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ABSTRACT 

Motion planning is an active field in robotics domain, it is responsible for translating high-
level specifications of a motion task into low-level sequences of motion commands, which 
respect the robot and the environments constraints. 

In this work many path-planning approaches have been reviewed, mainly, the rapidly 
exploring random tree algorithm (RRT), the cell decomposition approaches (CD), and the 
application of fuzzy expert system (FES) in motion planning. These approaches have been 
adapted to solve some of mobile robots motion-planning problems efficiently, i.e. motion 
planning in small and narrow areas, the global path planning in dynamic workspace, and 
the improvement of planning efficiency using available information about the working 
environments. 

New planning approaches have been introduced based on exploiting and combining the 
advantages of cell-decomposition, and RRT, in addition to use other tools i.e. fuzzy expert 
system, to increase the efficiency and completeness of finding a solution. 

This thesis also proposed solutions for other motion-planning problems, for example the 
identification of narrow area and the important regions when using sampling-based 
algorithms, the path shortening for RRT, and the problem of planning a safe path. 

A l l proposed methods were implemented and simulated in Matlab to compare them 
with other methods, in different workspaces and under different conditions. Moreover, the 
results are evaluated by statistical methods using Matlab and Mini tab environments. 

KEYWORDS 
Motion Planning, Path planning, Rapidly exploring random tree, RRT, Expert system, 

Fuzzy system, Cell decomposition. 
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ABSTRAKT 
Metody plánování pohybu jsou významnou součástí robotiky, resp. mobilních robotických 
platforem. Technicky je realizace plánování pohybu z globální úrovně převedena 
do posloupnosti akcí na úrovni specifické robotické platformy a definovaného prostředí, 
včetně omezení. 

V rámci této práce byla provedena recenze mnoha metod určených pro plánování cest, 
přičemž hlavním těžištěm byly metody založené na tzv. rychle rostoucích stromech (RRT), 
prostorovém rozkladu (CD) a využití fuzzy expertních systémů (FES). Dosažené výsledky, 
resp. prezentované algoritmy, využívají dostupné informace z pracovního prostoru 
mobilního robotu a jsou aplikovatelné na řešení globální pohybové trajektorie mobilních 
robotů, resp. k řešení specifických problémů plánování cest s omezením typu úzké 
koridory či překážky s proměnnou polohou v čase. 

V práci jsou představeny nové plánovací postupy využívající výhod algoritmů RRT 
a CD. Navržené metody jsou navíc efektivně rozšířeny s využitím fuzzy expertního 
systému, který zlepšuje jejich chování. 

Práce rovněž prezentuje řešení pro plánovací problémy typu identifikace úzkých 
koridorů, či významných oblastí prostoru řešení s využitím přístupů na bázi dekompozice 
prostoru. V řešeních jsou částečně zahrnuty sub-optimalizace nalezených cest založené 
na zkracování nalezené cesty a vyhlazování cesty, resp. nahrazení trajektorie hladkou 
křivkou, respektující lépe předpokládanou dynamiku mobilního zařízení. 

Všechny prezentované metody byly implementovány v prostředí Matlab, které sloužilo 
k simulačnímu ověření efektivnosti vlastních i převzatých metod a k návrhu prostoru řešení 
včetně omezení (překážky). Získané výsledky byly vyhodnoceny s využitím statistických 
přístupů v prostředí Minitab a Matlab. 

KLICOVA SLOVA 
Plánování pohybu, plánování cest, RRT, rychle rostoucí stromy, expertní systém, fuzzy 

systém, rostorový rozklad. 
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1 INTRODUCTION 

Robots significantly affect our lives in a positive way. Their successes and desirable 
outcomes expanded rapidly from manufacturing and industrial application to streets, 
buildings, gardens, and daily tasks applications. 

The major types of old robots were industrial arms and manipulators, they fixed to a 
base and do a specific task. However, nowadays, a big expansion is done in robotics 
applications; the mobile robots appear widely among us and take a part of doing human's 
everyday tasks, e.g. auto-pilot, autonomous car, autonomous vacuum cleaner, autonomous 
lawn mowers, rescue robots, and many other applications. 

The autonomous mobile-robot field has been a subject of many researches last years. 
The high demand of autonomous robot applications motivates the researchers and 
scientists to increase the machine autonomy by introducing a new designs, ideas, and 
algorithms, especially in the applications that involve critical requirements, dangerous 
environment, or boring tasks. 

The complexity of autonomous robots requires an efficient motion planner, which 
convert high-level tasks specifications into low-level descriptions of motion commands. 
The output of the planner is a motion plan or a path plan, which includes a sequence of 
actions to be executed by robots controllers and actuators. 

A planner constructs a plan using planning algorithms that find a suitable control inputs 
given a state of the workspace. An efficient planner should rapidly and reliably computes a 
collision-free path, and respects the robots constraints or other kinematic and dynamic 
constraints. 

Motion planning problems can be divided into three levels, based on the planning goals, 
i.e. local planning, global planning, and mission planning as shown in Figure 1-1, the 
motion planner module. 

The local planners produce a solution locally based on sensors data. They do not require 
a map or any initial information except the goal location. Most of these algorithms are easy 
to implement and require low computational resources. The main advantage of them is the 
tolerance to the environment changing. However, many local planning algorithms trap in 
local minima, moreover, they are incomplete, and generate un-optimized paths. 

In the global planning, the algorithms produce a full path from the initial position to the 
goal states. Usually, these algorithms require middle to high computational resources. 
Moreover, they require the initial and goal locations, in addition to the map of the 
workspace. The main advantage of these planners, that they avoid the local minima. Yet, 
they have less tolerance to the environment changing. 
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Mission planning is a high abstraction of the required tasks. The query may have multi-
goals, and the planner in this level tries to find a way that satisfy all constraints and reach 
the goals. 

I 
Mot ion Tasks 

Motion Planner 
Maps & Locations 

Mission Pia n n i n g | e Global Planning 

Local Planning 

SLAM 

• 
Mapping 

Localization 

Sensors 

Other 
Resources 

Robot Controllers and Actuators 

Figure 1-1: Robot navigation model. 

Another complement module to the motion-planning one is the localization and 
mapping module. It estimates the robot location and improves awareness of the system to 
the surrounding environments. It is also responsible for self-localization in an unknown 
area, and builds a map for the explored spaces. This process is known as simultaneous 
localization and mapping (SLAM) (Leonard et al. 1991; Smith et al. 1986), which is out of 
our interest in this thesis. 

The hierarchy of the motion-planning module is proposed in many researches based on 
the application. For example, in (Vendrell et al. 2001), the authors construct a planner 
using five steps, first the Mission, which deals with the highest and most abstract definition 
of an activity. Also, it is independent from the robot and the environment. For instance, 
"load part X from place Y to place Z." the second level is the Task, which corresponds to a 
sub-goal from the whole goal. Other levels are the Motions and Actions, they responsible 
for translating the plan into a set of robot orders and basic operations, which executed by 
the last level, the Robot Orders level. Other proposed architectures presented in 
(Kelouwani 2013; Knepper et al. 2010; Moore et al. 1999). 

Our interest in this thesis is to develop the local and global parts of the motion-planning 
module for omnidirectional mobile robots. 

The robot is considered as a holonomic points operates in static or dynamic workspace. 
The rapidly exploring random tree algorithm (RRT) 1 and its developments are reviewed, 

W i l l be discussed in chapter 4 



and tested to estimate their efficiency and completeness. Then statistical studies on RRT 
variants have been done, in order to find alternatives to the methods that have low 
probabilistically completeness. We tested the RRT performance, and introduced a new 
method for RRT's path shortening, in addition, we utilize a smoothing-out technique to 
improve the generated path. The shortening algorithm reduces the number of redundant 
points in the path, and reduces the detours edges, in order to make the path more suitable 
for omnidirectional mobile robot. 

We have developed new motion planners based on cell-decomposition (CD) 
algorithms1. They generate a plan that keeps a safety distance between the robot and the 
obstacle boundaries, and, at the same time, push the robot to perform its maneuvers in 
large free regions in the workspace. Moreover, new planning-algorithms were proposed 
and developed in order to build efficient planners. The first category of these approaches 
combines RRT algorithms and CD methods. It overcomes the drawbacks of RRT 
algorithms in narrow areas and cluttered workspaces, what is more, it overcomes the CD 
downsides in dynamic workspaces. Another work has been done using CD and minimum 
spanning tree (MST) to identify the narrow passage and the important regions form 
sampling-based algorithms point of view. 

The second category of the planning algorithms uses an expert rule-based, with the aim 
of utilizing the collected experience, and available knowledge to generate a better solution 
in an efficient way. The goal of these proposed methods is to develop and improve RRTs 
planners for omnidirectional mobile robot, by exploiting the available knowledge in the 
environment. 

1.1 Thesis objectives 
The aims of the thesis are to improve the mobile robot strategy for path planning, by 
proposing new approaches to improve the completeness and efficiency of planning 
algorithms, which in consequence improve the robot's autonomy. Then assert the results 
statistically, and compare it to other methods. 

The clear aims of the thesis can be summarized in the following points: 

• Review of the state of the art. 
• Design new approaches for path planning based on RRT and cell decomposition 

principles. 
• Use knowledge base and expert system in the path planning methods. 
• Design simulation environment that conducts simulations of the experiments, 

and evaluates the results statistically. 

W i l l be discussed in chapter 3 



1.2 Robot History 
The term "robot" was first used to denote fictional automata in the 1921 on the play 
"Rossum's Universal Robots" by the Czech writer Karel Capek. He uses the word 'robot' 
to describe artificial people. The term robot comes from the Czech work 'Robota' which 
means forced labor that work without rest (Etymonline 2014; Slovnfk). 

The Idea of producing autonomous machines or pre-programmable machines to serve 
the people or replace them in some situation was proposed frequently over the ages. Back 
to ancient worlds, a Chinese artificer Yan Shi (BC 1000) designed a mechanical 
handiwork, which was able to sing and act (Uyanik 2011). In 320 BC, Greek philosopher 
Aristotle wrote "If every tool, when ordered, or even of its own accord, could do the work 
that befits it, Then there would be no need either of apprentices for the master workers or 
of slaves for the lords". After that, one of the oldest known automaton was made by 
ancient Egyptians (250 BC) "Clepsydra" which is a clock propelled by water (Mathia 
2010; Wikipedia 2014a; sciencekids 2014). 

In golden Islamic age, the polymath "Al-Jazari" which known as the creator of the first 
programmable humanoid robot (Uyanik 2011), wrote a book in (1206) describing the 
design and construct of a number of automatic machines, including kitchen appliances, 
musical automata powered by water. In addition to the first programmable humanoid robot 
which was a programmable drum machine consisting of four automatic musicians in a boat 
floating in a lake (Uyanik 2011; Wikipedia 2014a; Al-Jazari-Wikipedia 2014). 

In 1495, Leonardo Da Vinci designed a humanoid automaton that does human-like 
movements. Then, around 1700, many automatons were built. Jacques de Vaucanson 
(1737) made many automatons like flute player, tambourine player, and his most famous 
work, "The digesting duck." The Japanese craftsman Hisashige Tanaka created an array of 
extremely complex mechanical toys, some of which were capable of serving tea, firing 
arrows drawn from a quiver, or even painting a Japanese kanji character (Wikipedia 
2014a). 

In the recent centuries, the automation takes a place in 1913, when Henry Ford installs 
the world's first moving conveyor belt-based assembly line in his car factory, which make 
assembling time for Model T fell from 12 hours and 30 min to 93 minutes. Then, many 
modern robots start to appear in different applications (Uyanik 2011; Wikipedia 2014a; 
sciencekids 2014). 

The first digitally operated and programmable arm robot was invented by George Devol 
in 1954. It is known as "Unimate." It became the first industrial robot, completing 
dangerous and repetitive tasks in an assembly line at General Motors (1962), and laid the 
foundations of the modern robotics industry. 

In 1950, Alan Turing proposes a test to determine if a machine truly has the power to 
think for itself. To pass the test a machine must be indistinguishable from a human during 



conversation. It has become known as the 'Turing Test' of intelligent behavior. Then in 
1980 John Searle shows, that the test of intelligence is not so easy. He proposes the 
paradox with name 'Chinese Room'. But it is another story of the beginning of the artificial 
intelligence. 

1.3 Thesis structure 
The thesis is divided into six chapters. The second one, the state of the art, contains an 
overview of the famous methods in the motion-planning domain, and some approaches, 
which are adapted and used in this work. 

The third, fourth and fifth chapters describe the used algorithms, each of these chapters 
is divided into theoretical parts in addition to our contribution part. The contribution 
section is divided into subsection based on our publications. Each one of the subchapters 
contains a description of our methodologies to solve a specific problem. In addition, it 
presents the testing results, and the discussion. The theoretical part of the chapter contains 
an introduction and related words, which are used in the corresponding publications. They 
combined and reviewed in a logical sequence. 

The Third chapter reviews the cell decomposition algorithm (CD) and its 
improvements. It is started with the theoretical part, which review many researches and 
developments of CD approaches, while the second part contains our contribution in safe 
path planning using cell-decomposition approaches and narrow area identification. 

The fourth chapter describes the principle of rapidly exploring random tree algorithms 
(RRT), and its variation. The chapter has been started with a general introduction of RRT 
and its principle, then a deep review of its developments and the related works. The last 
sections of this chapter present our contributions to develop the path shapes, the algorithms 
completeness, and the efficiency of the planners using the combination between RRT and 
other approaches. 

The fifth chapter discusses the use of expert system in the path-planning problem. It 
describes our methods that exploit the available information in order to support the motion 
planning procedure. The chapter starts by describing the basic principles of expert systems, 
the hierarchy of ES, knowledge-based representation, fuzzy expert system, and then a 
revision of ES in mobile robot motion-planning problem is done. The last section of this 
chapter presents our contribution in this domain to build a hybrid planner using fuzzy 
expert system, RRT, and CD algorithms. 

In the last chapter of this thesis, we conclude our work, and then, we list the references, 
which are used in this work. In appendix section, some snapshots of the simulation and 
testing application are presented. 





2 STATE OF THE ART 

In this section, some motion planning concepts are reviewed. We start with basic concepts 
of motion planning and the need for configuration space, which led to recent motion 
planning algorithms. Then, the original applicable ideas for motion planning are described 
in the examples of planning algorithms section, which is started by a survey of the exact 
and geometry methods and it is ended with sample-based methods. 

2.1 Motion planning 
Motion planning is the process of finding feasible movements in a continuous world. The 
feasible movements displace the robot toward the goal state and at the same time do not 
collide into obstacles, or violate environment's constraints. The robot's models and its 
working environments should be specified in motion planning problems. The robot's 
model contains robot's dimensions, kinematics, differential equations, and other 
parameters, which control or constrain robot movements. The model of a working 
environment contains maps, obstacles representation, and robot location. 

The principle of using two models to formulate the robot and its environment causes 
some difficulties and complexity to solve the motion-planning problem, especially in the 
high dimensional workspaces. 

A new principle is proposed to represent the robot and its environments in different 
ways. A configuration space is proposed to represent the robot as a point in the space, and 
convert the complexity of robot model to dimensions in the configuration space. The 
dimension of the configuration space corresponds to the number of degrees of freedom of 
the robot. The advantage of using the configuration space is the motion-planning problem 
will be viewed as a searching in a high-dimensional configuration space, which contains 
implicitly the representation of the obstacles. In consequence, the motion plan will be 
defined as a continuous path in the configuration space. Based on this proposal the path-
planning term and path-planning algorithms is proposed as methods to find a continuous 
path over configuration space. The other term in this context is trajectory planning, which 
expresses the action of finding a continuous path over the configuration space, which 
respects the dynamic constraints, such as velocity, acceleration, inertia, etc., which means 
the plan contains a continuous path and the control input for every node of this path. 

2.2 Configuration space 
The configuration space (C-space) for motion planning is discrete space. It contains a set 
of all possible transformations that could be applied to the robot. The idea of the 
configuration space is introduced in (Lozano-Perez et al. 1979). 



The mapping between workspace and C-space is straightforward. A point in workspace 
corresponds to a set of configurations in C-space (LaValle 2006, chap. 4; de Berg et al. 
2008, chap. 13). 

A free configuration q is a position where the robot does not collide obstacles or itself. 
Each sample from workspace is classified as free or non-free configuration. A set of all 
free q is called the free configuration space, while the obstacle space or the forbidden 
region is the complement of the free space. 

The degree of freedom (DOFs) of a robot is considered as dimensions in its C-space, 
e.g. a robot with n degree-of-freedoms is represented by n-dimensions C-space. For 
example, if a robot is represented as a single point (zero-sized) translates in a 2D plane (the 
workspace), then C-space is a plane, and configurations are represented using two 
parameters (x, y). If the robot translates and rotates in 2D workspace, then the C-space is 
3D and the configurations are represented using three parameters (x, y, 6) where 6 is the 
head direction. If the robot translates and rotates in 3-dimensional workspace, then the 
representation of any configuration requires six parameters (x, y, z) for translation, and the 
Euler angles (a, /?, y) for rotation. In some problem, the robot is considered as a single 
point by transforming the robot dimensions to the obstacles dimensions. This process uses 
some methods, e.g. Minkowski sum (Wikipedia 2014b; de Berg et al. 2008, pp. 290-296). 

2.3 Examples of planning algorithms 
In this section, some famous algorithms that used in the motion-planning domain have 
been reviewed and a brief information about the bases of these methods is given. In our 
work, we adopt and adapt some of these methods to support our proposals. 

In the context of motion planning, different approaches have been developed. Some of 
them use geometric models, which construct a map/graph and use it for path planning, e.g. 
roadmap (Choset, Howie et al. 2005), visibility graph (Lulu et al. 2005; de Berg et al. 
2008) , Voronoi diagram (LaValle 2006; Aurenhammer 1991; Aurenhammer et al. 2000; 
Garrido et al. 2011; Choset et al. 2000; Fabbri et al. 2002; Shkolnik et al. 2009; Sakahara 
et al. 2008; Masehian et al. 2010; de Berg et al. 2008, chap. 7) , and cell decomposition 
(Katevas et al. 1998; LaValle 2006; Choset, Howie et al. 2005; Milos Seda 2007; Latombe 
1991; Brooks et al. 1985; Schwartz et al. 1983; de Berg et al. 2008; Sleumer et al. 1999; 
Bernard Chazelle 1987; Hwang et al. 2003). 

Another category uses a grid over the workspace, e.g. artificial potential field 
(Arambula Cosio et al. 2004; Hani Alsafadi 2007; Masoud 2013; Mbede et al. 2000; 
McFetridge et al. 1998; Petres et al. 2012; Sfeir et al. 2011; Zhang et al. 2012; Khatib 
1985; Rosell et al. 2005; Hwang et al. 1992; Kim et al. 1991; Masoud 2013), and vector 
field histogram (Borenstein et al. 1991). 



Another category includes sampling-based algorithm, which described in more detail in 
separate sections. In the next paragraphs, we have listed the basic idea of some algorithm, 
which is widely used in motion planning problems. 

2.3.1 Bugs algorithms 

Bug algorithms are used for local path planning with minimum sensor and computation 
requirements. They assume the robot as a point operates on a plane with ranging sensors 
(Choset, Howie et al. 2005, chap. 2; Kamon et al. 1998; Lumelsky et al. 1986). May Bug
like improvements were introduced later. In (Buniyamin et al. 2011; Ng et al. 2007) the 
authors reviewed many different variations. In the next section, we shortly explain the 
principle for the basic bug algorithm. 

The Bugl algorithm (Lumelsky et al. 1986) exhibits two behaviors: "motion-to-goal" 
and "boundary-following". During "motion-to-goal," the robot moves along the line 
toward the goal until it encounters either the goal or an obstacle. If the robot encounters an 
obstacle, the robot then circumnavigates the obstacle until it returns to the first hit point. 
Then, it determines the closest point to the goal on the perimeter of the obstacle and 
traverses to this point. This point is called the leave point. From that point the robot heads 
straight toward the goal again, i.e., it re-invokes the "motion-to-goal" behavior. 

a b 
Figure 2-1: Principle of Bugl algorithm; a: the algorithm finds a path to goal, b: no path to goal exist. 
Source (Lumelsky et al. 1986) 

In the case, when the line, that connects the leave point to the goal one, intersects with 
the current obstacle, the algorithm fails and there is no path to the goal location. This case 
is shown in Figure 2-1-b. Otherwise, the procedure is repeated until the goal is reached, as 
shown in Figure 2-1-a. 

Bug2 is similar to Bugl (Lumelsky et al. 1986); it has also two behaviors: motion-to-
goal and boundary-following. During motion-to-goal, the robot moves toward the goal as 
in Bugl . But in Bug2 the line which connects the initial point to the goal point remains 
fixed as shown in Figure 2-2-a. The "boundary-following" behavior is invoked when the 
robot encounters an obstacle. This behavior is different from Bugl , where in Bug2 the 
robot circumnavigates the obstacle until it reaches a new point on the fixed line. If this new 



point is closer to the goal than the first intersection point, then, the robot proceeds toward 
the goal, Figure 2-2-a. The algorithm repeats this process if it encounters other obstacles. 
However, when the robot re-encounters the original departure point, in this case there is no 
path to the goal, as shown in Figure 2-2-b. 

'/goal 

a b 
Figure 2-2 Principle of Bug2 algorithm; a: the algorithm find a path to goal, b: no path to goal exist. 
Source: (Lumelsky et al. 1986) 

One limitation of the Bug algorithm is that the robot's behavior depends only on its most 
recent sensor readings. This can lead to problems where the robot's instantaneous sensor 
readings do not provide enough information for robust obstacle avoidance. This limitation 
is solved later on by the Vector field histogram (VFH) techniques by creating a local map 
of the environment around the robot. 

2.3.2 Vector field histogram (VFH) 

V F H is a real time motion planner. It is proposed in (Borenstein et al. 1991) as a local 
planner. The V F H utilizes a statistical representation of the robot's environment through a 
histogram grid. Therefore, it places a great emphasis on dealing with uncertainty from 
sensors and modeling the errors. 

The V F H was developed to be computationally efficient, robust, and insensitive to 
misreading. V F H algorithm is fast and reliable, especially when traversing through densely 
populated obstacle courses. 

The histogram grids in V F H represent the obstacles as shown in Figure 2-3, where an 
active window is used to update the cells' value on the grid. When an obstacle is detected 
in a cell by sensors, the algorithm increases the certainty value of this cell. This action is 
repeated while robot movements. This representation is well suited for inaccurate sensor 
data, and gives the potential for the fusion of multiple sensor readings. 

The V F H algorithm contains three major behaviors: first, it constructs two-dimensional 
Cartesian histogram grid, as shown in Figure 2-3-b. This grid is updated continuously in 
real-time with range data sampled by on-board range sensors. A specific area around the 
robot, the active window, is chosen based on histogram grid, see Figure 2-4-a. The 



dimension of this area is set to fit the range sensors. Every cell in active window has a 
value representing the certainty of obstacle existence. The active window is translated 
when the robot translates. 
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Figure 2-3: V F H space representation, a: is the actual space, b: the space representation by obstacle 
certainty value. Source: (Borenstein et al. 1991) 

The second behavior constructs one-dimensional polar histogram by reducing the 
Cartesian histogram around the momentary location of the robot, as shown in Figure 2-4-b. 
This operation is done using in) angular sectors. The sectors start from robot location, and 
the value of each sector is calculated by summing up the cell values in that sector. Figure 
2-5 shows the sectors and certainty representation for obstacles. 

B : 

threshold 

Polar' 
histogram 

Polar histogram 

H'(k) 

Figure 2-4: a: Representation of active window and polar sectors, b: one-dimension polar histogram. 
Source: (Borenstein et al. 1991) 

The third behavior chooses the candidate valleys, which are consecutive sectors on 
polar histogram below a specified threshold; a smoothed polar histogram typically has 
peaks, and valleys. The peaks represent sectors, which have high polar obstacle density, 
while the valleys represent sectors that have low polar obstacle density. Any valley has a 
polar obstacle-density below a certain threshold, is called a candidate valley. 



Figure 2-5: Histogram grid and certainty value representation in VFH. Source: (Johann Borenstein 
1990) 

Once the direction of the selected candidate is determined, the orientation of the robot is 
steered to match this direction. Sometime a cost function is applied; it takes into account 
the target direction, wheel orientation, and previous direction, then steer the robot based on 
the value of this function. 

The main limitations of V F H are the navigation through narrow areas, the local 
minimum, and the number of variables that need an optimization for every workspace. In 
addition, this algorithm is not complete which means, it cannot guarantee to reach the goal. 

