

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ
BRNO UNIVERSITY OF TECHNOLOGY

FAKULTA STROJNÍHO INŽENÝRSTVÍ
ÚSTAV AUTOMATIZACE A INFORMATIKY

FACULTY OF MECHANICAL ENGINEERING
INSTITUTE OF AUTOMATION AND COMPUTER SCIENCE

EXPERTNÍ SYSTÉMY A POKROČILÉ ALGORITMY
V OBLASTI PLÁNOVÁNÍ CEST MOBILNÍCH ROBOTŮ

EXPERT SYSTEMS AND ADVANCED ALGORITHMS IN MOBILE ROBOTS PATH PLANNING

DOKTORSKÁ PRÁCE
DOCTORAL THESIS

AUTOR PRÁCE Ing. Ahmad Abbadi
AUTHOR

VEDOUCÍ PRÁCE doc. Ing. Radomil Matoušek, Ph.D.
SUPERVISOR

BRNO 2015

3

ABSTRACT

Motion planning is an active field in robotics domain, it is responsible for translating high-

level specifications of a motion task into low-level sequences of motion commands, which

respect the robot and the environments constraints.

In this work many path-planning approaches have been reviewed, mainly, the rapidly

exploring random tree algorithm (RRT), the cell decomposition approaches (CD), and the

application of fuzzy expert system (FES) in motion planning. These approaches have been

adapted to solve some of mobile robots motion-planning problems efficiently, i.e. motion

planning in small and narrow areas, the global path planning in dynamic workspace, and

the improvement of planning efficiency using available information about the working

environments.

New planning approaches have been introduced based on exploiting and combining the

advantages of cell-decomposition, and RRT, in addition to use other tools i.e. fuzzy expert

system, to increase the efficiency and completeness of finding a solution.

This thesis also proposed solutions for other motion-planning problems, for example the

identification of narrow area and the important regions when using sampling-based

algorithms, the path shortening for RRT, and the problem of planning a safe path.

All proposed methods were implemented and simulated in Matlab to compare them

with other methods, in different workspaces and under different conditions. Moreover, the

results are evaluated by statistical methods using Matlab and Minitab environments.

KEYWORDS

Motion Planning, Path planning, Rapidly exploring random tree, RRT, Expert system,

Fuzzy system, Cell decomposition.

4

ABSTRAKT

Metody plánování pohybu jsou významnou součástí robotiky, resp. mobilních robotických

platforem. Technicky je realizace plánování pohybu z globální úrovně převedena

do posloupnosti akcí na úrovni specifické robotické platformy a definovaného prostředí,

včetně omezení.

V rámci této práce byla provedena recenze mnoha metod určených pro plánování cest,

přičemž hlavním těžištěm byly metody založené na tzv. rychle rostoucích stromech (RRT),

prostorovém rozkladu (CD) a využití fuzzy expertních systémů (FES). Dosažené výsledky,

resp. prezentované algoritmy, využívají dostupné informace z pracovního prostoru

mobilního robotu a jsou aplikovatelné na řešení globální pohybové trajektorie mobilních

robotů, resp. k řešení specifických problémů plánování cest s omezením typu úzké

koridory či překážky s proměnnou polohou v čase.

V práci jsou představeny nové plánovací postupy využívající výhod algoritmů RRT

a CD. Navržené metody jsou navíc efektivně rozšířeny s využitím fuzzy expertního

systému, který zlepšuje jejich chování.

Práce rovněž prezentuje řešení pro plánovací problémy typu identifikace úzkých

koridorů, či významných oblastí prostoru řešení s využitím přístupů na bázi dekompozice

prostoru. V řešeních jsou částečně zahrnuty sub-optimalizace nalezených cest založené

na zkracování nalezené cesty a vyhlazování cesty, resp. nahrazení trajektorie hladkou

křivkou, respektující lépe předpokládanou dynamiku mobilního zařízení.

Všechny prezentované metody byly implementovány v prostředí Matlab, které sloužilo

k simulačnímu ověření efektivnosti vlastních i převzatých metod a k návrhu prostoru řešení

včetně omezení (překážky). Získané výsledky byly vyhodnoceny s využitím statistických

přístupů v prostředí Minitab a Matlab.

KLÍČOVÁ SLOVA

Plánování pohybu, plánování cest, RRT, rychle rostoucí stromy, expertní system, fuzzy

system, rostorový rozklad.

5

BIBLIOGRAPHIC CITATION:

ABBADI, A. Expert Systems and Advanced Algorithms in Mobile Robots Path

Planning. Brno: Brno University of Technology, Faculty of Mechanical Engineering,

2015. 149 pp., Supervisor of doctoral thesis: doc.Ing. Radomil Matoušek, Ph.D.

ABBADI, A. Expertní systémy a pokročilé algoritmy v oblasti plánování cest mobilních

robotů. Brno: Vysoké učení technické v Brně, Fakulta strojního inženýrství, 2015. 149 s.

Vedoucí dizertační práce doc.Ing. Radomil Matoušek, Ph.D.

Declaration

I hereby confirm that I have written the thesis independently, under the supervision of

doc. Ing. Radomil Matousek, Ph.D. and using the listed references

In Brno, 2. 9. 2015

 Ing. Ahmad Abbadi

6

Acknowledgments

I would like to express the deepest appreciation to my supervisor for his continuous

support and guidance.

I would also like to express my gratitude to my parents for their advice,

encouragements, and support through my entire life.

Finally, I would like to express my deepest gratitude to my best friend, my wife, Sara

for her quiet patience, endless encourage and support.

7

Table of Contents

ABSTRACT 3

1 INTRODUCTION 9

1.1 THESIS OBJECTIVES 11

1.2 ROBOT HISTORY 12

1.3 THESIS STRUCTURE 13

2 STATE OF THE ART 15

2.1 MOTION PLANNING 15

2.2 CONFIGURATION SPACE 15

2.3 EXAMPLES OF PLANNING ALGORITHMS 16

2.3.1 BUGS ALGORITHMS 17

2.3.2 VECTOR FIELD HISTOGRAM (VFH) 18

2.3.3 ROADMAP ALGORITHMS 20

2.3.4 CELL DECOMPOSITIONS 22

2.3.5 GRID-BASED SEARCH 22

2.3.6 POTENTIAL FIELDS 23

2.3.7 SAMPLING-BASED ALGORITHMS 24

2.3.8 SUMMARY 28

2.4 SAMPLING STRATEGIES 29

2.5 NARROW PASSAGES 33

3 CELL DECOMPOSITION 39

3.1 EXACT CELL DECOMPOSITION 39

3.2 CELL DECOMPOSITION APPROXIMATION 42

3.3 CONTRIBUTIONS, TESTS AND RESULTS 43

3.3.1 SAFE PATH PLANNING USING CELL DECOMPOSITION APPROXIMATION 43

3.3.2 NARROW PASSAGE IDENTIFICATION USING CD APPROXIMATION AND MINIMUM

SPANNING TREE 47

4 RAPIDLY-EXPLORING RANDOM TREE (RRT) 55

4.1 CONTRIBUTIONS, TESTS AND RESULTS 64

4.1.1 RRTS REVIEW AND OPTIONS 64

4.1.2 RRTS REVIEW AND STATISTICAL ANALYSIS 67

8

4.1.3 RAPIDLY-EXPLORING RANDOM TREES: 3D PLANNING 83

4.1.4 SPATIAL GUIDANCE TO RRT PLANNER USING THE CELL-DECOMPOSITION

ALGORITHM 93

4.1.5 COLLIDED PATH REPLANNING IN DYNAMIC ENVIRONMENTS USING RRT AND CELL

DECOMPOSITION ALGORITHMS 98

5 EXPERT SYSTEM 107

5.1 EXPERT SYSTEM STRUCTURE 108

5.1.1 KNOWLEDGE BASE 108

5.1.2 INFERENCE ENGINE 110

5.2 FUZZY EXPERT SYSTEM 110

5.3 EXPERT SYSTEM APPLICATION IN MOTION PLANNING PROBLEMS 112

5.4 CONTRIBUTION, TESTS AND RESULTS 114

5.4.1 HYBRID RULE-BASED MOTION PLANNER IN CLUTTERED WORKSPACE 114

6 CONCLUSION 127

BIBLIOGRAPHY 129

AUTHOR’S PUBLICATIONS 141

A. APPENDIX: MATLAB IMPLEMENTATION 143

PATH PLANNING IMPLEMENTATION USING MATLAB 143

SOFTWARE SNAPSHOTS 146

9

1 INTRODUCTION

Robots significantly affect our lives in a positive way. Their successes and desirable

outcomes expanded rapidly from manufacturing and industrial application to streets,

buildings, gardens, and daily tasks applications.

The major types of old robots were industrial arms and manipulators, they fixed to a

base and do a specific task. However, nowadays, a big expansion is done in robotics

applications; the mobile robots appear widely among us and take a part of doing human’s

everyday tasks, e.g. auto-pilot, autonomous car, autonomous vacuum cleaner, autonomous

lawn mowers, rescue robots, and many other applications.

The autonomous mobile-robot field has been a subject of many researches last years.

The high demand of autonomous robot applications motivates the researchers and

scientists to increase the machine autonomy by introducing a new designs, ideas, and

algorithms, especially in the applications that involve critical requirements, dangerous

environment, or boring tasks.

The complexity of autonomous robots requires an efficient motion planner, which

convert high-level tasks specifications into low-level descriptions of motion commands.

The output of the planner is a motion plan or a path plan, which includes a sequence of

actions to be executed by robots controllers and actuators.

A planner constructs a plan using planning algorithms that find a suitable control inputs

given a state of the workspace. An efficient planner should rapidly and reliably computes a

collision-free path, and respects the robots constraints or other kinematic and dynamic

constraints.

Motion planning problems can be divided into three levels, based on the planning goals,

i.e. local planning, global planning, and mission planning as shown in Figure 1-1, the

motion planner module.

The local planners produce a solution locally based on sensors data. They do not require

a map or any initial information except the goal location. Most of these algorithms are easy

to implement and require low computational resources. The main advantage of them is the

tolerance to the environment changing. However, many local planning algorithms trap in

local minima, moreover, they are incomplete, and generate un-optimized paths.

In the global planning, the algorithms produce a full path from the initial position to the

goal states. Usually, these algorithms require middle to high computational resources.

Moreover, they require the initial and goal locations, in addition to the map of the

workspace. The main advantage of these planners, that they avoid the local minima. Yet,

they have less tolerance to the environment changing.

10

Mission planning is a high abstraction of the required tasks. The query may have multi-

goals, and the planner in this level tries to find a way that satisfy all constraints and reach

the goals.

Figure 1-1: Robot navigation model.

Another complement module to the motion-planning one is the localization and

mapping module. It estimates the robot location and improves awareness of the system to

the surrounding environments. It is also responsible for self-localization in an unknown

area, and builds a map for the explored spaces. This process is known as simultaneous

localization and mapping (SLAM) (Leonard et al. 1991; Smith et al. 1986), which is out of

our interest in this thesis.

The hierarchy of the motion-planning module is proposed in many researches based on

the application. For example, in (Vendrell et al. 2001), the authors construct a planner

using five steps, first the Mission, which deals with the highest and most abstract definition

of an activity. Also, it is independent from the robot and the environment. For instance,

“load part X from place Y to place Z.” the second level is the Task, which corresponds to a

sub-goal from the whole goal. Other levels are the Motions and Actions, they responsible

for translating the plan into a set of robot orders and basic operations, which executed by

the last level, the Robot Orders level. Other proposed architectures presented in

(Kelouwani 2013; Knepper et al. 2010; Moore et al. 1999).

Our interest in this thesis is to develop the local and global parts of the motion-planning

module for omnidirectional mobile robots.

The robot is considered as a holonomic points operates in static or dynamic workspace.

The rapidly exploring random tree algorithm (RRT)1 and its developments are reviewed,

1 Will be discussed in chapter 4

Localization

Sensors

MappingMission Planning Global Planning

Local Planning

Maps & Locations

Motion Tasks

Other
Resources

11

and tested to estimate their efficiency and completeness. Then statistical studies on RRT

variants have been done, in order to find alternatives to the methods that have low

probabilistically completeness. We tested the RRT performance, and introduced a new

method for RRT’s path shortening, in addition, we utilize a smoothing-out technique to

improve the generated path. The shortening algorithm reduces the number of redundant

points in the path, and reduces the detours edges, in order to make the path more suitable

for omnidirectional mobile robot.

We have developed new motion planners based on cell-decomposition (CD)

algorithms1. They generate a plan that keeps a safety distance between the robot and the

obstacle boundaries, and, at the same time, push the robot to perform its maneuvers in

large free regions in the workspace. Moreover, new planning-algorithms were proposed

and developed in order to build efficient planners. The first category of these approaches

combines RRT algorithms and CD methods. It overcomes the drawbacks of RRT

algorithms in narrow areas and cluttered workspaces, what is more, it overcomes the CD

downsides in dynamic workspaces. Another work has been done using CD and minimum

spanning tree (MST) to identify the narrow passage and the important regions form

sampling-based algorithms point of view.

The second category of the planning algorithms uses an expert rule-based, with the aim

of utilizing the collected experience, and available knowledge to generate a better solution

in an efficient way. The goal of these proposed methods is to develop and improve RRTs

planners for omnidirectional mobile robot, by exploiting the available knowledge in the

environment.

1.1 Thesis objectives

The aims of the thesis are to improve the mobile robot strategy for path planning, by

proposing new approaches to improve the completeness and efficiency of planning

algorithms, which in consequence improve the robot’s autonomy. Then assert the results

statistically, and compare it to other methods.

The clear aims of the thesis can be summarized in the following points:

 Review of the state of the art.

 Design new approaches for path planning based on RRT and cell decomposition

principles.

 Use knowledge base and expert system in the path planning methods.

 Design simulation environment that conducts simulations of the experiments,

and evaluates the results statistically.

1 Will be discussed in chapter 3

12

1.2 Robot History

The term "robot" was first used to denote fictional automata in the 1921 on the play

“Rossum's Universal Robots” by the Czech writer Karel Čapek. He uses the word ‘robot’

to describe artificial people. The term robot comes from the Czech work ‘Robota’ which

means forced labor that work without rest (Etymonline 2014; Slovník).

The Idea of producing autonomous machines or pre-programmable machines to serve

the people or replace them in some situation was proposed frequently over the ages. Back

to ancient worlds, a Chinese artificer Yan Shi (BC 1000) designed a mechanical

handiwork, which was able to sing and act (Uyanik 2011). In 320 BC, Greek philosopher

Aristotle wrote “If every tool, when ordered, or even of its own accord, could do the work

that befits it, Then there would be no need either of apprentices for the master workers or

of slaves for the lords”. After that, one of the oldest known automaton was made by

ancient Egyptians (250 BC) “Clepsydra” which is a clock propelled by water (Mathia

2010; Wikipedia 2014a; sciencekids 2014).

In golden Islamic age, the polymath “Al-Jazari” which known as the creator of the first

programmable humanoid robot (Uyanik 2011), wrote a book in (1206) describing the

design and construct of a number of automatic machines, including kitchen appliances,

musical automata powered by water. In addition to the first programmable humanoid robot

which was a programmable drum machine consisting of four automatic musicians in a boat

floating in a lake (Uyanik 2011; Wikipedia 2014a; Al-Jazari-Wikipedia 2014).

In 1495, Leonardo Da Vinci designed a humanoid automaton that does human-like

movements. Then, around 1700, many automatons were built. Jacques de Vaucanson

(1737) made many automatons like flute player, tambourine player, and his most famous

work, "The digesting duck.” The Japanese craftsman Hisashige Tanaka created an array of

extremely complex mechanical toys, some of which were capable of serving tea, firing

arrows drawn from a quiver, or even painting a Japanese kanji character (Wikipedia

2014a).

In the recent centuries, the automation takes a place in 1913, when Henry Ford installs

the world’s first moving conveyor belt-based assembly line in his car factory, which make

assembling time for Model T fell from 12 hours and 30 min to 93 minutes. Then, many

modern robots start to appear in different applications (Uyanik 2011; Wikipedia 2014a;

sciencekids 2014).

The first digitally operated and programmable arm robot was invented by George Devol

in 1954. It is known as “Unimate.” It became the first industrial robot, completing

dangerous and repetitive tasks in an assembly line at General Motors (1962), and laid the

foundations of the modern robotics industry.

In 1950, Alan Turing proposes a test to determine if a machine truly has the power to

think for itself. To pass the test a machine must be indistinguishable from a human during

13

conversation. It has become known as the ‘Turing Test’ of intelligent behavior. Then in

1980 John Searle shows, that the test of intelligence is not so easy. He proposes the

paradox with name 'Chinese Room'. But it is another story of the beginning of the artificial

intelligence.

1.3 Thesis structure

The thesis is divided into six chapters. The second one, the state of the art, contains an

overview of the famous methods in the motion-planning domain, and some approaches,

which are adapted and used in this work.

The third, fourth and fifth chapters describe the used algorithms, each of these chapters

is divided into theoretical parts in addition to our contribution part. The contribution

section is divided into subsection based on our publications. Each one of the subchapters

contains a description of our methodologies to solve a specific problem. In addition, it

presents the testing results, and the discussion. The theoretical part of the chapter contains

an introduction and related words, which are used in the corresponding publications. They

combined and reviewed in a logical sequence.

The Third chapter reviews the cell decomposition algorithm (CD) and its

improvements. It is started with the theoretical part, which review many researches and

developments of CD approaches, while the second part contains our contribution in safe

path planning using cell-decomposition approaches and narrow area identification.

The fourth chapter describes the principle of rapidly exploring random tree algorithms

(RRT), and its variation. The chapter has been started with a general introduction of RRT

and its principle, then a deep review of its developments and the related works. The last

sections of this chapter present our contributions to develop the path shapes, the algorithms

completeness, and the efficiency of the planners using the combination between RRT and

other approaches.

The fifth chapter discusses the use of expert system in the path-planning problem. It

describes our methods that exploit the available information in order to support the motion

planning procedure. The chapter starts by describing the basic principles of expert systems,

the hierarchy of ES, knowledge-based representation, fuzzy expert system, and then a

revision of ES in mobile robot motion-planning problem is done. The last section of this

chapter presents our contribution in this domain to build a hybrid planner using fuzzy

expert system, RRT, and CD algorithms.

In the last chapter of this thesis, we conclude our work, and then, we list the references,

which are used in this work. In appendix section, some snapshots of the simulation and

testing application are presented.

15

2 STATE OF THE ART

In this section, some motion planning concepts are reviewed. We start with basic concepts

of motion planning and the need for configuration space, which led to recent motion

planning algorithms. Then, the original applicable ideas for motion planning are described

in the examples of planning algorithms section, which is started by a survey of the exact

and geometry methods and it is ended with sample-based methods.

2.1 Motion planning

Motion planning is the process of finding feasible movements in a continuous world. The

feasible movements displace the robot toward the goal state and at the same time do not

collide into obstacles, or violate environment's constraints. The robot‘s models and its

working environments should be specified in motion planning problems. The robot’s

model contains robot’s dimensions, kinematics, differential equations, and other

parameters, which control or constrain robot movements. The model of a working

environment contains maps, obstacles representation, and robot location.

The principle of using two models to formulate the robot and its environment causes

some difficulties and complexity to solve the motion-planning problem, especially in the

high dimensional workspaces.

A new principle is proposed to represent the robot and its environments in different

ways. A configuration space is proposed to represent the robot as a point in the space, and

convert the complexity of robot model to dimensions in the configuration space. The

dimension of the configuration space corresponds to the number of degrees of freedom of

the robot. The advantage of using the configuration space is the motion-planning problem

will be viewed as a searching in a high-dimensional configuration space, which contains

implicitly the representation of the obstacles. In consequence, the motion plan will be

defined as a continuous path in the configuration space. Based on this proposal the path-

planning term and path-planning algorithms is proposed as methods to find a continuous

path over configuration space. The other term in this context is trajectory planning, which

expresses the action of finding a continuous path over the configuration space, which

respects the dynamic constraints, such as velocity, acceleration, inertia, etc., which means

the plan contains a continuous path and the control input for every node of this path.

2.2 Configuration space

The configuration space (C-space) for motion planning is discrete space. It contains a set

of all possible transformations that could be applied to the robot. The idea of the

configuration space is introduced in (Lozano-Pérez et al. 1979).

16

The mapping between workspace and C-space is straightforward. A point in workspace

corresponds to a set of configurations in C-space (LaValle 2006, chap. 4; de Berg et al.

2008, chap. 13).

A free configuration q is a position where the robot does not collide obstacles or itself.

Each sample from workspace is classified as free or non-free configuration. A set of all

free q is called the free configuration space, while the obstacle space or the forbidden

region is the complement of the free space.

The degree of freedom (DOFs) of a robot is considered as dimensions in its C-space,

e.g. a robot with n degree-of-freedoms is represented by n-dimensions C-space. For

example, if a robot is represented as a single point (zero-sized) translates in a 2D plane (the

workspace), then C-space is a plane, and configurations are represented using two

parameters (x, y). If the robot translates and rotates in 2D workspace, then the C-space is

3D and the configurations are represented using three parameters (x, y, θ) where θ is the

head direction. If the robot translates and rotates in 3-dimensional workspace, then the

representation of any configuration requires six parameters (x, y, z) for translation, and the

Euler angles (α, β, γ) for rotation. In some problem, the robot is considered as a single

point by transforming the robot dimensions to the obstacles dimensions. This process uses

some methods, e.g. Minkowski sum (Wikipedia 2014b; de Berg et al. 2008, pp. 290–296).

2.3 Examples of planning algorithms

In this section, some famous algorithms that used in the motion-planning domain have

been reviewed and a brief information about the bases of these methods is given. In our

work, we adopt and adapt some of these methods to support our proposals.

In the context of motion planning, different approaches have been developed. Some of

them use geometric models, which construct a map/graph and use it for path planning, e.g.

roadmap (Choset, Howie et al. 2005), visibility graph (Lulu et al. 2005; de Berg et al.

2008) , Voronoi diagram (LaValle 2006; Aurenhammer 1991; Aurenhammer et al. 2000;

Garrido et al. 2011; Choset et al. 2000; Fabbri et al. 2002; Shkolnik et al. 2009; Sakahara

et al. 2008; Masehian et al. 2010; de Berg et al. 2008, chap. 7) , and cell decomposition

(Katevas et al. 1998; LaValle 2006; Choset, Howie et al. 2005; Milos Seda 2007; Latombe

1991; Brooks et al. 1985; Schwartz et al. 1983; de Berg et al. 2008; Sleumer et al. 1999;

Bernard Chazelle 1987; Hwang et al. 2003).

Another category uses a grid over the workspace, e.g. artificial potential field

(Arambula Cosío et al. 2004; Hani Alsafadi 2007; Masoud 2013; Mbede et al. 2000;

McFetridge et al. 1998; Pêtrès et al. 2012; Sfeir et al. 2011; Zhang et al. 2012; Khatib

1985; Rosell et al. 2005; Hwang et al. 1992; Kim et al. 1991; Masoud 2013), and vector

field histogram (Borenstein et al. 1991).

17

Another category includes sampling-based algorithm, which described in more detail in

separate sections. In the next paragraphs, we have listed the basic idea of some algorithm,

which is widely used in motion planning problems.

2.3.1 Bugs algorithms

Bug algorithms are used for local path planning with minimum sensor and computation

requirements. They assume the robot as a point operates on a plane with ranging sensors

(Choset, Howie et al. 2005, chap. 2; Kamon et al. 1998; Lumelsky et al. 1986). May Bug-

like improvements were introduced later. In (Buniyamin et al. 2011; Ng et al. 2007) the

authors reviewed many different variations. In the next section, we shortly explain the

principle for the basic bug algorithm.

The Bug1 algorithm (Lumelsky et al. 1986) exhibits two behaviors: “motion-to-goal”

and “boundary-following”. During “motion-to-goal,” the robot moves along the line

toward the goal until it encounters either the goal or an obstacle. If the robot encounters an

obstacle, the robot then circumnavigates the obstacle until it returns to the first hit point.

Then, it determines the closest point to the goal on the perimeter of the obstacle and

traverses to this point. This point is called the leave point. From that point the robot heads

straight toward the goal again, i.e., it re-invokes the “motion-to-goal” behavior.

a

b

Figure 2-1: Principle of Bug1 algorithm; a: the algorithm finds a path to goal, b: no path to goal exist.

Source (Lumelsky et al. 1986)

In the case, when the line, that connects the leave point to the goal one, intersects with

the current obstacle, the algorithm fails and there is no path to the goal location. This case

is shown in Figure 2-1-b. Otherwise, the procedure is repeated until the goal is reached, as

shown in Figure 2-1-a.

Bug2 is similar to Bug1 (Lumelsky et al. 1986); it has also two behaviors: motion-to-

goal and boundary-following. During motion-to-goal, the robot moves toward the goal as

in Bug1. But in Bug2 the line which connects the initial point to the goal point remains

fixed as shown in Figure 2-2-a. The “boundary-following” behavior is invoked when the

robot encounters an obstacle. This behavior is different from Bug1, where in Bug2 the

robot circumnavigates the obstacle until it reaches a new point on the fixed line. If this new

18

point is closer to the goal than the first intersection point, then, the robot proceeds toward

the goal, Figure 2-2-a. The algorithm repeats this process if it encounters other obstacles.

However, when the robot re-encounters the original departure point, in this case there is no

path to the goal, as shown in Figure 2-2-b.

a

b

Figure 2-2 Principle of Bug2 algorithm; a: the algorithm find a path to goal, b: no path to goal exist.

Source: (Lumelsky et al. 1986)

One limitation of the Bug algorithm is that the robot's behavior depends only on its most

recent sensor readings. This can lead to problems where the robot's instantaneous sensor

readings do not provide enough information for robust obstacle avoidance. This limitation

is solved later on by the Vector field histogram (VFH) techniques by creating a local map

of the environment around the robot.

2.3.2 Vector field histogram (VFH)

VFH is a real time motion planner. It is proposed in (Borenstein et al. 1991) as a local

planner. The VFH utilizes a statistical representation of the robot's environment through a

histogram grid. Therefore, it places a great emphasis on dealing with uncertainty from

sensors and modeling the errors.

The VFH was developed to be computationally efficient, robust, and insensitive to

misreading. VFH algorithm is fast and reliable, especially when traversing through densely

populated obstacle courses.

The histogram grids in VFH represent the obstacles as shown in Figure 2-3, where an

active window is used to update the cells’ value on the grid. When an obstacle is detected

in a cell by sensors, the algorithm increases the certainty value of this cell. This action is

repeated while robot movements. This representation is well suited for inaccurate sensor

data, and gives the potential for the fusion of multiple sensor readings.

The VFH algorithm contains three major behaviors: first, it constructs two-dimensional

Cartesian histogram grid, as shown in Figure 2-3-b. This grid is updated continuously in

real-time with range data sampled by on-board range sensors. A specific area around the

robot, the active window, is chosen based on histogram grid, see Figure 2-4-a. The

19

dimension of this area is set to fit the range sensors. Every cell in active window has a

value representing the certainty of obstacle existence. The active window is translated

when the robot translates.

a

b

Figure 2-3: VFH space representation, a: is the actual space. b: the space representation by obstacle

certainty value. Source: (Borenstein et al. 1991)

The second behavior constructs one-dimensional polar histogram by reducing the

Cartesian histogram around the momentary location of the robot, as shown in Figure 2-4-b.

This operation is done using (n) angular sectors. The sectors start from robot location, and

the value of each sector is calculated by summing up the cell values in that sector. Figure

2-5 shows the sectors and certainty representation for obstacles.

a

b

Figure 2-4: a: Representation of active window and polar sectors, b: one-dimension polar histogram.

Source: (Borenstein et al. 1991)

The third behavior chooses the candidate valleys, which are consecutive sectors on

polar histogram below a specified threshold; a smoothed polar histogram typically has

peaks, and valleys. The peaks represent sectors, which have high polar obstacle density,

while the valleys represent sectors that have low polar obstacle density. Any valley has a

polar obstacle-density below a certain threshold, is called a candidate valley.

20

Figure 2-5: Histogram grid and certainty value representation in VFH. Source: (Johann Borenstein

1990)

Once the direction of the selected candidate is determined, the orientation of the robot is

steered to match this direction. Sometime a cost function is applied; it takes into account

the target direction, wheel orientation, and previous direction, then steer the robot based on

the value of this function.

The main limitations of VFH are the navigation through narrow areas, the local

minimum, and the number of variables that need an optimization for every workspace. In

addition, this algorithm is not complete which means, it cannot guarantee to reach the goal.

2.3.3 Roadmap algorithms

The idea behind the roadmap approaches is to build a map of static workspace and use it

for repeated tasks. It would be more efficient to construct a data structure once and reuse it

to plan subsequent paths. This data structure is often called a roadmap. The roadmap

approaches try to construct a set of one-dimensional curves, which connect two nodes from

the free areas in the workspace, and reuse them for further path planning query (Choset,

Howie et al. 2005).

The visibility graph is an example of roadmap. It tries to connect the initial and the goal

locations with nodes from the map. Then, it searches for a continuous path between these

locations, Figure 2-6 shows a visibility graph, the shaded areas represent obstacles, and the

solid lines are roadmap curves set (Lulu et al. 2005).

The visibility maps method is applied in workspaces that have polygonal obstacles;

however, other obstacles shapes can be approximated. The map’s nodes are vertices of the

polygons, while the edges are connections between two nodes which are located within

line of sight (de Berg et al. 2008, chap. 15). The main shortcomings of visibility maps are

1- the visibility graph works well in two dimensions, but not three or more. 2- The Shortest

paths pass through vertices, which consider unsecure in reality because it passes very near

to obstacles.

21

Figure 2-6: Visibility graph – Roadmap. Source: (de Berg et al. 2008)

Another example of the roadmap algorithms is the Voronoi diagram. This method tries

to divide the workspace into sub-regions. Each edge of the diagram is constructed using

equidistant points from the nearest two points on the obstacles boundaries. Figure 2-7

shows methods to generate the edges of the Voronoi diagram.

In navigation case, the equidistant curves from at least two obstacles are created, and

then the path is generated. The algorithm tries to connect the initial location and the goal

locations to the curves and then find a path along these curves.

a

b

c

Figure 2-7: Voronoi diagram generation. a: edge between two vertices, b: edge between two lines, c:

edge between vertex and line. Source: (LaValle 2006)

a

b

Figure 2-8: a: Voronoi diagram in points-like obstacles, b: disc robot and Voronoi diagram in line shape

obstacles. Source: (Aurenhammer et al. 2000)

Figure 2-8-a shows a Voronoi diagram in obstacles-like points, Figure 2-8-b shows a

disc-like robot and its path on Voronoi diagram; the robot start from s and finds the nearest

22

point s’ on Voronoi diagram then plan a path to t’ which is the nearest point to the target

location t.

