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Abstract 
M a n y tasks can be formulated i n the mathematical framework of weighted finite state trans
ducers ( W F S T ) . Th is is also the case for automatic speech recognition ( A S R ) . Nowadays, 
A S R makes extensive use of composed probabil ist ic models - called decoding graphs or 
recognition networks. They are constructed from the ind iv idua l components v i a W F S T 
operations like composit ion. Each component is a probabil ist ic knowledge source that con
strains the search for the best path through the composed graph - called decoding. The 
usage of a coherent framework guarantees, that the resulting automata w i l l be opt imal 
in a well-defined sense. W F S T s can be opt imized wi th the help of determinization and 
minimiza t ion in a given semi-ring. The application of these algorithms results i n the op
t ima l structure for search and the op t imal dis t r ibut ion of weights is achieved by applying 
a weight pushing algori thm. The goal of this thesis is to further develop the recipes and 
algorithms for the construction of op t imal recognition networks. We introduce an alterna
tive weight pushing algori thm, that is suitable for an important class of models - language 
model transducers, or more generally cyclic W F S T s and W F S T s wi th failure (back-off) 
transitions. We also present a recipe to construct recognition networks, which are suitable 
for decoding backwards i n t ime, and which, at the same time, are guaranteed to give exactly 
the same probabilities as the forward recognition network. For that purpose, we develop an 
algori thm for exact reversal of back-off language models and their corresponding language 
model transducers. We apply these backward recognition networks i n an opt imizat ion tech
nique: In a static network decoder, we use it for a two-pass decoding setup (forward search 
and backward search). This approach is called tracked decoding and allows to incorporate 
the first pass decoding into the second pass decoding by tracking hypotheses from the first 
pass lattice. Th is technique results in significant speed-ups, since it allows to decode wi th 
a variable beam wid th , which is most of the t ime much smaller than the baseline beam. 
We also show that it is possible to apply the algorithms i n a dynamic network decoder 
by using the incrementally refining recognition setup. This addit ional ly leads to a par t ia l 
parallelization of the decoding. 
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Abstrakt 
P o m o c í m a t e m a t i c k é h o formalismu váhovaných konečných s t avových p ř e v o d n í k ů (weighted 
hnite state transducers W F S T ) m ů ž e bý t fo rmulována ř a d a ú loh vče tně a u t o m a t i c k é h o 
rozpoznáván í řeči (automatic speech recognition A S R ) . Dnešn í A S R s y s t é m y široce využí
vají s ložených p r a v d ě p o d o b n o s t n í c h m o d e l ů n a z ý v a n ý c h dekódovac í grafy nebo rozpozná 
vací s í tě . T y jsou z j edno t l i vých komponent k o n s t r u o v á n y p o m o c í W F S T operac í , n a p ř . kom
pozice. K a ž d á komponenta je zde zdrojem zna los t í a omezuje vyh ledáván í nejlepší cesty 
ve s loženém grafu v operaci zvané dekódován í . Využ i t í k o h e r e n t n í h o t eore t i ckého r á m c e 
garantuje, že výs l edná s t ruktura bude o p t i m á l n í podle def inovaného kr i t é r ia . W F S T mo
hou bý t v r á m c i d a n é h o polookruhu (semi-ring) op t ima l i zovány p o m o c í determinizace a 
minimalizace. Apl ikací t ě ch to a lg o r i tmů z í skáme o p t i m á l n í s t rukturu pro p roh ledáván í , 
o p t i m á l n í distribuce vah je pak z í skána apl ikací "weight pushing" algori tmu. Cí lem t é t o 
p ráce je zdokonalit postupy a algoritmy pro konstrukci o p t i m á l n í c h rozpoznávac ích sít í . 
Zavád íme a l t e r n a t i v n í weight pushing algoritmus, k t e r ý je v h o d n ý pro dů lež i tou t ř í d u mod
elů - p ř e v o d n í k y j azykového modelu (language model transducers) a obecně pro všechny 
cyklické W F S T a W F S T se zá ložn ími (back-off) p řechody . P ř e d s t a v u j e m e t a k é z p ů s o b 
konstrukce rozpoznávac í s í tě v h o d n é pro dekódován í z p ě t n ě v čase, k t e r é p r o k a z a t e l n ě pro
dukuje ty s a m é p r a v d ě p o d o b n o s t i jako d o p ř e d n á síť. K tomuto účelu jsme vyv inu l i algo
ritmus pro e x a k t n í reverzi back-off j azykových m o d e l ů a p ř ev o d n ík ů , k t e r é je reprezentu j í . 
P o m o c í z p ě t n ý c h rozpoznávac ích sítí optimalizujeme dekódován í : ve s t a t i c k é m d e k o d é r u je 
v y u ž í v á m e pro d v o u s t u p ň o v é dekódován í ( d o p ř e d n ě a z p ě t n é vyh l edáván í ) . Tento p ř í s t u p 

- "sledovací" dekódován í (tracked decoding) — umožňu je zahrnout výs ledky vyh l edáván í 
z p r v n í h o s t u p n ě do d r u h é h o s t u p n ě tak, že se sledují h y p o t é z y obsažené v r o z p o z n á v a c í m 
grafu (lattice) p r v n í h o s t u p n ě . V ý s l e d k e m je p o d s t a t n é zrychlení dekódován í , p ro tože tato 
technika umožňu je p r o h l e d á v a t s va r i ab i ln ím p r o h l e d á v a c í m paprskem (search beam) - ten 
je pově t š inou mnohem užší než u z á k l a d n í h o p ř í s t u p u . Ukazujeme rovněž , že uvedenou tech
n iku je m o ž n é využ í t v d y n a m i c k é m d e k o d é r u t í m , že p o s t u p n ě z j emňujeme rozpoznáván í . 
To navíc vede i k čás t ečné paralelizaci dekódován í . 
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Chapter 1 

Introduction 

The application I had in m i n d while wr i t ing this thesis is the decoding of the most probable 
sequence of words in large vocabulary automatic speech recognition ( L V C S R ) . However, the 
approach presented here can also be used i n other tasks, which can be formulated i n the 
framework of weighted finite state acceptors ( W F S A ) or transducers ( W F S T ) , as e.g. finding 
the most probable sentence i n statist ical machine translation and finding the most probable 
pronunciation of a spelled word in grapheme-to-phoneme conversion. 

W h e n formulating automatic speech recognition ( A S R ) i n the W F S T framework [Al-
lauzen et al.(2004)], [Mohri et al.(2008)], we use composed W F S T s , called decoding graphs 
or recognition networks. W F S T s are used to represent the language model ( L M ) , the pro
nunciation lexicon and the Hidden Markov Models ( H M M ) i n a unified framework. These 
components are integrated into a single W F S T by the composit ion operation. E a c h com
ponent is a probabil ist ic knowledge source that constrains the search (called decoding) for 
the best path through the composed graph. The usage of a coherent framework guarantees, 
that the resulting automata w i l l be op t imal i n a well-defined sense. W F S T can be opti
mized by determinization and min imiza t ion in a given semi-ring. The application of these 
algorithms results in the op t imal structure for search. 

A n opt imized recognition network can contain up to mill ions of states, and the resulting 
search state space (trellis) is even several orders of magnitude larger. G i v e n the complexity 
of the task, the search spaces cannot be explored exhaustively. It is necessary to use heuristic 
pruning techniques. In this case, we have to dist inguish search errors, which are due to the 
incomplete exploration of the search space (e.g. through search beams and other pruning 
techniques), from modeling errors, which are due to insufficient (or bad) t ra ining data or due 
to inaccurate models (independence assumptions, choice of dis t r ibut ion, smoothing, . . . ) . 
In general, the goal is to reduce the amount of search errors at given run-time requirements 
(decoding speed). This can be achieved by operations like weight pushing, which a im to 
distribute the weights along the path in a way that is op t imal for pruned search. 

The goal of this thesis is to further develop the recipes and algorithms for the con
struction of opt imal recognition networks. We a im to find the op t imal trade-off between 
improving search speed and reducing search errors. We introduce the idea of symmetr ical ly 
decoding forwards and backwards i n time. For some tasks, the pruned backward search 
can be more efficient than the forward search. Moreover, we show, that the search errors of 
forward and backward search are mutual ly independent. To concentrate on search errors 
rather than on modeling errors, we require both decoding passes to be symmetric - i.e. bo th 
models are equally powerful and are constructed to assign exactly the same probabilities 
to hypotheses. Th is guarantees that each difference in comparing the results of forward 
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and backward decoding corresponds to a search error, which allows us to achieve significant 
speed-ups by decoding w i t h a variable beam width . 

1.1 Claims of the thesis 

The ma in contributions of this thesis can be summarized in the following points: 

• Symmetric forward and backward decoding: To speed-up the decoding, as op
posed to multi-pass recognition techniques [Nguyen et al.(1993)], we use forward and 
backward recognition passes which are equally powerful. Equa l ly powerful forward 
and backward decoding has been used before for the purpose of system combination 
[Li et al.(2009)] and confidence estimation [Jouvet and Fohr(2014)]. However, we 
require that the forward and backward recognition networks assign exactly the same 
probabil i ty scores, which allows us to detect search errors, to recombine par t ia l paths 
and to incorporate the first pass into the second pass. 

• W F S T s resulting from back-off and interpolated language models: We show, 
that the common practice to convert interpolated L M s into back-off L M s , when storing 
them i n the A R P A file format, leads to problems i n the construction of the recognition 
network i n the log-probabili ty semi-ring. We give details about the approximation 
and the correct handling of back-off arcs and explain "missing" N-grams. 

• Alternative weight pushing algorithm: We give the theoretical justification and 
explain details of the alternative weight pushing algori thm, that is suitable for an 
important class of models - language model transducers, or more generally cyclic 
W F S T s and W F S T s wi th failure (back-off) transitions. 

• Construct ion of symmetric backward recognition networks: We present a 
recipe to construct recognition networks, which are suitable for decoding backwards 
in time, fulfill the cri teria of determinism and similar size, and at the same time, are 
guaranteed to give exactly the same probabilities as the forward recognition network. 

• Exact back-off language model reversal: For the purpose of constructing back
ward recognition networks, we develop an algori thm for exact reversal of back-off 
language models and their corresponding language model transducers, which is val id 
for bo th types of approximations: using epsilon arcs or using failure arcs. We show 
the derivation of the formulas by a series of steps guaranteeing W F S T equivalence, 
as well as the derivation from Bayes' rule. 

• Tracked decoding and variable beam width: We develop a two-pass decoding 
setup (forward search and backward search), that allows to incorporate the first pass 
decoding into the second pass decoding by tracking hypotheses from the first pass 
lattice. Th is technique allows to decode wi th a variable beam width , which is most 
of the t ime much smaller than the smallest single-pass beam and is only increased in 
areas, where forward and backward decoding disagree. 

