are
cropped according to the bounding boxes. Both the Detection Network and Regional
Proposal Network need to be trained in order to work correctly. [36], [37]

Training stage of RPN part of the model begins with generating bounding boxes.
During the training, boxes that overlap with other boxes with higher scores are deleted.
To generate labels for the RPN classification stage, the newly created bounding boxes are
compared to the ‘ground truth’ bounding boxes. These ‘ground truth’ boxes are set in
place and labelled by the user, so the training algorithm assumes that they are correct.
These similarity calculations are then used to label 256 regions of interests as foreground,
background, and ignored. Training of Detection Network is very similar, regions of
interest are also generated and assessed set as foreground, background or ignored based
on the similarity to the ‘ground truth’ boxes. The difference is that the regions of interest
assessed as foreground are then classified into more classes rather than staying just as
foreground. [36], [37]

Figure 12: Example of a TensorFlow graph with data on the edges and nodes representing the
mathematical operations [30]

 19

3.4.3 MobileNet + SSD
MobileNet V1 is a neural network architecture, which is designed to run on mobile
devices and that means it is less computationally demanding than previously mentioned
Faster RCNN. Convolutional layers that are present in classical CNNs are replaced by
separable convolutions. First stage is the depth wise convolution that filters the input and
that is followed by point wise convolution that works with the filtered values and creates
new data that will be sent forwards. These two blocks do pretty much the same work as a
conventional convolution layer, but they do it in shorter time. [41]

The regular MobileNet V1 scheme is consisted of a 3x3 convolutional layer
followed by the separable convolutions block, which is repeated 13 times. There are no
pooling layers, but the depth wise layers are able to reduce the size of feature map of the
input, which can be subsequently analysed. However, in my work, I used MobileNet V2,
which is slightly different than the first version. [41]

Figure 13: Simplified architecture of the Faster RCNN [44]

 20

MobileNet V2 still keeps the two parts of separable convolution – depth and point
wise. However, the point wise convolution works a bit differently. Instead of keeping the
number of channels (dimensions) the same or doubling them, this time, it converts the
data into a tensor with lower number of dimensions. It is known called the projection
layer. Another change is that a new layer is added in front of the two original layers. It is
known as the expansion layer. This layer expands the number of tensor dimensions before
they reach depth wise convolution layer and does pretty much the opposite job of the
projection layer that was described earlier. Thanks to these changes, the model uses low-
dimensional tensors that decrease the computational demands. The expansions and
projections are biased by learnable parameters, so the model knows how to change the
data in the best way possible. [41]

MobileNet can be retrained to work as an object detector or a classifier. In my

work however, it is used as a feature extractor for SSD – Single Shot Detector. SSD is a
neural network model that is designed for object detection and when connected on top of
the MobileNet used for feature extraction, it uses a process called SSDLite. This process
allows the use of depth wise separable layers during object detection and helps the SSD
classifier to work a lot faster. [41]

3.4.4 CUDA
Training and object detector using TensorFlow needs more than just its libraries. It also
needs CUDA. CUDA is a parallel computing platform and programming model. It was
developed by Nvidia and it is used for computing using GPUs (graphics processing units
– graphic cards). Thanks to CUDA developers can make compute-intensive applications
faster by harnessing the power of GPUs. Function of CUDA is described on Figure
21.[42]

In the figure 15, you can see how CUDA works. The data is copied from main
memory to GPU memory, CPU gives an order to start the computation using the GPU,
CUDA makes sure that computations are carried out parallelly in order to make the
process much faster and then the results are then moved back to the main memory. [42]

CuDNN is another vital part of training using TensorFlow. It is a library of
functions that are necessary for training of deep neural networks. Both CUDA and
cuDNN used for training must be compatible with the version of TensorFlow that is used
for training. For example, I used TensorFlow 1.13.1, which means that CUDA must be
version V10 and cuDNN needs to be version 7.4. [43]

Figure 14: Scheme of one MobileNet block [41]

 21

Figure 15: Explanation of the function of CUDA. [42]

 22

4 CLUSTER ANALYSIS
The cluster analysis deals with methods that organize the data obtained into meaningful
structures, creating taxonomies. Clustering is a data analysis tool that sorts objects into
clusters so that the similarity of two objects belonging to one group is as high as possible,
while the similarity to objects outside this cluster is minimal. By clustering, it is possible
to find relations between objects without their further explanation or interpretation. In
other words, cluster analysis finds a structure between objects without explaining why
they exist. Clustering algorithms are widely used for example in computer science,
biology, bioinformatics or market research. Cluster analysis algorithms can be divided
into hierarchical and non-hierarchical. [16]

4.1 Hierarchical clustering methods

Hierarchical methods use previously found clusters to create new clusters. The
intersection of every two subsets in hierarchical clustering is either an empty set or one
of the original ones. Clustering with hierarchical methods can be represented by a binary
tree - dendrogram. Horizontal tree levels are the degree of cluster decomposition. The
vertical direction is the distance between the clusters. The disadvantage of hierarchical
clustering is that it strives to achieve only the best local solution at every step and does
not consider the next process. Hierarchical algorithms are further divided into divisive
and agglomerative. In agglomerative clustering, clusters that are already clustered
together cannot be divided, and vice versa, in divisive clusters, they cannot be reunited in
the next steps and thus improve the decomposition properties. [17]

4.1.1 Agglomerative methods
An agglomerative approach takes every element of the processed set as a cluster, and then
combines it until a cluster containing all the elements of that set is created. The
disadvantage of these methods is that ambiguities may arise at the beginning of the
clustering algorithm, which will only be shown later in large clusters. The previous step
cannot be changed. [17]

Figure 16: An example of a dendrogram created by hierarchical clustering. [29]

 23

• Simple linkage
This is an agglomerative method that creates a cluster or clusters of objects that have the
smallest distance between them compared to other sorted objects or clusters. The distance
between the clusters is calculated by taking the smallest distance from each two objects
from two different clusters. The resulting clusters are not spherical in nature.
Complications may arise when two different objects are located in the same distance from
existing clusters. There may also be premature merging of two well-distinguishable
clusters whose boundaries will come closer at some point. Non-ecliptic clusters can also
be sorted using this method. [17]

• Complete linkage
This method puts together objects or clusters that are furthest from each other within a
set of data. This means that the greatest possible distance between two objects in two
clusters is taken as the determining distance. From these calculated distances, it selects
the shortest and associates the corresponding objects. It creates tight clusters of
approximately the same size. Sorted clusters tend to form spherical clumps. [17]

• Average linkage
The similarity of two clusters is calculated as the average of the distances between each
two objects belonging to the two clusters. The most similar are clusters with the smallest
average distance. The resulting dendrogram is similar to the tree created using the method
of the closest neighbour, with the difference that the connection is made at greater
distances. This method is not too sensitive to statistical variations in data. [17]

4.1.2 Divisive methods
Unlike the agglomerative methods, the divisional algorithms take the input set of objects
as one cluster, and then divide them. At each step, the cluster divides into two new ones
that best meet a given division criterion. This procedure is computationally demanding
and is feasible for a small number of input objects. [17]

• MacNaughton-Smith method
This method is applicable to larger sets of objects with fewer computation time
requirements. Compared to agglomerative approaches, however, it is still slower. An
object within a cluster is selected to create a new cluster. Based on differences in the mean
distance of objects from the original, and objects from the new cluster, other objects
located in the original cluster are assigned to the new cluster or they remain in the original
one. An advantage over the agglomerative approach is that the results are clearer for larger
clusters. [17]

4.2 Non-hierarchical clustering methods

These methods do not create a hierarchical structure, they break the given set into subsets
according to a predetermined criterion. The first decomposition to subsets is not further
divided. It is edited to optimize the distance between clusters and to distribute the objects
equally in them. Finding the best solution by testing all possible clustering arrangements
is usually impossible. The disadvantage is that methods usually end only with locally
optimized decomposition. [17]

 24

4.2.1 K-means
At the beginning of the K-means algorithm, it is necessary to select the initial sample
points. Points can be selected randomly from the input set of objects. Subsequently, the
individual objects are taken and assigned to the nearest sample points. After this
assignment, the centre of gravity of each newly formed cluster is calculated. Some of the
data is then assigned to new clusters according to the closest centre of gravity. The new
centre of gravity is then calculated again, possibly reassigning the data to new clusters.
The process is finished, when not changes regarding the assignment of data to the clusters
are made. [17]