The Voronoi methods are used in motion planning frequently. The advance of these

methods is to keep the robot far away from the obstacles (LaValle 2006; Aurenhammer

1991; Aurenhammer et al. 2000; Garrido et al. 2011; Choset et al. 2000; Fabbri et al. 2002;

Shkolnik et al. 2009; Sakahara et al. 2008; Masehian et al. 2010; de Berg et al. 2008,

chap. 7).

2.3.4 Cell decompositions (CD)

The basic idea behind CD is to decompose the workspace into manageable regions and

determine the free ones. The free regions or what-called free cells represent the areas not

occupied by the obstacles. The algorithm builds a graph of adjacency for the adjacent free

cells and convert the motion planning problem to a graph search problem (LaValle 2006,

chap. 6; Choset, Howie et al. 2005, chap. 6; Seda 2007). The cell decomposition

approaches and its developments are discussed in more detail in a separate chapter.

2.3.5 Grid-based search

Using cell decomposition techniques or others techniques, the workspace can be

represented as a grid of free and occupied areas. This representation can be easily

transferred to a graph representation.

Some algorithms, known as grid-based search algorithm used the graph for path finding

problems, for example A*, breadth-first search, Dijkstra’s algorithm, and greedy best-first

search, etc.

The breadth-first search starts from one node and explores the neighbor nodes first, and

then it moves to the next level of neighbors if they not explored yet. The Dijkstra’s

algorithm uses the same principle, but the algorithm revisits the neighbors if they have

better path to the start point. These two algorithms do not take into account the cost to the

goal, they explore the graph until they find the goal.

On the second hand, the greedy best-first search algorithm starts exploring the nodes

that have the smallest cost to the goal. This principle makes the algorithm faster than the

previous algorithms. A* combines the Dijkstra’s algorithm and the greedy best first search

to build the path (Amit Patel 2014). It uses the actual cost in addition to the estimated cost

to the goal, and explores the most promising nodes. The estimated cost to the goal is

calculated using a heuristic function that is vary depend on the problem.

23

Figure 2-9 and Figure 2-10, show visualization for these algorithms using online

library1, is shown in, where generated paths, explored area, and in-queue regions are

presented as colored boxes.

(a) (b)

Figure 2-9: (a) A* algorithm, (b) best-first search algorithm, the dark boxes represent the obstacles, the

blue boxes represent explored nodes, the green boxes represent in-queue nodes

(a) (b)

Figure 2-10: (a) Dijkstra’s algorithm, (b) breadth-first search, the dark boxes represent the obstacles, the

blue boxes represent explored nodes, the green boxes represent in-queue nodes

2.3.6 Potential fields

Potential field is a local planner method. It is introduced in (Khatib 1985). This method

involves modeling the robot as a particle moving under the influence of potential fields.

These fields are determined by set of obstacles and the target destination (Arambula Cosío

et al. 2004; Hani Alsafadi 2007; Masoud 2013; Mbede et al. 2000; McFetridge et al. 1998;

Pêtrès et al. 2012; Sfeir et al. 2011; Zhang et al. 2012). The potential field algorithm is

efficient and could be applied in real-time. Since, the motion of a robot, at any moment, is

1 http://qiao.github.io/PathFinding.js/visual/

24

determined by the location and the potential fields. It is also a powerful method because it

easily extensible, for the reason that, the potential fields are additive, a new obstacle can be

added to the workspace by summing up the influence field of this obstacle to the old fields.

This method has a major drawback, which is the local minimum. Because the potential

field approach is a local rather than a global method. This problem is overcame by

coupling the potential field method with other techniques to escape the local minima

(Rosell et al. 2005; Hwang et al. 1992), or constructing potential field functions, which do

not contain a local minimum (Siddhartha Srinivasa 2013). The harmonic potential fields is

used also to escape the local minima and it has good results (Kim et al. 1991; Masoud

2013).

2.3.7 Sampling-based algorithms

The main drawback of the former methods is the low efficiency in high dimensional

problems, which makes the search space extremely large. Sampling based algorithms

appeared to confront this problem. The general approach is to approximate the space

instead of dealing with it exactly (Lin 2006).

In recent years, a number of sampling-based algorithms for motion planning have been

introduced. They have had remarkable success in solving challenging motion planning

problems. The fundamental distinction between sampling-based motion planners and

earlier planners is the representation of obstacles in the workspace. The earlier planners

construct explicit representations of obstacles, which has several disadvantages; e.g. time

complexity and PSPACE-hardness (Lindemann et al. 2003).

Sampling-based motion planning has emerged as a way to avoid explicit constructions

of obstacles. The sampling-based motion planner restricts the modeling of configuration

space. This restriction eliminates many of the problems encountered in the methods that

constructed an explicit representation of obstacles. Since there is no explicit model of

obstacles, it is not needed to characterize all possible conditions for particular classes of

problems.

Figure 2-11: The sampling-based philosophy

Sampling-based motion planners can be applied to a broad class of motion planning

problems because they treat the collision detection function as a separate module. For these

reasons, these kinds of algorithms often seem strikingly simple in comparison to

combinatorial motion planners. The simplicity and generality of these planners are the

Geometric

Models

Collision

Detection

Sampling-based algorithm

Sampling Searching

25

significant factor contributing to their success and applicability to high-DOF (Lindemann

et al. 2003). Figure 2-11 shows the principle of sampling-based approaches, which

consider collision detection as a “black box,” and separates the algorithms from geometric

and kinematic models.

Randomized sampling-based algorithms are a powerful and practically important class

of motion planning methods, i.e. randomized path planner (RPP), probabilistic roadmap

planners (PRMs), Ariadne’s Clew method, and rapidly exploring random Trees (RRTs),

etc. Their appeal lies in their ability to address large and complex problems in an

incremental fashion (LaValle et al. 2004). However, the price of this incremental approach

is a reduction in completeness. Most computational geometry algorithms are

algorithmically complete, meaning that they are guaranteed to find a solution to a problem

if one exists, or report that none is exist. They are also guaranteed to terminate in finite

time. Randomized methods sacrifice algorithmic completeness for weaker probabilistic

completeness (Cheng et al. 2002). That is means if a solution is exist, the probability to

find this solution is approaches to one, as the number of iterations approaches infinity

(Esposito 2013).

In next sections some of randomize samples-based algorithms have been briefly

reviewed.

The randomized path planner (RPP) has been proposed in (Barraquand et al. 1991,

1990), it operates as follows: first, the planner defines several potential fields over a grid

imposed on the workspace, where the potential value is defined by non-negative, real-

valued function. Second, the planner descends the gradient of the potential field, until a

local minimum is reached. If the minimum is the global minimum, the goal state has been

attained, otherwise, the planner executes a series of random walks with the aim of escaping

the local minimum. After this, the planner again descends the potential field gradient,

continuing this process until the goal state is reached or the user-time-limit elapsed. This

latter condition is necessary because unlike combinatorial planners, sampling-based

planners are typically unable to recognize that a problem has no solution; in such a

situation, they will never terminate.

The performance of this planner is affected by the good construction of potential fields

and a good arbitration function, which decide when to execute a random movement.

Another random planner introduced in (Glavina 1990), it known as the ZZ-method. The

algorithm attempts to connect the initial and the goal locations using a straight local

planner. If this fails, then a new configuration is chosen as a sub-goal. The planner

attempts to connect the new sub-goal to the initial and goal configurations using the same

local planner. If this fails, new sub-goals are added and attempts are made to connect them

with previously existing sub-goals, as well as the initial and goal configurations. Edges

between sub-goals are checked for collisions. A primitive collision detection method has

been used which prevents this algorithm from applying in challenging high-DOF problems.

26

This was remedied in some extensions (Baginski 1996). The ZZ-method contains many

elements, which have become common in algorithms that are more recent.

Ariadne’s Clew is a single-query algorithm (Mazer et al. 1998); it is designed to find

paths in high-dimensional continuous spaces. It is applied to robots with many degrees of

freedom in static, as well as dynamic environments. The Ariadne's clew algorithm

comprises two sub-algorithms, called SEARCH and EXPLORE, applied in an interleaved

manner. EXPLORE builds a representation of the accessible space while SEARCH looks

for the target; It grows a tree from the initial configuration toward the goal configuration.

At each step, it searches for a new “landmark,” reachable from a current landmark by a

Manhattan path, which is maximum distant from a point to a set of all landmarks. They use

genetic algorithms to search for a solution to this optimization problem. Once a new

landmark has been added to the tree, the planner attempts to connect this new landmark to

the goal.

Probabilistic Roadmap method (PRM) is one of widely used methods in motion

planning. It introduced in (Kavraki et al. 1996) as a planner for holonomic systems. This

method proceeds in two phases, a learning phase, and a query phase. In the learning phase,

Figure 2-12, a probabilistic roadmap is constructed and stored as a graph. The graph’s

nodes correspond to collision-free configurations, and the graph’s edges correspond to

feasible paths between these configurations. These paths are computed using a simple and

fast local planner. In the query phase, any given start and goal configurations of the robot

are connected to two nodes of the roadmap using the local planner. The roadmap, then

searches for a path joining these two nodes using graph searching methods. This approach

is general and easy to implement. It can be applied to virtually any type of holonomic

robot.

Figure 2-12 : PRM, learning phase, where the planner tries to connect a random sample to nearby

vertices in the roadmap. Source: (LaValle 2006)

Rapidly-Exploring Random Tree (RRT) is another very wide used planner in motion

planning problems. It is originally proposed for non-holonomic system with dynamic

constraint. The RRT algorithm is probabilistic algorithm. It is introduced in (Lavalle 1998)

as a planning algorithm to explore quickly high-dimensional spaces. It can handle

27

holonomic movements and nonholonomic constraints by randomly building a space-filling

tree, see Figure 2-13.

The tree is constructed incrementally from samples drawn randomly from the searching

space. It is designed for efficient searching in nonconvex obstacle environments. This

algorithm has the ability to work under algebraic and differential constraints, and that due

to its incremental behavior. The key idea of the RRT is to bias the exploration toward

unexplored portions of the space by sampling points from them and “pulling” the search

tree toward this regions. The RRT method and related research and developments have

been reviewed in more detail in a separate section.

Figure 2-13: Rapidly exploring random tree

The high demand for more efficient and general planners comes out with new methods

based on adaptive sampling-based planners. There is no method outperforms all others for

all kinds of problems. Rather, each technique has different strengths and weaknesses,

which make it best suited for certain types of problems. Some research utilize this idea by

building a library of planning methods and use the suitable one based on the workspace

characteristics.

For example, in (Morales et al. 2005) the authors proposed an automated framework for

feature-sensitive motion planning. Their framework creates a library of roadmap methods.

Then, a machine learning approach is used to characterize and partition the C-space into

regions, which are well suited to one method of roadmap in the library. After the best-

suited method is applied in each region, the resulting roadmaps of every region are

combined to form the full roadmap for the entire planning space.

Another strategy, based on unsupervised-learning methods, is proposed to adapt the

sampler (Tapia et al. 2009). This strategy models the topology of the problem in a

reasonable and efficient manner, and adapts the sampler depending on characteristics of

28

the problem. The advantage of their method, that, it can be expanded to accept new

samplers.

An adaptive RRTs method is proposed to overcome the limitations of RRTs when

exploring heterogeneous environments (Denny et al. 2013). The adaptive RRT uses two

levels of algorithms to expand the tree. At the first level, groups of expansion methods are

expanded, according to the visibility of the node. Second, the cost-sensitive learning

approach is used to select a sampler. In addition, the authors proposed a visibility for RRT

nodes, which can be computed in an online manner. It is used by adaptive RRT to select an

appropriate expansion method.

In the next section, some sampling methods are reviewed. The sampling methodologies

have a significant effect on the sampling-based algorithm.

2.3.8 Summary

Based on the state of the art review and our opinion a concise table, Table 2-1, shows the

summary of the advantages and disadvantages of some motion-planning algorithm.

Table 2-1: Comparison of motion planning algorithms

Algorithm Optimal Complete advantages disadvantages

BUG No Yes Super-fast, real-time Used in 2D, response

to sensor noise.

VFH No No Fast, real-time Navigation through

narrow areas, local

minimum, 2D.

Visibility

graph

Yes Yes Repeatable queries The speed depends on

dimension and number

of obstacles, path close

to obstacles, (2D-3D).

CD Yes Yes Fast Used for low

dimension problems

(2D-3D).

Grid-

based

Yes resolution Fast in 2D Very slow in high

dimension, memory

consuming.

Potential

field

No No Super-fast(2D) Local minimum, (2D-

3D)

PRM No Probabilistically Used in high

dimension (2-100’s)

Slow in high

dimension.

29

RRT No Probabilistically Used in high

dimension (2-100’s)

Medium to fast speed

in high dimension

2.4 Sampling strategies

Sampling based planners use sampling strategies to discretize continuous spaces. The

sampling methods have a big impact on the efficiency, and the completeness of the

planners. In general, sample based planners use uniform or non-uniform distribution.

Uniform distribution samplers choose samples randomly based on a statistically

uniform distribution, e.g. axes based grid, pseudorandom number, Poisson disc, jittered

grid, Halton sequence, Hammersley sequence, Lattices, Sukharev, and others (LaValle et

al. 2004; Supersampling 2015). Figure 2-14 shows examples of the generated samples

based on some sampling methods. The Voronoi diagram is plotted to increase the visual

awareness.

Pseudorandom (a) Halton (b)

Sukharev (c)

Hammersley (d) Lattice (e) Jitter grid (f)

Figure 2-14: Uniform distributions, and Voronoi region for its samples. Source: (a-e) (LaValle et al.

2004)

Examples of uniform methods are the regular structures, and the infinite sequence. The

regular structures, e.g. grids have an implicit neighborhood structure; some of these grids

have hierarchical or multi-resolution representations, which is preferred feature in motion

planning. However, regular structures have a drawback, which is, the necessary numbers of

samples to solve the problem is not determined in prior. That is because they are point sets,

not point sequences; which mean point sets of a fixed size.

30

The second type of uniform methods is infinite sequence such as Halton points and

uniform pseud-random samples generator. It constructs infinite sequences based on regular

structures. This approach enhances the resolution incrementally. Sequences of this type can

be considered as point sets periodically, they gradually fill in the gaps between one

resolution level and the next one. The generated sequences have incremental quality, which

means, after every sample the sequence should be as uniform as possible.

The second category of the sampling strategies uses non-uniform sampling methods.

The motivation for this type is to have a higher density in certain regions. The more

sampling in important regions helps the planner to be more efficient, (Lindemann et al.

2003; LaValle et al. 2004; Liu et al. 2013; Rodriguez et al. 2006). For example, generating

samples around narrow corridors (Lin 2006); sampling about the boundary of obstacles

(Amato et al. 1998; Rodriguez et al. 2006); medial-axis sampling (Masehian et al. 2003), in

which samples are taken from the medial axis of free configuration space; and Gaussian

sampling, in which sampling is biased to be near the C-space obstacles (Lin 2006; Boor et

al. 1999). Figure 2-15 shows an ideal classification of importance for the regions of the

configuration space.

In general, there are two approaches to non-uniform sampling: the importance sampling

methods and the adaptive sampling approaches (LaValle et al. 2004). Importance sampling

methods are based on the prior evaluation and assumption about certain areas of C-space.

The major drawback of these methods appears when the information about C-space is

limited. The other category of non-uniform sampling is adaptive sampling approaches. In

these techniques, the sampling strategy is adapted based on the available information,

which gained from previous samples.

Figure 2-15: The ideal sample distribution, 1: the lowest density of samples in corners and hollows, 2:

lower density in free regions, 3: higher density in opening of narrow passage, 4: the highest density in

narrow passages.

An example of adaptive sampling is the visibility PRM (Bu et al. 2005; Nissoux et al.

1999). This algorithm adapts its sampler based on the visibility between the connected

31

regions of the roadmap. Another example is Z3, which shown in Figure 2-16. If a collision

is detected, then it updates the sample location, by translating the sample to free

configuration space (Baginski 1996).

In general the most problematic and important regions for sampling based algorithm are

the small and narrow ones which known in literatures as a narrow passage problem. Many

importance-sampling methods are developed to solve this problem. This problem is

discussed later on in a separate section.

a

b

c

Figure 2-16: Z3 method for adapting and translation the samples to the free configuration space. Source

(Baginski 1996)

An example of importance sampling methods is the medial axis sampling. It tries to

retract the samples onto the medial axis of the free workspace and force them to be as far

from the boundaries as possible (Masehian et al. 2003; Fabbri et al. 2002; LaValle 2006;

Smogavec et al. 2012; Wilmarth et al. 1999). Medial axis sampler gives a slightly higher

probability of picking samples from small free areas that is preferred feature in motion

planning. An example of a medial axis creation is shown in Figure 2-17-a. It uses a

geometric method to build the medial curve for rectangular shape.

On the other hand, the approximation methods are usually used in implicit

representation of the free configuration-space. Figure 2-17-b,c shows the medial axis

approximation curve. The principle of approximation methods is to generate a

configuration randomly (valid or invalid), then it is pushed towards the medial axis of the

free space.

a

b

c

Figure 2-17: Medial axis and its approximation, a: medial axis methods generated using geometric

cycles, b-c: approximation of Medial axis. Source: (Fabbri et al. 2002; Masehian et al. 2003)

Another approach of importance sampling methods is the obstacle boundaries sampling.

Rather than waste samples in large areas of free configuration space, it focuses on the

32

obstacle boundary as important regions (LaValle 2006; Rodriguez et al. 2006; Denny et al.

2011; Yeh et al. 2012). For example OBPRM (Amato et al. 1998), It generates

configurations close to the obstacle surfaces, as shown in Figure 2-18-a. First, it finds a

configuration in obstacle configuration space. Second, it pushed that configuration out of

the obstacles. This pushing is implemented by creating a ray from this collided

configuration toward a randomly chosen free configuration. After that a bisection search is

performed, it is terminated when a free and near to boundary configuration is found. Figure

2-18-b shows the bisection for randomly chosen ray. The boundary points are retained as

nodes in the roadmap.

a

b

Figure 2-18: OBPRM: generating samples near obstacles boundaries. Source: a (Yeh et al. 2012), b

(Titas Bera et al. 2014)

The Gaussian sampling strategy is another method similar to sampling on obstacle

boundaries. The goal of this method is to obtain points near to obstacle configuration space

by using a Gaussian distribution. It biases the samples to be closer to free configuration

space (Lin 2006; Boor et al. 1999). Figure 2-19 shows samples generated by Gaussian

method.

Figure 2-19: The samples generated by the Gaussian sampler. Source: (Hsu et al. 2003)

The principle of this approach is to choose a free configuration randomly. This free

sample is treated as the mean (µ) of a Gaussian distribution, and then it is generated

another sample with a variance specified by the user. If one configuration in free space and

the other is in obstacle space, then the free one is saved as a milestone, otherwise both

33

configurations are discarded. Gaussian sampling is not efficient, because it is not easy to

get nodes in different spaces, and many attempts are required to generate samples. In

addition, the variance optimization is important, where, if the variance is too small, the

configurations will be too close to the obstacles, in the opposite, if the variance is large, the

configurations will be far away from the obstacles.

2.5 Narrow Passages

Narrow passage problem is a common problem for probabilistic planning algorithms. It

occurs when a uniform distribution is used, due to the small volumes of narrow passages

areas. Since, the small volume reduces the sampling probability. The uniform distribution

does not work well when the dispersion of the samples is higher than the narrow passage

volumes. The problem has a bigger impact on RRT planners than in the other methods. In

RRT case, the algorithm throws away the valuable sample if the active tree could not

connect with it. While in PRM planner case, the algorithm saves the rare and valuable

samples, which fall inside a narrow passage. When the number of samples and graph

connectivity are increased, these samples soon will be connected to the PRM graph.

Many researches focus on narrow areas identification in order to enhance the efficiency

of sample-based planners in narrow workspaces. They try to increase the samplers’ ability

to take samples from these important areas. In the next paragraphs, some of these

approaches are discussed.

The Gaussian Sampler locates points in the neighbor of obstacles surface. This helps to

obtain substantial points in narrow space, based on the idea that the narrow passage exists

between obstacles. Generally, this method improves the efficiency of planners (Boor et al.

1999; Lin 2006). But is still has some difficulties to plan a path through narrow passage,

where many points near the obstacle boundaries lie far away from narrow passages. Figure

2-20-a, shows this limitation.

(a)

(b)

Figure 2-20: (a) The Gaussian sampler, vs (b) the randomized bridge builder. Source: (Sun et al. 2005)

34

Another non-uniform sampling method has been proposed in (Hsu et al. 2003), to

increase samples in narrow areas. The Bridge-Test method or randomized bridge builder

(RBB) assumes that the narrow areas appear between obstacles; therefore, it randomly

takes two configurations in obstacle space and tests the middle points between them. If a

middle point is located in the free space, the algorithm keeps it. Figure 2-21 shows the

principle of this method. This process attempts to bridge the gap and generate

configurations in a narrow passage. After that, the algorithm takes these middle points as

milestones to build PRM. Most of milestones by this method distribute within the narrow

space, as shown in Figure 2-20-b. Nevertheless, there is still recognized present of these

samples lying in the corners and hollows of the obstacles (Lin 2006; Sun et al. 2005;

Jiandong et al. 2011). In addition, this method requires a long time to cover the narrow

areas. It may fail many times before successfully bridging a gap. Because it needs, a

sequence of three nodes such that the endpoints are in obstacle space and the midpoint is in

free space.

Figure 2-21: Bridge-test, the points that lie in narrow passage can pass the bridge test. Source: (Hsu et

al. 2003)

Later on, a hybrid sampling strategy using RBB and uniform Sampler with a certain

ratio is presented in (Sun et al. 2005) to spread some samples in free large regions. The

bridge test and uniform sampling complement each other. Bridge test reduces samples

density in unimportant parts of a configuration space, and increased sample density in

narrow passages, While uniform sampler take sample form large free space. The two

sampling strategies are combined to construct the hybrid sampling strategy spread samples

in important regions.

In similar principle, a hybrid sampling strategy, which uses uniform sampler and

randomized star builder (RSB), is presented in (Jiandong et al. 2011). The RSB is used to

identify narrow passages in the workspace and to increase the samples density in these

areas.

The Random star builder (RSB) is an improved version of RBB. It depends on more

than two points lie in obstacles to build the bridge. It is designed to boost the sample

density in narrow passage regions, while avoiding sampling milestones in blind corners

and dead ends of obstacles, Figure 2-22 shows RSB in 2D workspace.

35

Figure 2-22: Randomized star builder in two-dimensional environment. Source: (Li et al. 2012)

Improved bridge test algorithm was employed in (Wang et al. 2010) to identify the

important milestones in narrow passages. The algorithm establishes multiple trees from

these samples to explore the sub-regions, which are difficult to reach. The probabilities of

selecting a tree for expansion are updated on-line by learning algorithm based on the

historic results of the exploration.

Quad decomposition approximation is used in (van den Berg 2005) to find an important

area in the workspace, each cell is given a label and weight, depending on the size and its

neighbors’ size. The weight reflects the sampling probability in that cell.

The adaptive watershed algorithm is used to distinguish between the cells in narrow

passages and the cells near a boundary in an open area. The watershed is originally a

method for image segmentation from the image-processing field. It separates the open

regions from each other by watersheds, see Figure 2-23-a,b. The watershed regions in their

work represent the narrow passages.

a

b

c

Figure 2-23: Identify narrow passage using cell decomposition and watershed algorithm, a: narrow

passage identified by adaptive watershed, b: watershed algorithm the dark area represents a free area in

the sense, c: grow watershed algorithm enhance narrow passage representation. Source: (van den Berg

2005)

For a better representation of the narrow passage in the corridor and long narrow area,

the grow watershed algorithm is presented to grow a watershed to cover the narrow area, as

shown in Figure 2-23-c.

36

Triple-RRT algorithm is proposed in (Zhong et al. 2012). It uses a random star builder

(RSB) to identify the configuration in the narrow passage, and then expands RRT tree.

This method improves the local sampling density in the narrow passage. The triple-RRTs

approach employs two trees as bi-directional expansion, one tree from the initial position

and the other from the goal position, and third one is grown in the narrow passage. The

three trees have the same expansion chance, which ensures that this method will find a

solution quickly between start and goal location, no matter if the path should pass narrow

passage or not.

Small-step retraction method presented in (Saha et al. 2005) to help PRM planners find

paths through narrow passages, they suggest to fattening the robot’s free space by

minimizing the shapes of the obstacles. Then build a PRM and repair colliding portions of

this roadmap by retracting them out of collision.

Toggle PRM methodology is introduced in (Denny et al. 2011). It simultaneously builds

a graph structure for both free and obstacle spaces. These graphs use the information about

collision to generate samples, which are used later to generate other samples within the

narrow passage. Figure 2-24 shows the principle of this technique. If a sample s chosen

randomly from free space, it is added to free graph’s node. The PRM tries to connect this

free sample to the nearest nodes in the graph. If a collision with obstacles happened during

this connection, the collision points are stored as nodes in the obstacle graph. Later on, the

graphs are toggled, and PRM tries to connect the nearest obstacle graph’s nodes to these

new collision points (x1, x2 in Figure 2-24). During this connection, another point could be

generated in the free area because of collision with free space, and repeatedly, this point

will generate other samples and so on.

Figure 2-24: Toggle PRM principle. Source: (Denny et al. 2011)

Importance sampling method is introduced in (Rosell et al. 2011). It uses principal

component analysis (PCA) to focalize the region where to sample in order to increase the

probability of finding collision-free configurations. The proposal is illustrated in 2D

37

configuration space with a narrow passage as shown in Figure 2-25. The PCA is a

statistical technique used to process a set of vectorial samples. It analyses a samples set and

returns an hyper-box centered at the mean value of these samples, and the length of each

side equal to two times of the data deviation in the corresponding axis. In each iteration the

algorithm, chooses a number of samples randomly form the workspace, and identifies the

free ones, in addition, it chooses number of samples form hyper-box, and applies the PCA

to the new samples set to find the free samples trend.

Figure 2-25: PCA sampling procedure. Source: (Rosell et al. 2011)

In the next chapter, the cell-decomposition is reviewed and we introduce our

contributions based on this approach.

39

3 CELL DECOMPOSITION

Cell decomposition algorithms (CD) extracts the obstacles and the free regions, and build a

graph of adjacency for the free ones (LaValle 2006, chap. 6; Milos Seda 2007). The idea of

dividing the space into manageable sections is presented in many researches. In general,

the cell decomposition algorithms are classified into two categories; the exact cell

decomposition methods and the approximation methods (Latombe 1991).

The first category uses geometric algorithms to determine the free areas and build free

cells explicitly (Brooks et al. 1985; Schwartz et al. 1983) . The union of all generated cells

is exactly equal to the free space. However, finding exact free cells is not an easy task,

especially in higher dimension spaces, that leads to the second category, which uses the

approximation techniques to divide the workspace, e.g. quad-tree, octree division, and

voxel grid, etc., (Sleumer et al. 1999; de Berg et al. 2008).

In motion planning applications, The CD is utilized by dividing the free robot's

workspace into smaller regions called cells. Then it builds a connectivity graph according

to the adjacency relationships between the free cells. The graph's nodes represent the cells,

while the graph's edges represent the adjacency relations between these cells. From this

connectivity graph, a continuous path can be found by following the adjacent free cells.

(a) (b)

Figure 3-1: Trapezoidal cell decomposition principle. a: The sweep line technique. b: Trapezoidal cell

decomposition algorithm results, the bold-red line represents the sweeping line, v represent the obstacles

vertices, e represents the obstacles edges, p represent the intersecting points.

3.1 Exact cell decomposition

An example of exact cell decomposition is the trapezoidal decomposition method or

vertical cell decomposition. It decomposes the free space into trapezoidal and triangular

cells. This method draws parallel vertical segments from each polygon's vertex in the

workspace to the exterior boundary of the workspace. The regions, which are surrounded

v7 e9
v8

v3

v5

v4

v6

v9

e10

e11

e8
e7

e5

e6

e2

e4

e1

e3

v2

v1 v10

v11
p1

p2

p3

p4

40

by these segments and the boundaries of obstacles, construct the cells. These cells form the

nodes of connectivity graph. The adjacent regions in the workspace are linked together by

the graph’s edges in the connectivity graph (Abbadi, Matousek 2014; Abbadi, Matousek, et

al. 2014). The path in this graph corresponds to the sequence of striped free cells. Figure

3-1, shows the principle of this method.

To model this process in 2D workspace, the workspace X is divided into a free space

Xfree, and an obstacle space Xobst.

A set of all vertices (V) are ordered based on the x-axis. It contains the obstacles

vertices in addition to the workspace boundaries vertices. Obstacles boundaries (segments)

and the outer workspace contour are grouped in obstacle segment set E.

V= {v1,v2,…, vi, …} → R2 : vi(x) ≤ vi+1(x), i ∈ N+

E= {e1,e2,…,ei,…} → V2 : , i ∈ N+ . Where vi represents a vertex has the index i in the

points set. ei represents a segment has an index i in the segments set.

Algorithm: Trapezoidal cell decomposition

Input: V Vertices set of obstacles and workspace.

 E Edges set of obstacles and workspace.

 Xobst Obstacles workspace.

output:CD Adjacency graph

1. Pvisited = ɸ

2. V = sortX(V)

3. FOREACH v ∈ V BEGIN
4. Pintersects = VerticalIntersections(v , E)

5. #find vertices on the same obstacle edges.

6. Vneighbors = onSameObstEdge(Pvisited, Pintersects)

7. cells = constructCells(Vneighbors, Pintersects)

8. IF (cells ∉ Xobst) BEGIN
9. CD.addNode(cells)

10. CD.findAdjacency(cells)
11. END
12. Pvisited.remove(Vneighbors)
13. Pvisited.add(Pintersects)
14. END

Figure 3-2: Trapezoidal cell decomposition algorithm

The trapezoidal cell decomposition algorithm is shown in Figure 3-2, where Pvisited is a

set of all intersection points and vertices, which are visited before. Pintersect is a set of

intersection points with the current sweeping line that is established from the vertex v.

Figure 3-1-a, shows the sweep line and the intersection point, which is denoted as pi.

