
M C V

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ
BRNO UNIVERSITY OF TECHNOLOGY

J

E T
J

FAKULTA STROJNÍHO INŽENÝRSTVÍ
ÚSTAV AUTOMATIZACE A INFORMATIKY

FACULTY OF MECHANICAL ENGINEERING
INSTITUTE OF AUTOMATION AND COMPUTER SCIENCE

EXPERTNÍ SYSTÉMY A POKROČILÉ ALGORITMY
V OBLASTI PLÁNOVÁNÍ CEST MOBILNÍCH ROBOTŮ
EXPERT SYSTEMS AND ADVANCED ALGORITHMS IN MOBILE ROBOTS PATH PLANNING

DOKTORSKÁ PRÁCE
DOCTORAL THESIS

AUTOR PRÁCE Ing. Ahmad Abbadi
AUTHOR

VEDOUCÍ PRÁCE doc Ing. Radomil Matoušek, Ph.D.
SUPERVISOR

BRNO 2015

ABSTRACT

Motion planning is an active field in robotics domain, it is responsible for translating high-
level specifications of a motion task into low-level sequences of motion commands, which
respect the robot and the environments constraints.

In this work many path-planning approaches have been reviewed, mainly, the rapidly
exploring random tree algorithm (RRT), the cell decomposition approaches (CD), and the
application of fuzzy expert system (FES) in motion planning. These approaches have been
adapted to solve some of mobile robots motion-planning problems efficiently, i.e. motion
planning in small and narrow areas, the global path planning in dynamic workspace, and
the improvement of planning efficiency using available information about the working
environments.

New planning approaches have been introduced based on exploiting and combining the
advantages of cell-decomposition, and RRT, in addition to use other tools i.e. fuzzy expert
system, to increase the efficiency and completeness of finding a solution.

This thesis also proposed solutions for other motion-planning problems, for example the
identification of narrow area and the important regions when using sampling-based
algorithms, the path shortening for RRT, and the problem of planning a safe path.

A l l proposed methods were implemented and simulated in Matlab to compare them
with other methods, in different workspaces and under different conditions. Moreover, the
results are evaluated by statistical methods using Matlab and Mini tab environments.

KEYWORDS
Motion Planning, Path planning, Rapidly exploring random tree, RRT, Expert system,

Fuzzy system, Cell decomposition.

3

ABSTRAKT
Metody plánování pohybu jsou významnou součástí robotiky, resp. mobilních robotických
platforem. Technicky je realizace plánování pohybu z globální úrovně převedena
do posloupnosti akcí na úrovni specifické robotické platformy a definovaného prostředí,
včetně omezení.

V rámci této práce byla provedena recenze mnoha metod určených pro plánování cest,
přičemž hlavním těžištěm byly metody založené na tzv. rychle rostoucích stromech (RRT),
prostorovém rozkladu (CD) a využití fuzzy expertních systémů (FES). Dosažené výsledky,
resp. prezentované algoritmy, využívají dostupné informace z pracovního prostoru
mobilního robotu a jsou aplikovatelné na řešení globální pohybové trajektorie mobilních
robotů, resp. k řešení specifických problémů plánování cest s omezením typu úzké
koridory či překážky s proměnnou polohou v čase.

V práci jsou představeny nové plánovací postupy využívající výhod algoritmů RRT
a CD. Navržené metody jsou navíc efektivně rozšířeny s využitím fuzzy expertního
systému, který zlepšuje jejich chování.

Práce rovněž prezentuje řešení pro plánovací problémy typu identifikace úzkých
koridorů, či významných oblastí prostoru řešení s využitím přístupů na bázi dekompozice
prostoru. V řešeních jsou částečně zahrnuty sub-optimalizace nalezených cest založené
na zkracování nalezené cesty a vyhlazování cesty, resp. nahrazení trajektorie hladkou
křivkou, respektující lépe předpokládanou dynamiku mobilního zařízení.

Všechny prezentované metody byly implementovány v prostředí Matlab, které sloužilo
k simulačnímu ověření efektivnosti vlastních i převzatých metod a k návrhu prostoru řešení
včetně omezení (překážky). Získané výsledky byly vyhodnoceny s využitím statistických
přístupů v prostředí Minitab a Matlab.

KLICOVA SLOVA
Plánování pohybu, plánování cest, RRT, rychle rostoucí stromy, expertní systém, fuzzy

systém, rostorový rozklad.

4

BIBLIOGRAPHIC CITATION:
A B B A D I , A . Expert Systems and Advanced Algorithms in Mobile Robots Path

Planning. Brno: Brno University of Technology, Faculty of Mechanical Engineering,
2015. 149 pp., Supervisor of doctoral thesis: doc.Ing. Radomil Matousek, Ph.D.

A B B A D I , A . Expertní systémy a pokročilé algoritmy v oblasti plánování cest mobilních
robotu. Brno: Vysoké učení technické v Brně, Fakulta strojního inženýrství, 2015. 149 s.
Vedoucí dizertační práce doc.hig. Radomil Matoušek, Ph.D.

Declaration
I hereby confirm that I have written the thesis independently, under the supervision of

doc. Ing. Radomil Matousek, Ph.D. and using the listed references

In Brno, 2. 9. 2015

Ing. Ahmad Abbadi

Acknowledgments
I would like to express the deepest appreciation to my supervisor for his continuous

support and guidance.

I would also like to express my gratitude to my parents for their advice,
encouragements, and support through my entire life.

Finally, I would like to express my deepest gratitude to my best friend, my wife, Sara
for her quiet patience, endless encourage and support.

6

Table of Contents

A B S T R A C T 3

1 I N T R O D U C T I O N 9

1.1 THESIS OBJECTIVES 11

1.2 R O B O T H I S T O R Y 12

1.3 THESIS S T R U C T U R E 13

2 S T A T E O F T H E A R T 15

2.1 M O T I O N PLANNING 15

2.2 C O N F I G U R A T I O N S P A C E 15

2.3 EXAMPLES O F PLANNING ALGORITHMS 16

2.3.1 BUGS ALGORITHMS 17

2.3.2 VECTOR FIELD HISTOGRAM (V F H) 18

2.3.3 ROADMAP ALGORITHMS 20

2.3.4 CELL DECOMPOSITIONS 22

2.3.5 GRID-BASED SEARCH 22

2.3.6 POTENTIAL FIELDS 23

2.3.7 SAMPLING-BASED ALGORITHMS 24

2.3.8 SUMMARY 28

2.4 S A M P L I N G STRATEGIES 29

2.5 N A R R O W PASSAGES 33

3 C E L L D E C O M P O S I T I O N 39

3.1 E X A C T C E L L DECOMPOSITION 39

3.2 C E L L DECOMPOSITION A P P R O X I M A T I O N 42

3.3 CONTRIBUTIONS, T E S T S A N D R E S U L T S 43

3.3.1 SAFE PATH PLANNING USING CELL DECOMPOSITION APPROXIMATION 43

3.3.2 NARROW PASSAGE IDENTIFICATION USING C D APPROXIMATION AND MINIMUM

SPANNING TREE 47

4 R A P I D L Y - E X P L O R I N G R A N D O M T R E E (R R T) 55

4.1 CONTRIBUTIONS, T E S T S A N D R E S U L T S 64

4.1.1 RRTs REVIEW AND OPTIONS 64

4.1.2 RRTs REVIEW AND STATISTICAL ANALYSIS 67

7

4.1.3 RAPIDLY-EXPLORING RANDOM TREES: 3D PLANNING 83

4.1.4 SPATIAL GUIDANCE TO R R T PLANNER USING THE CELL-DECOMPOSITION

ALGORITHM 93

4.1.5 COLLIDED PATH REPLANNING IN DYNAMIC ENVIRONMENTS USING R R T AND CELL

DECOMPOSITION ALGORITHMS 98

5 E X P E R T S Y S T E M 107

5.1 E X P E R T S Y S T E M S T R U C T U R E 108

5.1.1 KNOWLEDGE BASE 108

5.1.2 INFERENCE ENGINE 110

5.2 F U Z Z Y E X P E R T S Y S T E M 110

5.3 E X P E R T S Y S T E M APPLICATION IN M O T I O N PLANNING P R O B L E M S 112

5.4 C O N T R I B U T I O N , T E S T S A N D R E S U L T S 114

5.4.1 HYBRID RULE-BASED MOTION PLANNER IN CLUTTERED WORKSPACE 114

6 C O N C L U S I O N 127

B I B L I O G R A P H Y 129

A U T H O R ' S P U B L I C A T I O N S 141

A . A P P E N D I X : M A T L A B I M P L E M E N T A T I O N 143

P A T H PLANNING I M P L E M E N T A T I O N USING M A T L A B

S O F T W A R E SNAPSHOTS

143

146

1 INTRODUCTION

Robots significantly affect our lives in a positive way. Their successes and desirable
outcomes expanded rapidly from manufacturing and industrial application to streets,
buildings, gardens, and daily tasks applications.

The major types of old robots were industrial arms and manipulators, they fixed to a
base and do a specific task. However, nowadays, a big expansion is done in robotics
applications; the mobile robots appear widely among us and take a part of doing human's
everyday tasks, e.g. auto-pilot, autonomous car, autonomous vacuum cleaner, autonomous
lawn mowers, rescue robots, and many other applications.

The autonomous mobile-robot field has been a subject of many researches last years.
The high demand of autonomous robot applications motivates the researchers and
scientists to increase the machine autonomy by introducing a new designs, ideas, and
algorithms, especially in the applications that involve critical requirements, dangerous
environment, or boring tasks.

The complexity of autonomous robots requires an efficient motion planner, which
convert high-level tasks specifications into low-level descriptions of motion commands.
The output of the planner is a motion plan or a path plan, which includes a sequence of
actions to be executed by robots controllers and actuators.

