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Abstract

Many tasks can be formulated in the mathematical framework of weighted finite state trans-
ducers (WFST). This is also the case for automatic speech recognition (ASR). Nowadays,
ASR makes extensive use of composed probabilistic models — called decoding graphs or
recognition networks. They are constructed from the individual components via WFST
operations like composition. Each component is a probabilistic knowledge source that con-
strains the search for the best path through the composed graph — called decoding. The
usage of a coherent framework guarantees, that the resulting automata will be optimal
in a well-defined sense. WFSTs can be optimized with the help of determinization and
minimization in a given semi-ring. The application of these algorithms results in the op-
timal structure for search and the optimal distribution of weights is achieved by applying
a weight pushing algorithm. The goal of this thesis is to further develop the recipes and
algorithms for the construction of optimal recognition networks. We introduce an alterna-
tive weight pushing algorithm, that is suitable for an important class of models — language
model transducers, or more generally cyclic WFSTs and WFSTs with failure (back-off)
transitions. We also present a recipe to construct recognition networks, which are suitable
for decoding backwards in time, and which, at the same time, are guaranteed to give exactly
the same probabilities as the forward recognition network. For that purpose, we develop an
algorithm for exact reversal of back-off language models and their corresponding language
model transducers. We apply these backward recognition networks in an optimization tech-
nique: In a static network decoder, we use it for a two-pass decoding setup (forward search
and backward search). This approach is called tracked decoding and allows to incorporate
the first pass decoding into the second pass decoding by tracking hypotheses from the first
pass lattice. This technique results in significant speed-ups, since it allows to decode with
a variable beam width, which is most of the time much smaller than the baseline beam.
We also show that it is possible to apply the algorithms in a dynamic network decoder
by using the incrementally refining recognition setup. This additionally leads to a partial
parallelization of the decoding.
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Abstrakt

Pomoci matematického formalismu vahovanych koneénych stavovych prevodniki (weighted
finite state transducers WFST) muze byt formulovdna fada tloh véetné automatického
rozpoznavani feéi (automatic speech recognition ASR). Dnesni ASR systémy Siroce vyuzi-
vaji slozenych pravdépodobnostnich modeli nazyvanych dekddovaci grafy nebo rozpozna-
vaci sité. Ty jsou z jednotlivych komponent konstruovany pomoci WEFST operaci, napt. kom-
pozice. Kazda komponenta je zde zdrojem znalosti a omezuje vyhledavani nejlepsi cesty
ve slozeném grafu v operaci zvané dekédovani. Vyuziti koherentniho teoretického ramce
garantuje, ze vysledna struktura bude optimalni podle definovaného kritéria. WFST mo-
hou byt v rdmci daného polookruhu (semi-ring) optimalizovdny pomoci determinizace a
minimalizace. Aplikaci téchto algoritmi ziskdme optimélni strukturu pro prohledavani,
optimalni distribuce vah je pak ziskdna aplikaci “weight pushing” algoritmu. Cilem této
prace je zdokonalit postupy a algoritmy pro konstrukci optimélnich rozpoznéavacich siti.
Zavadime alternativni weight pushing algoritmus, ktery je vhodny pro dulezitou t¥idu mod-
el - pfevodniky jazykového modelu (language model transducers) a obecné pro vSechny
cyklické WFST a WFST se zéloznimi (back-off) pfechody. Ptedstavujeme také zptisob
konstrukce rozpoznavaci sité vhodné pro dekédovani zpétné v Case, které prokazatelné pro-
dukuje ty samé pravdépodobnosti jako dopfedna sit. K tomuto Ucelu jsme vyvinuli algo-
ritmus pro exaktni reverzi back-off jazykovych modeld a prevodniki, které je reprezentuji.
Pomoci zpétnych rozpoznavacich siti optimalizujeme dekédovani: ve statickém dekodéru je
vyuzivame pro dvoustupriové dekédovani (dopfedné a zpétné vyhledévani). Tento pFistup
— “sledovaci” dekédovani (tracked decoding) — umoznuje zahrnout vysledky vyhledavani
z prvniho stupné do druhého stupné tak, ze se sleduji hypotézy obsazené v rozpoznavacim
grafu (lattice) prvniho stupné. Vysledkem je podstatné zrychleni dekédovani, protoze tato
technika umoznuje prohledévat s variabilnim prohleddvacim paprskem (search beam) — ten
je povétsinou mnohem uzsi nez u zakladniho pristupu. Ukazujeme rovnéz, ze uvedenou tech-
niku je mozné vyuzit v dynamickém dekodéru tim, Ze postupné zjemnujeme rozpoznavani.
To navic vede i k ¢astecné paralelizaci dekédovani.
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Chapter 1

Introduction

The application I had in mind while writing this thesis is the decoding of the most probable
sequence of words in large vocabulary automatic speech recognition (LVCSR). However, the
approach presented here can also be used in other tasks, which can be formulated in the
framework of weighted finite state acceptors (WFSA) or transducers (WFST), as e.g. finding
the most probable sentence in statistical machine translation and finding the most probable
pronunciation of a spelled word in grapheme-to-phoneme conversion.

When formulating automatic speech recognition (ASR) in the WFST framework |

I, [ |, we use composed WFSTS, called decoding graphs
or recognition networks. WFSTs are used to represent the language model (LM), the pro-
nunciation lexicon and the Hidden Markov Models (HMM) in a unified framework. These
components are integrated into a single WFST by the composition operation. Each com-
ponent is a probabilistic knowledge source that constrains the search (called decoding) for
the best path through the composed graph. The usage of a coherent framework guarantees,
that the resulting automata will be optimal in a well-defined sense. WFST can be opti-
mized by determinization and minimization in a given semi-ring. The application of these
algorithms results in the optimal structure for search.

An optimized recognition network can contain up to millions of states, and the resulting
search state space (trellis) is even several orders of magnitude larger. Given the complexity
of the task, the search spaces cannot be explored exhaustively. It is necessary to use heuristic
pruning techniques. In this case, we have to distinguish search errors, which are due to the
incomplete exploration of the search space (e.g. through search beams and other pruning
techniques), from modeling errors, which are due to insufficient (or bad) training data or due
to inaccurate models (independence assumptions, choice of distribution, smoothing, ...).
In general, the goal is to reduce the amount of search errors at given run-time requirements
(decoding speed). This can be achieved by operations like weight pushing, which aim to
distribute the weights along the path in a way that is optimal for pruned search.

The goal of this thesis is to further develop the recipes and algorithms for the con-
struction of optimal recognition networks. We aim to find the optimal trade-off between
improving search speed and reducing search errors. We introduce the idea of symmetrically
decoding forwards and backwards in time. For some tasks, the pruned backward search
can be more efficient than the forward search. Moreover, we show, that the search errors of
forward and backward search are mutually independent. To concentrate on search errors
rather than on modeling errors, we require both decoding passes to be symmetric —i.e. both
models are equally powerful and are constructed to assign exactly the same probabilities
to hypotheses. This guarantees that each difference in comparing the results of forward



and backward decoding corresponds to a search error, which allows us to achieve significant
speed-ups by decoding with a variable beam width.

1.1

Claims of the thesis

The main contributions of this thesis can be summarized in the following points:

Symmetric forward and backward decoding: To speed-up the decoding, as op-
posed to multi-pass recognition techniques [ |, we use forward and
backward recognition passes which are equally powerful. Equally powerful forward
and backward decoding has been used before for the purpose of system combination
[ | and confidence estimation | |. However, we
require that the forward and backward recognition networks assign exactly the same
probability scores, which allows us to detect search errors, to recombine partial paths
and to incorporate the first pass into the second pass.

WEFSTs resulting from back-off and interpolated language models: We show,
that the common practice to convert interpolated LMs into back-off LMs, when storing
them in the ARPA file format, leads to problems in the construction of the recognition
network in the log-probability semi-ring. We give details about the approximation
and the correct handling of back-off arcs and explain “missing” N-grams.

Alternative weight pushing algorithm: We give the theoretical justification and
explain details of the alternative weight pushing algorithm, that is suitable for an
important class of models — language model transducers, or more generally cyclic
WEFSTs and WFSTs with failure (back-off) transitions.

Construction of symmetric backward recognition networks: We present a
recipe to construct recognition networks, which are suitable for decoding backwards
in time, fulfill the criteria of determinism and similar size, and at the same time, are
guaranteed to give exactly the same probabilities as the forward recognition network.

Exact back-off language model reversal: For the purpose of constructing back-
ward recognition networks, we develop an algorithm for exact reversal of back-off
language models and their corresponding language model transducers, which is valid
for both types of approximations: using epsilon arcs or using failure arcs. We show
the derivation of the formulas by a series of steps guaranteeing WFST equivalence,
as well as the derivation from Bayes’ rule.

Tracked decoding and variable beam width: We develop a two-pass decoding
setup (forward search and backward search), that allows to incorporate the first pass
decoding into the second pass decoding by tracking hypotheses from the first pass
lattice. This technique allows to decode with a variable beam width, which is most
of the time much smaller than the smallest single-pass beam and is only increased in
areas, where forward and backward decoding disagree.

Speed-up and parallelization: We have implemented the backward recognition
networks for both static and dynamic network decoders and show experiments that
demonstrate significant speed-ups in both cases. Applying the incrementally refining
recognition setup of [ | additionally leads to a partial parallelization
of the decoding.