Vneighbor variable is a set of vertices in Pvisited, which fall on the same segment e with one

element of the Pintersect. The Cells variable represents the new generated cells, and CD is the

output graph, Figure 3-1-b shows the generated regions.

For more refinement, a post-process function is executed to merge the adjacent cells,

which has edges parallel to each other. Figure 3-3 shows the result of this post-process

function and the corresponding graph.

41

a b

Figure 3-3: Trapezoidal cell decomposition. a: Post-process to merge cells, b: the generated adjacency

graph

The algorithm's output is a graph, which represents free areas. This method converts the

problem of navigation and path planning into a graph search problem. For example, when a

plan is required between two positions, the cells that contain these locations are

determined, and then a graph search is executed in order to find a path.

The transformation of motion planning problems in spatial environments into a graph

search problem gives many advantages. An efficient methods can be used to find a path,

e.g. A*, Dijkstra, etc. The spatial information about the cells is exploited to optimize the

generated path, e.g. the shortest path can be found based on the distance between the cells.

Figure 3-4-a, shows the principle of cell decomposition planner, where the line

represents the path through the free cells. Figure 3-4-b shows the graph of adjacency and

the edges’ weight. The shaded nodes correspond to the path’s nodes from the start cell to

the goal cell. In this example, the weighs correspond to the distance between cells’ central

and barriers’ midpoints between the cells.

When a planning query is established, the planner finds the start and the goal cells, then

it searches for a path between these two cells, if a path is found, the planner connects the

start and the goal locations through the free cells on that path.

Another example of exact cell decomposition is the decomposition based on obstacles

edges. This method considers each edge like a line. Then, it finds the intersections with

other edges or cells, and builds the free cells in the free space based on these intersections

(Sleumer et al. 1999).

 1

 2

 3 4

 5

 6

 7

 8

 9

10

 1

 2

 3

 4

 5

 6 7

 8

 9

10

42

a b

Figure 3-4: Path planning using trapezoidal cell decomposition. a: The generated vertical free cells. b:

The graph of adjacency which corresponding to paths between cells

3.2 Cell decomposition approximation

Due to geometric calculations, the high computational demand of previous approaches, and

the hard to implement for high dimension workspaces, the approximation methods to the

CD were proposed. The most forward method for approximation is the voxel grid, as

shown in Figure 3-5-a. It excludes the cells on the obstacle areas and builds a graph of

adjacency for the cells in the free area. This method is efficient for low dimensional

spaces. However, it generates a large number of cells. This method is resolution complete;

which means the algorithm completeness depends on the grid’s fine (Sleumer et al. 1999;

de Berg et al. 2008).

Quad-tree decomposition is another approach for cell decomposition approximation.

This approach uses a recursive method to subdivide the cells until one of the following

conditions is satisfied. 1- Each cell lies completely either in a free space or in an obstacle

region. 2- or, an arbitrary limit of a resolution is reached.

Once a cell fulfills one of these criteria, it stops decomposing. After decomposition

steps, the free path is found by following the adjacent free cells (Katevas et al. 1998). This

method is used in 2D (de Berg et al. 2008, chap. 14). Figure 3-5-b, shows the generated

cells of this method. In a similar way, the Octree method approximates the decomposition

in 3D spaces (Choi et al. 2011).

The quad-tree and octree methods are resolution complete. They can work efficiently

for low dimensions workspaces, three or less (van den Berg 2005).

 1

 2

 3 4

 5

 6

 7

 8

 9

10

S

G

 4.388

 2.2338

 1.7774

 4.216

 2.5005

 2.7486
 6.248

 2.8875

 3.042

 6.7726

 2.7943

 1

 2

 3

 4

 5

 6
 7

 8

 9

10

43

a b

Figure 3-5: Cell decomposition approximation. a: Voxel approximation methods. b: Quad-tree

approximation methods

3.3 Contributions, Tests and Results

Our contributions using cell decomposition approximation are described in this section.

These methods are exploited to solve the problem of safe paths planning in stationary

workspace. In addition, they are used with minimum spanning tree to identify the

important regions in the workspace. The other work, which combined the exact cell

composition approaches with other motion planner, is described later in the next chapters.

This section is divided into two sub-chapters, each one present the problem formulation

and our methodology to solve it.

3.3.1 Safe path planning using cell decomposition approximation

In this work (Abbadi, Prenosil 2015a), The cell-decomposition approximation is used to

find a safe path in static workspace, for omnidirectional robot. The quad-tree

approximation algorithm divides the workspace into manageable free areas, and builds a

graph of adjacency between them.

New methods have been proposed to keep the robot far away from the obstacle

boundaries by a minimum safety-distance. They utilize the size of free cells to generate the

desire path, i.e. they give a lower cost to the graph’s connection between big free cells, and

a higher cost to the connections between the smaller cells. After that, the planner searches

for a path that has the lowest cost.

The shortest path is not our focus in this work, however a tradeoff between the shortest

path cost and the safe path cost is considered when choosing the weight values.

44

Proposed Methods

In this work, the path safety problem in static workspace is studied. The path is considered

as safe if 1- It passes through obstacles without colliding with them. 2- It navigates and

keeps a safety distance far from obstacles boundaries. 3- It follows the large open areas in

the workspace when it is possible.

We utilize the cell-decomposition approximation algorithm (ACD) to find an

approximation of the free areas, and exploit the resolution feature to satisfy the minimum

distance condition. The resolution of ACD corresponds to the smallest cell’s edge. We

proposed that the robot passes through the center of the cell when it executes the path;

based on that assumption the resolution is chosen to be (2 * safety distance).

Three versions have been proposed to plan a safe path. These methods are based on the

manipulating of the weights, which assign to the graph edges, in order to make the planner

choose the largest cells when translating toward the goal position.

The first approach uses equal weights for translating from one cell to another. The idea

behind this proposal is to minimize the total number of cells in the path, which in

consequence directs the planner to use bigger cells, when searching for a lower path cost.

The Second method introduces a penalty for translation between different cells size.

This penalty is added to the edge's weight, and it is disproportional to the cells size, which

means the weight of translating between the larger cells is smaller than the weight of

translating between the small cells, while the weight of translating between the same size

cells is kept fixed. This proposal guides the planner to do the translating in large cells when

it is possible and at the same time keeping some trade-off between making the translation

in large cells, and planning a path closer in length to the shortest path.

The last proposed method is very similar to the second approach in spite of it introduces

disproportional penalty not only with different cells size, but also with cells that have the

same size. The benefit of these methods is to push the path toward large cells when it is

possible by adding more penalties when translating between small cells, in addition to the

benefits of the second approach.

The proposed methods, lead the planners to use the large cells more than small cells for

planning a path, at the same time they keep the safe distance far from obstacles.

Result and Discussion

In the first proposed method, the weights of the graph’s edges are uniformed to the cost of

(1) unit, which corresponding to the cost of translating from one cell to another one,

regardless of the cells' size.

In the second proposed method, we associate to each cell of the free cells a level. This

level is disproportional to cell size. The level is used when manipulating the weights of

45

graph edges. The edges' weight between two cells is set to be equal to the biggest level

value between these cells, i.e. if cell1 has a level of (2), and cell2 is smaller and has the

level of (4), The edge's weight between them has the value of max(2,4) which is (4). The

translation between cells that have the same level is fixed to the weight of (1).

The weights in the third proposed method are calculated in the same way as in the

second method, but here the transition between same cells size is varied also based on

cell's level. For example, the translation's weight between the cells that have levels of (3)

will take the value of (3).

The Dijkstra’s algorithm is used as a graph search algorithm to find the path over the

graph. The Dijkstra’s algorithm finds the minimal cost of the path efficiently. The tests are

done in two workspaces using three values of safety distance {0.1, 0.3, and 0.75}. The

results are shown in Figure 3-6, Figure 3-7, and Figure 3-8, respectively.

a b

Figure 3-6: Safe paths planning, the safety distance is equal to (0.1), a, b: the testing workspaces. The

solid blue line represents the equal weights of translation method, the doted-red line represents the

disproportional penalty to translating between different cells size, and the dashed-green line represents

the disproportional penalty to the size of the cells method. S and G is the initial and the goal positions

We can infer from the results that the proposed methods generate a path that respects

the safety distance condition. The first method (the solid blue line) tries to minimize the

number of cells as shown in Figure 3-6-a, b. The path keeps the safety distance, but it does

not follow the large areas. The second method (the dotted red line) is better in this criteria;

it forces the planner to plan in the large cells. However, it follows the large cells, but not if

smaller cells are adjacent to each other; in that case the algorithm plan through these

adjacent cells. The last approaches solve this drawback (the dashed green line), and it plans

in large open regions when it is possible.

Figure 3-7-a, shows the unreachable path because of the safety distance. The same case

in Figure 3-8-a,b. That because the algorithm excludes the collided cells in obstacles,

S

G

S

G

46

which break the continuity of the graph’s edges. When a path searching is executed, the

search algorithm cannot find a route between the initial cell and the goal cell.

(a) (b)

Figure 3-7: Safe path planning, (a, b) are the testing workspaces. Safety distance is equal to (0.3), the

goal in (a) is unreachable. The first (-) and second(…) methods in b plan the same paths

(a) (b)

Figure 3-8: Safe path planning, (a, b) are the testing workspaces, the safety distance is equal to (0.75),

the goal is unreachable in both workspaces

Summary

In this work the ACD planner is used to find safe path for the robot; the quad-tree

approximation algorithm divides the workspace into manageable free areas, and builds a

graph of adjacency between them. Three approaches have been proposed to plan a safe

path. These methods manipulate the edges' weights in order to make the planners choose

the largest cells when translates toward the goal position. And at the same time keeps the

robot far from obstacles by a safety distance. The proposed methods show the ability to

plan the desire path.

G

S
S

G

G

S

S

G

47

3.3.2 Narrow passage identification using CD approximation and

minimum spanning tree

Narrow passage problem is a problematic issue facing sampling-based motion planners. In

this work (Abbadi, Matousek, et al. 2015), a new approach for narrow areas identification

is proposed. The quad-tree cell-decomposition approximation is used to divide the free

workspace into smaller cells, and build a graph of adjacency for them. The proposed

method follows the graph edges and finds a sequence of cells, which have the same size,

preceded and followed by a bigger cell size. The sequence, which has the pattern “bigger-

smaller-bigger” cells size, is more likely to be located in a narrow area. The minimum

spanning tree algorithm is used, to linearize adjacency graph. Many methods have been

proposed to manipulate the edges cost in the graph, in order to make the generated

spanning tree traverse through narrow passages in detectable ways. Five methods have

been proposed, some of them give bad results, and the others give better one in

simulations.

Proposed methods

Narrow passage problem faces most of sampling based approaches. The problem occurs

when a uniform distribution is used to take samples form the workspace, because the small

and narrow areas have low probability to get samples within their space.

We exploit the information about the cells size to find the narrow area. Our proposal

based on the idea of following the adjacent cells size. If the translation is done from a big

cell to others smaller ones, which have the same size, then followed by a translation to

another bigger cell, then this sequence of the small same-size cells is most likely to be a

narrow passage or important area from motion planning point of view. Figure 3-9 shows an

example, where the shaded cells represent the most important region in this workspace.

Figure 3-9: Example of the narrow passage identification (green-shaded boxes)

48

To implement the proposed method, a preprocessing step should be applied to the

adjacency graph. Since, the graph of adjacency has many loops and cycled connections

between the nodes, for that, a linearization of the graph should be done before the narrow

passage identification method is applied. Based on that, the minimum spanning tree (MST)

approach is used to build a new liner graph.

The MST tries to build a spanning tree that has the lowest cost, and contains all nodes

visited one time. This principle causes another problem, where the tree is planned in

unpredictable regions in the workspace based on the edges costs. In order to solve this

problem, the edges’ weight, which effect the spanning tree construction process, is updated

and adapted. The weights are manipulated, in order to give a low cost for edges that placed

within narrow and small areas, and at the same time, prevent the MST method of

constructing the tree structure near to the obstacles boundaries. Many ideas for weights

manipulation are tested to generate the desire spanning-tree. We propose and test five

methods. The first method uses the real distance between cells.

The second one uses the uniform cost for translating from one cell to another one. This

method based on the idea that, the generated tree should minimize the path cost by using

the minimal number of translations; in consequence, it uses the bigger cells when it is

possible.

The third proposed method, the bias toward different cells size, updates the edges’

weight in such a way that it makes the cost of translation between different cells’ size

lower than translation between cells that have the same size. This method makes the span

tree uses the smaller cells as leaves for the tree, while it uses the bigger cells as roots.

The fourth method, the bias toward equal cells size, suggests giving the lowest cost to

the translation between the same size cells. It is the opposite of the previous method, the

idea behind this proposal is to make the cells that have the same size, as a sequence does

not satisfy the narrow passage condition “bigger-smaller-bigger,” instead it will has the

pattern “bigger-smaller”. The MST in this case constructs narrow passage pattern just

when it is necessary.

The last proposed method, the disproportional cost to the distance, gives the edges a

cost based on the cells size, the smallest cost is given when translating between the bigger

cells. We realize this proposal by finding the longest distance between cells then subtracts

all translation distances from that distance. The result is given as a weight of the graph

edges. This method gives the translation between the largest cells, which have the longest

distance, the lowest cost, while the translation between smaller cells will have higher costs.

Results and discussion

The proposed methods are simulated and tested in two workspaces. The first one is an

office-like workspace, where there is one route to connect any two rooms. The second

49

workspace is generated in such a way that the connections between the free regions have

multi-routes.

The result is shown graphically using grading colors, where each color represents a

narrow passage sequence. The size of the shaded sequence represents the size of the

corresponding cells.

The results of the first and second methods show that the algorithm finds many narrow

passages. But the results are considered failed because it generates many sequences near

the obstacles and far away from the narrow passage.

The first method that uses the real distance as a cost, makes the MST constructs the tree

near the obstacle and follows the smaller cells as shown in Figure 3-10. Where the left

figures (a,c) show the ACD and MST graph graphically while the right figures (b,d) show

the identified narrow passages, which are denoted using a color for each passage. As seen

from the figures the extracted narrow passages using this methods is not accurate.

(a) (b)

(c) (d)

Figure 3-10: Real distance cost method, (a,c) represent ACD and MST tree graphically, (b,d) show the
identified narrow passages, each color represents one passage, this approach failed in detecting the

correct passages

50

(a) (b)

(c) (d)

Figure 3-11: Uniform translation cost method, (a,c) represent ACD and MST tree graphically, (b,d)

show the identified narrow passages, each color represents one narrow passage, this approach failed in

detecting the correct passages

The uniform cost method generates a tree structure which uses more bigger cells as

expected, and it generates a better solution, however the result still not good and

unreliable. Figure 3-11-a,c show the generated spanning tree in both workspaces, while the

narrow passages sequences are shown in Figure 3-11-b,d.

51

(a) (b)

(c) (d)

Figure 3-12: Bias to different cells size method, (a,c) represent ACD and MST graph graphically, (b,d)

show the identified narrow passages, each color represents one narrow passage

The third method directs the MST algorithm to use different cell size. The generated

trees translate between cells that have different size more than the translation between the

cells that have the same size, Figure 3-12-a,c show the spanning trees.

This method generates a better solution as shown in Figure 3-12-b,d. However, it also

generates long sequences and undesired sequences, especially in the second workspace,

which has un-alignment obstacle to the axis, as shown in Figure 3-12-d.

52

(a) (b)

(c) (d)

Figure 3-13: Bias to equal cells size method, (a,c) represent ACD and MST graph graphically, (b,d)

show the identified narrow passages, each color represents one narrow passage

The fourth method, which gives lower cost to the translation between equal cells size as

shown in Figure 3-13-a,c, generates better results, it has the ability to find all narrow

passage. But, it generates very long sequences as shown in Figure 3-13-b,d.

53

(a) (b)

(c) (d)

Figure 3-14: Disproportional cost to the distance method, (a,c) represent ACD and MST graph

graphically, (b,d) show the identified narrow passages, each color represents one narrow passage

The last proposed method, which has disproportional cost to the distance, generates

spanning trees as shown in Figure 3-14-a,c. It produces a relatively good solution.

However, it is still has a problem with sequences generation, since it has some faults to

find the correct narrow passages, in addition the generated sequences are long, and

sometime they merge many narrow passages together as shown in Figure 3-14-b,d.

Summary

In this work, the narrow passage identification problem is discussed. Narrow areas are a

problematic issue facing sampling-based motion planner. The cell-decomposition

approximation algorithm is utilized to find the free regions and build a graph of adjacency

for them based on the adjacency information.

The proposed method to identify the narrow passage, finds a sequence of cells along the

graph edges that have the same size, preceded and followed by a bigger cells size. This

smaller sequence is more likely to be located in the narrow passage.

54

Because of the graph of adjacency characteristic, which has many loop connections

between the adjacent cells the minimum spanning tree algorithm is used to linearize this

graph. Many methods have been proposed to manipulate the edges cost in the graph, in

order to make the generated spanning tree traverse through narrow passages in a detectable

way, which means following the pattern of the narrow area “bigger-smaller-bigger”

sequence of cells. Five methods are proposed, some of them give bad results, and the

others give better results as shown in the simulation.

We noticed that the first two methods which gave a bad results (real distance cost,

uniform cost), can be updated to find obstacles boundaries cells, based on that, the non-

uniform distribution can be introduced to be used in the motion planning samplers, which

improve the performance.

We also notice that the minimum spanning tree has a drawback in this algorithm, where

some routes are lost. That is happened when the workspace has multi-routes between free

areas, where the MST does not distinguish between the loop around obstacle and the loop

between cells.

More studies and analysis to the cost manipulation process should be reviewed in the

future work.

In the next chapter, the rapidly exploring random tree is reviewed and our contributions

using this method combined with exact cell decomposition are presented.

55

4 RAPIDLY-EXPLORING RANDOM TREE (RRT)

Rapidly-exploring random tree is a probabilistic algorithm introduced in (Lavalle 1998). It

is proposed originally for non-holonomic systems, which contain dynamic constraints. The

algorithm builds a space-filling tree that is constructed incrementally using samples drawn

randomly from the search space, as shown in Figure 4-1. RRT is designed for efficient

search in environments that have nonconvex obstacles. In addition, it works directly with a

set of admissible inputs. This feature makes the algorithm applicable to complex and

dynamic systems. This algorithm also, has the ability to use holonomic or non-holonomic

movement, and respect algebraic and differential constraints, and that due to its

incremental behaviors. The key idea of the RRT is to bias the exploration toward

unexplored regions of the space, where the sampler takes points from these regions, and

incrementally pulling the search tree outward of the initial position.

Figure 4-1: RRT expansion in 2D and 3D workspace

RRT algorithm proofed to be probabilistically complete (LaValle et al. 2001), and

resolution complete (Cheng et al. 2002).

The algorithm, which shown in Figure 4-3, takes as inputs the initial and the goal

locations, along with termination parameters, e.g. the maximum number of iterations to

grow a branch, time limit, or other parameters based on the application. RRT algorithm is

an incremental approach, where the incremental step is passed to the algorithm as an input

parameter (in the basic RRT algorithm). The output of the algorithms is a tree structure,

where the nodes represent free samples of the workspace, and the edges represent feasible

connections between these vertices.

The principle of the basic RRT algorithm is shown in Figure 4-2. The algorithm places

the tree’s root at the initial location. Then it takes a random sample from the configuration

space, and finds the nearest tree’s vertex to this sample (nearestPnt). A new point is

created on the segments between the random point and the nearest point, it is located far

56

from the nearest point by e distance, where e is the incremental step. If no collision is

detected with the segment between the nearest and the new points, then the algorithm adds

the new point as a vertex to the tree and the segments is added as an edge to the tree

structure. These steps are repeated until a termination condition is satisfied or a path

between the initial and the goal locations is found.

Figure 4-2: RRT algorithm principle

Algorithm: RRT

Input: Initial, Goal, Max Iteration I,

 and the incremental step e.

Output: The tree graph G.

1. G.init(Initial)

2. FOR (i = 1 TO I) BEGIN

3. randomPnt = randConfiguration()

4. nearestPnt = G.nearestVertex(randomPnt)

5. newPnt = NewConfiguration(nearestPnt,randomPnt,e)

6. IF NOT isCollided(nearestPnt,newPnt) BEGIN

7. G.addVertex(newPnt)

8. G.addEdge(nearestPnt,newPnt)

9. IF G.checkGoal(Goal)BEGIN

10. RETURN G.success()

11. END

12. END

13. END

14. RETURN G.fail()

Figure 4-3: Basic concept of RRT algorithm

The quality of RRT solutions is proofed as asymptotically optimal when applying

special variations of RRT, e.g. RRT* (Karaman et al. 2012, 2011) , LQR-RRT*, and others

(Perez et al. 2012; Nasir et al. 2013; Li et al. 2014).

The drawbacks of the basic RRT algorithm can be summaries as follows:

1. The basic RRT algorithm does not take the path cost into account, which generates

non-optimal path.

2. Large numbers of redundant points are generated, when exploring the space to find a

path between two locations.

Init

Goal

Random

New

e

Nearest

57

3. It has some difficulty when planning and exploring small areas and narrow passages,

because the probability to choose a configuration in these areas is small. Moreover, the

probability to connect configurations from these regions to other tree vertices without

collision is also small.

4. The generated paths are usually tortuous, and have abrupt changes in the curve.

Researchers try to overcome the downsides of the original RRT. They proposed many

ideas to improve the performance and efficiency of this randomize technique. Some of

their work based on new ideas, and the other based on improving the algorithm itself,

where RRT algorithm can be divided into sub-functions, i.e. 1- Initialize the tree. 2-

Choose the next configuration in order to pull the tree toward it. 3- Find the nearest vertex

of the tree to the chosen point. 4- Expand a new tree branch. 5- Check the collision. These

sub-functions were studied and reformulated to be more efficient.

The first sub-function is developed in various methods, i.e. instead of using one tree, bi-

directional trees or multi-trees can be used (Kuffner et al. 2011; Lavalle et al. 2000;

Militão et al. 2010; Strandberg 2004), and that lead to other researches on choosing the

root of these trees (Wang et al. 2012).

The second category of RRT improvements enhances the sampling strategies. For

example, the bias toward goal configuration, or toward hull around the goal (Lavalle et al.

2000). In another work the authors introduce a bias toward previous success (Bruce et al.

2002). Other researchers adapt the choosing of a next point, based on the environmental

aspects, e.g. large Voronoi regions (Lindemann et al. 2004; Sakahara et al. 2008), narrow

passage identification (Jiandong et al. 2011; Zhong et al. 2012), and collision information

(Peng Cheng 2001; Cheng et al. 2001; Jaillet et al. 2011).

The third category of improvement optimizes the nearest-point searching in the tree

structure, using spatial indexing techniques, e.g. kd-tree (Urmson et al. 2003; Yershova et

al. 2007; Atramentov et al. 2002).

In the fourth category, some researches try to develop the way of extending the branch

(Militão et al. 2010) or to introduce a new branching method to fit kinematic and dynamic

constraints (LaValle 2006; Jaillet et al. 2011; LaValle et al. 2001).

The fifth category improve the efficiency by manipulating the collisions checking

methods, e.g. the use of lazy approach, which postpone the collision checking until it’s

needed (Vahrenkamp et al. 2007).

Many RRT variants try to solve the disadvantages of basic RRT algorithm. A survey of

some RRT variations were reviewed and published in (Abbadi, Matousek 2012; Abbadi et

al. 2011). In the next paragraphs, some of these methods are discussed in more details.

Bidirectional and multidirectional planners are examples of the RRT variants that try to

speed up the exploration by controlling the root location and the tree number. In

58

bidirectional planners, two trees are expanded. The first one rooted on the initial position

and the second tree rooted on the goal location. The two trees branch until they meet each

other, and then the algorithm merges them and find the path from the start to the goal

locations. Figure 4-4, Shows dual RRT trees in the T-trap workspace.

Figure 4-4: Dual RRT trees

Another improvement, in the same course, uses multi RRT planners. The trees work

simultaneously, and try to connect to each other in order to find a solution. The choosing of

trees roots is done uniformly, or based on heuristic concepts.

Another approach uses augmented local trees beside the bidirectional trees. This method

proposed to explore the hard to reach regions (Strandberg 2004). It is based on the idea that

RRT algorithm needs to take better care of samples which fall into crucial, but hard to

reach, regions. The algorithm spawns a new local tree, which grows until it reaches outside

of the hard to reach the region, and merges with another tree. However, a new issue based

on this method rises up, where the quantity and percent of growing for these trees to main

trees should be optimized. The author in (Strandberg 2004) suggests using a limited

number of the local trees, during the planning phase to prevent this method from acting

like RPM. Another suggestion is to use a probability parameter to make a tuning between

the growth of the two main trees and the local trees. Another idea suggests the use of

volume of the box bounding the tree in the configuration space in order to reduce the cost

of trees’ connection checking. Each time the bounding box of a tree grows, the new node

will be used for possible connection with other trees, since it was this node that caused the

growth of the bounding box (Strandberg 2004).

This methods increase the probability to find a path, because, instead of testing the

reachability to the goal point, they test if any points of the tree are near to other points in

different trees, which increases the probability to find a path.

59

The drawbacks of using multi-trees can be summarized as follows.

1- The generated path is very tortuous and contains many sharp angles between edges.

2- Many redundant points are generated in each tree.

3- When the tree uses kinematic equations to generate the branches, the connection

between two trees could be inapplicable; that happens when the connection between

two nodes of the trees cannot adapt to satisfy the constraints.

4- The other drawback come out when the goal is not a specific configuration (Bruce et

al. 2002), it could be desire state or set of configurations, which means the

bidirectional or multidirectional search are not used, because they decrease the

generality of the goal state specification.

Another development of the RRT algorithm improve the expanding methods, in order to

pull the growth of the trees outward of the root rapidly. For example, bias the tree

expansion toward the large Voronoi regions. Originally, the basic RRT algorithm uses the

randomize approach to approximate the bias toward large Voronoi areas, and that because

the correlation between the probability of selecting a random point and the volume of its

Voronoi region, where the larger regions implied a higher probability of selecting points

from them.

Some techniques of RRT construct a Voronoi diagram explicitly. Then update it

incrementally, while the algorithm grows the tree. RRT uses this information to choose a

node of the tree, which has the largest Voronoi region for the next expansion. The direction

of expansion pointed to somewhere in the region, e.g. the center of Voronoi region or to

the farthest Voronoi vertex from tree node. In (Lindemann et al. 2004) the authors

proposed two methods to improve the bias to larger Voronoi regions without explicitly

calculating the Voronoi diagram. The first one is the Volume-based Voronoi-biased RRT

(VB-RRT). It directs the exploration to the approximate center of the region. The second

method is dispersion-reducing Voronoi-biased (DR-RRT). It directs the exploration to the

farthest vertex of the approximate vertices that bounded the largest Voronoi region. This

strategy for dispersion reduction based on the idea that, connecting nearest neighbor with

farthest vertex will reduce the dispersion, since this distance is considered as the largest

empty distance in configuration space and eliminating this distance from dispersion

calculation will reduce it.

The VB-RRT method based on selecting K samples from the space instead of selecting

only one as in original RRT. Then, a node is chosen from the tree, if it is the nearest one to

most of selected samples. The average of the samples approximates the center of their

region. The cost of doing K nearest-neighbor queries in every iteration for all tree’s node is

highly expensive. To reduce this cost, the K samples are kept for further reuse in next

iterations. If at some point during the search the initial K samples are insufficient, more

60

samples are added. The drawback of VB-RRT strategy is, it can easily trap in local minima

when the search tree encounters obstacles in the large Voronoi regions.

The DR-RRT (Dispersion-reducing Voronoi-biased RRT) method proceeds similarly to

the previous approach. It is based on the choosing of K random samples and creates

ordered samples-set S; it sorts them based on the distance to their nearest neighbors in the

search tree. Then it chooses the farthest sample and grows a branch toward it. If this fails,

the algorithm takes the next farthest sample and repeats the process. When it fails for all

samples, more samples are added and the algorithm continues until it achieves its goal.

Figure 4-5: Standard RRT vs dispersion-reducing RRT using initial samples number = 1000. Source:

(Lindemann et al. 2004)

The distance and nearest neighbor are computed one time when a sample is added to S

initially or later on when it is needed. This step adds more cost to the algorithm, but the

benefit is the fast exploration. Figure 4-5 shows the difference between original RRT and

DR-RRT from exploration point of view.

Another expansion-based improvement to RRT called RRT-Connect. It uses a greedy

approach to growing up the tree. It is based on the iterative growth of the tree’s branches as

long as they can; Instead of attempting to extend an RRT branch by a single step e, it

iterates branching in the same direction until it reaches the random point or an obstacle is

collided. This greedy approach frequently performs better since any relatively open and

unobstructed regions are traversed in a single iteration. However, the RRT-Connect

planner was designed for path planning problems that do not involve differential

constraints. In this case, the need for incremental motions is less important. This approach

proved to be probabilistically complete (Kuffner et al. 2000).

RRT-Blossom is another variant of RRT that behaves in the same way like the basic

RRT. However, it adapts the branching function of RRT. It adds a new point to the tree if

the distance between the new point and the other tree’s nodes is more than a specific

distance BLOOSM_DIS. The benefit of that is to reduce redundant points, which are added

to the tree, and make the tree spreads in the free space faster by preventing the tree from

61

growing from inside. Figure 4-6, shows the principle of this method. Generally, reducing

the number of nodes in RRT trees has a significant effect on the performance of RRT

algorithm when checking the nearest neighbor (Maciej Kalisiak et al. 2006; Almahairi

2010).

Figure 4-6: RRT-BLOSSOM principle. Source: (Maciej Kalisiak et al. 2006)

Variable Length RRT (VLRRT) is proposed by (Militão et al. 2010). It uses the

information that is collected throughout the exploration to adapt the length of the tree’s

branches. The tree will cover the less obstructed regions faster, while maintaining the

ability to navigate through more obstructed areas. This proposal suggests changing the

extension lengths as follows. The extension lengths of the branches become longer in open

areas and shorter in cluttered ones. For implementing this idea, each node of the tree has an

extension factor associated with it. Whenever an extension from a node fails, the extension

factor is decreased. Else, the extension factor is increased. The new node inherits the

extension factor from its parent.

The way of increasing or decreasing extension factor realized in many ways, e.g.

multiplying the original extension-length by a fixed value, or adding a constant value to the

extension length. In decreasing the extension factor, the same principle is used in addition

to another option, which reset the extension factor to the original extension length.