A planner constructs a plan using planning algorithms that find a suitable control inputs
given a state of the workspace. An efficient planner should rapidly and reliably computes a
collision-free path, and respects the robots constraints or other kinematic and dynamic
constraints.

Motion planning problems can be divided into three levels, based on the planning goals,
i.e. local planning, global planning, and mission planning as shown in Figure 1-1, the
motion planner module.

The local planners produce a solution locally based on sensors data. They do not require
a map or any initial information except the goal location. Most of these algorithms are easy
to implement and require low computational resources. The main advantage of them is the
tolerance to the environment changing. However, many local planning algorithms trap in
local minima, moreover, they are incomplete, and generate un-optimized paths.

In the global planning, the algorithms produce a full path from the initial position to the
goal states. Usually, these algorithms require middle to high computational resources.
Moreover, they require the initial and goal locations, in addition to the map of the
workspace. The main advantage of these planners, that they avoid the local minima. Yet,
they have less tolerance to the environment changing.

9

Mission planning is a high abstraction of the required tasks. The query may have multi-
goals, and the planner in this level tries to find a way that satisfy all constraints and reach
the goals.

I
Mot ion Tasks

Motion Planner
Maps & Locations

Mission Pia n n i n g | e Global Planning

Local Planning

SLAM

•
Mapping

Localization

Sensors

Other
Resources

Robot Controllers and Actuators

Figure 1-1: Robot navigation model.

Another complement module to the motion-planning one is the localization and
mapping module. It estimates the robot location and improves awareness of the system to
the surrounding environments. It is also responsible for self-localization in an unknown
area, and builds a map for the explored spaces. This process is known as simultaneous
localization and mapping (SLAM) (Leonard et al. 1991; Smith et al. 1986), which is out of
our interest in this thesis.

The hierarchy of the motion-planning module is proposed in many researches based on
the application. For example, in (Vendrell et al. 2001), the authors construct a planner
using five steps, first the Mission, which deals with the highest and most abstract definition
of an activity. Also, it is independent from the robot and the environment. For instance,
"load part X from place Y to place Z." the second level is the Task, which corresponds to a
sub-goal from the whole goal. Other levels are the Motions and Actions, they responsible
for translating the plan into a set of robot orders and basic operations, which executed by
the last level, the Robot Orders level. Other proposed architectures presented in
(Kelouwani 2013; Knepper et al. 2010; Moore et al. 1999).

Our interest in this thesis is to develop the local and global parts of the motion-planning
module for omnidirectional mobile robots.

The robot is considered as a holonomic points operates in static or dynamic workspace.
The rapidly exploring random tree algorithm (RRT) 1 and its developments are reviewed,

W i l l be discussed in chapter 4

and tested to estimate their efficiency and completeness. Then statistical studies on RRT
variants have been done, in order to find alternatives to the methods that have low
probabilistically completeness. We tested the RRT performance, and introduced a new
method for RRT's path shortening, in addition, we utilize a smoothing-out technique to
improve the generated path. The shortening algorithm reduces the number of redundant
points in the path, and reduces the detours edges, in order to make the path more suitable
for omnidirectional mobile robot.

We have developed new motion planners based on cell-decomposition (CD)
algorithms1. They generate a plan that keeps a safety distance between the robot and the
obstacle boundaries, and, at the same time, push the robot to perform its maneuvers in
large free regions in the workspace. Moreover, new planning-algorithms were proposed
and developed in order to build efficient planners. The first category of these approaches
combines RRT algorithms and CD methods. It overcomes the drawbacks of RRT
algorithms in narrow areas and cluttered workspaces, what is more, it overcomes the CD
downsides in dynamic workspaces. Another work has been done using CD and minimum
spanning tree (MST) to identify the narrow passage and the important regions form
sampling-based algorithms point of view.

The second category of the planning algorithms uses an expert rule-based, with the aim
of utilizing the collected experience, and available knowledge to generate a better solution
in an efficient way. The goal of these proposed methods is to develop and improve RRTs
planners for omnidirectional mobile robot, by exploiting the available knowledge in the
environment.

1.1 Thesis objectives
The aims of the thesis are to improve the mobile robot strategy for path planning, by
proposing new approaches to improve the completeness and efficiency of planning
algorithms, which in consequence improve the robot's autonomy. Then assert the results
statistically, and compare it to other methods.

The clear aims of the thesis can be summarized in the following points:

• Review of the state of the art.
• Design new approaches for path planning based on RRT and cell decomposition

principles.
• Use knowledge base and expert system in the path planning methods.
• Design simulation environment that conducts simulations of the experiments,

and evaluates the results statistically.

W i l l be discussed in chapter 3

1.2 Robot History
The term "robot" was first used to denote fictional automata in the 1921 on the play
"Rossum's Universal Robots" by the Czech writer Karel Capek. He uses the word 'robot'
to describe artificial people. The term robot comes from the Czech work 'Robota' which
means forced labor that work without rest (Etymonline 2014; Slovnfk).

The Idea of producing autonomous machines or pre-programmable machines to serve
the people or replace them in some situation was proposed frequently over the ages. Back
to ancient worlds, a Chinese artificer Yan Shi (BC 1000) designed a mechanical
handiwork, which was able to sing and act (Uyanik 2011). In 320 BC, Greek philosopher
Aristotle wrote "If every tool, when ordered, or even of its own accord, could do the work
that befits it, Then there would be no need either of apprentices for the master workers or
of slaves for the lords". After that, one of the oldest known automaton was made by
ancient Egyptians (250 BC) "Clepsydra" which is a clock propelled by water (Mathia
2010; Wikipedia 2014a; sciencekids 2014).

In golden Islamic age, the polymath "Al-Jazari" which known as the creator of the first
programmable humanoid robot (Uyanik 2011), wrote a book in (1206) describing the
design and construct of a number of automatic machines, including kitchen appliances,
musical automata powered by water. In addition to the first programmable humanoid robot
which was a programmable drum machine consisting of four automatic musicians in a boat
floating in a lake (Uyanik 2011; Wikipedia 2014a; Al-Jazari-Wikipedia 2014).

In 1495, Leonardo Da Vinci designed a humanoid automaton that does human-like
movements. Then, around 1700, many automatons were built. Jacques de Vaucanson
(1737) made many automatons like flute player, tambourine player, and his most famous
work, "The digesting duck." The Japanese craftsman Hisashige Tanaka created an array of
extremely complex mechanical toys, some of which were capable of serving tea, firing
arrows drawn from a quiver, or even painting a Japanese kanji character (Wikipedia
2014a).

In the recent centuries, the automation takes a place in 1913, when Henry Ford installs
the world's first moving conveyor belt-based assembly line in his car factory, which make
assembling time for Model T fell from 12 hours and 30 min to 93 minutes. Then, many
modern robots start to appear in different applications (Uyanik 2011; Wikipedia 2014a;
sciencekids 2014).

The first digitally operated and programmable arm robot was invented by George Devol
in 1954. It is known as "Unimate." It became the first industrial robot, completing
dangerous and repetitive tasks in an assembly line at General Motors (1962), and laid the
foundations of the modern robotics industry.

In 1950, Alan Turing proposes a test to determine if a machine truly has the power to
think for itself. To pass the test a machine must be indistinguishable from a human during

conversation. It has become known as the 'Turing Test' of intelligent behavior. Then in
1980 John Searle shows, that the test of intelligence is not so easy. He proposes the
paradox with name 'Chinese Room'. But it is another story of the beginning of the artificial
intelligence.

1.3 Thesis structure
The thesis is divided into six chapters. The second one, the state of the art, contains an
overview of the famous methods in the motion-planning domain, and some approaches,
which are adapted and used in this work.

The third, fourth and fifth chapters describe the used algorithms, each of these chapters
is divided into theoretical parts in addition to our contribution part. The contribution
section is divided into subsection based on our publications. Each one of the subchapters
contains a description of our methodologies to solve a specific problem. In addition, it
presents the testing results, and the discussion. The theoretical part of the chapter contains
an introduction and related words, which are used in the corresponding publications. They
combined and reviewed in a logical sequence.

The Third chapter reviews the cell decomposition algorithm (CD) and its
improvements. It is started with the theoretical part, which review many researches and
developments of CD approaches, while the second part contains our contribution in safe
path planning using cell-decomposition approaches and narrow area identification.

The fourth chapter describes the principle of rapidly exploring random tree algorithms
(RRT), and its variation. The chapter has been started with a general introduction of RRT
and its principle, then a deep review of its developments and the related works. The last
sections of this chapter present our contributions to develop the path shapes, the algorithms
completeness, and the efficiency of the planners using the combination between RRT and
other approaches.

The fifth chapter discusses the use of expert system in the path-planning problem. It
describes our methods that exploit the available information in order to support the motion
planning procedure. The chapter starts by describing the basic principles of expert systems,
the hierarchy of ES, knowledge-based representation, fuzzy expert system, and then a
revision of ES in mobile robot motion-planning problem is done. The last section of this
chapter presents our contribution in this domain to build a hybrid planner using fuzzy
expert system, RRT, and CD algorithms.

In the last chapter of this thesis, we conclude our work, and then, we list the references,
which are used in this work. In appendix section, some snapshots of the simulation and
testing application are presented.

2 STATE OF THE ART

In this section, some motion planning concepts are reviewed. We start with basic concepts
of motion planning and the need for configuration space, which led to recent motion
planning algorithms. Then, the original applicable ideas for motion planning are described
in the examples of planning algorithms section, which is started by a survey of the exact
and geometry methods and it is ended with sample-based methods.