4.3 K-means used for clustering of images

K-means will be used in the second part of this thesis in order to attempt to perfect the
results of object detection. The function of K-means will be based on clustering the
features of detected objects and then, based on the cluster analysis, some images that will
be part of a chosen cluster shall be eliminated from the process. The main reason for this
procedure will be to get rid of falsely positive occurrences. In order to obtain the features
of detected objects, feature extractors must be used. [17]

4.3.1 Feature extraction using Resnet and VGG
The basic architectural blueprints of convolutional neural networks are described in the
chapter 3.3. Both Resnet50 and VGG16 networks comply with the basics while having
some modifications that slightly alter their function and capabilities. [38]

VGG16 network is a bit older than Resnet but is still used by most of the users
trying to extract and possibly classify image features. It consists of 16 convolutional
layers, where each layer performs 3x3 convolution. The input image is resized to
224x224x3 and then convoluted and pooled to reach a size of 1x1x1000 that can be
classified if needed. [38]

Resnet50 also known as residual network has a slightly different function. Resnet
neural network can use much larger number of layers than previously mentioned VGG –
up to 152. With a regular network, when large number of layers is used, the network
accuracy gets saturated and because of this, it cannot be trained as well. This problem can
be solved using so called “shortcut connections”. These connections can skip one or more
layers and their output can help with managing training through back-propagation. [38],
[39]

 25

5 PROPOSED EVALUATION OF RESULTS
The results of particle picking done by an algorithm that will be constructed during the
second part of this thesis will be evaluated using RELION program provided by Thermo
Fisher Scientific. This program was developed by MRC Laboratory of Molecular Biology
and its main purpose are 3D reconstructions or 2D class averages. However, before any
advanced techniques may be applied on the images acquired by transmission electron
microscope, structures in the image must be detected – picked, which is the main focus
of this master’s thesis. That is the reason why RELION may be used as an evaluating
tool. [19]

The algorithm is template-based, and all the templates are CTF-corrected, which
means that the Contrast Transfer Function of the micrograph is applied to the template
images. Thanks to this, it has a good potential of finding particles even in noisy data.
Since the approach is semi-automatic, it needs a little input from the user. The user needs
to manually pick particles from a small amount of already processed micrographs. 2D
class averaging is then used to determine average images of these particles and then the
RELION program automatically picks particles thanks to template-based approach on all
micrographs. [19]

After the particles are picked, a sorting algorithm comes into play. It can
determine, which particles are picked incorrectly. An associated template and its
orientation are subtracted from every extracted particle. The difference is then used to
determine several parameters such as mean, standard deviation or skewness of the image.
If the particle was picked correctly, the difference image will contain only background
noise. If anything else than noise is found in the difference image, the particle was not
picked correctly. [19]

Figure 17: Workflow of the particle-picking stage of the RELION
program algorithm. [19]

 26

6 DESING OF THE ALGORITHM
In this chapter, I will present a theoretical design of the algorithm I will be using in the
next part of my master’s thesis.

6.1 Existing algorithms and their comparison

Several algorithms with similar goals have already been published by other researchers.
This sub-chapter will present their basic idea and achieved results.

6.1.1 SLEUTH
SLEUTH is a program used to automatically detect particles in images acquired by
electron microscopes. The basic premise of this method is to introduce reference images
to this program and to select areas with already specified regions of interest. The program
then calculates few simple criteria such as variance or density sum. These values are then
compared to the values from a moving window on the examined image – micrograph.
When values of the chosen criteria are in a specified range, the area on the micrograph is
labelled as a candidate. Areas not labelled as candidates are immediately excluded from
the process to minimize occurrence of false positives. [20]

The user needs to provide images with selected structures in boxes that are ideally
affected with very little noise. These structures need to be located separately in the image,
meaning that they should not be connected in any way. The structures should be in the
centre of corresponding boxes so that the criteria parameters are calculated as precisely
as possible. After this preparation is complete, the examined micrograph is then presented
to the program, which automatically gets rid of unwanted areas such as labels or areas
with unexposed film. All remaining areas are then tested regarding the chosen criteria and
if they fail one of these test values, they are excluded from the selection. [20]

When applied to real images, the SLEUTH algorithm can be useful. In average, it
achieved 7% of false positive rate and 9% of false negative rate. Usual false positive

Figure 18: An image of spherical hepatitis B virus cores processed by SLEUTH algorithm.
Detected particles are marked by green circles. [20]

 27

occurrences happened due to damaged or non-isolated particles. Processing time is
dependent on image size, possible particles and computational power of the machine. [20]

6.1.2 EMAN2
EMAN2 is an image processing package which is able to perform single particle analysis
on images acquired by transmission electron microscopes. Unlike previously mentioned
SLEUTH algorithm, its primary focus is 3D reconstruction of detected biological
structures using single particle tomography (SPT) and related tasks. It can also supply
monitoring of structures within observed cells. The algorithm can use different
approaches for each step of its functions, which makes it very versatile. [21]

6.1.3 FindEM
FindEM is a particle picking algorithm that can use two different approaches to solve the
problem. One of these approaches is attempting to match the new undetected structures
in the examined image with structures already detected in older images. This however
requires a large number of these previously detected structures to ensure the correct
function of the algorithm. It uses Fast Local Correlation Function, which is an algorithm
that calculates correlation of provided template structures with areas of the new image. It
then creates a local correlation map, where peaks represent potential particle positions.
The second approach is to use multivariate statistical analysis (MSA), which is able to
filter out potential structures. This approach only needs one template image. [22]

When comparing these two approaches, following results were achieved. The first
method using multiple end- and side-view templates achieved 10.6% FPR and 22.8%
FNR, while second method using MSA and one side-view template with low correlation
threshold achieved 18.3% FPR and 23.1% FNR. [22]

6.1.4 Comparison
The table below shows false positive and false negative rates of described algorithms.
The EMAN2 algorithm is not compared here, since it has fairly different goal than the
other two. [20], [21], [22]

Table 1: Comparison of existing methods of particle picking

Algorithm SLEUTH FindEM (Method 1) FindEM (Method 2)

FPR [%] 7 10.6 18.3

FNR [%] 9 22.8 23.1

6.2 Theoretical design of the proposed algorithm

Basic steps of the proposed algorithm, I would like to create in the second part of this
thesis, are located in the flowchart below.

 28

The algorithm that will be created during the practical part of this thesis will use

neural network models used for object detection and subsequent clustering of their results.
Images used during this part will be large-scale images acquired by a transmission
electron microscope. The first batch of images will serve as training set for the neural
network. These will be already analysed images with proteins that will have been already
picked. The training images will be subsequently sliced and resized to serve as a solid
training tools for the neural network.

After the neural network is trained, it will be applied on testing set of micrographs.
The resulting objects created by this stage are then to be sliced into small images. These
small images will then go through feature extraction using a neural network designed for
that purpose. The features produced by this stage will subsequently be clustered using k-
means algorithm. Clusters containing the least number of images will be deemed as
falsely positive occurrences and filtered out of the object detection process. Coordinates
of particles produced by object detection both before and after clustering will be then
compared to the coordinates of particles detected by the RELION software.

Acquisition of analysed images

Pre-processing of images

Creation and training process of
convolutional neural network

Application of neural network on
examined images

Cluster analysis applied on the
results of object detection

Evaluation of results and their
comparison

 29

Figure 20: An image with well visible Keyhole Limpet Hemocyanin protein units

Figure 19: An image of Keyhole Limpet Hemocyanin protein units but with different defocus than
Figure 14, which makes the protein units invisible by human eye

 30

7 PRACTICAL PART
This part of the document will include description of tasks that were done in the practical
part of the thesis. It was roughly described in the chapter ‘Theoretical design of the
proposed algorithm’ but some changes had to be made. For the first section of the
practical part, object detection models using TensorFlow will be used as means for
detecting proteins in the images. The second section will include application of cluster
analysis to the results of the object detection as an attempt to filter out unwanted outputs
of the object detection.

7.1 Creation of training set and test set

In the first stage of the practical part of the thesis, I received 10 4K images of proteins
shot by a transmission electron microscope. From these 10 images, 8 of them served as a
source for training data and the last 2 of them were used for testing of the trained or fine-
tuned models. All the received images had gone through the first part of the protein
detection process before I got them. This means, that I had received not only the images
themselves but also *.star files containing the positions of proteins that were detected
during the first phase. *.star is a format that allows to store coordinates of detected
structures together with information regarding the acquisition of micrograph such as
defocus, spherical aberration or phase shift.

The first stage of the original detection however does not contain any kind of
cluster analysis or any similar process and because the first phase of protein detection is
very sensitive, some number of false positives were present in each *.star file. This format
also needs specialized software to read correctly but for my purpose, few simple
commands using Excel were enough to get a *.txt file containing X and Y coordinates of
every detected object in the image.