Another update to the previous method takes into account the direction of obstacle. In

the directional variable length (DVLRRT) approach (Militão et al. 2010), the successful or

unsuccessful branching provides an information about the presence or the absence of

obstacles in a particular direction, not in all directions. This method is realized by storing a

directional map of the extension factor in each node of the tree. The extension value is

chosen based on the direction of the obstacle.

In similar way, as in VLRRT, the success or fail affect the extension factor, but here in

obstacle direction. The new node also inherits the map from its parent. Figure 4-7 shows an

example of this method in simulation.

62

Figure 4-7: The generated path using DVLRRT

In the next paragraphs, we review some RRT improvements that based on trees-growth

directing. These strategies improve the original RRT by reformulating the random-point

choosing procedure.

RRT-GoalBias method chooses the goal point as the chosen point using a probability of

p, instead of choosing a random point randomly (Lavalle et al. 2000). Usually converges to

the goal would be much faster than the basic RRT. However, in this method, a trade off

should be considered when choosing the p value. If p were a big value, the planner would

behave like the randomized potential field method, which is trapped in a local minimum. In

general, the bias value is chosen to be small, because, even a small value of the bias forces

the planner to reach the goal faster.

The RRT-GoalZoom method is an improvement to GoalBias method (Lavalle et al.

2000). It uses a p probability to choose the goal instead of a random sample, and uses a q

probability to choose a sample from the hull around the goal. The nearest RRT vertex at

any iteration controls the size of the region around the goal. The more close the RRT to the

goal, the smaller the size of the region around the goal. The author claim, that, this planner

has performed well in practice, but still some possibility that the performance is degraded

due to the local minima.

The waypoint cache RRT (ERRT) method is proposed for real-time multi-robot systems

(Bruce et al. 2002). The key idea of this method is to keep the successful plans in the

previous queries, and reuse them as guidance to the RRT growth. The waypoint cache was

implemented by keeping an array of constant size of states. Whenever a plan was found, all

the states in the plan were placed into the cache. This stores the knowledge of where a plan

might again be found in the near future, where the space does not change too much. The

results of re-planning using ERRT are more efficient than the basic RRT planner. The

algorithm starts with an initial state as the root of the tree, and then it iterates. It uses a

probability of p as a bias value toward the goal, and a probability of q as a bias toward the

63

old path points, in addition to a probability of 1-q–p to pick a random point uniformly from

the space. This technique can be used to speeds up the path finding in moving obstacles

spaces, where first, it finds the path regardless of these moving obstacles, and then biases

toward the path’s points when a new plan is required.

Another methods was proposed in (Urmson et al. 2003) for guiding the tree growth. The

heuristically guided RRT (hRRT) method guides the growth of the randomized tree, based

on two aspects. 1- The size of Voronoi region for tree nodes. 2- The quality of the path to

that node. Using these aspects, it estimates the quality of tree regions and expands branches

from the qualified ones, which means, the regions of the tree are chosen for expansion

rather than particular nodes.

RRT with the collision tendency method (RRT-CT) was proposed to improve the

planner under kinematic and dynamic constraints (Peng Cheng 2001; Cheng et al. 2001).

The key idea is to keep track of the unsuccessful edge expansions, and exploiting this

information. The authors proposed two methods to improve the original RRT; the first one

depends on excluding control-input from re-execution, if it is already applied to a specific

node. The second improvement is done by reducing the probability of choosing nodes that

have a high collision tendency. They call this factor the constraint violation frequency

(CVF). Each node in the tree has a CVF, which calculated over the route from the initial

state to this node. It represents the number of collisions when applying control-inputs,

divided by the number of all branching possibility. The advantage of this method is to

prevent further expansion attempts, which have high probability to fail. In addition, it uses

the available information to bias the selection of next node to the nodes with lower

collision tendency. Figure 4-8, shows the CVF value, where the darker points represent

node with high CVF value.

Figure 4-8: CVF; the darker points the higher value. Source: (Cheng et al. 2001)

The conditional density growth (CDG) model is proposed in (Esposito 2013) as an

idealized model of RRT growth. It is primarily suited to holonomic systems operating in

64

expansive configuration spaces. Using this model various statistical properties of the

RRT’s configuration space could be derived such as the expected value, variance, and

distribution properties.

In the next section, our contributions to develop the RRT algorithm are presented, in

addition to the simulation results.

4.1 Contributions, Tests and Results

In this section, we present our contributions to the motion-planning problem using RRT

algorithm. We re-implement the RRT algorithm to fit the applications of omnidirectional

mobile robot, and propose some advance methods to enhance the RRT performance and

overcome the drawbacks.

This section is divided into five parts. In the first three, we review many RRT

developments and made an evaluation of them, in addition to statistical analysis. We also

proposed a new algorithm to shorten the RRT’s path. In the last two parts, new methods to

enhance the RRT navigation in small and narrow areas are presented. All contributions in

this domain are published, and the title of each section is taken from the publication name.

4.1.1 RRTs Review and Options

The path planning is an important issue in the mobile robot field. It allows the robot to

move from point A to point B safely. Many methods have been proposed in this domain,

which are differed in efficiency and time complexity. One of the advanced path planning

methods is the rapidly exploring Random Trees (RRT). In this work (Abbadi et al. 2011),

several variations of RRTs are reviewed, and an evaluation of their performance was tested

in different environments.

Experiments and Results

Many RRTs options are tested in four different workspaces, which are, the free workspace,

the low density of obstacles, the high density of obstacles, and trap workspace as shown in

Figure 4-9.

The parameters of the experiments are set as follows. The maximum number of RRT

iteration is limited to 2000; the iteration means the number of RRT attempts to grow a

branch of the tree.

The results are obtained statistically using 100 tests for each method. The outputs of the

tests are the average value of node number in RRT tree, the average value of path’s nodes

number, the average value of the execution time and the success rate to find a path.

The result of each attempt is considered in the average calculation, if the RRT find a

path, else, the results of failed tries are ignored.

65

The average of tree nodes number comparing to the number of path nodes gives an idea

about redundant points in each method. In addition the average of path nodes corresponds

to the number of curves in that path; the higher the number the more torturous the path.

(a) (b)

(c) (d)

Figure 4-9: RRT testing workspaces, (a) the free space workspace, (b) the trap obstacle workspace, (c)

the low density of obstacles workspace, (d) the high density of obstacles workspace

The simulation results of the free workspace are listed in Table 4-1, where the

bidirectional-connect method has the best results in terms of time efficiency. Generally, the

bidirectional methods were able to find the solution faster than the unidirectional

approaches.

The trap workspace results are shown in Table 4-2. The bidirectional-VLRRT method

has the best result in terms of time efficiency. Moreover, the bidirectional methods show

better results in completeness aspect. They were able to find a solution 100% (except the

ExtExt; the bidirectional basic RRT).

66

Table 4-1: The results of free workspace. The (BI) denote the using of bidirectional trees, and the bold

numbers indicate the best results

 Time [s] Tree node Path node Success [%]

Basic RRT 0.1240 384.27 38.83 100

Con RRT 0.0835 409.12 7.51 100

Bias RRT 0.0421 124.52 36.63 100

ConCon (BI) 0.0026 36.06 3.00 100

ConExt (BI) 0.0094 87.13 10.79 100

ExtCon (BI) 0.0106 93.53 11.74 100

ExtExt (BI) 0.0208 75.71 37.54 100

RRT-BLOSSOM 0.1559 352.99 38.89 100

BLOBLO (BI) 0.0251 76.85 37.97 100

VLRRT 0.0177 51.41 16.85 100

VLRRT(BI) 0.0114 35.36 21.25 100

DVLRRT 0.0263 71.76 23.71 100

DVLRRT (BI) 0.0163 47.30 26.60 100

Table 4-2: The results of trap workspace. The (BI) denote the using of bidirectional trees, and the bold

numbers indicate the best results

 Time [s] Tree node Path node Success [%]

Basic RRT 0.6236 815.58 89.40 11

Bias RRT 0.6722 697.66 87.06 31

RRT Con 0.3591 708.89 26.06 99

ConCon (BI) 0.3253 645.14 26.64 100

ConExt (BI) 0.4362 723.97 39.27 100

ExtCon (BI) 0.4102 696.12 38.44 100

ExtExt (BI) 0.7815 1019.40 85.14 96

RRT-BLOSSOM 0.6708 591.36 55.51 74

BLOBLO (BI) 0.4665 464.40 55.16 100

VLRRT 0.2750 272.63 27.81 100

VLRRT (BI) 0.2406 279.77 40.23 100

DVLRRT 0.4030 368.91 36.77 98

DVLRRT (BI) 0.3039 326.09 42.57 100

The results of the last two tests in low-density and high-density of obstacles are shown

in Table 4-3, and Table 4-4, respectively. The ConCon (bidirectional connect RRT

method) has the best results regarding to the execution time. Also, it is notable, that all

bidirectional methods are probabilistically complete in these tests.

Summary

The aim of this work was to review and test the performance of the reviewed algorithms.

The results show that the dual tree variants are more completeness in all workspaces. The

most successful strategy regarding to the time of execution is the bidirectional-VLRRT in

67

trap obstacles. Also, the bidirectional-ConCon strategy gives the best results in the low and

the high density of obstacles. However, the result cannot be generalized for all

environments.

Table 4-3: The results of low-density workspace. The (BI) denote the using of bidirectional trees, and

the bold numbers indicate the best results

 Time [s] Tree node Path node Success [%]

Basic RRT 0.1650 336.49 43.03 100

Bias RRT 0.0841 147.97 41.55 100

RRT Con 0.1232 375.27 11.24 100

ConCon (BI) 0.0270 127.57 7.56 100

ConExt (BI) 0.0393 144.56 16.51 100

ExtCon (BI) 0.0362 140.71 16.11 100

ExtExt (BI) 0.0512 111.32 41.42 100

RRT-BLOSSOM 0.1620 259.36 43.73 100

BLOBLO (BI) 0.0556 104.24 40.80 100

VLRRT 0.0519 87.94 25.10 100

VLRRT (BI) 0.0366 68.31 27.34 100

DVLRRT 0.0634 102.05 30.28 100

DVLRRT (BI) 0.0434 76.24 31.49 100

Table 4-4: The results of high-density workspace. The (BI) denote the using of bidirectional trees, and

the bold numbers indicate the best results

 Time [s] Tree node Path node Success [%]

Basic RRT 1.0550 0 0 0

Bias RRT 1.1255 0 0 0

RRT Con 1.2552 1552.15 33.29 07

ConCon (BI) 0.3984 518.46 25.27 100

ConExt (BI) 0.4906 550.77 53.83 100

ExtExt (BI) 0.4900 406.33 87.37 100

RRT-BLOSSOM 0.8902 0 0 0

BLOBLO (BI) 0.5133 328.38 87.11 100

VLRRT 1.1311 0 0 0

VLRRT (BI) 0.5444 380.29 66.37 100

DVLRRT 1.1497 0 0 0

DVLRRT (BI) 0.5422 365.49 70.68 100

4.1.2 RRTs Review and Statistical Analysis

Many ideas have been proposed to solve the path-planning problem. One of them is the

rapidly exploring random Tree (RRT). This method is not optimal, but it reduces the

required time to obtain a solution. The result of the RRT is a tortuous path, which has

many useless vertices.

68

In this work (Abbadi, Matousek 2012) statistical tests were done, to make a better

decision about using a variant of RRT. This work is based on the previous results in

(Abbadi et al. 2011), where the tested methods give a variety of results, some of them are

very close and some are very diverse. For that, a statistical analysis is done to build some

confidence of using one RRT variation instead of another one in some situations.

In addition to statistical tests, we propose a method to reduce the degree of tortuous, and

make the path shorter by omitting the useless points.

(a) (b)

(c) (d)

Figure 4-10: The testing workspaces, (a) low obstacles density, (b) T-trap workspace, (c) high obstacles

density, (d) doors workspace

Test and Results

We made the tests for 13 RRT variations in four spaces as shown in Figure 4-10. The first

workspace has low-density of obstacles (a). The second one has T-trap obstacle (b); the

high density of obstacle shown in (c) and the last one is the doors workspace (d).

69

The test is applied in every workspace separately; we test 13 variants of RRT, 100

times. The fails occurs when RRT variation attempted to extend a branch 2000 times

without reaching the goal. We used PC equipped with 2.5 GHz Core2Duo CPU, 2 GB

RAM.

The implementation of RRT variations is developed in Matlab and the statistical results

are done using Minitab. The comparison between the tests results is done based on the time

of execution, the success rate of reaching the goal and the path length.

Execution Time results

The tests results show that the best variation in Low obstacles space is the Vlrrt(2) method,

where the average of the time to reach the goal is 0.0467 second and the median is 0.0418,

the second best variation is Dvlrrt(2), it has the mean value of 0.0484 second and median

value equal to 0.0407. Table 4-5 shows the numerical result of the tests in low obstacle

space and the Figure 4-11 shows the boxplots representation of these results.

Table 4-5: Tests results of low density of obstacles. The bold numbers correspond to the best two

results, the best results marked by (*), the (2) indicate a bidirectional method

Method Mean StDev Variance Median Success

BIAS 0.1035 0.0484 0.0023 0.0890 100

BLOSSOM 0.3552 0.2584 0.0668 0.2714 94

BLOSSOM (2) 0.0615 0.0255 0.0007 0.0564 100

CON 0.3434 0.2546 0.0648 0.2526 93

CON(2) 0.0578 0.0198 0.0004 0.0559 100

ConExt(2) 0.0617 0.0202 0.0004 0.0585 100

EXT 0.2806 0.1991 0.0396 0.2380 95

EXT(2) 0.0516 0.0249 0.0006 0.0444 100

ExtCon(2) 0.0637 0.0234 0.0006 0.0621 100

DVLRRT 0.0893 0.0493 0.0024 0.0734 100

DVLRRT(2) 0.0484 0.0259 0.0007 0.0407 100

VLRRT 0.0840 0.0436 0.0019 0.0698 100

VLRRT(2) *0.0467 *0.01754 *0.0003 *0.0418 100

70

Figure 4-11: Boxplots representation of the results of in the low-density of obstacles

In the T obstacle workspace, the Vlrrt has the best result regarding to the time of

execution, however, it also has one fail of reaching the goal. The time average is 0.3740

and the median is 0.3713. The second result achieved by the bidirectional-Vlrrt(2) which

has the average time of 0.3984 and median of 0.3849, and without any fail. The numerical

results are presented in Table 4-6. And Figure 4-12 shows the boxplot representation of

execution time results.

A statistical test was done on Vlrrt and Vlrrt(2), which give the best results. The aim of

this test is to validate the hypothesis of using the second best method instead of the first

one. Which means, if we use the second best option Vlrrt(2) without any fail, it will give

the same result in confidence level of 95%.

This hypothesis implies that we can replace the method that has more probabilistically

completeness, with the method that has a less completeness ratio; Figure 4-13 shows the

tested hypothesis.

Based on the P-Value, which is >5%, the hypothesis of “Vlrrt and Vlrrt(2) are not

equal” is rejected, which means, there is no sufficient difference between the two

variations, and the Vlrrt(2) variant can be used instead of Vlrrt, using the confidence level

of 95%.

Vl
rrt

(2
)

Vlr
rt

Ex
tC

on

Ex
t(
2)Ex

t

Dv
lrr
t(
2)

Dv
lrr
t

Co
nE

xt

Co
n(

2)
Co

n

Blo
ss

om
(2

)

Bl
os

so
m

Bia
s

1,2

1,0

0,8

0,6

0,4

0,2

0,0

Variations

T
im

e

Boxplot of Time/variation in low obstacles space

71

Figure 4-12: Boxplots representation of results in T obstacle

Table 4-6: Tests results of T-trap obstacle. The bold numbers correspond to the best two results, the best

results marked by (*), the (2) indicate a bidirectional method

Method Mean StDev Variance Median Success

BIAS 0,5968 0,0736 0,0054 0,6121 71

BLOSSOM 0,7482 0,1068 0,0114 0,7476 35

BLOSSOM (2) 0,9371 0,1852 0,0343 0,9198 100

CON 0,5320 0,2062 0,0425 0,5017 81

CON(2) 0,3996 0,1024 0,0105 0,3948 100

ConExt(2) 0,4484 0,1433 0,0205 0,4326 100

EXT 0,5592 *0,0721 *0,0052 0,5521 97

EXT(2) 0,6696 0,1211 0,0147 0,6712 100

ExtCon(2) 0,4502 0,1303 0,0170 0,4388 35

DVLRRT 0,5188 0,0887 0,0079 0,5109 100

DVLRRT(2) 0,6250 0,1235 0,0153 0,6369 100

VLRRT *0,3740 0,0984 0,0097 *0,3713 99

VLRRT(2) 0,3984 0,1224 0,0150 0,3849 100

In the high obstacle workspace, the Con(2) method gives the best time average, where

the mean is 0.1871 and the median is 0.1844. The numerical results are presented in Table

4-7 and the boxplot representation is shown in Figure 4-14.

A statistical analysis is conducted to figure out if the Vlrrt(2) can be used generally

based on the confidence level of 95%. The T-test result gives P-Value > 5%, as shown in

Figure 4-15, which indicate that there is no sufficient difference between the use of Con(2)

the best method, and the Vlrrt(2) method, the third best one, in confidence level of 95%.

Vl
rrt

(2
)

Vlr
rt

Ex
tC

on

Ex
t(
2)Ex

t

Dv
lrr
t(
2)

Dv
lrr
t

Co
nE

xt

Co
n(

2)
Co

n

Blo
ss

om
(2

)

Bl
os

so
m

Bia
s

1,6

1,4

1,2

1,0

0,8

0,6

0,4

0,2

0,0

Variations

T
im

e

Boxplot of Time/variations in T space

72

 Two-sample T for Vlrrt vs Vlrrt(2)

 N Mean StDev SE Mean

Vlrrt 99 0.3740 0.0984 0.0099

Vlrrt(2) 100 0.398 0.122 0.012

Difference = mu (Vlrrt) - mu (Vlrrt(2))

Estimate for difference: -0.0244

95% CI for difference: (-0.0554; 0.0067)

T-Test of difference = 0

vs not =): T-Value = -1.55

P-Value = 0.123 DF = 189

Figure 4-13: T-test for the hypothesis “Vlrrt and Vlrrt(2) not equal” in T

Table 4-7: Tests results of high-density of obstacles. The best results marked by (*), the (2) indicate a

bidirectional method

Method Mean StDev Variance Median Success

BIAS 0.3790 0.1316 0.0173 0.3662 100

BLOSSOM 0.5642 0.2259 0.0510 0.5559 82

BLOSSOM (2) 0.2665 0.1148 0.0132 0.2485 100

CON 0.4397 0.2582 0.0667 0.3640 83

CON(2) *0.1871 *0.0712 *0.0051 *0.1844 100

ConExt(2) 0.2033 0.0945 0.0089 0.1902 100

EXT 0.4738 0.1968 0.0387 0.4070 80

EXT(2) 0.2024 0.0738 0.0055 0.1981 100

ExtCon(2) 0.2053 0.0843 0.0071 0.1960 100

DVLRRT 0.3700 0.1510 0.0228 0.3506 99

DVLRRT(2) 0.2175 0.0746 0.0056 0.2033 100

VLRRT 0.3370 0.1216 0.0148 0.3324 99

VLRRT(2) 0.2072 0.0837 0.0070 0.1905 100

73

Figure 4-14: Boxplots representation of results in high-density of obstacles

 N Mean StDev SE Mean

Con(2) 100 0.1871 0.0712 0.0071

Vlrrt(2) 100 0.2072 0.0837 0.0084

Difference = mu (Con(2)) - mu (Vlrrt(2)

Estimate for difference: -0.0201

95% CI for difference: (-0.0418; 0.0015)

T-Test of difference = 0

(vs not =): T-Value = -1.83

P-Value = 0.068 DF = 193

Figure 4-15: T-test for the hypothesis “Con(2) and Vlrrt(2) not equal” in high density obstacles

In the doors obstacles workspace, the best variant is Dvlrrt(2) which has the time

average equal to 0.2961 and the median equal to 0.2623. The numerical results are shown

in Table 4-8, and the boxplot representation is shown in Figure 4-16 for all tested

variations.

In the same manner, we test if the Vlrrt(2) can replace the best method in this

workspace. The T-test hypothesis assumes that there is a difference between the best

variant Dvlrrt(2) and the second best one Vlrrt(2) as shown in Figure 4-17. Based on this

test we reject the hypothesis, because of the value of P-Value is greater than 0.05, which

means there is no sufficient difference between the two best variations in the confidence

level of 95%.

Vl
rrt

(2
)

Vlr
rt

Ex
tC

on

Ex
t(
2)Ex

t

Dv
lrr
t(
2)

Dv
lrr
t

Co
nE

xt

Co
n(

2)
Co

n

Blo
ss

om
(2

)

Bl
os

so
m

Bia
s

1,2

1,0

0,8

0,6

0,4

0,2

0,0

Variations

T
im

e

Boxplot of Time/Variations in high

74

Figure 4-16: Boxplots representation of results in doors obstacles

 N Mean StDev SE Mean

Dvlrrt(2) 100 0.296 0.148 0.015

Vlrrt(2) 100 0.317 0.198 0.020

Difference = mu (Dvlrrt(2)) - mu (Vlrrt(2))

Estimate for difference: -0.0213

95% CI for difference: (-0.0702; 0.0275)

T-Test of difference = 0

(vs not =): T-Value = -0.86

P-Value = 0.390 DF = 183

Figure 4-17: T-test for the hypothesis “Dvlrrt(2) and Vlrrt(2) not equal” in doors obstacle

Table 4-8: Tests results of doors obstacles. The best results marked by (*), the (2) indicate a

bidirectional method

Method Mean StDev Variance Median Success

BIAS 0.4232 0.2040 0.0416 0.3690 100

BLOSSOM 0.8529 0.4155 0.1727 0.8450 82

BLOSSOM (2) 0.3830 0.2202 0.0485 0.3433 100

CON 0.8834 0.5052 0.2552 0.8670 84

CON(2) 0.3316 0.2315 0.0536 0.2757 100

ConExt(2) 0.3320 0.1854 0.0344 0.2883 100

EXT 0.7535 0.3801 0.1444 0.6839 84

EXT(2) 0.3511 0.1794 0.0322 0.3065 100

ExtCon(2) 0.3427 0.2057 0.0423 0.2896 100

DVLRRT 0.3884 0.1987 0.0395 0.3915 100

DVLRRT(2) *0.2961 *0.1479 *0.0219 *0.2623 100

VLRRT 0.4522 0.2389 0.0571 0.4003 99

VLRRT(2) 0.3174 0.1984 0.0394 0.2775 100

Vl
rrt

(2
)

Vlr
rt

Ex
tC

on

Ex
t(
2)Ex

t

Dv
lrr
t(
2)

Dv
lrr
t

Co
nE

xt

Co
n(

2)
Co

n

Blo
ss

om
(2

)

Bl
os

so
m

Bia
s

2,0

1,5

1,0

0,5

0,0

Variations

T
im

e

Boxplot of Time/Variations in doors obstacle

75

The last result and statistical analysis indicate that the Vlrrt(2) can be used in all spaces

without sufficient difference between it and the best variants in all space, based on the

confidence level of 95%.

Successful rate results

The tests show some variations have a tendency to fail of reaching the goal location,

mainly the unidirectional methods. Table 4-9 shows the successful rate of planning process

between the initial and the goal locations. The test repeated 100 times, in the four

workspaces. In each iterations, the RRT tree tries 2000 times to grow a branch and the test

is considered failed if the tree did not reach the goal within this limit.

Table 4-9: Successful rate of RRT methods, the number (2) after the method names, indicates a

bidirectional method

 Low T High Doors

BIAS 100 71 100 100

BLOSSOM 94 35 82 82

BLOSSOM (2) 100 100 100 100

CON 93 81 83 84

CON(2) 100 100 100 100

ConExt(2) 100 100 100 100

EXT 95 35 80 84

EXT(2) 100 100 100 100

ExtCon(2) 100 100 100 100

DVLRRT 100 97 99 100

DVLRRT(2) 100 100 100 100

VLRRT 100 99 99 99

VLRRT(2) 100 100 100 100

Figure 4-18: Unsuccessful results in low-density obstacles workspace

Vl
rr
t(
2)

V
lrr

t

Ex
tC

on

Ex
t(
2)Ex

t

D
vl
rr
t(
2)

D
vl
rr
t

Co
nE

xt

Co
n(

2)
Co

n

Bl
os

so
m

(2
)

Bl
os

so
m

Bi
as

7

6

5

4

3

2

1

0

Variations

u
n

s
u

c
c
e

s
s
fu

l

Unsuccessful variation in Low space

76

Figure 4-19: Unsuccessful results in T obstacle workspace

Figure 4-20: Unsuccessful results in high-density obstacles workspace

Figure 4-21: Unsuccessful results in doors obstacles workspace

Vl
rr
t(
2)

Vl
rr
t

Ex
tC

on

Ex
t(
2)Ex

t

D
vl
rr
t(
2)

D
vl
rr
t

Co
nE

xt

C
on

(2
)

Co
n

Bl
os

so
m

(2
)

Bl
os

so
m

Bi
as

70

60

50

40

30

20

10

0

Variations

u
n

s
u

c
c
e

s
s
fu

l

unsuccessful variation in T space

Vl
rr
t(
2)

Vl
rr
t

Ex
tC

on

Ex
t(
2)Ex

t

D
vl
rr
t(
2)

D
vl
rr
t

Co
nE

xt

Co
n(

2)
Co

n

Bl
os

so
m
(2

)

Bl
os

so
m

Bi
as

20

15

10

5

0

Variations

u
n

s
u

c
c
e

s
s
fu

l

unsuccessful variations in High space

Vl
rr
t(
2)

Vl
rr
t

Ex
tC

on

Ex
t(
2)Ex

t

D
vl
rr
t(
2)

D
vl
rr
t

Co
nE

xt

Co
n(

2)
Co

n

Bl
os

so
m

(2
)

Bl
os

so
m

Bi
as

20

15

10

5

0

Variations

u
n

s
u

c
c
e

s
s
fu

l

Unsuccessful variations in Doors space

77

The results show that unidirectional algorithms have more tendencies to fail, more than

the bidirectional versions. Figure 4-18, Figure 4-19, Figure 4-20, and Figure 4-21 show

graphical representations of the unsuccessful rate in low-density, t-trap, high-density and

doors workspaces, respectively.

Path length and short path tests

In this section, the path length is tested for all variations in low, T, High and Doors

workspaces. And a method for shortening the generated RRT path is proposed.

The generated path of RRT usually a tortuous path and has many points and sharp

curves. The proposed algorithm makes the path shorter in the length by omitting the

useless points. It tries to replace multi-segments by one straight segment when it is

possible. The generated path is not the optimal, neither the shortest one, but, it has fewer

vertices and much more straightforward. Figure 4-22 shows the original path generated by

RRT (a) and the shortened path (b).

(a) (b)

Figure 4-22: The shortening path algorithm, (a) the original RRT path (38 point, length

=18.13), (b) the shortened path (6 point, length= 14.2)

The algorithm pseudo code is shown in Figure 4-23. The algorithm tests the connection

between the first points of the path with the last points directly, if a connection exists

without a collision, it deletes the midpoints between these two locations. In case of failure

the algorithm tries to connect the next vertex of the path (testing point) to the last one

(tested points). It repeats this process until the testing point is reached the last vertex in the

path, in this case, the algorithm starts again from the first point and tries to connect to the

previous vertex of the last one. The algorithm stops when the tested points reach the first

vertex.

The collisionCheck function is used to check the collisions between the obstacles and

the segment from pnt1 to pnt2 location.

78

The generated path is a path has fewer vertices and segments. It is not the optimal one,

because, it is based on the original path, which generated by RRT.

Figure 4-24 shows the short path in two different workspaces. The thick line represents

the generated RRT path, while the dashed one represents the shortened path.

Shortening RRT Path Algorithm.

Input: The RRT’s path.

Output the shorten path.

LastTestedPntInd =index of last point in the path;

WHILE (LastTestedPntInd ~= 2)

pnt2 = path.get(LastTestedPntInd);

FOR (floatPntInd=1;floatPntInd<LastTestedPntInd-1;floatPntInd++)

pnt1 = path.get(floatPntInd);

IF ~collisionCheck(pnt1,pnt2)

path = path.remove(floatPntInd, LastTestedPntInd);

LastTestedPntInd=updateInd(LastTestedPntInd);

LastTestedPntInd = LastTestedPntInd-1;

BREAK;

END

END

END

Figure 4-23: Shortening path algorithm.

(a) (b)

Figure 4-24: The original RRT path (thick-red), and the shortened path (dashed-green)

The path length tests are conducted in the four workspaces. In the first workspace, the

low-density obstacle workspace, all variations are tested in order to estimate the difference

between these variations. The numerical results are listed in Table 4-10, and a graphical

representation of them is shown as boxplots in Figure 4-25. The results show that the best

method based on path length is the unidirectional Bias RRT.

79

Vl
rr
t(2

)
Vl
rr
t

Ex
tC

on

Ex
t(2

)
Ex

t

Dv
lrr

t(2
)

Dv
lrr

t

Co
nE

xt

Co
n(

2)
Co

n

Bl
os

so
m
(2
)

Bl
os

so
m

Bi
as

30

25

20

15

10

Variations

P
a

th
 L

e
n

.

Boxplot of Path Len. in Low Obstacle

Figure 4-25: Path length boxplots in low density of obstacle workspace

Table 4-10: Path length results in low density of obstacle workspace. The best results marked by (*), the

(2) indicate a bidirectional method

Path

Median

Path

Min

S-path

Median

S-Path

Min

Rate

%

BIAS *14.336 12.770 11.856 11.478 17.30

BLOSSOM 15.373 13.316 11.817 *11.471 23.13

BLOSSOM (2) 14.644 12.947 11.787 11.490 19.51

CON 17.359 13.366 14.085 11.553 18.86

CON(2) 18.880 12.210 14.195 11.532 24.81

ConExt(2) 16.534 12.796 12.010 11.556 27.36

EXT 15.189 13.235 11.831 11.473 22.11

EXT(2) 14.604 13.155 *11.810 11.496 19.13

ExtCon(2) 16.929 *12.062 12.058 11.530 *28.77

DVLRRT 14.540 12.444 11.834 11.504 18.61

DVLRRT(2) 14.773 12.808 11.862 11.499 19.70

VLRRT 14.846 12.565 11.946 11.565 19.53

VLRRT(2) 14.545 12.629 11.846 11.476 18.56

80

Vl
rr
t(2

)
Vl
rr
t

Ex
tC

on

Ex
t(2

)
Ex

t

Dv
lrr

t(2
)

Dv
lrr

t

Co
nE

xt

Co
n(

2)
Co

n

Bl
os

so
m
(2
)

Bl
os

so
m

Bi
as

45

40

35

30

25

Variations

P
a

th
 L

e
n

.