2.1 Motion planning
Motion planning is the process of finding feasible movements in a continuous world. The
feasible movements displace the robot toward the goal state and at the same time do not
collide into obstacles, or violate environment's constraints. The robot's models and its
working environments should be specified in motion planning problems. The robot's
model contains robot's dimensions, kinematics, differential equations, and other
parameters, which control or constrain robot movements. The model of a working
environment contains maps, obstacles representation, and robot location.

The principle of using two models to formulate the robot and its environment causes
some difficulties and complexity to solve the motion-planning problem, especially in the
high dimensional workspaces.

A new principle is proposed to represent the robot and its environments in different
ways. A configuration space is proposed to represent the robot as a point in the space, and
convert the complexity of robot model to dimensions in the configuration space. The
dimension of the configuration space corresponds to the number of degrees of freedom of
the robot. The advantage of using the configuration space is the motion-planning problem
will be viewed as a searching in a high-dimensional configuration space, which contains
implicitly the representation of the obstacles. In consequence, the motion plan will be
defined as a continuous path in the configuration space. Based on this proposal the path-
planning term and path-planning algorithms is proposed as methods to find a continuous
path over configuration space. The other term in this context is trajectory planning, which
expresses the action of finding a continuous path over the configuration space, which
respects the dynamic constraints, such as velocity, acceleration, inertia, etc., which means
the plan contains a continuous path and the control input for every node of this path.

2.2 Configuration space
The configuration space (C-space) for motion planning is discrete space. It contains a set
of all possible transformations that could be applied to the robot. The idea of the
configuration space is introduced in (Lozano-Perez et al. 1979).

The mapping between workspace and C-space is straightforward. A point in workspace
corresponds to a set of configurations in C-space (LaValle 2006, chap. 4; de Berg et al.
2008, chap. 13).

A free configuration q is a position where the robot does not collide obstacles or itself.
Each sample from workspace is classified as free or non-free configuration. A set of all
free q is called the free configuration space, while the obstacle space or the forbidden
region is the complement of the free space.

The degree of freedom (DOFs) of a robot is considered as dimensions in its C-space,
e.g. a robot with n degree-of-freedoms is represented by n-dimensions C-space. For
example, if a robot is represented as a single point (zero-sized) translates in a 2D plane (the
workspace), then C-space is a plane, and configurations are represented using two
parameters (x, y). If the robot translates and rotates in 2D workspace, then the C-space is
3D and the configurations are represented using three parameters (x, y, 6) where 6 is the
head direction. If the robot translates and rotates in 3-dimensional workspace, then the
representation of any configuration requires six parameters (x, y, z) for translation, and the
Euler angles (a, /?, y) for rotation. In some problem, the robot is considered as a single
point by transforming the robot dimensions to the obstacles dimensions. This process uses
some methods, e.g. Minkowski sum (Wikipedia 2014b; de Berg et al. 2008, pp. 290-296).

2.3 Examples of planning algorithms
In this section, some famous algorithms that used in the motion-planning domain have
been reviewed and a brief information about the bases of these methods is given. In our
work, we adopt and adapt some of these methods to support our proposals.

In the context of motion planning, different approaches have been developed. Some of
them use geometric models, which construct a map/graph and use it for path planning, e.g.
roadmap (Choset, Howie et al. 2005), visibility graph (Lulu et al. 2005; de Berg et al.
2008) , Voronoi diagram (LaValle 2006; Aurenhammer 1991; Aurenhammer et al. 2000;
Garrido et al. 2011; Choset et al. 2000; Fabbri et al. 2002; Shkolnik et al. 2009; Sakahara
et al. 2008; Masehian et al. 2010; de Berg et al. 2008, chap. 7) , and cell decomposition
(Katevas et al. 1998; LaValle 2006; Choset, Howie et al. 2005; Milos Seda 2007; Latombe
1991; Brooks et al. 1985; Schwartz et al. 1983; de Berg et al. 2008; Sleumer et al. 1999;
Bernard Chazelle 1987; Hwang et al. 2003).

Another category uses a grid over the workspace, e.g. artificial potential field
(Arambula Cosio et al. 2004; Hani Alsafadi 2007; Masoud 2013; Mbede et al. 2000;
McFetridge et al. 1998; Petres et al. 2012; Sfeir et al. 2011; Zhang et al. 2012; Khatib
1985; Rosell et al. 2005; Hwang et al. 1992; Kim et al. 1991; Masoud 2013), and vector
field histogram (Borenstein et al. 1991).

Another category includes sampling-based algorithm, which described in more detail in
separate sections. In the next paragraphs, we have listed the basic idea of some algorithm,
which is widely used in motion planning problems.

2.3.1 Bugs algorithms

Bug algorithms are used for local path planning with minimum sensor and computation
requirements. They assume the robot as a point operates on a plane with ranging sensors
(Choset, Howie et al. 2005, chap. 2; Kamon et al. 1998; Lumelsky et al. 1986). May Bug
like improvements were introduced later. In (Buniyamin et al. 2011; Ng et al. 2007) the
authors reviewed many different variations. In the next section, we shortly explain the
principle for the basic bug algorithm.

The Bugl algorithm (Lumelsky et al. 1986) exhibits two behaviors: "motion-to-goal"
and "boundary-following". During "motion-to-goal," the robot moves along the line
toward the goal until it encounters either the goal or an obstacle. If the robot encounters an
obstacle, the robot then circumnavigates the obstacle until it returns to the first hit point.
Then, it determines the closest point to the goal on the perimeter of the obstacle and
traverses to this point. This point is called the leave point. From that point the robot heads
straight toward the goal again, i.e., it re-invokes the "motion-to-goal" behavior.

a b
Figure 2-1: Principle of Bugl algorithm; a: the algorithm finds a path to goal, b: no path to goal exist.
Source (Lumelsky et al. 1986)

In the case, when the line, that connects the leave point to the goal one, intersects with
the current obstacle, the algorithm fails and there is no path to the goal location. This case
is shown in Figure 2-1-b. Otherwise, the procedure is repeated until the goal is reached, as
shown in Figure 2-1-a.

Bug2 is similar to Bugl (Lumelsky et al. 1986); it has also two behaviors: motion-to-
goal and boundary-following. During motion-to-goal, the robot moves toward the goal as
in Bugl . But in Bug2 the line which connects the initial point to the goal point remains
fixed as shown in Figure 2-2-a. The "boundary-following" behavior is invoked when the
robot encounters an obstacle. This behavior is different from Bugl , where in Bug2 the
robot circumnavigates the obstacle until it reaches a new point on the fixed line. If this new

point is closer to the goal than the first intersection point, then, the robot proceeds toward
the goal, Figure 2-2-a. The algorithm repeats this process if it encounters other obstacles.
However, when the robot re-encounters the original departure point, in this case there is no
path to the goal, as shown in Figure 2-2-b.

'/goal

a b
Figure 2-2 Principle of Bug2 algorithm; a: the algorithm find a path to goal, b: no path to goal exist.
Source: (Lumelsky et al. 1986)

One limitation of the Bug algorithm is that the robot's behavior depends only on its most
recent sensor readings. This can lead to problems where the robot's instantaneous sensor
readings do not provide enough information for robust obstacle avoidance. This limitation
is solved later on by the Vector field histogram (VFH) techniques by creating a local map
of the environment around the robot.

2.3.2 Vector field histogram (VFH)

V F H is a real time motion planner. It is proposed in (Borenstein et al. 1991) as a local
planner. The V F H utilizes a statistical representation of the robot's environment through a
histogram grid. Therefore, it places a great emphasis on dealing with uncertainty from
sensors and modeling the errors.

The V F H was developed to be computationally efficient, robust, and insensitive to
misreading. V F H algorithm is fast and reliable, especially when traversing through densely
populated obstacle courses.

The histogram grids in V F H represent the obstacles as shown in Figure 2-3, where an
active window is used to update the cells' value on the grid. When an obstacle is detected
in a cell by sensors, the algorithm increases the certainty value of this cell. This action is
repeated while robot movements. This representation is well suited for inaccurate sensor
data, and gives the potential for the fusion of multiple sensor readings.

The V F H algorithm contains three major behaviors: first, it constructs two-dimensional
Cartesian histogram grid, as shown in Figure 2-3-b. This grid is updated continuously in
real-time with range data sampled by on-board range sensors. A specific area around the
robot, the active window, is chosen based on histogram grid, see Figure 2-4-a. The

dimension of this area is set to fit the range sensors. Every cell in active window has a
value representing the certainty of obstacle existence. The active window is translated
when the robot translates.

Partition
" B 3/4" pole

Targe

'• Vehicle

L

Partition
C

.Walls
Start

3 Im] X

r
lid Partition Pole

a- • . A

0

Robot's
path"

Start
.Walls

Target

Partition
C

Directions:

sof > o1

('
Certainty Values

shown as:
• ffltl-3

CV=4-6
• CT=7-9
• CV=10-12
• CV43-15 I

Figure 2-3: V F H space representation, a: is the actual space, b: the space representation by obstacle
certainty value. Source: (Borenstein et al. 1991)

The second behavior constructs one-dimensional polar histogram by reducing the
Cartesian histogram around the momentary location of the robot, as shown in Figure 2-4-b.
This operation is done using in) angular sectors. The sectors start from robot location, and
the value of each sector is calculated by summing up the cell values in that sector. Figure
2-5 shows the sectors and certainty representation for obstacles.

B :

threshold

Polar'
histogram

Polar histogram

H'(k)

Figure 2-4: a: Representation of active window and polar sectors, b: one-dimension polar histogram.
Source: (Borenstein et al. 1991)

The third behavior chooses the candidate valleys, which are consecutive sectors on
polar histogram below a specified threshold; a smoothed polar histogram typically has
peaks, and valleys. The peaks represent sectors, which have high polar obstacle density,
while the valleys represent sectors that have low polar obstacle density. Any valley has a
polar obstacle-density below a certain threshold, is called a candidate valley.