1.2 Automatic speech recognition with weighted transducers

HMM structure
lexicon
decoding: searchAfor
best hypothesis W = recognized text
)

; acoustic
speech input — model
extraction || px|W) | |argmaz.,P(W) P(X|W

Figure 1.1: Components of automatic speech recognition

language
model P(W)

recogn|t|on network]

In figure 1.1, we summarize the basic structure of an automatic speech recognition (ASR)
system. The task in automatic speech recognition (ASR) is to search for the word sequence
W with the maximum a-posteriori probability (MAP) given the acoustics, represented by

a sequence of acoustic vectors X = x1,...,x,,. The task is equivalent to:
A 4. (W)PIXIW) ml_l1 (w4]s:) P( |s:) (1.1)
W = arg max ~ arg max P(x;|8;)P(s; ). .
arg ma PX) arg Sa 11 zi|5;) P(Sit1|5:

P(X|W) is called the acoustic model (computes the likelihood of the observation given
the words) and P(W) is the language model (LM) (the prior probability of the word se-
quence). Commonly, the acoustic model is a hidden Markov model (HMM). Each word is
represented by a sequence of states, and the state transitions P(s;t+1|s;) model the tem-
poral structure of speech, while the emission probabilities model the acoustic observations
P(x;|s;). Thus, in eq. 1.1 we approximate the search for the optimal word sequence by the
search for the optimal state sequence S. We search for the best path (state sequence) with

the Viterbi algorithm [ | (trellis structure on left part of figure 1.2).
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Figure 1.2: Left: Viterbi algorithm applied to an HMM in isolated word recognition Right:
Dependencies in time-synchronous Viterbi search: The global task of finding the best path
is reduced to recursively solving the sub-problem of choosing the predecessor with the best
partial path up to the current time step (dynamic programming [ ]). The
score of a state depends only on all incoming arcs from the previous time step.

ASR can be formulated in the framework of weighted finite state transducers (WFST)
[ I, | ]. The HMM is represented as WFST (figure
1.3), called HMM structure transducer H or decoding graph.
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Figure 1.3: WFST H corresponding to three-state left-to-right HMM. The arc notation
is anput:output/weight”, ,<eps>“ stands for € (no symbol). We attach the emission
probabilities to the incoming arcs of a state. Thus, the input labels correspond to identifiers
of probability density functions (PDF-ids, often context-dependent HMM states). During
decoding, PDF-ids are used to evaluate the corresponding HMM emission probabilities.
The acoustic likelithood score is combined with the arc weight, corresponding to the HMM
transition probability. The output label is the identity of the phoneme/word (aa). The final
arc is non-emitting (<eps> input), it serves to interconnect (sub-word) HMMs.
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A recognition network (or decoding graph) (figure 1.1) is a composite HMM, connecting
the individual phoneme HMMs (figure 1.3) according to the the pronunciation lexicon
(mapping the words to phonemes) and the LM. The LM functions as a grammar, which
constrains which words can follow each other. Figure 1.4 shows a simple recognition network
for connected speech recognition with sub-word units.

one  P(W,W,)

Figure 1.4: Simple recognition network. Words are modeled by phonemes (sil: silence)
and bi-gram probabilities are applied at word transitions. Each state (phoneme) is actually
a three-state HMM.

The standard recipe for the decoding graph construction is [ |:
HCLG = min(det(H o C o Lo @G)), (1.2)

Here, H, C, L and GG are the components, which are created separately and are integrated
into a single WFST(HCLG) with WFST composition (denoted as o). H, C, L and G
represent the HMM structure, the phonetic context-dependency transducer, the lexicon
transducer and the LM (grammar), respectively.

To decode an utterance, i.e. to find the most likely state sequence, we construct the
search space (trellis) S | | by: S = U o HCLG, where U is an acceptor
(WFSA), whose arc weights (for each combination of (time, PDF-id)) correspond to the
acoustic likelihoods. We search for the best path through S with the shortest path algorithm
in the tropical (Viterbi) semi-ring. The best path is a linear WFST, whose output symbols
represent the decoding result, i.e. the recognized sequence of words. The input symbols
represent the sequence of PDF-ids for each time frame, from which we obtain the sequence
of states. In practice, S is not searched exhaustively, but beam pruning is used. I.e. we
are searching the best path through B, which contains a subset of the states and arcs of .5,
obtained by some heuristic pruning procedure.



Chapter 2

Forward and backward decoding

For tasks like LVCSR decoding, the search graph can contain up to millions of states. Thus,
the search space cannot be explored exhaustively and it is necessary to use heuristic pruning
techniques. The most widely used search technique in LVCSR is the Viterbi algorithm with
beam search | |. Beam search is a breadth-first style search, comparing partial
paths of the same length (time-synchronously). At each time only those paths are kept and
further expanded, whose path score is better than the current best score extended by a
beam width. The beam width is a trade-off between speed and accuracy.

] Good Score [ Good Score
B Bad Score Il Bad Score
Forward Beam Backward Beam
= = Forward Path = = Backward Path
o Correct Path & Correct Path
2 =)
& ' (2} '
® B ~><. Wrong Word i Wrong Word
Correct Word Correct Word
0 10 20 30 40 Time/ State 0 10 20 30 40 Time/ State
Figure 2.1: lllustration of forward and backward search [ . In the background,

acoustic likelihoods for each state are shown as they evolve over time. Bright colors indicate higher
probability. In the forward search (upper part), the low-score walley’ around frame 7/8 causes the
correct path (green) to fall out of the beam (dotted). The red path is chosen, but later (frames 20-30)
it turns out to have poor scores. Fven if it has better overall scores, the correct path can not be
recovered, since it was already pruned. In the backward search (lower part), the situation is different
- starting from the end, the lower path looks much more promising (frames 30-35) and the upper
path falls out of the beam. The low likelihoods around frame 7/8 do not distract the recognizer
this time, so the backward search does find the correct path. The illustrating explains, that to a
certain extent, search errors of forward and backward search are independent. Of course, with a
wide-enough beam, also the forward search would find the overall best path.

In this thesis, we introduce the idea of symmetrically decoding forwards and backwards
in time. For some tasks, the pruned backward search is more efficient than the forward
search. | | showed, that for the recognition of street-city-state tuples
(as used e.g. in the US), the error rate is lower when searching backwards in time. Figure
2.1 illustrates the potential of forward and backward search. A path that has low scores at
the beginning is likely to be pruned by forward search, even if it has a high overall score



towards the end. It has a chance not to be pruned by backwards search, because looking
backwards this path has high scores at the beginning (which was the end in forward search).
Forward search prunes based on the “history” and backward search prunes based on the
“future”. Moreover, we showed in an experiment with the Kaldi recipe on the Wall Street
Journal corpus (WSJ), that the search errors of forward and backward search are mutually
independent.

We can detect and evaluate search errors by aligning the recognition outputs to a
decoding with a very wide beam. We align the results of both forward and (reversed)
backward decodings with the wide-beam-decoding. Table 2.1 shows an example of such an
alignment. Table 2.2 confirms the intuition that forward and backward search errors are
independent. With the help of the tracked forward-backward decoding proposed in this
thesis, most of the search errors were eliminated.

f: BRIAN J. KILLING CHAIRMAN OF BELL - ATLANTA X. INVESTMENT

. . S . . . . . S .
b: BRIAN J. DAILY CHAIRMAN OF BELL AND LAND SIX INVESTMENT
I S S

p: BRIAN J. DAILY CHAIRMAN OF BELL - ATLANTA ITS INVESTMENT

w: BRIAN J. DAILY CHAIRMAN OF BELL - ATLANTA ITS INVESTMENT
r: BRIAN J. KELLY CHAIRMAN OF BELL - ATLANTIC’S INVESTMENT

Table 2.1: Analysis of search errors on the WSJ Nov’92 test set by aligning forward and backward
search errors (with beam 11.0) against a decoding with a wide beam (29.0).

Shown are the outputs of forward decoding (f), backwards decoding (b) and forward-backward ’ping-
pong’ decoding (p), aligned to a decoding with very wide beam (w) and reference transcription (r).
The search errors are indicated by I’ for insertion, ’S’ for substitution and -’ for deletion.

beam width | forward errors | backward errors | co-occur | ping-pong
11.0 144 230 32 14
13.0 84 108 14 6

Table 2.2: Analysis of search errors on WSJ Nov’92 test set by aligning against a wide beam
(29.0). The co-occurrence of an error (’co-occur’) means that for both, forward and backward pass,
an error occurs at the same alignment position. This does not necessarily mean that both produced
the same error. With two-pass ’pingpong’ decoding, all independent search errors were corrected
(all those that are not co-occurring), and even a good portion of the co-occurring could be removed.

Additionally to beam search, a strategy to deal with the complexity of the task is to use
multiple decoding passes (e.g. | ]). Usually, inexpensive and approximate
models are used in a first pass [ | to generate an intermediate represen-
tation (e.g. lattices), which is then ‘re-scored’ using more complex models. In |

|, the idea of performing the second pass backwards in time was introduced.
Since the forward scores are used as an estimator for the remaining part of the utterance,
the second pass usually takes only a fraction of the time of the first pass, so that more
complex algorithms or models can be used. A more recent re-discovery of the same idea is
[ | and [ |, which use a word trellis as intermediate
representation and stack decoding (A-star search) in the backward pass. Also |

| use a uni-gram Viterbi backward pass, which is then used as a heuristic in
A-star forward decoding with the full language model.



Opposed to these works, we focus on using forward and backward passes that are sym-
metric, i.e. using models that are equally powerful in both passes. The idea of symmetric

passes was already used by [ | and | | (see also [

]). They combine the outputs of both passes based on LM scores or con-
fidence measures (ROVER technique [ ]). Also [ | and
[ | use the framework of [ | to ROVER two

symmetric passes, and they show that the combination of forward and backward passes is
especially effective in improving the performance. On top of using equally powerful models,
in this work, we require that the forward and backward recognition networks are constructed
to assign exactly the same probabilities to hypotheses (paths, word sequences). The exact
symmetry of both passes allows us to concentrate on search errors rather than on modeling
errors. When comparing the recognition results of forward and backward decoding, each
difference detects a search error.