Boxplot of Path Len. in T obstacle

Figure 4-26: Path length boxplot in T obstacle workspace

Table 4-11: Path length in T obstacle workspace. The best results marked by (*), the (2) indicate a

bidirectional method

Path

Median

Path

Min

S-Path

Median

S-Path

Min

Rate

%

BIAS 30.124 25.814 *24.089 22.309 20.03

BLOSSOM *29.976 26.635 24.488 22.191 18.31

BLOSSOM (2) 32.166 27.269 24.498 22.643 *23.84

CON 33.658 26.281 25.934 22.277 22.95

CON(2) 33.618 26.742 25.831 22.462 23.16

ConExt(2) 33.170 27.120 25.427 *21.740 23.34

EXT 30.385 26.432 23.908 22.491 21.32

EXT(2) 32.562 26.460 25.091 22.127 22.94

ExtCon(2) 32.815 25.764 25.378 22.050 22.66

DVLRRT 31.148 25.324 25.104 22.522 19.40

DVLRRT(2) 33.177 26.489 25.831 22.367 22.14

VLRRT 32.041 *25.318 25.906 22.534 19.15

VLRRT(2) 33.436 28.006 26.165 23.233 21.75

In the T-obstacle workspace, the best result is recorded by blossom method based on the

median value of the path length. As shown in Table 4-11. The boxplot of these results is

plotted in Figure 4-26.

81

Vl
rr
t(2

)
Vl
rr
t

Ex
tC

on

Ex
t(2

)
Ex

t

Dv
lrr

t(2
)

Dv
lrr

t

Co
nE

xt

Co
n(

2)
Co

n

Bl
os

so
m
(2
)

Bl
os

so
m

Bi
as

35

30

25

20

15

Variations

P
a

th
 L

e
n

.

Boxplot of Path Len. in High obstacle

Figure 4-27: Path length boxplot in high density of obstacle workspace

Table 4-12: Path length of high density of obstacle workspace. The best results marked by (*), the (2)

indicate a bidirectional method

Path

Median

Path

Min

S-Path

Median

S-Path

Min

Rate

%

BIAS 17.911 *14.233 15.045 13.269 16.00

BLOSSOM 17.766 15.349 *14.70 13.353 *17.26

BLOSSOM (2) 19.879 14.977 16.716 13.321 15.91

CON 19.004 15.260 16.697 13.252 12.14

CON(2) 21.144 15.253 17.541 13.498 17.04

ConExt(2) 21.363 15.079 18.164 *13.191 14.97

EXT 17.752 15.542 14.702 13.286 17.18

EXT(2) 19.947 15.328 17.277 13.222 13.39

ExtCon(2) 20.535 14.613 17.109 13.393 16.68

DVLRRT 18.263 14.415 16.185 13.236 11.38

DVLRRT(2) 20.350 15.087 17.376 13.479 14.61

VLRRT *17.528 14.846 14.919 13.347 14.88

VLRRT(2) 20.022 14.730 16.832 13.412 15.93

In the high obstacle workspace, the RRT variations are tested and the results are listed

in Table 4-12. In addition, the boxplot representations of these results are shown in Figure

4-27. The best method’s result in terms of the median of the path length is achieved by

Vlrrt method.

82

Vl
rr
t(2

)
Vl
rr
t

Ex
tC

on

Ex
t(2

)
Ex

t

Dv
lrr

t(2
)

Dv
lrr

t

Co
nE

xt

Co
n(

2)
Co

n

Bl
os

so
m
(2
)

Bl
os

so
m

Bi
as

28

26

24

22

20

18

16

14

12

Variations

P
a

th
 L

e
n

.

Boxplot of Path Len. in doors obstacle

Figure 4-28: Path length boxplot in doors obstacle workspace

Table 4-13: Path length in doors obstacles workspace. The best results marked by (*), the (2) indicate a

bidirectional method

Path

Median

Path

Min

S-Path

Median

S-Path

Min

Rate

%

BIAS 17.089 14.145 14.285 11.826 16.41

BLOSSOM 17.389 13.787 *13.960 11.771 *19.72

BLOSSOM (2) 17.256 14.153 14.127 *11.740 18.13

CON 18.072 15.407 14.883 11.869 17.65

CON(2) 17.810 13.757 14.792 11.797 16.95

ConExt(2) 17.422 13.574 14.749 11.930 15.34

EXT 17.263 14.872 14.157 11.802 17.99

EXT(2) 17.413 13.685 14.304 11.764 17.85

ExtCon(2) 17.583 *12.278 14.524 11.799 17.40

DVLRRT 16.934 13.604 14.250 11.850 15.85

DVLRRT(2) 17.532 14.104 14.134 11.787 19.38

VLRRT *16.878 13.957 14.411 11.870 14.62

VLRRT(2) 17.577 13.046 14.165 11.835 19.41

In the last workspace, the door obstacle, the tests show that Vlrrt has the lowest median

of the path length. Table 4-13 shows the numerical results of the tested methods, while

Figure 4-28 shows the boxplot representation for these results.

Based on the results in all testing workspaces, the unidirectional tree methods generally,

give better results than the bidirectional trees do. The reason of this difference is the

extending procedure of RRT, where in unidirectional tree the expansion is done from the

nearest node in the tree, while in bidirectional cases, the path is composed of two paths,

which make it longer than unidirectional path.

83

The results also show that using shortening method reduces the path length in the

average of 13% – 28%, depending on the testing environment, the obstacles shape, and the

methods.

Summary

In this work, many approaches of RRT were tested in four different workspaces, some

statistical analyses have been done to support our decision about using one variation

instead of the others. In addition, we proposed a shortening algorithm to reduce the length

and the tortuous of the RRT paths.

We conclude that regarding to the time of execution, in low-density obstacles the

Vlrrt(2) method gives the best result. It has the rate of 100% of success. For the T obstacle

workspace, Vlrrt achieves the best result, however, it has one fail. So we choose to use the

Vlrrt(2) based on the statistical result, which shows that there is no sufficient difference in

these two variants with a confidence level of 95%. In high-density workspace, the best

variant is Con(2) method, and in the last workspace, the best variant is Dvlrrt(2).

4.1.3 Rapidly-Exploring Random Trees: 3D planning

In this work (Abbadi, Matousek, et al. 2012) the RRT algorithm is applied in three-

dimensional workspace to find a path for a holonomic system. We also developed an

algorithm for path shortening. This algorithm shortens the path by omitting unnecessary

points from the original path. Furthermore, we present a smoothing-out technique for real

dynamic behavior.

The result of this work can be applied in many applications, e.g. the robot arms, the

flying objects, CNC machine, 3D laser cutting machines, and other machines that work in

3D dimension.

Proposed methods

The generated path using RRT is a tortuous path. It has many nodes and sharpness edges.

We try to shorten the RRT path and make it as smooth as possible by removing useless

points. We introduce an algorithm in (Abbadi, Matousek 2012). It generates a shortened

path based on the original one. A new version is shown in Figure 4-30.

The algorithm tries to connect vertices from both path’s edges and delete the midpoints

between them. The updated version tests the path from two directions and returns the

shortest one.

The original tortuous path that is generated by RRT is shown in Figure 4-29, in addition

to the first shortened path that starts from first toward the last point, and the second

shortened path, which start from last toward the starting point of the original path.

84

Figure 4-29: The shortening algorithms results. The solid red line represents the original RRT path, the

(black - -) line represent the first shortened path, and the (blue - .) line represent the second shortened

path

1. EndPnt ←index of last point in the path;

2. StartPnt ←1;

3. tmpPath1←originalPath;

4. WHILE (EndPnt ~= 2)

5. pnt2 ← tmpPath1 (EndPnt);

6. FOR (StartPnt ←1 ; StartPnt < EndPnt -1 ; StartPnt ++)

7. pnt1 ← tmpPath1 (StartPnt);

8. IF ~collisionCheck(p1,p2)

9. tmpPath1 ← tmpPath1 (1 to StartPnt)

10. + tmpPath1(EndPnt to the end);

11. Endpnt ← index of previous point to EndPnt;

12. BREAK;

13. END

14. END

15. END
16. tmpPath2← originalPath;
17. startpnt←1;
18. WHILE (StartPnt < tmpPath2’s size)
19. pnt1 ← tmpPath2 (StartPnt);

20. FOR (EndPnt ←tmpPath2’s size ; EndPnt > StartPnt +1 ; EndPnt --)

21. pnt2 ← tmpPath2 (EndPnt);

22. IF ~collisionCheck(p1,p2)

23. tmpPath2 ← tmpPath2 (1 to StartPnt)

24. + tmpPath2(EndPnt to the end);

25. StartPnt ← Startpnt+1;

26. BREAK;

27. END

28. END

29. END
30. IF (length of tmpPath1< length of tmpPath2)
31. RETURN tmpPath1;

32. ELSE
33. RETURN tmpPath2;

34. END

Figure 4-30: The shortening path algorithm

85

A smoothing-out technique is applied to the shortened path using Catmul-Rom spline

(Catmull et al. 1974), as shown in Figure 4-31. Advantage of this solution is also for the

future extension of the path planner. The shorter and smooth path is more convenient for a

dynamic ride of the real vehicle.

Figure 4-31: The smoothed path (bold ...) which generated based on the shortened path (- -)

There are several approaches to spline design. Catmul-Rom spline is a special kind of

Hermite spline. The spline is a sequence of curves joined together to form a larger curve.

These curves pass through given points smoothly and continually.

Hermite spline method calculates the curve using two points and tangents vectors in

these points as shown in Figure 4-32, (Shikin et al. 1995; Salomon 2011).

Figure 4-32: Hermite spline principle, and the effect of the tangent magnitude, p0, p1 are the start and

the end points, m0, m1 are the corresponding tangents in the points, Source: (Salomon 2011)

The curve P(t) is calculated using the following equation

P(𝑡) = (2𝑡3 − 3𝑡2 + 1)𝑝0 + (𝑡3 − 2𝑡2 + 𝑡)𝑚0 + (−2𝑡3 + 3𝑡2)𝑝1 + (𝑡3 − 𝑡2)𝑚1,

 0 ≤ 𝑡 ≤ 1

Where p0, p1 is the given points, m0, m1 is the tangents vectors, t is the knots parameter

in the intervals [0,1].

Using the matrices notation, the previous equation is written as follows.

86

P(𝑡) = T(𝑡)HB = (𝑡3 𝑡2 𝑡 1) (

2 −2 1 1
−3 3 −2 −1
0 0 1 0
1 0 0 0

) (

𝑝0

𝑝1

𝑚0

𝑚1

)

Where the H matrix is called a Hermite basis matrix.

Figure 4-33: Catmull-Rom calculation method, Source: (Salomon 2011)

In Catmul-Rom case, four points are used to generate the curve on the segment P2P3, i.e.

[P1, P2, P3, P4], where the tangent on P2 is parallel to the P3P1 segment, and the tangent in

P3 is parallel to the P4P2 segment, as shown in Figure 4-33. Based on these settings the

equations is written as follows

𝑝0 = P2, 𝑝1 = P3, 𝑚0 = 𝑠(P3 − P1), 𝑚1 = 𝑠(P4 − P2) , 𝑠 ∈ 𝑅+

P(𝑡) = (𝑡3 𝑡2 𝑡 1) (

2 −2 1 1
−3 3 −2 −1
0 0 1 0
1 0 0 0

) (

P1

P2

𝑠(P3 − P1)

𝑠(P4 − P2)

)

 = (𝑡3 𝑡2 𝑡 1) (

−𝑠 2 − 𝑠 𝑠 − 2 𝑠
2𝑠 𝑠 − 3 3 − 2𝑠 −𝑠
−𝑠 0 𝑠 0
0 1 0 0

) (

P1

P2

P3

P4

)

The tension parameter s is used to change the magnitude of the tangent vectors. The

effect of these changes is shown in Figure 4-32. In Catmull-Rom method, the s parameter

is fixed and has the value (0.5).

For multiple points, [P1,P2,…,Pm], the Catmull-Rom curve is calculated for every

segment Pi,Pi+1 using four points [Pi-1,Pi,Pi+1,Pi+2]. The points’ sets that generate the curves

are overlapped, i.e. [P1,P2,P3,P4], [P2,P3,P4,P5], …, [Pm-3,Pm-2,Pm-1,Pm] .

A problem rises up because of spline algorithm; the smoothed line sometime collides

the near obstacles, and that is because the smoothing algorithm does not check the

generated path if it collide or not, moreover the Catmull-Rom method generate

uncontrollable curves. Because of this problem, the algorithm is re-implemented and the

local-spline is proposed. It smoothes the path around the corners, which means the path

will be kept straightforward, but only sharp edges will be smoothed.

To implement the local spline, two points on the path near the corner are used. These

points are taken far from the corner by d distance, where d is chosen depending on the

87

kinematic and dynamic constraints. These points in addition to the corner point are passed

to the smoothing algorithm to generate a path around the corners. Figure 4-34 shows how

the normal spline collides with walls and how the new local-spline works. However, this

method reduces the collided points, but it still needs more checking for collision.

Figure 4-34: Local spline. The dashed line represents the spline path, the (.-) path represents the local-

spline path

In literatures, many researches deal with the smoothing problem, for example, in (Kito

et al. 2003), the authors proposed a global path generation method. It is based on the

visibility graph, and it re-arranges the path to be as a sequence of sub-goals (middle

points). Then it constructs a graph for the smoothed paths. Another work is presented by

(Yang 2013) for smoothing non-holonomic path planning, they proposed the Spline-based

Rapidly-exploring Random Tree (SRRT) algorithm. It uses the cubic Bezier splines as a

local planner to connect two states, which replace the dynamic simulation of RRT by

parameterization of the cubic Bezier splines. Another research on non-holonomic domain

proposed a real-time method for re-planning the path and smoothing it. The smoothing step

is achieved by selecting appropriate sequences of alternating trims and maneuvers from a

precomputed library of motion primitives (Bottasso et al. 2008).

Testing Environments

We have constructed four testing scenarios. The first one involves a wall has a passage as

shown in Figure 4-35-a. This obstacle evaluates the algorithm efficiency in simple narrow

passage scenario. The second workspace involves two walls where each one has a window

as shown in Figure 4-35-b.

The third workspace has three walls with windows in different locations as shown in

Figure 4-36-a. The last scenario has vertical and horizontal obstacles with different

locations of the windows as shown in Figure 4-36-b.

88

(a) (b)

Figure 4-35: (a) The narrow passage workspace Wall 1, (b) the different windows location workspace

Wall 2

(a) (b)

Figure 4-36: (a) Multi-walls and different windows location workspace, Wall 3, (b) the horizontal and

vertical walls workspace, Wall 4

Results

We have tested six variations of RRT the basic RRT (Ext), Blossom, Vlrrt and the

bidirectional versions of them.

The tests were executed for every method 100 times per scenario. The testing platform

was as follows, a PC equipped with Intel Core2Duo CPU 2.53 GHz, and 2 GB of memory,

and Windows7 64-bit is used. The algorithms have been implemented in Matlab

environment. We consider the RRT failed to reach the goal after 2000 attempts to grow a

branch.

89

Figure 4-37: Boxplots for RRT variations based on an average time of executing

The numerical results in every testing method are shown in Table 4-14. They represent

the average of execution time for successful tries to find a path. In addition, the boxplot

representation is shown in Figure 4-37.

The results show that using bidirectional-trees are better than unidirectional methods

where these methods has the lowest average of execution time to find a result, they also

more probabilistically complete, as shown graphically in Figure 4-38, which shows the

number of failed tries to find a path.

The tested algorithms have some difficulties to find a solution in a narrow passage,

where even the bidirectional approaches failed to find a solution in some tests, as shown in

Figure 4-38-wall1.

Table 4-14: The average execution time for the successful tries of the RRT

 Wall 1 Wall 2 Wall 3 Wall 4

Ext 2.16 1.83 3.17 2.87

2Ext 1.16 0.24 1.29 0.95

Blossom 2.16 1.74 2.76 2.56

2Blossom 1.08 0.26 1.40 0.96

Vlrrt 1.73 1.57 2.80 2.27

2Vlrrt 1.05 0.20 0.99 0.57

0 1 2 3 4 5

Ext

2Ext

Blossom

2Blossom

Vlrrt

2Vlrrt

Wall 1

Execution Time
0 1 2 3 4

Ext

2Ext

Blossom

2Blossom

Vlrrt

2Vlrrt

Wall 2

Execution Time

0 1 2 3 4 5

Ext

2Ext

Blossom

2Blossom

Vlrrt

2Vlrrt

Wall 3

Execution Time
0 1 2 3 4

Ext

2Ext

Blossom

2Blossom

Vlrrt

2Vlrrt

Wall 4

Execution Time

90

Figure 4-38: Unsuccessful attempts to find a path in 100 tests per scenario

The result shows that the bidirectional Vlrrt (2Vlrrt) is better than the other methods,

where the successful branching increases the extension step that makes the tree spreads

faster in free spaces, and performs a fine exploration around the obstacle.

The advance of 2Vlrrt can be inferred also from the boxplot representation of the

number of nodes in the generated path, see Figure 4-39. 2Vlrrt has a small path size that

means the path has less curves, which in consequence indicates that the path is more

straightness and has longer branches than the other generated paths.

 The Vlrrt method’s performance is affected by the increase or the decrease of the

branching length factors. In these tests, the incremental factor is set to add 20% of the

current node’s extension step. The decrement factor, in case of branching fail, is reset to be

as the original extension step (e=0.5).

In the Blossom algorithm, an optimization of the blossom distance (Blossom_Dis)

variable is tested to find the best performance in the given situations. The optimization is

based on the effect of Blossom_Dis on the blossom method. If the distance is very small,

the blossom RRT will behave like the basic RRT, in the opposite, if it set to a large value,

the old branches will block the new ones, which cause a failure to navigate through the

0 20 40 60 80 100

Ext

2Ext

Blossom

2Blossom

Vlrrt

2Vlrrt

Unsuccessful Algorithm - Wall 1

0 20 40 60 80 100

Ext

2Ext

Blossom

2Blossom

Vlrrt

2Vlrrt

Unsuccessful Algorithm - wall 2

0 20 40 60 80 100

Ext

2Ext

Blossom

2Blossom

Vlrrt

2Vlrrt

Unsuccessful Algorithm - wall 3

0 20 40 60 80 100

Ext

2Ext

Blossom

2Blossom

Vlrrt

2Vlrrt

Unsuccessful Algorithm - wall 4

91

small area, windows, and narrow passages. The used value of Blossom_Dis in our test is

set to be equal to e*1.25, where the e is the original extension distance.

Figure 4-39: Boxplot of path size in the tested workspaces

We make the Blossom_Dis optimizing in the Wall2 scenario, and the result is shown in

Figure 4-40, where mean, median and median filter are drawn. The median curve is

smoothed by the median filter, for a better estimation. The best estimation based on the

curve is between 0.2 and 1.5 and the MIN value of median is when Blossom_Dis = 1.1

which corresponding to execution time ~= 0.174.

In the same way, another optimization for the extension step e in two different

workspaces is tested. The results show that the optimal value of Wall 2 scenario is between

1.25 ~ 3.25 as shown in Figure 4-41-b, and the optimal one in the Wall1 located in the

range between 0.5~1, Figure 4-41-a.

20 30 40 50 60

Ext

2Ext

Blossom

2Blossom

Vlrrt

2Vlrrt

Wall 1

Path size
20 30 40 50

Ext

2Ext

Blossom

2Blossom

Vlrrt

2Vlrrt

Wall 2

Path size

20 40 60 80

Ext

2Ext

Blossom

2Blossom

Vlrrt

2Vlrrt

Wall 3

Path size
20 40 60 80

Ext

2Ext

Blossom

2Blossom

Vlrrt

2Vlrrt

Wall 4

Path size

92

Figure 4-40: Bloosom_Dis optimization in Wall2 scenario

(a) (b)

Figure 4-41: Extension step optimization in the wall1 scenario (a), and in the Wall2 scenario (b)

Summary

In this work, we test RRT algorithms in three-dimensional workspaces. In addition, an

algorithm for shortening the path is introduced, and a smoothing-out technique to the

shortened path has been presented.

The results show that using two trees is better than using one tree in all scenarios.

Several failures of finding the path have occurred in the narrow passage scenario.

The 2Vlrrt is better than the other methods in terms of execution time to find the path and

the generated path has fewer points than the others do.

 We conducted several tests to optimize the parameter of Blossom RRT and to

optimize the length of extension; the results were different depend on the environment and

scenario. In the future works, narrow passage environments needs more study to find

efficient methods and avoid algorithm failures.

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

Blossom Dis 0.1:0.1:2

Optimaize Blossom Dis on wall 2

E
x
e

c
u

ti
o

n
 T

im
e

mean

median

filter median

0 1 2 3 4
0

0.5

1

1.5

2

2.5

Extention step 0.1:0.1:4

Optimaize Extension Step on Wall 1

E
x
e

c
u

ti
o

n
 T

im
e

mean

median

filter median

0 1 2 3 4
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Extension Step 0.1:0.1:4

Optimaize Extension Step on wall 2

E
x
e

c
u

ti
o

n
 T

im
e

mean

median

filter median

93

4.1.4 Spatial Guidance to RRT Planner using the Cell-Decomposition

Algorithm

In this work (Abbadi, Matousek, et al. 2014), we made a comparison between the

probabilistic path-planning method, i.e. RRT and the spatial planner, i.e. exact cells-

decomposition algorithm.

A new test is proposed to make some tradeoff between the efficiency of planning using

CD in 2D space and the planning in dynamic space using RRT. The proposed method uses

the path’s points of the CD inside the RRTs planner as a spatial guidance.

Problem formulation and proposed solution

The RRTs as example of randomized algorithms, has a good performance in high

dimension or continuous spaces. In general, the limitation of these algorithms is the

planning in small areas. In cell-decomposition case, it is efficient in low dimensions

planning; however, the building of its graph could be hard in some cases.

The available spatial information and the randomize approaches is combined to

overcome the drawbacks in narrow area. The CD is used to produce a primitive path over

2D or 3D workspace and provide this path to the RRTs planner as bias-path. This approach

will keep some reasonable balance between dynamic and uncertainties from one side, and

optimality, efficiency in spatial planning from the other side. Moreover, the CD can guide

RRTs in a small area.

 In order to show the difference between these two planners we make some tests in two

scenarios. The first one is a simulation of offices and corridors architecture-schema and the

other is the typical issue for RRTs, which is a small area and narrow passage.

Results

We repeat the test 100 times for RRTs in every scenario and take the mean of the results

for the successful tries to reach the goal. In each run, RRTs planner is setup as follows. The

extending length set to (e = 0.5). The tests are repeated based on the RRT iteration, where

the RRT is considered failed to reach the goal after {3000, 5000, 10000, and 100000} tries

to grow a branch. We use Intel Xeon(R) PC with CPU of 2.67 GHz, and 6 GB of memory,

and Windows 7 64-bit. We implement the algorithm in MATLAB environment.

The CD planner uses the Dijkstra’s algorithm for search on the graph. The Dijkstra in

this case has O(log(N)E) time complexity. Where N represents the nodes number and E is

the edges number in the graph.

In the first workspace (building-like scenario), a simulation was lunched for a path

planning, and the results are listed in Table 4-15.

94

The results show the generated nodes number in both CD and RRT cases. In CD case

the nodes number represents the number of graph’s nodes, which is constant. While in

RRTs case, the node numbers are taken as an average of the results in a 100 times of

repeated tests.

The results show that the RRT algorithm is probabilistically complete when the iteration

approaching 10000 in this workspace. In addition, the results show that CD algorithm is

faster than RRTs in complete case by 7.6032 times.

(a) (b)

Figure 4-42: Path planning in building-like workspace using (a) RRT, (b) CD algorithm

Table 4-15: Test results of building-like scenario, the numbers in time fields (), represent the percent of

RRT’s time comparing to CD’s time

Nodes

number

Preparing

Time

Planning

Time

Total time

when

success

Path

Length

Time

when

fail

Successful

CELL Dec. 33 0.3152 0.0056(1) 0.3208(1) 40.92 - 100 %

RRTs(3K) 478.17 0 1.85(331.03)
1.85

(5.77)
43.46 2.0520 12%

RRTs(5K) 547.17 0 2.46(493.17) 2.46(7.67) 41.77 3.2539 90%

RRTs(10K) 540.48 0 2.44(435.55) 2.44(7.60) 42.71 - 100%

The preparing time is the time required to generate the graph in CD. However, it is not

required in the RRT case. We can infer based on the planning time that the CD is an

efficient planner comparing to RRTs in 2D workspace for non-holonomic movements. In

consequence, for repeated task, the CD can be 436 times faster than RRTs. In addition, the

graph size in the CD is constant, which makes it applicable for real-time planning.

Figure 4-42 shows the testing workspace, which consists of rooms and corridors. The

first part Figure 4-42-a shows the solution founded by RRTs planner. While Figure 4-42-b

95

uses the CD planner to find a path. The generated cells are shown graphically in Figure

4-43-a, and the corresponding CD’s graph is also represented graphically in Figure 4-43-b.

(a) (b)

Figure 4-43: (a) The generated calls using CD, (b) the CD’s graph of adjacency in building-like

workspace. The shaded nodes represent an example of a path between cell 12 and cell 3

(a) (b)

Figure 4-44: Path planning in narrow passage workspace using (a) RRT, (b) CD, and the generated cells

In the second scenario, the narrow passage problem is simulated. The result is shown in

Table 4-16. It indicates that the RRT records some failures, even when the iteration-limit

set to 100000 iterations.

This workspace is presented in Figure 4-44, where the first figure (a) uses the RRT

planner to find a solution. In (b) the generated cells using CD algorithm are shown, in

addition to the path between the initial and goal positions, which lay on the cells (2 and

15). The generated graph is shown in Figure 4-45, where the shaded cells represent the

path between cells 2 to 15.

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13 14 15

16

17

18

19

20

21

22

23

2425

26
27

28

29

30

31

32

33

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 12

 13

 14

 15

 16

 17

 18

 19 20

 21

 22

 23

 24 25

 26

 27

 28

 29

 30

 31

32 33

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

17

18

19

96

Table 4-16: Test results in the narrow passage scenario, the numbers in time fields (), represent the

percent of RRT’s time comparing to CD’s time

 Nodes
Preparing

Time

Planning

Time

Total time

when

success

Path

Length

Time

when

fail

Successful

CELL Dec. 19 0.2 0.003(1) 0.203(1) 24.33 - 100%

RRTs(3000) 554.65 0 1.19(441.48) 1.19(5.88) 22.14 2.13 31%

RRTs(5K) 629.66 0 1.59(587.22) 1.59(7.82) 23.17 3.24 41%

RRTs(10K) 644.9 0 1.80(668.11) 1.80(8.90) 23.08 5.82 44%

RRTs(100K) 729.07 0 6.39(2368.40) 6.39(43.90) 23.00 50.44 67%

In order to enhance the RRT planner, a new method was proposed. It tries to exploit the

spatial information that provided by CD and guide the RRT growth toward the possible

path. The CD’s path points are considered as bias points to the RRT trees as shown in

Figure 4-46, where the dots represent these points.

Figure 4-45: The generated graph by CD algorithm in the narrow passage workspace. The shaded nodes

represent the corresponding path in the graph between initial and goal cells

 .

Figure 4-46: Path planning using RRTs with a bias toward CD path points, the dots represent points on

CD path

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14
15

16

17

1819

97

We set the RRTs planner to bias toward these points in the probability of (0.2). The

results are listed in Table 4-17, and Table 4-18 for both building-like and narrow passage

workspaces, respectively.

Table 4-17: Test results in the building-like workspace, the bias to CD-path’s points is equal to 20%,

and the numbers in () in planning time fields represent the time reduction percent using the bias

1st scenario
Nodes

Num.

Planning Time

(without bias)
Planning Time Successful

Successful

(without bias)

RRTs(3000) 428.58 1.8538 1.8189 (-1.9%) 64% 12%

RRTs(5000) 447.1 2.4594 2.0266 (-17.5%) 100% 90%

RRTs(10000) 463.31 2.4391 2.1459 (-12%) 100% 100%

Table 4-18: Test results in narrow passage workspace, the bias to CD-path’s points is equal to 20%, and

the numbers in (), in planning time fields represent the time reduction percent using the bias.

1st scenario
Nodes

Num.

Planning Time

(without bias)
Planning Time Successful

Successful

(without bias)

RRTs(3000) 297.10 1.1920 0.5676(-52.4%) 86% 31%

RRTs(5000) 292.72 1.5855 0.5512(-65.2%) 86% 41%

RRTs(10000) 299.96 1.8039 0.6178(-65.8%) 86% 44%

In comparison with the previous results, the bias enhances the RRT algorithm’s

completeness significantly in all cases. Also in the narrow passage scenario, the time of

planning decreases about 52% in worth case while the completeness increases. The success

of the planner in a narrow passage workspace using spatial guidance remained at 86%. It is

because of another drawback of RRTs, which is the branch blocking. That means the tree’s

nodes are located near to the narrow area’s gate and they take some position where the new

branch cannot pass to the passage without colliding with obstacles. The solution for this

case can be made by choosing a smaller extension distance. However, that generate a

larger number of nodes to construct the tree, which means it increases the computation and

memory cost.

Summary

In this work, we test CD algorithm, which construct an adjacency graph of the free

workspace cells, in addition, to the RRT planner. The results show that the CD planner

finds a path efficiently in static and known environments. The CD is faster than the RRT

planner in preparing and planning a path in simple workspace. We test the idea of

introducing the spatial information to the RRT planner and it gives a good result. It

improves the completeness and the planning time.

This work was a first step to build a hybrid planner, which works efficiently in

continuous, high dimension space using the available knowledge and spatial information,

98

and overcome the drawback of randomized sampling-base algorithms. The future work

will focus on using available information to speed up the complex motion planning for

robots in uncertainty and dynamic environments.