Figure 2-5: Histogram grid and certainty value representation in VFH. Source: (Johann Borenstein
1990)

Once the direction of the selected candidate is determined, the orientation of the robot is
steered to match this direction. Sometime a cost function is applied; it takes into account
the target direction, wheel orientation, and previous direction, then steer the robot based on
the value of this function.

The main limitations of V F H are the navigation through narrow areas, the local
minimum, and the number of variables that need an optimization for every workspace. In
addition, this algorithm is not complete which means, it cannot guarantee to reach the goal.

2.3.3 Roadmap algorithms

The idea behind the roadmap approaches is to build a map of static workspace and use it
for repeated tasks. It would be more efficient to construct a data structure once and reuse it
to plan subsequent paths. This data structure is often called a roadmap. The roadmap
approaches try to construct a set of one-dimensional curves, which connect two nodes from
the free areas in the workspace, and reuse them for further path planning query (Choset,
Howie et al. 2005).

The visibility graph is an example of roadmap. It tries to connect the initial and the goal
locations with nodes from the map. Then, it searches for a continuous path between these
locations, Figure 2-6 shows a visibility graph, the shaded areas represent obstacles, and the
solid lines are roadmap curves set (Lulu et al. 2005).

The visibility maps method is applied in workspaces that have polygonal obstacles;
however, other obstacles shapes can be approximated. The map's nodes are vertices of the
polygons, while the edges are connections between two nodes which are located within
line of sight (de Berg et al. 2008, chap. 15). The main shortcomings of visibility maps are
1- the visibility graph works well in two dimensions, but not three or more. 2- The Shortest
paths pass through vertices, which consider unsecure in reality because it passes very near
to obstacles.

20

Figure 2-6: Visibility graph - Roadmap. Source: (de Berg et al. 2008)

Another example of the roadmap algorithms is the Voronoi diagram. This method tries
to divide the workspace into sub-regions. Each edge of the diagram is constructed using
equidistant points from the nearest two points on the obstacles boundaries. Figure 2-7
shows methods to generate the edges of the Voronoi diagram.

In navigation case, the equidistant curves from at least two obstacles are created, and
then the path is generated. The algorithm tries to connect the initial location and the goal
locations to the curves and then find a path along these curves.

a b e
Figure 2-7: Voronoi diagram generation, a: edge between two vertices, b: edge between two lines, c:
edge between vertex and line. Source: (LaValle 2006)

Figure 2-8-a shows a Voronoi diagram in obstacles-like points, Figure 2-8-b shows a
disc-like robot and its path on Voronoi diagram; the robot start from s and finds the nearest

point s' on Voronoi diagram then plan a path to t' which is the nearest point to the target
location t.

The Voronoi methods are used in motion planning frequently. The advance of these
methods is to keep the robot far away from the obstacles (LaValle 2006; Aurenhammer
1991; Aurenhammer et al. 2000; Garrido et al. 2011; Choset et al. 2000; Fabbri et al. 2002;
Shkolnik et al. 2009; Sakahara et al. 2008; Masehian et al. 2010; de Berg et al. 2008,
chap. 7).

2.3.4 Cell decompositions (CD)

The basic idea behind CD is to decompose the workspace into manageable regions and
determine the free ones. The free regions or what-called free cells represent the areas not
occupied by the obstacles. The algorithm builds a graph of adjacency for the adjacent free
cells and convert the motion planning problem to a graph search problem (LaValle 2006,
chap. 6; Choset, Howie et al. 2005, chap. 6; Seda 2007). The cell decomposition
approaches and its developments are discussed in more detail in a separate chapter.

2.3.5 Grid-based search

Using cell decomposition techniques or others techniques, the workspace can be
represented as a grid of free and occupied areas. This representation can be easily
transferred to a graph representation.

Some algorithms, known as grid-based search algorithm used the graph for path finding
problems, for example A * , breadth-first search, Dijkstra's algorithm, and greedy best-first
search, etc.

The breadth-first search starts from one node and explores the neighbor nodes first, and
then it moves to the next level of neighbors if they not explored yet. The Dijkstra's
algorithm uses the same principle, but the algorithm revisits the neighbors if they have
better path to the start point. These two algorithms do not take into account the cost to the
goal, they explore the graph until they find the goal.

On the second hand, the greedy best-first search algorithm starts exploring the nodes
that have the smallest cost to the goal. This principle makes the algorithm faster than the
previous algorithms. A * combines the Dijkstra's algorithm and the greedy best first search
to build the path (Amit Patel 2014). It uses the actual cost in addition to the estimated cost
to the goal, and explores the most promising nodes. The estimated cost to the goal is
calculated using a heuristic function that is vary depend on the problem.

Figure 2-9 and Figure 2-10, show visualization for these algorithms using online
library 1, is shown in, where generated paths, explored area, and in-queue regions are
presented as colored boxes.

Figure 2-9: (a) A * algorithm, (b) best-first search algorithm, the dark boxes represent the obstacles, the
blue boxes represent explored nodes, the green boxes represent in-queue nodes

(a) (b)
Figure 2-10: (a) Dijkstra's algorithm, (b) breadth-first search, the dark boxes represent the obstacles, the
blue boxes represent explored nodes, the green boxes represent in-queue nodes

2.3.6 Potential fields

Potential field is a local planner method. It is introduced in (Khatib 1985). This method
involves modeling the robot as a particle moving under the influence of potential fields.
These fields are determined by set of obstacles and the target destination (Arambula Cosio
et al. 2004; Hani Alsafadi 2007; Masoud 2013; Mbede et al. 2000; McFetridge et al. 1998;
Petres et al. 2012; Sfeir et al. 2011; Zhang et al. 2012). The potential field algorithm is
efficient and could be applied in real-time. Since, the motion of a robot, at any moment, is

1 http://qiao.github.io/PathFinding.js/visual/

http://qiao.github.io/PathFinding.js/visual/

determined by the location and the potential fields. It is also a powerful method because it
easily extensible, for the reason that, the potential fields are additive, a new obstacle can be
added to the workspace by summing up the influence field of this obstacle to the old fields.

This method has a major drawback, which is the local minimum. Because the potential
field approach is a local rather than a global method. This problem is overcame by
coupling the potential field method with other techniques to escape the local minima
(Rosell et al. 2005; Hwang et al. 1992), or constructing potential field functions, which do
not contain a local minimum (Siddhartha Srinivasa 2013). The harmonic potential fields is
used also to escape the local minima and it has good results (Kim et al. 1991; Masoud
2013).

2.3.7 Sampling-based algorithms

The main drawback of the former methods is the low efficiency in high dimensional
problems, which makes the search space extremely large. Sampling based algorithms
appeared to confront this problem. The general approach is to approximate the space
instead of dealing with it exactly (Lin 2006).

In recent years, a number of sampling-based algorithms for motion planning have been
introduced. They have had remarkable success in solving challenging motion planning
problems. The fundamental distinction between sampling-based motion planners and
earlier planners is the representation of obstacles in the workspace. The earlier planners
construct explicit representations of obstacles, which has several disadvantages; e.g. time
complexity and PSPACE-hardness (Lindemann et al. 2003).

Sampling-based motion planning has emerged as a way to avoid explicit constructions
of obstacles. The sampling-based motion planner restricts the modeling of configuration
space. This restriction eliminates many of the problems encountered in the methods that
constructed an explicit representation of obstacles. Since there is no explicit model of
obstacles, it is not needed to characterize all possible conditions for particular classes of
problems.

Geometric
Models

Figure 2-11: The sampling-based philosophy

Sampling-based motion planners can be applied to a broad class of motion planning
problems because they treat the collision detection function as a separate module. For these
reasons, these kinds of algorithms often seem strikingly simple in comparison to
combinatorial motion planners. The simplicity and generality of these planners are the

Collision
Detection

Sampling-based algorithm

Sampling Searching

significant factor contributing to their success and applicability to high-DOF (Lindemann
et al. 2003). Figure 2-11 shows the principle of sampling-based approaches, which
consider collision detection as a "black box," and separates the algorithms from geometric
and kinematic models.

Randomized sampling-based algorithms are a powerful and practically important class
of motion planning methods, i.e. randomized path planner (RPP), probabilistic roadmap
planners (PRMs), Ariadne's Clew method, and rapidly exploring random Trees (RRTs),
etc. Their appeal lies in their ability to address large and complex problems in an
incremental fashion (LaValle et al. 2004). However, the price of this incremental approach
is a reduction in completeness. Most computational geometry algorithms are
algorithmically complete, meaning that they are guaranteed to find a solution to a problem
if one exists, or report that none is exist. They are also guaranteed to terminate in finite
time. Randomized methods sacrifice algorithmic completeness for weaker probabilistic
completeness (Cheng et al. 2002). That is means if a solution is exist, the probability to
find this solution is approaches to one, as the number of iterations approaches infinity
(Esposito 2013).

In next sections some of randomize samples-based algorithms have been briefly
reviewed.

The randomized path planner (RPP) has been proposed in (Barraquand et al. 1991,
1990), it operates as follows: first, the planner defines several potential fields over a grid
imposed on the workspace, where the potential value is defined by non-negative, real-
valued function. Second, the planner descends the gradient of the potential field, until a
local minimum is reached. If the minimum is the global minimum, the goal state has been
attained, otherwise, the planner executes a series of random walks with the aim of escaping
the local minimum. After this, the planner again descends the potential field gradient,
continuing this process until the goal state is reached or the user-time-limit elapsed. This
latter condition is necessary because unlike combinatorial planners, sampling-based
planners are typically unable to recognize that a problem has no solution; in such a
situation, they will never terminate.

The performance of this planner is affected by the good construction of potential fields
and a good arbitration function, which decide when to execute a random movement.