10X 10¢

il

0 2 4 6 8 10 12

Figure 2.2: Histogram of score differences: Shown are the scores of the current best partial
path at each frame minus the partial score of the path that is going to be the final best path — not
necessarily the correct one (decode beam 13.0, WSJ Nov’92 test set at WER 10.8%).

In beam search, usually a constant beam width is applied to the whole test set. While
analyzing the pruning behavior of the Kaldi decoder on the WSJ test set, we found, that
for most of the time frames, a very narrow beam is sufficient to keep the final best path.
Figure 2.2 analyzes the score differences at each frame, between the current best active
token and the score of the token that will ultimately result in the best overall path'. Most
of the time this difference is much smaller than the typical beam width (between 10 and
15). This suggests that it would be beneficial to to decode with a variable beam width.
For that, we need to identify problematic areas (frames) that lead to search errors. We can
achieve that by comparing the hypotheses from forward and backward search. We use a
small baseline beam and only increase it in places, where the forward and backward searches
disagree. Thus, the idea of our work [ | is to speed up the decoding
by using the (dis)agreement of the two symmetric decoding passes - decoding forwards and
backwards in time. We replace a single pass with a wide beam with two passes with a small
beam.

1To determine this, we run a full decoding, back-track the best path and compute its score at each frame.



2.1 Incremental forward and backward search

One possible realization of the variable beam width decoding is to run the forward and
backward passes in parallel. Inspired by [ |, the authors of [

| implemented an incremental high-level decoding algorithm, which iteratively
refines the decoding (by increasing the beam width) in places, where both passes disagree.
As a consequence, the system uses a variable beam width and is dynamically focusing
only on the parts that are difficult. The pruning beam is tuned for single words in an
unsupervised way. As opposed to [ |, where the results of the first
pass are integrated into the second decoding pass, both passes, forward and backward
search, are run independently and symmetrically.

e T —— —

Figure 2.3: Parallel implementation of incremental forward backward decoding [

. First (upper part), two cores run a quick initial forward and backward decoding
of the whole utterance with a narrow beam in parallel, then (center) the results are aligned and mis-
matching regions (‘islands’) are identified (indicated in red). If there are no mis-matching regions,
the decoding is done. Else (lower part), in a second pass, the identified mis-matching segments are
decoded in parallel with a wider beam. In this example, there are two ‘islands’, both of them are
decoded forwards and backwards, which means four cores can be used in parallel. The results of the
decoded segments are integrated into the results of decoding the whole utterance, and this process is
iterated until the results for the whole utterance match. This way, the beam for each word is tuned
to the minimum necessary beam.

Figure 2.3 explains the parallel implementation of the incremental decoding [
|. In the alignment of decoding results, words are considered matching, if they
have the same word identity as well as a matching time boundary. All non-matching
words are grouped into continuous segments which are extended by N-1 matching words
(according to the LM) to the left and to the right. For the incremental decoding of partial
utterances, the left and right LM contexts of the segment need to be correctly initialized in
the decoding. We also need to remember the left and right acoustic cross-word contexts,
which can be achieved by remembering the states of the recognition network at the segment
boundaries in the first pass — these can then serve as initial and final states for the second
pass decoding.
[ | presented a parallelization of the decoding of an utterance into
chunks. They showed that it is possible to split an utterance at places, where the rank



of all-pairs-shortest-path matrix will converge a to singular matrix. In other words, this
happens at places, where just one token will survive. An open question is whether it
is possible to automatically detect frames in advance, where this will happen, to find the
optimal segmentation of a given utterance into chunks. At the points with low rank, i.e. with
few remaining active states, a small beam should be sufficient to decode them. In other
words, at those points, we would expect the decoding results of the forward and backward
search to agree, even if both run with a small beam. Therefore, a good segmentation for
the parallelization of the decoding is to split the utterance at points, where forward and
backward search agree. Thus, the incremental decoding is very similar to chunk based
decoding. Since it is a high-level technique, it can be applied on top of other coarse-grained
and fine-grained parallelization techniques.

We implemented the incremental forward-backward decoding in the Microsoft Argon
decoder (documented in [ |, Version 2016-02-17) and tested it on the
Eval2000 database with a recognizer trained on the Switchboard database. We observed,
that the overall speed-up of the technique is be determined by the setup of the first pass
(forward and backward) decoding. We choose an operation point, that is several times
faster than a well-tuned baseline (tuned for WER/RTF, around RTF 0.3-0.5), but still in
the area where the results of forward and backward decoding are partially matching. Using
such a setting, we observe that after the first parallel forward/backward pass, in average
approximately 50% of the complete utterances agree and thus the decoding can be finished.

For the files that are partially mis-matching, we find in average around 1.5 mis-matching
segments (’islands’) per file. That means we can achieve a speed-up of 1.5 on these utter-
ances, and only a part of the utterance actually needs to be decoded again. Therefore, the
total amount of time spent in the second pass will be much smaller than in the first pass,
even if it runs at a higher RTF (increased beam). Similarly, the amount of time spent in
further iterations will quickly decrease.
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Figure 2.4: Finding the optimal operating point on the real-time-factor and word error rate
curve, while tuning the mazimum number of active tokens (maz-tokens) and beam width (beam).
The settings of beam width and mazx-tokens are grouped by lines that leave one of the parameters fixed
while varying the other. All curves beam’ leave the beam width constant while running experiments
with different values for maz-tokens. The curves 'maz-tokens’ (black) measure different beam widths
for a fized number of max-tokens.
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Figure 2.4 explores the relation between WER and RTF on many different operating
points, defined by a setting of the main tuning parameters, which are the log beam width
and the maximum number of active tokens 'max-tokens’ for the histogram pruning. We
observe that both parameters depend on each other in a non-trivial way. Leaving either
of them fixed while varying the other leads to sub-optimal solutions (max-tokens in black
lines, beam 9-30 colored lines). Therefore, we have to test all possible combinations of
parameters and then determine for each RTF the optimal WER and the corresponding
tuning parameters. The resulting curve is sometimes called Pareto-optimal. What we
observe is that along the Pareto-optimal curve, we have to proportionally increase both
the beam width and the max-tokens. Perhaps surprising is the fact that if we over-shoot
the beam (figure 2.4, red line, beam 30), we actually increase the WER significantly. We
can explain this effect with the max-tokens beam resulting from histogram pruning, which
turns out to be narrower for high beams. This is most probably a particularity of the Argon
decoder, caused by the adaptive beam controlling [ .

2.2 Tracked decoding

Another realization of the variable beam width is the tracked decoding |

presented in this thesis. After using independent and parallel forward/backward decoding
passes in the last section, in this section we run forward and backward decoding sequen-
tially. Our approach towards decoding is to do a first pass (which happens to be a forward
pass) with a narrow beam, and then to do a second pass in the opposite direction, also with
a narrow beam, but using knowledge obtained during the first pass. In this approach, the
beam width can be adjusted for every frame, so that a more careful search is only carried
out in areas where the two passes disagree. The speed-up is achieved by using a narrow
beam during the forward pass, and in the backward pass in places where no disagreement
is detected.

The first pass outputs a lattice with state-level alignments [ |. Note
that this lattice does not contain all partial paths explored in the first pass, but only those
word-sequences that are within a specified beam of the best word-sequence (lattice beam).
We want to treat the paths in this lattice in a special way in the second decoding. That is,

1. We want to avoid pruning out paths that appeared in the first-pass lattice.

2. On frames where we would otherwise have pruned out those paths, we want to increase
the pruning beam.

During decoding, we need to be able to identify which active tokens in our second-pass
decoder correspond to paths in the first-pass lattice. These are called tracked tokens and we
track tokens with what we call an arc-lattice. It is a special kind of lattice that allows us to
identify arcs in HCLGo,q that were present in the first-pass lattice. This means there is a
path in the lattice, that went through the corresponding state in HCLGq4; at the given time.
The arc-lattice is an acceptor FST, i.e. it has only one symbol on each arc. These symbols
correspond to arcs in HCLGo,q. Algorithm 1 summarizes the arc-lattice generation.

The second-pass decoder, which we will refer to as our tracking decoder, is a lattice-
generating decoder that takes an extra input, namely the arc-lattices for each utterance.
Let a token be a record of a particular state in HCLG that is active on a particular frame.
Our tracking decoder gives tokens an extra, Boolean property that identifies whether they
are tracked or not. A tracked token is one that corresponds to a state in the arc-lattice,
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Algorithm 1 Generation of arc-lattices (graph-state-lattices):

1. Map HC LG9,4 to PDF-to-Arc transducer HC LG yc:

(a) HCLG3yq : transduces PDF-ids into words
(b) Encode HC LG4,4 (node-id, arc-id) into output symbols.
(¢) Map input to be self-loop order independent.

2. Map first-pass lattice LAT s to LAT ¢y:
(a) Map input (self-loops), project on input, remove weights.
(b) Time reverse lattice and remove epsilons.

3. Compose: LATyrc = LAT ey 0o HCLG gy

(a) Obtains sequences of HC LG5, arcs for PDF sequence in lattice.
(b) det(LATy,.): Lattice-determinize (on PDF-ids) in special semi-ring
— single HCLG,,,4 path left for each sequence of PDFs.

(¢) Project to HCLG9,4 (node, arc) symbols, determinize again.