The next step was to split the received images into smaller ones, since their
original resolution was 4096x4096 pixels, which is too large for the training of an object
detection model. Several sizes of images were chosen for the training stage. The first
attempts of training an object detection model were done using the Faster RCNN
Inception v2 COCO and they were rather ineffective. The training data set consisted of
only 256x256 px images that contained at max 2 or 3 proteins per image. This dataset
was approximately 500 images large and these images contained no more than 1000 boxes
with proteins. All these proteins were of original size – a circles of circa 120 px in
diameter and were captured in a box 150x150 px in case they were entirely located in the
image. Upon testing the model, it was found out that it is only capable of working with
images of the same size as its training dataset (256x256 px). It was therefore decided to
enlarge the dataset with larger images with more proteins in them. Sizes of additional
images were set on 512x512 and 1024x1024, since it is not recommended to train the
models with larger images.

The newly created dataset contained 1763 images of proteins in less than 800
training images. The results after training with this dataset were much more successful.
It was able to work with all three sizes of images, on which it was trained on. The largest
images (1024x1024 px) with original size of proteins usually contain between 15 and 20
proteins. This number of proteins is much more suitable for statistical analysis and
clustering than the number of proteins contained in the smaller images. However, it was

 31

still not able to process larger images such as 2048x2048 px or 4096x4096 px. These
images contain much larger number of proteins and would therefore be more statistically
significant. Thus, even though it is not recommended, the next dataset used for further
training contained roughly 100 2048x2048 px images in hope that it would help the model
to be able to detect proteins in larger images.

That did not turn out to be true. The model could spot some structures in the larger
images, but there were very little of them and they most certainly were not proteins.
However, it was still desirable for the model to be able to detect more proteins than 15-
20 it gets from the 1024x1024 px images. Since it seemed impossible for the model to
detect objects on anything larger than that, resizing of the original image was introduced.
2 levels of resizing were used, 50% and 25%. All three previously sizes mentioned were
used for training images resized to 50% and images resized to 25% were used in versions
of 256x256 px and 512x512 px. Altogether, the final dataset was comprised of 1038
images and since some of them contained more than 60 proteins, the final count of
proteins used for training stage was 11830.

Images were created thanks to a script in MATLAB. This script was first told,
how large the images should be – one of the previously mentioned sizes. Then it searched
through the image and assessed whether the current window contains a detected protein.
If it did, the image was saved, and the coordinates of the protein or proteins were re-
calculated in relation to the position of the window in the processed image. Since the
original coordinates pointed to the middle of the protein, a 150x150 px box centred around
that coordinates had to be created to satisfy the needs of the training algorithm.

These recalculated boxes were then fit into a *.csv files that is used as an input to
the training process. These files are called test_labels.csv and train_labels.csv. Each file
contains names of the files in one column and width and height of the used images in the
next two columns. The fourth column contains a description of the class of the object(s)
identified in the image. Since the model was supposed to be only trained to identify
protein, there is only one class used throughout both documents. The last four columns
describe the coordinates of the object found in the image. There may be more than one
object and if that is the case, the image is listed in the *.csv file once per every object
found within.

Figure 21: Example of a 256x256 image with a well visible protein used for the training stage

 32

7.2 Setting up the training

Before training an object detection model using TensorFlow can be commenced, Object
Detection Repository that contains all the necessary utility functions and model
configuration files has to be downloaded. Installation manual is described online, and its
shortened version will be present in the attachment of this thesis.

As described earlier in chapter Creation of training set and test set, *.csv files
containing sizes and names of images and coordinates of proteins within the images must
be developed. However, TensorFlow cannot work with these *.csv files and they need to
be transformed to *.record files using a script generate_tfrecord.py that is supplied by
the creators of TensorFlow. This script needs to be changed in order to suit the needs of
the assignment. Names and corresponding id of classes must be set. Using this script, two
*.record files are created – test.record and train. record.

After the *.record files are set up, it is necessary to choose a model that will be
trained or more precisely fine-tuned to suit our needs. Most of the models used for object
detection are either based on SSD MobileNet and Faster RCNN models, which are both
described in previous chapters. These models were trained on datasets containing
hundreds of thousands of labelled images in order to be able to extract suitable features
for object detections. Theirs variations can differ regarding how fast the training proceeds
and on what dataset were they originally trained.

When the model is downloaded and properly placed, labelmap.pbtxt that contains
id and names of the classes, which are to be detected, needs to be configured – very similar
task to when the generate_tfrecord.py was altered. Then the *.config file belonging to the
chosen model has to be edited to contain paths to folders containing training images,
*.record files and label map. There are several other parameters that can be manipulated
with in the in the *.config file. These parameters include learning rate, which is a
parameter that determines how fast or slow should the parameters of the neural network
be updated during the training. It can be changed during the training, e.g. after a number
of steps. Another parameter is second stage IoU (Intersection over Union) threshold that
determines, whether the proposed bounding boxes of potentially detected objects can or
cannot be passed into further analysis and classification. The amount of proposals that are
considered for further classification can also be changed, just as the activation functions
used by the classifier. Choosing the activation function is in most cases a choice between
two variants, a simpler sigmoid function and a more complicated softmax function.

The TensorFlow train.py script is used to start the training after all necessary steps
are completed. When launching this script, the directory containing label map and
*.config file must be stated. The progress of the training can be monitored using
TensorBoard, which is an interface that can plot different loss functions and their
evolution in time together with other values that are used during the training.

When the training is over, export_inference_graph.py is used to export the last
inference graph that was saved. This is done because the inference graph of the model is
changed during the fine-tuning and when the result of the loss function is low enough, the
training can be stopped since it is presumed that the model is ready to be used. The value
of the loss function low enough for ending the training is set for 0.05 in case of the Faster
RCNN model and its derivatives and between 1 and 2 for the MobileNet networks. The
altered inference graph is saved every 10 minutes and is described using the step of the
training during which it was saved. This parameter is also needed when launching the
script for graph export.

 33

7.3 A way of evaluating results of the object detection

As described earlier, this stage of the practical part does not include the cluster analysis
of the results. However, it contains an evaluation of the application of object detection
using different models and settings. This application and evaluation were done using the
script.

This script needs a user input regarding the placement of files such as the exported
inference graph and the location of images, on which the model is to be tested. These
images come from the same dataset as the ones, on which the models were fine-tuned but
they were not used for the process. When all the necessary pre-requisites are taken care
of, the script launches a TensorFlow session. During this session, the inference graph of
the chosen model is used for object detection and calculates position of the potential
proteins and their confidence score. Parameters of the boxes around the proteins are then
used to calculate coordinates of the newly detected proteins. The script then reads the
coordinates of the originally detected proteins from a *.txt file that was created using a
script, which was very similar to the one that was used to create the training dataset.
Centres of both the new and original coordinates are then calculated and compared.

When a centre of new coordinates is found in the original ones with a tolerance of
20x20 pixels in the original image size, it is assessed as a true positive. When a new
coordinate is not found in the original set, it is labelled as a false positive. False negatives
are calculated as the difference between the number of original coordinates and true
positive ones from the newly detected set. However, it is not possible to count the number
of true negatives, since there is no original set of objects marked as truly negative
occurrences. Therefore, to gain some sort of an idea about how effective the model is,
values of sensitivity and precision (also known as positive predictive value) are
calculated.

Figure 22: Top left = true positive, top right = false positive, bottom = false
negative

 34

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹

 Equation 4

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹

 Equation 5

Figure 22 shows examples of true positive, false positive and false negative occurrences.
True negative occurrences are not shown in this figure, since they are not calculated with.

7.4 Results after using versions of Faster RCNN

In this chapter, I will describe the results after using different forms of Faster RCNN with
a short description of the model and results of the detection performed on images that
were not part of the training process – those are derivations of images 1952.png and
1955.png. The dataset used for this detection is described in the previous.

Figure 23: Top image = originally detected proteins, bottom image = newly detected
proteins in 1952_1.png. Original size of the image is 1024x1024 px.

 35

7.4.1 Faster RCNN Resnet50
Faster RCNN Resnet50 is a version of Faster RCNN model trained on COCO dataset.
This object detection network is described in chapter 3.4.2. This variation uses Resnet
network described in chapter 4.3.1 as a feature extractor. In this case, Resnet50 is used
for, which has 50 convolutional layers. These convolutional layers create feature map that
is fed into region proposal network. Training parameters of this network were set for a
maximum of 300 proposals. These proposals are then subsequently classified as
foreground or background, with the threshold value being 0.6, and the foreground objects
are given confidence score. Learning rate was set to 0.0003 for first 90000 steps, 0.00003
for next 30000 and the rest of the steps had a learning rate of 0.000003. A more
complicated softmax function was chosen as an activation function for the classifier. This
model was being fine-tuned for 12.5 hours until it reached the recommended 200 000
steps.