Another random planner introduced in (Glavina 1990), it known as the ZZ-method. The
algorithm attempts to connect the initial and the goal locations using a straight local
planner. If this fails, then a new configuration is chosen as a sub-goal. The planner
attempts to connect the new sub-goal to the initial and goal configurations using the same
local planner. If this fails, new sub-goals are added and attempts are made to connect them
with previously existing sub-goals, as well as the initial and goal configurations. Edges
between sub-goals are checked for collisions. A primitive collision detection method has
been used which prevents this algorithm from applying in challenging high-DOF problems.

This was remedied in some extensions (Baginski 1996). The ZZ-method contains many
elements, which have become common in algorithms that are more recent.

Ariadne's Clew is a single-query algorithm (Mazer et al. 1998); it is designed to find
paths in high-dimensional continuous spaces. It is applied to robots with many degrees of
freedom in static, as well as dynamic environments. The Ariadne's clew algorithm
comprises two sub-algorithms, called S E A R C H and EXPLORE, applied in an interleaved
manner. E X P L O R E builds a representation of the accessible space while S E A R C H looks
for the target; It grows a tree from the initial configuration toward the goal configuration.
At each step, it searches for a new "landmark," reachable from a current landmark by a
Manhattan path, which is maximum distant from a point to a set of all landmarks. They use
genetic algorithms to search for a solution to this optimization problem. Once a new
landmark has been added to the tree, the planner attempts to connect this new landmark to
the goal.

Probabilistic Roadmap method (PRM) is one of widely used methods in motion
planning. It introduced in (Kavraki et al. 1996) as a planner for holonomic systems. This
method proceeds in two phases, a learning phase, and a query phase. In the learning phase,
Figure 2-12, a probabilistic roadmap is constructed and stored as a graph. The graph's
nodes correspond to collision-free configurations, and the graph's edges correspond to
feasible paths between these configurations. These paths are computed using a simple and
fast local planner. In the query phase, any given start and goal configurations of the robot
are connected to two nodes of the roadmap using the local planner. The roadmap, then
searches for a path joining these two nodes using graph searching methods. This approach
is general and easy to implement. It can be applied to virtually any type of holonomic
robot.

Figure 2-12 : PRM, learning phase, where the planner tries to connect a random sample to nearby
vertices in the roadmap. Source: (LaValle 2006)

Rapidly-Exploring Random Tree (RRT) is another very wide used planner in motion
planning problems. It is originally proposed for non-holonomic system with dynamic
constraint. The RRT algorithm is probabilistic algorithm. It is introduced in (Lavalle 1998)
as a planning algorithm to explore quickly high-dimensional spaces. It can handle

26

holonomic movements and nonholonomic constraints by randomly building a space-filling
tree, see Figure 2-13.

The tree is constructed incrementally from samples drawn randomly from the searching
space. It is designed for efficient searching in nonconvex obstacle environments. This
algorithm has the ability to work under algebraic and differential constraints, and that due
to its incremental behavior. The key idea of the RRT is to bias the exploration toward
unexplored portions of the space by sampling points from them and "pulling" the search
tree toward this regions. The RRT method and related research and developments have
been reviewed in more detail in a separate section.

Figure 2-13: Rapidly exploring random tree

The high demand for more efficient and general planners comes out with new methods
based on adaptive sampling-based planners. There is no method outperforms all others for
all kinds of problems. Rather, each technique has different strengths and weaknesses,
which make it best suited for certain types of problems. Some research utilize this idea by
building a library of planning methods and use the suitable one based on the workspace
characteristics.

For example, in (Morales et al. 2005) the authors proposed an automated framework for
feature-sensitive motion planning. Their framework creates a library of roadmap methods.
Then, a machine learning approach is used to characterize and partition the C-space into
regions, which are well suited to one method of roadmap in the library. After the best-
suited method is applied in each region, the resulting roadmaps of every region are
combined to form the full roadmap for the entire planning space.

Another strategy, based on unsupervised-learning methods, is proposed to adapt the
sampler (Tapia et al. 2009). This strategy models the topology of the problem in a
reasonable and efficient manner, and adapts the sampler depending on characteristics of

27

the problem. The advantage of their method, that, it can be expanded to accept new
samplers.

An adaptive RRTs method is proposed to overcome the limitations of RRTs when
exploring heterogeneous environments (Denny et al. 2013). The adaptive RRT uses two
levels of algorithms to expand the tree. At the first level, groups of expansion methods are
expanded, according to the visibility of the node. Second, the cost-sensitive learning
approach is used to select a sampler. In addition, the authors proposed a visibility for RRT
nodes, which can be computed in an online manner. It is used by adaptive RRT to select an
appropriate expansion method.

In the next section, some sampling methods are reviewed. The sampling methodologies
have a significant effect on the sampling-based algorithm.

2.3.8 Summary
Based on the state of the art review and our opinion a concise table, Table 2-1, shows the
summary of the advantages and disadvantages of some motion-planning algorithm.

Table 2-1: Comparison of motion planning algorithms

Algorithm Optimal Complete advantages disadvantages

B U G

V F H

Visibility
graph

CD

Grid-
based

Potential
field

P R M

No

No

Yes

Yes

Yes

No

No

Yes

No

Yes

Yes

resolution

No

Super-fast, real-time

Fast, real-time

Repeatable queries

Fast

Fast in 2D

Super-fast(2D)

Probabilistically Used in high
dimension (2-100's)

Used in 2D, response
to sensor noise.
Navigation through
narrow areas, local
minimum, 2D.

The speed depends on
dimension and number
of obstacles, path close
to obstacles, (2D-3D).

Used for low
dimension problems
(2D-3D).

Very slow in high
dimension, memory
consuming.

Local minimum, (2D-
3D)

Slow in high
dimension.

28

RRT No Probabilistically Used in high Medium to fast speed
dimension (2-100's) in high dimension

2.4 Sampling strategies
Sampling based planners use sampling strategies to discretize continuous spaces. The
sampling methods have a big impact on the efficiency, and the completeness of the
planners. In general, sample based planners use uniform or non-uniform distribution.

Uniform distribution samplers choose samples randomly based on a statistically
uniform distribution, e.g. axes based grid, pseudorandom number, Poisson disc, jittered
grid, Halton sequence, Hammersley sequence, Lattices, Sukharev, and others (LaValle et
al. 2004; Supersampling 2015). Figure 2-14 shows examples of the generated samples
based on some sampling methods. The Voronoi diagram is plotted to increase the visual
awareness.

Examples of uniform methods are the regular structures, and the infinite sequence. The
regular structures, e.g. grids have an implicit neighborhood structure; some of these grids
have hierarchical or multi-resolution representations, which is preferred feature in motion
planning. However, regular structures have a drawback, which is, the necessary numbers of
samples to solve the problem is not determined in prior. That is because they are point sets,
not point sequences; which mean point sets of a fixed size.

The second type of uniform methods is infinite sequence such as Halton points and
uniform pseud-random samples generator. It constructs infinite sequences based on regular
structures. This approach enhances the resolution incrementally. Sequences of this type can
be considered as point sets periodically, they gradually fill in the gaps between one
resolution level and the next one. The generated sequences have incremental quality, which
means, after every sample the sequence should be as uniform as possible.

The second category of the sampling strategies uses non-uniform sampling methods.
The motivation for this type is to have a higher density in certain regions. The more
sampling in important regions helps the planner to be more efficient, (Lindemann et al.
2003; LaValle et al. 2004; Liu et al. 2013; Rodriguez et al. 2006). For example, generating
samples around narrow corridors (Lin 2006); sampling about the boundary of obstacles
(Amato et al. 1998; Rodriguez et al. 2006); medial-axis sampling (Masehian et al. 2003), in
which samples are taken from the medial axis of free configuration space; and Gaussian
sampling, in which sampling is biased to be near the C-space obstacles (Lin 2006; Boor et
al. 1999). Figure 2-15 shows an ideal classification of importance for the regions of the
configuration space.

In general, there are two approaches to non-uniform sampling: the importance sampling
methods and the adaptive sampling approaches (LaValle et al. 2004). Importance sampling
methods are based on the prior evaluation and assumption about certain areas of C-space.
The major drawback of these methods appears when the information about C-space is
limited. The other category of non-uniform sampling is adaptive sampling approaches. In
these techniques, the sampling strategy is adapted based on the available information,
which gained from previous samples.

Figure 2-15: The ideal sample distribution, 1: the lowest density of samples in corners and hollows, 2:
lower density in free regions, 3: higher density in opening of narrow passage, 4: the highest density in
narrow passages.

An example of adaptive sampling is the visibility P R M (Bu et al. 2005; Nissoux et al.
1999). This algorithm adapts its sampler based on the visibility between the connected

30

regions of the roadmap. Another example is Z 3 , which shown in Figure 2-16. If a collision
is detected, then it updates the sample location, by translating the sample to free
configuration space (Baginski 1996).

In general the most problematic and important regions for sampling based algorithm are
the small and narrow ones which known in literatures as a narrow passage problem. Many
importance-sampling methods are developed to solve this problem. This problem is
discussed later on in a separate section.

a b c
Figure 2-16: Z3 method for adapting and translation the samples to the free configuration space. Source
(Baginski 1996)

An example of importance sampling methods is the medial axis sampling. It tries to
retract the samples onto the medial axis of the free workspace and force them to be as far
from the boundaries as possible (Masehian et al. 2003; Fabbri et al. 2002; LaValle 2006;
Smogavec et al. 2012; Wilmarth et al. 1999). Medial axis sampler gives a slightly higher
probability of picking samples from small free areas that is preferred feature in motion
planning. An example of a medial axis creation is shown in Figure 2-17-a. It uses a
geometric method to build the medial curve for rectangular shape.