— The output is an acceptor lattice for HC LGo,4 graph arcs.

i.e. it was reached by a sequence of HCLGo,q-arcs in the arc-lattice that correspond to
a path in the first pass lattice. Tracked tokens are never pruned, regardless of the beam
width. If a token other than those that came through the tracked path, with better score,
reaches the same state at the same time, the tokens recombine, i.e. it replaces the tracked
token, but inherits the status of being tracked.

Tracked tokens are used to determine the variable pruning beam for each frame. In
places where disagreement is detected, the beam is increased to include all of them. Oth-
erwise in the second pass, the same narrow beam is used that was used in the first pass.
The decoder has three configurable values that specify how it sets the frame-specific beam:
the beam, the maz-beam and the extra-beam. On a particular frame, let the score difference
between the highest-score token and the lowest-score tracked token be D. Then the beam
width on that frame is given by:

max(beam, min(max-beam, D + extra-beam)).

In initial experiments, we found, that the technique is not sensitive to the setting of extra-
beam, so we typically set it to zero. The maz-beam is usually large (e.g. 40 for this task in
Kaldi). We try various values of the beam for our experiments here.

Note that even if we keep the beam equal to the single pass beam during the tracked
second pass, our method is doing more than simply choosing the best path from two (forward
and backward) passes, because it is possible to “recombine” partial paths from the first-pass
and second-pass search (effectively combining the forward and backward lattices). Some
parts of the utterance might be advantageous for backwards decoding, other parts might
have the opposite characteristic. If partial paths of tracked tokens and second-pass-only
tokens meet in the same state, they can recombine and thus we would continue decoding the
rest of the utterance with the maximum of the two partial scores (likelihoods). Therefore,
the combined path can have a better score than either two single paths. On top of combining
the lattices, the variable beam leads to the generation of extra tokens in areas where both
passes disagree, which gives an additional speed-up.
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2.2.1 Experimental results

We tested the forward-backward tracked decoding on the WSJ November’92 open-vocabulary
test set (333 utterances) using a standard tri-phone HMM+GMM system (Kaldi recipe
‘tri2a’ | |, trained on the ’si84’ portion of WSJ). The experiments were
conducted with the extended 146k vocabulary using the pruned tri-gram language model
'bd_tgpr’ that was trained on all WSJ training texts. We measured the total elapsed time
for the two-pass forward and backward (tracked) decoding and relate it to the word error
rate (WER). The real-time factor was measured on a single core of an Intel(R) CPU i5-2500
(3.3GHz, 8GB RAM).
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Figure 2.5: Performance of tracked decoding: Shown are curves for word error rate vs. real-time
factor on the WSJ Nov’92 test set. For single-pass decodings, the beam varies between 10-18, for
the two-pass (‘pingpong’) decoding the beam wvaries between 7-13. We used extrabeam = 0 and
found maxbeam = 2 -beam as a good compromise between speed and accuracy. The lattice-beam is
4.0, but for beam < 10.0 we decrease it step-wise to 0.5. We compare the variable-beam decoding
(‘2beam wvar’, orange) to a decoding without generating extra tokens in the variable beam (‘noextra’,
red) by setting maxbeamn = beam, which shows the additional benefit of the variable beam over just
combining lattices of forward and backward passes.

The results in figure 2.5 show, that for the lowest word error rates (WER< 10.5), the
two-pass tracked decoding runs about 2-3 times faster than the individual forward /back-
ward passes at the same WER. This corresponds to the “more accurate” operating points of
decoding where search errors are small. However, in this setup, the speed-ups are diminish-
ing for operating points faster than ~ 0.6 real-time using our method. The issue seems to
be that if the beams are too narrow, the two decoding passes disagree substantially and too
much effort is spent in decoding with a widened beam in areas that disagree. Also, [

| points out that a too narrow beam could lead to a degenerated search, where
both passes produce the same errors (e.g. focussing on silence and noise models, which are
symmetric). The WER curve in figure 2.5 is not always smooth, which points to the fact
that fixing a search error does not necessarily mean fixing a word error.

To get an insight on the optimal size of the forward/backward beam, we profiled the
tracked decoding in figure 2.6. We observe, that the time spent in the two individual
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Figure 2.6: Profiling the tracked two-pass decoding. Shown is the percentage of time spent
in different parts of the algorithm at three operating points (beam 8.5 as optimal, others as not
optimal). The first pass is the lattice-generating ‘forward search’ (which is also our single-pass
baseline) and the second pass can be seen as consisting of a) normal backward decoding (column
‘backward search’), b) generating the arc-lattice (‘arc-graph’), ¢) additionally tracking tokens from
the first pass (‘tracking’) and d) generating extra tokens within the increased variable beam (‘extra
beam’). The acoustic scores were not cached between the two passes. The contributions of ‘arc-
graph’ and ‘tracking’ (together < 20%) could be possibly optimized by a better implementation, but
the two individual passes constitute a lower bound (around 70% of the time is spent there).

decoding passes (without tracking / extra tokens) is the dominant factor. Thus, the baseline
beam determines the possible speed-up. It should be small enough to decode at least two
times faster than the original single pass, and it should be wide enough to allow for a
reasonable comparison of the forward and backward search results, i.e. either of the two
passes should obtain a solution, that is at least partly correct.

If we reduce the beam too much, we observe (figure 2.5 for error rates > 11.5%) that
the two-pass decoding is no longer better than the single-pass decoding. From figure 2.6
we see, that for low beam widths, most of the time is consumed in the generation of extra
tokens, which effectively means decoding with a higher beam. Below a certain beam width
(11% in figure 2.5) the error rates in the single passes grow rapidly with only little RTF to
gain. This means that the divergence between the best paths from forward and backward
decoding is too big, so that the algorithm has to increase the variable beam a lot to track
the first pass tokens and an excessive amount of extra tokens are generated. With an
optimal setting of the beam, we can reach a significant WER decrease by just generating
a small amount of extra tokens in the variable beam (‘extra beam’ in figure 2.6, optimal
around beam 8.5). This point corresponds to the turning point in figure 2.5 (around RTF
1.0) - it is the ‘sweet spot’. Above that, though little time needs to be spent for tracking
and for generating extra tokens, too much time is spent in the individual forward /backward
decodings, and the overall RTF increases rapidly.

The proposed decoder has several parameters to tune: forward beam, backward beam,
lattice-beam, extra-beam and max-beam. Since the WER-RTF curves for single-pass for-
ward and backward decodings are similar, we typically set the forward beam and backward
beam to the same value. Concerning the other parameters, there seem to be two strategies
one could pursue: either track many tokens and try to combine good forward and backward
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paths, while limiting the generation of extra tokens, or just track few tokens and generate
many extra tokens up to the variable beam difference. To analyze this, we can compare
a decoding using the variable beam to a decoding without generating extra tokens. We
can achieve this by limiting the beam to maxbeam = beam and thus effectively disabling
the variable beam. Since tokens ’tracked’ by the first-pass lattice are kept anyway, this
effectively corresponds to combining the lattices of the forward and backward pass. Figure
2.5 ("2beam’ vs. 'noextra’) shows that creating extra tokens within the variable beam gives
a substantial improvement on top of that. Especially for the operating points with low
WERSs, the extra tokens are important.
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Figure 2.7: Analyzing the effect of different maz-beam settings on WSJ Nov’92 test set using the
big bi-gram LM with 147k vocabulary. As already explored, we set the parameters to extrabeam = 0.0
and linearly increased the lattice-beam from 0.5 to a maximum of 4.0. Now, we compare three
strategies of setting maz-beam: a) using a fized maz-beam of 100.0 b) using a fized maz-beam
of 20.0 ¢) changing the maz-beam linearly with the beam: maxbeam = 2 - beam. We also tried
mazxbeam = beam, which had slightly worse performance for WER > 11.0.

In an experiment to investigate the effect of the lattice-beam, we observed, that the
generation of the lattice has mainly the effect of adding an offset to the RTF/WER curve.
Thus, we want to make it as small as possible. However, for the most accurate operating
points with low WER, we want to have a wider lattice that contains the best path. It seems
to be a good strategy to increase the lattice-beam linearly with the beam. We set an upper
bound of 4.0, which is enough to get good results in re-scoring the lattice. Finally, after
tuning all other parameters, we investigate different settings of the max-beam parameter. It
is an upper limit to the variable beam, which becomes effective in the areas of higher WER.
Figure 2.7 suggests, that the exact setting of the parameter max-beam doesn’t influence
the potential speed-up of the technique (the ‘sweet-spot’), but mainly influences the shape
of the curve from the ‘sweet spot’ towards the higher WER. Using no limit for the beam
even for huge divergences between forward and backward pass seems wasteful. Therefore, it
seems to be reasonable (figure 2.7) to increase the max-beam slowly with increasing beam.
Once a reasonable beam has been reached, the divergence between forward and backward
passes gets smaller, and the max-beam is no longer needed.
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Chapter 3

Exact reversal of the recognition
network

For the decoding techniques presented in the last chapter, i.e. to search in two symmet-
ric forward and backward decoding passes, we need two corresponding decoding graphs -
HCLGfyq and HCLGyyq. Both models should be equally powerful, i.e. have roughly the
same accuracy and run-time requirements, and have similar structure, size and level of de-
terminism to have optimal pruning behavior. To compare the probabilities (or scores) of the
outputs from the forward and backward passes (e.g. to estimate the optimal beam width).
we need models HCLGy,q and HCLGy,q, that ideally produce the same overall score for the
same hypothesis in both the forward and the backward passes. Due to the pruned search,
both passes can result in different search errors (due to the different branching forwards and
backwards). However, both models should not make different modeling errors, hence they
should assign the same scores to the same hypotheses. We also want to be able to compare
the scores of partial results (paths). Therefore, also the model structure (the distribution
of weights along paths) should be similar in the forward and backward passes. Given a
forward graph HCLGy,q, the task is to obtain a backward graph HCLGy,q that will assign
exactly the same overall score to the same utterance and will fulfill all the above stated
requirements. Because our method treats disagreement between the best paths found by
the two passes as a search error, we want the backward decoding graph to be equivalent to
the reverse of the forward one.