• Speed-up and parallelization: We have implemented the backward recognition 
networks for both static and dynamic network decoders and show experiments that 
demonstrate significant speed-ups in both cases. A p p l y i n g the incrementally refining 
recognition setup of [Nolden et al.(2013)] addit ional ly leads to a par t ia l parallel ization 
of the decoding. 
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1.2 Automatic speech recognition with weighted transducers 

speech input feature 
extraction 

HMM structure 

acoustic 
model 
P ( X | W ) 

) 
pronunciation 
lexicon 

recognition network 

decoding: search for 
best hypothesis W = 
argmaxwP(W) - P ( X | W ) 

recognized text 

Figure 1.1: Components of automatic speech recognition 

In figure 1.1, we summarize the basic structure of an automatic speech recognition ( A S R ) 
system. The task in automatic speech recognition ( A S R ) is to search for the word sequence 
W wi th the m a x i m u m a-posteriori probabil i ty ( M A P ) given the acoustics, represented by 
a sequence of acoustic vectors X = xi,..., x m . The task is equivalent to: 

W arg max 
w 

P ( W ) P ( X | W ) 

~ P ( X ) 

m—1 
arg max Ĵ J P(XJ 

s 
i=0 

Si)P(si+l\Si (1.1) 

P ( X | W ) is called the acoustic model (computes the l ikel ihood of the observation given 
the words) and P ( W ) is the language model ( L M ) (the prior probabil i ty of the word se
quence). Commonly, the acoustic model is a hidden Markov model ( H M M ) . Each word is 
represented by a sequence of states, and the state transitions P ( s j + i | s j ) model the tem
poral structure of speech, while the emission probabilities model the acoustic observations 
P{xi\si). Thus, in eq. 1.1 we approximate the search for the op t imal word sequence by the 
search for the op t imal state sequence S. We search for the best path (state sequence) w i th 
the V i t e r b i a lgori thm [Viterbi(1967)] (trellis structure on left part of figure 1.2). 

(o 4) 

P i - l , l 
\ 
\ 

Stage 
I 

Pi -1,2 * 

Pi-1,3 >pi,j 
• 

• 
• 

Pi-1,4 * t 
/ 

/ 
/ 

Pi-1,5 
Speech 
Frame 
(Time) Pi,] = max ( P i - ! , k k 1 2 3 4 5 6 

Figure 1.2: Left: Viterbi algorithm applied to an HMM in isolated word recognition Right: 
Dependencies in time-synchronous Viterbi search: The global task of finding the best path 
is reduced to recursively solving the sub-problem of choosing the predecessor with the best 
partial path up to the current time step (dynamic programming [Bellman(1952)]). The 
score of a state depends only on all incoming arcs from the previous time step. 

A S R can be formulated i n the framework of weighted finite state transducers ( W F S T ) 
[Allauzen et al.(2004)], [Mohri et al.(2008)]. The H M M is represented as W F S T (figure 
1.3), called H M M structure transducer H or decoding graph. 

4 



pdfl:<eps>/a_ll pdf2:<eps>/a_22 pdB:<eps>/a_33 

Figure 1.3: WFST H corresponding to three-state left-to-right HMM. The arc notation 
is „input: output/weight", „<eps>" stands for e (no symbol). We attach the emission 
probabilities to the incoming arcs of a state. Thus, the input labels correspond to identifiers 
of probability density functions (PDF-ids, often context-dependent HMM states). During 
decoding, PDF-ids are used to evaluate the corresponding HMM emission probabilities. 
The acoustic likelihood score is combined with the arc weight, corresponding to the HMM 
transition probability. The output label is the identity of the phoneme/word (aa). The final 
arc is non-emitting (<eps> input), it serves to interconnect (sub-word) HMMs. 

A recognition network (or decoding graph) (figure 1.1) is a composite H M M , connecting 
the ind iv idua l phoneme H M M s (figure 1.3) according to the the pronunciat ion lexicon 
(mapping the words to phonemes) and the L M . The L M functions as a grammar, which 
constrains which words can follow each other. Figure 1.4 shows a simple recognition network 
for connected speech recognition wi th sub-word units. 

Figure 1.4: Simple recognition network. Words are modeled by phonemes (sil: silence) 
and bi-gram probabilities are applied at word transitions. Each state (phoneme) is actually 
a three-state HMM. 

The standard recipe for the decoding graph construction is [Mohri et al.(2008)]: 

HCLG = mm(det(H 0C0L0G)), (1.2) 

Here, H, C, L and G are the components, which are created separately and are integrated 
into a single WFST(HCLG) w i t h W F S T composit ion (denoted as o). H, C, L and G 
represent the H M M structure, the phonetic context-dependency transducer, the lexicon 
transducer and the L M (grammar), respectively. 

To decode an utterance, i.e. to find the most l ikely state sequence, we construct the 
search space (trellis) S [Povey et al.(2012)] by: S = U o HCLG, where U is an acceptor 
( W F S A ) , whose arc weights (for each combinat ion of (time, P D F - i d ) ) correspond to the 
acoustic likelihoods. We search for the best path through S w i th the shortest pa th algori thm 
in the t ropical (Viterbi) semi-ring. The best path is a linear W F S T , whose output symbols 
represent the decoding result, i.e. the recognized sequence of words. The input symbols 
represent the sequence of P D F - i d s for each t ime frame, from which we obtain the sequence 
of states. In practice, S is not searched exhaustively, but beam pruning is used. I.e. we 
are searching the best path through B, which contains a subset of the states and arcs of S, 
obtained by some heuristic pruning procedure. 
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Chapter 2 

Forward and backward decoding 

For tasks like L V C S R decoding, the search graph can contain up to mill ions of states. Thus, 
the search space cannot be explored exhaustively and it is necessary to use heuristic pruning 
techniques. The most widely used search technique i n L V C S R is the V i t e r b i a lgori thm wi th 
beam search [Lowerre(19' i)]. B e a m search is a breadth-first style search, comparing par t ia l 
paths of the same length (time-synchronously). A t each t ime only those paths are kept and 
further expanded, whose pa th score is better than the current best score extended by a 
beam wid th . The beam wid th is a trade-off between speed and accuracy. 

0 10 20 30 40 Time/State 0 10 20 30 40 Time/State 

Figure 2.1: Illustration of forward and backward search [Nolden et al.(2013)]. In the background, 
acoustic likelihoods for each state are shown as they evolve over time. Bright colors indicate higher 
probability. In the forward search (upper part), the low-score 'valley' around frame 7/8 causes the 
correct path (green) to fall out of the beam (dotted). The red path is chosen, but later (frames 20-30) 
it turns out to have poor scores. Even if it has better overall scores, the correct path can not be 
recovered, since it was already pruned. In the backward search (lower part), the situation is different 
- starting from the end, the lower path looks much more promising (frames 30-35) and the upper 
path falls out of the beam. The low likelihoods around frame 7/8 do not distract the recognizer 
this time, so the backward search does find the correct path. The illustrating explains, that to a 
certain extent, search errors of forward and backward search are independent. Of course, with a 
wide-enough beam, also the forward search would find the overall best path. 

In this thesis, we introduce the idea of symmetr ical ly decoding forwards and backwards 
in t ime. For some tasks, the pruned backward search is more efficient than the forward 
search. [Tang and Cristo(2008)] showed, that for the recognition of street-city-state tuples 
(as used e.g. i n the U S ) , the error rate is lower when searching backwards i n t ime. Figure 
2.1 illustrates the potential of forward and backward search. A path that has low scores at 
the beginning is l ikely to be pruned by forward search, even i f it has a high overall score 
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towards the end. It has a chance not to be pruned by backwards search, because looking 
backwards this path has high scores at the beginning (which was the end i n forward search). 
Forward search prunes based on the "history" and backward search prunes based on the 
"future". Moreover, we showed in an experiment w i th the K a l d i recipe on the W a l l Street 
Journal corpus ( W S J ) , that the search errors of forward and backward search are mutual ly 
independent. 

We can detect and evaluate search errors by aligning the recognition outputs to a 
decoding w i t h a very wide beam. We align the results of both forward and (reversed) 
backward decodings wi th the wide-beam-decoding. Table 2.1 shows an example of such an 
alignment. Table 2.2 confirms the in tu i t ion that forward and backward search errors are 
independent. W i t h the help of the tracked forward-backward decoding proposed in this 
thesis, most of the search errors were eliminated. 

f: BRIAN J. KILLING CHAIRMAN OF BELL - ATLANTA X. INVESTMENT 

S . . . . . S 

b: BRIAN J. DAILY CHAIRMAN OF BELL AND LAND SIX INVESTMENT 

I S S 

p: BRIAN J. DAILY CHAIRMAN OF BELL - ATLANTA ITS INVESTMENT 

w: BRIAN J. DAILY CHAIRMAN OF BELL - ATLANTA ITS INVESTMENT 

r: BRIAN J. KELLY CHAIRMAN OF BELL - ATLANTIC'S INVESTMENT 

Table 2.1: Analysis of search errors on the WSJ Nov'92 test set by aligning forward and backward 
search errors (with beam 11.0) against a decoding with a wide beam (29.0). 
Shown are the outputs of forward decoding (f), backwards decoding (b) and forward-backward 'ping-
pong' decoding (p), aligned to a decoding with very wide beam (w) and reference transcription (r). 
The search errors are indicated by 'ľ for insertion, 'S' for substitution and '-'for deletion. 

beam width forward errors backward errors co-occur ping-pong 
11.0 144 230 32 14 
13.0 84 108 14 6 

Table 2.2: Analysis of search errors on WSJ Nov'92 test set by aligning against a wide beam 
(29.0). The co-occurrence of an error ('co-occur') means that for both, forward and backward pass, 
an error occurs at the same alignment position. This does not necessarily mean that both produced 
the same error. With two-pass 'pingpong' decoding, all independent search errors were corrected 
(all those that are not co-occurring), and even a good portion of the co-occurring could be removed. 

Addi t iona l ly to beam search, a strategy to deal w i t h the complexity of the task is to use 
mult iple decoding passes (e.g. [Murveit et al.(1993)]). Usually, inexpensive and approximate 
models are used i n a first pass [Nguyen et al.(1993)] to generate an intermediate represen
tat ion (e.g. lattices), which is then 're-scored' using more complex models. In [Austin 
et al.(1991)], the idea of performing the second pass backwards i n t ime was introduced. 
Since the forward scores are used as an estimator for the remaining part of the utterance, 
the second pass usually takes only a fraction of the time of the first pass, so that more 
complex algorithms or models can be used. A more recent re-discovery of the same idea is 
[Lee et al.(1998)] and [Lee and Kawahara(2009)], which use a word trellis as intermediate 
representation and stack decoding (A-star search) i n the backward pass. Also [Cardinal 

i] use a uni-gram V i t e r b i backward pass, which is then used as a heuristic in 
A-s tar forward decoding wi th the full language model. 