On the other hand, the approximation methods are usually used in implicit
representation of the free configuration-space. Figure 2-17-b,c shows the medial axis
approximation curve. The principle of approximation methods is to generate a
configuration randomly (valid or invalid), then it is pushed towards the medial axis of the
free space.

a b e
Figure 2-17: Medial axis and its approximation, a: medial axis methods generated using geometric
cycles, b-c: approximation of Medial axis. Source: (Fabbri et al. 2002; Masehian et al. 2003)

Another approach of importance sampling methods is the obstacle boundaries sampling.
Rather than waste samples in large areas of free configuration space, it focuses on the

obstacle boundary as important regions (LaValle 2006; Rodriguez et al. 2006; Denny et al.
2011; Yeh et al. 2012). For example OBPRM (Amato et al. 1998), It generates
configurations close to the obstacle surfaces, as shown in Figure 2-18-a. First, it finds a
configuration in obstacle configuration space. Second, it pushed that configuration out of
the obstacles. This pushing is implemented by creating a ray from this collided
configuration toward a randomly chosen free configuration. After that a bisection search is
performed, it is terminated when a free and near to boundary configuration is found. Figure
2-18-b shows the bisection for randomly chosen ray. The boundary points are retained as
nodes in the roadmap.

a b
Figure 2-18: OBPRM: generating samples near obstacles boundaries. Source: a (Yeh et al. 2012), b
(Titas Bera et al. 2014)

The Gaussian sampling strategy is another method similar to sampling on obstacle
boundaries. The goal of this method is to obtain points near to obstacle configuration space
by using a Gaussian distribution. It biases the samples to be closer to free configuration
space (Lin 2006; Boor et al. 1999). Figure 2-19 shows samples generated by Gaussian
method.

Figure 2-19: The samples generated by the Gaussian sampler. Source: (Hsu et al. 2003)

The principle of this approach is to choose a free configuration randomly. This free
sample is treated as the mean (p) of a Gaussian distribution, and then it is generated
another sample with a variance specified by the user. If one configuration in free space and
the other is in obstacle space, then the free one is saved as a milestone, otherwise both

configurations are discarded. Gaussian sampling is not efficient, because it is not easy to
get nodes in different spaces, and many attempts are required to generate samples. In
addition, the variance optimization is important, where, if the variance is too small, the
configurations will be too close to the obstacles, in the opposite, if the variance is large, the
configurations will be far away from the obstacles.

2.5 Narrow Passages
Narrow passage problem is a common problem for probabilistic planning algorithms. It
occurs when a uniform distribution is used, due to the small volumes of narrow passages
areas. Since, the small volume reduces the sampling probability. The uniform distribution
does not work well when the dispersion of the samples is higher than the narrow passage
volumes. The problem has a bigger impact on RRT planners than in the other methods. In
RRT case, the algorithm throws away the valuable sample if the active tree could not
connect with it. While in P R M planner case, the algorithm saves the rare and valuable
samples, which fall inside a narrow passage. When the number of samples and graph
connectivity are increased, these samples soon will be connected to the P R M graph.

Many researches focus on narrow areas identification in order to enhance the efficiency
of sample-based planners in narrow workspaces. They try to increase the samplers' ability
to take samples from these important areas. In the next paragraphs, some of these
approaches are discussed.

The Gaussian Sampler locates points in the neighbor of obstacles surface. This helps to
obtain substantial points in narrow space, based on the idea that the narrow passage exists
between obstacles. Generally, this method improves the efficiency of planners (Boor et al.
1999; Lin 2006). But is still has some difficulties to plan a path through narrow passage,
where many points near the obstacle boundaries lie far away from narrow passages. Figure
2-20-a, shows this limitation.

Figure 2-20: (a) The Gaussian sampler, vs (b) the randomized bridge builder. Source: (Sun et al. 2005)
(a) (b)

Another non-uniform sampling method has been proposed in (Hsu et al. 2003), to
increase samples in narrow areas. The Bridge-Test method or randomized bridge builder
(RBB) assumes that the narrow areas appear between obstacles; therefore, it randomly
takes two configurations in obstacle space and tests the middle points between them. If a
middle point is located in the free space, the algorithm keeps it. Figure 2-21 shows the
principle of this method. This process attempts to bridge the gap and generate
configurations in a narrow passage. After that, the algorithm takes these middle points as
milestones to build PRM. Most of milestones by this method distribute within the narrow
space, as shown in Figure 2-20-b. Nevertheless, there is still recognized present of these
samples lying in the corners and hollows of the obstacles (Lin 2006; Sun et al. 2005;
Jiandong et al. 2011). In addition, this method requires a long time to cover the narrow
areas. It may fail many times before successfully bridging a gap. Because it needs, a
sequence of three nodes such that the endpoints are in obstacle space and the midpoint is in
free space.

Figure 2-21: Bridge-test, the points that lie in narrow passage can pass the bridge test. Source: (Hsu et
al. 2003)

Later on, a hybrid sampling strategy using RBB and uniform Sampler with a certain
ratio is presented in (Sun et al. 2005) to spread some samples in free large regions. The
bridge test and uniform sampling complement each other. Bridge test reduces samples
density in unimportant parts of a configuration space, and increased sample density in
narrow passages, While uniform sampler take sample form large free space. The two
sampling strategies are combined to construct the hybrid sampling strategy spread samples
in important regions.

In similar principle, a hybrid sampling strategy, which uses uniform sampler and
randomized star builder (RSB), is presented in (Jiandong et al. 2011). The RSB is used to
identify narrow passages in the workspace and to increase the samples density in these
areas.

The Random star builder (RSB) is an improved version of RBB. It depends on more
than two points lie in obstacles to build the bridge. It is designed to boost the sample
density in narrow passage regions, while avoiding sampling milestones in blind corners
and dead ends of obstacles, Figure 2-22 shows RSB in 2D workspace.

34

Figure 2-22: Randomized star builder in two-dimensional environment. Source: (Li et al. 2012)

Improved bridge test algorithm was employed in (Wang et al. 2010) to identify the
important milestones in narrow passages. The algorithm establishes multiple trees from
these samples to explore the sub-regions, which are difficult to reach. The probabilities of
selecting a tree for expansion are updated on-line by learning algorithm based on the
historic results of the exploration.

Quad decomposition approximation is used in (van den Berg 2005) to find an important
area in the workspace, each cell is given a label and weight, depending on the size and its
neighbors' size. The weight reflects the sampling probability in that cell.

The adaptive watershed algorithm is used to distinguish between the cells in narrow
passages and the cells near a boundary in an open area. The watershed is originally a
method for image segmentation from the image-processing field. It separates the open
regions from each other by watersheds, see Figure 2-23-a,b. The watershed regions in their
work represent the narrow passages.

Figure 2-23: Identify narrow passage using cell decomposition and watershed algorithm, a: narrow
passage identified by adaptive watershed, b: watershed algorithm the dark area represents a free area in
the sense, c: grow watershed algorithm enhance narrow passage representation. Source: (van den Berg
2005)

For a better representation of the narrow passage in the corridor and long narrow area,
the grow watershed algorithm is presented to grow a watershed to cover the narrow area, as
shown in Figure 2-23-c.

Triple-RRT algorithm is proposed in (Zhong et al. 2012). It uses a random star builder
(RSB) to identify the configuration in the narrow passage, and then expands RRT tree.
This method improves the local sampling density in the narrow passage. The triple-RRTs
approach employs two trees as bi-directional expansion, one tree from the initial position
and the other from the goal position, and third one is grown in the narrow passage. The
three trees have the same expansion chance, which ensures that this method will find a
solution quickly between start and goal location, no matter if the path should pass narrow
passage or not.

Small-step retraction method presented in (Saha et al. 2005) to help P R M planners find
paths through narrow passages, they suggest to fattening the robot's free space by
minimizing the shapes of the obstacles. Then build a P R M and repair colliding portions of
this roadmap by retracting them out of collision.

Toggle P R M methodology is introduced in (Denny et al. 2011). It simultaneously builds
a graph structure for both free and obstacle spaces. These graphs use the information about
collision to generate samples, which are used later to generate other samples within the
narrow passage. Figure 2-24 shows the principle of this technique. If a sample s chosen
randomly from free space, it is added to free graph's node. The P R M tries to connect this
free sample to the nearest nodes in the graph. If a collision with obstacles happened during
this connection, the collision points are stored as nodes in the obstacle graph. Later on, the
graphs are toggled, and P R M tries to connect the nearest obstacle graph's nodes to these
new collision points (xi, X2 in Figure 2-24). During this connection, another point could be
generated in the free area because of collision with free space, and repeatedly, this point
will generate other samples and so on.

n i ri2

Figure 2-24: Toggle PRM principle. Source: (Denny et al. 2011)

Importance sampling method is introduced in (Rosell et al. 2011). It uses principal
component analysis (PCA) to focalize the region where to sample in order to increase the
probability of finding collision-free configurations. The proposal is illustrated in 2D

36

configuration space with a narrow passage as shown in Figure 2-25. The PC A is a
statistical technique used to process a set of vectorial samples. It analyses a samples set and
returns an hyper-box centered at the mean value of these samples, and the length of each
side equal to two times of the data deviation in the corresponding axis. In each iteration the
algorithm, chooses a number of samples randomly form the workspace, and identifies the
free ones, in addition, it chooses number of samples form hyper-box, and applies the PCA
to the new samples set to find the free samples trend.

p
4

• 1

Figure 2-25: PCA sampling procedure. Source: (Rosell et al. 2011)

In the next chapter, the cell-decomposition is reviewed and we introduce our
contributions based on this approach.

3 CELL DECOMPOSITION

Cell decomposition algorithms (CD) extracts the obstacles and the free regions, and build a
graph of adjacency for the free ones (LaValle 2006, chap. 6; Milos Seda 2007). The idea of
dividing the space into manageable sections is presented in many researches. In general,
the cell decomposition algorithms are classified into two categories; the exact cell
decomposition methods and the approximation methods (Latombe 1991).