As you can see in the Figure 23, roughly two thirds of the originally detected
proteins were also recognized by the fine-tuned Faster RCNN Resnet50. Below, you can
see a table of results of the detection on other images. The confidence score threshold was
set on 50%.

On the figure 24, you can see boxplot representation of results achieved by Faster
RCNN Resnet50 model. It averaged sensitivity of 65.98% and precision of 80.98%. The
values of precision are also more condensed. This means that the model missed roughly
a third of all objects to be detected, but it was quite successful in regards that more than
80% of all detected proteins were actually there – truly positive.

Figure 24: Sensitivity and precision boxplot graph of Faster RCNN Resnet 50 results

 36

Table 2: Results of protein detection using a fine-tuned Faster RCNN Resnet50 model. Images
are in a *.png format. Since the images are square, sizes are given by the length of one
of the 4 equal edges. No. orig. is the number of the originally detected proteins, No. new
is the number of proteins detected by the fine-tuned model. Sensitivity and precision
values are shown in percentage [%].

Name Size Resize No. orig. No. new Sensitivity Precision
1952_1 1024 1 17 12 47.06 66.67
1952_2 1024 1 19 17 68.42

76.47

1952_3 1024 1 19 14 63.16

85.71
1952_4 1024 1 18 18 83.33

83.33

1952_5 1024 1 19 13 53.63

76.92
1955_1 1024 1 16 11 56.25

81.81

1955_2 1024 1 9 7 55.56

71.43
1955_3 1024 1 17 15 76.47

86.67

1955_4 1024 1 15 13 60

69.23
1955_5 1024 1 17 16 70.59

75

1952_05_1 1024 0.5 68 45 60.29

91.11
1952_05_2 1024 0.5 60 48 71.67

89.59

1952_05_3 1024 0.5 68 54 61.76

77.78
1952_05_4 1024 0.5 66 45 62.12

91.11

1952_05_5 1024 0.5 63 52 69.84

84.62
1955_05_1 1024 0.5 52 47 75

82.98

1955_05_2 1024 0.5 74 63 77.03

90.48
1955_05_3 1024 0.5 71 53 59.15

79.25

1955_05_4 1024 0.5 62 51 74.19

90.2
1955_05_5 1024 0.5 73 64 75.34

85.94

1952_025_1 512 0.25 64 47 64.06

87.23
1952_025_2 512 0.25 62 52 66.13

78.85

1952_025_3 512 0.25 62 58 72.58

77.59
1952_025_4 512 0.25 63 56 63.49

71.43

1952_025_5 512 0.25 70 56 67.14

83.93
1955_025_1 512 0.25 64 56 65.63

75

1955_025_2 512 0.25 73 62 72.6

85.48
1955_025_3 512 0.25 73 57 61.64

78.95

1955_025_4 512 0.25 74 59 62.16

77.97
1955_025_5 512 0.25 68 56 63.24

76.79

 37

7.4.2 Faster RCNN Inception v2
This model is also a faster RCNN based model that uses an Inception modification in its
feature extraction process. This model should be slightly faster than the previously
mentioned Faster RCNN Resnet50 model. But this increased speed is supposed to be
accompanied by a decrease in accuracy. The IoU threshold was set to 0.6 and maximum
number of proposals to 300. The learning rate was set to 0.0002 for first 90000 steps,
0.00002 for next 30000 steps and 0.000002 for the rest of the training. Activation function
for classifier was set to softmax. The model was being fine-tuned for little less than 8
hours until it reached 200 000 steps. The same testing images and algorithms were used
to evaluate the functionality of this model and the results can be seen in the boxplot on
figure 25.

The sensitivity and precision values were recorded in the same way as with the
Faster RCNN Resnet50 fine-tuned model. This time, precision averaged 71.37%, while
sensitivity only reached an average of 58.39%.

7.5 Results after using RFCN model

Unlike Faster RCNN, which derives the regions of interest directly from feature map and
thus applying the computation on every region of interest separately, the RFCN model
applies the computation on the entire image. It uses a fully convolutional network
independent of the regions of interest. The architecture of feature extractor for this model
is based on Resnet101. It uses 100 convolutional layers to compute the feature maps. The
last block before generating score maps is size reduction convolutional layer. Feature
extraction is followed by region proposal network, which calculates the regions of interest
and is fully convolutional on its own. Regions of interest are then pooled, scored and
differentiated between background and foreground and subsequently classified. IoU
threshold set for this training was 0.6, maximal number of proposals was 300. Learning

Figure 25: Sensitivity and precision boxplot graph of Faster RCNN Inception
v2 results

 38

rate was the same as with the Faster RCNN Inception v2 model, 0.0003 for first 90000
steps, 0.00003 for next 30000 steps and 0.000003 for the rest of the training. Softmax was
chosen as the activation function of the classifier. This model was fine-tuned for more
than 12 hours to reach a sufficiently low error margin. [40]

On the figure 26, there is a boxplot graph summarizing the results of testing of the
fine-tuned RFCN model. The model achieved fairly high values of both sensitivity and
precision with small variance. Sensitivity averaged at 71.79% and precision reached an
average of 82.33%. On the figure 27, you can see the actual results of detection by the
fine-tuned RFCN model. The image was resized to a quarter of the original size, resulting
in a size of 512x512 pixels and containing more than 62 originally detected and 58 newly
detected proteins.

Figure 26: Sensitivity and precision boxplot graph of RFCN results

 39

7.6 Results after using MobileNet SSD v2

The last model that was fine-tuned was the MobileNet SSD v2, which is more closely
described in the theoretical part of this thesis. The model was originally trained on the
same COCO dataset as the rest of these models. Parameters of the training were set to a

Figure 27: Top image = originally detected proteins, bottom image = newly detected proteins in
1952_025_3.png. Original size of the image is 512x512 px. Resize: 0.25

 40

maximum of 100 proposals, IoU threshold to 0.6 and learning rate to 0.004, which did
not change for the duration of training. The activation function of the classifier was
defined as sigmoid. Fine-tuning by the dataset created for the purposes of this thesis took
more than 14 hours. However, the loss margin did not decrease to the intended value of
1 but stayed fairly high at around 2.5. significant. This model is comprised of 17 basic
MobileNet building blocks (one of these blocks is shown on figure 14), followed by 1x1
standard convolutional layer, pooling layer and a classifier.

Results of testing of MobileNet SSD v2 can be seen on Figure 28. It is apparent
that both sensitivity and precision values have large variance and are in average much
smaller than in the cases of previously mentioned models. The average of sensitivity is
only 30.87% and the average of precision reached 67.98%. The model is able to detect
objects in an image much faster than the rest of the tested models but there is a decrease
in performance.

7.7 Comparison of methods

In this chapter, the comparison of performance of models mentioned in previous chapters
is shown using the table 3 and a boxplot graph on figure 29.

Figure 28: Sensitivity and precision boxplot graph of MobileNet SSD v2 results

 41

Table 3: Comparison of average results achieved by object detection models mentioned in a few
previous chapters.

Model name Average sensitivity [%] Average precision [%]

Faster RCNN Resnet50 65.98 80.98

Faster RCNN Inception v2 58.39 71.37

RFCN 71.79 82.33

MobileNet SSD v2 30.87 67.98

Both Table 3 and Figure 29 present the comparison of results achieved by the fine-
tuned models. It is apparent that MobileNet SSD v2 model achieved the worst precision
and sensitivity and for that reason is by far the worst in regards of its performance. The
speed of the model is however much greater than of any other used model. The remaining
three models are somewhat similar performance-wise. Nevertheless, the best performance
was achieved by the fine-tuned RFCN model, since it reached the highest average
sensitivity, precision. Its results are also much more consistent, which means that its high
sensitivity and precision values are no accident.

It is necessary to mention that the order, in which the models take place regarding
their performance is very consistent with how large the models are and how long did they
take to train effectively. The RFCN model is by far the largest, almost twice as large as
Faster RCNN Resnet50 in terms of size in megabytes. On the other hand, MobileNet SSD
v2 is quite small and simpler model and that is perhaps the reason its performance is so
weak and ineffective.