The trivial solution to apply WFST reversal to HCLGy,q is not sufficient, since the
resulting graph would not have a similar level of determinism and distribution of weights as
the forward graph, i.e. it would show sub-optimal behavior when used in a pruned search.
To make the resulting WFST determinizable, we would have to introduce disambiguation
symbols [ | at different places than in the forward graph. As we will see
shortly, especially the (reversed) LM component would introduce a great degree of local
ambiguity. Instead, the solution is to separately construct the time-reversed versions of
H, C, L and G (introduced in chapter 1) and then to build a composed model HCLGpyq
in an analogous way as the forward graph was constructed. Another point is that the
stochasticity of outgoing arcs will not be satisfied when reversing the model, i.e. the optimal
weight distribution for backward search is different from the one used in forward search.
Therefore, we have to apply weight pushing to the reversed components.

Our approach to the construction of backward recognition networks is not limited to
static network decoders. Since all components are reversed individually, no change is nec-
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Figure 3.1: Reversing lexicon transducer L. The phone sequences are reversed (upper part), and
new disambiguation symbols (#1) are inserted after that. Then, the lexicon transducer is built in
the same way as in the forward network (lower part).

essary when dynamically composing the components in a dynamic network decoder. The
time-reversed versions of H, C, L and G are again not simply the WFST reverses of the
forward ones, but must be separately constructed. Depending on the task, the reversal of
each component is of different complexity.

The construction of the reversed pronunciation lexicon transducer Liwq (phones to
words) is simple: the individual phone sequences (pronunciations) are reversed, and the
disambiguation symbols are introduced after that. The disambiguation symbols now dis-
tinguish similar word endings, while in the forward case they distinguish word beginnings.
Figure 3.1 shows a reversed toy lexicon and the resulting transducer.

The context-dependency transducer Chywq is constructed in the usual way, and looks
identical to Clyq. After the composition of Lgyq © Gpwa, the phonetic context window
(which are the input symbols for C) is reversed in time (a-b-c to c-b-a). Therefore, to
look-up the corresponding models (PDFs) in the phonetic decision tree, we have to reverse
the phonetic context. Then, we look-up using the phoneme context window and the HMM
state. The HMM structure transducer Hywg, is constructed in the same way as Hiyq,
except for the reversed phonetic context. The individual (three-state) HMMs for each
phone are constructed separately and the relevant PDF's are looked-up from the decision
tree. Then, the phone HMMs must be reversed and “weight-pushed” in the log-semi-ring
(including epsilon removal) to make the time-reversed probabilities sum to one. After that,
the reversed phone HMMSs are composed to the H, transducer. Specific to the Kaldi toolkit
is, that the H transducer is first created without self-loops (H,), which are then added at
a later stage. Due to the reversal of individual HMMSs, the ordering of the self-loops and
forward transitions changes, which doesn’t matter for decoding, needs to be considered
when mapping resulting alignhments at transition level.
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3.1 N-gram back-off LM and weight pushing

N-gram LMs approximate the conditional probability of a word given its history P(w;]...),
by reducing the history to the previous N — 1 words:

m
P(w; ... wp) ~ [[ P(wilwi—ys ... wisy) (3.1)

i=1
N-gram LMs can be expressed as weighted finite state acceptors (WFSA) - each LM
history corresponds to one state of the automaton (h; = w;—n41...w;—1). However, the
number of possible states of a model of order N with a vocabulary size V is VN1 and
the number of possible arcs (and N-grams) is VN, which becomes clearly intractable for
higher orders of N (typical vocabulary sizes go into the hundreds of thousands). As a
consequence, LMs only store the probabilities of those N-grams that occur sufficiently often
in the training texts. Statistical smoothing techniques are applied to the distribution of
counts. On top of that, typically models of different N-gram order are combined. Either
different orders of history are interpolated, or the higher order model performs backing-off
for unseen N-grams by leaving out the first word in the history and looking-up the shorter
history in the lower order model (N — 1). This process is repeated recursively until the

word in context is found. Back-off LMs were introduced by S. Katz | B

Pratz(wilwi—ny1 ... wiq) =

C(wi—Nt1 - wi—1w;)

Pl(wi|hi) = dwi—N+1~~~wi : if C(wi—N—H .- -wi) >k

- C’(wi_NH ...wi_l)
Qi ni1.wioy * Poackoff (wi|wi—Nt2 ... wi—1) otherwise

(3.2)

Here, d is the amount of discounting applied, C is the occurrence count of the given
N-gram in the training corpus and k is the minimum number of occurrences. a,,, , Wiy
is the so called back-off weight, which is dependent on the current history. It usually
corresponds to the sum of probability mass that was discounted from all N-grams sharing
the same history and is now available to be re-distributed by the lower order distribution
Pyackoyy, that can be recursively defined in exactly the same way as Pkqt.-

As seen in Figure 3.2, back-off LMs can be represented as WFSA, but usually an ap-
proximate structure with back-off arcs is used [ I, [ ].
Back-off arcs with the symbol € introduce non-determinism. When the weights are taken as
probabilities from a back-off model, this non-determinism can cause problems. In this case,
the resulting WFSA is no longer stochastic — i.e. the probabilities of outgoing arcs do not
sum to one. The weight of some cycles is greater than one and results in an infinite total
weight. An exact and deterministic implementation of back-off LMs with WFSA would
require a different type of arc. The so called failure arcs were introduced for efficient string
matching | |. Usually, in the literature (e.g. | D,
a special arc label ¢ (or ¢) is used to mark failure arcs. A failure-arc doesn’t consume any
symbol and it has the semantic interpretation, that a failure-arc can only be taken if no
other symbol on any of the other out-going arcs of out of the same state can be accepted’.

1Failure arcs have the peculiarity that the decision which arc to take is made based on the symbol, but
the symbol is consumed later in the next non-failure arc. Usually, there are even several failure-arcs in a
row, all testing the same input symbol, but against different outgoing arcs.
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wg/P(w2|w1)

Figure 3.2: Weighted finite state acceptor (WFSA) implementation of a bi-gram LM. Left: fully
connected model (V x V arcs) Right: WFSA approzimation of a bi-gram back-off model [

], just showing the representation of transitions leaving state wy. The bi-gram wiws was
seen sufficiently often during training and is thus represented by a direct link between the history
states w1 and we. The bi-gram wiws was not seen sufficiently often, thus the model backs-off to
the history-less state “bo” with the cost of the back-off weight a(wi). No symbol is consumed in
this transition - indicated by the e-symbol. Leaving the back-off state, the lower order (uni-gram)
probabilities are applied (P(ws)). The approzimation with the back-off state can greatly reduce the
number of arcs, but it also introduces non-determinism. If € would be a regular label, the WFSA
would be deterministic (only a single outgoing arc per label in each state). However, since € doesn’t
consume a symbol, the bi-gram wyiws can be either formed by taking the arc wi — wa or by going
over the back-off arc: w1 — bo — we. Usually, P(wa|w1) > a(w1)P(ws) (modeling error is small).

This works similar to the ‘default’ case in a C-language ‘switch’ statement. These failure-
arc-type WEFSA accept sequences of words with exactly the same probabilities as when
implemented as a back-off LM in any of the LM tool-kits. However, we actually violate
the assumptions of the WFST algorithms, when using failure arcs, the semi-ring concept is
changed and a new class of algorithms is needed.

3.1.1 'Weight pushing

Two WFSAs are equal, if they accept the same set of input label sequences with the same
path weights. In other words, two equivalent WFSAs (or WFSTs) may differ by the way
the weights (and output labels) are distributed along the path. The distribution of weights
along the path plays a crucial role in pruned search [ |. According
to | |, the optimal distribution of weights for pruned search should
be such, that the weights (coming from different knowledge sources such as acoustic and
language model) are locally synchronized for the sequential decisions which state to take
next. Another common wisdom is, that the knowledge should be applied as early as possible
in search - to be able to rule out unlikely paths as early as possible. This corresponds to
“pushing” the weights as much as possible towards the initial state, which is equivalent to
making the WFSA stochastic | | (the outgoing weights of a state sum to
one (1) in the given semi-ring). It is only possible to make the WFSA stochastic if the total
weight of the entire WFSA is 1. The total weight of an WFSA is the sum of all successful
paths (from the initial state to all of the final states).

Re-weighting [ | is an operation that alters the weights wlt;] of indi-
vidual transitions and the final-probabilities p(nlt,]), while leaving unaffected the weights
w[m] of successful paths. The possible ways to change the transition weights of a WFSA
can be expressed with the help of a potential function V : Q — K — 0, which can be an
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arbitrary function on states @, assigning a value of K (except 0) to every state q. Given
such a function, we can update the initial weight A, the transition weights wle],e € E and
the final weights p(f) according to the following [ |:

A e ARV() (3.3)
Ve € E,wle] «+ [V(ple])]™' @ (w[e] @ V(ne])) (3.4)
Ve F p(f) « V(NI @oplf] (3.5)

If the re-weighting is carried out this way, the overall weight of a successful path is
not changed, since the potentials along any successful path cancel each other. Thus, the
resulting WFSA is equivalent to the original one. Weight pushing is a special case of re-
weighting, that aims to make the WFSA stochastic (push the weights towards the initial

state). This is achieved [ | by setting the potential function V'(q) to
the shortest distance d[q] from ¢ to any of the final states F:
VeeQ,Vig)=dld = @ win] (3.6)
weP(q)

Here, P(q) is the set of all paths from ¢ to any of the final states F'. Thus, the crucial step
in weight pushing is to run the shortest path algorithm, whose complexity depends on the
given semi-ring and the type of WFSA that is dealt with.