4.1.5 Collided path replanning in dynamic environments using RRT and

Cell decomposition algorithms

In this work, the cell decomposition algorithm is used to find a spatial path in preliminary

static workspaces, and then the RRT is used to validate this path in the actual workspace

(Abbadi, Prenosil 2015b). Two methods are proposed to enhance the omnidirectional

robot’s navigation in partially changed workspace. First, the planner creates RRT tree and

biases its growth toward the path's points in ordered form. The planner reduces the

probability of choosing the next point if a collision is detected, which increases the RRT

expansion in the free space. Second method uses a straight planner to connect the CD-

path's points. If a collision is detected, the planner places RRT trees in the both sides of

collided segment. The proposed methods are compared with others approaches. The

simulation shows that the proposed methods have better results in terms of efficiency and

completeness.

(a) (b)

Figure 4-47: (a) The drawback of ACD in dynamic environments, (b) the drawback of RRT in narrow

passage and small regions

Proposed Methods

In this work, the RRT and approximation cell decomposition (ACD) algorithms are

combined together in order to exploit the advantages of each of them. The new planners try

to overcome the drawbacks, which effect the performance of the navigation process

significantly, by complementing these two approaches.

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7

8

9

10

S

G

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7

8

9

10

99

The RRT planner has relatively high tolerance to obstacles shapes and workspace

changes. This feature is missing in the ACD planner as shown in Figure 4-47-a. However,

The RRT is not efficient in small areas and narrow passage as shown in Figure 4-47-b,

unlike the ACD planner, which does not face this problem. Based on that, the efficient

spatial planner, ACD, is used to plan a primary path in stationary workspace. Then, this

path is used to guide the RRT growth.

The RRT planner validates the ACD’s path when a query is established in the actual

workspace. If a collision is detected due to the change in the workspace, the planner re-

plans the path locally through the changed regions. Figure 4-48 shows the generated path

using this principle.

Two approaches have been proposed to benefit from this combination. These planners

focus on the enhancement of navigation problem for omnidirectional robots in partially

dynamic workspace. In next sections these two proposed methods is discussed in more

details.

Figure 4-48: The generated path using the combination between ACD and RRT

a. RRT Validator Planner

The RRT validator uses ACD’s path as a guidance to the RRT tree’s growth. It considers

the CD-path’s points as an ordered set, and directs the bias toward these vertices. The RRT

trees branching toward these set in the same order, point by point. In the initial state, the

probability of choosing the next point of the path is set to the value of 100%. If a collision

is detected, then this probability is reduced in order to allow the RRT explores the free

space and attempts to reconnect to any point of the ordered set.

If it reconnects, then the probability to choose the next point is reset again to the value

of 100% to force the planner follows the original ACD’s path once again.

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7

8

9

10

100

This strategy forces the planner to follow the guiding path when it is possible, and at the

same time, it gives the planner a freedom to find an alternative local path to the collided

segments.

In our tests, two RRT validators are used to validate the path. The first one rooted at the

initial position and the second one rooted at the goal position. They try to follow the ACD

path, or find an alternative local path. The RRT trees are shown in Figure 4-49-a, where

they try to follow the ACD’ path (the dotted line).

(a) (b)

Figure 4-49: Examples of the proposed methods. The dotted line represents the ACD path in stationary

workspace. (a) The RRT validator method, which creates two RRT trees from the initial and the goal

location. (b) The local RRTs method, which creates nine local RRT trees

b. Local RRT Planners

The second proposed planner uses simple straight-line planner to connect the ACD path’s

points and test the collision. The planner tracks the valid points of the path and creates

sequences of these points. In case that all points are valid, then the planner returns these

points as a solution. In the other case when the workspace is changed, and a collision

happened, the planner breaks the original path sequence in the collided locations and

rebuilds sequences of the continuance valid points. It also excludes the points, which locate

in the obstacle areas.

Each of these sequences is associated with RRT tree. The trees later on explore the

space freely with small bias toward the other tree’s nodes. If two trees are near to each

other, they are merged to form one tree. When all trees are merged, they form a single tree,

which include the initial, and goal locations.

In this planner, our strategy is to generate augmented local RRTs, in order to navigate

around the new obstacles locally. Figure 4-49-b shows the local RRTs planners method in

1

6

8

2

3

4

5

7

9

101

simulation. In this example, it creates nine local RRT trees based on the original path,

which is generated in the stationary workspace.

Tests and Results

The proposed approaches are tested in two different workspaces as shown in Figure 4-50.

The first one represents an office with one route between the rooms, and the second one

represents offices, which have two possible routes between them.

(a) (b)

Figure 4-50: Testing workspaces, (a) one route office between rooms (WS1), (b) multi routes between

offices (WS2)

(a) (b)

Figure 4-51: Example of RRT path using (a) Local RRTs method, (b) RRTs validator method, in

partially changed workspaces. The bold-green lines represent the shortened RRT path in both tested

workspaces. The boxes represent the new obstacles

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7

8

9

10

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7

8

9

10

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7

8

9

10

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7

8

9

10

102

The robot in this work is considered as a holonomic point translates in the workspace.

The results of the proposed methods are compared to the other methods, i.e. the basic RRT

algorithm, Goal Bias RRT, and the bias toward the other trees. Figure 4-51 shows an

example of RRT path for the proposed methods, the local RRTs method (a), and RRTs

validator method (b) in the testing workspaces.

a. Testing Parameters

The bias values, which are given to the compared methods, are set as shown in Table 4-19,

where the basic RRT chooses a random point without any bias. The goal-bias RRT directs

the growth of the tree toward the goal location by selecting this location in probability of

10%. In the tree’s nodes bias, the RRT chooses a point of the others trees by the

probability of 30% that force the trees to merge more quickly.

Table 4-19: The probability of choosing next points (bias value)

Method Bias Value

RRT 0

Goal Bias 0.1

Tree Node Bias 0.3

RRTs validator (valid point) 1

RRTs validator (Collison) [0.2,0.1,0.7]

Local RRTs 0.3

In our proposed methods, the bias value of the validator RRTs is set to 100% when no

collision occurred. Else, the bias value is set as follows, it has the value of 20% toward the

next valid point in the ordered set, in addition, to the value of 10% bias toward any other

points in those points set. The planner in this case has the probability of 70% to explore the

workspace freely and biases the growth toward a randomly chosen sample.

The last method, the local RRTs approach, uses the bias toward the other trees by the

value of 30%.

The simulation repeated 100 times and the average of the successful attempts are taken

for results comparison. The results include the execution time, the number of RRT

iterations, which is corresponding to the number of RRT branching attempts, and the

number of successful attempts to find a path.

The probabilistically completeness is estimated using the successful attempts result.

While the efficiency is estimated using the time of execution and iterations results. The

time of execution could be varied significantly based on the hardware and code

optimization, while RRT iteration is independent of HW and the programmers skillful.

The ACD resolution is set to be 0.2 unit. Moreover, the ACD’s path points are

generated in ordered form, from the initial to the goal locations. They are constructed using

the initial and the goal points, the free cells’ centers, and the barriers’ midpoint between

the consequence cells. We use the Dijkstra’s algorithm to search in the ACD’s graph. RRT

103

parameters are set as follows; the extension step is equal to 0.3 unit. And, the bias

probability is fixed at 100% for next path’ points in case of no collision is detected.

The reduced bias is divided into three values when the path is collided within obstacles.

1- The bias toward the next valid point is set to a value of 20%. 2- The bias toward other

path’s points is given the value of 10%. 3- The rest of the bias is relaxed to allow the

planner chooses random samples freely. The RRT planner considered as failed if it cannot

find a path after 2000 tries of branching.

b. Results and Discussions

In the first workspace, new obstacles are scattered in the original workspace. They are

positioned to collide within the ACD path and add more difficulty to navigation process

through the changed workspace. The workspace changes are shown in Figure 4-52-b,

where the boxes represent the new obstacles. The ACD path is shown as a solid line

between the initial and the goal locations. The cycle markers represent the bias points.

ACD algorithm approximates the free cells as shown graphically in Figure 4-52-a, the path

in this case is produced using the Dijkstra searching method in the ACD adjacency graph.

Figure 4-53, shows the generated path using RRT validator (a), and the local RRT (b)

methods.

The numerical results are shown in Table 4-20, where the proposed methods show more

probabilistically completeness than the other methods do.

(a) (b)

Figure 4-52: Office-like workspace (WS1); (a) cell decomposition approximation, (b) new obstacles,

ACD path represented by the solid line, and the bias points represented by cycle markers

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7

8

9

10

S

G

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7

8

9

10

S

G

104

(a) (b)

Figure 4-53: (a) The generated RRT path using RRT validator method, (b) the generated RRT path

using local RRTs method in WS1 workspace, the red-bold line represents the original RRT path, the

green-dotted line represents the shortened path, the bias points represented as (o) markers

Table 4-20: The result of the tested methods in WS1

Method Mean Time Mean Iteration Success

RRT 1.03 1137.11 96

Goal Bias 1.12 1180.57 87

Tree Node Bias 1.23 1365.34 80

RRTs validator 0.45 270.19 100

Local RRTs 0.19 95.20 100

The Local RRT trees method gives the best results; it has the lowest execution time, and

the lowest iteration to find a path. Moreover, the RRT validator method gives better results

than the other competitor does. Figure 4-54-a sums up the iteration results for the first

workspace WS1 using the boxplot representation.

(a) (b)

Figure 4-54: RRT iteration boxplots for WS1 (a) and WS2 (b)

S

G

S

G

0

200

400

600

800

1000

1200

1400

1600

1800

2000

RRT GoalBias TreeBias RRTs validator Local RRTs

Office like workspace; WS1

0

200

400

600

800

1000

1200

1400

1600

1800

2000

RRT GoalBias TreeBias RRTs validator Local RRTs

Offices like workspace; WS2

105

In the second workspace, the partially changes are introduced by scattering new

obstacles in the stationary workspace. The obstacles collide the ACD path and produce

more narrow passages. Figure 4-55-b shows the changes in the workspace, where the

obstacles are represented by the boxes. The ACD path is shown in the figures as a solid

line between initial and goal locations, and the bias points, which are generated on this

path, are shown in the figures as cycle-markers. The approximation of the free workspace

using ACD is shown in Figure 4-55-a. And the generated path using RRT validator, and

the local RRT methods are shown in Figure 4-56.

Table 4-21: The result of the tested methods in WS2

Method Mean Time Mean Iteration Success

RRT 0.92 817.13 96

Goal Bias 0.98 871.06 94

Tree Node Bias 1.076 1005.10 86

RRTs validator 0.62 332.07 100

Local RRTs 0.24 117.17 100

The numerical results are presented in Table 4-21. As shown in this table the proposed

methods give the best results; they are probabilistically complete as it is inferred from the

success rate result. The Local RRT trees method gives the best results in terms of

efficiency; it has the lowest execution time, and the lowest iteration average. Figure 4-54-b

condenses the iteration results for WS2 using the boxplot.

Summary

In this work, the approximation cell-decomposition algorithm (ACD) is combined with the

RRT planner in order to enhance the omnidirectional robot navigation in partially changed

workspace. The ACD finds a spatial path in preliminary and stationary workspaces, and

then the RRT is used to validate this path in the actual workspace.

Two methods have been proposed in this work. First, the planner creates instances of

RRT which bias toward the path's points in ordered form. It updates its bias value based on

the collision detection information. The Second method uses a straight-line planner to

connect path's points and creates local RRT trees on both sides of the collided segment of

the path. The proposed methods compared with other approaches and the simulation shows

that they give the best results in terms completeness, while the local RRTs method gives

the best result in terms of efficiency in both testing workspaces.

106

(a) (b)

Figure 4-55: Offices-like workspace (WS2); (a) approximation cell decomposition, (b) new obstacles,

ACD’ path represented by the solid line, and the bias points represented by cycle markers

(a) (b)

Figure 4-56: (a) The generated RRT path using RRT validator method, (b) the generated RRT path

using local RRTs method in WS2 workspace, the red-bold line represents the original RRT path, the

green-dotted line represents the shortened path, the bias points represented as (o) markers

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7

8

9

10

S

G

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7

8

9

10

S

G

G

S

G

S

107

5 EXPERT SYSTEM

Expert system (ES) is “An intelligent computer program that uses knowledge and inference

procedures to solve problems that are difficult enough to require significant expertise”

[prof. Feigenbaum].

Expert systems are designed to solve complex problems by reasoning about knowledge

like an expert, they do not follow the procedure way as in conventional programming case,

rather they act as an expert to solve a problem in a particular domain. ES processes the

information in symbolic form, copes with errors in data, and with imperfect rules of

reasoning. In addition, ES can answer why and how questions reasonably well, and

explains how it arrived at a particular (Sasikumar et al. 2007; Negnevitsky 2005).

The terms of expert system and knowledge-based system are used interchangeably,

even though there are small differences between them. These differences are based on the

inference methods, data storage, and knowledge collecting methods.

The expert systems are used in many applications, e.g. interactive application, faults

diagnostic, medical decision support, educational application, knowledge management,

resource planning, controls, and many other fields.

ESs have many advantages, they are used to capture the scarce expertise, increased

productivity, and quality, decreased decision-making time, reduced downtime via

diagnosis, knowledge transfer, integration of several experts' opinions, and working with

uncertain information.

User

Inference Engine

Knowledge-base

Facts

Required facts,

Advise, and solution

Figure 5-1: Expert system components

108

5.1 Expert system structure

The expert system contains two main components, the knowledge base module, and the

inference engine module. Other parts can be added based on the application (Sajja et al.

2010). For example, user interface, knowledge engineer interface, and explanation

facilities, etc. Figure 5-1 shows the basic expert system components.

5.1.1 Knowledge base

The knowledge is a theoretical or practical understanding of a specific area. The

knowledge base in expert system contains the “domain-specific knowledge,” which is

required knowledge to solve a problem.

 The knowledge can be represented in many ways, e.g. production rules (if-then rules),

clausal logic, Object-Attribute-Value Triples, semantic networks, and frame

representations.

Rule-based representation

If-then rules are one of the most common forms of knowledge representation that used in

expert systems. Most experts are capable to express their knowledge in the form of rules.

Any rule consists of two parts: the IF part, called the condition (premise or antecedent),

which is evaluated based on what is currently known about the problem; and, the THEN

part, which is called the action (conclusion or consequent). For example,

IF pathFailure > 3 THEN pathWeight is 0

IF pathExecTime is High, and pathFailure is High THEN collideTendency is High

In the first example, the variables in IF-THEN statements are crisp variables

(constants); in this case, if the knowledge about these variables is not certain, then a degree

of certainty is attached to each rule. These degrees of certainty are called certainty factors.

In the second example, the variables have symbolic value. In this case, uncertainty in

variables’ values, beside the certainty factor method, can be handled using fuzzy expert

system. The fuzzy expert system is discussed in a separate section.

Clausal Logic statements representation

The clausal logic statements are similar to rules-based structure. However, the expressive

power of logic based knowledge representation languages is much better than that in if-

then rules.

A clause is formed by combining a number of literals using connectives. The

permissible connectives are (← implication), (and), and (or). A clause begins with a

consequent-part, followed by an implication and then an antecedent (Sasikumar et al.

2007).

109

Object-Attribute-Value Triples representation

The 3-tuple representation is a very simple form. It consists of three parts, for example

- Path Length 10

- Path nVertices 23

- RRT execTime 0.5sec

The drawbacks of these structures are it repeats the name of the object many times, in

addition, this representation does not reflect the priority between these statements, and the

data structure.

Semantic networks representation

The basic idea behind semantic networks is to link the related concepts together. A

semantic network consists of nodes representing concepts. The concepts, which are

semantically close to each other will be closer to each other in the network, while concepts

that do not have direct connection will be far apart. The path in this network between two

concepts represents how they related, and the length of the path indicates how these

concepts are close to each other.

A semantic network differs from a graph in that there is meaning (semantics) associated

with each link. This semantics comes usually from the fact that the links are labelled with

English words (Sasikumar et al. 2007).

Frames representation

The frame is a data structure; it represents a cluster of facts and properties that describe an

object in detail. A knowledge representation using frames can be thought as a network of

nodes and relations, where each node represents a frame.

Frames provide a natural way for the structured and concise representation of

knowledge. The frame combines all necessary knowledge about a particular object or

concept in a single entity. They are an application of the object-oriented programming in

the expert systems domain (Sasikumar et al. 2007).

In the rule-based system, a set of rules representing the knowledge is used for problem

solving. Each rule captures some heuristic of the problem, and each new rule adds some

new knowledge and thus makes the system smarter. The rule-based system can easily be

modified by changing, adding, or subtracting rules.

In a frame-based system, the problem is viewed in a different manner, where the overall

hierarchical structure of the knowledge is decided first. The classes and their attributes are

identified, and hierarchical relationships between frames are established. The architecture

of a frame-based system should provide a natural description of the problem (Negnevitsky

2005).

110

5.1.2 Inference Engine

The inference engine is a part of ES, it tries to derive new information about a given

problem using the knowledge base. In rule-based systems, it is used to decide which rules

should be executed based on the satisfaction of the antecedents and priorities of the rules.

Inference engines in the rule-based systems use different strategies to derive the goal. The

most common strategies are the forward chaining, and the backward chaining (Sasikumar

et al. 2007). The expert systems can use either one of these strategies or a combination of

them.

Forward chaining is a data driven reasoning. It starts from antecedent parts of the rules,

and evaluates these rules based on the available facts, until the goal is reached or the

inference process requires other facts to find a goal. Generally, this method is used in

applications such as monitoring, controlling, and prognosticating problem.

Backward chaining is the goal-driven reasoning, where, the expert system has the goal

(a hypothetical solution) and the inference engine attempts to find the evidence to prove it

(Negnevitsky 2005). This method is good for problems like diagnosis problems.

5.2 Fuzzy Expert System

Fuzzy or multi-valued logic was introduced in 1930s by Jan Lukasiewicz. He studied the

mathematical representation of fuzziness, and introduced a logic that extended the range of

truth-values to all real numbers in the interval between 0, and 1. He used a number in this

interval to represent the possibility that a given statement was true or false. Then, in 1937,

Max Black, a philosopher, published a paper called ‘Vagueness: an exercise in logical

analysis’ where, he defined the first simple fuzzy set and outlined the basic ideas of fuzzy

set operations. In 1965 Lotfi Zadeh, published his paper ‘Fuzzy sets’, where he

rediscovered the fuzziness. Zadeh extended the work on possibility theory into a formal

system of mathematical logic, and introduced a new concept for applying natural language

terms. This new logic for representing and manipulating fuzzy terms was called fuzzy logic

(Negnevitsky 2005).

Fuzzy-logic deals with approximate reasoning rather than fixed and exact one. Fuzzy-

logic handles the concept of partial truth, where the truth-value may range between

completely true and completely false.

In fuzzy rules-based inference system, e.g. Mamdani method, the input data are

converted into fuzzy values using fuzzification procedure. Then, the fuzzy rules are

evaluated, these rules determine the inputs-outputs relations and the system behavior.

The output of each rule is a fuzzy set. In order to obtain a precise solution, not a fuzzy

one, the outputs of all rules are aggregated into a single fuzzy output, and then it is

defuzzified into a single number. Figure 5-2, shows the structure of Mamdani inference

method.

111

Figure 5-2: The basic structure of Mamdani fuzzy inference, source (Negnevitsky 2005)

112

The linguistic variables are used to represent the input and output fuzzy-sets. The range

of possible values of a linguistic variable represents the universe of discourse of that

variable. For example, in the following rules

IF RegionState is Changed AND CollisionRate is Low THEN BiasToReg is High

IF RegionState is Changed AND CollisionRate is High THEN BiasToReg is Low

The universe of discourse of the linguistic variable might have a value such as

{Changed, Unchanged, …. }, in the RegionState variable case. It may include fuzzy

subsets as Low, Medium, and High as in CollisionRate variable.

The fuzzy reasoning, in general, includes two parts: evaluating the rule antecedent, and

applying the result to the consequent of the rules. In classical rule-based systems, if the

rule antecedent is true, then the consequent is also true. However, in fuzzy systems, where

the antecedent is a fuzzy statement, all rules are evaluated and the uncertainty is expressed

using the fuzzy sets. A typical process to develop the fuzzy expert system incorporates the

following steps (Negnevitsky 2005):

1. Specify the problem and define linguistic variables.

2. Determine fuzzy sets.

3. Elicit and construct fuzzy rules.

4. Encode the fuzzy sets, fuzzy rules, and procedures to perform fuzzy inference into

the expert system.

5. Evaluate and tune the system.

5.3 Expert System application in motion planning problems

The experience of robots when they move from one location to another one can be stored

and then used by ES to guide the planner.

Many attempts introduced to improve the robotic motion planner using the previous

experience (Berenson et al. 2012; Lien et al. 2009; Martin et al. 2007; Zucker et al. 2007,

2008 ; Atkeson et al. 2003; Stolle et al. 2006).

Figure 5-3 shows a framework called “Lightning framework” which utilizes this idea. It

uses the old success path, when a new query is established, both modules retrieve-repair

(RR) and planning from scratch (PFS) are started simultaneously, and the first path

produced by either module is executed on the robot while the other module is stopped.

After generating a new path, a library manager decides whether to store that path or not,

based on the computation times of the two modules and the generated path’s similarity to

the retrieved one (Berenson et al. 2012).

113

Path
Library

Library
Manager

Retrieve
Path

Repair
Path

Smoother/
Optimizer

Planning From Scratch (PFS)

query

Path

stop
To robot

Path

Figure 5-3: Diagram of the lightning framework. Source: (Berenson et al. 2012)

Fuzzy expert system is used in robotics applications frequently as a fuzzy controller to

steer robots based on sensor data, also in motion-planning, navigations problems, and in

location estimation (Aguirre et al. 2000; Sharef et al. 2010; Petr Krcek et al. 2004;

Montaner et al. 1998; Driankov et al. 2001). An important problem in autonomous

navigation is the need to cope with the large amount of uncertainty that is inherent of

natural environments, which is one of fuzzy systems’ strong side.

 The author in (Saffiotti 1997), uses fuzzy logic to make an adequate tool to address the

problem of uncertainty. They focus on designing robust modules and coordinate the

activity between them. They use data from several sensors, and integrate the high-level

reasoning with the low-level of execution.

Some researches combined the fuzzy system with the other motion planning techniques,

for example the in (Jaradat et al. 2012), the fuzzy-based potential field method is presented

to autonomous mobile robot motion planning. They used Mamdani and TSK methods to

develop the total attractive and repulsive forces acting on the mobile-robot’s workspace.

These methods use a fuzzy logic expert system to provide the robot with the most

appropriate heading toward a stationary or moving target. The attractive force modeled

using expert if–then rules based on the position and the velocity of the robot with respect to

the target.

A new perspective, which utilizes a knowledge-driven approach for path planning, is

studied in (Chen et al. 2014). The concept of relative state tree (RST) is proposed to

develop an incremental learning method based on a path planning knowledge base. The

knowledge library established by offline or online learnings techniques. As the robot plans

online, its movement is guided by the optimal decision that is retrieved from the library

based on the information that matches mostly the current environment.

ES in our work is adapted and utilized to evaluate the free regions in the workspace and

guide the planner to possible routes in the workspace. It uses the workspace map, and the

experimental results analysis, e.g. collision tendency, for reasoning about these regions.

114

5.4 Contribution, Tests and Results

In the next section, we use the fuzzy expert system to bias the sampler module in the

motion planner. The sampler drew samples from free regions in a different density, based

on the region evaluation. The evaluation of the free region is calculated using fuzzy rule-

based expert system (Abbadi et al. 2015).

5.4.1 Hybrid rule-based motion planner in cluttered workspace

In this work, two new planners have been proposed. They depend on rules-based adviser.

Each of these hybrid planners is composed of two-layers to enhance motion planning in

heterogeneous, cluttered, and dynamic workspace. The first layer uses the exact cell

decomposition algorithm, in order to find the free regions and the graph of adjacency in

simple, static, and 2D workspace. Then, the second layer utilizes the rapidly exploring

random trees approach, to find a path in cluttered and dynamic workspace. The

information about free regions from the first layer and the exploration information from the

second layer are combined to guide the growth of RRT trees. The combination is done

using expert rules-based adviser that classifies the free regions and update their bias-

weights.

The adviser of the first planner biases and pulls the trees growth toward the boundary

areas between explored and unexplored regions. While the adviser of the second planner

uses the collision information, and fuzzy rule-based set, to bias the trees growth toward

low collision areas around the boundaries of the explored regions.

These planners exploit and combine the advantages of the exact cell decomposition in

simple, and low dimensional workspace, and the advantages of RRTs, which have a

relatively higher tolerance to the changes in the environments.

The planners are tested in stationary workspaces, minor changes, and major changes

scenarios. The proposed methods have been compared to other approaches, and the

simulations results show that the proposed methods have better results, in terms of

completeness and efficiency.

Proposed methods

The planner consists of two layers, the first one uses the trapezoidal cell decomposition

method in static workspace to find the adjacency graph of free cells, while the second layer

uses RRTs algorithm to find a path in the same workspace, but after new cluttered and

dynamic obstacles are added. In order to enhance the RRTs ability to find a path, rules-

based advisers have been proposed also. The function of this adviser is to update the

weights of free regions in order to pull the trees growth toward the most important regions

in the workspace.

115

The rules-based adviser in first planner uses the adjacency graph information and RRTs

nodes’ location to update the regions’ weight. The rules-based adviser in second planner

uses in addition to former information the collision information in the workspace regions.

These resources of information are combined to bias the exploration toward the most

important and low collision areas.

The adjacency graph contains information about the free regions and the relations

between them, while the information that comes from RRTs contains the location of trees'

nodes in the free areas and the difficulty to reach these regions.

To formulate this procedure the region state variable (stater) is defined to take one of

these four values [boundary, neighbor, expanded, and far]. The value of this variable

depends on the existence of any valid RRT node inside the corresponding region r, or in its

neighbors. The formulation of this proposal is described as follows.

R is the set of all free regions in the workspace.

Sr is a set of all samples in region r.

Nr is a set of all regions neighbor to region r.

RRTree is a set of all samples, which are considered as valid node in RRT trees.

For any region r the variable stater takes the value of far when the region and its

neighbors do not contain any sample belongs to RRT. It takes the value of neighbor when

at least one sample of RRT is located in r's neighbor regions but not in r itself. The stater

takes the value of boundary when at least one sample of RRT is located in region r and

there is still at least one neighbor not explored yet. Lastly, the stater takes the value of

expanded when at least one sample of RRT is located in region r and all neighbors are

explored; i.e. their state is expanded or boundary. The formulation of these values and

conditions are listed in Figure 5-4.

∀𝑟 ∈ 𝑅: 𝑠𝑡𝑎𝑡𝑒𝑟 = {

 𝑓𝑎𝑟, (𝑅𝑅𝑇𝑟𝑒𝑒 ∩ 𝑆𝑟 = ∅)(∀𝑡 ∈ 𝑁𝑟: 𝑅𝑅𝑇𝑟𝑒𝑒 ∩ 𝑆𝑡 = ∅)
 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟, (𝑅𝑅𝑇𝑟𝑒𝑒 ∩ 𝑆𝑟 = ∅)(∃𝑡 ∈ 𝑁𝑟: 𝑅𝑅𝑇𝑟𝑒𝑒 ∩ 𝑆𝑡 ≠ ∅)
 𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦, (𝑅𝑅𝑇𝑟𝑒𝑒 ∩ 𝑆𝑟 ≠ ∅)(∃𝑡 ∈ 𝑁𝑟: 𝑅𝑅𝑇𝑟𝑒𝑒 ∩ 𝑆𝑡 = ∅)
 𝑒𝑥𝑝𝑎𝑛𝑑𝑒𝑑, (𝑅𝑅𝑇𝑟𝑒𝑒 ∩ 𝑆𝑟 ≠ ∅)(∀𝑡 ∈ 𝑁𝑟: 𝑅𝑅𝑇𝑟𝑒𝑒 ∩ 𝑆𝑡 ≠ ∅)

Figure 5-4: The stater variable values and their Conditions

Adviser's rules in planner 1

IF stater is far

IF stater is expanded

IF stater is boundary

IF stater is neighbor

THEN weight is veryLow

THEN weight is low

THEN weight is high

THEN weight is veryHigh

Figure 5-5: The adviser's rules of "bias toward boundaries" planner

Based on these values, the regions’ weight are updated. Figure 5-5 shows the rules-

based adviser in the first planner. After each iteration of RRTs, the regions’ weight are

116

updated to identify the most important ones. The weight variable could take one of these

values [veryLow, low, high, veryHigh]. These values are translated into RRT bias. The

RRTs is directed to grow trees to the boundaries of explored areas, by making the neighbor

regions having the highest weights, and the boundary regions have less or equal

importance. Figure 5-6 shows the RRT growth and the regions classifications.

In explored areas, the algorithm blocks RRT trees from branching or selecting a new

node inside them. However, a small amount of bias toward these regions is kept to avoid

the situation where the planner works in small regions and block itself.

Figure 5-6: RRT growth and rules-based classification of free Regions; a: far regions, b: neighbor
regions, c: boundary regions, d: expanded regions, S represents the initial position, G represents the goal

position, and the blue regions represent the obstacles

The trees grow and follow the free areas, and do more work to navigate through local

workspace instead of the whole workspace. If a region is obstacle-free, then the planner

passes through it rapidly, if not the RRTs tries to navigate around the local obstacles.

Adviser's rules in planner 2

IF stater is far

IF stater is expanded

IF stater is boundary AND collisionRate is low

IF stater is boundary AND collisionRate is high

IF stater is neighbor AND collisionRate is low

IF stater is neighbor AND collisionRate is high

THEN weight is veryLow

THEN weight is low

THEN weight is high+

THEN weight is high-

THEN weight is veryHigh+

THEN weight is veryHigh-

Figure 5-7: The adviser’s rules of fuzzy bias planner

The second proposed method uses fuzzy rules-based to update the weights as in

previous version, in addition, the collision information is considered. The new fuzzy

variable collisionRate is defined. This variable takes the values of [low, high]. The

information about the collision is collected during the execution.

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7

8

9

10

 1(b)

 2(a)

 3(b)

 4(c)
 5(d)

 6(c)

 7(b)

 8(b)

 9(a)

10(a)

11(a)

12(a)

13(a)

14(a)

15(a)

16(a)

S

G

117

The influence of collision rate is restricted to the most important areas. The weight

variable in this case takes a value of [veryLow, low, high-, high+, veryHigh-, veryHigh+].

For a high value of collision rate, the weight of the boundary and Neighbor regions is

reduced and the exploration is pulled toward more relax regions. Figure 5-7 shows the

Rules-based for this fuzzy planner.