Figure 29: Sensitivity and precision boxplot graph of all used models

 42

All of the models used in this part were analysed by their creators, stating their
speed during object detection and also their performance using mean average precision
score (mAP). This score is calculated from the relation between precision and sensitivity
(also known as recall). The general rule says that the higher the sensitivity, the lower the
precision. This is caused by the increase of false positive occurrences in the cases with
higher sensitivity. During the calculation of AP, the sensitivity value is changed several
times. These alternations in sensitivity are achieved by changing the threshold that
differentiates regions of interest between foreground and background. The models were
originally trained on real life objects such as people, cars or dogs, creating multiple
classes for object detection. The AP score is then calculated for each class and since these
models were trained on COCO dataset, a validation set created from these images was
used for these calculations. The mAP score is then calculated as the mean value of AP
values for each class. [45]

The formula for calculation of average precision score is shown below.

𝐴𝐴𝐴𝐴 = 1
𝑛𝑛
∑ 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖)𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖 Equation 6

The variable n stands for number of different sensitivity values that were used
during the calculation. Usually, there are 5-10 of theses different values. Another vital
parameter of the used models is their speed. Their authors measured the object detection
speed of models using 600x600 px images. The speed values are shown in milliseconds
and will be different for every hardware configuration of the computer, on which they
run. The relative changes in between them should however stay the same. The table below
shows the speed and mAP scores of used models: [45], [46]

Table 4: Speed and mAP scores of models used for object detection

Model name Speed [ms] mAP score [%]

Faster RCNN Inception v2 58 28

Faster RCNN Resnet50 89 30

RFCN 92 30

MobileNet SSD v2 31 22

 During the usage of these models on problem discussed in this thesis. The relative
speed of the models stayed pretty much the same, with MobileNet SSD v2 being the
fastest by a fairly large margin. They are slight differences between values of performance
given in the table above and values measured during the experiment contained in this
thesis. The table suggests that RFCN and Faster RCNN Resnet50 model should have the
same performance but that does not comply with the results achieved in this thesis, where
RFCN is clearly the more powerful model. However, this can be explained by the fact
that images and objects analysed in this thesis are very different to the ones used during
the calculations stated in the table above.

 43

8 APPLICATION OF CLUSTER ANALYSIS
In this part of the thesis, I will write about the reason, application and results of applying
cluster analysis on the recorded data, which are described in the previous chapter. Some
information about this procedure are described in the theoretical part of this thesis, more
specifically in chapter 4.3 K-means used for clustering of images. The whole purpose of
the application of cluster analysis is to exclude incorrectly detected objects – false
positives that will ideally end up in different clusters than correctly identified objects –
true positives.

The application of cluster analysis is in this case performed by the script
OD_and_Slice.py that calls upon functions from scripts Cluster_RN.py and
Cluster_VGG.py. The first script works very similarly to the script used for evaluation of
results of object detection carried out by the fine-tuned models. It also loads up the
inference graph of the model, the label map and the test image. Then it carries out the
object detection and saves the coordinates of newly detected proteins. However, unlike
the script mentioned in the previous chapter, it does not directly evaluate the results of
the detection. Instead, it makes small images of all newly detected boxes that are to be
used for clustering and saves then into a folder defined by the user.

After the images are created, functions from clustering scripts come into play.
These scripts firstly load up the small images representing detected boxes. Then a feature
extractor – either Resnet50 or VGG16 – is used to extract features of all the images. These
features are then clustered by the K-means algorithm into 5 clusters. Out of these clusters,
the rarest is found and coordinates belonging to the images that are located in this cluster
are then deleted. The newly created coordinates after clustering are then subjected to the
same evaluation as the coordinates described in the previous chapter – sensitivity and
precision values are calculated.

The reason for selecting the rarest cluster, in other words the cluster containing
the least images, is that the precision achieved by the models is fairly high. This means
that it would not be wise to get rid of some large clusters, because that would almost
definitely delete some correctly detected objects. As mentioned in the beginning of this
chapter, the cluster analysis is applied in order to exclude false positives. It cannot work
as a tool with the ability to detect new objects, sensitivity there cannot be increased. The
only parameter that can be made better is the rate between false positives and true
positives – the precision.

8.1 Cluster analysis using Resnet50 network as
feature extractor

This chapter will describe a cluster analysis of detected objects using Resnet50 as the
feature extractor. K-means will create 5 clusters and the cluster containing the least
images will be excluded. If there are two or more clusters containing the same and
smallest number of images, the cluster to be excluded will be chosen randomly. In the
Table 5, you can see the calculated values of precision and sensitivity achieved by the
RFCN model both before and after clustering of the results. A new parameter added to
evaluate the success of the clustering will be the F1 score – harmonic mean of precision
and sensitivity. The F1 score is calculated using the formula below.

 44

𝐹𝐹1 = 2 ∗ (𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆∗𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃)
(𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆+𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃)

 Equation 7

Table 5: Results of protein detection using a fine-tuned RFCN model before and after clustering.
Images are in a *.png format. Since the images are square, sizes are given by the length
of one of the 4 equal edges. Sensitivity, precision and F1 score values are shown in
percentage [%].

 Before Clustering After Clustering
Image name Sensitivity Precision F1 Sensitivity Precision F1
1952_1 52.94 60 56.25 52.94 64.29 58.07
1952_2 78.85 75 76.88 73.68 77.78 75.67
1952_3 68.42 76.47 72.22 63.16 80 70.59
1952_4 77.78 77.78 77.78 77.78 87.5 82.35
1952_5 68.42 72.22 70.27 63.16 70.59 66.67
1955_1 81.25 81.25 81.25 81.25 86.67 83.87
1955_2 66.67 75 70.59 66.67 85.71 75.00
1955_3 82.35 77.78 80.00 76.47 76.47 76.47
1955_4 73.33 73.33 73.33 66.67 71.43 68.97
1955_5 76.47 86.67 81.25 70.59 85.71 77.42
1952_05_1 70.59 85.71 77.42 69.18 87.04 77.09
1952_05_2 78.33 90.38 83.92 71.67 89.58 79.63
1952_05_3 72.06 87.5 79.03 69.18 87.04 77.09
1952_05_4 74.24 92.45 82.35 72.73 94.18 82.08
1952_05_5 74.6 88.68 81.03 73.01 88.46 80.00
1955_05_1 67.31 77.78 72.17 63.46 78.57 70.21
1955_05_2 71.62 85.48 77.94 70.27 88.14 78.20
1955_05_3 61.97 77.19 68.75 60.56 79.63 68.80
1955_05_4 67.74 91.3 77.77 67.74 93.33 78.50
1955_05_5 76.71 90.32 82.96 69.86 89.47 78.46
1952_025_1 76.56 90.74 83.05 76.56 92.45 83.76
1952_025_2 72.58 83.33 77.58 72.58 84.91 78.26
1952_025_3 80.64 86.21 83.33 79.03 87.5 83.05
1952_025_4 71.43 77.59 74.38 68.25 78.18 72.88
1952_025_5 71.42 83.33 76.92 71.43 84.75 77.52
1955_025_1 68.75 84.62 75.86 68.75 86.27 76.52
1955_025_2 75.34 90.16 82.09 73.97 91.53 81.82
1955_025_3 65.75 85.71 74.41 63.01 85.19 72.44
1955_025_4 63.51 87.04 73.44 62.16 86.79 72.44
1955_025_5 66.18 78.95 72.00 66.18 80.36 72.58
Average 71.79 82.33 76.54 69.4 83.98 75.88

 45

In the table 5 and figure 31, you can see that precision improved by clustering and
sensitivity worsened, just as expected. However, there was a slight decrease in the F1
score, which means that clustering features produced by Resnet50 network did not
improve overall results of the object detection carried out by the RFCN model.

Unfortunately, clustering using Resnet50 as feature extractor did not improve
results of the Faster RCNN Inception v2 either. There was only a slight improvement

Figure 31: Sensitivity, precision and F1 score of RFCN model before and after clustering with
Resnet50 as feature extractor

Figure 30: Sensitivity, precision and F1 score of Faster RCNN Inception v2 model before and
after clustering with Resnet50 as feature extractor

 46

regarding precision but larger decrease in sensitivity. F1 score before clustering reached
63.87% and 62.3% after clustering, which is worse by more than 1.5%.

Figure 32 shows a boxplot representation of object detection results of Faster
RCNN Resnet50 model before and after K-means clustering with Resnet50 as feature
extractor. Once again, the clustering did not help the overall performance of the object
detection. The average F1 score reached 72.53% before the clustering and only 71.42%
after it.