7 



Opposed to these works, we focus on using forward and backward passes that are sym
metric, i.e. using models that are equally powerful i n both passes. The idea of symmetric 
passes was already used by [Li et al.(2009)] and [Abo-Gannemhy et al.(2010)] (see also [Tang 
and Cristo(2008)]). They combine the outputs of both passes based on L M scores or con
fidence measures ( R O V E R technique [Fiscus(19! ')]). A l s o [Jouvet and Fohr(2013a)] and 
[Jouvet and Fohr(2013b)] use the framework of [Lee and Kawahara(2009)] to R O V E R two 
symmetric passes, and they show that the combination of forward and backward passes is 
especially effective i n improving the performance. O n top of using equally powerful models, 
in this work, we require that the forward and backward recognition networks are constructed 
to assign exactly the same probabilit ies to hypotheses (paths, word sequences). The exact 
symmetry of both passes allows us to concentrate on search errors rather than on modeling 
errors. W h e n comparing the recognition results of forward and backward decoding, each 
difference detects a search error. 

1 0 * 1 0 4 
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Figure 2.2: Histogram of score differences: Shown are the scores of the current best partial 
path at each frame minus the partial score of the path that is going to be the final best path - not 
necessarily the correct one (decode beam 13.0, WSJ Nov'92 test set at WER 10.8%). 

In beam search, usually a constant beam wid th is applied to the whole test set. Whi l e 
analyzing the pruning behavior of the K a l d i decoder on the W S J test set, we found, that 
for most of the t ime frames, a very narrow beam is sufficient to keep the final best path. 
Figure 2.2 analyzes the score differences at each frame, between the current best active 
token and the score of the token that w i l l u l t imately result i n the best overall p a t h 1 . Mos t 
of the t ime this difference is much smaller than the typica l beam wid th (between 10 and 
15). This suggests that it would be beneficial to to decode wi th a variable beam width . 
For that, we need to identify problematic areas (frames) that lead to search errors. We can 
achieve that by comparing the hypotheses from forward and backward search. We use a 
small baseline beam and only increase it in places, where the forward and backward searches 
disagree. Thus, the idea of our work [ nnemann et al.(2013)] is to speed up the decoding 
by using the (dis)agreement of the two symmetric decoding passes - decoding forwards and 
backwards i n time. We replace a single pass wi th a wide beam wi th two passes w i t h a small 
beam. 

l r To determine this, we run a full decoding, back-track the best path and compute its score at each frame. 
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2.1 Incremental forward and backward search 

One possible realization of the variable beam wid th decoding is to run the forward and 
backward passes in parallel . Inspired by [ nnemann et al.(2013)], the authors of [Nolden 
et al.(2013)] implemented an incremental high-level decoding algori thm, which iteratively 
refines the decoding (by increasing the beam width) i n places, where both passes disagree. 
A s a consequence, the system uses a variable beam wid th and is dynamical ly focusing 
only on the parts that are difficult. The pruning beam is tuned for single words i n an 
unsupervised way. A s opposed to [Hannemann et al.(2013)], where the results of the first 
pass are integrated into the second decoding pass, both passes, forward and backward 
search, are run independently and symmetrically. 

Figure 2.3: Parallel implementation of incremental forward backward decoding [Nolden 
et al.(2013)]. First (upper part), two cores run a quick initial forward and backward decoding 
of the whole utterance with a narrow beam in parallel, then (center) the results are aligned and mis
matching regions ('islands') are identified (indicated in red). If there are no mis-matching regions, 
the decoding is done. Else (lower part), in a second pass, the identified mis-matching segments are 
decoded in parallel with a wider beam. In this example, there are two 'islands', both of them are 
decoded forwards and backwards, which means four cores can be used in parallel. The results of the 
decoded segments are integrated into the results of decoding the whole utterance, and this process is 
iterated until the results for the whole utterance match. This way, the beam for each word is tuned 
to the minimum necessary beam. 

Figure 2.3 explains the parallel implementat ion of the incremental decoding [Nolden 
et al.(2013)]. In the alignment of decoding results, words are considered matching, i f they 
have the same word identity as well as a matching t ime boundary. A l l non-matching 
words are grouped into continuous segments which are extended by N - l matching words 
(according to the L M ) to the left and to the right. For the incremental decoding of par t ia l 
utterances, the left and right L M contexts of the segment need to be correctly ini t ia l ized in 
the decoding. We also need to remember the left and right acoustic cross-word contexts, 
which can be achieved by remembering the states of the recognition network at the segment 
boundaries i n the first pass - these can then serve as in i t i a l and final states for the second 
pass decoding. 

[Malcki ct al.(201 ] presented a parallel ization of the decoding of an utterance into 
chunks. They showed that it is possible to split an utterance at places, where the rank 
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of all-pairs-shortest-path mat r ix w i l l converge a to singular matr ix . In other words, this 
happens at places, where just one token w i l l survive. A n open question is whether it 
is possible to automatical ly detect frames i n advance, where this w i l l happen, to find the 
opt imal segmentation of a given utterance into chunks. A t the points w i th low rank, i.e. w i th 
few remaining active states, a smal l beam should be sufficient to decode them. In other 
words, at those points, we would expect the decoding results of the forward and backward 
search to agree, even if both run wi th a smal l beam. Therefore, a good segmentation for 
the parallel ization of the decoding is to split the utterance at points, where forward and 
backward search agree. Thus, the incremental decoding is very similar to chunk based 
decoding. Since it is a high-level technique, it can be applied on top of other coarse-grained 
and fine-grained parallel ization techniques. 

We implemented the incremental forward-backward decoding i n the Microsoft A r g o n 
decoder (documented i n [Agarwal et al.(2014)], Version 2016-02-17) and tested it on the 
Eval2000 database wi th a recognizer trained on the Switchboard database. We observed, 
that the overall speed-up of the technique is be determined by the setup of the first pass 
(forward and backward) decoding. We choose an operation point, that is several times 
faster than a well-tuned baseline (tuned for W E R / R T F , around R T F 0.3-0.5), but s t i l l in 
the area where the results of forward and backward decoding are par t ia l ly matching. Us ing 
such a setting, we observe that after the first parallel forward/backward pass, i n average 
approximately 50% of the complete utterances agree and thus the decoding can be finished. 

For the files that are par t ia l ly mis-matching, we find i n average around 1.5 mis-matching 
segments ('islands') per file. Tha t means we can achieve a speed-up of 1.5 on these utter
ances, and only a part of the utterance actually needs to be decoded again. Therefore, the 
to ta l amount of t ime spent in the second pass w i l l be much smaller than in the first pass, 
even i f it runs at a higher R T F (increased beam). Similarly, the amount of t ime spent in 
further iterations w i l l quickly decrease. 
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Figure 2.4: Finding the optimal operating point on the real-time-factor and word error rate 
curve, while tuning the maximum number of active tokens (max-tokens) and beam width (beam). 
The settings of beam width and max-tokens are grouped by lines that leave one of the parameters fixed 
while varying the other. All curves 'beam' leave the beam width constant while running experiments 
with different values for max-tokens. The curves 'max-tokens' (black) measure different beam widths 
for a fixed number of max-tokens. 

10 



Figure 2.4 explores the relation between W E R and R T F on many different operating 
points, defined by a setting of the main tuning parameters, which are the log beam wid th 
and the m a x i m u m number of active tokens 'max-tokens' for the histogram pruning. We 
observe that both parameters depend on each other i n a non- t r iv ia l way. Leaving either 
of them fixed while varying the other leads to sub-optimal solutions (max-tokens i n black 
lines, beam 9-30 colored lines). Therefore, we have to test a l l possible combinations of 
parameters and then determine for each R T F the opt imal W E R and the corresponding 
tuning parameters. The resulting curve is sometimes called Pareto-optimal . W h a t we 
observe is that along the Pareto-opt imal curve, we have to proport ionally increase both 
the beam wid th and the max-tokens. Perhaps surprising is the fact that i f we over-shoot 
the beam (figure 2.4, red line, beam 30), we actually increase the W E R significantly. We 
can explain this effect w i th the max-tokens beam resulting from histogram pruning, which 
turns out to be narrower for high beams. This is most probably a par t icular i ty of the A r g o n 
decoder, caused by the adaptive beam controll ing [van Hamme and van Aelten(1996)]. 

2.2 Tracked decoding 

Another realization of the variable beam wid th is the tracked decoding [ nnemann et al.(2013)] 
presented i n this thesis. After using independent and parallel forward/backward decoding 
passes in the last section, in this section we run forward and backward decoding sequen
tial ly. Our approach towards decoding is to do a first pass (which happens to be a forward 
pass) w i th a narrow beam, and then to do a second pass i n the opposite direction, also wi th 
a narrow beam, but using knowledge obtained during the first pass. In this approach, the 
beam wid th can be adjusted for every frame, so that a more careful search is only carried 
out i n areas where the two passes disagree. The speed-up is achieved by using a narrow 
beam during the forward pass, and i n the backward pass i n places where no disagreement 
is detected. 

The first pass outputs a lattice wi th state-level alignments [Povcy ct al.(2012)]. Note 
that this lattice does not contain a l l par t ia l paths explored in the first pass, but only those 
word-sequences that are wi th in a specified beam of the best word-sequence (lattice beam). 
We want to treat the paths i n this lattice i n a special way i n the second decoding. That is, 

1. We want to avoid pruning out paths that appeared i n the first-pass lattice. 

2. O n frames where we would otherwise have pruned out those paths, we want to increase 
the pruning beam. 

Dur ing decoding, we need to be able to identify which active tokens i n our second-pass 
decoder correspond to paths i n the first-pass lattice. These are called tracked tokens and we 
track tokens wi th what we cal l an arc-lattice. It is a special k ind of lattice that allows us to 
identify arcs i n H C L G 2 n d that were present in the first-pass lattice. Th is means there is a 
path i n the lattice, that went through the corresponding state i n H C L G i s t at the given time. 
The arc-lattice is an acceptor F S T , i.e. it has only one symbol on each arc. These symbols 
correspond to arcs in H C L G 2 n d - A l g o r i t h m 1 summarizes the arc-lattice generation. 

The second-pass decoder, which we w i l l refer to as our tracking decoder, is a lattice-
generating decoder that takes an extra input, namely the arc-lattices for each utterance. 
Let a token be a record of a part icular state in H C L G that is active on a part icular frame. 
Our t racking decoder gives tokens an extra, Boolean property that identifies whether they 
are tracked or not. A tracked token is one that corresponds to a state i n the arc-lattice, 
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A l g o r i t h m 1 Generation of arc-lattices (graph-state-lattices): 

1. M a p HCLG2nd to P D F - t o - A r c transducer HCLGarc: 

(a) HCLG2nd '• transduces P D F - i d s into words 
(b) Encode HCLG2nd (node-id, arc-id) into output symbols. 
(c) M a p input to be self-loop order independent. 