(a) (b)

(c) (d)

Figure 5-8: The testing scenarios. (a) Office-like workspace (WS1), (b) WS2, (c) WS3, (d) WS4

Simulations and Results

The tests are made in four workspaces to simulate the holonomic robots movements in

offices and cluttered or crowded areas. The workspaces are shown in Figure 5-8. Every

workspace is tested in three levels of changes. The first level is for stationary workspace.

The second level includes workspace with minor changes, and the last one has major

118

changes in the workspace. The major change means close some routes or cluttered

obstacles in high density.

The results of the first proposed planner "biasTowardBoundaries" and the second

proposed one "FuzzyBias" are compared with other methods, i.e. RRTs without bias;

RRTs with a bias toward the goal; RRTs with a bias toward others RRTs’ nodes; RRTs

with a bias toward the path that is generated by the cell decomposition algorithm.

The trapezoidal cell decomposition planner is used in these tests. It uses the Dijkstra’s

algorithm for searching the graph. In this case the Dijkstra has O(log(N)E) time

complexity, where N is the number of nodes in the graph, and E is the number of edges.

Our focus in this work is to improve the completeness and efficiency in cluttered

workspace.

The results are organized in two tables for every scenario. The first table lists the

completeness value of each planner on the three levels of changes, while the second table

contains data about the RRTs iterations. The RRTs iterations mean the number of required

steps to find the goal. The smaller the iteration, the efficient the planner is.

Testing parameters

The tests are repeated 100 times, in every workspace. The completeness comparison uses

the percent of successful tries to reach the goal, while, the average of RRT iteration is used

for efficiency comparison.

The RRTs planner has extending-length (e = 0.3). The RRTs planning result is

considered as failed, if it fails to reach the goal after 2000 tries of growing a branch.

The simulator implemented in Matlab and it uses a PC equipped with Intel Xeon (R)

CPU 2.67 GHz, 6 GB of memory, and Windows 7 64-bit.

The bias value of every method is shown in Table 5-1. These values represent the

probability of choosing the bias points. The complementary probability represents the

choosing of a random sample from the workspace using a pseudo-random number

generator.

Table 5-1: Bias values in the testing methods

Goal Other Trees CD path Fuzzy Boundaries

0.1 0.3 0.5 1 1

Results

In the first scenario, the path-planning problem in the "WS1" workspace is simulated.

Figure 5-9 shows the original workspace, while the Figure 5-10 shows the minor changes,

and the major changes in the workspace. The thin line represents the generated path of cell

119

decomposition, and the bold one is the shortened path of the original CD path. G and S

points represent the goal and the initial locations, respectively.

The probabilistically completeness results are presented in Table 5-2, while, the

iterations values are shown in Table 5-3. In this scenario, the office-like workspace is

simulated. The major changes test simulates the situation where the shortest path is closed

and the robot should find an alternative route to the goal, and avoid the cluttered obstacles.

Table 5-2: Number of successful attempts to reach the goal in WS1 workspace

Methods/ workspace Without change Minor change Major change

No bias 98 94 45

Goal bias 96 90 47

Other Trees bias 97 90 25

CD path bias 99 95 24

Fuzzy bias 100 100 100

Boundaries bias 100 99 95

Table 5-3: The average of RRTs branching attempts to reach the goal in WS1 workspace

Methods/ workspace Without change Minor change Major change

No bias 439 693 1253

Goal bias 470 780 1302

Other Trees bias 461 821 116

CD path bias 208 647 1404

Fuzzy bias 79 397 590

Boundaries bias 77 428 669

Figure 5-9: The basic workspace WS1. The thin line represents the CD path, and the bold line

represents the shortened path. G and S represent the goal and the initial locations, respectively

S

G

120

(a) (b)

Figure 5-10: (a) The minor changes in WS1, (b) the major changes in WS1. The thin line represents the

CD path, and the bold line represents the shortened path. G and S represent the goal and the initial

locations, respectively

In the second scenario, the path-planning problem in "WS2" workspace is simulated.

Figure 5-11 shows the original workspace. The minor changes and the major changes in

workspace are shown in Figure 5-12. In these figures, the thin line represents the generated

path using cell decomposition, and the bold line represents the shortened path of the

original CD path. G and S represent the goal and the initial locations, respectively. The

probabilistically completeness results are presented in Table 5-4, and the iterations values

are shown in Table 5-5. In this scenario, the major changes test simulates the highly

cluttered obstacles situation where the robot should pass through very small regions.

Figure 5-11: The basic workspace WS2. The thin line represents the CD path. Bold line represents the

shortened path. G and S represent the goal and the initial locations, respectively

S

G

S

G

S

G

121

Table 5-4: Number of successful attempts to reach the goal in WS2 workspace

Methods/ workspace Without change Minor change Major change

No bias 97 88 51

Goal bias 97 75 53

Other Trees bias 91 66 27

CD path bias 100 88 71

Fuzzy bias 100 100 62

Boundaries bias 100 99 66

Table 5-5: The average of RRTs branching attempts to reach the goal in WS2 workspace

Methods/ workspace Without change Minor change Major change

No bias 792 1104 1235

Goal bias 864 1153 1269

Other Trees bias 1012 1227 1295

CD path bias 372 701 798

Fuzzy bias 164 472 1017

Boundaries bias 186 476 1027

(a) (b)

Figure 5-12: (a) The minor change in WS2, (b) the major change in WS2. The thin line represents the

CD path, and bold line represents the shortened path. G and S represent the goal and the initial

locations, respectively

S

G

S

G

122

Figure 5-13: Basic workspace, WS3. The thin line represents the CD path, and bold line represents the

shortened path. G and S represent the goal and the initial locations, respectively

In the third scenario, the "WS3" workspace is shown in Figure 5-13, while the minor

changes and the major changes are shown in Figure 5-14. The thin line represents the

generated path using the cell decomposition approach, and the bold line represents the

shortened path of this original CD path. G and S represent the goal and the initial locations,

respectively. The probabilistically completeness results are listed in Table 5-6. The

iterations values are shown in Table 5-7.

In major changes test, we simulate the situation where some paths are closed and the

robot should find an alternative route and avoid the cluttered obstacles.

Table 5-6: Number of successful attempts to reach the goal in WS3 workspace

Methods/ workspace Without change Minor change Major change

No bias 100 100 33

Goal bias 100 100 23

Other Trees bias 100 100 9

CD path bias 100 98 0

Fuzzy bias 100 100 73

Boundaries bias 100 100 98

Table 5-7: The average of RRTs branching attempts to reach the goal in WS3 workspace

Methods/ workspace Without change Minor change Major change

No bias 206 462.8 1627.8

Goal bias 217 482 1728.6

Other Trees bias 284 609 1735.6

CD path bias 139 301 -

Fuzzy bias 50 214 823

Boundaries bias 49 200 794

G
S

123

(a) (b)

Figure 5-14: (a) The minor change in WS3, (b) the major change in WS3. The thin line represents the

CD path, and bold line represents the shortened path. G and S represent the goal and the initial

locations, respectively

In the fourth scenario, the path-planning problem is simulated in the "WS4" workspace,

which is shown in Figure 5-15. The minor changes and the major changes are presented in

Figure 5-16. The thin line represents the generated path using cell decomposition, and the

bold line represents the shortened path of the original CD path. G and S represent the goal

and the initial locations, respectively. The probabilistically completeness results are

presented in Table 5-8. The iterations values are shown in Table 5-9.

In this test, we simulate the narrow passage and narrow area problems. The robot should

pass through narrow and long corridors, which contains cluttered obstacles, and narrow

connection between free regions.

Figure 5-15: Basic workspace, WS4. The thin line represents the CD path, and bold line represents the

shortened path. G and S represent the goal and the initial locations, respectively

G
S

G
S

G

S

124

(a) (b)

Figure 5-16: (a) The minor change in WS4, (b) the major change in WS4. The thin line represents the

CD path, and bold line represents the shortened path. G and S represent the goal and the initial

locations, respectively

Table 5-8: Number of successful attempts to reach the goal in WS4 workspace

Methods/ workspace Without change Minor change Major change

No bias 0 0 0

Goal bias 0 0 0

Other Trees bias 0 0 0

CD path bias 0 0 0

Fuzzy bias 100 98 11

Boundaries bias 100 98 12

Table 5-9: The average of RRTs branching attempts to reach the goal in WS4 workspace

Methods/ workspace Without change Minor change Major change

No bias - - -

Goal bias - - -

Other Trees bias - - -

CD path bias - - -

Fuzzy bias 326.9 422 748.7

Boundaries bias 255.7 407.5 747.8

Discussions

The results show that, the proposed planners work more efficiently than the other planners

do in cluttered workspaces except in WS2 (the major change test). In all scenarios, the

probabilistically completeness results, for both proposed planners, have a higher value in

comparison to the other methods. Our planners navigate through all problems and find a

path where the others competitors could not i.e. in WS4 tests.

G

S

G

S

125

The time of execution is not discussed here, because the execution time varies based on

implementation platform and code optimization. Instead, the average of required iterations

to find a solution is discussed.

During the simulation, the high impact of the sampling strategy is noticed on the results.

In this work, the pseudo-random number generator is used to generate samples inside

regions. The sampling strategies need more review and research as future work.

Summary

In this work a new hybrid planners have been proposed. The planners use rules-based

adviser as a guidance toward the most important region in the space.

Each planner has two layers; the first one utilizes trapezoidal cell-decomposition

algorithm to find a feasible path in the workspace. The second layer utilizes RRTs to find

path in the configuration space. The information about the free regions, which is obtained

from the first layer, is combined with the exploration information that is inferred from the

second layer. The combination is done using rule-based adviser, which classifies the free

regions and updates their weights.

These planners enhance the efficiency and completeness of the motion-planning

problem in heterogeneous, cluttered, and dynamic workspaces. The planners exploit and

combine the advantages of the exact cell decomposition in simple and low dimensional

workspace, and the advantages of RRTs, which has a relatively higher tolerance to the

changes in the environments.

The adviser of first planner biases and pulls the trees growth toward the boundary areas

between explored and unexplored regions. The adviser of second planner uses the collision

information and a fuzzy expert system to bias the trees growth toward low collision areas

around the boundaries of explored regions.

The proposed methods are compared with other methods; the simulations results show

that the proposed methods have better results, in terms of completeness and efficiency.

127

6 CONCLUSION

The aim of this dissertation was to improve the mobile robot path planning strategies,

which, consequently, improves the robots autonomy and thus makes it more adaptable to

our everyday life.

The goals of this thesis are fulfilled as many motion-planning algorithms and their

applications in mobile robot path planning have been reviewed and simulated. Then, some

of these algorithms were tested in 2D and 3D workspaces and the performance results were

evaluated using statistical analyses. Based on these tests, the advantages and drawbacks of

these methods were identified, and, new methods for path planning and path shortening

were introduced to overcome the drawbacks and improve the performance.

The new motion planning methods are classified in three types. First, the cell

decomposition based planners which generate a path that keeps a safety distance between

the robot and the obstacle boundaries. At the same time, they perform the maneuvers

through the large free regions in the workspace.

The second type uses hybrid two-layer planners which combine the advantages of RRT

algorithms and CD approaches to overcome the difficulty when planning a path through

narrow areas and dynamic workspaces.

The third type, the hybrid rule-based planner, utilizes the collected experience and

expert knowledge base to produce better solution in an efficient way. This type of planner

is constructed using multi-planning layers, i.e. the fuzzy expert system, RRT, and CD

algorithms.

In this work, also new supportive methods were proposed to solve specific problems,

for example the problem of navigation in a narrow area using sample-based algorithms. A

combination of CD and minimum spanning tree has been proposed to identify the narrow

passages and important regions in the workspaces.

The objectives of this work are met and the simulations show the ability of these

planning approaches to solve different problems in the motion-planning domain. The

simulation environment has been developed using Matlab to conduct the simulations and

generate the numerical and graphical results, while the statistical analyses were done using

Minitab and Matlab.

Naturally, the results open many new research questions. For example, determine the

best sampling methods in the sampling-based algorithms. And, describe the impact of

using different knowledge bases on path generating, i.e. the collision tendency, primitive

local paths, etc.

129

BIBLIOGRAPHY

ABBADI, Ahmad and MATOUSEK, Radomil, 2012, RRTs Review and Statistical

Analysis. International journal of mathematics and computer in simulation. 2012. Vol. 6,

no. 1.

ABBADI, Ahmad and MATOUSEK, Radomil, 2014, Path Planning Implementation Using

Matlab. In : International Conference of Technical Computing Bratislava 2014.

Bratislava : Humusoft.cz. 11 April 2014. p. 1–5. ISBN 978-80-7080-898-6.

ABBADI, Ahmad and MATOUSEK, Radomil, 2015, Hybrid rule-based motion planner in

cluttered workspace. Soft Computing. 2015.

ABBADI, Ahmad, MATOUSEK, Radomil, JANCIK, Stanislav and ROUPEC, Jan, 2012,

Rapidly-exploring random trees: 3D planning. In : Mendel. 2012. p. 594–599.

ABBADI, Ahmad, MATOUSEK, Radomil and KNISPEL, Lukas, 2015, Narrow passage

identification using cell decomposition approximation and minimum spanning tree. In :

Mendel. 2015. p. 131–138.

ABBADI, Ahmad, MATOUSEK, Radomil, KRCEK, Petr and SOUSTEK, Petr, 2011,

RRTs Review and Options. In : computational Engineering in Systems Applications. 2011.

p. 194–199.

ABBADI, Ahmad, MATOUSEK, Radomil, OSMERA, Pavel and LUKAS KNISPEL,

2014, Spatial Guidance to RRT Planner Using Cell-decomposition Algorithm. In : 20th

International Conference on Soft Computing, MENDEL 2014. 25 June 2014. ISBN 978-

80-214-4984-8.

ABBADI, Ahmad and PRENOSIL, Vaclav, 2015a, Safe Path Planning Using Cell

Decomposition Approximation. In : International Conference DISTANCE LEARNING,

SIMULATION AND COMMUNICATION. Brno : University of Defence, Brno. 2015. p. 8–

14. ISBN 978-80-7231-992-3.

ABBADI, Ahmad and PRENOSIL, Vaclav, 2015b, Collided Path Replanning in Dynamic

Environments Using RRT and Cell Decomposition Algorithms. In : Modelling and

Simulation for Autonomous Systems. Cham : Springer International Publishing. p. 131–

143. ISBN 978-3-319-22382-7. Available from: http://link.springer.com/10.1007/978-3-

319-22383-4_9

AGUIRRE, Eugenio and GONZÁLEZ, Antonio, 2000, Fuzzy behaviors for mobile robot

navigation: design, coordination and fusion. International Journal of Approximate

Reasoning. November 2000. Vol. 25, no. 3, p. 255–289. DOI 10.1016/S0888-

613X(00)00056-6.

AL-JAZARI-WIKIPEDIA, 2014, al-Jazari - Wikipedia, the free encyclopedia. . 2014.

Available from: http://en.wikipedia.org/wiki/Al-Jazari

ALMAHAIRI, Amjad, 2010, Rapidly-Exploring Random Trees in Highly Constrained

Environments. McGill University, Mobile Robotics Project. 2010.

130

AMATO, Nancy M., BAYAZIT, O. Burchan, DALE, Lucia K., JONES, Christopher and

VALLEJO, Daniel, 1998, OBPRM: An Obstacle-Based PRM for 3D Workspaces. In :

WAFR ’98 Proceedings of the third workshop on the algorithmic foundations of robotics

on Robotics : the algorithmic perspective. 1998. p. 155–168. ISBN 1-56881-081-4.

AMIT PATEL, 2014, Introduction to A*. . 2014. Available from:

http://www.redblobgames.com/pathfinding/a-star/introduction.html

ARAMBULA COSÍO, F. and PADILLA CASTAÑEDA, M. A., 2004, Autonomous robot

navigation using adaptive potential fields. Mathematical and Computer Modelling.

November 2004. Vol. 40, no. 9–10, p. 1141–1156. DOI 10.1016/j.mcm.2004.05.001.

ATKESON, Christopher G. and MORIMOTO, Jun, 2003, Nonparametric Representation

of Policies and Value Functions: A Trajectory-Based Approach. In : In NIPS 15. MIT

Press. 2003. p. 1611–1618.

ATRAMENTOV, A. and LAVALLE, S.M., 2002, Efficient nearest neighbor searching for

motion planning. In : IEEE International Conference on Robotics and Automation, 2002.

Proceedings. ICRA ’02. 2002. p. 632–637 vol.1.

AURENHAMMER, Franz, 1991, Voronoi Diagrams-a Survey of a Fundamental

Geometric Data Structure. ACM Comput. Surv. September 1991. Vol. 23, no. 3, p. 345–

405. DOI 10.1145/116873.116880.

AURENHAMMER, Franz and KLEIN, Rolf, 2000, Voronoi diagrams. Handbook of

computational geometry. 2000. Vol. 5, p. 201–290.

BAGINSKI, Boris, 1996, The Z3-Method for Fast Path Planning in Dynamic

Environments. In : Proc. IASTED Conf. Applications of Control and Robotics. 1996.

p. 47–52.

BARRAQUAND, J. and LATOMBE, J.-C., 1990, A Monte-Carlo algorithm for path

planning with many degrees of freedom. In : , 1990 IEEE International Conference on

Robotics and Automation, 1990. Proceedings. May 1990. p. 1712–1717 vol.3.

BARRAQUAND, J. and LATOMBE, J.-C., 1991, Robot Motion Planning: A Distributed

Representation Approach. The International Journal of Robotics Research. 1 December

1991. Vol. 10, no. 6, p. 628–649. DOI 10.1177/027836499101000604.

BERENSON, D., ABBEEL, P. and GOLDBERG, K., 2012, A robot path planning

framework that learns from experience. In : 2012 IEEE International Conference on

Robotics and Automation (ICRA). May 2012. p. 3671–3678.

BERNARD CHAZELLE, 1987, Algorithmic and geometric aspects of robotics. Hillsdale,

N.J : L. Erlbaum Associates. Advances in robotics, vol. 1. ISBN 0-89859-554-1.

BOOR, V., OVERMARS, M.H. and VAN DER STAPPEN, A.F., 1999, The Gaussian

sampling strategy for probabilistic roadmap planners. In : 1999 IEEE International

Conference on Robotics and Automation, 1999. Proceedings. 1999. p. 1018–1023 vol.2.

131

BORENSTEIN, J. and KOREN, Y., 1991, The vector field histogram-fast obstacle

avoidance for mobile robots. IEEE Transactions on Robotics and Automation. June 1991.

Vol. 7, no. 3, p. 278–288. DOI 10.1109/70.88137.

BOTTASSO, C.L., LEONELLO, D. and SAVINI, B., 2008, Path Planning for

Autonomous Vehicles by Trajectory Smoothing Using Motion Primitives. IEEE

Transactions on Control Systems Technology. November 2008. Vol. 16, no. 6, p. 1152–

1168. DOI 10.1109/TCST.2008.917870.

BROOKS, R.A. and LOZANO-PEREZ, T., 1985, A subdivision algorithm in

configuration space for findpath with rotation. IEEE Transactions on Systems, Man and

Cybernetics. March 1985. Vol. SMC-15, no. 2, p. 224–233.

DOI 10.1109/TSMC.1985.6313352.

BRUCE, J. and VELOSO, M., 2002, Real-time randomized path planning for robot

navigation. In : IEEE/RSJ International Conference on Intelligent Robots and Systems,

2002. 2002. p. 2383–2388 vol.3.

BU, Tian-Ming, LI, Zhen-Jian and SUN, Zheng, 2005, Adaptive and relaxed visibility-

based PRM. In : 2005 IEEE International Conference on Robotics and Biomimetics

(ROBIO). 2005. p. 174–179.

BUNIYAMIN, N., WAN NGAH, W. A. J., SARIFF, N. and MOHAMAD, Z., 2011, A

simple local path planning algorithm for autonomous mobile robots. International journal

of systems applications, Engineering & development. 2011. Vol. 5, no. 2, p. 151–159.

CATMULL, Edwin and ROM, Raphael, 1974, A CLASS OF LOCAL INTERPOLATING

SPLINES. In : Computer Aided Geometric Design. Elsevier. p. 317–326. ISBN 978-0-12-

079050-0.

CHEN, Yang, CHENG, Lei, WU, Huaiyu, ZHAO, Xingang and HAN, Jianda, 2014,

Knowledge-driven path planning for mobile robots: relative state tree. Soft Computing. 9

May 2014. DOI 10.1007/s00500-014-1299-4.

CHENG, Peng and LAVALLE, S.M., 2001, Reducing metric sensitivity in randomized

trajectory design. In : 2001 IEEE/RSJ International Conference on Intelligent Robots and

Systems, 2001. Proceedings. 2001. p. 43–48 vol.1.

CHENG, Peng and LAVALLE, S.M., 2002, Resolution complete rapidly-exploring

random trees. In : IEEE International Conference on Robotics and Automation, 2002.

Proceedings. ICRA ’02. 2002. p. 267–272 vol.1.

CHOI, Jinwoo, CHOI, Minyong, NAM, Sang Yep and CHUNG, Wan Kyun, 2011,

Autonomous topological modeling of a home environment and topological localization

using a sonar grid map. Autonomous Robots. 1 May 2011. Vol. 30, no. 4, p. 351–368.

DOI 10.1007/s10514-011-9223-6.

CHOSET, Howie and BURDICK, Joel, 2000, Sensor-based exploration: The hierarchical

generalized voronoi graph. The International Journal of Robotics Research. 2000. Vol. 19,

no. 2, p. 96–125.

132

CHOSET, HOWIE, LYNCH, KEVIN M. and HUTCHINSON, SETH, 2005, Principles of

Robot Motion : Theory, Algorithms, and Implementation. MIT Press. ISBN 978-0-262-

03327-5.

DE BERG, Mark, CHEONG, Otfried, VAN KREVELD, Marc and OVERMARS, Mark,

2008, Computational Geometry. Berlin, Heidelberg : Springer Berlin Heidelberg.

ISBN 978-3-540-77973-5.

DENNY, Jory and AMATO, N.M., 2011, Toggle PRM: Simultaneous mapping of C-free

and C-obstacle - A study in 2D -. In : 2011 IEEE/RSJ International Conference on

Intelligent Robots and Systems (IROS). September 2011. p. 2632–2639.

DENNY, J., MORALES, M., RODRIGUEZ, S. and AMATO, N.M., 2013, Adapting RRT

growth for heterogeneous environments. In : 2013 IEEE/RSJ International Conference on

Intelligent Robots and Systems (IROS). November 2013. p. 1772–1778.

DRIANKOV, Dimiter and SAFFIOTTI, Alessandro (eds.), 2001, Fuzzy Logic Techniques

for Autonomous Vehicle Navigation. Heidelberg : Physica-Verlag HD. Studies in Fuzziness

and Soft Computing. ISBN 978-3-7908-2479-7.

ESPOSITO, Joel M., 2013, Conditional Density Growth (CDG) model: a simplified model

of RRT coverage for kinematic systems. Robotica. August 2013. Vol. 31, no. 05, p. 733–

746. DOI 10.1017/S0263574712000690.

ETYMONLINE, 2014, Online Etymology Dictionary. . 2014. Available from:

http://www.etymonline.com/index.php?allowed_in_frame=0&search=Robot&searchmode

=none

FABBRI, R., ESTROZI, L. F. and COSTA, L. F., 2002, On Voronoi diagrams and medial

axes. Journal of Mathematical Imaging and Vision. 2002. Vol. 17, p. 27–40.

GARRIDO, Santiago, MORENO, Luis, BLANCO, Dolores and JUREWICZ, Piotr, 2011,

Path planning for mobile robot navigation using voronoi diagram and fast marching.

International Journal of Robotics and Automation (IJRA). 2011. Vol. 2, no. 1, p. 42–64.

GLAVINA, B., 1990, Solving findpath by combination of goal-directed and randomized

search. In : , 1990 IEEE International Conference on Robotics and Automation, 1990.

Proceedings. May 1990. p. 1718–1723 vol.3.

HANI ALSAFADI, 2007, Local Path Planning Using Potential Field. . 2007. Available

from: http://www.cs.mcgill.ca/~hsafad/robotics/

HSU, D., JIANG, Tingting, REIF, J. and SUN, Zheng, 2003, The bridge test for sampling

narrow passages with probabilistic roadmap planners. In : IEEE International Conference

on Robotics and Automation, 2003. Proceedings. ICRA ’03. September 2003. p. 4420–

4426.

HWANG, Y.K. and AHUJA, N., 1992, A potential field approach to path planning. IEEE

Transactions on Robotics and Automation. February 1992. Vol. 8, no. 1, p. 23–32.

DOI 10.1109/70.127236.

133

HWANG, Joo Young, KIM, Jun Song, LIM, Sang Seok and PARK, Kyu Ho, 2003, A fast

path planning by path graph optimization. IEEE Transactions on Systems, Man and

Cybernetics, Part A: Systems and Humans. January 2003. Vol. 33, no. 1, p. 121–129.

DOI 10.1109/TSMCA.2003.812599.

JAILLET, L., HOFFMAN, J., VAN DEN BERG, J., ABBEEL, P., PORTA, J.M. and

GOLDBERG, K., 2011, EG-RRT: Environment-guided random trees for kinodynamic

motion planning with uncertainty and obstacles. In : 2011 IEEE/RSJ International

Conference on Intelligent Robots and Systems (IROS). September 2011. p. 2646–2652.

JARADAT, Mohammad Abdel Kareem, GARIBEH, Mohammad H. and FEILAT, Eyad

A., 2012, Autonomous mobile robot dynamic motion planning using hybrid fuzzy potential

field. Soft Computing. January 2012. Vol. 16, no. 1, p. 153–164. DOI 10.1007/s00500-011-

0742-z.

JIANDONG, Zhong and JIANBO, Su, 2011, Narrow passages identification for

Probabilistic Roadmap Method. In : Control Conference (CCC), 2011 30th Chinese. July

2011. p. 3908–3912.

JOHANN BORENSTEIN, 1990, VFF and VFH -- Fast Obstacle Avoidance for Mobile

Robots. . 1990. Available from: http://www-personal.umich.edu/~johannb/vff&vfh.htm

KAMON, Ishay, RIMON, Elon and RIVLIN, Ehud, 1998, TangentBug: A Range-Sensor-

Based Navigation Algorithm. The International Journal of Robotics Research. 1

September 1998. Vol. 17, no. 9, p. 934–953. DOI 10.1177/027836499801700903.

KARAMAN, Sertac and FRAZZOLI, Emilio, 2011, Sampling-based algorithms for

optimal motion planning. The International Journal of Robotics Research. 1 June 2011.

Vol. 30, no. 7, p. 846–894. DOI 10.1177/0278364911406761.

KARAMAN, Sertac and FRAZZOLI, Emilio, 2012, Sampling-based algorithms for

optimal path planning problems. Massachusetts Institute of Technology.

KATEVAS, Nikos I., TZAFESTAS, Spyros G. and PNEVMATIKATOS, Christos G.,

1998, The Approximate Cell Decomposition with Local Node Refinement Global Path

Planning Method: Path Nodes Refinement and Curve Parametric Interpolation. Journal of

Intelligent and Robotic Systems. 1 July 1998. Vol. 22, no. 3-4, p. 289–314.

DOI 10.1023/A:1008034314006.

KAVRAKI, L.E., SVESTKA, P., LATOMBE, J.-C. and OVERMARS, M.H., 1996,

Probabilistic roadmaps for path planning in high-dimensional configuration spaces. IEEE

Transactions on Robotics and Automation. August 1996. Vol. 12, no. 4, p. 566–580.

DOI 10.1109/70.508439.

KELOUWANI, Sousso, 2013, Human-Robot Collaborative Planning for Navigation Based

on Optimal Control Theory. Open Journal of Optimization. 2013. Vol. 02, no. 03, p. 72–

79. DOI 10.4236/ojop.2013.23010.

KHATIB, O., 1985, Real-time obstacle avoidance for manipulators and mobile robots. In :

1985 IEEE International Conference on Robotics and Automation. Proceedings. March

1985. p. 500–505.

134

KIM, J. and KHOSLA, P., 1991, Real-time obstacle avoidance using harmonic potential

functions. In : , 1991 IEEE International Conference on Robotics and Automation, 1991.

Proceedings. April 1991. p. 790–796 vol.1.

KITO, T., OTA, J., KATSUKI, R., MIZUTA, T., ARAI, T., UEYAMA, T. and

NISHIYAMA, T., 2003, Smooth path planning by using visibility graph-like method. In :

IEEE International Conference on Robotics and Automation, 2003. Proceedings. ICRA

’03. September 2003. p. 3770–3775 vol.3.

KNEPPER, R.A., SRINIVASA, S.S. and MASON, Matthew T., 2010, Hierarchical

planning architectures for mobile manipulation tasks in indoor environments. In : 2010

IEEE International Conference on Robotics and Automation (ICRA). May 2010. p. 1985–

1990.

KUFFNER, J.J. and LAVALLE, S.M., 2000, RRT-connect: An efficient approach to

single-query path planning. In : IEEE International Conference on Robotics and

Automation, 2000. Proceedings. ICRA ’00. 2000. p. 995–1001 vol.2.

KUFFNER, J.J. and LAVALLE, S.M., 2011, Space-filling trees: A new perspective on

incremental search for motion planning. In : 2011 IEEE/RSJ International Conference on

Intelligent Robots and Systems (IROS). September 2011. p. 2199–2206.

LATOMBE, Jean-Claude, 1991, Robot motion planning. Boston : Kluwer Academic

Publishers. ISBN 0-7923-9129-2.

LAVALLE, Steven M., 1998, Rapidly-Exploring Random Trees: A New Tool for Path

Planning.

LAVALLE, Steven Michael, 2006, Planning algorithms. Cambridge ; New York :

Cambridge University Press. ISBN 0-521-86205-1.

LAVALLE, Steven M., BRANICKY, Michael S. and LINDEMANN, Stephen R., 2004,

On the relationship between classical grid search and probabilistic roadmaps. The

International Journal of Robotics Research. 2004. Vol. 23, no. 7-8, p. 673–692.

LAVALLE, Steven M. and KUFFNER, James J., 2001, Randomized Kinodynamic

Planning. The International Journal of Robotics Research. 1 May 2001. Vol. 20, no. 5,

p. 378–400. DOI 10.1177/02783640122067453.

LAVALLE, Steven M., KUFFNER, James J. and JR., 2000, Rapidly-Exploring Random

Trees: Progress and Prospects. In : Algorithmic and Computational Robotics: New

Directions. 2000. p. 293–308.