Figure 32: Sensitivity, precision and F1 score of Faster RCNN Resnet50 model before and after
clustering with Resnet50 as feature extractor

Figure 33: Sensitivity, precision and F1 score of MobileNet SSD v2 model before and after
clustering with Resnet50 as feature extractor

 47

As you can see on the Figure 33 above, MobileNet SSD v2 model did not do very
well during object detection, and clustering did not improve the results either. Before and
after clustering F1 scores are 40.19% and 39.32% respectively. In some cases, the object
detection by MobileNet SSD v2 was so ineffective, it did not produce enough objects
from an image to be clustered (5 or more). Whenever that happened, the clustering step
was not performed for that particular image.

8.2 Cluster analysis using VGG16 network as feature
extractor

This chapter will be very similar to the previous one. The only difference is that the k-
means clustering was applied on features produced by VGG16 feature extractor rather
than Resnet50. The results were collected in the same way.

Figure 34 shows the results of clustering of RFCN results using VGG16 as feature
extractor. The outcome is fairly similar to the usage of Resnet50 as feature extractor. The
precision values are higher in average and also higher extremes were achieved. Sensitivity
slightly worsened as expected and F1 score seems to be a little bit more consistent but
once again worse than before clustering, averaging 75,93% after clustering compared to
76.54% before.

As you can see on Figure 36, thanks to clustering using VGG16 as feature
extractor, Faster RCNN Inception v2 object detection has improved its precision values,
while having more consistent numbers as well. F1 score reached almost the same value
as before clustering, with the difference of only 0.57%.

Figure 34: Sensitivity, precision and F1 score of RFCN model before and after clustering with
VGG16 as feature extractor

 48

 In case of Resnet50, clustering using VGG16 did not improve precision of the
object detection model as much as in the rest of the cases. However, sensitivity decreased
by almost 3%, which means that the F1 score went down quite significantly.

Figure 36: Sensitivity, precision and F1 score of Faster RCNN Inception v2 model before and
after clustering with VGG16 as feature extractor

Figure 35: Sensitivity, precision and F1 score of Faster RCNN Resnet50 model before and after
clustering with VGG16 as feature extractor

 49

 As you can see in the boxplot graph on figure 37, precision of the MobileNet SSD
v2 object detection model became less consistent after clustering, having a large range of
values in the main 25-75 percentile box. Unfortunately, sensitivity and F1 score decreased
compared to the values before clustering, meaning that the object detection is less
efficient than before.

Figure 37: Sensitivity, precision and F1 score of MobileNet SSD v2 model before and after
clustering with VGG16 as feature extractor

 50

9 EVALUATION OF THE RESULTS
In this final chapter, I will try to compare the results of the two clustering methods.
Another comparison will be made, taking into an account results of object detection using
other already published methods.

9.1 Comparison of the two clustering methods

Previous chapter shown graphs containing the results of object detection before and after
clustering. The table below shows average values of all variations that were carried out
during this thesis.

Table 6: Comparison of sensitivity, precision and F1 scores of all used models before clustering,
after clustering using Resnet50 as feature extractor and after clustering using VGG16
as feature extractor.

Model Sensitivity [%] Precision [%] F1 score [%]
RFCN
Without clustering 71.79 82.33 76.54
After clustering using Resnet50 69.4 83.98 75.88
After clustering using VGG16 69.73 83.68 75.93
Faster RCNN Inception v2
Without clustering 58.39 71.37 63.87
After clustering using Resnet50 55.37 72.16 62.3
After clustering using VGG16 56.73 72.55 63.3
Faster RCNN Resnet50
Without clustering 65.98 80.98 72.53
After clustering using Resnet50 63.39 82.35 71.42
After clustering using VGG16 63.21 81.81 71.09
MobileNet SSD v2
Without clustering 30.87 67.98 40.19
After clustering using Resnet50 29.58 69.88 39.32
After clustering using VGG16 29.98 69.84 39.62

 It is apparent from the table 6 above that neither one of the two used clustering
methods was helpful regarding the final F1 score of the object detection. The decrease in
sensitivity was always way too significant for the improvement in precision to even it out.
However, there are still some slight differences between the two methods that can be
mentioned. For example, the clustering method using VGG16 network achieved often
better F1 scores than the method using Resnet50, although the differences are rather
small. This slight advantage is caused by the fact that in most cases, the sensitivity of the
detection was not harmed as much as when using Resnet50. The only time, this does not

 51

apply, is the case of object detection model Faster RCNN Resnet50, which uses the same
feature extractor. The subsequent process is different obviously, but there can be some
sort of bias that makes the clustering method using the same Resnet50 feature extractor
more effective.

9.2 Comparison with published methods

A few already published methods are described in chapter – Existing algorithms and their
comparison. The chapter also includes a table with their results. Two parameters are
described in the table FPR – False positive rate and FNR – false negative rate. FPR is
calculated using this formula:

𝐹𝐹𝐹𝐹𝐹𝐹 = 1 − 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 Equation 8

FNR is calculated in a similar way, instead of sensitivity, specificity is used.
However, as mentioned earlier, it is not possible to calculated specificity using this data
set, since the number of true negatives is unknown. And that is why, the comparison can
be made using only FPR as shown in the Table 7 located below. In this case, the lower
the number, the better the result

Table 7: A comparison of methods used in this thesis and previously published methods using
values of FPR:

Model False positive rate [%]
RFCN
Without Clustering 28.21
After clustering using Resnet50 30.6
After clustering using VGG16 30.27
Faster RCNN Inception V2
Without Clustering 41.61
After clustering using Resnet50 44.63
After clustering using VGG16 43.27
Faster RCNN Resnet50
Without Clustering 34.02
After clustering using Resnet50 36.61
After clustering using VGG16 36.79
MobileNetSSD
Without Clustering 69.13
After clustering using Resnet50 70.42
After clustering using VGG16 70.02
FindEM (Method 1) 10.6
FindEM (Method 2) 18.3
SLEUTH 7

 52

It is apparent from the table 7 that the methods developed in this thesis are not as
effective as methods published previously, which are working using different principles.
The best method that was developed here, the fine-tuned RFCN model, reached FPR of
28.21% but the best method outside this thesis, the SLEUTH method, reached FPR of
7%, which is far better. The FindEM methods are slightly less efficient than SLEUTH
but still better than methods developed during this thesis.
 However, it is not easy to compare these methods, since they were not tested on
the same dataset. Our dataset contained images that were heavily affected by noise and
many proteins were invisible to the naked eye. It is hard to judge how much affected by
noise were the images used by other authors, but it is possible that those images were
different, perhaps even less noisy. Algorithms work differently on different datasets, so
they often need to be adapted to the problem at hand. Results achieved by algorithm
developed in this thesis could be perhaps improved if the algorithm was made more
suitable for the images that were dealt with.

 53

CONCLUSION
This thesis on the topic detection of biological structures in TEM microscope images
contains a theoretical analysis of the topic in the first part of the thesis. This is followed
by the practical part, where the created algorithm is described, and the results of the
detection are analysed and compared.

 From the results, it is obvious that the detection is not perfect at all. Some of
the models such as the RFCN or Faster RCNN Resnet50 reached fairly good results but
they are generally less efficient than already used methods. There are several possible
reasons to cause this imperfection. For example, usage of more resize rates, different
lighting and images affected by different levels of noise could be used to further improve
the content of dataset and subsequently make the detection more efficient. Another
possible improvement could be done by using a different model to be fine-tuned. In the
last chapters of the thesis, it is mentioned that more complex and larger models achieve
better results, so in order to improve the detection, it would be wise to go through the
largest and most complex models.

When it comes to the clustering part, it is obvious and also explained that the
sensitivity of the detection cannot get any better after clustering. In the best-case scenario,
clustering excludes all the false positive occurrences, raises the precision value to 100%
and does not change sensitivity. Even though clustering usually excluded several false
positives, it excluded true positives as well, decreasing sensitivity to the point when it
was deemed ineffective to use. This problem could be theoretically solved by using a
different configuration of clustering and feature extraction. Several other configurations
were attempted but neither of them showed better results than using five clusters and
excluding the rarest one of them. There are also several other feature extractors that could,
in theory, improve the results of cluster analysis.

Another way to improve precision but not sensitivity would be to use a higher
confidence score threshold during the primary object detection. Fairly low threshold of
0.5 that increased the detection of false positive occurrences was used for two reasons.
The first one is that some correctly detected objects did actually have low confidence
score and it would be inefficient not to detect them. The second reason was that the false
positive occurrences and more specifically their exclusion were meant to help show the
function of cluster analysis.