The first category uses geometric algorithms to determine the free areas and build free
cells explicitly (Brooks et al. 1985; Schwartz et al. 1983) . The union of all generated cells
is exactly equal to the free space. However, finding exact free cells is not an easy task,
especially in higher dimension spaces, that leads to the second category, which uses the
approximation techniques to divide the workspace, e.g. quad-tree, octree division, and
voxel grid, etc., (Sleumer et al. 1999; de Berg et al. 2008).

In motion planning applications, The CD is utilized by dividing the free robot's
workspace into smaller regions called cells. Then it builds a connectivity graph according
to the adjacency relationships between the free cells. The graph's nodes represent the cells,
while the graph's edges represent the adjacency relations between these cells. From this
connectivity graph, a continuous path can be found by following the adjacent free cells.

(a) (b)
Figure 3-1: Trapezoidal cell decomposition principle, a: The sweep line technique, b: Trapezoidal cell
decomposition algorithm results, the bold-red line represents the sweeping line, v represent the obstacles
vertices, e represents the obstacles edges, p represent the intersecting points.

3.1 Exact cell decomposition
An example of exact cell decomposition is the trapezoidal decomposition method or
vertical cell decomposition. It decomposes the free space into trapezoidal and triangular
cells. This method draws parallel vertical segments from each polygon's vertex in the
workspace to the exterior boundary of the workspace. The regions, which are surrounded

by these segments and the boundaries of obstacles, construct the cells. These cells form the
nodes of connectivity graph. The adjacent regions in the workspace are linked together by
the graph's edges in the connectivity graph (Abbadi, Matousek 2014; Abbadi, Matousek, et
al. 2014). The path in this graph corresponds to the sequence of striped free cells. Figure
3-1, shows the principle of this method.

To model this process in 2D workspace, the workspace X is divided into a free space
Xfree, and an obstacle space Xobst.

A set of all vertices (V) are ordered based on the x-axis. It contains the obstacles
vertices in addition to the workspace boundaries vertices. Obstacles boundaries (segments)
and the outer workspace contour are grouped in obstacle segment set E.

V= [vi,V2,.... Vi, ... } —> R 2 : Vi(x) < vM(x), i G N +

E= {ei,e2,...,ei,...} —> V 2 : , i G N + . Where v, represents a vertex has the index i in the
points set. ei represents a segment has an index i in the segments set.

A l g o r i t h m : T r a p e z o i d a l c e l l d e c o m p o s i t i o n
I n p u t : V V e r t i c e s s e t o f o b s t a c l e s and workspace.

E Edges s e t o f o b s t a c l e s and workspace.
Xotst O b s t a c l e s workspace,

output:CD A d j a c e n c y graph
1 . Pvisited = §

2. V = s o r t X (V)
3 . FOREACH v 6 V BEGIN
4. Pintersects = V e r t i c a l l n t e r s e c t i o n s (v , E)
5. # f i n d v e r t i c e s on t h e same o b s t a c l e edges.
6. Vneighbors = OnS ameOb S t Edge (Pvisi ted, Pintersects)
I. C e l l s = C O n S t r U C t C e l l s (Vneighbors, Pintersects)
8. IF (cells <£ Xobst) BEGIN
9. CD. addNode(cells)
10. CD.findAdjacency(cells)
I I . END
12 . Pvisited. remove (Vneighbors)
13. rvisi ted • add (Pintersects)
14 . END

Figure 3-2: Trapezoidal cell decomposition algorithm

The trapezoidal cell decomposition algorithm is shown in Figure 3-2, where Pvisited is a
set of all intersection points and vertices, which are visited before. Pintersect is a set of
intersection points with the current sweeping line that is established from the vertex v.

Figure 3-1-a, shows the sweep line and the intersection point, which is denoted as pu
Vneighbor variable is a set of vertices in Pvisited, which fall on the same segment e with one
element of the Pintersect. The Cells variable represents the new generated cells, and CD is the
output graph, Figure 3-1-b shows the generated regions.

For more refinement, a post-process function is executed to merge the adjacent cells,
which has edges parallel to each other. Figure 3-3 shows the result of this post-process
function and the corresponding graph.

40

a b
Figure 3-3: Trapezoidal cell decomposition, a: Post-process to merge cells, b: the generated adjacency
graph

The algorithm's output is a graph, which represents free areas. This method converts the
problem of navigation and path planning into a graph search problem. For example, when a
plan is required between two positions, the cells that contain these locations are
determined, and then a graph search is executed in order to find a path.

The transformation of motion planning problems in spatial environments into a graph
search problem gives many advantages. An efficient methods can be used to find a path,
e.g. A * , Dijkstra, etc. The spatial information about the cells is exploited to optimize the
generated path, e.g. the shortest path can be found based on the distance between the cells.

Figure 3-4-a, shows the principle of cell decomposition planner, where the line
represents the path through the free cells. Figure 3-4-b shows the graph of adjacency and
the edges' weight. The shaded nodes correspond to the path's nodes from the start cell to
the goal cell. In this example, the weighs correspond to the distance between cells' central
and barriers' midpoints between the cells.

When a planning query is established, the planner finds the start and the goal cells, then
it searches for a path between these two cells, if a path is found, the planner connects the
start and the goal locations through the free cells on that path.

Another example of exact cell decomposition is the decomposition based on obstacles
edges. This method considers each edge like a line. Then, it finds the intersections with
other edges or cells, and builds the free cells in the free space based on these intersections
(Sleumer et al. 1999).

41

a b

Figure 3-4: Path planning using trapezoidal cell decomposition, a: The generated vertical free cells, b:
The graph of adjacency which corresponding to paths between cells

3.2 Cell decomposition approximation
Due to geometric calculations, the high computational demand of previous approaches, and
the hard to implement for high dimension workspaces, the approximation methods to the
CD were proposed. The most forward method for approximation is the voxel grid, as
shown in Figure 3-5-a. It excludes the cells on the obstacle areas and builds a graph of
adjacency for the cells in the free area. This method is efficient for low dimensional
spaces. However, it generates a large number of cells. This method is resolution complete;
which means the algorithm completeness depends on the grid's fine (Sleumer et al. 1999;
de Berg et al. 2008).

Quad-tree decomposition is another approach for cell decomposition approximation.
This approach uses a recursive method to subdivide the cells until one of the following
conditions is satisfied. 1- Each cell lies completely either in a free space or in an obstacle
region. 2- or, an arbitrary limit of a resolution is reached.

Once a cell fulfills one of these criteria, it stops decomposing. After decomposition
steps, the free path is found by following the adjacent free cells (Katevas et al. 1998). This
method is used in 2D (de Berg et al. 2008, chap. 14). Figure 3-5-b, shows the generated
cells of this method. In a similar way, the Octree method approximates the decomposition
in 3D spaces (Choi et al. 2011).

The quad-tree and octree methods are resolution complete. They can work efficiently
for low dimensions workspaces, three or less (van den Berg 2005).

42

Figure 3-5: Cell decomposition approximation, a: Voxel approximation methods, b: Quad-tree
approximation methods

3.3 Contributions, Tests and Results
Our contributions using cell decomposition approximation are described in this section.
These methods are exploited to solve the problem of safe paths planning in stationary
workspace. In addition, they are used with minimum spanning tree to identify the
important regions in the workspace. The other work, which combined the exact cell
composition approaches with other motion planner, is described later in the next chapters.

This section is divided into two sub-chapters, each one present the problem formulation
and our methodology to solve it.

3.3.1 Safe path planning using cell decomposition approximation

In this work (Abbadi, Prenosil 2015a), The cell-decomposition approximation is used to
find a safe path in static workspace, for omnidirectional robot. The quad-tree
approximation algorithm divides the workspace into manageable free areas, and builds a
graph of adjacency between them.

New methods have been proposed to keep the robot far away from the obstacle
boundaries by a minimum safety-distance. They utilize the size of free cells to generate the
desire path, i.e. they give a lower cost to the graph's connection between big free cells, and
a higher cost to the connections between the smaller cells. After that, the planner searches
for a path that has the lowest cost.

The shortest path is not our focus in this work, however a tradeoff between the shortest
path cost and the safe path cost is considered when choosing the weight values.

43

Proposed Methods

In this work, the path safety problem in static workspace is studied. The path is considered
as safe if 1- It passes through obstacles without colliding with them. 2- It navigates and
keeps a safety distance far from obstacles boundaries. 3- It follows the large open areas in
the workspace when it is possible.

We utilize the cell-decomposition approximation algorithm (ACD) to find an
approximation of the free areas, and exploit the resolution feature to satisfy the minimum
distance condition. The resolution of A C D corresponds to the smallest cell's edge. We
proposed that the robot passes through the center of the cell when it executes the path;
based on that assumption the resolution is chosen to be (2 * safety distance).

Three versions have been proposed to plan a safe path. These methods are based on the
manipulating of the weights, which assign to the graph edges, in order to make the planner
choose the largest cells when translating toward the goal position.

The first approach uses equal weights for translating from one cell to another. The idea
behind this proposal is to minimize the total number of cells in the path, which in
consequence directs the planner to use bigger cells, when searching for a lower path cost.

The Second method introduces a penalty for translation between different cells size.
This penalty is added to the edge's weight, and it is disproportional to the cells size, which
means the weight of translating between the larger cells is smaller than the weight of
translating between the small cells, while the weight of translating between the same size
cells is kept fixed. This proposal guides the planner to do the translating in large cells when
it is possible and at the same time keeping some trade-off between making the translation
in large cells, and planning a path closer in length to the shortest path.