For the tropical semi-ring, a Viterbi algorithm can be used. If the log-probability or
probability semi-ring is used, however, all possible paths towards a state need to be summed,
which is especially difficult, if the WFSA has cycles. A cycle can be followed an infinite
amount of times, generating an infinite number of paths that need to be summed. So we
need to guarantee that the weight of any cycle is w(n) < 1. In other words, we need to
be able to compute the closure ;2 w', otherwise the cycle would result in an infinite
total weight. If a semi-ring fulfills this condition for Yw € K, it is called closed semi-ring
[ |. If the structure of the WFSA is simple, i.e. the cycles are not nested and can
be easily identified, the closure operation could be directly applied. For WFSAs resulting
from LMs, this is not true, since the cycles are nested in a complex way.

A generic shortest distance algorithm is presented by | | (page 9), which is
iterative and operates by locally forwarding weight mass through the WFSA according to a
queue policy. A state is put to the update queue, if its weight has changed since the last visit
— called relaxation condition. The algorithm assumes, that an update is not necessary, if the
weight of a loop has already been multiplied k times (k-closed). For the (log-) probability
semi-ring, there is no k < oo, for which this would hold, thus the algorithm cannot be used.
Closed semi-rings are covered by the generic Floyd-Warshall and Gauss-Jordan algorithms
[ ]. These algorithms compute the all-pair shortest distance with a time
complexity of O(n3) (n proportional to the number of states) As soon as the WFSA has
thousands of states, this is clearly not feasible.

The original relaxation condition for the generic algorithm [ | is given by:

d[n[e]] # d[nle]] & (r' @ we]) (3.7)

where d[n[e]] is the shortest distance of state nle] and (7’ ® w[e]) is the weight to be added
in the update. To handle also semi-rings that are not k-closed, [ | replaces the
relaxation condition by an approximate test with a metric A:

A(d[nle]], d[nle]] & (r' @ wle])) > 0 (3.8)
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where § > 0 is a positive number used for approximation. Due to limited machine precision,
there is actually always some § for which this condition will not be met. Thus, with a
k-closed semi-ring, a cycle will not be followed more than k times, and in our case the
algorithm stops updating as soon as:

l -1
1A (@ww,@ww) =wr) <6 (3.9)
=0 =0

where w[r] is the weight of the cycle. If [ is large (w[r] — 1 or § — 0) the algorithm will
iterate for a long time until it converges. For w(r] > 1, the algorithm fails to converge at
all. In this case, the total weight of the WFSA becomes infinity.

As explained in figure 3.2, for WFSA constructed from back-off LMs, the e-style back-off
arcs lead to duplicate paths. In case the weights were taken from a back-off LM estimated
for failure arcs, but the back-off arcs are represented with ¢, the outgoing arcs will sum
to a slightly higher value than one. When occurring in a loop, the condition w(r] < 1
does no longer hold. That means, the generic weight pushing algorithm [ | as
implemented in OpenFST will fail to converge, because the total weight of the entire WFSA
will not be finite?.

3.1.2 Alternative weight pushing algorithm

We present an alternative weight pushing algorithm, which will always converge. Using the
transition matrix P;;, we represent the WFSA in the probability semi-ring, where p;; is the
sum of all transition weights between state ¢ and state j. The transition matrix is usually
sparse (contains 0 for all non-existing transitions). Our solution is based on the theory
of non-negative matrices and ergodic Markov chains. The fundamental limit theorem for
regular chains states, that for any initial probability vector A, the process approaches the
fixed row vector w (stationary distribution) for n — oo:
lim AP" =AW =w. (3.10)
n—oo
This suggests an iterative algorithm to find the stationary distribution, which is similar to
the power method for finding the dominant eigenvector w of the matrix P, by starting from
a random or uniform positive vector v and iterating by letting v <— P v each time.

If the WFSA is not normalized, the generalization is given by the Perron theorem,
which [ | states, that for every non-negative primitive
(i.e. regular) matrix P, the maximum eigenvalue p(P) (also called spectral radius) is posi-
tive, simple (algebraic multiplicity one), singular (only one eigenvalue of this modulus) and
has a positive eigenvector (called left and right Perron vector, whose normalized entries
sum to one). For n — oo, the matrix converges:

: P " T T
nh_}rgo (m> =L, L=x"y, xy =1, (3.11)

where x and y are positive right and left eigenvectors: Px! = p(P)XT, x>0 yP =
p(P)y, y > 0. From this, it follows that for any initial probability vector A, if we multiply
from the right, the ratio of state weights in A will converge to a vector proportional to the
right eigenvector x7:

2If the weights are correctly estimated as interpolated LM, the total weight is one, but the weight in
cycles can still be very close to one, so that the generic algorithm is inefficient (equation 3.9).
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n
lim_ (%) AT =LA =xT (yAT) = axT. (3.12)

Since we do not know the normalizing spectral radius p(P) in advance, we re-normalize
the resulting vector v at each step. Every normalization results in the same eigenvector, so
we choose unit length.If we iterate v <— P v (equation 3.12), it results in the dominant right
eigenvector of P, which, in the probability semi-ring, is the minimum distance towards the
final states (or the super-final state).

The Perron theorem is only true for regular chains, but we can make every trim WFSA
ergodic® by connecting the final states f € F to the initial state I. Now, every state can
be reached from any other state, by going over any of the final states. That means we
modify one column in the transition matrix: if j is the initial state, then p;; is set to the
final-probability p[i] of state i.

As a second step, we need to guarantee, that the resulting ergodic WFSA is also regular®.
We can make the WFSA regular by interpolating P with the identity matrix: If P is the
transition matrix of an ergodic Markov chain, then we can obtain the transition matrix of
a regular chain by:

P=kI+(1-kP,0<k<1,keR (3.13)

Since the ergodicity guarantees, that every state can be reached, interpolating with the
identity matrix I guarantees, that the diagonal elements p}, > 0 are positive, which means,
that it is possible to take self-loops to stay in every state. Thus, after n steps, when all
states of the ergodic chain have been reached, P’" will have all elements positive. P’ and
P have the same eigenvectors’.

Alternatively, we can modify the iteration to v <~ Pv + kv. The parameter k is set
to a small value (0.1) to not slow down the convergence too much. This algorithm is very
efficient in practice, it generally converges within several tens of iterations.

At the end, we have a vector v with v; = 1, and a scalar ¢ > 0, such that

cv=Pv. (3.14)

The vector v contains the distribution of average state occupancies and is used as the
potential function V(q) : @ — K — 0 for the re-weighting operation (equation 3.4). This
means we compute a modified transition matrix P*, by letting

pi; = pij vi/vj, (3.15)

and transforming the final probabilities by pf = p; vr/v;, where vy is the potential of the
initial state. Using the re-weighting with the potential function V guarantees, that the
resulting WFSA is equivalent to the original one. If we use the right Perron eigenvector
as potential function in equation 3.4, it results in pushing the weights towards the initial
state, i.e. in making the WFSA output stochastic. Either all outgoing arcs sum to one, if
the total weight is one, or more generally to the same quantity for all states.

We show this by writing one element of equation 3.14 as

cv; = sz’j vj, (3.16)
J

3 A Markov chain is ergodic, if it’s possible to go from any state to any state (not necessarily one move).

4That is, we don’t want the matrix to have several multiple eigenvalues with the same magnitude but
different complex phases, as is the case, e.g. for linear WFSAs.

°If k < 1 or k' — 1, then also the eigenvalue will be very similar.
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by dividing by v;, it easily follows that ¢ = _ y p;;- This means each row of the modified
matrix P* sums to ¢ (the eigenvalue modulus of the Perron vector). In the classical weight
pushing algorithm | |, we assume a stochastic WFSA, so that after
weight pushing, all outgoing transitions of a state “sum to” 1 in the given semi-ring. Our
solution is to use a modified pushing operation, which results in a WFSA, for which the
transitions out of all states (and the final probability p) “sum to” the same quantity c:

Vg € Q, @ wle] | @ plqg] = c. (3.17)

e€F[q]

This means that the left-over weight, which is usually added to the initial or final states
and which can cause the standard algorithm to fail, is now uniformly “smeared” all over
the WFSA. Our algorithm is in practice an order of magnitude faster than the more generic
conventional weight pushing algorithm.

3.2 Exact back-off LM reversal

For the construction of the backward recognition network, the most difficult component
to reverse is the WFSA resulting from the back-off LM. In section 3.1, we explained how
N-gram back-off LMs are represented as WFSA. We require that the reverse LM assigns
exactly the same probabilities as the forward LM. To guarantee an optimal search, the
backward WFST should also be deterministic, stochastic and of minimal size. Thus, simple
WEST reversal is not sufficient. We derive the construction of the backward LM satisfying
these requirements, which is valid when using failure arcs and also when using epsilon arcs
to represent the back-off structure as WFSA.