2.3.3 Roadmap algorithms 

The idea behind the roadmap approaches is to build a map of static workspace and use it 
for repeated tasks. It would be more efficient to construct a data structure once and reuse it 
to plan subsequent paths. This data structure is often called a roadmap. The roadmap 
approaches try to construct a set of one-dimensional curves, which connect two nodes from 
the free areas in the workspace, and reuse them for further path planning query (Choset, 
Howie et al. 2005). 

The visibility graph is an example of roadmap. It tries to connect the initial and the goal 
locations with nodes from the map. Then, it searches for a continuous path between these 
locations, Figure 2-6 shows a visibility graph, the shaded areas represent obstacles, and the 
solid lines are roadmap curves set (Lulu et al. 2005). 

The visibility maps method is applied in workspaces that have polygonal obstacles; 
however, other obstacles shapes can be approximated. The map's nodes are vertices of the 
polygons, while the edges are connections between two nodes which are located within 
line of sight (de Berg et al. 2008, chap. 15). The main shortcomings of visibility maps are 
1- the visibility graph works well in two dimensions, but not three or more. 2- The Shortest 
paths pass through vertices, which consider unsecure in reality because it passes very near 
to obstacles. 
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Figure 2-6: Visibility graph - Roadmap. Source: (de Berg et al. 2008) 

Another example of the roadmap algorithms is the Voronoi diagram. This method tries 
to divide the workspace into sub-regions. Each edge of the diagram is constructed using 
equidistant points from the nearest two points on the obstacles boundaries. Figure 2-7 
shows methods to generate the edges of the Voronoi diagram. 

In navigation case, the equidistant curves from at least two obstacles are created, and 
then the path is generated. The algorithm tries to connect the initial location and the goal 
locations to the curves and then find a path along these curves. 

a b e 
Figure 2-7: Voronoi diagram generation, a: edge between two vertices, b: edge between two lines, c: 
edge between vertex and line. Source: (LaValle 2006) 

Figure 2-8-a shows a Voronoi diagram in obstacles-like points, Figure 2-8-b shows a 
disc-like robot and its path on Voronoi diagram; the robot start from s and finds the nearest 



point s' on Voronoi diagram then plan a path to t' which is the nearest point to the target 
location t. 

The Voronoi methods are used in motion planning frequently. The advance of these 
methods is to keep the robot far away from the obstacles (LaValle 2006; Aurenhammer 
1991; Aurenhammer et al. 2000; Garrido et al. 2011; Choset et al. 2000; Fabbri et al. 2002; 
Shkolnik et al. 2009; Sakahara et al. 2008; Masehian et al. 2010; de Berg et al. 2008, 
chap. 7). 

2.3.4 Cell decompositions (CD) 

The basic idea behind CD is to decompose the workspace into manageable regions and 
determine the free ones. The free regions or what-called free cells represent the areas not 
occupied by the obstacles. The algorithm builds a graph of adjacency for the adjacent free 
cells and convert the motion planning problem to a graph search problem (LaValle 2006, 
chap. 6; Choset, Howie et al. 2005, chap. 6; Seda 2007). The cell decomposition 
approaches and its developments are discussed in more detail in a separate chapter. 

2.3.5 Grid-based search 

Using cell decomposition techniques or others techniques, the workspace can be 
represented as a grid of free and occupied areas. This representation can be easily 
transferred to a graph representation. 

Some algorithms, known as grid-based search algorithm used the graph for path finding 
problems, for example A * , breadth-first search, Dijkstra's algorithm, and greedy best-first 
search, etc. 

The breadth-first search starts from one node and explores the neighbor nodes first, and 
then it moves to the next level of neighbors if they not explored yet. The Dijkstra's 
algorithm uses the same principle, but the algorithm revisits the neighbors if they have 
better path to the start point. These two algorithms do not take into account the cost to the 
goal, they explore the graph until they find the goal. 

On the second hand, the greedy best-first search algorithm starts exploring the nodes 
that have the smallest cost to the goal. This principle makes the algorithm faster than the 
previous algorithms. A * combines the Dijkstra's algorithm and the greedy best first search 
to build the path (Amit Patel 2014). It uses the actual cost in addition to the estimated cost 
to the goal, and explores the most promising nodes. The estimated cost to the goal is 
calculated using a heuristic function that is vary depend on the problem. 



Figure 2-9 and Figure 2-10, show visualization for these algorithms using online 
library 1, is shown in, where generated paths, explored area, and in-queue regions are 
presented as colored boxes. 

Figure 2-9: (a) A * algorithm, (b) best-first search algorithm, the dark boxes represent the obstacles, the 
blue boxes represent explored nodes, the green boxes represent in-queue nodes 

(a) (b) 
Figure 2-10: (a) Dijkstra's algorithm, (b) breadth-first search, the dark boxes represent the obstacles, the 
blue boxes represent explored nodes, the green boxes represent in-queue nodes 

2.3.6 Potential fields 

Potential field is a local planner method. It is introduced in (Khatib 1985). This method 
involves modeling the robot as a particle moving under the influence of potential fields. 
These fields are determined by set of obstacles and the target destination (Arambula Cosio 
et al. 2004; Hani Alsafadi 2007; Masoud 2013; Mbede et al. 2000; McFetridge et al. 1998; 
Petres et al. 2012; Sfeir et al. 2011; Zhang et al. 2012). The potential field algorithm is 
efficient and could be applied in real-time. Since, the motion of a robot, at any moment, is 

1 http://qiao.github.io/PathFinding.js/visual/ 

http://qiao.github.io/PathFinding.js/visual/


determined by the location and the potential fields. It is also a powerful method because it 
easily extensible, for the reason that, the potential fields are additive, a new obstacle can be 
added to the workspace by summing up the influence field of this obstacle to the old fields. 

This method has a major drawback, which is the local minimum. Because the potential 
field approach is a local rather than a global method. This problem is overcame by 
coupling the potential field method with other techniques to escape the local minima 
(Rosell et al. 2005; Hwang et al. 1992), or constructing potential field functions, which do 
not contain a local minimum (Siddhartha Srinivasa 2013). The harmonic potential fields is 
used also to escape the local minima and it has good results (Kim et al. 1991; Masoud 
2013). 

2.3.7 Sampling-based algorithms 

The main drawback of the former methods is the low efficiency in high dimensional 
problems, which makes the search space extremely large. Sampling based algorithms 
appeared to confront this problem. The general approach is to approximate the space 
instead of dealing with it exactly (Lin 2006). 

In recent years, a number of sampling-based algorithms for motion planning have been 
introduced. They have had remarkable success in solving challenging motion planning 
problems. The fundamental distinction between sampling-based motion planners and 
earlier planners is the representation of obstacles in the workspace. The earlier planners 
construct explicit representations of obstacles, which has several disadvantages; e.g. time 
complexity and PSPACE-hardness (Lindemann et al. 2003). 

Sampling-based motion planning has emerged as a way to avoid explicit constructions 
of obstacles. The sampling-based motion planner restricts the modeling of configuration 
space. This restriction eliminates many of the problems encountered in the methods that 
constructed an explicit representation of obstacles. Since there is no explicit model of 
obstacles, it is not needed to characterize all possible conditions for particular classes of 
problems. 
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Figure 2-11: The sampling-based philosophy 

Sampling-based motion planners can be applied to a broad class of motion planning 
problems because they treat the collision detection function as a separate module. For these 
reasons, these kinds of algorithms often seem strikingly simple in comparison to 
combinatorial motion planners. The simplicity and generality of these planners are the 
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significant factor contributing to their success and applicability to high-DOF (Lindemann 
et al. 2003). Figure 2-11 shows the principle of sampling-based approaches, which 
consider collision detection as a "black box," and separates the algorithms from geometric 
and kinematic models. 

Randomized sampling-based algorithms are a powerful and practically important class 
of motion planning methods, i.e. randomized path planner (RPP), probabilistic roadmap 
planners (PRMs), Ariadne's Clew method, and rapidly exploring random Trees (RRTs), 
etc. Their appeal lies in their ability to address large and complex problems in an 
incremental fashion (LaValle et al. 2004). However, the price of this incremental approach 
is a reduction in completeness. Most computational geometry algorithms are 
algorithmically complete, meaning that they are guaranteed to find a solution to a problem 
if one exists, or report that none is exist. They are also guaranteed to terminate in finite 
time. Randomized methods sacrifice algorithmic completeness for weaker probabilistic 
completeness (Cheng et al. 2002). That is means if a solution is exist, the probability to 
find this solution is approaches to one, as the number of iterations approaches infinity 
(Esposito 2013). 

In next sections some of randomize samples-based algorithms have been briefly 
reviewed. 

The randomized path planner (RPP) has been proposed in (Barraquand et al. 1991, 
1990), it operates as follows: first, the planner defines several potential fields over a grid 
imposed on the workspace, where the potential value is defined by non-negative, real-
valued function. Second, the planner descends the gradient of the potential field, until a 
local minimum is reached. If the minimum is the global minimum, the goal state has been 
attained, otherwise, the planner executes a series of random walks with the aim of escaping 
the local minimum. After this, the planner again descends the potential field gradient, 
continuing this process until the goal state is reached or the user-time-limit elapsed. This 
latter condition is necessary because unlike combinatorial planners, sampling-based 
planners are typically unable to recognize that a problem has no solution; in such a 
situation, they will never terminate. 

The performance of this planner is affected by the good construction of potential fields 
and a good arbitration function, which decide when to execute a random movement. 

Another random planner introduced in (Glavina 1990), it known as the ZZ-method. The 
algorithm attempts to connect the initial and the goal locations using a straight local 
planner. If this fails, then a new configuration is chosen as a sub-goal. The planner 
attempts to connect the new sub-goal to the initial and goal configurations using the same 
local planner. If this fails, new sub-goals are added and attempts are made to connect them 
with previously existing sub-goals, as well as the initial and goal configurations. Edges 
between sub-goals are checked for collisions. A primitive collision detection method has 
been used which prevents this algorithm from applying in challenging high-DOF problems. 



This was remedied in some extensions (Baginski 1996). The ZZ-method contains many 
elements, which have become common in algorithms that are more recent. 

Ariadne's Clew is a single-query algorithm (Mazer et al. 1998); it is designed to find 
paths in high-dimensional continuous spaces. It is applied to robots with many degrees of 
freedom in static, as well as dynamic environments. The Ariadne's clew algorithm 
comprises two sub-algorithms, called S E A R C H and EXPLORE, applied in an interleaved 
manner. E X P L O R E builds a representation of the accessible space while S E A R C H looks 
for the target; It grows a tree from the initial configuration toward the goal configuration. 
At each step, it searches for a new "landmark," reachable from a current landmark by a 
Manhattan path, which is maximum distant from a point to a set of all landmarks. They use 
genetic algorithms to search for a solution to this optimization problem. Once a new 
landmark has been added to the tree, the planner attempts to connect this new landmark to 
the goal. 

Probabilistic Roadmap method (PRM) is one of widely used methods in motion 
planning. It introduced in (Kavraki et al. 1996) as a planner for holonomic systems. This 
method proceeds in two phases, a learning phase, and a query phase. In the learning phase, 
Figure 2-12, a probabilistic roadmap is constructed and stored as a graph. The graph's 
nodes correspond to collision-free configurations, and the graph's edges correspond to 
feasible paths between these configurations. These paths are computed using a simple and 
fast local planner. In the query phase, any given start and goal configurations of the robot 
are connected to two nodes of the roadmap using the local planner. The roadmap, then 
searches for a path joining these two nodes using graph searching methods. This approach 
is general and easy to implement. It can be applied to virtually any type of holonomic 
robot. 

Figure 2-12 : PRM, learning phase, where the planner tries to connect a random sample to nearby 
vertices in the roadmap. Source: (LaValle 2006) 

Rapidly-Exploring Random Tree (RRT) is another very wide used planner in motion 
planning problems. It is originally proposed for non-holonomic system with dynamic 
constraint. The RRT algorithm is probabilistic algorithm. It is introduced in (Lavalle 1998) 
as a planning algorithm to explore quickly high-dimensional spaces. It can handle 
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holonomic movements and nonholonomic constraints by randomly building a space-filling 
tree, see Figure 2-13. 

The tree is constructed incrementally from samples drawn randomly from the searching 
space. It is designed for efficient searching in nonconvex obstacle environments. This 
algorithm has the ability to work under algebraic and differential constraints, and that due 
to its incremental behavior. The key idea of the RRT is to bias the exploration toward 
unexplored portions of the space by sampling points from them and "pulling" the search 
tree toward this regions. The RRT method and related research and developments have 
been reviewed in more detail in a separate section. 

Figure 2-13: Rapidly exploring random tree 

The high demand for more efficient and general planners comes out with new methods 
based on adaptive sampling-based planners. There is no method outperforms all others for 
all kinds of problems. Rather, each technique has different strengths and weaknesses, 
which make it best suited for certain types of problems. Some research utilize this idea by 
building a library of planning methods and use the suitable one based on the workspace 
characteristics. 

For example, in (Morales et al. 2005) the authors proposed an automated framework for 
feature-sensitive motion planning. Their framework creates a library of roadmap methods. 
Then, a machine learning approach is used to characterize and partition the C-space into 
regions, which are well suited to one method of roadmap in the library. After the best-
suited method is applied in each region, the resulting roadmaps of every region are 
combined to form the full roadmap for the entire planning space. 

Another strategy, based on unsupervised-learning methods, is proposed to adapt the 
sampler (Tapia et al. 2009). This strategy models the topology of the problem in a 
reasonable and efficient manner, and adapts the sampler depending on characteristics of 
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the problem. The advantage of their method, that, it can be expanded to accept new 
samplers. 

An adaptive RRTs method is proposed to overcome the limitations of RRTs when 
exploring heterogeneous environments (Denny et al. 2013). The adaptive RRT uses two 
levels of algorithms to expand the tree. At the first level, groups of expansion methods are 
expanded, according to the visibility of the node. Second, the cost-sensitive learning 
approach is used to select a sampler. In addition, the authors proposed a visibility for RRT 
nodes, which can be computed in an online manner. It is used by adaptive RRT to select an 
appropriate expansion method. 

In the next section, some sampling methods are reviewed. The sampling methodologies 
have a significant effect on the sampling-based algorithm. 

2.3.8 Summary 
Based on the state of the art review and our opinion a concise table, Table 2-1, shows the 
summary of the advantages and disadvantages of some motion-planning algorithm. 

Table 2-1: Comparison of motion planning algorithms 

Algorithm Optimal Complete advantages disadvantages 

B U G 

V F H 

Visibility 
graph 

CD 

Grid-
based 

Potential 
field 

P R M 

No 

No 

Yes 

Yes 

Yes 

No 

No 

Yes 

No 

Yes 

Yes 

resolution 

No 

Super-fast, real-time 

Fast, real-time 

Repeatable queries 

Fast 

Fast in 2D 

Super-fast(2D) 

Probabilistically Used in high 
dimension (2-100's) 

Used in 2D, response 
to sensor noise. 
Navigation through 
narrow areas, local 
minimum, 2D. 

The speed depends on 
dimension and number 
of obstacles, path close 
to obstacles, (2D-3D). 

Used for low 
dimension problems 
(2D-3D). 

Very slow in high 
dimension, memory 
consuming. 

Local minimum, (2D-
3D) 

Slow in high 
dimension. 
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RRT No Probabilistically Used in high Medium to fast speed 
dimension (2-100's) in high dimension 

2.4 Sampling strategies 
Sampling based planners use sampling strategies to discretize continuous spaces. The 
sampling methods have a big impact on the efficiency, and the completeness of the 
planners. In general, sample based planners use uniform or non-uniform distribution. 

Uniform distribution samplers choose samples randomly based on a statistically 
uniform distribution, e.g. axes based grid, pseudorandom number, Poisson disc, jittered 
grid, Halton sequence, Hammersley sequence, Lattices, Sukharev, and others (LaValle et 
al. 2004; Supersampling 2015). Figure 2-14 shows examples of the generated samples 
based on some sampling methods. The Voronoi diagram is plotted to increase the visual 
awareness. 

Examples of uniform methods are the regular structures, and the infinite sequence. The 
regular structures, e.g. grids have an implicit neighborhood structure; some of these grids 
have hierarchical or multi-resolution representations, which is preferred feature in motion 
planning. However, regular structures have a drawback, which is, the necessary numbers of 
samples to solve the problem is not determined in prior. That is because they are point sets, 
not point sequences; which mean point sets of a fixed size. 



The second type of uniform methods is infinite sequence such as Halton points and 
uniform pseud-random samples generator. It constructs infinite sequences based on regular 
structures. This approach enhances the resolution incrementally. Sequences of this type can 
be considered as point sets periodically, they gradually fill in the gaps between one 
resolution level and the next one. The generated sequences have incremental quality, which 
means, after every sample the sequence should be as uniform as possible. 

The second category of the sampling strategies uses non-uniform sampling methods. 
The motivation for this type is to have a higher density in certain regions. The more 
sampling in important regions helps the planner to be more efficient, (Lindemann et al. 
2003; LaValle et al. 2004; Liu et al. 2013; Rodriguez et al. 2006). For example, generating 
samples around narrow corridors (Lin 2006); sampling about the boundary of obstacles 
(Amato et al. 1998; Rodriguez et al. 2006); medial-axis sampling (Masehian et al. 2003), in 
which samples are taken from the medial axis of free configuration space; and Gaussian 
sampling, in which sampling is biased to be near the C-space obstacles (Lin 2006; Boor et 
al. 1999). Figure 2-15 shows an ideal classification of importance for the regions of the 
configuration space. 

In general, there are two approaches to non-uniform sampling: the importance sampling 
methods and the adaptive sampling approaches (LaValle et al. 2004). Importance sampling 
methods are based on the prior evaluation and assumption about certain areas of C-space. 
The major drawback of these methods appears when the information about C-space is 
limited. The other category of non-uniform sampling is adaptive sampling approaches. In 
these techniques, the sampling strategy is adapted based on the available information, 
which gained from previous samples. 

Figure 2-15: The ideal sample distribution, 1: the lowest density of samples in corners and hollows, 2: 
lower density in free regions, 3: higher density in opening of narrow passage, 4: the highest density in 
narrow passages. 

An example of adaptive sampling is the visibility P R M (Bu et al. 2005; Nissoux et al. 
1999). This algorithm adapts its sampler based on the visibility between the connected 
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regions of the roadmap. Another example is Z 3 , which shown in Figure 2-16. If a collision 
is detected, then it updates the sample location, by translating the sample to free 
configuration space (Baginski 1996). 

In general the most problematic and important regions for sampling based algorithm are 
the small and narrow ones which known in literatures as a narrow passage problem. Many 
importance-sampling methods are developed to solve this problem. This problem is 
discussed later on in a separate section. 

a b c 
Figure 2-16: Z3 method for adapting and translation the samples to the free configuration space. Source 
(Baginski 1996) 

An example of importance sampling methods is the medial axis sampling. It tries to 
retract the samples onto the medial axis of the free workspace and force them to be as far 
from the boundaries as possible (Masehian et al. 2003; Fabbri et al. 2002; LaValle 2006; 
Smogavec et al. 2012; Wilmarth et al. 1999). Medial axis sampler gives a slightly higher 
probability of picking samples from small free areas that is preferred feature in motion 
planning. An example of a medial axis creation is shown in Figure 2-17-a. It uses a 
geometric method to build the medial curve for rectangular shape. 

On the other hand, the approximation methods are usually used in implicit 
representation of the free configuration-space. Figure 2-17-b,c shows the medial axis 
approximation curve. The principle of approximation methods is to generate a 
configuration randomly (valid or invalid), then it is pushed towards the medial axis of the 
free space. 

a b e 
Figure 2-17: Medial axis and its approximation, a: medial axis methods generated using geometric 
cycles, b-c: approximation of Medial axis. Source: (Fabbri et al. 2002; Masehian et al. 2003) 

Another approach of importance sampling methods is the obstacle boundaries sampling. 
Rather than waste samples in large areas of free configuration space, it focuses on the 



obstacle boundary as important regions (LaValle 2006; Rodriguez et al. 2006; Denny et al. 
2011; Yeh et al. 2012). For example OBPRM (Amato et al. 1998), It generates 
configurations close to the obstacle surfaces, as shown in Figure 2-18-a. First, it finds a 
configuration in obstacle configuration space. Second, it pushed that configuration out of 
the obstacles. This pushing is implemented by creating a ray from this collided 
configuration toward a randomly chosen free configuration. After that a bisection search is 
performed, it is terminated when a free and near to boundary configuration is found. Figure 
2-18-b shows the bisection for randomly chosen ray. The boundary points are retained as 
nodes in the roadmap. 

a b 
Figure 2-18: OBPRM: generating samples near obstacles boundaries. Source: a (Yeh et al. 2012), b 
(Titas Bera et al. 2014) 

The Gaussian sampling strategy is another method similar to sampling on obstacle 
boundaries. The goal of this method is to obtain points near to obstacle configuration space 
by using a Gaussian distribution. It biases the samples to be closer to free configuration 
space (Lin 2006; Boor et al. 1999). Figure 2-19 shows samples generated by Gaussian 
method. 

Figure 2-19: The samples generated by the Gaussian sampler. Source: (Hsu et al. 2003) 

The principle of this approach is to choose a free configuration randomly. This free 
sample is treated as the mean (p) of a Gaussian distribution, and then it is generated 
another sample with a variance specified by the user. If one configuration in free space and 
the other is in obstacle space, then the free one is saved as a milestone, otherwise both 



configurations are discarded. Gaussian sampling is not efficient, because it is not easy to 
get nodes in different spaces, and many attempts are required to generate samples. In 
addition, the variance optimization is important, where, if the variance is too small, the 
configurations will be too close to the obstacles, in the opposite, if the variance is large, the 
configurations will be far away from the obstacles. 

2.5 Narrow Passages 
Narrow passage problem is a common problem for probabilistic planning algorithms. It 
occurs when a uniform distribution is used, due to the small volumes of narrow passages 
areas. Since, the small volume reduces the sampling probability. The uniform distribution 
does not work well when the dispersion of the samples is higher than the narrow passage 
volumes. The problem has a bigger impact on RRT planners than in the other methods. In 
RRT case, the algorithm throws away the valuable sample if the active tree could not 
connect with it. While in P R M planner case, the algorithm saves the rare and valuable 
samples, which fall inside a narrow passage. When the number of samples and graph 
connectivity are increased, these samples soon will be connected to the P R M graph. 

Many researches focus on narrow areas identification in order to enhance the efficiency 
of sample-based planners in narrow workspaces. They try to increase the samplers' ability 
to take samples from these important areas. In the next paragraphs, some of these 
approaches are discussed. 

The Gaussian Sampler locates points in the neighbor of obstacles surface. This helps to 
obtain substantial points in narrow space, based on the idea that the narrow passage exists 
between obstacles. Generally, this method improves the efficiency of planners (Boor et al. 
1999; Lin 2006). But is still has some difficulties to plan a path through narrow passage, 
where many points near the obstacle boundaries lie far away from narrow passages. Figure 
2-20-a, shows this limitation. 

Figure 2-20: (a) The Gaussian sampler, vs (b) the randomized bridge builder. Source: (Sun et al. 2005) 
(a) (b) 



Another non-uniform sampling method has been proposed in (Hsu et al. 2003), to 
increase samples in narrow areas. The Bridge-Test method or randomized bridge builder 
(RBB) assumes that the narrow areas appear between obstacles; therefore, it randomly 
takes two configurations in obstacle space and tests the middle points between them. If a 
middle point is located in the free space, the algorithm keeps it. Figure 2-21 shows the 
principle of this method. This process attempts to bridge the gap and generate 
configurations in a narrow passage. After that, the algorithm takes these middle points as 
milestones to build PRM. Most of milestones by this method distribute within the narrow 
space, as shown in Figure 2-20-b. Nevertheless, there is still recognized present of these 
samples lying in the corners and hollows of the obstacles (Lin 2006; Sun et al. 2005; 
Jiandong et al. 2011). In addition, this method requires a long time to cover the narrow 
areas. It may fail many times before successfully bridging a gap. Because it needs, a 
sequence of three nodes such that the endpoints are in obstacle space and the midpoint is in 
free space. 

Figure 2-21: Bridge-test, the points that lie in narrow passage can pass the bridge test. Source: (Hsu et 
al. 2003) 

Later on, a hybrid sampling strategy using RBB and uniform Sampler with a certain 
ratio is presented in (Sun et al. 2005) to spread some samples in free large regions. The 
bridge test and uniform sampling complement each other. Bridge test reduces samples 
density in unimportant parts of a configuration space, and increased sample density in 
narrow passages, While uniform sampler take sample form large free space. The two 
sampling strategies are combined to construct the hybrid sampling strategy spread samples 
in important regions. 