LEONARD, John J. and DURRANT-WHYTE, Hugh F., 1991, Simultaneous map building

and localization for an autonomous mobile robot. In : Intelligent Robots and Systems’

91.’Intelligence for Mechanical Systems, Proceedings IROS’91. IEEE/RSJ International

Workshop on. Ieee. 1991. p. 1442–1447.

LIEN, Jyh-ming and LU, Yanyan, 2009, Planning Motion in Environments with Similar

Obstacles. In : Robotics: Science and Systems V. Seattle, USA : MIT Press. 2009.

ISBN 978-0-262-51463-7.

135

LI, Dachuan, LI, Qing, CHENG, Nong and SONG, Jingyan, 2012, Extended RRT-based

path planning for flying robots in complex 3D environments with narrow passages. In :

2012 IEEE International Conference on Automation Science and Engineering (CASE).

August 2012. p. 1173–1178.

LI, Jiadong, LIU, Shirong, ZHANG, Botao and ZHAO, Xiaodan, 2014, RRT-A* Motion

planning algorithm for non-holonomic mobile robot. In : SICE Annual Conference (SICE),

2014 Proceedings of the. September 2014. p. 1833–1838.

LIN, Yu-Te, 2006, The Gaussian PRM Sampling for Dynamic Configuration Spaces. In :

9th International Conference on Control, Automation, Robotics and Vision, 2006. ICARCV

’06. December 2006. p. 1–5.

LINDEMANN, Stephen R. and LAVALLE, Steven M., 2003, Current Issues in Sampling-

Based Motion Planning. . 2003. Vol. 15, p. 36–54.

LINDEMANN, S.R. and LAVALLE, S.M., 2004, Incrementally reducing dispersion by

increasing Voronoi bias in RRTs. In : 2004 IEEE International Conference on Robotics

and Automation, 2004. Proceedings. ICRA ’04. April 2004. p. 3251–3257 Vol.4.

LIU, Hong, RAO, Kai and XIAO, Fang, 2013, Obstacle guided RRT path planner with

region classification for changing environments. In : 2013 IEEE International Conference

on Robotics and Biomimetics (ROBIO). December 2013. p. 164–171.

LOZANO-PÉREZ, Tomás and WESLEY, Michael A., 1979, An Algorithm for Planning

Collision-free Paths Among Polyhedral Obstacles. Commun. ACM. October 1979. Vol. 22,

no. 10, p. 560–570. DOI 10.1145/359156.359164.

LULU, L. and ELNAGAR, A., 2005, A comparative study between visibility-based

roadmap path planning algorithms. In : 2005 IEEE/RSJ International Conference on

Intelligent Robots and Systems, 2005. (IROS 2005). August 2005. p. 3263–3268.

LUMELSKY, Vladimir J. and STEPANOV, A.A., 1986, Dynamic path planning for a

mobile automaton with limited information on the environment. IEEE Transactions on

Automatic Control. November 1986. Vol. 31, no. 11, p. 1058–1063.

DOI 10.1109/TAC.1986.1104175.

MACIEJ KALISIAK and VAN DE PANNE, Michiel, 2006, RRT-blossom: RRT with a

local flood-fill behavior. In : . 2006.

MARTIN, S.R., WRIGHT, S.E. and SHEPPARD, J.W., 2007, Offline and Online

Evolutionary Bi-Directional RRT Algorithms for Efficient Re-Planning in Dynamic

Environments. In : IEEE International Conference on Automation Science and

Engineering, 2007. CASE 2007. September 2007. p. 1131–1136.

MASEHIAN, E., AMIN-NASERI, M.R. and KHADEM, S.E., 2003, Online motion

planning using incremental construction of medial axis. In : IEEE International

Conference on Robotics and Automation, 2003. Proceedings. ICRA ’03. September 2003.

p. 2928–2933 vol.3.

136

MASEHIAN, Ellips and NASERI, Amin, 2010, Mobile Robot Online Motion Planning

Using Generalized Voronoi Graphs. Journal of Industrial Engineering. 2010. Vol. 5, p. 1–

15.

MASOUD, Ahmad A., 2013, A harmonic potential field approach for joint planning and

control of a rigid, separable nonholonomic, mobile robot. Robotics and Autonomous

Systems. June 2013. Vol. 61, no. 6, p. 593–615. DOI 10.1016/j.robot.2013.02.007.

MATHIA, Karl, 2010, Robotics for Electronics Manufacturing: Principles and

Applications in Cleanroom Automation. Cambridge University Press.

MAZER, Emmanuel, AHUACTZIN, Juan Manuel and BESSIERE, Pierre, 1998, The

Ariadne’s clew algorithm. Journal of Artificial Intelligence Research. 1998. Vol. 9, no. 1.

DOI 10.1613/jair.468.

MBEDE, Jean Bosco, HUANG, Xinhan and WANG, Min, 2000, Fuzzy motion planning

among dynamic obstacles using artificial potential fields for robot manipulators. Robotics

and Autonomous Systems. 31 July 2000. Vol. 32, no. 1, p. 61–72. DOI 10.1016/S0921-

8890(00)00073-7.

MCFETRIDGE, L. and YOUSEF IBRAHIM, M., 1998, New technique of mobile robot

navigation using a hybrid adaptive fuzzy potential field approach. Computers & Industrial

Engineering. December 1998. Vol. 35, no. 3–4, p. 471–474. DOI 10.1016/S0360-

8352(98)00136-3.

MILITÃO, Filipe, NADEN, Karl and TONINHO, Bernardo, 2010, Improving RRT with

Context Sensitivity 15-780 Grad AI. In : . 2010.

MONTANER, Marc Boumedine and RAMIREZ-SERRANO, Alejandro, 1998, Fuzzy

knowledge-based controller design for autonomous robot navigation. Expert Systems with

Applications. January 1998. Vol. 14, no. 1–2, p. 179–186. DOI 10.1016/S0957-

4174(97)00059-6.

MOORE, K.L. and FLANN, N.S., 1999, Hierarchical task decomposition approach to path

planning and control for an omni-directional autonomous mobile robot. In : Proceedings of

the 1999 IEEE International Symposium on Intelligent Control/Intelligent Systems and

Semiotics, 1999. 1999. p. 302–307.

MORALES, Marco, TAPIA, Lydia, PEARCE, Roger, RODRIGUEZ, Samuel and

AMATO, Nancy M., 2005, A Machine Learning Approach for Feature-Sensitive Motion

Planning. In : Algorithmic Foundations of Robotics VI. Berlin, Heidelberg : Springer

Berlin Heidelberg. p. 361–376. ISBN 978-3-540-25728-8. Available from:

http://link.springer.com/10.1007/10991541_25

NASIR, Jauwairia, ISLAM, Fahad, MALIK, Usman, AYAZ, Yasar, HASAN, Osman,

KHAN, Mushtaq and MUHAMMAD, Mannan Saeed, 2013, RRT*-SMART: A Rapid

Convergence Implementation of RRT*. International Journal of Advanced Robotic

Systems. 2013. Vol. 10.

NEGNEVITSKY, Michael, 2005, Artificial intelligence: a guide to intelligent systems. 2nd

ed. Harlow, England ; New York : Addison-Wesley. ISBN 0-321-20466-2.

137

NG, James and BRÄUNL, Thomas, 2007, Performance Comparison of Bug Navigation

Algorithms. Journal of Intelligent and Robotic Systems. 2 August 2007. Vol. 50, no. 1,

p. 73–84. DOI 10.1007/s10846-007-9157-6.

NISSOUX, C., SIMEON, T. and LAUMOND, J-P, 1999, Visibility based probabilistic

roadmaps. In : 1999 IEEE/RSJ International Conference on Intelligent Robots and

Systems, 1999. IROS ’99. Proceedings. 1999. p. 1316–1321 vol.3.

PENG CHENG, 2001, Reducing RRT metric sensitivity for motion planning with

differential constraints. Graduate College Iowa State University.

PEREZ, A., PLATT, R., KONIDARIS, G., KAELBLING, L. and LOZANO-PEREZ, T.,

2012, LQR-RRT*: Optimal sampling-based motion planning with automatically derived

extension heuristics. In : 2012 IEEE International Conference on Robotics and Automation

(ICRA). May 2012. p. 2537–2542.

PÊTRÈS, C., ROMERO-RAMIREZ, M. -A. and PLUMET, F., 2012, A potential field

approach for reactive navigation of autonomous sailboats. Robotics and Autonomous

Systems. December 2012. Vol. 60, no. 12, p. 1520–1527.

DOI 10.1016/j.robot.2012.08.004.

PETR KRCEK and JIŘÍ DVORAK, 2004, MOBILE ROBOT MOTION CONTROL BY

MEANS OF FUZZY RULES. In : Engineering Mechanics 2004. Svratka : nstitute of

Thermomechanics AS CR, v.v.i., Prague. May 2004.

RODRIGUEZ, S., TANG, Xinyu, LIEN, Jyh-Ming and AMATO, N.M., 2006, An

obstacle-based rapidly-exploring random tree. In : Proceedings 2006 IEEE International

Conference on Robotics and Automation, 2006. ICRA 2006. May 2006. p. 895–900.

ROSELL, J., CRUZ, L., SUAREZ, R. and PEREZ, A., 2011, Importance sampling based

on adaptive principal component analysis. In : 2011 IEEE International Symposium on

Assembly and Manufacturing (ISAM). May 2011. p. 1–6.

ROSELL, J. and INIGUEZ, P., 2005, Path planning using Harmonic Functions and

Probabilistic Cell Decomposition. In : Proceedings of the 2005 IEEE International

Conference on Robotics and Automation, 2005. ICRA 2005. April 2005. p. 1803–1808.

SAFFIOTTI, A., 1997, The uses of fuzzy logic in autonomous robot navigation. Soft

Computing - A Fusion of Foundations, Methodologies and Applications. 16 December

1997. Vol. 1, no. 4, p. 180–197. DOI 10.1007/s005000050020.

SAHA, Mitul, LATOMBE, Jean-claude, CHANG, Yu-chi and PRINZ, Friedrich, 2005,

Finding narrow passages with probabilistic roadmaps: The small step retraction method.

In : in Proc. IEEE/RSJ Int. Conf. on Intelligent Robots & Systems. 2005.

SAJJA, Priti Srinivas and RAJENDRA AKERKAR (eds.), 2010, Advanced Knowledge-

Based Systems: Models, Applications and Research. ISBN 978-81-908426-0-0.

SAKAHARA, H., MASUTANI, Y. and MIYAZAKI, F., 2008, Real-time motion planning

in unknown environment: Voronoi-based StRRT (Spatiotemporal RRT). In : SICE Annual

Conference, 2008. August 2008. p. 2326–2331.

138

SALOMON, David, 2011, The Computer Graphics Manual. London : Springer London.

Texts in Computer Science. ISBN 978-0-85729-885-0.

SASIKUMAR, M., RAMANI, S., RAMAN, S. Muthu, ANJANEYULU, K. S. R. and

CHANDRASEKAR, R., 2007, A Practical Introduction to Rule Based Expert Systems.

Narosa Publishing House, New Delhi.

SCHWARTZ, Jacob T and SHARIR, Micha, 1983, On the “piano movers” problem. II.

General techniques for computing topological properties of real algebraic manifolds.

Advances in Applied Mathematics. September 1983. Vol. 4, no. 3, p. 298–351.

DOI 10.1016/0196-8858(83)90014-3.

SCIENCEKIDS, 2014, History of Robotics - Timeline, AI, Industrial, Toy Robots, Robotic

Arm, Technology. . 2014. Available from:

http://www.sciencekids.co.nz/sciencefacts/technology/historyofrobotics.html

SEDA, Milos, 2007, Roadmap methods vs. cell decomposition in robot motion planning.

In : Proceedings of the 6th WSEAS International Conference on Signal Processing,

Robotics and Automation. World Scientific and Engineering Academy and Society

(WSEAS). 2007. p. 127–132.

SFEIR, J., SAAD, M. and SALIAH-HASSANE, H., 2011, An improved Artificial

Potential Field approach to real-time mobile robot path planning in an unknown

environment. In : 2011 IEEE International Symposium on Robotic and Sensors

Environments (ROSE). September 2011. p. 208–213.

SHAREF, S.M., SA’ID, W.K. and KHOSHABA, F.S., 2010, A rule-based system for

trajectory planning of an indoor mobile robot. In : 2010 7th International Multi-

Conference on Systems Signals and Devices (SSD). 2010. p. 1–7.

SHIKIN, E. V. and PLIS, Alexander I., 1995, Handbook on splines for the user. Boca

Raton : CRC Press. ISBN 0-8493-9404-X.

SHKOLNIK, Er and TEDRAKE, Russ, 2009, Path planning in 1000+ dimensions using a

task-space voronoi bias. In : In IEEE International Conference on Robotics and

Automation. 2009.

SIDDHARTHA SRINIVASA, 2013, Sampling-Based Methods, Lecture 12. 2013.

[Accessed 22 December 2014]. Available from:

https://personalrobotics.ri.cmu.edu/courses/16662/notes/rrt/16662_Lecture12.pdf

SLEUMER, Nora H. and TSCHICHOLD-GÜRMAN, Nadine, 1999, Exact Cell

Decomposition of Arrangements used for Path Planning in Robotics.

SLOVNÍK, Slovník spisovného jazyka českého. . Available from:

http://ssjc.ujc.cas.cz/search.php?hledej=Hledat&heslo=robot&sti=EMPTY&where=hesla&

hsubstr=no

SMITH, Randall C., 1986, Development System for Flexible Assembly System. . 1986.

DOI 10.1177/027836498600500404.

139

SMOGAVEC, G. and ŽALIK, B., 2012, A fast algorithm for constructing approximate

medial axis of polygons, using Steiner points. Advances in Engineering Software. October

2012. Vol. 52, p. 1–9. DOI 10.1016/j.advengsoft.2012.05.006.

STOLLE, M. and ATKESON, C.G., 2006, Policies based on trajectory libraries. In :

Proceedings 2006 IEEE International Conference on Robotics and Automation, 2006.

ICRA 2006. May 2006. p. 3344–3349.

STRANDBERG, M., 2004, Augmenting RRT-planners with local trees. In : 2004 IEEE

International Conference on Robotics and Automation, 2004. Proceedings. ICRA ’04.

April 2004. p. 3258–3262 Vol.4.

SUN, Zheng, HSU, D., JIANG, Tingting, KURNIAWATI, H. and REIF, J.H., 2005,

Narrow passage sampling for probabilistic roadmap planning. IEEE Transactions on

Robotics. December 2005. Vol. 21, no. 6, p. 1105–1115. DOI 10.1109/TRO.2005.853485.

Supersampling, 2015. , Available from: http://en.wikipedia.org/wiki/Supersampling

TAPIA, Lydia, THOMAS, Shawna, BOYD, Bryan and AMATO, Nancy M., 2009, An

unsupervised adaptive strategy for constructing probabilistic roadmaps. In : in Proc. IEEE

Int. Conf. Robot. Autom. (ICRA. 2009. p. 4037–4044.

TITAS BERA, M. SEETHARAMA BHAT and DEBASISH GHOSE, 2014, Analysis of

Obstacle based Probabilistic RoadMap Method using Geometric Probability. In : 3rd

International Conference on Advances in Control and Optimization of Dynamical Systems.

IIT-Kanpur, Kanpur, India. 2014. p. 462–469.

URMSON, C. and SIMMONS, R., 2003, Approaches for heuristically biasing RRT

growth. In : 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems,

2003. (IROS 2003). Proceedings. October 2003. p. 1178–1183 vol.2.

UYANIK, Kadir Firat, 2011, Social Robot Partners: Still Sci-fi? . 2011.

VAHRENKAMP, N., ASFOUR, T. and DILLMANN, R., 2007, Efficient motion planning

for humanoid robots using lazy collision checking and enlarged robot models. In :

IEEE/RSJ International Conference on Intelligent Robots and Systems, 2007. IROS 2007.

October 2007. p. 3062–3067.

VAN DEN BERG, J. P., 2005, Using Workspace Information as a Guide to Non-uniform

Sampling in Probabilistic Roadmap Planners. The International Journal of Robotics

Research. 1 December 2005. Vol. 24, no. 12, p. 1055–1071.

DOI 10.1177/0278364905060132.

VENDRELL, Eduardo, MELLADO, Martı́n and CRESPO, Alfons, 2001, Robot planning

and re-planning using decomposition, abstraction, deduction, and prediction. Engineering

Applications of Artificial Intelligence. August 2001. Vol. 14, no. 4, p. 505–518.

DOI 10.1016/S0952-1976(01)00027-6.

WANG, Quan, WANG, Wei and LI, Yan, 2012, A multi-RRT based hierarchical path

planning method. In : 2012 IEEE 14th International Conference on Communication

Technology (ICCT). November 2012. p. 971–975.

140

WANG, Wei, YAN, Li, XU, Xin and YANG, Simon X., 2010, An adaptive roadmap

guided Multi-RRTs strategy for single query path planning. In : 2010 IEEE International

Conference on Robotics and Automation (ICRA). May 2010. p. 2871–2876.

WIKIPEDIA, 2014a, History of robots - Wikipedia, the free encyclopedia. . 2014.

Available from: http://en.wikipedia.org/wiki/History_of_robots

WIKIPEDIA, 2014b, Minkowski addition. Wikipedia, the free encyclopedia. 2014.

Available from:

http://en.wikipedia.org/w/index.php?title=Minkowski_addition&oldid=637892103

WILMARTH, S.A., AMATO, N.M. and STILLER, P.F., 1999, MAPRM: a probabilistic

roadmap planner with sampling on the medial axis of the free space. In : 1999 IEEE

International Conference on Robotics and Automation, 1999. Proceedings. 1999. p. 1024–

1031 vol.2.

YANG, Kwangjin, 2013, An efficient Spline-based RRT path planner for non-holonomic

robots in cluttered environments. In : 2013 International Conference on Unmanned

Aircraft Systems (ICUAS). May 2013. p. 288–297.

YEH, Hsin-Yi, THOMAS, Shawna, EPPSTEIN, David and AMATO, Nancy M., 2012,

UOBPRM: A uniformly distributed obstacle-based PRM. In : Intelligent Robots and

Systems (IROS), 2012 IEEE/RSJ International Conference on. IEEE. 2012. p. 2655–2662.

YERSHOVA, A. and LAVALLE, S.M., 2007, Improving Motion-Planning Algorithms by

Efficient Nearest-Neighbor Searching. IEEE Transactions on Robotics. February 2007.

Vol. 23, no. 1, p. 151–157. DOI 10.1109/TRO.2006.886840.

ZHANG, Qiushi, CHEN, Dandan and CHEN, Ting, 2012, An Obstacle Avoidance Method

of Soccer Robot Based on Evolutionary Artificial Potential Field. Energy Procedia. 2012.

Vol. 16, Part C, p. 1792–1798. DOI 10.1016/j.egypro.2012.01.276.

ZHONG, Jiandong and SU, Jianbo, 2012, Triple-Rrts for robot path planning based on

narrow passage identification. In : 2012 International Conference on Computer Science

and Information Processing (CSIP). August 2012. p. 188–192.

ZUCKER, Matt, KUFFNER, James and BAGNELL, J. Andrew, 2008, Adaptive

workspace biasing for sampling-based planners. In : Robotics and Automation, 2008. ICRA

2008. Pasadena, CA : IEEE. May 2008. ISBN 978-1-4244-1647-9.

ZUCKER, M., KUFFNER, J. and BRANICKY, M., 2007, Multipartite RRTs for Rapid

Replanning in Dynamic Environments. In : 2007 IEEE International Conference on

Robotics and Automation. April 2007. p. 1603–1609.

141

AUTHOR’S PUBLICATIONS

[1] A. Abbadi and R. Matousek, “Hybrid rule-based motion planner in cluttered

workspace,” Soft Computing, 2015. (Accepted)

[2] A. Abbadi and V. Prenosil, “Collided Path Replanning in Dynamic Environments

Using RRT and Cell Decomposition Algorithms,” in Modelling and Simulation for

Autonomous Systems, vol. 9055, J. Hodicky, Ed. Cham: Springer International Publishing,

2015, pp. 131–143.

[3] A. Abbadi and R. Matousek, “RRTs Review and Statistical Analysis,” International

journal of mathematics and computer in simulation, vol. 6, no. 1, 2012.

[4] A. Abbadi, R. Matousek, and L. Knispel, “Narrow passage identification using cell

decomposition approximation and minimum spanning tree,” presented at the Mendel,

2015, vol. 2015-January, pp. 131–138.

[5] A. Abbadi and V. Prenosil, “Safe Path Planning Using Cell Decomposition

Approximation,” presented at the International Conference DISTANCE LEARNING,

SIMULATION AND COMMUNICATION, Brno, 2015, vol. DLSC2015, pp. 8–14.

[6] L. Knispel, R. Matousek, A. Abbadi, and J. Dvorak, “A note about pseudo 3D grid

approximation of landscape for a holonomic robot path planning with naïve path

optimization,” presented at the Mendel, 2015, vol. 2015-January, pp. 127–130.

[7] A. Abbadi and R. Matousek, “Path Planning Implementation Using Matlab,”

presented at the International Conference of Technical Computing Bratislava 2014,

Bratislava, 2014, pp. 1–5.

[8] A. Abbadi, R. Matousek, P. Osmera, and Lukas Knispel, “Spatial Guidance to RRT

Planner Using Cell-decomposition Algorithm,” presented at the 20th International

Conference on Soft Computing, MENDEL 2014, 2014.

[9] A. Abbadi, R. Matousek, S. Jancik, and J. Roupec, “Rapidly-exploring random

trees: 3D planning,” presented at the Mendel, 2012, pp. 594–599.

[10] S. Jancik, R. Matousek, J. Dvorak, and A. Abbadi, “Local navigation techniques by

means of ICPF,” in Ubiquitous Positioning, Indoor Navigation, and Location Based

Service (UPINLBS), IEEE, 2012, 2012, pp. 1–7.

[11] S. Jancik, R. Matousek, J. Dvorak, and A. Abbadi, “The ICP for fragment

identification,” presented at the Mendel, 2012, pp. 588–593.

[12] A. Abbadi, R. Matousek, P. Krcek, and P. Soustek, “RRTs Review and Options,” in

computational Engineering in Systems Applications, 2011, vol. 2, pp. 194–199.

143

A. APPENDIX: MATLAB IMPLEMENTATION

In this appendix, the main simulation software is presented. It is used for conducting tests,

simulations, generating the numerical and graphical results and building workspaces map

in graphical and interactive way.

This chapter is divided into two sections, the first one describes very concisely RRT and

cell decomposition implementation on Matlab, while the second section lists some GUI

snapshots of the software.

Some parts of the code where published online for robotics community as an open-

source software1.

Path planning implementation using Matlab

This section is based on a technical paper published in (Abbadi, Matousek 2014) for

describing the implementation of the RRT planner and the cell decomposition algorithms

in Matlab environment.

The basic RRT implementation is shown in Figure A-1. It shows the main structure for

the RRT’s class.

%%RRT class

CLASSDEF RRTClass<handle & cSpace

 PROPERTIES

 cords; parent; startPos;goalPos; maxIteration;

 extensionStep= E; rrtType='basic_RRT';

% bias to goal, other trees, specific points,…

 bias.enable=1;

 bias.type=['biasToGoal', 'biasToTreePoints',…];

 bias.rangeVal=[0.05,0.07,…];

%biasToGoal in range 0-0.05=5%,biasToTreePoints in range 0.05-0.07=2% the

%rest is normal random point selection

 END

 METHODS

 FUNCTION RRT=RRTClass(initialValues) …...

 FUNCTION [objective,tElapsed]=rrtPlanner(RRT,drawType)

 tRRTStart=tic;

 FOR iter=1:RRT.maxIteration

 [objective]=grawTree(RRT);

% drawType :realtime draw, draw the result, don’t draw

 RRT.draw(iter ,drawType);

 IF objective

 BREAK;

 END

 END

 tElapsed=toc(tRRTStart);

 END

1 https://sourceforge.net/projects/celldecopositionmotionplanning/

144

 FUNCTION [objective]=grawTree(RRT)

 objective=0;

 [randomConfiguration]=

 RRT@cSpace.getRandomPoint(rrt.bias);

 [nearestConfiguration]= RRT.getNearestPoint(randomConfiguration);

 [newConfiguration]=

 RRT.branching(nearestConfiguration,randomConfiguration);

 IsCollid=RRT@cSpace.checkCollision(nearestConfiguration,

 newConfiguration);

 IF IsCollid ; RETURN ; END;

 RRT.addToTree(nearestConfiguration, newConfiguration);

 [objective]= RRT.checkGoal();

 END ….

Figure A-1: Selected lines of RRT code in Matlab

In our implementation, either the pseudo-random number generator is used to draw a

random sample from the workspace, or the bias toward a specific set using

“getRandomPoint” function, as shown in Figure A-2.

The bias to point/points set associated with some probability that represents the

percentage of choosing a point from the points set. Example of points set are the bias

toward the goal point, toward other trees-points, toward points around the goal, toward

points drawn from old successful path, or toward points from important regions. We

implement the function “getBiasPoint” to give users the freedom to specify the bias

methods and the probability value to these biases.

%%%%%%%% configurationSpace class %%%%%%%

… ...

FUNCTION newPnt= getRandomPoint(CSpace ,bias)

 newPnt=[];

 IF bias.enable

 newPnt = CSpace.getBiasPoint(bias);

 END

 IF empty(newPnt)

 range=abs(CSpace.dimensions(:,2)- CSpace.dimensions(:,1));

 FOR i=1:size(CSpace.dimensions,1)

 newPnt (1,i)= CSpace.dimensions(i,1)+range(i)*rand;

 END

 END

END

FUNCTION newPoint=getBiasPoint(CSpace ,bias)

 randVal=rand; %bias probability

 methodIndex=find(randVal <= bias.rangeVal,1,'first');

 biasMethod= bias.type(methodIndex);

 SWITCH biasMethod

 CASE 'biasToGoal'

 newPnt =goalPos;

 CASE 'biasToTreePoints' % bias to one point in other trees

 …..

 CASE 'biasToGivenPoints'

 …..

 randVal=randperm(size(CSpace.biasGivenPoints,1));

 newPnt = CSpace.biasGivenPoints(randVal(1),:); …..

 END

END …..

Figure A-2: Selected lines of getRandomPoint function

145

The implementation of cell decomposition in Matlab finds the graph of adjacency graph

based on sweep-line technique. Then, to deal with this generated graph the Bioinformatics

toolbox functions was used. An example of these functions is “graphshortestpath” it

searches over the graph for the shortest path between the initial and the goal positions. This

function could be configured to use (Bellman-Ford, BFS, Acyclic, or Dijkstra) algorithms

as a searching method. In this implementation, the Dijkstra's algorithm was used. Another

useful function is “graphallshortestpaths” which gives all available shortest paths.

Moreover, for graph visualization the “biograph” function was used to create graph object,

and then draw it using “view” function, Figure A-3 shows selected lines of code that search

and visualize the graph of adjacency. The result of this code is seen in Figure A-4.

%prepare Undirected Graph

wieght=1;

DG=sparse(graph.edges(:,1),graph.edges(:,2),wieght);

UG=tril(DG+DG');

% Graph search functions in Graph Theory, Bioinformatics Toolbox

[dist,path] =

graphshortestpath(graph,InitialPosition,GoalPosition,'directed', false);

%draw graph of adjacency

h=view(biograph(UG,cellstr(num2str([1:size(UG,1)]')),'ShowArrows','off','

ShowWeights','on'));

…..

Figure A-3: Search and draw graph, based on bioinformatics toolbox function

Figure A-4: Cell-decomposition planner GUI and the generated graph

The results from cell-decomposition and RRT algorithms are integrated together. Figure

A-5-a, shows the RRT path without bias, and the CD path in Figure A-5-c, then the RRT

path using the bias to CD path’s points, as shown in Figure A-5-b.

The planner in Figure A-5-a, has to explore wide areas before it finds the goal, while the

using of the bias-points increase the efficiency for RRT tree.

 1

 1

 1 1

 1

 1

 1

 1

 1

 1 1 1 1

 1

 1 1

 1
 1

 1 1

 1

 2

 3

 4 5

 6

 7 8

 9

10

11

12

13

14

1516

17

18

19

20

146

(a)

(b)

©

Figure A-5: (a) RRT planner without bias, (b) RRT with bias toward cell-decomposition path’s points,

and (c) the cell-decomposition path

Software snapshots

The main window of the simulation software contains the working space window, as

shown in Figure A-6-(8), and some general options, for example, place the goal and initial

positions, and clear the workspace, Figure A-6-(1), load a workspace Figure A-6-(6), some

statistics parameter Figure A-6-(5). It also contains some RRT parameters Figure A-6-(4),

exact cell decomposition options Figure A-6-(3), cell decomposition approximation Figure

A-6-(2), and the information bar Figure A-6-(7).

Figure A-6: Main Software window

The workspaces are drawn in separate window as shown in Figure A-7, where the user

can draw polygon obstacles and modify the coordinates.

1 2

4

5

6 7

8

3

147

Figure A-7: Drawing workspace interface

Figure A-8: RRT algorithm interfaces, and its parameters

The RRT algorithm can be set to bias to specific points for example the exact cell

decomposition path1 as shown in Figure A-9. It can be also used to simulate the dynamic

workspace2, as shown in Figure A-8.

1 See section 4.1.4 and 5.4.1

2 See section 4.1.5

148

Figure A-9: RRT bias toward CD's path points

Figure A-10: Exact cell decomposition, and the generated graph

The exact cell decomposition options contain generating the cells, planning a path,

shortening the path, and other visualization tool as draw the graph, as shown in Figure

A-10.

The approximation cell decomposition algorithm is implemented in the way that the

user can set the minimum resolution as shown in Figure A-11. In addition, the cost of

graph edges can be set using four methods1, i.e. equal translation cost, cost proportional to

1 See chapter 3.3.1

149

cells size, cost proportional to translation between different cells size, and cost based on

real distance between cell centers.

In Figure A-12, minimum spanning tree algorithm is implemented to identify the

narrow passages using five methods1 that set the graph edges’ cost. We use

“graphMinSpanTree” function from bioinformatics toolbox to find the required graph.

Figure A-11: Cell decomposition approximation and the planning options

Figure A-12: Minimum spanning tree usage, over cell decomposition approximation's graph, and the

narrow areas identification options

1 See section 3.3.2