 54

LITERATURE
[1] KARLÍK M: Transmisní elektronová mikroskopie: pohled do nitra materiálů

[online]. [cit. 2018-10-14]. Katedra materiálů, FJFI ČVUT. Available at:
https://nanoed.tul.cz/pluginfile.php/603/mod_resource/content/1/TEM_05_Karli
k.pdf

[2] Transmisní elektronová mikroskopie [online]. [cit. 2018-10-14]. Available at:
http://atmilab.upol.cz/texty/TEM-teorie.pdf

[3] KUBÍNEK R, ŠAFÁŘOVÁ K, VŮJTEK M: Elektronová mikroskopie [online].
[cit. 2018-10-14]. Katedra experimentální fyziky a centrum výzkumu
nanomateriálů, Univerzita Palackého v Olomouci. Available at:
https://fyzika.upol.cz/cs/system/files/download/vujtek/granty/elmikro.pdf

[4] KARLÍK M: Úvod do transmisní elektronové mikroskopie. Praha ČVUT, 2011.
[cit. 2018-10-14]. ISBN 978-80-01-04729-3.

[5] EWEN C: Cryo-EM enters a new era. eLife. 3:e03678 [online]. [cit. 2018-10-21].
Available at: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4131193/

[6] BROADWITH P: Explainer: What is cryo-electron microscopy [online]. [cit.
2018-10-21]. Available at: https://www.chemistryworld.com/news/explainer-
what-is-cryo-electron-microscopy/3008091.article

[7] KREČMEROVÁ P: Segmentace obrazů z optické mikroskopie pro podporu
laboratorní diagnostiky vybraných chorob krve [online]. Brno, 2011 [cit. 2018-
10-21]. Centrum pro výzkum toxických látek v prostředí, Masarykova univerzita.
Available at: https://is.muni.cz/th/qgsfn/dp_211618.pdf

[8] ROSENTHAL PB: Testing the Validity of Single-Particle Maps at Low and High
Resolution. Methods in Enzymology, Volume 579. [cit. 2018-11-06]. doi:
10.1016/bs.mie.2016.06.004

[9] Preparing samples for the electron microscope [online]. [cit. 2018-11-06].
Available at: https://www.sciencelearn.org.nz/resources/500-preparing-samples-
for-the-electron-microscope

[10] JAN J: Digital Signal Filtering, Analysis and Restoration. volume 44. volume 44.
London: The Institution of Electrical Engineers, 2000. 407 s. [cit. 2018-11-06]
ISBN: 0-85296-760- 8.

[11] LUCIC V, RIGORT A, BAUMEISTER W: Cryo-electron tomography: the
challenge of doing structural biology in situ. The Journal of Cell Biology, 202 (3):
407 - 419. [cit. 2018-11-24]. doi: 10.1083/jcb.201304193.

[12] Cryo-Tomography [online]. [cit. 2018-11-24]. Thermo Fischer Scientific.
Available at: https://www.fei.com/life-sciences/cryo-tomography/

[13] Preparing samples for the electron microscope [online]. [cit. 2018-11-24]. Science
Learning Hub. Available at: https://www.sciencelearn.org.nz/resources/500-
preparing-samples-for-the-electron-microscope

[14] EGMONT-PETERSEN M, DE RIDDER D, HANDLES H: Image processing
with neural network – a review. [cit. 2018-11-24]. Pattern Recognition 35/10.
doi:10.1016/S0031-3203(01)00178-9

[15] Convolution neural networks [online]. [cit. 2018-11-24]. CS231n Convolutional
Neural Networks for Visual Recognition. Available at:
http://cs231n.github.io/convolutional-networks/

[16] GHUMAN SS: Clustering Techniques – A Review [online]. [cit. 2018-11-24].
International Journal of Computer Science and Mobile Computing, Vol. 5, Issue

https://nanoed.tul.cz/pluginfile.php/603/mod_resource/content/1/TEM_05_Karlik.pdf
https://nanoed.tul.cz/pluginfile.php/603/mod_resource/content/1/TEM_05_Karlik.pdf
http://atmilab.upol.cz/texty/TEM-teorie.pdf
https://fyzika.upol.cz/cs/system/files/download/vujtek/granty/elmikro.pdf
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4131193/
https://www.chemistryworld.com/news/explainer-what-is-cryo-electron-microscopy/3008091.article
https://www.chemistryworld.com/news/explainer-what-is-cryo-electron-microscopy/3008091.article
https://is.muni.cz/th/qgsfn/dp_211618.pdf
https://www.sciencelearn.org.nz/resources/500-preparing-samples-for-the-electron-microscope
https://www.sciencelearn.org.nz/resources/500-preparing-samples-for-the-electron-microscope
https://www.fei.com/life-sciences/cryo-tomography/
https://www.sciencelearn.org.nz/resources/500-preparing-samples-for-the-electron-microscope
https://www.sciencelearn.org.nz/resources/500-preparing-samples-for-the-electron-microscope
http://doi.org/10.1016/S0031-3203%2801%2900178-9
http://cs231n.github.io/convolutional-networks/

 55

5, May 2016, 524 – 530. Available at:
https://www.ijcsmc.com/docs/papers/May2016/V5I5201699a5.pdf

[17] KUČERA J: Shluková analýza [online]. [cit. 2018-11-24]. MUNI. Available at:
https://is.muni.cz/th/w8lgz/5739129/web/web/main.html

[18] DHANACHANDRA N, MANGLEM K, CHANU YJ: Image Segmentation using
K-means Clustering Algorithm and Subtractive Clustering Algorithm. [cit. 2018-
11-24]. Procedia Computer Science 54 (2015), 764 – 771. doi:
10.1016/j.procs.2015.06.090.

[19] SCHERES SHW: Semi-automated selection of cryo-EM particles in RELION-
1.3. [cit. 2018-12-25]. Journal of Structural Biology 189 (2015) 114-122. doi:
10.1016/j.jsb.2014.11.010.

[20] SHORT MJ: SLEUTH – a fast computer program for automatically detecting
particles in electron microscope images. [cit. 2018-12-25]. MRC Laboratory of
Molecular Biology. PMID: 15065678.

[21] TANG G, PENG L, BALDWIN PR, MANN DS, JIANG W, REES I, LUDTKE
SJ: EMAN2: An extensible image processing suite for electron microscopy. [cit.
2018-12-25]. Journal of Structural Biology 157 (2007) 38-46. doi:
10.1016/j.jsb.2006.05.009.

[22] ROSEMAN AM: FindEM – a fast, efficient program for automatic selection of
particles from electron micrographs [online]. [cit. 2018-12-25]. Journal of
Structural Biology 145 (2004) 91-99. PMID: 15065677.

[23] Transmission electron microscopy clipart collection [online]. [cit. 2018-12-26].
Available at: http://diysolarpanelsv.com/transmission-electron-microscope.html

[24] Problems with lenses of TEMs [online]. [cit. 2018-12-26]. Available at:
https://myscope.training/legacy/tem/background/concepts/problems/

[25] RAMIRÉZ-CORTÉS J, GÓMEZ-GIL P: Shape-based hand recognition approach
using the morphological pattern spectrum. [cit. 2018-12-26]. doi:
10.1117/1.3099712

[26] Edge Detection [online]. [cit. 2018-12-26]. Available at:
https://www.mathworks.com/discovery/edge-detection.html

[27] Watershed (Region segmentation) [online]. [cit. 2018-12-26]. Available at:
https://www.visco-tech.com/english/technology/gauging/

[28] WHITE D: Inception Network Overview [online]. [cit. 2018-12-26]. Available at:
https://www.cs.colostate.edu/~dwhite54/InceptionNetworkOverview.pdf

[29] SIYUAN J, QI Q: Regression, classification and clustering: The advantages and
disadvantages of machine learning algorithms in three major directions [online].
[cit. 2018-12-26]. Available at: https://weiwenku.net/d/100416195

[30] TONIONI A: TensorFlow – 101 [online]. [cit. 2019-03-31]. Available at:
https://www.slideshare.net/alessiotonioni/tensorflow-intro-2017

[31] What is TensorFlow? [online]. [cit. 2019-04-01]. Available at:
https://www.guru99.com/what-is-tensorflow.html

[32] WILLEMS K: TensorFlow Tutorial for Beginners [online]. [cit. 2019-04-01].
Available at: https://www.datacamp.com/community/tutorials/tensorflow-tutorial