In similar principle, a hybrid sampling strategy, which uses uniform sampler and 
randomized star builder (RSB), is presented in (Jiandong et al. 2011). The RSB is used to 
identify narrow passages in the workspace and to increase the samples density in these 
areas. 

The Random star builder (RSB) is an improved version of RBB. It depends on more 
than two points lie in obstacles to build the bridge. It is designed to boost the sample 
density in narrow passage regions, while avoiding sampling milestones in blind corners 
and dead ends of obstacles, Figure 2-22 shows RSB in 2D workspace. 
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Figure 2-22: Randomized star builder in two-dimensional environment. Source: (Li et al. 2012) 

Improved bridge test algorithm was employed in (Wang et al. 2010) to identify the 
important milestones in narrow passages. The algorithm establishes multiple trees from 
these samples to explore the sub-regions, which are difficult to reach. The probabilities of 
selecting a tree for expansion are updated on-line by learning algorithm based on the 
historic results of the exploration. 

Quad decomposition approximation is used in (van den Berg 2005) to find an important 
area in the workspace, each cell is given a label and weight, depending on the size and its 
neighbors' size. The weight reflects the sampling probability in that cell. 

The adaptive watershed algorithm is used to distinguish between the cells in narrow 
passages and the cells near a boundary in an open area. The watershed is originally a 
method for image segmentation from the image-processing field. It separates the open 
regions from each other by watersheds, see Figure 2-23-a,b. The watershed regions in their 
work represent the narrow passages. 

Figure 2-23: Identify narrow passage using cell decomposition and watershed algorithm, a: narrow 
passage identified by adaptive watershed, b: watershed algorithm the dark area represents a free area in 
the sense, c: grow watershed algorithm enhance narrow passage representation. Source: (van den Berg 
2005) 

For a better representation of the narrow passage in the corridor and long narrow area, 
the grow watershed algorithm is presented to grow a watershed to cover the narrow area, as 
shown in Figure 2-23-c. 



Triple-RRT algorithm is proposed in (Zhong et al. 2012). It uses a random star builder 
(RSB) to identify the configuration in the narrow passage, and then expands RRT tree. 
This method improves the local sampling density in the narrow passage. The triple-RRTs 
approach employs two trees as bi-directional expansion, one tree from the initial position 
and the other from the goal position, and third one is grown in the narrow passage. The 
three trees have the same expansion chance, which ensures that this method will find a 
solution quickly between start and goal location, no matter if the path should pass narrow 
passage or not. 

Small-step retraction method presented in (Saha et al. 2005) to help P R M planners find 
paths through narrow passages, they suggest to fattening the robot's free space by 
minimizing the shapes of the obstacles. Then build a P R M and repair colliding portions of 
this roadmap by retracting them out of collision. 

Toggle P R M methodology is introduced in (Denny et al. 2011). It simultaneously builds 
a graph structure for both free and obstacle spaces. These graphs use the information about 
collision to generate samples, which are used later to generate other samples within the 
narrow passage. Figure 2-24 shows the principle of this technique. If a sample s chosen 
randomly from free space, it is added to free graph's node. The P R M tries to connect this 
free sample to the nearest nodes in the graph. If a collision with obstacles happened during 
this connection, the collision points are stored as nodes in the obstacle graph. Later on, the 
graphs are toggled, and P R M tries to connect the nearest obstacle graph's nodes to these 
new collision points (xi, X2 in Figure 2-24). During this connection, another point could be 
generated in the free area because of collision with free space, and repeatedly, this point 
will generate other samples and so on. 

n i ri2 

Figure 2-24: Toggle PRM principle. Source: (Denny et al. 2011) 

Importance sampling method is introduced in (Rosell et al. 2011). It uses principal 
component analysis (PCA) to focalize the region where to sample in order to increase the 
probability of finding collision-free configurations. The proposal is illustrated in 2D 
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configuration space with a narrow passage as shown in Figure 2-25. The PC A is a 
statistical technique used to process a set of vectorial samples. It analyses a samples set and 
returns an hyper-box centered at the mean value of these samples, and the length of each 
side equal to two times of the data deviation in the corresponding axis. In each iteration the 
algorithm, chooses a number of samples randomly form the workspace, and identifies the 
free ones, in addition, it chooses number of samples form hyper-box, and applies the PCA 
to the new samples set to find the free samples trend. 

p 
4 

• 1 

Figure 2-25: PCA sampling procedure. Source: (Rosell et al. 2011) 

In the next chapter, the cell-decomposition is reviewed and we introduce our 
contributions based on this approach. 





3 CELL DECOMPOSITION 

Cell decomposition algorithms (CD) extracts the obstacles and the free regions, and build a 
graph of adjacency for the free ones (LaValle 2006, chap. 6; Milos Seda 2007). The idea of 
dividing the space into manageable sections is presented in many researches. In general, 
the cell decomposition algorithms are classified into two categories; the exact cell 
decomposition methods and the approximation methods (Latombe 1991). 

The first category uses geometric algorithms to determine the free areas and build free 
cells explicitly (Brooks et al. 1985; Schwartz et al. 1983) . The union of all generated cells 
is exactly equal to the free space. However, finding exact free cells is not an easy task, 
especially in higher dimension spaces, that leads to the second category, which uses the 
approximation techniques to divide the workspace, e.g. quad-tree, octree division, and 
voxel grid, etc., (Sleumer et al. 1999; de Berg et al. 2008). 

In motion planning applications, The CD is utilized by dividing the free robot's 
workspace into smaller regions called cells. Then it builds a connectivity graph according 
to the adjacency relationships between the free cells. The graph's nodes represent the cells, 
while the graph's edges represent the adjacency relations between these cells. From this 
connectivity graph, a continuous path can be found by following the adjacent free cells. 

(a) (b) 
Figure 3-1: Trapezoidal cell decomposition principle, a: The sweep line technique, b: Trapezoidal cell 
decomposition algorithm results, the bold-red line represents the sweeping line, v represent the obstacles 
vertices, e represents the obstacles edges, p represent the intersecting points. 

3.1 Exact cell decomposition 
An example of exact cell decomposition is the trapezoidal decomposition method or 
vertical cell decomposition. It decomposes the free space into trapezoidal and triangular 
cells. This method draws parallel vertical segments from each polygon's vertex in the 
workspace to the exterior boundary of the workspace. The regions, which are surrounded 



by these segments and the boundaries of obstacles, construct the cells. These cells form the 
nodes of connectivity graph. The adjacent regions in the workspace are linked together by 
the graph's edges in the connectivity graph (Abbadi, Matousek 2014; Abbadi, Matousek, et 
al. 2014). The path in this graph corresponds to the sequence of striped free cells. Figure 
3-1, shows the principle of this method. 

To model this process in 2D workspace, the workspace X is divided into a free space 
Xfree, and an obstacle space Xobst. 

A set of all vertices (V) are ordered based on the x-axis. It contains the obstacles 
vertices in addition to the workspace boundaries vertices. Obstacles boundaries (segments) 
and the outer workspace contour are grouped in obstacle segment set E. 

V= [vi,V2,.... Vi, ... } —> R 2 : Vi(x) < vM(x), i G N + 

E= {ei,e2,...,ei,...} —> V 2 : , i G N + . Where v, represents a vertex has the index i in the 
points set. ei represents a segment has an index i in the segments set. 

A l g o r i t h m : T r a p e z o i d a l c e l l d e c o m p o s i t i o n 
I n p u t : V V e r t i c e s s e t o f o b s t a c l e s and workspace. 

E Edges s e t o f o b s t a c l e s and workspace. 
Xotst O b s t a c l e s workspace, 

output:CD A d j a c e n c y graph 
1 . Pvisited = § 

2. V = s o r t X ( V) 
3 . FOREACH v 6 V BEGIN 
4. Pintersects = V e r t i c a l l n t e r s e c t i o n s ( v , E ) 
5. # f i n d v e r t i c e s on t h e same o b s t a c l e edges. 
6. Vneighbors = OnS ameOb S t Edge ( Pvisi ted, Pintersects) 
I. C e l l s = C O n S t r U C t C e l l s ( Vneighbors, Pintersects) 
8. IF (cells <£ Xobst) BEGIN 
9. CD. addNode(cells) 
10. CD.findAdjacency(cells) 
I I . END 
12 . Pvisited. remove ( Vneighbors) 
13. rvisi ted • add ( Pintersects) 
14 . END  

Figure 3-2: Trapezoidal cell decomposition algorithm 

The trapezoidal cell decomposition algorithm is shown in Figure 3-2, where Pvisited is a 
set of all intersection points and vertices, which are visited before. Pintersect is a set of 
intersection points with the current sweeping line that is established from the vertex v. 

Figure 3-1-a, shows the sweep line and the intersection point, which is denoted as pu 
Vneighbor variable is a set of vertices in Pvisited, which fall on the same segment e with one 
element of the Pintersect. The Cells variable represents the new generated cells, and CD is the 
output graph, Figure 3-1-b shows the generated regions. 

For more refinement, a post-process function is executed to merge the adjacent cells, 
which has edges parallel to each other. Figure 3-3 shows the result of this post-process 
function and the corresponding graph. 
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a b 
Figure 3-3: Trapezoidal cell decomposition, a: Post-process to merge cells, b: the generated adjacency 
graph 

The algorithm's output is a graph, which represents free areas. This method converts the 
problem of navigation and path planning into a graph search problem. For example, when a 
plan is required between two positions, the cells that contain these locations are 
determined, and then a graph search is executed in order to find a path. 

The transformation of motion planning problems in spatial environments into a graph 
search problem gives many advantages. An efficient methods can be used to find a path, 
e.g. A * , Dijkstra, etc. The spatial information about the cells is exploited to optimize the 
generated path, e.g. the shortest path can be found based on the distance between the cells. 

Figure 3-4-a, shows the principle of cell decomposition planner, where the line 
represents the path through the free cells. Figure 3-4-b shows the graph of adjacency and 
the edges' weight. The shaded nodes correspond to the path's nodes from the start cell to 
the goal cell. In this example, the weighs correspond to the distance between cells' central 
and barriers' midpoints between the cells. 

When a planning query is established, the planner finds the start and the goal cells, then 
it searches for a path between these two cells, if a path is found, the planner connects the 
start and the goal locations through the free cells on that path. 

Another example of exact cell decomposition is the decomposition based on obstacles 
edges. This method considers each edge like a line. Then, it finds the intersections with 
other edges or cells, and builds the free cells in the free space based on these intersections 
(Sleumer et al. 1999). 
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a b 

Figure 3-4: Path planning using trapezoidal cell decomposition, a: The generated vertical free cells, b: 
The graph of adjacency which corresponding to paths between cells 

3.2 Cell decomposition approximation 
Due to geometric calculations, the high computational demand of previous approaches, and 
the hard to implement for high dimension workspaces, the approximation methods to the 
CD were proposed. The most forward method for approximation is the voxel grid, as 
shown in Figure 3-5-a. It excludes the cells on the obstacle areas and builds a graph of 
adjacency for the cells in the free area. This method is efficient for low dimensional 
spaces. However, it generates a large number of cells. This method is resolution complete; 
which means the algorithm completeness depends on the grid's fine (Sleumer et al. 1999; 
de Berg et al. 2008). 

Quad-tree decomposition is another approach for cell decomposition approximation. 
This approach uses a recursive method to subdivide the cells until one of the following 
conditions is satisfied. 1- Each cell lies completely either in a free space or in an obstacle 
region. 2- or, an arbitrary limit of a resolution is reached. 

Once a cell fulfills one of these criteria, it stops decomposing. After decomposition 
steps, the free path is found by following the adjacent free cells (Katevas et al. 1998). This 
method is used in 2D (de Berg et al. 2008, chap. 14). Figure 3-5-b, shows the generated 
cells of this method. In a similar way, the Octree method approximates the decomposition 
in 3D spaces (Choi et al. 2011). 

The quad-tree and octree methods are resolution complete. They can work efficiently 
for low dimensions workspaces, three or less (van den Berg 2005). 
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Figure 3-5: Cell decomposition approximation, a: Voxel approximation methods, b: Quad-tree 
approximation methods 

3.3 Contributions, Tests and Results 
Our contributions using cell decomposition approximation are described in this section. 
These methods are exploited to solve the problem of safe paths planning in stationary 
workspace. In addition, they are used with minimum spanning tree to identify the 
important regions in the workspace. The other work, which combined the exact cell 
composition approaches with other motion planner, is described later in the next chapters. 

This section is divided into two sub-chapters, each one present the problem formulation 
and our methodology to solve it. 

3.3.1 Safe path planning using cell decomposition approximation 

In this work (Abbadi, Prenosil 2015a), The cell-decomposition approximation is used to 
find a safe path in static workspace, for omnidirectional robot. The quad-tree 
approximation algorithm divides the workspace into manageable free areas, and builds a 
graph of adjacency between them. 

New methods have been proposed to keep the robot far away from the obstacle 
boundaries by a minimum safety-distance. They utilize the size of free cells to generate the 
desire path, i.e. they give a lower cost to the graph's connection between big free cells, and 
a higher cost to the connections between the smaller cells. After that, the planner searches 
for a path that has the lowest cost. 

The shortest path is not our focus in this work, however a tradeoff between the shortest 
path cost and the safe path cost is considered when choosing the weight values. 
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Proposed Methods 

In this work, the path safety problem in static workspace is studied. The path is considered 
as safe if 1- It passes through obstacles without colliding with them. 2- It navigates and 
keeps a safety distance far from obstacles boundaries. 3- It follows the large open areas in 
the workspace when it is possible. 

We utilize the cell-decomposition approximation algorithm (ACD) to find an 
approximation of the free areas, and exploit the resolution feature to satisfy the minimum 
distance condition. The resolution of A C D corresponds to the smallest cell's edge. We 
proposed that the robot passes through the center of the cell when it executes the path; 
based on that assumption the resolution is chosen to be (2 * safety distance). 

Three versions have been proposed to plan a safe path. These methods are based on the 
manipulating of the weights, which assign to the graph edges, in order to make the planner 
choose the largest cells when translating toward the goal position. 

The first approach uses equal weights for translating from one cell to another. The idea 
behind this proposal is to minimize the total number of cells in the path, which in 
consequence directs the planner to use bigger cells, when searching for a lower path cost. 

The Second method introduces a penalty for translation between different cells size. 
This penalty is added to the edge's weight, and it is disproportional to the cells size, which 
means the weight of translating between the larger cells is smaller than the weight of 
translating between the small cells, while the weight of translating between the same size 
cells is kept fixed. This proposal guides the planner to do the translating in large cells when 
it is possible and at the same time keeping some trade-off between making the translation 
in large cells, and planning a path closer in length to the shortest path. 

The last proposed method is very similar to the second approach in spite of it introduces 
disproportional penalty not only with different cells size, but also with cells that have the 
same size. The benefit of these methods is to push the path toward large cells when it is 
possible by adding more penalties when translating between small cells, in addition to the 
benefits of the second approach. 

The proposed methods, lead the planners to use the large cells more than small cells for 
planning a path, at the same time they keep the safe distance far from obstacles. 

Result and Discussion 

In the first proposed method, the weights of the graph's edges are uniformed to the cost of 
(1) unit, which corresponding to the cost of translating from one cell to another one, 
regardless of the cells' size. 

In the second proposed method, we associate to each cell of the free cells a level. This 
level is disproportional to cell size. The level is used when manipulating the weights of 



graph edges. The edges' weight between two cells is set to be equal to the biggest level 
value between these cells, i.e. if celll has a level of (2), and cell2 is smaller and has the 
level of (4), The edge's weight between them has the value of max(2,4) which is (4). The 
translation between cells that have the same level is fixed to the weight of (1). 

The weights in the third proposed method are calculated in the same way as in the 
second method, but here the transition between same cells size is varied also based on 
cell's level. For example, the translation's weight between the cells that have levels of (3) 
will take the value of (3). 

The Dijkstra's algorithm is used as a graph search algorithm to find the path over the 
graph. The Dijkstra's algorithm finds the minimal cost of the path efficiently. The tests are 
done in two workspaces using three values of safety distance {0.1, 0.3, and 0.75}. The 
results are shown in Figure 3-6, Figure 3-7, and Figure 3-8, respectively. 

b 
Figure 3-6: Safe paths planning, the safety distance is equal to (0.1), a, b: the testing workspaces. The 
solid blue line represents the equal weights of translation method, the doted-red line represents the 
disproportional penalty to translating between different cells size, and the dashed-green line represents 
the disproportional penalty to the size of the cells method. S and G is the initial and the goal positions 

We can infer from the results that the proposed methods generate a path that respects 
the safety distance condition. The first method (the solid blue line) tries to minimize the 
number of cells as shown in Figure 3-6-a, b. The path keeps the safety distance, but it does 
not follow the large areas. The second method (the dotted red line) is better in this criteria; 
it forces the planner to plan in the large cells. However, it follows the large cells, but not if 
smaller cells are adjacent to each other; in that case the algorithm plan through these 
adjacent cells. The last approaches solve this drawback (the dashed green line), and it plans 
in large open regions when it is possible. 

Figure 3-7-a, shows the unreachable path because of the safety distance. The same case 
in Figure 3-8-a,b. That because the algorithm excludes the collided cells in obstacles, 
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which break the continuity of the graph's edges. When a path searching is executed, the 
search algorithm cannot find a route between the initial cell and the goal cell. 

Summary 

In this work the A C D planner is used to find safe path for the robot; the quad-tree 
approximation algorithm divides the workspace into manageable free areas, and builds a 
graph of adjacency between them. Three approaches have been proposed to plan a safe 
path. These methods manipulate the edges' weights in order to make the planners choose 
the largest cells when translates toward the goal position. And at the same time keeps the 
robot far from obstacles by a safety distance. The proposed methods show the ability to 
plan the desire path. 
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3.3.2 Narrow passage identification using CD approximation and 
minimum spanning tree 

Narrow passage problem is a problematic issue facing sampling-based motion planners. In 
this work (Abbadi, Matousek, et al. 2015), a new approach for narrow areas identification 
is proposed. The quad-tree cell-decomposition approximation is used to divide the free 
workspace into smaller cells, and build a graph of adjacency for them. The proposed 
method follows the graph edges and finds a sequence of cells, which have the same size, 
preceded and followed by a bigger cell size. The sequence, which has the pattern "bigger-
smaller-bigger" cells size, is more likely to be located in a narrow area. The minimum 
spanning tree algorithm is used, to linearize adjacency graph. Many methods have been 
proposed to manipulate the edges cost in the graph, in order to make the generated 
spanning tree traverse through narrow passages in detectable ways. Five methods have 
been proposed, some of them give bad results, and the others give better one in 
simulations. 

Proposed methods 

Narrow passage problem faces most of sampling based approaches. The problem occurs 
when a uniform distribution is used to take samples form the workspace, because the small 
and narrow areas have low probability to get samples within their space. 

We exploit the information about the cells size to find the narrow area. Our proposal 
based on the idea of following the adjacent cells size. If the translation is done from a big 
cell to others smaller ones, which have the same size, then followed by a translation to 
another bigger cell, then this sequence of the small same-size cells is most likely to be a 
narrow passage or important area from motion planning point of view. Figure 3-9 shows an 
example, where the shaded cells represent the most important region in this workspace. 

Figure 3-9: Example of the narrow passage identification (green-shaded boxes) 



To implement the proposed method, a preprocessing step should be applied to the 
adjacency graph. Since, the graph of adjacency has many loops and cycled connections 
between the nodes, for that, a linearization of the graph should be done before the narrow 
passage identification method is applied. Based on that, the minimum spanning tree (MST) 
approach is used to build a new liner graph. 

The MST tries to build a spanning tree that has the lowest cost, and contains all nodes 
visited one time. This principle causes another problem, where the tree is planned in 
unpredictable regions in the workspace based on the edges costs. In order to solve this 
problem, the edges' weight, which effect the spanning tree construction process, is updated 
and adapted. The weights are manipulated, in order to give a low cost for edges that placed 
within narrow and small areas, and at the same time, prevent the MST method of 
constructing the tree structure near to the obstacles boundaries. Many ideas for weights 
manipulation are tested to generate the desire spanning-tree. We propose and test five 
methods. The first method uses the real distance between cells. 

The second one uses the uniform cost for translating from one cell to another one. This 
method based on the idea that, the generated tree should minimize the path cost by using 
the minimal number of translations; in consequence, it uses the bigger cells when it is 
possible. 

The third proposed method, the bias toward different cells size, updates the edges' 
weight in such a way that it makes the cost of translation between different cells' size 
lower than translation between cells that have the same size. This method makes the span 
tree uses the smaller cells as leaves for the tree, while it uses the bigger cells as roots. 

The fourth method, the bias toward equal cells size, suggests giving the lowest cost to 
the translation between the same size cells. It is the opposite of the previous method, the 
idea behind this proposal is to make the cells that have the same size, as a sequence does 
not satisfy the narrow passage condition "bigger-smaller-bigger," instead it will has the 
pattern "bigger-smaller". The MST in this case constructs narrow passage pattern just 
when it is necessary. 

The last proposed method, the disproportional cost to the distance, gives the edges a 
cost based on the cells size, the smallest cost is given when translating between the bigger 
cells. We realize this proposal by finding the longest distance between cells then subtracts 
all translation distances from that distance. The result is given as a weight of the graph 
edges. This method gives the translation between the largest cells, which have the longest 
distance, the lowest cost, while the translation between smaller cells will have higher costs. 

Results and discussion 

The proposed methods are simulated and tested in two workspaces. The first one is an 
office-like workspace, where there is one route to connect any two rooms. The second 



workspace is generated in such a way that the connections between the free regions have 
multi-routes. 

The result is shown graphically using grading colors, where each color represents a 
narrow passage sequence. The size of the shaded sequence represents the size of the 
corresponding cells. 

The results of the first and second methods show that the algorithm finds many narrow 
passages. But the results are considered failed because it generates many sequences near 
the obstacles and far away from the narrow passage. 

The first method that uses the real distance as a cost, makes the MST constructs the tree 
near the obstacle and follows the smaller cells as shown in Figure 3-10. Where the left 
figures (a,c) show the A C D and MST graph graphically while the right figures (b,d) show 
the identified narrow passages, which are denoted using a color for each passage. As seen 
from the figures the extracted narrow passages using this methods is not accurate. 

(c) (d) 
Figure 3-10: Real distance cost method, (a,c) represent ACD and MST tree graphically, (b,d) show the 
identified narrow passages, each color represents one passage, this approach failed in detecting the 
correct passages 



(c) (d) 
Figure 3-11: Uniform translation cost method, (a,c) represent ACD and MST tree graphically, (b,d) 
show the identified narrow passages, each color represents one narrow passage, this approach failed in 
detecting the correct passages 

The uniform cost method generates a tree structure which uses more bigger cells as 
expected, and it generates a better solution, however the result still not good and 
unreliable. Figure 3-1 l-a,c show the generated spanning tree in both workspaces, while the 
narrow passages sequences are shown in Figure 3-1 l-b,d. 
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(c) (d) 
Figure 3-12: Bias to different cells size method, (a,c) represent ACD and MST graph graphically, (b,d) 
show the identified narrow passages, each color represents one narrow passage 

The third method directs the MST algorithm to use different cell size. The generated 
trees translate between cells that have different size more than the translation between the 
cells that have the same size, Figure 3-12-a,c show the spanning trees. 

This method generates a better solution as shown in Figure 3-12-b,d. However, it also 
generates long sequences and undesired sequences, especially in the second workspace, 
which has un-alignment obstacle to the axis, as shown in Figure 3-12-d. 
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(c) (d) 
Figure 3-13: Bias to equal cells size method, (a,c) represent ACD and MST graph graphically, (b,d) 
show the identified narrow passages, each color represents one narrow passage 

The fourth method, which gives lower cost to the translation between equal cells size as 
shown in Figure 3-13-a,c, generates better results, it has the ability to find all narrow 
passage. But, it generates very long sequences as shown in Figure 3-13-b,d. 
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(a) (b) 

(c) (d) 
Figure 3-14: Disproportional cost to the distance method, (a,c) represent ACD and MST graph 
graphically, (b,d) show the identified narrow passages, each color represents one narrow passage 

The last proposed method, which has disproportional cost to the distance, generates 
spanning trees as shown in Figure 3-14-a,c. It produces a relatively good solution. 
However, it is still has a problem with sequences generation, since it has some faults to 
find the correct narrow passages, in addition the generated sequences are long, and 
sometime they merge many narrow passages together as shown in Figure 3-14-b,d. 

Summary 

In this work, the narrow passage identification problem is discussed. Narrow areas are a 
problematic issue facing sampling-based motion planner. The cell-decomposition 
approximation algorithm is utilized to find the free regions and build a graph of adjacency 
for them based on the adjacency information. 