The WFSA corresponding to the forward LM accepts a sequence of words and accu-
mulates the weights along the path - see figure 3.3. If the probability semi-ring is used,
the path weight is the product of the individual probabilities. If logarithmic probabilities
are used, the path weight is the sum of the individual scores. Two WFSA are equal, if
they accept the same set of sequences with the same path weights. Thus, it is possible to
distribute the weights differently along the path, as long as the total product (or sum for
logarithmic weights) stays the same for all paths. When we directly apply WFSA reversal,
which basically corresponds to swapping the source and destination states of the arcs, the
resulting structure would be highly non-deterministic. In the example, starting backwards
from the final state, all incoming arcs (only one example is shown) have the label < /s>.
Thus, we have to apply P(</s>|c,d) after only having seen only one symbol of the tri-gram
(</s>). However, only after two more symbols d, ¢ have been seen, the destination state can
be determined unambiguously. For that reason, it would be logical to delay the application
of the weight (probability), until a sufficient number of symbols (two for tri-grams) have
been consumed to unambiguously determine the destination state. Figure 3.4 shows the
corresponding path in the backward LM.

When certain N-grams do not have sufficient coverage in the training corpus and are
approximated by backing-off to lower order N-grams (see figure 3.5), the sequence of the
weights in the backward LM is again exactly reversed as in the forward LM, and the same
delay of the weights is applied to make the model deterministic. However, the sequence of
the labels for back-off arcs is changed - back-off weights and lower-order N-grams change
their role. The reason for that is we always have to back-off to a common history before
consuming the next label - so the failure-arc (symbolized by ¢) in the backward model takes
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<s>:1 a:Plal<s>) b: P(bl<s>a) c¢: P(cla,b) d: P(d|b,c) </s>: P(</s>|c, d)

Figure 3.3: Ezample of a forward path through a tri-gram language model - every state cor-
responds to a history of the two last symbols consumed. The model accepts the sequence a,b,c,d
(input symbols) and the path weight is the product of the individual probabilities. For simplicity,
sentence-start and sentence-end are treated here as ordinary symbols. Only one path is shown, but
of course there are multiply arcs entering the final state, all with the same label.

7oL erPlalssy) 7=

A (a<s>)— ------- <)
@\Lﬁi JUw_ - N
o

</s>:1@d: 1 @C:P(</s>|c,d) @b:P(d|b, 0 @Q:P(da, b)@’</s/>:P(b|<s>a)~P(a|<s>)

Figure 3.4: The backward path corresponding to the path in figure 3.3. Additionally to reversing

the path, the weights/probabilities have been delayed by two steps. Therefore, two arcs with prob-
ability one have been inserted at the beginning. To compensate, we could add two e-arcs at the
end (as depicted in dashed), where the last arc corresponds to backing-off to a history-less state
at the sentence beginning (now end). Instead of introducing back-off arcs at the end of the sen-
tence, we can collapse the probabilities of all the lower-order back-offs onto one arc, i.e. we use
P(b|<s>a) - P(a|<s>) - P(<s>). Also the WFST LM implementation assumes, that a state reached
by an N-gram containing the sentence-end symbol is a final state.

the lower-order N-gram probability (from the forward model) and the label-arc takes the
former back-off weight. Figure 3.6 shows this in the construction of a backward back-off
LM from figure 3.5. We see, that it is possible to construct a backward LM, that has the
same size and structure as the forward LM and is deterministic. From the construction, we
observe, that a forward LM can be transformed into a backward LM by a series of relatively
simple steps: Since the sequence of labels is processed in reversed order, the names of all
states and N-grams are reversed (abc becomes cba). The N-grams of the highest order do
not have back-off weights, and thus they stay unchanged (arcs appear similar in the forward
and backward models). However, for all lower-order N-grams, the role of the back-off weight
and the N-gram probability change.

When represented in the ARPA format in figure 3.7, the transformation becomes even
simpler: For all lower-order N-grams, the whole line is reversed, and for the highest-order N-
gram, only the N-gram is reversed. E.g. for a tri-gram LM, a bi-gram entry P(b|a) ab a(a,b)
becomes «(a,b) ba P(bla) and a tri-gram entry P(c|a,b) abc becomes P(c|a,b) cba. The
symbols for sentence begin and sentence end have to be exchanged, and special care has to
be taken for N-grams starting and ending a sentence. For all N-grams ending a sentence, we
multiply all lower-order probabilities (e.g. for N-gram cba we use P(c|a,b) - P(bla) - P(a)).

With the help of a series of weight pushing operations and representation changes of the
probabilities, where each step guarantees WFSA equivalence, the LM reversal algorithm can
also be derived step by step. By applying the constraint that the joint word probabilities
should be the same for the forward and backward LM for all N-gram orders, we are also
able to derive our algorithm from Bayes’ rule. The application of weight pushing to the
resulting backward LM is crucial for optimal performance.
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i: P(i|f,c)
. <

@
Figure 3.5: The same example of a forward path as in figure 3.3, but with backing-off. The thick
arcs correspond to the path in fig. 3.3 and further arcs have been added to illustrate the structure of
the back-off LM. Since the N-gram bed was not seen sufficiently often, it is approximated by backing-
off to state ¢ with back-off weight a(b,c) and then using the bi-gram cd with probability P(d|c). The
failure-arc (symbolized by p) doesn’t consume any symbol, but this arc is chosen for all symbols,
that have no outgoing arc out of the same state (’default’ clause). For the non-deterministic WFSA
approzimation, we would use the symbol € instead and not consume a symbol either. The state 0
corresponds to the history-less back-off state when backing-off to uni-grams.

i: P(ilf,c)
@—é@ : 1ol @

/"\C PK/S>\C,h) §0P(/Z/C\
‘<A>hr - <::>\\\\“)

'\1\—

</s>: 1@(1_1.0 P</s>|e, d)

\_‘,‘

“ve: P/s>e, g)
‘</s g —————————

Figure 3.6: The backward structure corresponding to figure 3.5. The thick arcs correspond to the
path in fig. 3.4, and all solid arcs are reversed arcs from fig. 3.5. Dashed arcs have been added to
illustrate further structure of the backward model. Similar as in figure 3.4, the weights have been
delayed by two steps. Compared to the forward structure in figure 3.5, the sequence of weights is
ezactly reversed. The probability on an arc between two particular states is the same in the forward
and backward model. I.e. compare the forward arcs bc — ¢ — cd in fig. 3.5 to the backwards arcs
dc— c—cb in this figure (cb corresponds to be). However, since all labels are off by two states in the
backward model, the back-off probability «(b, ¢) is now actually applied on a bi-gram arc with a label
(b) and the bi-gram probability P(d|c) is applied on a back-off arc with ¢. Since all backward-tri-
grams ending in cb (like dcb, heb) share b as last label, it is logical to first back-off from the history
(de, he) to the common history ¢ and then apply the common label b. Since the reverse order of the
weights has been preserved, the bi-gram probabilities serve now as back-off weights, and the former
back-off weights serve as bi-gram probabilities. The same holds for the history-less state 0 - the
uni-gram back-off weight (1) and the uni-gram probability P(c) have switched their role.
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\data\

ngram 1=4
ngram 2=2
ngram 3=2

\l-grams:
—-5.234679 a -3.3
—-3.456783 b
0.0000000 <s> -2.5
—-4.333333 </s>

b/3.4568

<eps>/2.5

<eps>/3.23
\2-grams:

—1.45678 a b -3.23
—1.30490 <s> a -4.2

a/1.3049

b/1.4568 </s>/0.2394

\3-grams:
—0.34958 <s> a b
-0.23940 a b </s>
\end\

Figure 3.7: Left: Definition of a tri-gram ARPA back-off language model. For each N-gram
‘abc’, there is an entry in the form ’P*(c|a,b) abc a(a,b,c)’, where P*(c|a,b) is the discounted
probability P(cla,b), and a(a,b, c) is the back-off weight of backing-off from a higher order N-gram
to the shortened history abc. The probabilities are by convention given as logarithms to the basis
of two. Right: The WFSA resulting from the tri-gram back-off ARPA LM defined on the left.
The highest-order N-grams (tri-grams) behave slightly differently than lower-order N-grams: The
transition for tri-gram <s>ab is going from state <s>a to state ab, which is equivalent to going to
an imaginary state <s>ab and immediately backing-off to state ab. If for some reason the bi-gram
ab would be missing in the ARPA file (removed line '—1.45678 ab — 3.23°), the state ab would be
created as target state for the tri-gram abc, however, the arc from a to ab would not exist, and the
back-off arc from ab to b would be with zero cost.

3.2.1 The treatment of missing N-grams

While the rules are rather simple, an additional complexity arises, when representing back-
off N-gram LMs as WFSAs. If there is an N-gram entry for abcd in the ARPA, the resulting
WEFSA needs the back-off states bed, c¢d and d. Due to e.g. LM pruning, for some of the
N-grams abcd defined in the ARPA file, there is no corresponding tri-gram entry bed or bi-
gram entry cd, i.e. we are not given the probality «(bcd) of backing-off abed — bed, neither
P(d|b,c). N-grams that are needed for the construction of the WFSA, but not defined in
the ARPA, we call missing N-grams.

During the construction of the recognition graph from the forward LM, missing back-off
states are usually added automatically. For example, in the tri-gram LM of figure 3.7, the
tri-gram <s>ab leads into the state ab. Let’s imagine the corresponding back-off bi-gram ab
is not present in the LM: In this case, during the construction of the recognition graph, the
state ab needs to be automatically created, as it is the target of the tri-gram. Since there
is no bi-gram probability for ab (P(bla) = 0.0), we should immediately back-off to state
b. Thus, the bi-gram ab is added with back-off weight a(a,b) = 1.0 (zero in log-domain).
However, it should not be possible to reach the newly created state ab from a, since the
N-gram ab is missing (P(bla) = 0.0 or minus infinity in log-domain).