2. M a p first-pass lattice LATist to LATrev: 

(a) M a p input (self-loops), project on input, remove weights. 
(b) T ime reverse lattice and remove epsilons. 

3. Compose: LATarc = LATrev o HCLGarc-

(a) Obtains sequences of HCLG2nd arcs for P D F sequence in lattice. 
(b) det(LATarc)'- Latt ice-determinize (on P D F - i d s ) in special semi-ring 
—>• single HCLG2nd pa th left for each sequence of P D F s . 
(c) Project to HCLG2nd (node, arc) symbols, determinize again. 

—>• The output is an acceptor lattice for HCLG2nd graph arcs. 

i.e. it was reached by a sequence of HCLG2nd-arcs i n the arc-lattice that correspond to 
a path i n the first pass lattice. Tracked tokens are never pruned, regardless of the beam 
wid th . If a token other than those that came through the tracked path, w i th better score, 
reaches the same state at the same time, the tokens recombine, i.e. it replaces the tracked 
token, but inherits the status of being tracked. 

Tracked tokens are used to determine the variable pruning beam for each frame. In 
places where disagreement is detected, the beam is increased to include a l l of them. O th 
erwise i n the second pass, the same narrow beam is used that was used i n the first pass. 
The decoder has three configurable values that specify how it sets the frame-specific beam: 
the beam, the max-beam and the extra-beam. O n a particular frame, let the score difference 
between the highest-score token and the lowest-score tracked token be D. T h e n the beam 
wid th on that frame is given by: 

max(beam, min(max-beam, D + extra-beam)). 

In in i t i a l experiments, we found, that the technique is not sensitive to the setting of extra-
beam, so we typical ly set it to zero. The max-beam is usually large (e.g. 40 for this task in 
K a l d i ) . We t ry various values of the beam for our experiments here. 

Note that even i f we keep the beam equal to the single pass beam dur ing the tracked 
second pass, our method is doing more than s imply choosing the best path from two (forward 
and backward) passes, because it is possible to "recombine" par t ia l paths from the first-pass 
and second-pass search (effectively combining the forward and backward lattices). Some 
parts of the utterance might be advantageous for backwards decoding, other parts might 
have the opposite characteristic. If par t ia l paths of tracked tokens and second-pass-only 
tokens meet in the same state, they can recombine and thus we would continue decoding the 
rest of the utterance wi th the m a x i m u m of the two par t ia l scores (likelihoods). Therefore, 
the combined path can have a better score than either two single paths. O n top of combining 
the lattices, the variable beam leads to the generation of extra tokens i n areas where both 
passes disagree, which gives an addit ional speed-up. 
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2.2.1 E x p e r i m e n t a l results 

We tested the forward-backward tracked decoding on the W S J November'92 open-vocabulary 
test set (333 utterances) using a standard tri-phone H M M + G M M system ( K a l d i recipe 
' t r i2a ' [Povey et al.(2011)], trained on the 'si84' por t ion of W S J ) . The experiments were 
conducted wi th the extended 146k vocabulary using the pruned tr i -gram language model 
'bd. tgpr ' that was trained on al l W S J t ra ining texts. We measured the to ta l elapsed time 
for the two-pass forward and backward (tracked) decoding and relate it to the word error 
rate ( W E R ) . The real-time factor was measured on a single core of an Intel(R) C P U i5-2500 
(3 .3GHz, 8 G B R A M ) . 
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Figure 2.5: Performance of tracked decoding: Shown are curves for word error rate vs. real-time 
factor on the WSJ Nov'92 test set. For single-pass decodings, the beam varies between 10-18, for 
the two-pass ('pingpong') decoding the beam varies between 7-13. We used extrabeam = 0 and 
found maxbeam = 2 • beam as a good compromise between speed and accuracy. The lattice-beam is 
4.0, but for beam < 10.0 we decrease it step-wise to 0.5. We compare the variable-beam decoding 
('2beam var', orange) to a decoding without generating extra tokens in the variable beam ('noextra', 
red) by setting maxbeam = beam, which shows the additional benefit of the variable beam over just 
combining lattices of forward and backward passes. 

The results in figure 2.5 show, that for the lowest word error rates ( W E R < 10.5), the 
two-pass tracked decoding runs about 2-3 times faster than the ind iv idua l forward/back-
ward passes at the same W E R . This corresponds to the "more accurate" operating points of 
decoding where search errors are small . However, i n this setup, the speed-ups are diminish
ing for operating points faster than ~ 0.6 real-time using our method. The issue seems to 
be that if the beams are too narrow, the two decoding passes disagree substantially and too 
much effort is spent i n decoding wi th a widened beam i n areas that disagree. Also , [Nolden 
et al.(2013)] points out that a too narrow beam could lead to a degenerated search, where 
both passes produce the same errors (e.g. focussing on silence and noise models, which are 
symmetric) . The W E R curve i n figure 2.5 is not always smooth, which points to the fact 
that fixing a search error does not necessarily mean fixing a word error. 

To get an insight on the op t imal size of the forward/backward beam, we profiled the 
tracked decoding in figure 2.6. We observe, that the t ime spent i n the two ind iv idua l 
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Figure 2.6: Profiling the tracked two-pass decoding. Shown is the percentage of time spent 
in different parts of the algorithm at three operating points (beam 8.5 as optimal, others as not 
optimal). The first pass is the lattice-generating 'forward search' (which is also our single-pass 
baseline) and the second pass can be seen as consisting of a) normal backward decoding (column 
'backward search'), b) generating the arc-lattice ('arc-graph'), c) additionally tracking tokens from 
the first pass ('tracking') and d) generating extra tokens within the increased variable beam ('extra 
beam'). The acoustic scores were not cached between the two passes. The contributions of 'arc-
graph' and 'tracking' (together < 20%) could be possibly optimized by a better implementation, but 
the two individual passes constitute a lower bound (around 70% of the time is spent there). 

decoding passes (without t racking / extra tokens) is the dominant factor. Thus, the baseline 
beam determines the possible speed-up. It should be smal l enough to decode at least two 
times faster than the original single pass, and it should be wide enough to allow for a 
reasonable comparison of the forward and backward search results, i.e. either of the two 
passes should obtain a solution, that is at least par t ly correct. 

If we reduce the beam too much, we observe (figure 2.5 for error rates > 11.5%) that 
the two-pass decoding is no longer better than the single-pass decoding. F r o m figure 2.6 
we see, that for low beam widths, most of the t ime is consumed i n the generation of extra 
tokens, which effectively means decoding wi th a higher beam. Below a certain beam wid th 
(11% i n figure 2.5) the error rates i n the single passes grow rapidly wi th only l i t t le R T F to 
gain. Th is means that the divergence between the best paths from forward and backward 
decoding is too big, so that the algori thm has to increase the variable beam a lot to track 
the first pass tokens and an excessive amount of extra tokens are generated. W i t h an 
opt imal setting of the beam, we can reach a significant W E R decrease by just generating 
a smal l amount of extra tokens i n the variable beam ('extra beam' i n figure 2.6, opt imal 
around beam 8.5). Th is point corresponds to the turning point i n figure 2.5 (around R T F 
1.0) - it is the 'sweet spot' . Above that, though l i t t le t ime needs to be spent for tracking 
and for generating extra tokens, too much time is spent in the ind iv idua l forward/backward 
decodings, and the overall R T F increases rapidly. 

The proposed decoder has several parameters to tune: forward beam, backward beam, 
lattice-beam, extra-beam and max-beam. Since the W E R - R T F curves for single-pass for
ward and backward decodings are similar, we typical ly set the forward beam and backward 
beam to the same value. Concerning the other parameters, there seem to be two strategies 
one could pursue: either track many tokens and t ry to combine good forward and backward 
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paths, while l imi t ing the generation of extra tokens, or just track few tokens and generate 
many extra tokens up to the variable beam difference. To analyze this, we can compare 
a decoding using the variable beam to a decoding without generating extra tokens. We 
can achieve this by l imi t ing the beam to maxbeam = beam and thus effectively disabling 
the variable beam. Since tokens ' tracked' by the first-pass lattice are kept anyway, this 
effectively corresponds to combining the lattices of the forward and backward pass. Figure 
2.5 ( '2beam' vs. 'noextra') shows that creating extra tokens wi th in the variable beam gives 
a substantial improvement on top of that. Especial ly for the operating points w i th low 
W E R s , the extra tokens are important . 

10 10.2 10.4 10.6 10.8 11 11.2 11.4 11.6 11.8 

word error rate 

Figure 2.7: Analyzing the effect of different max-beam settings on WSJ Nov'92 test set using the 
big bi-gram LM with 147k vocabulary. As already explored, we set the parameters to extrabeam = 0.0 
and linearly increased the lattice-beam from 0.5 to a maximum of 4-0. Now, we compare three 
strategies of setting max-beam: a) using a fixed max-beam of 100.0 b) using a fixed max-beam 
of 20.0 c) changing the max-beam linearly with the beam: maxbeam = 2 • beam. We also tried 
maxbeam = beam, which had slightly worse performance for WER > 11.0. 

In an experiment to investigate the effect of the lattice-beam, we observed, that the 
generation of the lattice has mainly the effect of adding an offset to the R T F / W E R curve. 
Thus, we want to make it as smal l as possible. However, for the most accurate operating 
points w i th low W E R , we want to have a wider lattice that contains the best path. It seems 
to be a good strategy to increase the lattice-beam linearly w i th the beam. We set an upper 
bound of 4.0, which is enough to get good results i n re-scoring the lattice. F ina l ly , after 
tuning a l l other parameters, we investigate different settings of the max-beam parameter. It 
is an upper l imi t to the variable beam, which becomes effective in the areas of higher W E R . 
Figure 2.7 suggests, that the exact setting of the parameter max-beam doesn't influence 
the potential speed-up of the technique (the 'sweet-spot'), but mainly influences the shape 
of the curve from the 'sweet spot ' towards the higher W E R . Us ing no l imi t for the beam 
even for huge divergences between forward and backward pass seems wasteful. Therefore, it 
seems to be reasonable (figure 2.7) to increase the max-beam slowly wi th increasing beam. 
Once a reasonable beam has been reached, the divergence between forward and backward 
passes gets smaller, and the max-beam is no longer needed. 
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Chapter 3 

Exact reversal of the recognition 
network 

For the decoding techniques presented in the last chapter, i.e. to search i n two symmet
ric forward and backward decoding passes, we need two corresponding decoding graphs -
HCLGfwd and HCLGbwd- B o t h models should be equally powerful, i.e. have roughly the 
same accuracy and run-time requirements, and have similar structure, size and level of de
terminism to have opt imal pruning behavior. To compare the probabilities (or scores) of the 
outputs from the forward and backward passes (e.g. to estimate the op t imal beam width) , 
we need models HCLGfwd and HCLGbwd, that ideally produce the same overall score for the 
same hypothesis in both the forward and the backward passes. Due to the pruned search, 
both passes can result i n different search errors (due to the different branching forwards and 
backwards). However, bo th models should not make different modeling errors, hence they 
should assign the same scores to the same hypotheses. We also want to be able to compare 
the scores of par t ia l results (paths). Therefore, also the model structure (the dis t r ibut ion 
of weights along paths) should be similar in the forward and backward passes. G iven a 
forward graph HCLGfwd-, the task is to obtain a backward graph HCLGbwd that w i l l assign 
exactly the same overall score to the same utterance and w i l l fulfill a l l the above stated 
requirements. Because our method treats disagreement between the best paths found by 
the two passes as a search error, we want the backward decoding graph to be equivalent to 
the reverse of the forward one. 