The proposed method to identify the narrow passage, finds a sequence of cells along the 
graph edges that have the same size, preceded and followed by a bigger cells size. This 
smaller sequence is more likely to be located in the narrow passage. 
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Because of the graph of adjacency characteristic, which has many loop connections 
between the adjacent cells the minimum spanning tree algorithm is used to linearize this 
graph. Many methods have been proposed to manipulate the edges cost in the graph, in 
order to make the generated spanning tree traverse through narrow passages in a detectable 
way, which means following the pattern of the narrow area "bigger-smaller-bigger" 
sequence of cells. Five methods are proposed, some of them give bad results, and the 
others give better results as shown in the simulation. 

We noticed that the first two methods which gave a bad results (real distance cost, 
uniform cost), can be updated to find obstacles boundaries cells, based on that, the non
uniform distribution can be introduced to be used in the motion planning samplers, which 
improve the performance. 

We also notice that the minimum spanning tree has a drawback in this algorithm, where 
some routes are lost. That is happened when the workspace has multi-routes between free 
areas, where the MST does not distinguish between the loop around obstacle and the loop 
between cells. 

More studies and analysis to the cost manipulation process should be reviewed in the 
future work. 

In the next chapter, the rapidly exploring random tree is reviewed and our contributions 
using this method combined with exact cell decomposition are presented. 



4 RAPIDLY-EXPLORING RANDOM TREE (RRT) 

Rapidly-exploring random tree is a probabilistic algorithm introduced in (Lavalle 1998). It 
is proposed originally for non-holonomic systems, which contain dynamic constraints. The 
algorithm builds a space-filling tree that is constructed incrementally using samples drawn 
randomly from the search space, as shown in Figure 4-1. RRT is designed for efficient 
search in environments that have nonconvex obstacles. In addition, it works directly with a 
set of admissible inputs. This feature makes the algorithm applicable to complex and 
dynamic systems. This algorithm also, has the ability to use holonomic or non-holonomic 
movement, and respect algebraic and differential constraints, and that due to its 
incremental behaviors. The key idea of the RRT is to bias the exploration toward 
unexplored regions of the space, where the sampler takes points from these regions, and 
incrementally pulling the search tree outward of the initial position. 

Figure 4-1: RRT expansion in 2D and 3D workspace 

RRT algorithm proofed to be probabilistically complete (LaValle et al. 2001), and 
resolution complete (Cheng et al. 2002). 

The algorithm, which shown in Figure 4-3, takes as inputs the initial and the goal 
locations, along with termination parameters, e.g. the maximum number of iterations to 
grow a branch, time limit, or other parameters based on the application. RRT algorithm is 
an incremental approach, where the incremental step is passed to the algorithm as an input 
parameter (in the basic RRT algorithm). The output of the algorithms is a tree structure, 
where the nodes represent free samples of the workspace, and the edges represent feasible 
connections between these vertices. 

The principle of the basic RRT algorithm is shown in Figure 4-2. The algorithm places 
the tree's root at the initial location. Then it takes a random sample from the configuration 
space, and finds the nearest tree's vertex to this sample (nearestPnt). A new point is 
created on the segments between the random point and the nearest point, it is located far 



from the nearest point by e distance, where e is the incremental step. If no collision is 
detected with the segment between the nearest and the new points, then the algorithm adds 
the new point as a vertex to the tree and the segments is added as an edge to the tree 
structure. These steps are repeated until a termination condition is satisfied or a path 
between the initial and the goal locations is found. 

Figure 4-2: RRT algorithm principle 

A l g o r i t h m : RRT 
I n p u t : I n i t i a l , Goal, Max I t e r a t i o n I, 

and t h e i n c r e m e n t a l s t e p e. 
Output: The t r e e graph G. 
1. G . i n i t { I n i t i a l ) 
2. FOR ( i = 1 TO J) BEGIN 
3. randomPnt = r a n d C o n f i g u r a t i o n () 
4. nearestPnt = G.nearestVertex(randomPnt) 
5. newPnt = N e w C o n f i g u r a t i o n ( n e a r e s t P n t , r a n d o m P n t , e ) 
6. IF NOT isCollided(nearestPnt,newPnt) BEGIN 
7. G.addVertex(newPnt) 
8. G.addEdge(nearestPnt,newPnt) 
9. IF G.checkGoal(Goal)BEGIN 
10. RETURN G.success() 
11. END 
12. END 
13. END 
14. RETURN G . f a i l ( )  

Figure 4-3: Basic concept of RRT algorithm 

The quality of RRT solutions is proofed as asymptotically optimal when applying 
special variations of RRT, e.g. RRT* (Karaman et al. 2012, 2011), LQR-RRT*, and others 
(Perez et al. 2012; Nasir et al. 2013; L i et al. 2014). 

The drawbacks of the basic RRT algorithm can be summaries as follows: 

1. The basic RRT algorithm does not take the path cost into account, which generates 
non-optimal path. 

2. Large numbers of redundant points are generated, when exploring the space to find a 
path between two locations. 



3. It has some difficulty when planning and exploring small areas and narrow passages, 
because the probability to choose a configuration in these areas is small. Moreover, the 
probability to connect configurations from these regions to other tree vertices without 
collision is also small. 

4. The generated paths are usually tortuous, and have abrupt changes in the curve. 

Researchers try to overcome the downsides of the original RRT. They proposed many 
ideas to improve the performance and efficiency of this randomize technique. Some of 
their work based on new ideas, and the other based on improving the algorithm itself, 
where RRT algorithm can be divided into sub-functions, i.e. 1- Initialize the tree. 2-
Choose the next configuration in order to pull the tree toward it. 3- Find the nearest vertex 
of the tree to the chosen point. 4- Expand a new tree branch. 5- Check the collision. These 
sub-functions were studied and reformulated to be more efficient. 

The first sub-function is developed in various methods, i.e. instead of using one tree, bi
directional trees or multi-trees can be used (Kuffner et al. 2011; Lavalle et al. 2000; 
Militao et al. 2010; Strandberg 2004), and that lead to other researches on choosing the 
root of these trees (Wang et al. 2012). 

The second category of RRT improvements enhances the sampling strategies. For 
example, the bias toward goal configuration, or toward hull around the goal (Lavalle et al. 
2000). In another work the authors introduce a bias toward previous success (Bruce et al. 
2002). Other researchers adapt the choosing of a next point, based on the environmental 
aspects, e.g. large Voronoi regions (Lindemann et al. 2004; Sakahara et al. 2008), narrow 
passage identification (Jiandong et al. 2011; Zhong et al. 2012), and collision information 
(Peng Cheng 2001; Cheng et al. 2001; Jaillet et al. 2011). 

The third category of improvement optimizes the nearest-point searching in the tree 
structure, using spatial indexing techniques, e.g. kd-tree (Urmson et al. 2003; Yershova et 
al. 2007; Atramentov et al. 2002). 

In the fourth category, some researches try to develop the way of extending the branch 
(Militao et al. 2010) or to introduce a new branching method to fit kinematic and dynamic 
constraints (LaValle 2006; Jaillet et al. 2011; LaValle et al. 2001). 

The fifth category improve the efficiency by manipulating the collisions checking 
methods, e.g. the use of lazy approach, which postpone the collision checking until it's 
needed (Vahrenkamp et al. 2007). 

Many RRT variants try to solve the disadvantages of basic RRT algorithm. A survey of 
some RRT variations were reviewed and published in (Abbadi, Matousek 2012; Abbadi et 
al. 2011). In the next paragraphs, some of these methods are discussed in more details. 

Bidirectional and multidirectional planners are examples of the RRT variants that try to 
speed up the exploration by controlling the root location and the tree number. In 



bidirectional planners, two trees are expanded. The first one rooted on the initial position 
and the second tree rooted on the goal location. The two trees branch until they meet each 
other, and then the algorithm merges them and find the path from the start to the goal 
locations. Figure 4-4, Shows dual RRT trees in the T-trap workspace. 

Figure 4-4: Dual RRT trees 

Another improvement, in the same course, uses multi RRT planners. The trees work 
simultaneously, and try to connect to each other in order to find a solution. The choosing of 
trees roots is done uniformly, or based on heuristic concepts. 

Another approach uses augmented local trees beside the bidirectional trees. This method 
proposed to explore the hard to reach regions (Strandberg 2004). It is based on the idea that 
RRT algorithm needs to take better care of samples which fall into crucial, but hard to 
reach, regions. The algorithm spawns a new local tree, which grows until it reaches outside 
of the hard to reach the region, and merges with another tree. However, a new issue based 
on this method rises up, where the quantity and percent of growing for these trees to main 
trees should be optimized. The author in (Strandberg 2004) suggests using a limited 
number of the local trees, during the planning phase to prevent this method from acting 
like R P M . Another suggestion is to use a probability parameter to make a tuning between 
the growth of the two main trees and the local trees. Another idea suggests the use of 
volume of the box bounding the tree in the configuration space in order to reduce the cost 
of trees' connection checking. Each time the bounding box of a tree grows, the new node 
will be used for possible connection with other trees, since it was this node that caused the 
growth of the bounding box (Strandberg 2004). 

This methods increase the probability to find a path, because, instead of testing the 
reachability to the goal point, they test if any points of the tree are near to other points in 
different trees, which increases the probability to find a path. 



The drawbacks of using multi-trees can be summarized as follows. 

1- The generated path is very tortuous and contains many sharp angles between edges. 

2- Many redundant points are generated in each tree. 

3- When the tree uses kinematic equations to generate the branches, the connection 
between two trees could be inapplicable; that happens when the connection between 
two nodes of the trees cannot adapt to satisfy the constraints. 

4- The other drawback come out when the goal is not a specific configuration (Bruce et 
al. 2002), it could be desire state or set of configurations, which means the 
bidirectional or multidirectional search are not used, because they decrease the 
generality of the goal state specification. 

Another development of the RRT algorithm improve the expanding methods, in order to 
pull the growth of the trees outward of the root rapidly. For example, bias the tree 
expansion toward the large Voronoi regions. Originally, the basic RRT algorithm uses the 
randomize approach to approximate the bias toward large Voronoi areas, and that because 
the correlation between the probability of selecting a random point and the volume of its 
Voronoi region, where the larger regions implied a higher probability of selecting points 
from them. 

Some techniques of RRT construct a Voronoi diagram explicitly. Then update it 
incrementally, while the algorithm grows the tree. RRT uses this information to choose a 
node of the tree, which has the largest Voronoi region for the next expansion. The direction 
of expansion pointed to somewhere in the region, e.g. the center of Voronoi region or to 
the farthest Voronoi vertex from tree node. In (Lindemann et al. 2004) the authors 
proposed two methods to improve the bias to larger Voronoi regions without explicitly 
calculating the Voronoi diagram. The first one is the Volume-based Voronoi-biased RRT 
(VB-RRT). It directs the exploration to the approximate center of the region. The second 
method is dispersion-reducing Voronoi-biased (DR-RRT). It directs the exploration to the 
farthest vertex of the approximate vertices that bounded the largest Voronoi region. This 
strategy for dispersion reduction based on the idea that, connecting nearest neighbor with 
farthest vertex will reduce the dispersion, since this distance is considered as the largest 
empty distance in configuration space and eliminating this distance from dispersion 
calculation will reduce it. 

The VB-RRT method based on selecting K samples from the space instead of selecting 
only one as in original RRT. Then, a node is chosen from the tree, if it is the nearest one to 
most of selected samples. The average of the samples approximates the center of their 
region. The cost of doing K nearest-neighbor queries in every iteration for all tree's node is 
highly expensive. To reduce this cost, the K samples are kept for further reuse in next 
iterations. If at some point during the search the initial K samples are insufficient, more 



samples are added. The drawback of VB-RRT strategy is, it can easily trap in local minima 
when the search tree encounters obstacles in the large Voronoi regions. 

The DR-RRT (Dispersion-reducing Voronoi-biased RRT) method proceeds similarly to 
the previous approach. It is based on the choosing of K random samples and creates 
ordered samples-set S; it sorts them based on the distance to their nearest neighbors in the 
search tree. Then it chooses the farthest sample and grows a branch toward it. If this fails, 
the algorithm takes the next farthest sample and repeats the process. When it fails for all 
samples, more samples are added and the algorithm continues until it achieves its goal. 

Figure 4-5: Standard RRT vs dispersion-reducing RRT using initial samples number = 1000. Source: 
(Lindemann et al. 2004) 

The distance and nearest neighbor are computed one time when a sample is added to S 
initially or later on when it is needed. This step adds more cost to the algorithm, but the 
benefit is the fast exploration. Figure 4-5 shows the difference between original RRT and 
DR-RRT from exploration point of view. 

Another expansion-based improvement to RRT called RRT-Connect. It uses a greedy 
approach to growing up the tree. It is based on the iterative growth of the tree's branches as 
long as they can; Instead of attempting to extend an RRT branch by a single step e, it 
iterates branching in the same direction until it reaches the random point or an obstacle is 
collided. This greedy approach frequently performs better since any relatively open and 
unobstructed regions are traversed in a single iteration. However, the RRT-Connect 
planner was designed for path planning problems that do not involve differential 
constraints. In this case, the need for incremental motions is less important. This approach 
proved to be probabilistically complete (Kuffner et al. 2000). 

RRT-Blossom is another variant of RRT that behaves in the same way like the basic 
RRT. However, it adapts the branching function of RRT. It adds a new point to the tree if 
the distance between the new point and the other tree's nodes is more than a specific 
distance BLOOSM_DIS. The benefit of that is to reduce redundant points, which are added 
to the tree, and make the tree spreads in the free space faster by preventing the tree from 



growing from inside. Figure 4-6, shows the principle of this method. Generally, reducing 
the number of nodes in RRT trees has a significant effect on the performance of RRT 
algorithm when checking the nearest neighbor (Maciej Kalisiak et al. 2006; Almahairi 
2010). 

<3 

Figure 4-6: RRT-BLOSSOM principle. Source: (Maciej Kalisiak et al. 2006) 

Variable Length RRT (VLRRT) is proposed by (Militao et al. 2010). It uses the 
information that is collected throughout the exploration to adapt the length of the tree's 
branches. The tree will cover the less obstructed regions faster, while maintaining the 
ability to navigate through more obstructed areas. This proposal suggests changing the 
extension lengths as follows. The extension lengths of the branches become longer in open 
areas and shorter in cluttered ones. For implementing this idea, each node of the tree has an 
extension factor associated with it. Whenever an extension from a node fails, the extension 
factor is decreased. Else, the extension factor is increased. The new node inherits the 
extension factor from its parent. 

The way of increasing or decreasing extension factor realized in many ways, e.g. 
multiplying the original extension-length by a fixed value, or adding a constant value to the 
extension length. In decreasing the extension factor, the same principle is used in addition 
to another option, which reset the extension factor to the original extension length. 

Another update to the previous method takes into account the direction of obstacle. In 
the directional variable length (DVLRRT) approach (Militao et al. 2010), the successful or 
unsuccessful branching provides an information about the presence or the absence of 
obstacles in a particular direction, not in all directions. This method is realized by storing a 
directional map of the extension factor in each node of the tree. The extension value is 
chosen based on the direction of the obstacle. 

In similar way, as in VLRRT, the success or fail affect the extension factor, but here in 
obstacle direction. The new node also inherits the map from its parent. Figure 4-7 shows an 
example of this method in simulation. 



Figure 4-7: The generated path using DVLRRT 

In the next paragraphs, we review some RRT improvements that based on trees-growth 
directing. These strategies improve the original RRT by reformulating the random-point 
choosing procedure. 

RRT-GoalBias method chooses the goal point as the chosen point using a probability of 
p, instead of choosing a random point randomly (Lavalle et al. 2000). Usually converges to 
the goal would be much faster than the basic RRT. However, in this method, a trade off 
should be considered when choosing the p value. If p were a big value, the planner would 
behave like the randomized potential field method, which is trapped in a local minimum. In 
general, the bias value is chosen to be small, because, even a small value of the bias forces 
the planner to reach the goal faster. 

The RRT-GoalZoom method is an improvement to GoalBias method (Lavalle et al. 
2000). It uses a p probability to choose the goal instead of a random sample, and uses a q 
probability to choose a sample from the hull around the goal. The nearest RRT vertex at 
any iteration controls the size of the region around the goal. The more close the RRT to the 
goal, the smaller the size of the region around the goal. The author claim, that, this planner 
has performed well in practice, but still some possibility that the performance is degraded 
due to the local minima. 

The waypoint cache RRT (ERRT) method is proposed for real-time multi-robot systems 
(Bruce et al. 2002). The key idea of this method is to keep the successful plans in the 
previous queries, and reuse them as guidance to the RRT growth. The waypoint cache was 
implemented by keeping an array of constant size of states. Whenever a plan was found, all 
the states in the plan were placed into the cache. This stores the knowledge of where a plan 
might again be found in the near future, where the space does not change too much. The 
results of re-planning using ERRT are more efficient than the basic RRT planner. The 
algorithm starts with an initial state as the root of the tree, and then it iterates. It uses a 
probability of p as a bias value toward the goal, and a probability of q as a bias toward the 
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old path points, in addition to a probability of 1-q-p to pick a random point uniformly from 
the space. This technique can be used to speeds up the path finding in moving obstacles 
spaces, where first, it finds the path regardless of these moving obstacles, and then biases 
toward the path's points when a new plan is required. 

Another methods was proposed in (Urmson et al. 2003) for guiding the tree growth. The 
heuristically guided RRT (hRRT) method guides the growth of the randomized tree, based 
on two aspects. 1- The size of Voronoi region for tree nodes. 2- The quality of the path to 
that node. Using these aspects, it estimates the quality of tree regions and expands branches 
from the qualified ones, which means, the regions of the tree are chosen for expansion 
rather than particular nodes. 

RRT with the collision tendency method (RRT-CT) was proposed to improve the 
planner under kinematic and dynamic constraints (Peng Cheng 2001; Cheng et al. 2001). 
The key idea is to keep track of the unsuccessful edge expansions, and exploiting this 
information. The authors proposed two methods to improve the original RRT; the first one 
depends on excluding control-input from re-execution, if it is already applied to a specific 
node. The second improvement is done by reducing the probability of choosing nodes that 
have a high collision tendency. They call this factor the constraint violation frequency 
(CVF). Each node in the tree has a CVF, which calculated over the route from the initial 
state to this node. It represents the number of collisions when applying control-inputs, 
divided by the number of all branching possibility. The advantage of this method is to 
prevent further expansion attempts, which have high probability to fail. In addition, it uses 
the available information to bias the selection of next node to the nodes with lower 
collision tendency. Figure 4-8, shows the C V F value, where the darker points represent 
node with high C V F value. 
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Figure 4-8: CVF; the darker points the higher value. Source: (Cheng et al. 2001) 

The conditional density growth (CDG) model is proposed in (Esposito 2013) as an 
idealized model of RRT growth. It is primarily suited to holonomic systems operating in 



expansive configuration spaces. Using this model various statistical properties of the 
RRT's configuration space could be derived such as the expected value, variance, and 
distribution properties. 

In the next section, our contributions to develop the RRT algorithm are presented, in 
addition to the simulation results. 

4.1 Contributions, Tests and Results 
In this section, we present our contributions to the motion-planning problem using RRT 
algorithm. We re-implement the RRT algorithm to fit the applications of omnidirectional 
mobile robot, and propose some advance methods to enhance the RRT performance and 
overcome the drawbacks. 

This section is divided into five parts. In the first three, we review many RRT 
developments and made an evaluation of them, in addition to statistical analysis. We also 
proposed a new algorithm to shorten the RRT's path. In the last two parts, new methods to 
enhance the RRT navigation in small and narrow areas are presented. A l l contributions in 
this domain are published, and the title of each section is taken from the publication name. 

4.1.1 RRTs Review and Options 

The path planning is an important issue in the mobile robot field. It allows the robot to 
move from point A to point B safely. Many methods have been proposed in this domain, 
which are differed in efficiency and time complexity. One of the advanced path planning 
methods is the rapidly exploring Random Trees (RRT). In this work (Abbadi et al. 2011), 
several variations of RRTs are reviewed, and an evaluation of their performance was tested 
in different environments. 

Experiments and Results 

Many RRTs options are tested in four different workspaces, which are, the free workspace, 
the low density of obstacles, the high density of obstacles, and trap workspace as shown in 
Figure 4-9. 

The parameters of the experiments are set as follows. The maximum number of RRT 
iteration is limited to 2000; the iteration means the number of RRT attempts to grow a 
branch of the tree. 

The results are obtained statistically using 100 tests for each method. The outputs of the 
tests are the average value of node number in RRT tree, the average value of path's nodes 
number, the average value of the execution time and the success rate to find a path. 

The result of each attempt is considered in the average calculation, if the RRT find a 
path, else, the results of failed tries are ignored. 



The average of tree nodes number comparing to the number of path nodes gives an idea 
about redundant points in each method. In addition the average of path nodes corresponds 
to the number of curves in that path; the higher the number the more torturous the path. 

(c) (d) 
Figure 4-9: RRT testing workspaces, (a) the free space workspace, (b) the trap obstacle workspace, (c) 
the low density of obstacles workspace, (d) the high density of obstacles workspace 

The simulation results of the free workspace are listed in Table 4-1, where the 
bidirectional-connect method has the best results in terms of time efficiency. Generally, the 
bidirectional methods were able to find the solution faster than the unidirectional 
approaches. 

The trap workspace results are shown in Table 4-2. The bidirectional-VLRRT method 
has the best result in terms of time efficiency. Moreover, the bidirectional methods show 
better results in completeness aspect. They were able to find a solution 100% (except the 
ExtExt; the bidirectional basic RRT). 



Table 4-1: The results of free workspace. The (BI) denote the using of bidirectional trees, and the bold 
numbers indicate the best results 

Time [s] Tree node Path node Success [%] 
Basic RRT 0.1240 384.27 38.83 100 
Con RRT 0.0835 409.12 7.51 100 
Bias RRT 0.0421 124.52 36.63 100 
ConCon (BI) 0.0026 36.06 3.00 100 
ConExt (BI) 0.0094 87.13 10.79 100 
ExtCon (BI) 0.0106 93.53 11.74 100 
ExtExt (BI) 0.0208 75.71 37.54 100 
RRT-BLOS SOM 0.1559 352.99 38.89 100 
B L O B L O (BI) 0.0251 76.85 37.97 100 
V L R R T 0.0177 51.41 16.85 100 
VLRRT(BI) 0.0114 35.36 21.25 100 
D V L R R T 0.0263 71.76 23.71 100 
D V L R R T (BI) 0.0163 47.30 26.60 100 

Table 4-2: The results of trap workspace. The (BI) denote the using of bidirectional trees, and the bold 
numbers indicate the best results 

Time [s] Tree node Path node Success [%] 
Basic RRT 0.6236 815.58 89.40 11 
Bias RRT 0.6722 697.66 87.06 31 
RRT Con 0.3591 708.89 26.06 99 
ConCon (BI) 0.3253 645.14 26.64 100 
ConExt (BI) 0.4362 723.97 39.27 100 
ExtCon (BI) 0.4102 696.12 38.44 100 
ExtExt (BI) 0.7815 1019.40 85.14 96 
RRT-BLOS SOM 0.6708 591.36 55.51 74 
B L O B L O (BI) 0.4665 464.40 55.16 100 
V L R R T 0.2750 272.63 27.81 100 
V L R R T (BI) 0.2406 279.77 40.23 100 
D V L R R T 0.4030 368.91 36.77 98 
D V L R R T (BI) 0.3039 326.09 42.57 100 

The results of the last two tests in low-density and high-density of obstacles are shown 

in Table 4-3, and Table 4-4, respectively. The ConCon (bidirectional connect RRT 

method) has the best results regarding to the execution time. Also, it is notable, that all 

bidirectional methods are probabilistically complete in these tests. 

Summary 

The aim of this work was to review and test the performance of the reviewed algorithms. 

The results show that the dual tree variants are more completeness in all workspaces. The 

most successful strategy regarding to the time of execution is the bidirectional-VLRRT in 
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trap obstacles. Also, the bidirectional-ConCon strategy gives the best results in the low and 

the high density of obstacles. However, the result cannot be generalized for all 

environments. 