In terms of the WFSA representation of the LM (right part of figure 3.7), this would
mean, that there would be no link between a and ab, and the link between ab and b would
be added with zero cost. In the reverse LM, where forward probability and back-off weight
change their role, this does lead to the situation, that we are able to reach ba from b with
a(a,b) = 1.0, but we are not able to back-off from ba to a, since this corresponds to a path
that was not present in the forward model (P(b|a) = 0.0). To summarize, to make missing
N-grams explicit in the forward ARPA file, it results in an entry ’—inf a b 0.0°, and in the
backward ARPA, it results in an entry 0.0 ba — inf’.
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Missing N-grams result from a complex interplay of the type of back-off distribution,
cut-off frequencies and LM pruning. The first type of N-grams that are missing in the
ARPA file are back-off N-grams that end a sentence. By convention, the state reached
by an N-gram containing the sentence-end symbol is a final state. For example, for the
tri-gram cd</s> in figure 3.5 (final arc), there is no lower-order N-gram d</s>, since after
observing the sentence-end symbol, no other N-gram can follow. According to the rule, we
create '—inf d </s> 0.0’, which results in adding ’0.0 </s> d — inf’ in the backward
LM. This exactly corresponds to the state </s>d in figure 3.6, which can be reached with
probability one, but there can be no back-off arc leaving this state.

Otherwise, in an un-pruned N-gram LM, usually the presence of a higher-order N-gram
implies the presence of the lower-order N-gram (e.g. with a shortened history), since the
observation count of the lower-order N-gram should be equal or higher than the count of
the higher-order N-gram. We encounter missing N-grams, when we use different cut-off
frequencies (parameter k in equation 3.2) for different N-gram orders, and also, if we use
lower-order distributions, which are not based on counts. The distribution for the highest-
order N-grams P’(w;|h;) (equation 3.2) is usually based on the counts C(h;, w;). [

| showed, that when backing-off, one should make use of the fact that this
particular word is unseen in the given context. In other words, we should use a different type
of distribution for Pjoyer(w;|h;) than for P’ (w;|hs). [ | use a back-off
distribution, where the probability of a word, unseen in a certain context, is proportional
to the number of possible predecessor words types that can occur before that context:

|wi—p : C(Wi—p, ... w;) > k]
wi |wi 2 C(wi—p ... w;) > k|

Poackosf (WilWi—p1 .. wi—1) = 5 (3.18)
As a consequence, we can expect words or phrases, that appear frequently, but only in
very few different contexts, to have a low probability in the back-off model. For example,
we would not expect the word ,,Francisco® to appear in many other contexts than together
with ,,San Francisco“, despite the fact that it is a frequent word. For that reason, we often
find higher-order N-grams in the LM, such as ,,San Francisco area“, for which the back-off
N-gram ,, Francisco area“ is missing. When constructing the backward LM, we will add the
missing N-gram ,,area Francisco“ with probability one and infinite back-off weight. This
means, that after observing ,,area Francisco“, we are only able to continue with ,San*“ and
there can be no back-off to ,,Francisco®, which would allow to continue with another word.
In fact, when experimenting with LMs trained on sentences from the Wall Street Jour-
nal corpus [ |, we observed that any common multi-word phrase can
result in missing lower-order N-grams. An N-gram starting within a multi-word phrase has
very few different left contexts, which causes it to have low back-off probability. If the right
context of that N-gram is either almost completely undetermined or completely determined
(e.g. sentence end), all N-grams that would continue the phrase fall below the cut-off fre-
quency and are thus not present in the LM. Typically, a multi-word phrase like ,,on behalf
of“ or ,New York City“ is followed by a word that introduces lot’s of ambiguity - e.g. ,,on
behalf of the“. If no N-gram ,,behalf of the X“ is above the cut-off frequency, then also the
back-off N-gram ,,behalf of the* is missing in the LM, since the probability of seeing it in a
new context other than ,on“ is extremely low. As already mentioned, also for all N-grams
ending a sentence, there is no succeeding N-gram, which is a similar situation. It is quite
obvious, that LM pruning (e.g. based on entropy [ |) will increase the number
of missing N-grams. According to the same principle, N-grams with a low probability in
the back-off distribution, and no successor N-grams (due to pruning) are missing as well.
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Chapter 4

Conclusions

In this thesis, we introduced the idea of symmetrically decoding forwards and backwards in
time. For some tasks, the pruned backward search can be more efficient than the forward
search. Moreover, we showed, that the search errors of forward and backward search are
mutually independent. To concentrate on search errors rather than on modeling errors, we
require both decoding passes to be symmetric — i.e. both models are equally powerful and
are constructed to assign exactly the same probabilities to hypotheses. This guarantees that
each difference in comparing the results of forward and backward decoding corresponds to
a search error. For most of the time frames in beam search decoding, a very narrow beam is
sufficient. Therefore, we decode with a variable beam width — using a small baseline beam
and only increasing it in places, where the forward and backward searches disagree.

One possible realization of the variable beam width decoding is to run both passes in
parallel, iteratively refining the decoding (by increasing the beam width) in places, where
both disagree. For about 50% of the utterances, the results already match after the first
iteration. For the rest, the stretches of mis-matching words can be decoded in parallel.

Another realization of the variable beam width is the tracked decoding presented in
this thesis, which runs forward and backward decoding sequentially. During the second
pass (tracked decoding), we identify active tokens corresponding to paths that were present
in the first-pass lattice. These tracked tokens are never pruned, regardless of the beam
width and are used to determine the variable pruning beam for each frame. In places where
disagreement is detected, the beam is increased to include all of them. Otherwise, the same
narrow beam is used as in the first pass. Our method is doing more than simply choosing
the best path from two passes, because it is possible to “recombine” partial paths from the
first-pass and second-pass search. On top of that, the variable beam leads to the generation
of extra tokens in areas where both passes disagree, which gives an additional speed-up.

Tracked decoding leads to a 2-3 times speed-up compared to a single pass forward
decoding. Since most of the time is spent in the forward and backward decoding with the
narrow beam, the baseline beam determines the possible speed-up. When we decrease the
beam below a critical threshold the speed-up vanishes, since an excessive amount of extra
tokens is generated. At least one of the two passes should obtain a (partly) correct solution.

To construct the backward recognition network, it is not sufficient to apply WFST re-
versal to the forward network. To guarantee an optimal search (determinism, stochasticity,
minimal size), it is necessary to construct reverse models for each component separately
and to compose the components in the same way as in the forward network. It turned out
that the transducers for HMM structure, context-dependency and pronunciation lexicon
are rather easy to reverse, however, the reversal of the LM transducer is difficult. Weight

28



pushing has to be applied to the reversed components, to obtain the stochasticity of outgo-
ing arcs. Since all components are reversed individually, our approach to the construction
of backward recognition networks can be applied in static and dynamic network decoders.

To represent N-gram LMs as WFSTs, an approximate structure is necessary. When
representing back-off arcs as epsilon arcs, non-determinism is introduced, resulting in an
infinite total weight. The convergence of the iterative weight pushing algorithm depends
on the weight in a loop, which must be smaller than one. Therefore, the algorithm will
not converge for WFSA resulting from back-off LMs. We presented an alternative weight
pushing algorithm, which will always converge. We use the Perron theorem to obtain
the dominant right eigenvector of the transition matrix of an ergodic WFST. This vector
represents the minimum distance to the final state, which we use as the potential function
in re-weighting. This results in pushing the weights towards the initial state and making
the WFSA output stochastic. The total weight, causing the standard algorithm to fail,
is now uniformly “smeared” all over the WFSA. Our algorithm is in practice an order of
magnitude faster than the more generic conventional algorithm.

The most difficult component to reverse is the WFST resulting from the back-off LM.
We require that it assigns exactly the same probabilities as the forward LM. We derive
the construction of the backward LM satisfying these requirements, which is valid when
using exact back-off models using failure arcs, and also when approximating them with
epsilon arcs. We especially concentrate on the correct handling of back-off arcs and missing
N-grams. Our ’exact’ LM reversal gives slightly better performance than a backward LM
resulting from training on the reversed training texts.

4.1 Future work

The proposed method could be applied in the fast generation of lattices for audio indexing
and the tracked decoding could be used to generate lattices that contain desired paths,
such as the forced-alignment reference for the discriminative training of acoustic models.
Additionally to decoding forwards and backwards in time, depending on the task, there
might be other ways of decoding, which could result in independent search errors.

The alternative weight pushing algorithm was derived under the assumption, that all
arcs in the WFST are of the same type. However, there are “emitting” arcs with a word
label, and “non-emitting” arcs representing the back-off arcs. An open problem is to derive
a weight pushing algorithm respecting the special semantics of back-off arcs as failure arcs.
Under this correct interpretation, the total weight of the transducer will be one, and we
avoid the negative log-probabilities resulting from pushing weights greater than one. The
original Kaldi recipe for the construction of recognition networks | | used
the assumption, that all components are stochastic, which eliminates the necessity for
weight pushing. We want to derive a properly normalized stochastic backward LM WFST.

There is inconsistency between the algorithms for decoding graph construction (as-
suming the log-semi-ring), and for decoding (tropical semi-ring). In addition to different
interpretations of the failure/epsilon arcs, this opens several design choices, which should
be systematically explored to find a consistent framework for decoding graph construction
that results in an optimal decoding. The non-determinism introduced by using epsilon arcs
for back-offs results in multiple evaluations of the same models during decoding. After
the composition with the lexicon transducer, it should be possible to apply another deter-
minization step, which not only removes the non-determinism, but also leads to a graph,
which is consistent with the log-semi-ring.
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