The t r iv ia l solution to apply W F S T reversal to HCLGfwd is not sufficient, since the 
resulting graph would not have a similar level of determinism and dis t r ibut ion of weights as 
the forward graph, i.e. it would show sub-optimal behavior when used in a pruned search. 
To make the resulting W F S T determinizable, we would have to introduce disambiguation 
symbols [Mohri et al.(2008)] at different places than in the forward graph. A s we w i l l see 
shortly, especially the (reversed) L M component would introduce a great degree of local 
ambiguity. Instead, the solution is to separately construct the time-reversed versions of 
H, C , L and G (introduced in chapter 1) and then to bu i ld a composed model HCLGbwd 
i n an analogous way as the forward graph was constructed. Another point is that the 
stochasticity of outgoing arcs w i l l not be satisfied when reversing the model, i.e. the opt imal 
weight dis t r ibut ion for backward search is different from the one used i n forward search. 
Therefore, we have to apply weight pushing to the reversed components. 

Our approach to the construction of backward recognition networks is not l imi ted to 
static network decoders. Since a l l components are reversed individual ly , no change is nec-
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A ax #1 
ABERDEEN n i y d er b ae 
ABOARD dd r ao b ax 
ADD dd ae #1 

Figure 3.1: Reversing lexicon transducer L. The phone sequences are reversed (upper part), and 
new disambiguation symbols (#1) are inserted after that. Then, the lexicon transducer is built in 
the same way as in the forward network (lower part). 

essary when dynamical ly composing the components in a dynamic network decoder. The 
time-reversed versions of H, C, L and G are again not s imply the W F S T reverses of the 
forward ones, but must be separately constructed. Depending on the task, the reversal of 
each component is of different complexity. 

The construction of the reversed pronunciation lexicon transducer Lbwd (phones to 
words) is simple: the ind iv idua l phone sequences (pronunciations) are reversed, and the 
disambiguation symbols are introduced after that. The disambiguation symbols now dis
t inguish similar word endings, while in the forward case they distinguish word beginnings. 
Figure 3.1 shows a reversed toy lexicon and the resulting transducer. 

The context-dependency transducer C b w d is constructed in the usual way, and looks 
identical to C f w ( j . After the composit ion of L f w ( j o Gbwd> the phonetic context window 
(which are the input symbols for C) is reversed i n t ime (a-b-c to c-b-a). Therefore, to 
look-up the corresponding models ( P D F s ) in the phonetic decision tree, we have to reverse 
the phonetic context. Then, we look-up using the phoneme context window and the H M M 
state. The H M M structure transducer i?bwd ; is constructed in the same way as iTfwd, 
except for the reversed phonetic context. The ind iv idua l (three-state) H M M s for each 
phone are constructed separately and the relevant P D F s are looked-up from the decision 
tree. Then , the phone H M M s must be reversed and "weight-pushed" in the log-semi-ring 
(including epsilon removal) to make the time-reversed probabilities sum to one. After that, 
the reversed phone H M M s are composed to the Ha transducer. Specific to the K a l d i toolki t 
is, that the H transducer is first created without self-loops (Ha), which are then added at 
a later stage. Due to the reversal of ind iv idua l H M M s , the ordering of the self-loops and 
forward transitions changes, which doesn't matter for decoding, needs to be considered 
when mapping resulting alignments at t ransi t ion level. 
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3.1 N-gram back-off L M and weight pushing 

N-gram L M s approximate the condit ional probabil i ty of a word given its history P(wi\ ...), 
by reducing the history to the previous N — 1 words: 

m 

P(wi... wm) « Y[ P(wi\wi-N+1... Wi-i) (3.1) 
i=l 

N-gram L M s can be expressed as weighted finite state acceptors ( W F S A ) - each L M 
history corresponds to one state of the automaton (hi = Wi-N+i • • - Wi-i)- However, the 
number of possible states of a model of order iV wi th a vocabulary size V is VN_1 and 
the number of possible arcs (and N-grams) is VN, which becomes clearly intractable for 
higher orders of N ( typical vocabulary sizes go into the hundreds of thousands). A s a 
consequence, L M s only store the probabilities of those N-grams that occur sufficiently often 
in the t ra ining texts. Stat is t ical smoothing techniques are applied to the dis t r ibut ion of 
counts. O n top of that, typical ly models of different N-g ram order are combined. Ei ther 
different orders of history are interpolated, or the higher order model performs backing-off 
for unseen N-grams by leaving out the first word i n the history and looking-up the shorter 
history in the lower order model (N — 1). Th is process is repeated recursively un t i l the 
word in context is found. Back-off L M s were introduced by S. K a t z [Katz(19< ]: 

PKatz(Wi\Wi-N+l • • • Wi-l) = 

( T3K \U\ A C(wi-N+1...Wi-1Wi) 
P (wi\hi) = dw W i • —— — if C(Wi-N+1 ...Wi)>k 

C{wi-N+1...Wi-i) 
aWi_N+1...wi_1 • Pbackoff(wi\wi-N+2 • • • Wi-i) otherwise 

(3.2) 
Here, d is the amount of discounting applied, C is the occurrence count of the given 

N-gram in the t ra ining corpus and k is the m i n i m u m number of occurrences. aWi_n+1,,,Wi_1 

is the so called back-off weight, which is dependent on the current history. It usually 
corresponds to the sum of probabil i ty mass that was discounted from a l l N-grams sharing 
the same history and is now available to be re-distributed by the lower order dis t r ibut ion 
Pbackoff-, that can be recursively defined i n exactly the same way as Pxatz-

A s seen in Figure 3.2, back-off L M s can be represented as W F S A , but usually an ap
proximate structure wi th back-off arcs is used [Allauzen et al.(2003)], [Mohri et al.(2008)]. 
Back-off arcs w i th the symbol e introduce non-determinism. W h e n the weights are taken as 
probabilities from a back-off model, this non-determinism can cause problems. In this case, 
the resulting W F S A is no longer stochastic - i.e. the probabilities of outgoing arcs do not 
sum to one. The weight of some cycles is greater than one and results i n an infinite total 
weight. A n exact and deterministic implementat ion of back-off L M s wi th W F S A would 
require a different type of arc. The so called failure arcs were introduced for efficient string 
matching [Aho and Corasick(1975)]. Usually, i n the literature (e.g. [Allauzen et al.(2003)]), 
a special arc label ip (or <fi) is used to mark failure arcs. A failure-arc doesn't consume any 
symbol and it has the semantic interpretation, that a failure-arc can only be taken if no 
other symbol on any of the other out-going arcs of out of the same state can be accepted 1 . 

1 Failure arcs have the peculiarity that the decision which arc to take is made based on the symbol, but 
the symbol is consumed later in the next non-failure arc. Usually, there are even several failure-arcs in a 
row, all testing the same input symbol, but against different outgoing arcs. 
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U)2/P(w2\wi) 

Figure 3.2: Weighted finite state acceptor (WFSA) implementation of a bi-gram LM. Left: fully 
connected model (V x V arcs) Right: WFSA approximation of a bi-gram back-off model [Mohri 
et al.(2008)], just showing the representation of transitions leaving state w\. The bi-gram W1W2 was 
seen sufficiently often during training and is thus represented by a direct link between the history 
states to 1 and W2- The bi-gram W1W3 was not seen sufficiently often, thus the model backs-off to 
the history-less state "bo" with the cost of the back-off weight a(wi). No symbol is consumed in 
this transition - indicated by the e-symbol. Leaving the back-off state, the lower order (uni-gram) 
probabilities are applied (P(wz)). The approximation with the back-off state can greatly reduce the 
number of arcs, but it also introduces non-determinism. If e would be a regular label, the WFSA 
would be deterministic (only a single outgoing arc per label in each state). However, since e doesn't 
consume a symbol, the bi-gram W1W2 can be either formed by taking the arc w\ —> W2 or by going 
over the back-off arc: w\ —> bo —> W2- Usually, P(w2\u>i) 3> a(uii)P(ui2) (modeling error is small). 

This works similar to the 'default ' case in a C-language ' switch ' statement. These failure-
arc-type W F S A accept sequences of words wi th exactly the same probabilities as when 
implemented as a back-off L M in any of the L M tool-kits. However, we actually violate 
the assumptions of the W F S T algorithms, when using failure arcs, the semi-ring concept is 
changed and a new class of algorithms is needed. 

3.1.1 W e i g h t p u s h i n g 

Two W F S A s are equal, if they accept the same set of input label sequences wi th the same 
path weights. In other words, two equivalent W F S A s (or W F S T s ) may differ by the way 
the weights (and output labels) are distr ibuted along the path. The dis t r ibut ion of weights 
along the path plays a crucial role i n pruned search [Mohri and Riley(2001)]. Accord ing 
to [Mohri and Riley(2001)], the op t imal dis t r ibut ion of weights for pruned search should 
be such, that the weights (coming from different knowledge sources such as acoustic and 
language model) are local ly synchronized for the sequential decisions which state to take 
next. Another common wisdom is, that the knowledge should be applied as early as possible 
in search - to be able to rule out unlikely paths as early as possible. This corresponds to 
"pushing" the weights as much as possible towards the in i t i a l state, which is equivalent to 
making the W F S A stochastic [Mohri et al.(2008)] (the outgoing weights of a state sum to 
one (1) i n the given semi-ring). It is only possible to make the W F S A stochastic if the total 
weight of the entire W F S A is 1. The total weight of an W F S A is the sum of a l l successful 
paths (from the in i t i a l state to a l l of the final states). 