Table 4-3: The results of low-density workspace. The (BI) denote the using of bidirectional trees, and 
the bold numbers indicate the best results 

Time [s] Tree node Path node Success [%] 
Basic RRT 0.1650 336.49 43.03 100 
Bias RRT 0.0841 147.97 41.55 100 
RRT Con 0.1232 375.27 11.24 100 
ConCon (BI) 0.0270 127.57 7.56 100 
ConExt (BI) 0.0393 144.56 16.51 100 
ExtCon (BI) 0.0362 140.71 16.11 100 
ExtExt (BI) 0.0512 111.32 41.42 100 
RRT-BLOSSOM 0.1620 259.36 43.73 100 
B L O B L O (BI) 0.0556 104.24 40.80 100 
V L R R T 0.0519 87.94 25.10 100 
V L R R T (BI) 0.0366 68.31 27.34 100 
D V L R R T 0.0634 102.05 30.28 100 
D V L R R T (BI) 0.0434 76.24 31.49 100 

Table 4-4: The results of high-density workspace. The (BI) denote the using of bidirectional trees, and 
the bold numbers indicate the best results 

Time [s] Tree node Path node Success [%] 
Basic RRT 1.0550 0 0 0 
Bias RRT 1.1255 0 0 0 
RRT Con 1.2552 1552.15 33.29 07 
ConCon (BI) 0.3984 518.46 25.27 100 
ConExt (BI) 0.4906 550.77 53.83 100 
ExtExt (BI) 0.4900 406.33 87.37 100 
RRT-BLOSSOM 0.8902 0 0 0 
B L O B L O (BI) 0.5133 328.38 87.11 100 
V L R R T 1.1311 0 0 0 
V L R R T (BI) 0.5444 380.29 66.37 100 
D V L R R T 1.1497 0 0 0 
D V L R R T (BI) 0.5422 365.49 70.68 100 

4.1.2 RRTs Review and Statistical Analysis 
Many ideas have been proposed to solve the path-planning problem. One of them is the 

rapidly exploring random Tree (RRT). This method is not optimal, but it reduces the 

required time to obtain a solution. The result of the RRT is a tortuous path, which has 

many useless vertices. 



In this work (Abbadi, Matousek 2012) statistical tests were done, to make a better 
decision about using a variant of RRT. This work is based on the previous results in 
(Abbadi et al. 2011), where the tested methods give a variety of results, some of them are 
very close and some are very diverse. For that, a statistical analysis is done to build some 
confidence of using one RRT variation instead of another one in some situations. 

In addition to statistical tests, we propose a method to reduce the degree of tortuous, and 
make the path shorter by omitting the useless points. 

(c) (d) 
Figure 4-10: The testing workspaces, (a) low obstacles density, (b) T-trap workspace, (c) high obstacles 
density, (d) doors workspace 

Test and Results 

We made the tests for 13 RRT variations in four spaces as shown in Figure 4-10. The first 
workspace has low-density of obstacles (a). The second one has T-trap obstacle (b); the 
high density of obstacle shown in (c) and the last one is the doors workspace (d). 
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The test is applied in every workspace separately; we test 13 variants of RRT, 100 
times. The fails occurs when RRT variation attempted to extend a branch 2000 times 
without reaching the goal. We used PC equipped with 2.5 GHz Core2Duo CPU, 2 GB 
R A M . 

The implementation of RRT variations is developed in Matlab and the statistical results 
are done using Minitab. The comparison between the tests results is done based on the time 
of execution, the success rate of reaching the goal and the path length. 

Execution Time results 

The tests results show that the best variation in Low obstacles space is the Vlrrt(2) method, 
where the average of the time to reach the goal is 0.0467 second and the median is 0.0418, 
the second best variation is Dvlrrt(2), it has the mean value of 0.0484 second and median 
value equal to 0.0407. Table 4-5 shows the numerical result of the tests in low obstacle 
space and the Figure 4-11 shows the boxplots representation of these results. 

Table 4-5: Tests results of low density of obstacles. The bold numbers correspond to the best two 
results, the best results marked by (*), the (2) indicate a bidirectional method 

Method Mean StDev Variance Median Success 
BIAS 0.1035 0.0484 0.0023 0.0890 100 
B L O S S O M 0.3552 0.2584 0.0668 0.2714 94 
B L O S S O M (2) 0.0615 0.0255 0.0007 0.0564 100 
C O N 0.3434 0.2546 0.0648 0.2526 93 
CON(2) 0.0578 0.0198 0.0004 0.0559 100 
ConExt(2) 0.0617 0.0202 0.0004 0.0585 100 
E X T 0.2806 0.1991 0.0396 0.2380 95 
EXT(2) 0.0516 0.0249 0.0006 0.0444 100 
ExtCon(2) 0.0637 0.0234 0.0006 0.0621 100 
D V L R R T 0.0893 0.0493 0.0024 0.0734 100 
DVLRRT(2) 0.0484 0.0259 0.0007 0.0407 100 
V L R R T 0.0840 0.0436 0.0019 0.0698 100 
VLRRT(2) *0.0467 *0.01754 *0.0003 *0.0418 100 
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Figure 4-11: Boxplots representation of the results of in the low-density of obstacles 

In the T obstacle workspace, the Vlrrt has the best result regarding to the time of 
execution, however, it also has one fail of reaching the goal. The time average is 0.3740 
and the median is 0.3713. The second result achieved by the bidirectional-Vlrrt(2) which 
has the average time of 0.3984 and median of 0.3849, and without any fail. The numerical 
results are presented in Table 4-6. And Figure 4-12 shows the boxplot representation of 
execution time results. 

A statistical test was done on Vlrrt and Vlrrt(2), which give the best results. The aim of 
this test is to validate the hypothesis of using the second best method instead of the first 
one. Which means, if we use the second best option Vlrrt(2) without any fail, it will give 
the same result in confidence level of 95%. 

This hypothesis implies that we can replace the method that has more probabilistically 
completeness, with the method that has a less completeness ratio; Figure 4-13 shows the 
tested hypothesis. 

Based on the P-Value, which is >5%, the hypothesis of "Vlrrt and Vlrrt(2) are not 
equal" is rejected, which means, there is no sufficient difference between the two 
variations, and the Vlrrt(2) variant can be used instead of Vlrrt, using the confidence level 
of 95%. 

T i T 4 ± 4 T I 
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Figure 4-12: Boxplots representation of results in T obstacle 

Table 4-6: Tests results of T-trap obstacle. The bold numbers correspond to the best two results, the best 
results marked by (*), the (2) indicate a bidirectional method 

Method Mean StDev Variance Median Success 
BIAS 0,5968 0,0736 0,0054 0,6121 71 
B L O S S O M 0,7482 0,1068 0,0114 0,7476 35 
B L O S S O M (2) 0,9371 0,1852 0,0343 0,9198 100 
C O N 0,5320 0,2062 0,0425 0,5017 81 
CON(2) 0,3996 0,1024 0,0105 0,3948 100 
ConExt(2) 0,4484 0,1433 0,0205 0,4326 100 
E X T 0,5592 *0,0721 *0,0052 0,5521 97 
EXT(2) 0,6696 0,1211 0,0147 0,6712 100 
ExtCon(2) 0,4502 0,1303 0,0170 0,4388 35 
D V L R R T 0,5188 0,0887 0,0079 0,5109 100 
DVLRRT(2) 0,6250 0,1235 0,0153 0,6369 100 
V L R R T *0,3740 0,0984 0,0097 *0,3713 99 
VLRRT(2) 0,3984 0,1224 0,0150 0,3849 100 

In the high obstacle workspace, the Con(2) method gives the best time average, where 

the mean is 0.1871 and the median is 0.1844. The numerical results are presented in Table 

4-7 and the boxplot representation is shown in Figure 4-14. 

A statistical analysis is conducted to figure out if the Vlrrt(2) can be used generally 

based on the confidence level of 95%. The T-test result gives P-Value > 5%, as shown in 

Figure 4-15, which indicate that there is no sufficient difference between the use of Con(2) 

the best method, and the Vlrrt(2) method, the third best one, in confidence level of 95%. 



Two-sample T for Vlrrt vs Vlrrt(2) 

N Mean StDev SE Mean 

V l r r t 99 0.3740 0.0984 0. 0099 

V l r r t ( 2 ) 100 0.398 0. 122 0. 012 

D i f f e r e n c e = mu ( V l r r t ) - mu ( V l r r t ( 2 ) ) 

E s t i m a t e f o r d i f f e r e n c e : -0.0244 

95% CI f o r d i f f e r e n c e : (-0.0554; 0.0067) 

T-Test o f d i f f e r e n c e = 0 

vs not =): T-Value = -1.55 

P-Value = 0.123 DF = 18 9 

Figure 4-13: T-test for the hypothesis "Vlrrt and Vlrrt(2) not equal" in T 

Table 4-7: Tests results of high-density of obstacles. The best results marked by (*), the (2) indicate a 
bidirectional method 

Method Mean StDev Variance Median Success 
BIAS 0.3790 0.1316 0.0173 0.3662 100 
B L O S S O M 0.5642 0.2259 0.0510 0.5559 82 
B L O S S O M (2) 0.2665 0.1148 0.0132 0.2485 100 
C O N 0.4397 0.2582 0.0667 0.3640 83 
CON(2) *0.1871 *0.0712 *0.0051 *0.1844 100 
ConExt(2) 0.2033 0.0945 0.0089 0.1902 100 
E X T 0.4738 0.1968 0.0387 0.4070 80 
EXT(2) 0.2024 0.0738 0.0055 0.1981 100 
ExtCon(2) 0.2053 0.0843 0.0071 0.1960 100 
D V L R R T 0.3700 0.1510 0.0228 0.3506 99 
DVLRRT(2) 0.2175 0.0746 0.0056 0.2033 100 
V L R R T 0.3370 0.1216 0.0148 0.3324 99 
VLRRT(2) 0.2072 0.0837 0.0070 0.1905 100 
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Figure 4-14: Boxplots representation of results in high-density of obstacles 

N Mean StDev SE Mean 

Con(2) 
V l r r t ( 2 ) 

100 
100 

0 .1871 
0.2072 

0.0712 
0.0837 

0.0071 
0.0084 

D i f f e r e n c e = mu (Con(2) ) - mu ( V l r r t ( 2 ) 
E s t i m a t e f o r d i f f e r e n c e : -0.0201 
95% CI f o r d i f f e r e n c e : (-0.0418; 0.0015) 
T-Test o f d i f f e r e n c e = 0 
(vs not =): T-Value = -1.83 
P-Value =0.068 DF = 193 

Figure 4-15: T-test for the hypothesis "Con(2) and Vlrrt(2) not equal" in high density obstacles 

In the doors obstacles workspace, the best variant is Dvlrrt(2) which has the time 
average equal to 0.2961 and the median equal to 0.2623. The numerical results are shown 
in Table 4-8, and the boxplot representation is shown in Figure 4-16 for all tested 
variations. 

In the same manner, we test if the Vlrrt(2) can replace the best method in this 
workspace. The T-test hypothesis assumes that there is a difference between the best 
variant Dvlrrt(2) and the second best one Vlrrt(2) as shown in Figure 4-17. Based on this 
test we reject the hypothesis, because of the value of P-Value is greater than 0.05, which 
means there is no sufficient difference between the two best variations in the confidence 
level of 95%. 
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Figure 4-16: Boxplots representation of results in doors obstacles 

N Mean StDev SE Mean 
D v l r r t ( 2 ) 100 0.296 0 .148 0 .015 
V l r r t ( 2 ) 100 0.317 0 .198 0 . 020 
D i f f e r e n c e = mu ( D v l r r t ( 2 ) - mu V l r r t (2) ) 
E s t i m a t e f o r d i f f e r e n c e : -0.0213 
95% CI f o r d i f f e r e n c e : (-0.0702; 0.0275) 
T-Test o f d i f f e r e n c e = 0 
(vs not =): T-Value = -0.86 
P-Value = 0.390 DF = 183 

Figure 4-17: T-test for the hypothesis "Dvlrrt(2) and Vlrrt(2) not equal" in doors obstacle 

Table 4-8: Tests results of doors obstacles. The best results marked by (*), the (2) indicate a 
bidirectional method 

Method Mean StDev Variance Median Success 
BIAS 0.4232 0.2040 0.0416 0.3690 100 
B L O S S O M 0.8529 0.4155 0.1727 0.8450 82 
B L O S S O M (2) 0.3830 0.2202 0.0485 0.3433 100 
C O N 0.8834 0.5052 0.2552 0.8670 84 
CON(2) 0.3316 0.2315 0.0536 0.2757 100 
ConExt(2) 0.3320 0.1854 0.0344 0.2883 100 
E X T 0.7535 0.3801 0.1444 0.6839 84 
EXT(2) 0.3511 0.1794 0.0322 0.3065 100 
ExtCon(2) 0.3427 0.2057 0.0423 0.2896 100 
D V L R R T 0.3884 0.1987 0.0395 0.3915 100 
DVLRRT(2) *0.2961 *0.1479 *0.0219 *0.2623 100 
V L R R T 0.4522 0.2389 0.0571 0.4003 99 
VLRRT(2) 0.3174 0.1984 0.0394 0.2775 100 
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The last result and statistical analysis indicate that the Vlrrt(2) can be used in all spaces 
without sufficient difference between it and the best variants in all space, based on the 
confidence level of 95%. 

Successful rate results 

The tests show some variations have a tendency to fail of reaching the goal location, 
mainly the unidirectional methods. Table 4-9 shows the successful rate of planning process 
between the initial and the goal locations. The test repeated 100 times, in the four 
workspaces. In each iterations, the RRT tree tries 2000 times to grow a branch and the test 
is considered failed if the tree did not reach the goal within this limit. 

Table 4-9: Successful rate of RRT methods, the number (2) after the method names, indicates a 
bidirectional method 

Low T High Doors 
BIAS 100 71 100 100 
B L O S S O M 94 35 82 82 
B L O S S O M (2) 100 100 100 100 
C O N 93 81 83 84 
CON(2) 100 100 100 100 
ConExt(2) 100 100 100 100 
E X T 95 35 80 84 
EXT(2) 100 100 100 100 
ExtCon(2) 100 100 100 100 
D V L R R T 100 97 99 100 
DVLRRT(2) 100 100 100 100 
V L R R T 100 99 99 99 
VLRRT(2) 100 100 100 100 
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Figure 4-18: Unsuccessful results in low-density obstacles workspace 
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Figure 4-19: Unsuccessful results in T obstacle workspace 
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Figure 4-20: Unsuccessful results in high-density obstacles workspace 
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The results show that unidirectional algorithms have more tendencies to fail, more than 
the bidirectional versions. Figure 4-18, Figure 4-19, Figure 4-20, and Figure 4-21 show 
graphical representations of the unsuccessful rate in low-density, t-trap, high-density and 
doors workspaces, respectively. 

Path length and short path tests 

In this section, the path length is tested for all variations in low, T, High and Doors 
workspaces. And a method for shortening the generated RRT path is proposed. 

The generated path of RRT usually a tortuous path and has many points and sharp 
curves. The proposed algorithm makes the path shorter in the length by omitting the 
useless points. It tries to replace multi-segments by one straight segment when it is 
possible. The generated path is not the optimal, neither the shortest one, but, it has fewer 
vertices and much more straightforward. Figure 4-22 shows the original path generated by 
RRT (a) and the shortened path (b). 

(a) (b) 
Figure 4-22: The shortening path algorithm, (a) the original RRT path (38 point, length 

=18.13), (b) the shortened path (6 point, length= 14.2) 

The algorithm pseudo code is shown in Figure 4-23. The algorithm tests the connection 
between the first points of the path with the last points directly, if a connection exists 
without a collision, it deletes the midpoints between these two locations. In case of failure 
the algorithm tries to connect the next vertex of the path {testing point) to the last one 
(tested points). It repeats this process until the testing point is reached the last vertex in the 
path, in this case, the algorithm starts again from the first point and tries to connect to the 
previous vertex of the last one. The algorithm stops when the tested points reach the first 
vertex. 

The collisionCheck function is used to check the collisions between the obstacles and 
the segment from pntl to pnt2 location. 
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The generated path is a path has fewer vertices and segments. It is not the optimal one, 
because, it is based on the original path, which generated by RRT. 

Figure 4-24 shows the short path in two different workspaces. The thick line represents 
the generated RRT path, while the dashed one represents the shortened path. 

S h o r t e n i n g RRT Pa t h A l g o r i t h m . 
I n p u t : The RRT's p a t h . 
Output t h e s h o r t e n p a t h . 
LastTestedPntlnd =index o f l a s t p o i n t i n t h e p a t h ; 
WHILE (LastTestedPntlnd ~= 2 ) 

pnt2 = p a t h . g e t ( L a s t T e s t e d P n t l n d ) ; 
FOR (floatPntInd=l;floatPntInd<LastTestedPntInd-l;floatPntInd++) 

pntl = p a t h . g e t ( f l o a t P n t l n d ) ; 
IF ~ c o l l i s i o n C h e c k ( p n t l , p n t 2 ) 

p a t h = p a t h . r e m o v e ( f l o a t P n t l n d , LastTestedPntlnd); 
LastTestedPntInd=updateInd(LastTestedPntlnd); 
LastTestedPntlnd = LastTestedPntlnd-l; 
BREAK; 

END 
END 

END 

Figure 4-23: Shortening path algorithm. 

(a) (b) 
Figure 4-24: The original RRT path (thick-red), and the shortened path (dashed-green) 

The path length tests are conducted in the four workspaces. In the first workspace, the 
low-density obstacle workspace, all variations are tested in order to estimate the difference 
between these variations. The numerical results are listed in Table 4-10, and a graphical 
representation of them is shown as boxplots in Figure 4-25. The results show that the best 
method based on path length is the unidirectional Bias RRT. 
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Figure 4-25: Path length boxplots in low density of obstacle workspace 

of obstacle workspace. The best results marked by (*), the Table 4-10: Path length results in low density 
(2) indicate a bidirectional method 

Path Path S-path S-Path Rate 
Median Min Median Min % 

BIAS *14.336 12.770 11.856 11.478 17.30 
B L O S S O M 15.373 13.316 11.817 *11.471 23.13 
B L O S S O M (2) 14.644 12.947 11.787 11.490 19.51 
C O N 17.359 13.366 14.085 11.553 18.86 
CON(2) 18.880 12.210 14.195 11.532 24.81 
ConExt(2) 16.534 12.796 12.010 11.556 27.36 
E X T 15.189 13.235 11.831 11.473 22.11 
EXT(2) 14.604 13.155 *11.810 11.496 19.13 
ExtCon(2) 16.929 *12.062 12.058 11.530 *28.77 

D V L R R T 14.540 12.444 11.834 11.504 18.61 
DVLRRT(2) 14.773 12.808 11.862 11.499 19.70 
V L R R T 14.846 12.565 11.946 11.565 19.53 
VLRRT(2) 14.545 12.629 11.846 11.476 18.56 
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Box plot of Path Len. in T obstacle 

* 
e 

L 1 

r " 
1 

T 
T 1 1 1 1 1 1 1 1 1 1 1 r 

4& J* & C 0 < > & # # K < ^ & J C 0 < > ^ ^ 

Variations 

Figure 4-26: Path length boxplot in T obstacle workspace 

Table 4-11: Path length in T obstacle workspace. The best results marked by (*), the (2) indicate a 
bidirectional method 

Path Path S-Path S-Path Rate 
Median Min Median Min % 

BIAS 30.124 25.814 *24.089 22.309 20.03 
B L O S S O M *29.976 26.635 24.488 22.191 18.31 
B L O S S O M (2) 32.166 27.269 24.498 22.643 *23.84 

C O N 33.658 26.281 25.934 22.277 22.95 
CON(2) 33.618 26.742 25.831 22.462 23.16 
ConExt(2) 33.170 27.120 25.427 *21.740 23.34 
E X T 30.385 26.432 23.908 22.491 21.32 
EXT(2) 32.562 26.460 25.091 22.127 22.94 
ExtCon(2) 32.815 25.764 25.378 22.050 22.66 
D V L R R T 31.148 25.324 25.104 22.522 19.40 
DVLRRT(2) 33.177 26.489 25.831 22.367 22.14 
V L R R T 32.041 *25.318 25.906 22.534 19.15 
VLRRT(2) 33.436 28.006 26.165 23.233 21.75 

In the T-obstacle workspace, the best result is recorded by blossom method based on the 

median value of the path length. As shown in Table 4-11. The boxplot of these results is 

plotted in Figure 4-26. 



Box plot of Path Len. in High obstacle 
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Figure 4-27: Path length boxplot in high density of obstacle workspace 

Table 4-12: Path length of high density of obstacle workspace. The best results marked by (*), the (2) 
indicate a bidirectional method 

Path Path S-Path S-Path Rate 
Median Min Median Min % 

BIAS 17.911 *14.233 15.045 13.269 16.00 
B L O S S O M 17.766 15.349 *14.70 13.353 *17.26 

B L O S S O M (2) 19.879 14.977 16.716 13.321 15.91 
C O N 19.004 15.260 16.697 13.252 12.14 
CON(2) 21.144 15.253 17.541 13.498 17.04 
ConExt(2) 21.363 15.079 18.164 *13.191 14.97 
E X T 17.752 15.542 14.702 13.286 17.18 
EXT(2) 19.947 15.328 17.277 13.222 13.39 
ExtCon(2) 20.535 14.613 17.109 13.393 16.68 
D V L R R T 18.263 14.415 16.185 13.236 11.38 
DVLRRT(2) 20.350 15.087 17.376 13.479 14.61 
V L R R T *17.528 14.846 14.919 13.347 14.88 
VLRRT(2) 20.022 14.730 16.832 13.412 15.93 

In the high obstacle workspace, the RRT variations are tested and the results are listed 

in Table 4-12. In addition, the boxplot representations of these results are shown in Figure 

4-27. The best method's result in terms of the median of the path length is achieved by 

Vlrrt method. 
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Table 4-13: Path len; 
bidirectional method 

Figure 4-28: Path length boxplot in doors obstacle workspace 

*th in doors obstacles workspace. The best results marked by (*), the (2) indicate a 

Path Path S-Path S-Path Rate 
Median Min Median Min % 

BIAS 17.089 14.145 14.285 11.826 16.41 
B L O S S O M 17.389 13.787 *13.960 11.771 *19.72 

B L O S S O M (2) 17.256 14.153 14.127 *11.740 18.13 
C O N 18.072 15.407 14.883 11.869 17.65 
CON(2) 17.810 13.757 14.792 11.797 16.95 
ConExt(2) 17.422 13.574 14.749 11.930 15.34 
E X T 17.263 14.872 14.157 11.802 17.99 
EXT(2) 17.413 13.685 14.304 11.764 17.85 
ExtCon(2) 17.583 *12.278 14.524 11.799 17.40 
D V L R R T 16.934 13.604 14.250 11.850 15.85 
DVLRRT(2) 17.532 14.104 14.134 11.787 19.38 
V L R R T *16.878 13.957 14.411 11.870 14.62 
VLRRT(2) 17.577 13.046 14.165 11.835 19.41 

In the last workspace, the door obstacle, the tests show that Vlrrt has the lowest median 
of the path length. Table 4-13 shows the numerical results of the tested methods, while 
Figure 4-28 shows the boxplot representation for these results. 

Based on the results in all testing workspaces, the unidirectional tree methods generally, 
give better results than the bidirectional trees do. The reason of this difference is the 
extending procedure of RRT, where in unidirectional tree the expansion is done from the 
nearest node in the tree, while in bidirectional cases, the path is composed of two paths, 
which make it longer than unidirectional path. 



The results also show that using shortening method reduces the path length in the 
average of 13% - 28%, depending on the testing environment, the obstacles shape, and the 
methods. 

Summary 

In this work, many approaches of RRT were tested in four different workspaces, some 
statistical analyses have been done to support our decision about using one variation 
instead of the others. In addition, we proposed a shortening algorithm to reduce the length 
and the tortuous of the RRT paths. 

We conclude that regarding to the time of execution, in low-density obstacles the 
Vlrrt(2) method gives the best result. It has the rate of 100% of success. For the T obstacle 
workspace, Vlrrt achieves the best result, however, it has one fail. So we choose to use the 
Vlrrt(2) based on the statistical result, which shows that there is no sufficient difference in 
these two variants with a confidence level of 95%. In high-density workspace, the best 
variant is Con(2) method, and in the last workspace, the best variant is Dvlrrt(2). 

4.1.3 Rapidly-Exploring Random Trees: 3D planning 

In this work (Abbadi, Matousek, et al. 2012) the RRT algorithm is applied in three-
dimensional workspace to find a path for a holonomic system. We also developed an 
algorithm for path shortening. This algorithm shortens the path by omitting unnecessary 
points from the original path. Furthermore, we present a smoothing-out technique for real 
dynamic behavior. 

The result of this work can be applied in many applications, e.g. the robot arms, the 
flying objects, CNC machine, 3D laser cutting machines, and other machines that work in 
3D dimension. 

Proposed methods 

The generated path using RRT is a tortuous path. It has many nodes and sharpness edges. 
We try to shorten the RRT path and make it as smooth as possible by removing useless 
points. We introduce an algorithm in (Abbadi, Matousek 2012). It generates a shortened 
path based on the original one. A new version is shown in Figure 4-30. 