[33] KURT: Object Detection Tutorial in TensorFlow: Real-Time Object Detection
[online]. [cit. 2019-04-07]. Available at:
https://www.edureka.co/blog/tensorflow-object-detection-tutorial/

https://www.ijcsmc.com/docs/papers/May2016/V5I5201699a5.pdf
https://is.muni.cz/th/w8lgz/5739129/web/web/main.html
https://doi.org/10.1016/j.jsb.2014.11.010
http://diysolarpanelsv.com/transmission-electron-microscope.html
https://myscope.training/legacy/tem/background/concepts/problems/
https://www.mathworks.com/discovery/edge-detection.html
https://www.visco-tech.com/english/technology/gauging/
https://www.cs.colostate.edu/%7Edwhite54/InceptionNetworkOverview.pdf
https://weiwenku.net/d/100416195
https://www.slideshare.net/alessiotonioni/tensorflow-intro-2017
https://www.guru99.com/what-is-tensorflow.html
https://www.datacamp.com/community/tutorials/tensorflow-tutorial
https://www.edureka.co/blog/tensorflow-object-detection-tutorial/

 56

[34] LYSUKHIN D: TensorFlow Object Detection API: Basics of Detection [online].
[cit. 2019-04-07]. Available at: https://becominghuman.ai/tensorflow-object-
detection-api-basics-of-detection-7b134d689c75

[35] CHOW D: Training an object detector using Cloud Machine Learning Engine
[online]. [cit. 2019-04-07]. Available at:
https://cloud.google.com/blog/products/gcp/training-an-object-detector-using-
cloud-machine-learning-engine

[36] GOSWAMI S: A deeper look at how Faster-RCNN works [online]. [cit. 2019-04-
07]. Available at: https://medium.com/@whatdhack/a-deeper-look-at-how-faster-
rcnn-works-84081284e1cd

[37] GIRSHICK R: Fast R-CNN. [cit. 2019-04-07]. arXiv:1504.08083v2
[38] DAS S: CNN Architectures [online]. [cit. 2019-05-02]. Available at:

https://medium.com/@sidereal/cnns-architectures-lenet-alexnet-vgg-googlenet-
resnet-and-more-666091488df5

[39] HE K, XIANGYU Z, SHAOQING R, JIAN S: Deep Residual Learning for Image
Recognition. [cit. 2019-05-02]. arXiv:1512.03385

[40] DAI J, LI Y, HE K, SUN J: R-FCN: Object Detection via Region-based Fully
Convolutional Networks. [cit. 2019-05-09]. arXiv:1605.06409

[41] HOLLEMANS M: MobileNet Version 2. [online]. [cit. 2019-05-13]. Available
at: https://machinethink.net/blog/mobilenet-v2/

[42] SHUKLA A: Simulation on programmable graphics hardware (GPUs). [online].
[cit. 2019-05-13]. Available at: http://run.usc.edu/cs599-
s10/scribeNotes/Akshay_Shukla_scribe_notes.pdf

[43] cuDNN Developer Guide. [online]. [cit. 2019-05-13]. Available at:
https://docs.nvidia.com/deeplearning/sdk/cudnn-developer-guide/index.html

[44] GRANGER E: Faster Regional-CNN (R-CNN) architecture. [online]. [cit. 2019-
05-13]. Available at: https://www.researchgate.net/figure/Faster-Regional-CNN-
R-CNN-architecture_fig2_320719820

[45] ARLEN TC: Understanding the mAP Evaluation Metric for Object Detection.
[online]. [cit. 2019-05-14]. Available at:
https://medium.com/@timothycarlen/understanding-the-map-evaluation-metric-
for-object-detection-a07fe6962cf3

[46] TensorFlow detection model zoo. [online]. [cit. 2019-05-14]. Available at:
https://github.com/tensorflow/models/blob/master/research/object_detection/g3d
oc/detection_model_zoo.md

https://becominghuman.ai/tensorflow-object-detection-api-basics-of-detection-7b134d689c75
https://becominghuman.ai/tensorflow-object-detection-api-basics-of-detection-7b134d689c75
https://cloud.google.com/blog/products/gcp/training-an-object-detector-using-cloud-machine-learning-engine
https://cloud.google.com/blog/products/gcp/training-an-object-detector-using-cloud-machine-learning-engine
https://medium.com/@whatdhack/a-deeper-look-at-how-faster-rcnn-works-84081284e1cd
https://medium.com/@whatdhack/a-deeper-look-at-how-faster-rcnn-works-84081284e1cd
https://medium.com/@sidereal/cnns-architectures-lenet-alexnet-vgg-googlenet-resnet-and-more-666091488df5
https://medium.com/@sidereal/cnns-architectures-lenet-alexnet-vgg-googlenet-resnet-and-more-666091488df5
https://machinethink.net/blog/mobilenet-v2/
http://run.usc.edu/cs599-s10/scribeNotes/Akshay_Shukla_scribe_notes.pdf
http://run.usc.edu/cs599-s10/scribeNotes/Akshay_Shukla_scribe_notes.pdf
https://docs.nvidia.com/deeplearning/sdk/cudnn-developer-guide/index.html
https://www.researchgate.net/figure/Faster-Regional-CNN-R-CNN-architecture_fig2_320719820
https://www.researchgate.net/figure/Faster-Regional-CNN-R-CNN-architecture_fig2_320719820
https://medium.com/@timothycarlen/understanding-the-map-evaluation-metric-for-object-detection-a07fe6962cf3
https://medium.com/@timothycarlen/understanding-the-map-evaluation-metric-for-object-detection-a07fe6962cf3
https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/detection_model_zoo.md
https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/detection_model_zoo.md

 57

LIST OF ATTACHEMENTS
1. Electronic version of this thesis
2. Scripts used for image preparation, object detection and cluster analysis
3. Original images used to for generation of training and testing sets of images
4. Test images used for evaluation of the algorithm
5. An inference graph of the Faster RCNN Resnet50 fine-tuned model and the

associated label map
6. Manual with instructions regarding the use of the algorithm

	TitulniList_color (2)
	pdf_dokumentdb36acc05e19567a061f86511193d11f
	Master's Thesis
	Abstrakt
	Klíčová slova
	Abstract
	Keywords
	Prohlášení
	Poděkování
	Table of Contents
	List of Figures
	List of Tables
	Introduction
	1 Transmission electron microscopy
	1.1 Architecture
	1.1.1 Vacuum system
	1.1.2 Electron gun
	1.1.3 Electromagnetic lenses
	1.1.4 Imaging system

	1.2 Image acquisition
	1.2.1 Acquisition of images of biological material
	1.2.2 Acquisition of images of crystal material

	1.3 Cryo-TEM
	1.3.1 Single-particle analysis
	1.3.2 Cryo-Tomography

	2 Complications while using TEM
	2.1 Lens aberrations
	2.1.1 Chromatic aberration
	2.1.2 Spherical aberration
	2.1.3 Astigmatism

	2.2 Other complications

	3 Segmentation and object detection
	3.1 Segmentation methods
	3.1.1 Parametric segmentation
	3.1.2 Region-Based Segmentation
	3.1.3 Edge-based segmentation
	3.1.4 Active contour segmentation

	3.2 Segmentation using neural networks
	3.2.1 Based on pixel data
	3.2.2 Based on features

	3.3 Usage of convolutional neural networks
	3.4 Object detection
	3.4.1 Basics of TensorFlow
	3.4.2 Faster RCNN
	3.4.3 MobileNet + SSD
	3.4.4 CUDA

	4 Cluster analysis
	4.1 Hierarchical clustering methods
	4.1.1 Agglomerative methods
	4.1.2 Divisive methods

	4.2 Non-hierarchical clustering methods
	4.2.1 K-means

	4.3 K-means used for clustering of images
	4.3.1 Feature extraction using Resnet and VGG

	5 Proposed evaluation of results
	6 Desing of the algorithm
	6.1 Existing algorithms and their comparison
	6.1.1 SLEUTH
	6.1.2 EMAN2
	6.1.3 FindEM
	6.1.4 Comparison

	6.2 Theoretical design of the proposed algorithm

	7 Practical part
	7.1 Creation of training set and test set
	7.2 Setting up the training
	7.3 A way of evaluating results of the object detection
	7.4 Results after using versions of Faster RCNN
	7.4.1 Faster RCNN Resnet50
	7.4.2 Faster RCNN Inception v2

	7.5 Results after using RFCN model
	7.6 Results after using MobileNet SSD v2
	7.7 Comparison of methods

	8 Application of cluster analysis
	8.1 Cluster analysis using Resnet50 network as feature extractor
	8.2 Cluster analysis using VGG16 network as feature extractor

	9 Evaluation of the results
	9.1 Comparison of the two clustering methods
	9.2 Comparison with published methods

	Conclusion
	Literature
	List of attachements