Re-weighting [Mohri et al.(2008)] is an operation that alters the weights w[ti] of indi
v idua l transitions and the final-probabilities p(n[tn]), while leaving unaffected the weights 
W[TT] of successful paths. The possible ways to change the transi t ion weights of a W F S A 
can be expressed wi th the help of a potential function V : Q —>• K — 0, which can be an 
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arbitrary function on states Q, assigning a value of K (except 0) to every state q. G iven 
such a function, we can update the in i t i a l weight A, the transi t ion weights w[e], e G E and 
the final weights p(f) according to the following [Mohri and Riley(2001)]: 

A <- A <g) V(i) (3.3) 

VeeE,w[e] <- [V(pie})}'1 ® (w[e] ® V(n[e})) (3.4) 

VfeF,p(f) <- [V(f)]-1 ® p[f] (3.5) 

If the re-weighting is carried out this way, the overall weight of a successful path is 
not changed, since the potentials along any successful path cancel each other. Thus, the 
resulting W F S A is equivalent to the original one. Weight pushing is a special case of re-
weighting, that aims to make the W F S A stochastic (push the weights towards the in i t i a l 
state). Th is is achieved [Mohri and Riley(2001)] by setting the potential function V(q) to 
the shortest distance d[q] from q to any of the final states F: 

Vq G Q, V(q) = d[q] = 0 w[ir] (3.6) 
7reP(<z) 

Here, P(q) is the set of a l l paths from q to any of the final states F. Thus, the crucial step 
in weight pushing is to run the shortest path algori thm, whose complexity depends on the 
given semi-ring and the type of W F S A that is dealt wi th . 

For the t ropical semi-ring, a V i t e r b i a lgori thm can be used. If the log-probabili ty or 
probabil i ty semi-ring is used, however, a l l possible paths towards a state need to be summed, 
which is especially difficult, i f the W F S A has cycles. A cycle can be followed an infinite 
amount of times, generating an infinite number of paths that need to be summed. So we 
need to guarantee that the weight of any cycle is W(TT) < 1. In other words, we need to 
be able to compute the closure © J ^ w A otherwise the cycle would result i n an infinite 
to ta l weight. If a semi-ring fulfills this condit ion for Vu> £ K , it is called closed semi-ring 
[Mohri(2002)]. If the structure of the W F S A is simple, i.e. the cycles are not nested and can 
be easily identified, the closure operation could be direct ly applied. For W F S A s resulting 
from L M s , this is not true, since the cycles are nested i n a complex way. 

A generic shortest distance algori thm is presented by [Mohri(2002)] (page 9), which is 
iterative and operates by local ly forwarding weight mass through the W F S A according to a 
queue policy. A state is put to the update queue, i f its weight has changed since the last visit 
- called relaxat ion condit ion. The algori thm assumes, that an update is not necessary, if the 
weight of a loop has already been mul t ip l ied k times (^-closed). For the (log-) probabi l i ty 
semi-ring, there is no k < oo, for which this would hold, thus the algori thm cannot be used. 
Closed semi-rings are covered by the generic F loyd-Warsha l l and Gauss-Jordan algorithms 
[Lehmann(1977)]. These algorithms compute the all-pair shortest distance wi th a time 
complexity of 0 ( n 3 ) (n proport ional to the number of states) A s soon as the W F S A has 
thousands of states, this is clearly not feasible. 

The original relaxation condit ion for the generic algori thm [Mohri(2002)] is given by: 

d[n[e}} ± d[n[e}} © (r <g) w[e]) (3.7) 

where d[n[e]] is the shortest distance of state n[e] and (r' ®w[e]) is the weight to be added 
in the update. To handle also semi-rings that are not fc-closed, [Mohri(2002)] replaces the 
relaxation condit ion by an approximate test w i th a metric A : 

A(d[n[e]],d[n[e\]®(r'®w[e])) >5 (3.8) 
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where 5 > 0 is a positive number used for approximation. Due to l imi ted machine precision, 
there is actually always some 5 for which this condit ion w i l l not be met. Thus, w i th a 
fc-closed semi-ring, a cycle w i l l not be followed more than k times, and in our case the 
algori thm stops updat ing as soon as: 

where W[TT] is the weight of the cycle. If I is large (W[TT] —>• 1 or 5 —>• 0) the algori thm w i l l 
iterate for a long time unt i l it converges. For w[ir] > 1, the algori thm fails to converge at 
a l l . In this case, the to ta l weight of the W F S A becomes infinity. 

A s explained i n figure 3.2, for W F S A constructed from back-off L M s , the e-style back-off 
arcs lead to duplicate paths. In case the weights were taken from a back-off L M estimated 
for failure arcs, but the back-off arcs are represented wi th e, the outgoing arcs w i l l sum 
to a slightly higher value than one. W h e n occurring i n a loop, the condit ion w[ir] < 1 
does no longer hold. Tha t means, the generic weight pushing algori thm [Mohri(2002)] as 
implemented in O p e n F S T w i l l fail to converge, because the total weight of the entire W F S A 
w i l l not be finite2. 

3.1.2 A l t e r n a t i v e weight p u s h i n g a l g o r i t h m 

We present an alternative weight pushing algori thm, which w i l l always converge. Us ing the 
transi t ion mat r ix P j j , we represent the W F S A in the probabil i ty semi-ring, where pij is the 
sum of a l l t ransi t ion weights between state i and state j . The transi t ion matr ix is usually 
sparse (contains 0 for a l l non-existing transitions). O u r solution is based on the theory 
of non-negative matrices and ergodic M a r k o v chains. The fundamental l imi t theorem for 
regular chains states, that for any in i t i a l probabil i ty vector A , the process approaches the 
fixed row vector w (stationary distr ibution) for n —> oo: 

This suggests an iterative algori thm to find the stationary distr ibut ion, which is similar to 
the power method for finding the dominant eigenvector w of the matr ix P , by starting from 
a random or uniform positive vector v and i terating by let t ing v { - P v each time. 

If the W F S A is not normalized, the generalization is given by the Perron theorem, 
which [Bcrman and Shaked-Monderer(2012)] states, that for every non-negative pr imit ive 
(i.e. regular) matr ix P , the m a x i m u m eigenvalue p ( P ) (also called spectral radius) is posi
tive, simple (algebraic mul t ip l ic i ty one), singular (only one eigenvalue of this modulus) and 
has a positive eigenvector (called left and right Perron vector, whose normalized entries 
sum to one). For n —> oo, the mat r ix converges: 

where x and y are positive right and left eigenvectors: P x T = p ( P ) x T , x > 0, y P = 
p(P) y , y > 0. F r o m this, it follows that for any in i t i a l probabil i ty vector A , if we mul t ip ly 
from the right, the ratio of state weights i n A w i l l converge to a vector proport ional to the 
right eigenvector x T : 

2 I f the weights are correctly estimated as interpolated L M , the total weight is one, but the weight in 
cycles can sti l l be very close to one, so that the generic algorithm is inefficient (equation 3.9). 

(3.9) 

l i m A P " = A W = w . (3.10) 

(3.11) 
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l i m (~7^) A T = L A T = x T ( y A T ) = dxT. (3.12) 
n-s-oo \p[P) J 

Since we do not know the normal iz ing spectral radius p ( P ) in advance, we re-normalize 
the resulting vector v at each step. Every normalizat ion results in the same eigenvector, so 
we choose unit length.If we iterate v ( - P v (equation 3.12), it results in the dominant right 
eigenvector of P , which, i n the probabil i ty semi-ring, is the m i n i m u m distance towards the 
final states (or the super-final state). 

The Perron theorem is only true for regular chains, but we can make every t r i m W F S A 
ergodic 3 by connecting the final states / £ F to the in i t i a l state I. Now, every state can 
be reached from any other state, by going over any of the final states. Tha t means we 
modify one column i n the transi t ion matr ix : i f j is the in i t i a l state, then pij is set to the 
final-probability p[i] of state i. 

A s a second step, we need to guarantee, that the resulting ergodic W F S A is also regular 4 . 
We can make the W F S A regular by interpolating P wi th the identity matr ix : If P is the 
transi t ion matr ix of an ergodic Markov chain, then we can obtain the transi t ion mat r ix of 
a regular chain by: 

P ' = /feI + ( l - / f e ) P , 0 < k< 1, keM (3.13) 

Since the ergodicity guarantees, that every state can be reached, interpolating wi th the 
identity mat r ix I guarantees, that the diagonal elements p'u > 0 are positive, which means, 
that it is possible to take self-loops to stay i n every state. Thus, after n steps, when all 
states of the ergodic chain have been reached, P / n w i l l have a l l elements positive. P ' and 
P have the same eigenvectors 5. 

Alternatively, we can modify the i teration to v <— P v + fcv. The parameter k is set 
to a smal l value (0.1) to not slow down the convergence too much. This algori thm is very 
efficient i n practice, it generally converges wi th in several tens of iterations. 

A t the end, we have a vector v w i th vj = 1, and a scalar c > 0, such that 

c v = P v . (3.14) 

The vector v contains the dis t r ibut ion of average state occupancies and is used as the 
potential function V(q) : Q —> K — 0 for the re-weighting operation (equation 3.4). Th is 
means we compute a modified transi t ion mat r ix P * , by lett ing 

Pij = PijVi/vj, (3.15) 

and transforming the final probabilities by p* = piVj/vi, where vj is the potential of the 
in i t i a l state. Us ing the re-weighting wi th the potential function V guarantees, that the 
resulting W F S A is equivalent to the original one. If we use the right Perron eigenvector 
as potential function in equation 3.4, it results i n pushing the weights towards the in i t i a l 
state, i.e. i n making the W F S A output stochastic. E i the r a l l outgoing arcs sum to one, i f 
the to ta l weight is one, or more generally to the same quanti ty for a l l states. 

We show this by wr i t ing one element of equation 3.14 as 

cvi = ^ p i j v j , (3.16) 
j 

3 A Markov chain is ergodic, if it's possible to go from any state to any state (not necessarily one move). 
4 T h a t is, we don't want the matrix to have several multiple eigenvalues with the same magnitude but 

different complex phases, as is the case, e.g. for linear W F S A s . 
If k <C 1 or k' —> 1, then also the eigenvalue wi l l be very similar. 
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by d iv id ing by Vi, it easily follows that c = ^2jP*j- This means each row of the modified 
matr ix P * sums to c (the eigenvalue modulus of the Perron vector). In the classical weight 
pushing algori thm [Mohri and Riley(2001)], we assume a stochastic W F S A , so that after 
weight pushing, a l l outgoing transitions of a state "sum to" 1 i n the given semi-ring. Our 
solution is to use a modified pushing operation, which results in a W F S A , for which the 
transitions out of a l l states (and the final probabi l i ty p) "sum to" the same quanti ty c: 

y q e Q , l 0 M e ] ®p[q]=c. (3.17) 

This means that the left-over weight, which is usually added to the in i t i a l or final states 
and which can cause the standard algori thm to fail, is now uniformly "smeared" a l l over 
the W F S A . Our a lgori thm is i n practice an order of magnitude faster than the more generic 
conventional weight pushing algori thm. 