The algorithm tries to connect vertices from both path's edges and delete the midpoints 
between them. The updated version tests the path from two directions and returns the 
shortest one. 

The original tortuous path that is generated by RRT is shown in Figure 4-29, in addition 
to the first shortened path that starts from first toward the last point, and the second 
shortened path, which start from last toward the starting point of the original path. 



Figure 4-29: The shortening algorithms results. The solid red line represents the original RRT path, the 
(black - -) line represent the first shortened path, and the (blue - .) line represent the second shortened 
path 

1. EndPnt ^ i n d e x o f l a s t p o i n t i n t h e p a t h ; 
2. S t a r t P n t <-l; 
3. t m p P a t h l ^ o r i g i n a l P a t h ; 
4. WHILE (EndPnt ~= 2 ) 
5. pnt2 «- t m p P a t h l (EndPnt); 
6. FOR ( S t a r t P n t <-l ; S t a r t P n t < EndPnt -1 ; S t a r t P n t ++ ) 
7. p n t l «- t m p P a t h l ( S t a r t P n t ) ; 
8. IF ~ c o l l i s i o n C h e c k ( p i , p 2 ) 
9. t m p P a t h l «- t m p P a t h l (1 t o S t a r t P n t ) 
10. + t m p P a t h l ( E n d P n t t o t h e end) ; 
11. Endpnt <- i n d e x o f p r e v i o u s p o i n t t o EndPnt; 
12. BREAK; 
13. END 
14. END 
15. END 
16. tmpPath2^- o r i g i n a l P a t h ; 
17. startpnt«-l; 
18. WHILE ( S t a r t P n t < tmpPath2's s i z e ) 
19. p n t l «- tmpPath2 ( S t a r t P n t ) ; 
20. FOR (EndPnt ^tmpPath2's s i z e ; EndPnt > S t a r t P n t +1 ; EndPnt — ) 
21. pnt2 «- tmpPath2 ( E n d P n t ) ; 
22. IF ~ c o l l i s i o n C h e c k ( p i , p 2 ) 
23. tmpPath2 <- tmpPath2 (1 t o S t a r t P n t ) 
24. + tmpPath2(EndPnt t o t h e end) ; 
25. S t a r t P n t «- S t a r t p n t + 1 ; 
26. BREAK; 
2 7. END 
28. END 
29. END 
30. IF ( l e n g t h o f t m p P a t h K l e n g t h o f tmpPath2 ) 
31. RETURN t m p P a t h l ; 
32 . ELSE 
33. RETURN tmpPath2; 
34 . END 

Figure 4-30: The shortening path algorithm 
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A smoothing-out technique is applied to the shortened path using Catmul-Rom spline 
(Catmull et al. 1974), as shown in Figure 4-31. Advantage of this solution is also for the 
future extension of the path planner. The shorter and smooth path is more convenient for a 
dynamic ride of the real vehicle. 

Figure 4-31: The smoothed path (bold ...) which generated based on the shortened path (- -) 

There are several approaches to spline design. Catmul-Rom spline is a special kind of 
Hermite spline. The spline is a sequence of curves joined together to form a larger curve. 
These curves pass through given points smoothly and continually. 

Hermite spline method calculates the curve using two points and tangents vectors in 
these points as shown in Figure 4-32, (Shikin et al. 1995; Salomon 2011). 

Figure 4-32: Hermite spline principle, and the effect of the tangent magnitude, po, pi are the start and 
the end points, mo, mi are the corresponding tangents in the points, Source: (Salomon 2011) 

The curve P(f) is calculated using the following equation 

P(t) = (2t 3 - 3t 2 + l ) p 0 + ( t 3 - 2t 2 + t )m 0 + ( - 2 t 3 + 3t2)p± + ( t 3 - t2)mlt 

0 < t < 1 

Where po, pi is the given points, mo, mi is the tangents vectors, t is the knots parameter 
in the intervals [0,1]. 

Using the matrices notation, the previous equation is written as follows. 



P(t) = T(t)HB = ( t 3 t 2 t 1) 

2 
- 3 
0 
1 

- 2 
3 
0 
0 

1 
- 2 
1 
0 

Where the H matrix is called a Hermite basis matrix. 

Figure 4-33: Catmull-Rom calculation method, Source: (Salomon 2011) 

In Catmul-Rom case, four points are used to generate the curve on the segment P2P3, i.e. 
[Pi, P 2 , P 3 , P 4 ] , where the tangent on P 2 is parallel to the P 3 P 1 segment, and the tangent in 
P 3 is parallel to the P 4 P 2 segment, as shown in Figure 4-33. Based on these settings the 
equations is written as follows 

The tension parameter s is used to change the magnitude of the tangent vectors. The 
effect of these changes is shown in Figure 4-32. In Catmull-Rom method, the s parameter 
is fixed and has the value (0.5). 

For multiple points, [ P i , P 2 , . . . , P m ] , the Catmull-Rom curve is calculated for every 
segment P,-,P,-+.z using four points [ P w , P , - , P j + i , P j + 2 ] . The points' sets that generate the curves 
are overlapped, i.e. [ P i , P 2 , P 3 , P 4 ] , [ P 2 , P 3 , P 4 , P 5 ] , [ P m - 3 , P m - 2 , P m - i , P m ] . 

A problem rises up because of spline algorithm; the smoothed line sometime collides 
the near obstacles, and that is because the smoothing algorithm does not check the 
generated path if it collide or not, moreover the Catmull-Rom method generate 
uncontrollable curves. Because of this problem, the algorithm is re-implemented and the 
local-spline is proposed. It smoothes the path around the corners, which means the path 
will be kept straightforward, but only sharp edges will be smoothed. 

To implement the local spline, two points on the path near the corner are used. These 
points are taken far from the corner by d distance, where d is chosen depending on the 



kinematic and dynamic constraints. These points in addition to the corner point are passed 
to the smoothing algorithm to generate a path around the corners. Figure 4-34 shows how 
the normal spline collides with walls and how the new local-spline works. However, this 
method reduces the collided points, but it still needs more checking for collision. 

Figure 4-34: Local spline. The dashed line represents the spline path, the (.-) path represents the local-
spline path 

In literatures, many researches deal with the smoothing problem, for example, in (Kito 
et al. 2003), the authors proposed a global path generation method. It is based on the 
visibility graph, and it re-arranges the path to be as a sequence of sub-goals (middle 
points). Then it constructs a graph for the smoothed paths. Another work is presented by 
(Yang 2013) for smoothing non-holonomic path planning, they proposed the Spline-based 
Rapidly-exploring Random Tree (SRRT) algorithm. It uses the cubic Bezier splines as a 
local planner to connect two states, which replace the dynamic simulation of RRT by 
parameterization of the cubic Bezier splines. Another research on non-holonomic domain 
proposed a real-time method for re-planning the path and smoothing it. The smoothing step 
is achieved by selecting appropriate sequences of alternating trims and maneuvers from a 
precomputed library of motion primitives (Bottasso et al. 2008). 

Testing Environments 

We have constructed four testing scenarios. The first one involves a wall has a passage as 
shown in Figure 4-35-a. This obstacle evaluates the algorithm efficiency in simple narrow 
passage scenario. The second workspace involves two walls where each one has a window 
as shown in Figure 4-35-b. 

The third workspace has three walls with windows in different locations as shown in 
Figure 4-36-a. The last scenario has vertical and horizontal obstacles with different 
locations of the windows as shown in Figure 4-36-b. 



(a) (b) 
Figure 4-35: (a) The narrow passage workspace Wall 1, (b) the different windows location workspace 
Wall 2 

0 0 
(a) (b) 

Figure 4-36: (a) Multi-walls and different windows location workspace, Wall 3, (b) the horizontal and 
vertical walls workspace, Wall 4 

Results 

We have tested six variations of RRT the basic RRT (Ext), Blossom, Vlrrt and the 
bidirectional versions of them. 

The tests were executed for every method 100 times per scenario. The testing platform 
was as follows, a PC equipped with Intel Core2Duo CPU 2.53 GHz, and 2 GB of memory, 
and Windows7 64-bit is used. The algorithms have been implemented in Matlab 
environment. We consider the RRT failed to reach the goal after 2000 attempts to grow a 
branch. 
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Figure 4-37: Boxplots for RRT variations based on an average time of executing 

The numerical results in every testing method are shown in Table 4-14. They represent 
the average of execution time for successful tries to find a path. In addition, the boxplot 
representation is shown in Figure 4-37. 

The results show that using bidirectional-trees are better than unidirectional methods 
where these methods has the lowest average of execution time to find a result, they also 
more probabilistically complete, as shown graphically in Figure 4-38, which shows the 
number of failed tries to find a path. 

The tested algorithms have some difficulties to find a solution in a narrow passage, 
where even the bidirectional approaches failed to find a solution in some tests, as shown in 
Figure 4-38-walll. 

Table 4-14: The average execution time for the successful tries of the RRT 

W a l l l Wall 2 Wall 3 Wall 4 
Ext 2.16 1.83 3.17 2.87 
2Ext 1.16 0.24 1.29 0.95 
Blossom 2.16 1.74 2.76 2.56 
2Blossom 1.08 0.26 1.40 0.96 
Vlrrt 1.73 1.57 2.80 2.27 
2Vlrrt 1.05 0.20 0.99 0.57 
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4-38: Unsuccessful attempts to find a path in 100 tests per scenario 
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The result shows that the bidirectional Vlrrt (2Vlrrt) is better than the other methods, 
where the successful branching increases the extension step that makes the tree spreads 
faster in free spaces, and performs a fine exploration around the obstacle. 

The advance of 2Vlrrt can be inferred also from the boxplot representation of the 
number of nodes in the generated path, see Figure 4-39. 2Vlrrt has a small path size that 
means the path has less curves, which in consequence indicates that the path is more 
straightness and has longer branches than the other generated paths. 

The Vlrrt method's performance is affected by the increase or the decrease of the 
branching length factors. In these tests, the incremental factor is set to add 20% of the 
current node's extension step. The decrement factor, in case of branching fail, is reset to be 
as the original extension step (e=0.5). 

In the Blossom algorithm, an optimization of the blossom distance (Blossom_Dis) 
variable is tested to find the best performance in the given situations. The optimization is 
based on the effect of Blossom_Dis on the blossom method. If the distance is very small, 
the blossom RRT will behave like the basic RRT, in the opposite, if it set to a large value, 
the old branches will block the new ones, which cause a failure to navigate through the 
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small area, windows, and narrow passages. The used value of Blossom_Dis in our test is 
set to be equal to e*l.25, where the e is the original extension distance. 
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Figure 4-39: Boxplot of path size in the tested workspaces 

We make the Blossom_Dis optimizing in the Wall2 scenario, and the result is shown in 
Figure 4-40, where mean, median and median filter are drawn. The median curve is 
smoothed by the median filter, for a better estimation. The best estimation based on the 
curve is between 0.2 and 1.5 and the MIN value of median is when Blossom_Dis =1.1 
which corresponding to execution time ~= 0.174. 

In the same way, another optimization for the extension step e in two different 
workspaces is tested. The results show that the optimal value of Wall 2 scenario is between 
1.25 ~ 3.25 as shown in Figure 4-41-b, and the optimal one in the Wal l l located in the 
range between 0.5-1, Figure 4-41-a. 
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Figure 4-40: Bloosom_Dis optimization in Wall2 scenario 
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Figure 4-41: Extension step optimization in the walll scenario (a), and in the Wall2 scenario (b) 

Summary 

In this work, we test RRT algorithms in three-dimensional workspaces. In addition, an 
algorithm for shortening the path is introduced, and a smoothing-out technique to the 
shortened path has been presented. 

The results show that using two trees is better than using one tree in all scenarios. 
Several failures of finding the path have occurred in the narrow passage scenario. 

The 2Vlrrt is better than the other methods in terms of execution time to find the path and 
the generated path has fewer points than the others do. 

We conducted several tests to optimize the parameter of Blossom RRT and to 
optimize the length of extension; the results were different depend on the environment and 
scenario. In the future works, narrow passage environments needs more study to find 
efficient methods and avoid algorithm failures. 



4.1.4 Spatial Guidance to RRT Planner using the Cell-Decomposition 
Algorithm 

In this work (Abbadi, Matousek, et al. 2014), we made a comparison between the 
probabilistic path-planning method, i.e. RRT and the spatial planner, i.e. exact cells-
decomposition algorithm. 

A new test is proposed to make some tradeoff between the efficiency of planning using 
CD in 2D space and the planning in dynamic space using RRT. The proposed method uses 
the path's points of the CD inside the RRTs planner as a spatial guidance. 

Problem formulation and proposed solution 

The RRTs as example of randomized algorithms, has a good performance in high 
dimension or continuous spaces. In general, the limitation of these algorithms is the 
planning in small areas. In cell-decomposition case, it is efficient in low dimensions 
planning; however, the building of its graph could be hard in some cases. 

The available spatial information and the randomize approaches is combined to 
overcome the drawbacks in narrow area. The CD is used to produce a primitive path over 
2D or 3D workspace and provide this path to the RRTs planner as bias-path. This approach 
will keep some reasonable balance between dynamic and uncertainties from one side, and 
optimality, efficiency in spatial planning from the other side. Moreover, the CD can guide 
RRTs in a small area. 

In order to show the difference between these two planners we make some tests in two 
scenarios. The first one is a simulation of offices and corridors architecture-schema and the 
other is the typical issue for RRTs, which is a small area and narrow passage. 

Results 

We repeat the test 100 times for RRTs in every scenario and take the mean of the results 
for the successful tries to reach the goal. In each run, RRTs planner is setup as follows. The 
extending length set to (e = 0.5). The tests are repeated based on the RRT iteration, where 
the RRT is considered failed to reach the goal after {3000, 5000, 10000, and 100000} tries 
to grow a branch. We use Intel Xeon(R) PC with C P U of 2.67 GHz, and 6 GB of memory, 
and Windows 7 64-bit. We implement the algorithm in M A T L A B environment. 

The CD planner uses the Dijkstra's algorithm for search on the graph. The Dijkstra in 
this case has 0(\og(N)E) time complexity. Where N represents the nodes number and E is 
the edges number in the graph. 

In the first workspace (building-like scenario), a simulation was lunched for a path 
planning, and the results are listed in Table 4-15. 



The results show the generated nodes number in both CD and RRT cases. In CD case 
the nodes number represents the number of graph's nodes, which is constant. While in 
RRTs case, the node numbers are taken as an average of the results in a 100 times of 
repeated tests. 

The results show that the RRT algorithm is probabilistically complete when the iteration 
approaching 10000 in this workspace. In addition, the results show that CD algorithm is 
faster than RRTs in complete case by 7.6032 times. 

(a) (b) 
Figure 4-42: Path planning in building-like workspace using (a) RRT, (b) CD algorithm 

Table 4-15: Test results of building-like scenario, the numbers in time fields (), represent the percent of 
RRT's time comparing to CD's time 

Nodes 
number 

Preparing 
Time 

Planning 
Time 

Total time 
when 
success 

Path 
Length 

Time 
when 
fail 

Successful 

C E L L Dec. 33 0.3152 0.0056(1) 0.3208(1) 40.92 - 100% 

RRTs(3K) 478.17 0 1.85(331.03) 1.85 
(5.77) 

43.46 2.0520 12% 

RRTs(5K) 547.17 0 2.46(493.17) 2.46(7.67) 41.77 3.2539 90% 
RRTs(lOK) 540.48 0 2.44(435.55) 2.44(7.60) 42.71 - 100% 

The preparing time is the time required to generate the graph in CD. However, it is not 
required in the RRT case. We can infer based on the planning time that the CD is an 
efficient planner comparing to RRTs in 2D workspace for non-holonomic movements. In 
consequence, for repeated task, the CD can be 436 times faster than RRTs. In addition, the 
graph size in the CD is constant, which makes it applicable for real-time planning. 

Figure 4-42 shows the testing workspace, which consists of rooms and corridors. The 
first part Figure 4-42-a shows the solution founded by RRTs planner. While Figure 4-42-b 



uses the CD planner to find a path. The generated cells are shown graphically in Figure 
4-43-a, and the corresponding CD's graph is also represented graphically in Figure 4-43-b. 

In the second scenario, the narrow passage problem is simulated. The result is shown in 
Table 4-16. It indicates that the RRT records some failures, even when the iteration-limit 
set to 100000 iterations. 

This workspace is presented in Figure 4-44, where the first figure (a) uses the RRT 
planner to find a solution. In (b) the generated cells using CD algorithm are shown, in 
addition to the path between the initial and goal positions, which lay on the cells (2 and 
15). The generated graph is shown in Figure 4-45, where the shaded cells represent the 
path between cells 2 to 15. 



Table 4-16: Test results in the narrow passage scenario, the numbers in time fields (), represent the 
percent of RRT's time comparing to CD's time 

Nodes 
Preparing 

Time 
Planning 

Time 

Total time 
when 

success 

Path 
Length 

Time 
when 
fail 

Successful 

C E L L Dec. 19 0.2 0.003(1) 0.203(1) 24.33 - 100% 
RRTs(3000) 554.65 0 1.19(441.48) 1.19(5.88) 22.14 2.13 31% 
RRTs(5K) 629.66 0 1.59(587.22) 1.59(7.82) 23.17 3.24 41% 
RRTs(lOK) 644.9 0 1.80(668.11) 1.80(8.90) 23.08 5.82 44% 
RRTs(lOOK) 729.07 0 6.39(2368.40) 6.39(43.90) 23.00 50.44 67% 

In order to enhance the RRT planner, a new method was proposed. It tries to exploit the 

spatial information that provided by CD and guide the RRT growth toward the possible 

path. The CD's path points are considered as bias points to the RRT trees as shown in 

Figure 4-46, where the dots represent these points. 

Figure 4-45: The generated graph by CD algorithm in the narrow passage workspace. The shaded nodes 
represent the corresponding path in the graph between initial and goal cells 

Figure 4-46: Path planning using RRTs with a bias toward CD path points, the dots represent points on 
CD path 



We set the RRTs planner to bias toward these points in the probability of (0.2). The 
results are listed in Table 4-17, and Table 4-18 for both building-like and narrow passage 
workspaces, respectively. 

Table 4-17: Test results in the building-like workspace, the bias to CD-path's points is equal to 20%, 
and the numbers in () in planning time fields represent the time reduction percent using the bias 

1st scenario Nodes 
Num. 

Planning Time 
(without bias) 

Planning Time Successful Successful 
(without bias) 

RRTs(3000) 428.58 1.8538 1.8189 (-1.9%) 64% 12% 
RRTs(5000) 447.1 2.4594 2.0266 (-17.5%) 100% 90% 
RRTs(10000) 463.31 2.4391 2.1459 (-12%) 100% 100% 

Table 4-18: Test results in narrow passage workspace, the bias to CD-path's points is equal to 20%, and 
the numbers in (), in planning time fields represent the time reduction percent using the bias. 

1st scenario Nodes 
Num. 

Planning Time 
(without bias) Planning Time Successful Successful 

(without bias) 

RRTs(3000) 297.10 1.1920 0.5676(-52.4%) 86% 31% 

RRTs(5000) 292.72 1.5855 0.5512(-65.2%) 86% 41% 

RRTs(10000) 299.96 1.8039 0.6178(-65.8%) 86% 44% 

In comparison with the previous results, the bias enhances the RRT algorithm's 
completeness significantly in all cases. Also in the narrow passage scenario, the time of 
planning decreases about 52% in worth case while the completeness increases. The success 
of the planner in a narrow passage workspace using spatial guidance remained at 86%. It is 
because of another drawback of RRTs, which is the branch blocking. That means the tree's 
nodes are located near to the narrow area's gate and they take some position where the new 
branch cannot pass to the passage without colliding with obstacles. The solution for this 
case can be made by choosing a smaller extension distance. However, that generate a 
larger number of nodes to construct the tree, which means it increases the computation and 
memory cost. 

Summary 

In this work, we test CD algorithm, which construct an adjacency graph of the free 
workspace cells, in addition, to the RRT planner. The results show that the CD planner 
finds a path efficiently in static and known environments. The CD is faster than the RRT 
planner in preparing and planning a path in simple workspace. We test the idea of 
introducing the spatial information to the RRT planner and it gives a good result. It 
improves the completeness and the planning time. 

This work was a first step to build a hybrid planner, which works efficiently in 
continuous, high dimension space using the available knowledge and spatial information, 



and overcome the drawback of randomized sampling-base algorithms. The future work 
will focus on using available information to speed up the complex motion planning for 
robots in uncertainty and dynamic environments. 

4.1.5 Collided path replanning in dynamic environments using RRT and 
Cell decomposition algorithms 

In this work, the cell decomposition algorithm is used to find a spatial path in preliminary 
static workspaces, and then the RRT is used to validate this path in the actual workspace 
(Abbadi, Prenosil 2015b). Two methods are proposed to enhance the omnidirectional 
robot's navigation in partially changed workspace. First, the planner creates RRT tree and 
biases its growth toward the path's points in ordered form. The planner reduces the 
probability of choosing the next point if a collision is detected, which increases the RRT 
expansion in the free space. Second method uses a straight planner to connect the CD-
path's points. If a collision is detected, the planner places RRT trees in the both sides of 
collided segment. The proposed methods are compared with others approaches. The 
simulation shows that the proposed methods have better results in terms of efficiency and 
completeness. 

Figure 4-47: (a) The drawback of ACD in dynamic environments, (b) the drawback of RRT in narrow 
passage and small regions 

Proposed Methods 

In this work, the RRT and approximation cell decomposition (ACD) algorithms are 
combined together in order to exploit the advantages of each of them. The new planners try 
to overcome the drawbacks, which effect the performance of the navigation process 
significantly, by complementing these two approaches. 



The RRT planner has relatively high tolerance to obstacles shapes and workspace 
changes. This feature is missing in the A C D planner as shown in Figure 4-47-a. However, 
The RRT is not efficient in small areas and narrow passage as shown in Figure 4-47-b, 
unlike the A C D planner, which does not face this problem. Based on that, the efficient 
spatial planner, A C D , is used to plan a primary path in stationary workspace. Then, this 
path is used to guide the RRT growth. 

The RRT planner validates the ACD's path when a query is established in the actual 
workspace. If a collision is detected due to the change in the workspace, the planner re-
plans the path locally through the changed regions. Figure 4-48 shows the generated path 
using this principle. 

Two approaches have been proposed to benefit from this combination. These planners 
focus on the enhancement of navigation problem for omnidirectional robots in partially 
dynamic workspace. In next sections these two proposed methods is discussed in more 
details. 

Figure 4-48: The generated path using the combination between A C D and RRT 

a. RRT Validator Planner 

The RRT validator uses ACD's path as a guidance to the RRT tree's growth. It considers 
the CD-path's points as an ordered set, and directs the bias toward these vertices. The RRT 
trees branching toward these set in the same order, point by point. In the initial state, the 
probability of choosing the next point of the path is set to the value of 100%. If a collision 
is detected, then this probability is reduced in order to allow the RRT explores the free 
space and attempts to reconnect to any point of the ordered set. 

If it reconnects, then the probability to choose the next point is reset again to the value 
of 100% to force the planner follows the original ACD's path once again. 



This strategy forces the planner to follow the guiding path when it is possible, and at the 
same time, it gives the planner a freedom to find an alternative local path to the collided 
segments. 

In our tests, two RRT validators are used to validate the path. The first one rooted at the 
initial position and the second one rooted at the goal position. They try to follow the A C D 
path, or find an alternative local path. The RRT trees are shown in Figure 4-49-a, where 
they try to follow the A C D ' path (the dotted line). 

(a) (b) 
Figure 4-49: Examples of the proposed methods. The dotted line represents the ACD path in stationary 
workspace, (a) The RRT validator method, which creates two RRT trees from the initial and the goal 
location, (b) The local RRTs method, which creates nine local RRT trees 

b. Local RRT Planners 

The second proposed planner uses simple straight-line planner to connect the A C D path's 
points and test the collision. The planner tracks the valid points of the path and creates 
sequences of these points. In case that all points are valid, then the planner returns these 
points as a solution. In the other case when the workspace is changed, and a collision 
happened, the planner breaks the original path sequence in the collided locations and 
rebuilds sequences of the continuance valid points. It also excludes the points, which locate 
in the obstacle areas. 

Each of these sequences is associated with RRT tree. The trees later on explore the 
space freely with small bias toward the other tree's nodes. If two trees are near to each 
other, they are merged to form one tree. When all trees are merged, they form a single tree, 
which include the initial, and goal locations. 

In this planner, our strategy is to generate augmented local RRTs, in order to navigate 
around the new obstacles locally. Figure 4-49-b shows the local RRTs planners method in 

100 



simulation. In this example, it creates nine local RRT trees based on the original path, 
which is generated in the stationary workspace. 

Tests and Results 

The proposed approaches are tested in two different workspaces as shown in Figure 4-50. 
The first one represents an office with one route between the rooms, and the second one 
represents offices, which have two possible routes between them. 

1 1 1 1 1 
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1 — 1 

1 1 
(a) (b) 

Figure 4-50: Testing workspaces, (a) one route office between rooms (WS1), (b) multi routes between 
offices (WS2) 
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(a) (b) 
Figure 4-51: Example of RRT path using (a) Local RRTs method, (b) RRTs validator method, in 
partially changed workspaces. The bold-green lines represent the shortened RRT path in both tested 
workspaces. The boxes represent the new obstacles 
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The robot in this work is considered as a holonomic point translates in the workspace. 
The results of the proposed methods are compared to the other methods, i.e. the basic RRT 
algorithm, Goal Bias RRT, and the bias toward the other trees. Figure 4-51 shows an 
example of RRT path for the proposed methods, the local RRTs method (a), and RRTs 
validator method (b) in the testing workspaces. 

a. Testing Parameters 

The bias values, which are given to the compared methods, are set as shown in Table 4-19, 
where the basic RRT chooses a random point without any bias. The goal-bias RRT directs 
the growth of the tree toward the goal location by selecting this location in probability of 
10%. In the tree's nodes bias, the RRT chooses a point of the others trees by the 
probability of 30% that force the trees to merge more quickly. 

Table 4-19: The probability of choosing next points (bias value) 
Method Bias Value 
RRT 0 
Goal Bias 0.1 
Tree Node Bias 0.3 
RRTs validator (valid point) 1 
RRTs validator (Collison) [0.2,0.1,0.7] 
Local RRTs 0.3 

In our proposed methods, the bias value of the validator RRTs is set to 100% when no 
collision occurred. Else, the bias value is set as follows, it has the value of 20% toward the 
next valid point in the ordered set, in addition, to the value of 10% bias toward any other 
points in those points set. The planner in this case has the probability of 70% to explore the 
workspace freely and biases the growth toward a randomly chosen sample. 

The last method, the local RRTs approach, uses the bias toward the other trees by the 
value of 30%. 

The simulation repeated 100 times and the average of the successful attempts are taken 
for results comparison. The results include the execution time, the number of RRT 
iterations, which is corresponding to the number of RRT branching attempts, and the 
number of successful attempts to find a path. 

The probabilistically completeness is estimated using the successful attempts result. 
While the efficiency is estimated using the time of execution and iterations results. The 
time of execution could be varied significantly based on the hardware and code 
optimization, while RRT iteration is independent of HW and the programmers skillful. 

The A C D resolution is set to be 0.2 unit. Moreover, the ACD's path points are 
generated in ordered form, from the initial to the goal locations. They are constructed using 
the initial and the goal points, the free cells' centers, and the barriers' midpoint between 
the consequence cells. We use the Dijkstra's algorithm to search in the ACD's graph. RRT 
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parameters are set as follows; the extension step is equal to 0.3 unit. And, the bias 
probability is fixed at 100% for next path' points in case of no collision is detected. 

The reduced bias is divided into three values when the path is collided within obstacles. 
1- The bias toward the next valid point is set to a value of 20%. 2- The bias toward other 
path's points is given the value of 10%. 3- The rest of the bias is relaxed to allow the 
planner chooses random samples freely. The RRT planner considered as failed if it cannot 
find a path after 2000 tries of branching. 

b. Results and Discussions 

In the first workspace, new obstacles are scattered in the original workspace. They are 
positioned to collide within the A C D path and add more difficulty to navigation process 
through the changed workspace. The workspace changes are shown in Figure 4-52-b, 
where the boxes represent the new obstacles. The A C D path is shown as a solid line 
between the initial and the goal locations. The cycle markers represent the bias points. 
A C D algorithm approximates the free cells as shown graphically in Figure 4-52-a, the path 
in this case is produced using the Dijkstra searching method in the A C D adjacency graph. 
Figure 4-53, shows the generated path using RRT validator (a), and the local RRT (b) 
methods. 

The numerical results are shown in Table 4-20, where the proposed methods show more 
probabilistically completeness than the other methods do. 

(a) (b) 
Figure 4-52: Office-like workspace (WS1); (a) cell decomposition approximation, (b) new obstacles, 
ACD path represented by the solid line, and the bias points represented by cycle markers 
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(a) (b) 
Figure 4-53: (a) The generated RRT path using RRT validator method, (b) the generated RRT path 
using local RRTs method in WS1 workspace, the red-bold line represents the original RRT path, the 
green-dotted line represents the shortened path, the bias points represented as (o) markers 

Table 4-20: The result of the tested methods in WS1 
Method Mean Time Mean Iteration Success 
RRT 1.03 1137.11 96 
Goal Bias 1.12 1180.57 87 
Tree Node Bias 1.23 1365.34 80 
RRTs validator 0.45 270.19 100 
Local RRTs 0.19 95.20 100 

The Local RRT trees method gives the best results; it has the lowest execution time, and 

the lowest iteration to find a path. Moreover, the RRT validator method gives better results 

than the other competitor does. Figure 4-54-a sums up the iteration results for the first 

workspace WS1 using the boxplot representation. 
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Figure 4-54: RRT iteration boxplots for WS1 (a) and WS2 (b) 
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In the second workspace, the partially changes are introduced by scattering new 
obstacles in the stationary workspace. The obstacles collide the A C D path and produce 
more narrow passages. Figure 4-55-b shows the changes in the workspace, where the 
obstacles are represented by the boxes. The A C D path is shown in the figures as a solid 
line between initial and goal locations, and the bias points, which are generated on this 
path, are shown in the figures as cycle-markers. The approximation of the free workspace 
using A C D is shown in Figure 4-55-a. And the generated path using RRT validator, and 
the local RRT methods are shown in Figure 4-56. 

Table 4-21: The result of the tested methods in WS2 
Method Mean Time Mean Iteration Success 
RRT 0.92 817.13 96 
Goal Bias 0.98 871.06 94 
Tree Node Bias 1.076 1005.10 86 
RRTs validator 0.62 332.07 100 
Local RRTs 0.24 117.17 100 

The numerical results are presented in Table 4-21. As shown in this table the proposed 
methods give the best results; they are probabilistically complete as it is inferred from the 
success rate result. The Local RRT trees method gives the best results in terms of 
efficiency; it has the lowest execution time, and the lowest iteration average. Figure 4-54-b 
condenses the iteration results for WS2 using the boxplot. 

Summary 

In this work, the approximation cell-decomposition algorithm (ACD) is combined with the 
RRT planner in order to enhance the omnidirectional robot navigation in partially changed 
workspace. The A C D finds a spatial path in preliminary and stationary workspaces, and 
then the RRT is used to validate this path in the actual workspace. 

Two methods have been proposed in this work. First, the planner creates instances of 
RRT which bias toward the path's points in ordered form. It updates its bias value based on 
the collision detection information. The Second method uses a straight-line planner to 
connect path's points and creates local RRT trees on both sides of the collided segment of 
the path. The proposed methods compared with other approaches and the simulation shows 
that they give the best results in terms completeness, while the local RRTs method gives 
the best result in terms of efficiency in both testing workspaces. 



(a) (b) 
Figure 4-55: Offices-like workspace (WS2); (a) approximation cell decomposition, (b) new obstacles, 
A C D ' path represented by the solid line, and the bias points represented by cycle markers 
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(a) (b) 
Figure 4-56: (a) The generated RRT path using RRT validator method, (b) the generated RRT path 
using local RRTs method in WS2 workspace, the red-bold line represents the original RRT path, the 
green-dotted line represents the shortened path, the bias points represented as (o) markers 
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5 EXPERT SYSTEM 

Expert system (ES) is "An intelligent computer program that uses knowledge and inference 
procedures to solve problems that are difficult enough to require significant expertise" 
[prof. Feigenbaum]. 

Expert systems are designed to solve complex problems by reasoning about knowledge 
like an expert, they do not follow the procedure way as in conventional programming case, 
rather they act as an expert to solve a problem in a particular domain. ES processes the 
information in symbolic form, copes with errors in data, and with imperfect rules of 
reasoning. In addition, ES can answer why and how questions reasonably well, and 
explains how it arrived at a particular (Sasikumar et al. 2007; Negnevitsky 2005). 

The terms of expert system and knowledge-based system are used interchangeably, 
even though there are small differences between them. These differences are based on the 
inference methods, data storage, and knowledge collecting methods. 

The expert systems are used in many applications, e.g. interactive application, faults 
diagnostic, medical decision support, educational application, knowledge management, 
resource planning, controls, and many other fields. 

ESs have many advantages, they are used to capture the scarce expertise, increased 
productivity, and quality, decreased decision-making time, reduced downtime via 
diagnosis, knowledge transfer, integration of several experts' opinions, and working with 
uncertain information. 

Expert system 

Inference Engine 

Knowledge-base 

Required facts, 
Advise, and solution 

Figure 5-1: Expert system components 



5.1 Expert system structure 
The expert system contains two main components, the knowledge base module, and the 
inference engine module. Other parts can be added based on the application (Sajja et al. 
2010). For example, user interface, knowledge engineer interface, and explanation 
facilities, etc. Figure 5-1 shows the basic expert system components. 

5.1.1 Knowledge base 

The knowledge is a theoretical or practical understanding of a specific area. The 
knowledge base in expert system contains the "domain-specific knowledge," which is 
required knowledge to solve a problem. 

The knowledge can be represented in many ways, e.g. production rules (if-then rules), 
clausal logic, Object-Attribute-Value Triples, semantic networks, and frame 
representations. 

Rule-based representation 

If-then rules are one of the most common forms of knowledge representation that used in 
expert systems. Most experts are capable to express their knowledge in the form of rules. 

Any rule consists of two parts: the IF part, called the condition (premise or antecedent), 
which is evaluated based on what is currently known about the problem; and, the THEN 
part, which is called the action (conclusion or consequent). For example, 

I F pathFallure > 3 THEN pathWeight is 0 
I F pathExecTlme is High, and pathFallure is High THEN collldeTendency is High 

In the first example, the variables in IF-THEN statements are crisp variables 
(constants); in this case, if the knowledge about these variables is not certain, then a degree 
of certainty is attached to each rule. These degrees of certainty are called certainty factors. 

In the second example, the variables have symbolic value. In this case, uncertainty in 
variables' values, beside the certainty factor method, can be handled using fuzzy expert 
system. The fuzzy expert system is discussed in a separate section. 

Clausal Logic statements representation 

The clausal logic statements are similar to rules-based structure. However, the expressive 
power of logic based knowledge representation languages is much better than that in if-
then rules. 

A clause is formed by combining a number of literals using connectives. The 
permissible connectives are (<— implication), (and), and (or). A clause begins with a 
consequent-part, followed by an implication and then an antecedent (Sasikumar et al. 
2007). 
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Object-Attribute-Value Triples representation 

The 3-tuple representation is a very simple form. It consists of three parts, for example 

- Path Length 10 
Path nVertices 23 
RRT execTime 0.5sec 

The drawbacks of these structures are it repeats the name of the object many times, in 
addition, this representation does not reflect the priority between these statements, and the 
data structure. 

Semantic networks representation 

The basic idea behind semantic networks is to link the related concepts together. A 
semantic network consists of nodes representing concepts. The concepts, which are 
semantically close to each other will be closer to each other in the network, while concepts 
that do not have direct connection will be far apart. The path in this network between two 
concepts represents how they related, and the length of the path indicates how these 
concepts are close to each other. 

A semantic network differs from a graph in that there is meaning (semantics) associated 
with each link. This semantics comes usually from the fact that the links are labelled with 
English words (Sasikumar et al. 2007). 

Frames representation 

The frame is a data structure; it represents a cluster of facts and properties that describe an 
object in detail. A knowledge representation using frames can be thought as a network of 
nodes and relations, where each node represents a frame. 

Frames provide a natural way for the structured and concise representation of 
knowledge. The frame combines all necessary knowledge about a particular object or 
concept in a single entity. They are an application of the object-oriented programming in 
the expert systems domain (Sasikumar et al. 2007). 

In the rule-based system, a set of rules representing the knowledge is used for problem 
solving. Each rule captures some heuristic of the problem, and each new rule adds some 
new knowledge and thus makes the system smarter. The rule-based system can easily be 
modified by changing, adding, or subtracting rules. 

In a frame-based system, the problem is viewed in a different manner, where the overall 
hierarchical structure of the knowledge is decided first. The classes and their attributes are 
identified, and hierarchical relationships between frames are established. The architecture 
of a frame-based system should provide a natural description of the problem (Negnevitsky 
2005). 
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5.1.2 Inference Engine 
The inference engine is a part of ES, it tries to derive new information about a given 
problem using the knowledge base. In rule-based systems, it is used to decide which rules 
should be executed based on the satisfaction of the antecedents and priorities of the rules. 
Inference engines in the rule-based systems use different strategies to derive the goal. The 
most common strategies are the forward chaining, and the backward chaining (Sasikumar 
et al. 2007). The expert systems can use either one of these strategies or a combination of 
them. 

Forward chaining is a data driven reasoning. It starts from antecedent parts of the rules, 
and evaluates these rules based on the available facts, until the goal is reached or the 
inference process requires other facts to find a goal. Generally, this method is used in 
applications such as monitoring, controlling, and prognosticating problem. 

Backward chaining is the goal-driven reasoning, where, the expert system has the goal 
(a hypothetical solution) and the inference engine attempts to find the evidence to prove it 
(Negnevitsky 2005). This method is good for problems like diagnosis problems. 

5.2 Fuzzy Expert System 
Fuzzy or multi-valued logic was introduced in 1930s by Jan Lukasiewicz. He studied the 
mathematical representation of fuzziness, and introduced a logic that extended the range of 
truth-values to all real numbers in the interval between 0, and 1. He used a number in this 
interval to represent the possibility that a given statement was true or false. Then, in 1937, 
Max Black, a philosopher, published a paper called 'Vagueness: an exercise in logical 
analysis' where, he defined the first simple fuzzy set and outlined the basic ideas of fuzzy 
set operations. In 1965 Lotfi Zadeh, published his paper 'Fuzzy sets', where he 
rediscovered the fuzziness. Zadeh extended the work on possibility theory into a formal 
system of mathematical logic, and introduced a new concept for applying natural language 
terms. This new logic for representing and manipulating fuzzy terms was called fuzzy logic 
(Negnevitsky 2005). 

Fuzzy-logic deals with approximate reasoning rather than fixed and exact one. Fuzzy-
logic handles the concept of partial truth, where the truth-value may range between 
completely true and completely false. 

In fuzzy rules-based inference system, e.g. Mamdani method, the input data are 
converted into fuzzy values using fuzzification procedure. Then, the fuzzy rules are 
evaluated, these rules determine the inputs-outputs relations and the system behavior. 

The output of each rule is a fuzzy set. In order to obtain a precise solution, not a fuzzy 
one, the outputs of all rules are aggregated into a single fuzzy output, and then it is 
defuzzified into a single number. Figure 5-2, shows the structure of Mamdani inference 
method. 
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Figure 5-2: The basic structure of Mamdani fuzzy inference, source (Negnevitsky 2005) 



The linguistic variables are used to represent the input and output fuzzy-sets. The range 
of possible values of a linguistic variable represents the universe of discourse of that 
variable. For example, in the following rules 

I F RegionState is Changed AND CollisionRate is Low THEN BiasToReg is High 
I F RegionState is Changed AND CollisionRate is High THEN BiasToReg is Low 

The universe of discourse of the linguistic variable might have a value such as 
{Changed, Unchanged, .... }, in the RegionState variable case. It may include fuzzy 
subsets as Low, Medium, and High as in CollisionRate variable. 

The fuzzy reasoning, in general, includes two parts: evaluating the rule antecedent, and 
applying the result to the consequent of the rules. In classical rule-based systems, if the 
rule antecedent is true, then the consequent is also true. However, in fuzzy systems, where 
the antecedent is a fuzzy statement, all rules are evaluated and the uncertainty is expressed 
using the fuzzy sets. A typical process to develop the fuzzy expert system incorporates the 
following steps (Negnevitsky 2005): 

1. Specify the problem and define linguistic variables. 
2. Determine fuzzy sets. 
3. Elicit and construct fuzzy rules. 
4. Encode the fuzzy sets, fuzzy rules, and procedures to perform fuzzy inference into 

the expert system. 
5. Evaluate and tune the system. 

5.3 Expert System application in motion planning problems 
The experience of robots when they move from one location to another one can be stored 
and then used by ES to guide the planner. 

Many attempts introduced to improve the robotic motion planner using the previous 
experience (Berenson et al. 2012; Lien et al. 2009; Martin et al. 2007; Zucker et al. 2007, 
2008 ; Atkeson et al. 2003; Stolle et al. 2006). 

Figure 5-3 shows a framework called "Lightning framework" which utilizes this idea. It 
uses the old success path, when a new query is established, both modules retrieve-repair 
(RR) and planning from scratch (PFS) are started simultaneously, and the first path 
produced by either module is executed on the robot while the other module is stopped. 
After generating a new path, a library manager decides whether to store that path or not, 
based on the computation times of the two modules and the generated path's similarity to 
the retrieved one (Berenson et al. 2012). 
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Figure 5-3: Diagram of the lightning framework. Source: (Berenson et al. 2012) 

Fuzzy expert system is used in robotics applications frequently as a fuzzy controller to 
steer robots based on sensor data, also in motion-planning, navigations problems, and in 
location estimation (Aguirre et al. 2000; Sharef et al. 2010; Petr Krcek et al. 2004; 
Montaner et al. 1998; Driankov et al. 2001). An important problem in autonomous 
navigation is the need to cope with the large amount of uncertainty that is inherent of 
natural environments, which is one of fuzzy systems' strong side. 

The author in (Saffiotti 1997), uses fuzzy logic to make an adequate tool to address the 
problem of uncertainty. They focus on designing robust modules and coordinate the 
activity between them. They use data from several sensors, and integrate the high-level 
reasoning with the low-level of execution. 

Some researches combined the fuzzy system with the other motion planning techniques, 
for example the in (Jaradat et al. 2012), the fuzzy-based potential field method is presented 
to autonomous mobile robot motion planning. They used Mamdani and TSK methods to 
develop the total attractive and repulsive forces acting on the mobile-robot's workspace. 
These methods use a fuzzy logic expert system to provide the robot with the most 
appropriate heading toward a stationary or moving target. The attractive force modeled 
using expert if-then rules based on the position and the velocity of the robot with respect to 
the target. 

A new perspective, which utilizes a knowledge-driven approach for path planning, is 
studied in (Chen et al. 2014). The concept of relative state tree (RST) is proposed to 
develop an incremental learning method based on a path planning knowledge base. The 
knowledge library established by offline or online learnings techniques. As the robot plans 
online, its movement is guided by the optimal decision that is retrieved from the library 
based on the information that matches mostly the current environment. 

ES in our work is adapted and utilized to evaluate the free regions in the workspace and 
guide the planner to possible routes in the workspace. It uses the workspace map, and the 
experimental results analysis, e.g. collision tendency, for reasoning about these regions. 

113 



5.4 Contribution, Tests and Results 
In the next section, we use the fuzzy expert system to bias the sampler module in the 
motion planner. The sampler drew samples from free regions in a different density, based 
on the region evaluation. The evaluation of the free region is calculated using fuzzy rule-
based expert system (Abbadi et al. 2015). 

5.4.1 Hybrid rule-based motion planner in cluttered workspace 

In this work, two new planners have been proposed. They depend on rules-based adviser. 
Each of these hybrid planners is composed of two-layers to enhance motion planning in 
heterogeneous, cluttered, and dynamic workspace. The first layer uses the exact cell 
decomposition algorithm, in order to find the free regions and the graph of adjacency in 
simple, static, and 2D workspace. Then, the second layer utilizes the rapidly exploring 
random trees approach, to find a path in cluttered and dynamic workspace. The 
information about free regions from the first layer and the exploration information from the 
second layer are combined to guide the growth of RRT trees. The combination is done 
using expert rules-based adviser that classifies the free regions and update their bias-
weights. 

The adviser of the first planner biases and pulls the trees growth toward the boundary 
areas between explored and unexplored regions. While the adviser of the second planner 
uses the collision information, and fuzzy rule-based set, to bias the trees growth toward 
low collision areas around the boundaries of the explored regions. 

These planners exploit and combine the advantages of the exact cell decomposition in 
simple, and low dimensional workspace, and the advantages of RRTs, which have a 
relatively higher tolerance to the changes in the environments. 

The planners are tested in stationary workspaces, minor changes, and major changes 
scenarios. The proposed methods have been compared to other approaches, and the 
simulations results show that the proposed methods have better results, in terms of 
completeness and efficiency. 

Proposed methods 

The planner consists of two layers, the first one uses the trapezoidal cell decomposition 
method in static workspace to find the adjacency graph of free cells, while the second layer 
uses RRTs algorithm to find a path in the same workspace, but after new cluttered and 
dynamic obstacles are added. In order to enhance the RRTs ability to find a path, rules-
based advisers have been proposed also. The function of this adviser is to update the 
weights of free regions in order to pull the trees growth toward the most important regions 
in the workspace. 



The rules-based adviser in first planner uses the adjacency graph information and RRTs 
nodes' location to update the regions' weight. The rules-based adviser in second planner 
uses in addition to former information the collision information in the workspace regions. 
These resources of information are combined to bias the exploration toward the most 
important and low collision areas. 

The adjacency graph contains information about the free regions and the relations 
between them, while the information that comes from RRTs contains the location of trees' 
nodes in the free areas and the difficulty to reach these regions. 

To formulate this procedure the region state variable (stater) is defined to take one of 
these four values [boundary, neighbor, expanded, and far]. The value of this variable 
depends on the existence of any valid RRT node inside the corresponding region r, or in its 
neighbors. The formulation of this proposal is described as follows. 

R is the set of all free regions in the workspace. 

Sr is a set of all samples in region r. 

Nr is a set of all regions neighbor to region r. 

RRTree is a set of all samples, which are considered as valid node in RRT trees. 

For any region r the variable stater takes the value of far when the region and its 
neighbors do not contain any sample belongs to RRT. It takes the value of neighbor when 
at least one sample of RRT is located in r's neighbor regions but not in r itself. The stater 

takes the value of boundary when at least one sample of RRT is located in region r and 
there is still at least one neighbor not explored yet. Lastly, the stater takes the value of 
expanded when at least one sample of RRT is located in region r and all neighbors are 
explored; i.e. their state is expanded or boundary. The formulation of these values and 
conditions are listed in Figure 5-4. 

far, {RRTree nSr = 0)A(VC G Nr: RRTree n St = 0) 
neighbor, (RRTree n Sr = 0)A(3£ G Nr: RRTree CiSt*0) 
boundary, (RRTree n Sr ± 0)A(3£ G Nr: RRTree n St = 0) 

expanded, (RRTree n Sr ± 0)A(VC G Nr: RRTree n St ± 0) 

Figure 5-4: The stater variable values and their Conditions 

Adviser's rules in planner 1 
I F stater is far T H E N weight is veryLow 
I F stater is expanded T H E N weight is low 
I F stater is boundary T H E N weight is high 
I F stater is neighbor T H E N weight is veryHigh 

Figure 5-5: The adviser's rules of "bias toward boundaries" planner 

Based on these values, the regions' weight are updated. Figure 5-5 shows the rules-
based adviser in the first planner. After each iteration of RRTs, the regions' weight are 



updated to identify the most important ones. The weight variable could take one of these 
values [veryLow, low, high, veryHigh]. These values are translated into RRT bias. The 
RRTs is directed to grow trees to the boundaries of explored areas, by making the neighbor 
regions having the highest weights, and the boundary regions have less or equal 
importance. Figure 5-6 shows the RRT growth and the regions classifications. 

In explored areas, the algorithm blocks RRT trees from branching or selecting a new 
node inside them. However, a small amount of bias toward these regions is kept to avoid 
the situation where the planner works in small regions and block itself. 

0 1 2 3 4 5 6 7 8 9 10 

Figure 5-6: RRT growth and rules-based classification of free Regions; a: far regions, b: neighbor 
regions, c: boundary regions, d: expanded regions, S represents the initial position, G represents the goal 
position, and the blue regions represent the obstacles 

The trees grow and follow the free areas, and do more work to navigate through local 
workspace instead of the whole workspace. If a region is obstacle-free, then the planner 
passes through it rapidly, if not the RRTs tries to navigate around the local obstacles. 