3.2 Exact back-off L M reversal 

For the construction of the backward recognition network, the most difficult component 
to reverse is the W F S A resulting from the back-off L M . In section 3.1, we explained how 
N-gram back-off L M s are represented as W F S A . We require that the reverse L M assigns 
exactly the same probabilities as the forward L M . To guarantee an opt imal search, the 
backward W F S T should also be deterministic, stochastic and of m in ima l size. Thus, simple 
W F S T reversal is not sufficient. We derive the construction of the backward L M satisfying 
these requirements, which is va l id when using failure arcs and also when using epsilon arcs 
to represent the back-off structure as W F S A . 

The W F S A corresponding to the forward L M accepts a sequence of words and accu
mulates the weights along the path - see figure 3.3. If the probabi l i ty semi-ring is used, 
the path weight is the product of the ind iv idua l probabilit ies. If logari thmic probabilit ies 
are used, the path weight is the sum of the ind iv idua l scores. Two W F S A are equal, i f 
they accept the same set of sequences wi th the same path weights. Thus, it is possible to 
distribute the weights differently along the path, as long as the to ta l product (or sum for 
logari thmic weights) stays the same for a l l paths. W h e n we direct ly apply W F S A reversal, 
which basically corresponds to swapping the source and destination states of the arcs, the 
resulting structure would be highly non-deterministic. In the example, starting backwards 
from the final state, a l l incoming arcs (only one example is shown) have the label </s>. 
Thus, we have to apply P(</s> |c, d) after only having seen only one symbol of the t r i -gram 
(</s>). However, only after two more symbols d, c have been seen, the destination state can 
be determined unambiguously. For that reason, it would be logical to delay the application 
of the weight (probabil i ty), un t i l a sufficient number of symbols (two for tri-grams) have 
been consumed to unambiguously determine the destination state. Figure 3.4 shows the 
corresponding path i n the backward L M . 

W h e n certain N-grams do not have sufficient coverage in the t ra ining corpus and are 
approximated by backing-off to lower order N-grams (see figure 3.5), the sequence of the 
weights in the backward L M is again exactly reversed as i n the forward L M , and the same 
delay of the weights is applied to make the model deterministic.However, the sequence of 
the labels for back-off arcs is changed - back-off weights and lower-order N-grams change 
their role. The reason for that is we always have to back-off to a common history before 
consuming the next label - so the failure-arc (symbolized by ip) i n the backward model takes 
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<s>: 1, o:P(o|<s>) b:P(b\<s>a) c : P{c\a,b) d:P(d\b,c) </s>: P(</s>\c, d\ 

Figure 3.3: Example of a forward path through a tri-gram language model - every state cor
responds to a history of the two last symbols consumed. The model accepts the sequence a, b, c, d 
(input symbols) and the path weight is the product of the individual probabilities. For simplicity, 
sentence-start and sentence-end are treated here as ordinary symbols. Only one path is shown, but 
of course there are multiply arcs entering the final state, all with the same label. 

</s> : ] /~^w • i /^^c:P(</s> |c ,d) /^6:P(d |6 ,c) / ^a:P(c |a ,6) /^<s>:P(6 |<s>a)-P(a |<s>) 
• f </s> V^-» k/s>d) - > (dcj > (cb) > [baj > (Ks>J 

Figure 3.4: The backward path corresponding to the path in figure 3.3. Additionally to reversing 
the path, the weights /probabilities have been delayed by two steps. Therefore, two arcs with prob
ability one have been inserted at the beginning. To compensate, we could add two e-arcs at the 
end (as depicted in dashed), where the last arc corresponds to backing-off to a history-less state 
at the sentence beginning (now end). Instead of introducing back-off arcs at the end of the sen
tence, we can collapse the probabilities of all the lower-order back-offs onto one arc, i.e. we use 
P{b\<s>a) • P{a\<s>) • P{<s>). Also the WFST LM implementation assumes, that a state reached 
by an N-gram containing the sentence-end symbol is a final state. 

the lower-order N-g ram probabil i ty (from the forward model) and the label-arc takes the 
former back-off weight. Figure 3.6 shows this i n the construction of a backward back-off 
L M from hgure 3.5. We see, that it is possible to construct a backward L M , that has the 
same size and structure as the forward L M and is deterministic. F r o m the construction, we 
observe, that a forward L M can be transformed into a backward L M by a series of relatively 
simple steps: Since the sequence of labels is processed in reversed order, the names of a l l 
states and N-grams are reversed (abc becomes cba). The N-grams of the highest order do 
not have back-off weights, and thus they stay unchanged (arcs appear s imilar in the forward 
and backward models). However, for a l l lower-order N-grams, the role of the back-off weight 
and the N-gram probabil i ty change. 

W h e n represented i n the A R P A format i n hgure 3.7, the transformation becomes even 
simpler: For a l l lower-order N-grams, the whole line is reversed, and for the highest-order N -
gram, only the N-g ram is reversed. E . g . for a t r i -gram L M , a bi-gram entry P(b\a) a b a(a, b) 
becomes a(a,b) ba P(b\a) and a t r i -gram entry P(c\a,b) abc becomes P(c\a,b) cba. The 
symbols for sentence begin and sentence end have to be exchanged, and special care has to 
be taken for N-grams starting and ending a sentence. For a l l N-grams ending a sentence, we 
mul t ip ly a l l lower-order probabilities (e.g. for N-g ram cba we use P(c\a, b) • P(b\a) • P(a)). 

W i t h the help of a series of weight pushing operations and representation changes of the 
probabilities, where each step guarantees W F S A equivalence, the L M reversal a lgori thm can 
also be derived step by step. B y applying the constraint that the joint word probabilities 
should be the same for the forward and backward L M for a l l N-gram orders, we are also 
able to derive our algori thm from Bayes' rule. The application of weight pushing to the 
resulting backward L M is crucial for op t imal performance. 

/ ~ " N e:P(a|<s>) 
^>a<s>i >'4<s>J 
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Figure 3.5: The same example of a forward path as in figure 3.3, but with backing-off. The thick 
arcs correspond to the path in fig. 3.3 and further arcs have been added to illustrate the structure of 
the back-off LM. Since the N-gram bed was not seen sufficiently often, it is approximated by backing-
off to state c with back-off weight a(b, c) and then using the bi-gram cd with probability P(d\c). The 
failure-arc (symbolized by tp) doesn't consume any symbol, but this arc is chosen for all symbols, 
that have no outgoing arc out of the same state ('default' clause). For the non-deterministic WFSA 
approximation, we would use the symbol e instead and not consume a symbol either. The state 0 
corresponds to the history-less back-off state when backing-off to uni-grams. 

Figure 3.6: The backward structure corresponding to figure 3.5. The thick arcs correspond to the 
path in fig. 3.4, and all solid arcs are reversed arcs from fig. 3.5. Dashed arcs have been added to 
illustrate further structure of the backward model. Similar as in figure 3.4, the weights have been 
delayed by two steps. Compared to the forward structure in figure 3.5, the sequence of weights is 
exactly reversed. The probability on an arc between two particular states is the same in the forward 
and backward model. I.e. compare the forward arcs be — c — cd in fig. 3.5 to the backwards arcs 
dc — c — cb in this figure (cb corresponds to be). However, since all labels are off by two states in the 
backward model, the back-off probability a(b,c) is now actually applied on a bi-gram arc with a label 
(b) and the bi-gram probability P(d\c) is applied on a back-off arc with tp. Since all backward-tri-
grams ending in cb (like deb, heb) share b as last label, it is logical to first back-off from the history 
(dc, he) to the common history c and then apply the common label b. Since the reverse order of the 
weights has been preserved, the bi-gram probabilities serve now as back-off weights, and the former 
back-off weights serve as bi-gram probabilities. The same holds for the history-less state 0 - the 
uni-gram back-off weight a(l) and the uni-gram probability P{c) have switched their role. 
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\data\ 

ngram 

ngram 

ngram 3 = 2 

\1—grams: 

-5.234679 a -3 

-3.456783 b 

O.OOOOOOO <s> 

-4.333333 </s> 

\2—grams: 

-1.45678 a b -

-1.30490 <s> a 

\3—grams: 

-0.34958 <s> a 

-0.23940 a b < 

\end\ 

. 23 
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F i g u r e 3.7: Lef t : Definition of a tri-gram ARPA back-off language model. For each N-gram 
'abc', there is an entry in the form 'P*(c\a, b) abc a(a,b,c)', where P*(c\a, b) is the discounted 
probability P(c\a, b), and a(a, b, c) is the back-off weight of backing-off from a higher order N-gram 
to the shortened history abc. The probabilities are by convention given as logarithms to the basis 
of two. R i g h t : The WFSA resulting from the tri-gram back-off ARPA LM defined on the left. 
The highest-order N-grams (tri-grams) behave slightly differently than lower-order N-grams: The 
transition for tri-gram <s>ab is going from state <s>a to state ab, which is equivalent to going to 
an imaginary state <s>ab and immediately backing-off to state ab. If for some reason the bi-gram 
ab would be missing in the ARPA file (removed line —1.45678 ab — 3.23 9; the state ab would be 
created as target state for the tri-gram abc, however, the arc from a to ab would not exist, and the 
back-off arc from ab to b would be with zero cost. 

3.2.1 T h e t rea tment of miss ing N - g r a m s 

W h i l e the rules are rather simple, an addi t ional complexity arises, when representing back
off N-gram L M s as W F S A s . If there is an N-gram entry for abed in the A R P A , the resulting 
W F S A needs the back-off states bed, cd and d. Due to e.g. L M pruning, for some of the 
N-grams abed defined in the A R P A file, there is no corresponding t r i -gram entry bed or b i -
gram entry cd, i.e. we are not given the probali ty a(bcd) of backing-off abed —>• bed, neither 
P(d\b,c). N-grams that are needed for the construction of the W F S A , but not defined in 
the A R P A , we cal l missing N-grams. 

Dur ing the construction of the recognition graph from the forward L M , missing back-off 
states are usually added automatically. For example, i n the t r i -gram L M of figure 3.7, the 
t r i -gram <s>ab leads into the state ab. Let ' s imagine the corresponding back-off bi-gram ab 
is not present in the L M : In this case, dur ing the construction of the recognition graph, the 
state ab needs to be automatical ly created, as it is the target of the t r i -gram. Since there 
is no bi-gram probabil i ty for ab (P(b\a) = 0.0), we should immediately back-off to state 
b. Thus, the bi-gram ab is added wi th back-off weight a(a, b) = 1.0 (zero i n log-domain). 
However, it should not be possible to reach the newly created state ab from a, since the 
N-gram ab is missing (P(b\a) = 0.0 or minus infinity i n log-domain). 