Adviser's rules in planner 2 

IF stater is far 
IF stater is expanded 
IF stater is boundary 
IF stater is boundary 
IF stater is neighbor 
IF stater is neighbor 

AND collisionRate is low 
AND collisionRate is high 
AND collisionRate is low 
AND collisionRate is high 

THEN weight is veryLow 
THEN weight is low 
THEN weight is high+ 
THEN weight is high-
THEN weight is veryHigh+ 
THEN weight is veryHigh-

Figure 5-7: The adviser's rules of fuzzy bias planner 

The second proposed method uses fuzzy rules-based to update the weights as in 
previous version, in addition, the collision information is considered. The new fuzzy 
variable collisionRate is defined. This variable takes the values of [low, high]. The 
information about the collision is collected during the execution. 



The influence of collision rate is restricted to the most important areas. The weight 
variable in this case takes a value of [veryLow, low, high-, high+, veryHigh-, veryHigh+]. 

For a high value of collision rate, the weight of the boundary and Neighbor regions is 
reduced and the exploration is pulled toward more relax regions. Figure 5-7 shows the 
Rules-based for this fuzzy planner. 

(c) (d) 
Figure 5-8: The testing scenarios, (a) Office-like workspace (WS1), (b) WS2, (c) WS3, (d) WS4 

Simulations and Results 

The tests are made in four workspaces to simulate the holonomic robots movements in 
offices and cluttered or crowded areas. The workspaces are shown in Figure 5-8. Every 
workspace is tested in three levels of changes. The first level is for stationary workspace. 
The second level includes workspace with minor changes, and the last one has major 
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changes in the workspace. The major change means close some routes or cluttered 
obstacles in high density. 

The results of the first proposed planner "biasTowardBoundaries" and the second 
proposed one "FuzzyBias" are compared with other methods, i.e. RRTs without bias; 
RRTs with a bias toward the goal; RRTs with a bias toward others RRTs' nodes; RRTs 
with a bias toward the path that is generated by the cell decomposition algorithm. 

The trapezoidal cell decomposition planner is used in these tests. It uses the Dijkstra's 
algorithm for searching the graph. In this case the Dijkstra has 0(\og(N)E) time 
complexity, where /V is the number of nodes in the graph, and E is the number of edges. 

Our focus in this work is to improve the completeness and efficiency in cluttered 
workspace. 

The results are organized in two tables for every scenario. The first table lists the 
completeness value of each planner on the three levels of changes, while the second table 
contains data about the RRTs iterations. The RRTs iterations mean the number of required 
steps to find the goal. The smaller the iteration, the efficient the planner is. 

Testing parameters 

The tests are repeated 100 times, in every workspace. The completeness comparison uses 
the percent of successful tries to reach the goal, while, the average of RRT iteration is used 
for efficiency comparison. 

The RRTs planner has extending-length (e = 0.3). The RRTs planning result is 
considered as failed, if it fails to reach the goal after 2000 tries of growing a branch. 

The simulator implemented in Matlab and it uses a PC equipped with Intel Xeon (R) 
CPU 2.67 GHz, 6 GB of memory, and Windows 7 64-bit. 

The bias value of every method is shown in Table 5-1. These values represent the 
probability of choosing the bias points. The complementary probability represents the 
choosing of a random sample from the workspace using a pseudo-random number 
generator. 

Table 5-1: Bias values in the testing methods 

Goal Other Trees C D path Fuzzy Boundaries 
0.1 0.3 0.5 1 1 

Results 

In the first scenario, the path-planning problem in the "WS1" workspace is simulated. 
Figure 5-9 shows the original workspace, while the Figure 5-10 shows the minor changes, 
and the major changes in the workspace. The thin line represents the generated path of cell 



decomposition, and the bold one is the shortened path of the original CD path. G and S 
points represent the goal and the initial locations, respectively. 

The probabilistically completeness results are presented in Table 5-2, while, the 
iterations values are shown in Table 5-3. In this scenario, the office-like workspace is 
simulated. The major changes test simulates the situation where the shortest path is closed 
and the robot should find an alternative route to the goal, and avoid the cluttered obstacles. 

Table 5-2: Number of successful attempts to reach the goal in WS1 workspace 

Methods/ workspace Without change Minor change Major change 
No bias 98 94 45 
Goal bias 96 90 47 
Other Trees bias 97 90 25 
CD path bias 99 95 24 
Fuzzy bias 100 100 100 
Boundaries bias 100 99 95 

Table 5-3: The average of RRTs branching attempts to reach the goal in WS1 workspace 

Methods/ workspace Without change Minor change Major change 
No bias 439 693 1253 
Goal bias 470 780 1302 
Other Trees bias 461 821 116 
CD path bias 208 647 1404 
Fuzzy bias 79 397 590 
Boundaries bias 77 428 669 

Figure 5-9: The basic workspace WS1. The thin line represents the CD path, and the bold line 
represents the shortened path. G and S represent the goal and the initial locations, respectively 



(a) (b) 
Figure 5-10: (a) The minor changes in WS1, (b) the major changes in WS1. The thin line represents the 
CD path, and the bold line represents the shortened path. G and S represent the goal and the initial 
locations, respectively 

In the second scenario, the path-planning problem in "WS2" workspace is simulated. 
Figure 5-11 shows the original workspace. The minor changes and the major changes in 
workspace are shown in Figure 5-12. In these figures, the thin line represents the generated 
path using cell decomposition, and the bold line represents the shortened path of the 
original CD path. G and S represent the goal and the initial locations, respectively. The 
probabilistically completeness results are presented in Table 5-4, and the iterations values 
are shown in Table 5-5. In this scenario, the major changes test simulates the highly 
cluttered obstacles situation where the robot should pass through very small regions. 

Figure 5-11: The basic workspace WS2. The thin line represents the CD path. Bold line represents the 
shortened path. G and S represent the goal and the initial locations, respectively 
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Table 5-4: Number of successful attempts to reach the goal in WS2 workspace 

Methods/ workspace Without change Minor change Major change 
No bias 97 88 51 
Goal bias 97 75 53 
Other Trees bias 91 66 27 
CD path bias 100 88 71 

Fuzzy bias 100 100 62 
Boundaries bias 100 99 66 

Table 5-5: The average of RRTs branching attempts to reach the goal in WS2 workspace 

Methods/ workspace Without change Minor change Major chan 
No bias 792 1104 1235 
Goal bias 864 1153 1269 
Other Trees bias 1012 1227 1295 
CD path bias 372 701 798 

Fuzzy bias 164 472 1017 
Boundaries bias 186 476 1027 

Figure 5-12: (a) The minor change in WS2, (b) the major change in WS2. The thin line represents the 
CD path, and bold line represents the shortened path. G and S represent the goal and the initial 
locations, respectively 



Figure 5-13: Basic workspace, WS3. The thin line represents the CD path, and bold line represents the 
shortened path. G and S represent the goal and the initial locations, respectively 

In the third scenario, the "WS3" workspace is shown in Figure 5-13, while the minor 
changes and the major changes are shown in Figure 5-14. The thin line represents the 
generated path using the cell decomposition approach, and the bold line represents the 
shortened path of this original CD path. G and S represent the goal and the initial locations, 
respectively. The probabilistically completeness results are listed in Table 5-6. The 
iterations values are shown in Table 5-7. 

In major changes test, we simulate the situation where some paths are closed and the 
robot should find an alternative route and avoid the cluttered obstacles. 

Table 5-6: Number of successful attempts to reach the goal in WS3 workspace 

Methods/ workspace Without change Minor change Major change 
No bias 100 100 33 
Goal bias 100 100 23 
Other Trees bias 100 100 9 
CD path bias 100 98 0 
Fuzzy bias 100 100 73 
Boundaries bias 100 100 98 

Table 5-7: The average of RRTs branching attempts to reach the goal in WS3 workspace 

Methods/ workspace Without change Minor change Major change 
No bias 206 462.8 1627.8 
Goal bias 217 482 1728.6 
Other Trees bias 284 609 1735.6 
CD path bias 139 301 -

Fuzzy bias 50 214 823 
Boundaries bias 49 200 794 

122 



(a) (b) 
Figure 5-14: (a) The minor change in WS3, (b) the major change in WS3. The thin line represents the 
CD path, and bold line represents the shortened path. G and S represent the goal and the initial 
locations, respectively 

In the fourth scenario, the path-planning problem is simulated in the "WS4" workspace, 
which is shown in Figure 5-15. The minor changes and the major changes are presented in 
Figure 5-16. The thin line represents the generated path using cell decomposition, and the 
bold line represents the shortened path of the original CD path. G and S represent the goal 
and the initial locations, respectively. The probabilistically completeness results are 
presented in Table 5-8. The iterations values are shown in Table 5-9. 

In this test, we simulate the narrow passage and narrow area problems. The robot should 
pass through narrow and long corridors, which contains cluttered obstacles, and narrow 
connection between free regions. 

Figure 5-15: Basic workspace, WS4. The thin line represents the CD path, and bold line represents the 
shortened path. G and S represent the goal and the initial locations, respectively 
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(a) (b) 
Figure 5-16: (a) The minor change in WS4, (b) the major change in WS4. The thin line represents the 
CD path, and bold line represents the shortened path. G and S represent the goal and the initial 
locations, respectively 

Table 5-8: Number of successful attempts to reach the goal in WS4 workspace 

Methods/ workspace Without change Minor change Major change 
No bias 0 0 0 
Goal bias 0 0 0 
Other Trees bias 0 0 0 
CD path bias 0 0 0 
Fuzzy bias 100 98 11 

Boundaries bias 100 98 12 

Table 5-9: The average of RRTs branching attempts to reach the goal in WS4 workspace 

Methods/ workspace Without change Minor change Major change 
No bias 
Goal bias 
Other Trees bias 
CD path bias 
Fuzzy bias 326.9 422 748.7 
Boundaries bias 255.7 407.5 747.8 

Discussions 

The results show that, the proposed planners work more efficiently than the other planners 

do in cluttered workspaces except in WS2 (the major change test). In all scenarios, the 

probabilistically completeness results, for both proposed planners, have a higher value in 

comparison to the other methods. Our planners navigate through all problems and find a 

path where the others competitors could not i.e. in WS4 tests. 



The time of execution is not discussed here, because the execution time varies based on 
implementation platform and code optimization. Instead, the average of required iterations 
to find a solution is discussed. 

During the simulation, the high impact of the sampling strategy is noticed on the results. 
In this work, the pseudo-random number generator is used to generate samples inside 
regions. The sampling strategies need more review and research as future work. 

Summary 

In this work a new hybrid planners have been proposed. The planners use rules-based 
adviser as a guidance toward the most important region in the space. 

Each planner has two layers; the first one utilizes trapezoidal cell-decomposition 
algorithm to find a feasible path in the workspace. The second layer utilizes RRTs to find 
path in the configuration space. The information about the free regions, which is obtained 
from the first layer, is combined with the exploration information that is inferred from the 
second layer. The combination is done using rule-based adviser, which classifies the free 
regions and updates their weights. 

These planners enhance the efficiency and completeness of the motion-planning 
problem in heterogeneous, cluttered, and dynamic workspaces. The planners exploit and 
combine the advantages of the exact cell decomposition in simple and low dimensional 
workspace, and the advantages of RRTs, which has a relatively higher tolerance to the 
changes in the environments. 

The adviser of first planner biases and pulls the trees growth toward the boundary areas 
between explored and unexplored regions. The adviser of second planner uses the collision 
information and a fuzzy expert system to bias the trees growth toward low collision areas 
around the boundaries of explored regions. 

The proposed methods are compared with other methods; the simulations results show 
that the proposed methods have better results, in terms of completeness and efficiency. 
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6 CONCLUSION 

The aim of this dissertation was to improve the mobile robot path planning strategies, 
which, consequently, improves the robots autonomy and thus makes it more adaptable to 
our everyday life. 

The goals of this thesis are fulfilled as many motion-planning algorithms and their 
applications in mobile robot path planning have been reviewed and simulated. Then, some 
of these algorithms were tested in 2D and 3D workspaces and the performance results were 
evaluated using statistical analyses. Based on these tests, the advantages and drawbacks of 
these methods were identified, and, new methods for path planning and path shortening 
were introduced to overcome the drawbacks and improve the performance. 

The new motion planning methods are classified in three types. First, the cell 
decomposition based planners which generate a path that keeps a safety distance between 
the robot and the obstacle boundaries. At the same time, they perform the maneuvers 
through the large free regions in the workspace. 

The second type uses hybrid two-layer planners which combine the advantages of RRT 
algorithms and CD approaches to overcome the difficulty when planning a path through 
narrow areas and dynamic workspaces. 

The third type, the hybrid rule-based planner, utilizes the collected experience and 
expert knowledge base to produce better solution in an efficient way. This type of planner 
is constructed using multi-planning layers, i.e. the fuzzy expert system, RRT, and CD 
algorithms. 

In this work, also new supportive methods were proposed to solve specific problems, 
for example the problem of navigation in a narrow area using sample-based algorithms. A 
combination of CD and minimum spanning tree has been proposed to identify the narrow 
passages and important regions in the workspaces. 

The objectives of this work are met and the simulations show the ability of these 
planning approaches to solve different problems in the motion-planning domain. The 
simulation environment has been developed using Matlab to conduct the simulations and 
generate the numerical and graphical results, while the statistical analyses were done using 
Mini tab and Matlab. 

Naturally, the results open many new research questions. For example, determine the 
best sampling methods in the sampling-based algorithms. And, describe the impact of 
using different knowledge bases on path generating, i.e. the collision tendency, primitive 
local paths, etc. 
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A. APPENDIX: MATLAB IMPLEMENTATION 

In this appendix, the main simulation software is presented. It is used for conducting tests, 
simulations, generating the numerical and graphical results and building workspaces map 
in graphical and interactive way. 

This chapter is divided into two sections, the first one describes very concisely RRT and 
cell decomposition implementation on Matlab, while the second section lists some GUI 
snapshots of the software. 

Some parts of the code where published online for robotics community as an open-
source software1. 

Path planning implementation using Matlab 
This section is based on a technical paper published in (Abbadi, Matousek 2014) for 
describing the implementation of the RRT planner and the cell decomposition algorithms 
in Matlab environment. 

The basic RRT implementation is shown in Figure A - l . It shows the main structure for 
the RRT's class. 

%%RRT c l a s s 
CLASSDEF RRTClass<handle & cSpace 

PROPERTIES 
c o r d s ; p a r e n t ; s t a r t P o s ; g o a l P o s ; m a x l t e r a t i o n ; 
e x t e n s i o n S t e p = E; r r t T y p e = ' b a s i c RRT'; 

% b i a s t o g o a l , o t h e r t r e e s , s p e c i f i c points,... 
b i a s . e n a b l e = l ; 
b i a s . type= [ ' b i a s T o G o a l ' , 'biasToTreePoints',...] ; 
b i a s . rangeVal=[ 0.05, 0.07,...] ; 

% b i a s T o G o a l i n range 0 - 0 . 0 5 = 5 % , b i a s T o T r e e P o i n t s i n range 0.05-0.07=2% t h e 
% r e s t i s normal random p o i n t s e l e c t i o n 

END 
METHODS 
FUNCTION R R T = R R T C l a s s ( i n i t i a l V a l u e s ) 

FUNCTION [ o b j e c t i v e , t E l a p s e d ] = r r t P l a n n e r ( R R T , d r a w T y p e ) 
t R R T S t a r t = t i c ; 
FOR i t e r = l : R R T . m a x l t e r a t i o n 

[ o b j e c t i v e ] = g r a w T r e e ( R R T ) ; 

% drawType : r e a l t i m e draw, draw t h e r e s u l t , don't draw 
R R T . d r a w ( i t e r ,drawType); 
IF o b j e c t i v e 
BREAK; 

END 
END 

t E l a p s e d = t o c ( t R R T S t a r t ) ; 
END 

https://sourceforge.net/projects/celldecopositionmotionplanning/ 
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FUNCTION [ o b j e c t i v e ] = g r a w T r e e ( R R T ) 
obj e c t i v e = 0 ; 
[ r a n d o m C o n f i g u r a t i o n ] = 

R R T @ c S p a c e . g e t R a n d o m P o i n t ( r r t . b i a s ) ; 
[ n e a r e s t C o n f i g u r a t i o n ] = R R T . g e t N e a r e s t P o i n t ( r a n d o m C o n f i g u r a t i o n ) ; 
[ n e w C o n f i g u r a t i o n ] = 

R R T . b r a n c h i n g ( n e a r e s t C o n f i g u r a t i o n , r a n d o m C o n f i g u r a t i o n ) ; 
I s C o l l i d = R R T @ c S p a c e . c h e c k C o l l i s i o n ( n e a r e s t C o n f i g u r a t i o n , 

n e w C o n f i g u r a t i o n ) ; 
IF I s C o l l i d ; RETURN ; END; 
R R T . a d d T o T r e e ( n e a r e s t C o n f i g u r a t i o n , n e w C o n f i g u r a t i o n ) ; 
[ o b j e c t i v e ] = R R T . c h e c k G o a l ( ) ; 

END ....  
Figure A - l : Selected lines of RRT code in Matlab 

In our implementation, either the pseudo-random number generator is used to draw a 
random sample from the workspace, or the bias toward a specific set using 
"getRandomPoint" function, as shown in Figure A-2. 

The bias to point/points set associated with some probability that represents the 
percentage of choosing a point from the points set. Example of points set are the bias 
toward the goal point, toward other trees-points, toward points around the goal, toward 
points drawn from old successful path, or toward points from important regions. We 
implement the function "getBiasPoinf to give users the freedom to specify the bias 
methods and the probability value to these biases. 

%%%%%%%% c o n f i g u r a t i o n S p a c e c l a s s %%%%%%% 

FUNCTION newPnt= getRandomPoint(CSpace , b i a s ) 
newPnt=[]; 
IF b i a s . e n a b l e 

newPnt = C S p a c e . g e t B i a s P o i n t ( b i a s ) ; 
END 
IF empty(newPnt) 

r a n g e = a b s ( C S p a c e . d i m e n s i o n s ( : , 2 ) - C S p a c e . d i m e n s i o n s ( : , 1 ) ) ; 
FOR i = l : s i z e ( C S p a c e . d i m e n s i o n s , 1 ) 

newPnt ( l , i ) = C S p a c e . d i m e n s i o n s ( i , 1 ) + r a n g e ( i ) * r a n d ; 
END 

END 
END 
FUNCTION n e w P o i n t = g e t B i a s P o i n t ( C S p a c e , b i a s ) 

r a n d V a l = r a n d ; % b i a s p r o b a b i l i t y 
m e t h o d I n d e x = f i n d ( r a n d V a l <= b i a s . r a n g e V a l , 1 , ' f i r s t ' ) ; 
biasMethod= b i a s . t y p e ( m e t h o d l n d e x ) ; 
SWITCH b i a s M e t h o d 

CASE ' b i a s T o G o a l ' 
newPnt =goalPos; 

CASE ' b i a s T o T r e e P o i n t s ' % b i a s t o one p o i n t i n o t h e r t r e e s 

CASE ' b i a s T o G i v e n P o i n t s ' 

r a n d V a l = r a n d p e r m ( s i z e ( C S p a c e . b i a s G i v e n P o i n t s , 1 ) ) ; 
newPnt = C S p a c e . b i a s G i v e n P o i n t s ( r a n d V a l ( 1 ) , : ) ; 

END 
END  

Figure A-2: Selected lines of getRandomPoint function 
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The implementation of cell decomposition in Matlab finds the graph of adjacency graph 
based on sweep-line technique. Then, to deal with this generated graph the Bioinformatics 
toolbox functions was used. An example of these functions is "graphshortestpath" it 
searches over the graph for the shortest path between the initial and the goal positions. This 
function could be configured to use (Bellman-Ford, BFS, Acyclic, or Dijkstra) algorithms 
as a searching method. In this implementation, the Dijkstra's algorithm was used. Another 
useful function is "graphallshortestpaths" which gives all available shortest paths. 
Moreover, for graph visualization the "biograph" function was used to create graph object, 
and then draw it using "view" function, Figure A-3 shows selected lines of code that search 
and visualize the graph of adjacency. The result of this code is seen in Figure A-4. 

% p r e p a r e U n d i r e c t e d Graph 
w i e g h t = l ; 
D G = s p a r s e ( g r a p h . e d g e s ( : , 1 ) , g r a p h . e d g e s ( : , 2 ) , w i e g h t ) ; 
UG=tril(DG+DG'); 
% Graph s e a r c h f u n c t i o n s i n Graph Theory, B i o i n f o r m a t i c s T oolbox 
[ d i s t , p a t h ] = 
g r a p h s h o r t e s t p a t h ( g r a p h , I n i t i a l P o s i t i o n , G o a l P o s i t i o n , ' d i r e c t e d ' , f a l s e ) ; 
%draw graph o f a d j a c e n c y 
h = v i e w ( b i o g r a p h ( U G , c e l l s t r ( n u m 2 s t r ( [ 1 : s i z e ( U G , 1 ) ] ' ) ) , ' S h o w A r r o w s ' , ' o f f ' , ' 
ShowWeights','on')); 

Figure A-3: Search and draw graph, based on bioinformatics toolbox function 

Figure A-4: Cell-decomposition planner GUI and the generated graph 

The results from cell-decomposition and RRT algorithms are integrated together. Figure 
A-5-a, shows the RRT path without bias, and the CD path in Figure A-5-c, then the RRT 
path using the bias to CD path's points, as shown in Figure A-5-b. 

The planner in Figure A-5-a, has to explore wide areas before it finds the goal, while the 
using of the bias-points increase the efficiency for RRT tree. 



(a) (b) © 
Figure A-5: (a) RRT planner without bias, (b) RRT with bias toward cell-decomposition path's points, 
and (c) the cell-decomposition path 

Software snapshots 
The main window of the simulation software contains the working space window, as 
shown in Figure A-6-(8), and some general options, for example, place the goal and initial 
positions, and clear the workspace, Figure A-6-(l), load a workspace Figure A-6-(6), some 
statistics parameter Figure A-6-(5). It also contains some RRT parameters Figure A-6-(4), 
exact cell decomposition options Figure A-6-(3), cell decomposition approximation Figure 
A-6-(2), and the information bar Figure A-6-(7). 
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Figure A-6: Main Software window 

The workspaces are drawn in separate window as shown in Figure A-7, where the user 
can draw polygon obstacles and modify the coordinates. 



The RRT algorithm can be set to bias to specific points for example the exact cell 
decomposition path1 as shown in Figure A-9. It can be also used to simulate the dynamic 
workspace2, as shown in Figure A-8. 

1 See section 4.1.4 and 5.4.1 

2 See section 4.1.5 

147 



File Edit View Insert Tools Debug Desktop Window Help " f 

Q aaäI k I \ % •"/• ® ̂ • w a m a &0 

Fuzzy 
Oroered Regen s 
j • -• Reg Appro CO 
Appr CD pa:- ' c i i : . ' . ; 
Appr CO termnsl roots 

1 ffl 
1 n 
1 SI 

)00 J 
Save tie tag 

Repeate 20 

Create 2d CS Load CSpace 

Figure A-9: RRT bias toward CD's path points 

• a 

Expo.»FH J J s.p«H 
EdgeGraph CeO processed 

Plan Uew eau*. We>gti< 

CO Appro 3. 1 CO Appro, 

show Narrow Area 

ITSettrig RRT lerston 2000 

Oy" OP" j |OwrDyw.OW| : . fan Tme Driw 

No Draw 

Method J _ K M [SbtitiaJ 

0 1000 J 
0 3000 / 
0.5000 W\ 

t • 

1 m 
CO Pith 

Ordered Regions 
Ord Reg Appro CD I 
Apor CD patti folowmg 1 
A ppr CD lemwial roots 0 3000 

Repeals 20 

Create 2d CS Load CSpace 

Figure A-10: Exact cell decomposition, and the generated graph 

The exact cell decomposition options contain generating the cells, planning a path, 
shortening the path, and other visualization tool as draw the graph, as shown in Figure 
A-10. 

The approximation cell decomposition algorithm is implemented in the way that the 
user can set the minimum resolution as shown in Figure A - l l . In addition, the cost of 
graph edges can be set using four methods1, i.e. equal translation cost, cost proportional to 

See chapter 3.3.1 



cells size, cost proportional to translation between different cells size, and cost based on 
real distance between cell centers. 

In Figure A-12, minimum spanning tree algorithm is implemented to identify the 
narrow passages using five methods 1 that set the graph edges' cost. We use 
"graphMinSpanTree" function from bioinformatics toolbox to find the required graph. 
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Figure A-12: Minimum spanning tree usage, over cell decomposition approximation's graph, and the 
narrow areas identification options 

1 See section 3.3.2 

http://Statirt.cs