In terms of the W F S A representation of the L M (right part of figure 3.7), this would 
mean, that there would be no l ink between a and ab, and the l ink between ab and b would 
be added w i t h zero cost. In the reverse L M , where forward probabil i ty and back-off weight 
change their role, this does lead to the si tuation, that we are able to reach ba from 6 wi th 
a(a, b) = 1.0, but we are not able to back-off from ba to o, since this corresponds to a path 
that was not present i n the forward model (P(b\a) = 0.0). To summarize, to make missing 
N-grams explicit in the forward A R P A file, it results i n an entry ' — i n f ab 0.0', and i n the 
backward A R P A , it results in an entry '0.0 ba — i n f . 
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Miss ing N-grams result from a complex interplay of the type of back-off dis t r ibut ion, 
cut-off frequencies and L M pruning. The first type of N-grams that are missing i n the 
A R P A file are back-off N-grams that end a sentence. B y convention, the state reached 
by an N-g ram containing the sentence-end symbol is a final state. For example, for the 
t r i -gram cd</s> i n figure 3.5 (final arc), there is no lower-order N-gram d</s>, since after 
observing the sentence-end symbol , no other N-g ram can follow. Accord ing to the rule, we 
create ' — i n f d</s> 0.0', which results i n adding '0.0 </s> d — i n f i n the backward 
L M . This exactly corresponds to the state </s>d i n figure 3.6, which can be reached wi th 
probabil i ty one, but there can be no back-off arc leaving this state. 

Otherwise, i n an un-pruned N-gram L M , usually the presence of a higher-order N-gram 
implies the presence of the lower-order N-gram (e.g. w i th a shortened history), since the 
observation count of the lower-order N-g ram should be equal or higher than the count of 
the higher-order N-gram. We encounter missing N-grams, when we use different cut-off 
frequencies (parameter k i n equation 3.2) for different N-g ram orders, and also, i f we use 
lower-order distributions, which are not based on counts. The dis t r ibut ion for the highest-
order N-grams P'(wi\hi) (equation 3.2) is usually based on the counts C(hi,Wi). [Kneser 
and Ney(1995)] showed, that when backing-off, one should make use of the fact that this 
particular word is unseen i n the given context. In other words, we should use a different type 
of dis t r ibut ion for P[ower(wi\hi) than for P'{wi\hi). [Kneser and Ney(1995)] use a back-off 
dis tr ibut ion, where the probabil i ty of a word, unseen i n a certain context, is proport ional 
to the number of possible predecessor words types that can occur before that context: 

D , i n \wi-n:C(wi-n...Wi) > k\ 
J W t o l ^ i • • • « * - ! ) = X W i \ W i _ n : C ( w i - n . . . w i ) > k \ - ( 3 J 8 ) 

A s a consequence, we can expect words or phrases, that appear frequently, but only in 
very few different contexts, to have a low probabil i ty in the back-off model. For example, 
we would not expect the word „F ranc i s co" to appear in many other contexts than together 
wi th „San Francisco", despite the fact that it is a frequent word. For that reason, we often 
find higher-order N-grams i n the L M , such as „San Francisco area", for which the back-off 
N-gram „Franc isco area" is missing. W h e n constructing the backward L M , we w i l l add the 
missing N-g ram „a rea Francisco" w i t h probabil i ty one and infinite back-off weight. Th is 
means, that after observing „ a r e a Francisco", we are only able to continue w i t h „ S a n " and 
there can be no back-off to „Franc i sco" , which would allow to continue wi th another word. 

In fact, when experimenting wi th L M s trained on sentences from the W a l l Street Jour
nal corpus [Paul and Baker(1992)], we observed that any common mult i -word phrase can 
result i n missing lower-order N-grams. A n N-gram starting wi th in a mul t i -word phrase has 
very few different left contexts, which causes it to have low back-off probabili ty. If the right 
context of that N-gram is either almost completely undetermined or completely determined 
(e.g. sentence end), a l l N-grams that would continue the phrase fall below the cut-off fre
quency and are thus not present in the L M . Typical ly , a mul t i -word phrase like „on behalf 
of" or „ N e w Y o r k C i t y " is followed by a word that introduces lot 's of ambiguity - e.g. „on 
behalf of the". If no N-g ram „behal f of the X " is above the cut-off frequency, then also the 
back-off N-g ram „behal f of the" is missing in the L M , since the probabil i ty of seeing it in a 
new context other than „ o n " is extremely low. A s already mentioned, also for a l l N-grams 
ending a sentence, there is no succeeding N-gram, which is a similar si tuation. It is quite 
obvious, that L M pruning (e.g. based on entropy [Stolcke(19i )]) w i l l increase the number 
of missing N-grams. Accord ing to the same principle, N-grams wi th a low probabil i ty in 
the back-off dis tr ibut ion, and no successor N-grams (due to pruning) are missing as well. 
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Chapter 4 

Conclusions 

In this thesis, we introduced the idea of symmetr ical ly decoding forwards and backwards in 
time. For some tasks, the pruned backward search can be more efficient than the forward 
search. Moreover, we showed, that the search errors of forward and backward search are 
mutual ly independent. To concentrate on search errors rather than on modeling errors, we 
require both decoding passes to be symmetric - i.e. bo th models are equally powerful and 
are constructed to assign exactly the same probabilities to hypotheses. This guarantees that 
each difference in comparing the results of forward and backward decoding corresponds to 
a search error. For most of the t ime frames in beam search decoding, a very narrow beam is 
sufficient. Therefore, we decode wi th a variable beam wid th - using a smal l baseline beam 
and only increasing it i n places, where the forward and backward searches disagree. 

One possible realization of the variable beam wid th decoding is to run both passes in 
parallel, i teratively refining the decoding (by increasing the beam width) in places, where 
both disagree. For about 50% of the utterances, the results already match after the first 
i teration. For the rest, the stretches of mis-matching words can be decoded i n parallel . 

Another realization of the variable beam wid th is the tracked decoding presented in 
this thesis, which runs forward and backward decoding sequentially. D u r i n g the second 
pass (tracked decoding), we identify active tokens corresponding to paths that were present 
in the first-pass lattice. These tracked tokens are never pruned, regardless of the beam 
wid th and are used to determine the variable pruning beam for each frame. In places where 
disagreement is detected, the beam is increased to include a l l of them. Otherwise, the same 
narrow beam is used as i n the first pass. O u r method is doing more than s imply choosing 
the best path from two passes, because it is possible to "recombine" par t ia l paths from the 
first-pass and second-pass search. O n top of that, the variable beam leads to the generation 
of extra tokens i n areas where both passes disagree, which gives an addit ional speed-up. 

Tracked decoding leads to a 2-3 times speed-up compared to a single pass forward 
decoding. Since most of the t ime is spent i n the forward and backward decoding w i t h the 
narrow beam, the baseline beam determines the possible speed-up. W h e n we decrease the 
beam below a cr i t ica l threshold the speed-up vanishes, since an excessive amount of extra 
tokens is generated. A t least one of the two passes should obtain a (partly) correct solution. 

To construct the backward recognition network, it is not sufficient to apply W F S T re
versal to the forward network. To guarantee an opt imal search (determinism, stochasticity, 
min ima l size), it is necessary to construct reverse models for each component separately 
and to compose the components i n the same way as in the forward network. It turned out 
that the transducers for H M M structure, context-dependency and pronunciat ion lexicon 
are rather easy to reverse, however, the reversal of the L M transducer is difficult. Weight 
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pushing has to be applied to the reversed components, to obtain the stochasticity of outgo
ing arcs. Since a l l components are reversed individual ly, our approach to the construction 
of backward recognition networks can be applied i n static and dynamic network decoders. 

To represent N-g ram L M s as W F S T s , an approximate structure is necessary. W h e n 
representing back-off arcs as epsilon arcs, non-determinism is introduced, resulting i n an 
infinite to ta l weight. The convergence of the iterative weight pushing algori thm depends 
on the weight i n a loop, which must be smaller than one. Therefore, the a lgori thm w i l l 
not converge for W F S A resulting from back-off L M s . We presented an alternative weight 
pushing algori thm, which w i l l always converge. We use the Perron theorem to obtain 
the dominant right eigenvector of the transi t ion mat r ix of an ergodic W F S T . Th i s vector 
represents the m i n i m u m distance to the final state, which we use as the potential function 
in re-weighting. This results i n pushing the weights towards the in i t i a l state and making 
the W F S A output stochastic. The to ta l weight, causing the standard algori thm to fail, 
is now uniformly "smeared" a l l over the W F S A . Our algori thm is i n practice an order of 
magnitude faster than the more generic conventional algori thm. 

The most difficult component to reverse is the W F S T resulting from the back-off L M . 
We require that it assigns exactly the same probabilities as the forward L M . We derive 
the construction of the backward L M satisfying these requirements, which is va l id when 
using exact back-off models using failure arcs, and also when approximating them wi th 
epsilon arcs. We especially concentrate on the correct handling of back-off arcs and missing 
N-grams. O u r 'exact' L M reversal gives slightly better performance than a backward L M 
resulting from training on the reversed t ra ining texts. 

4.1 Future work 

The proposed method could be applied i n the fast generation of lattices for audio indexing 
and the tracked decoding could be used to generate lattices that contain desired paths, 
such as the forced-alignment reference for the discriminative t ra ining of acoustic models. 
Add i t iona l ly to decoding forwards and backwards in time, depending on the task, there 
might be other ways of decoding, which could result i n independent search errors. 

The alternative weight pushing algori thm was derived under the assumption, that a l l 
arcs in the W F S T are of the same type. However, there are "emitt ing" arcs w i th a word 
label, and "non-emitting" arcs representing the back-off arcs. A n open problem is to derive 
a weight pushing algori thm respecting the special semantics of back-off arcs as failure arcs. 
Under this correct interpretation, the to ta l weight of the transducer w i l l be one, and we 
avoid the negative log-probabilities resulting from pushing weights greater than one. The 
original K a l d i recipe for the construction of recognition networks [Povey et al.(2011)] used 
the assumption, that a l l components are stochastic, which eliminates the necessity for 
weight pushing. We want to derive a properly normalized stochastic backward L M W F S T . 

There is inconsistency between the algorithms for decoding graph construction (as
suming the log-semi-ring), and for decoding (tropical semi-ring). In addi t ion to different 
interpretations of the failure/epsilon arcs, this opens several design choices, which should 
be systematically explored to find a consistent framework for decoding graph construction 
that results i n an opt imal decoding. The non-determinism introduced by using epsilon arcs 
for back-offs results in mult iple evaluations of the same models during decoding. After 
the composit ion wi th the lexicon transducer, it should be possible to apply another deter-
minizat ion step, which not only removes the non-determinism, but also leads to a graph, 
which is consistent w i th the log-semi-ring. 
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