The last proposed method is very similar to the second approach in spite of it introduces
disproportional penalty not only with different cells size, but also with cells that have the
same size. The benefit of these methods is to push the path toward large cells when it is
possible by adding more penalties when translating between small cells, in addition to the
benefits of the second approach.

The proposed methods, lead the planners to use the large cells more than small cells for
planning a path, at the same time they keep the safe distance far from obstacles.

Result and Discussion

In the first proposed method, the weights of the graph's edges are uniformed to the cost of
(1) unit, which corresponding to the cost of translating from one cell to another one,
regardless of the cells' size.

In the second proposed method, we associate to each cell of the free cells a level. This
level is disproportional to cell size. The level is used when manipulating the weights of

graph edges. The edges' weight between two cells is set to be equal to the biggest level
value between these cells, i.e. if celll has a level of (2), and cell2 is smaller and has the
level of (4), The edge's weight between them has the value of max(2,4) which is (4). The
translation between cells that have the same level is fixed to the weight of (1).

The weights in the third proposed method are calculated in the same way as in the
second method, but here the transition between same cells size is varied also based on
cell's level. For example, the translation's weight between the cells that have levels of (3)
will take the value of (3).

The Dijkstra's algorithm is used as a graph search algorithm to find the path over the
graph. The Dijkstra's algorithm finds the minimal cost of the path efficiently. The tests are
done in two workspaces using three values of safety distance {0.1, 0.3, and 0.75}. The
results are shown in Figure 3-6, Figure 3-7, and Figure 3-8, respectively.

b
Figure 3-6: Safe paths planning, the safety distance is equal to (0.1), a, b: the testing workspaces. The
solid blue line represents the equal weights of translation method, the doted-red line represents the
disproportional penalty to translating between different cells size, and the dashed-green line represents
the disproportional penalty to the size of the cells method. S and G is the initial and the goal positions

We can infer from the results that the proposed methods generate a path that respects
the safety distance condition. The first method (the solid blue line) tries to minimize the
number of cells as shown in Figure 3-6-a, b. The path keeps the safety distance, but it does
not follow the large areas. The second method (the dotted red line) is better in this criteria;
it forces the planner to plan in the large cells. However, it follows the large cells, but not if
smaller cells are adjacent to each other; in that case the algorithm plan through these
adjacent cells. The last approaches solve this drawback (the dashed green line), and it plans
in large open regions when it is possible.

Figure 3-7-a, shows the unreachable path because of the safety distance. The same case
in Figure 3-8-a,b. That because the algorithm excludes the collided cells in obstacles,

45

which break the continuity of the graph's edges. When a path searching is executed, the
search algorithm cannot find a route between the initial cell and the goal cell.

Summary

In this work the A C D planner is used to find safe path for the robot; the quad-tree
approximation algorithm divides the workspace into manageable free areas, and builds a
graph of adjacency between them. Three approaches have been proposed to plan a safe
path. These methods manipulate the edges' weights in order to make the planners choose
the largest cells when translates toward the goal position. And at the same time keeps the
robot far from obstacles by a safety distance. The proposed methods show the ability to
plan the desire path.

46

3.3.2 Narrow passage identification using CD approximation and
minimum spanning tree

Narrow passage problem is a problematic issue facing sampling-based motion planners. In
this work (Abbadi, Matousek, et al. 2015), a new approach for narrow areas identification
is proposed. The quad-tree cell-decomposition approximation is used to divide the free
workspace into smaller cells, and build a graph of adjacency for them. The proposed
method follows the graph edges and finds a sequence of cells, which have the same size,
preceded and followed by a bigger cell size. The sequence, which has the pattern "bigger-
smaller-bigger" cells size, is more likely to be located in a narrow area. The minimum
spanning tree algorithm is used, to linearize adjacency graph. Many methods have been
proposed to manipulate the edges cost in the graph, in order to make the generated
spanning tree traverse through narrow passages in detectable ways. Five methods have
been proposed, some of them give bad results, and the others give better one in
simulations.

Proposed methods

Narrow passage problem faces most of sampling based approaches. The problem occurs
when a uniform distribution is used to take samples form the workspace, because the small
and narrow areas have low probability to get samples within their space.

We exploit the information about the cells size to find the narrow area. Our proposal
based on the idea of following the adjacent cells size. If the translation is done from a big
cell to others smaller ones, which have the same size, then followed by a translation to
another bigger cell, then this sequence of the small same-size cells is most likely to be a
narrow passage or important area from motion planning point of view. Figure 3-9 shows an
example, where the shaded cells represent the most important region in this workspace.

Figure 3-9: Example of the narrow passage identification (green-shaded boxes)

To implement the proposed method, a preprocessing step should be applied to the
adjacency graph. Since, the graph of adjacency has many loops and cycled connections
between the nodes, for that, a linearization of the graph should be done before the narrow
passage identification method is applied. Based on that, the minimum spanning tree (MST)
approach is used to build a new liner graph.

The MST tries to build a spanning tree that has the lowest cost, and contains all nodes
visited one time. This principle causes another problem, where the tree is planned in
unpredictable regions in the workspace based on the edges costs. In order to solve this
problem, the edges' weight, which effect the spanning tree construction process, is updated
and adapted. The weights are manipulated, in order to give a low cost for edges that placed
within narrow and small areas, and at the same time, prevent the MST method of
constructing the tree structure near to the obstacles boundaries. Many ideas for weights
manipulation are tested to generate the desire spanning-tree. We propose and test five
methods. The first method uses the real distance between cells.

The second one uses the uniform cost for translating from one cell to another one. This
method based on the idea that, the generated tree should minimize the path cost by using
the minimal number of translations; in consequence, it uses the bigger cells when it is
possible.

The third proposed method, the bias toward different cells size, updates the edges'
weight in such a way that it makes the cost of translation between different cells' size
lower than translation between cells that have the same size. This method makes the span
tree uses the smaller cells as leaves for the tree, while it uses the bigger cells as roots.

The fourth method, the bias toward equal cells size, suggests giving the lowest cost to
the translation between the same size cells. It is the opposite of the previous method, the
idea behind this proposal is to make the cells that have the same size, as a sequence does
not satisfy the narrow passage condition "bigger-smaller-bigger," instead it will has the
pattern "bigger-smaller". The MST in this case constructs narrow passage pattern just
when it is necessary.

The last proposed method, the disproportional cost to the distance, gives the edges a
cost based on the cells size, the smallest cost is given when translating between the bigger
cells. We realize this proposal by finding the longest distance between cells then subtracts
all translation distances from that distance. The result is given as a weight of the graph
edges. This method gives the translation between the largest cells, which have the longest
distance, the lowest cost, while the translation between smaller cells will have higher costs.

Results and discussion

The proposed methods are simulated and tested in two workspaces. The first one is an
office-like workspace, where there is one route to connect any two rooms. The second

workspace is generated in such a way that the connections between the free regions have
multi-routes.

The result is shown graphically using grading colors, where each color represents a
narrow passage sequence. The size of the shaded sequence represents the size of the
corresponding cells.

The results of the first and second methods show that the algorithm finds many narrow
passages. But the results are considered failed because it generates many sequences near
the obstacles and far away from the narrow passage.

The first method that uses the real distance as a cost, makes the MST constructs the tree
near the obstacle and follows the smaller cells as shown in Figure 3-10. Where the left
figures (a,c) show the A C D and MST graph graphically while the right figures (b,d) show
the identified narrow passages, which are denoted using a color for each passage. As seen
from the figures the extracted narrow passages using this methods is not accurate.

(c) (d)
Figure 3-10: Real distance cost method, (a,c) represent ACD and MST tree graphically, (b,d) show the
identified narrow passages, each color represents one passage, this approach failed in detecting the
correct passages

(c) (d)
Figure 3-11: Uniform translation cost method, (a,c) represent ACD and MST tree graphically, (b,d)
show the identified narrow passages, each color represents one narrow passage, this approach failed in
detecting the correct passages

The uniform cost method generates a tree structure which uses more bigger cells as
expected, and it generates a better solution, however the result still not good and
unreliable. Figure 3-1 l-a,c show the generated spanning tree in both workspaces, while the
narrow passages sequences are shown in Figure 3-1 l-b,d.

50

(c) (d)
Figure 3-12: Bias to different cells size method, (a,c) represent ACD and MST graph graphically, (b,d)
show the identified narrow passages, each color represents one narrow passage

The third method directs the MST algorithm to use different cell size. The generated
trees translate between cells that have different size more than the translation between the
cells that have the same size, Figure 3-12-a,c show the spanning trees.

This method generates a better solution as shown in Figure 3-12-b,d. However, it also
generates long sequences and undesired sequences, especially in the second workspace,
which has un-alignment obstacle to the axis, as shown in Figure 3-12-d.

51

(c) (d)
Figure 3-13: Bias to equal cells size method, (a,c) represent ACD and MST graph graphically, (b,d)
show the identified narrow passages, each color represents one narrow passage

The fourth method, which gives lower cost to the translation between equal cells size as
shown in Figure 3-13-a,c, generates better results, it has the ability to find all narrow
passage. But, it generates very long sequences as shown in Figure 3-13-b,d.

52

(a) (b)

(c) (d)
Figure 3-14: Disproportional cost to the distance method, (a,c) represent ACD and MST graph
graphically, (b,d) show the identified narrow passages, each color represents one narrow passage

The last proposed method, which has disproportional cost to the distance, generates
spanning trees as shown in Figure 3-14-a,c. It produces a relatively good solution.
However, it is still has a problem with sequences generation, since it has some faults to
find the correct narrow passages, in addition the generated sequences are long, and
sometime they merge many narrow passages together as shown in Figure 3-14-b,d.

Summary

In this work, the narrow passage identification problem is discussed. Narrow areas are a
problematic issue facing sampling-based motion planner. The cell-decomposition
approximation algorithm is utilized to find the free regions and build a graph of adjacency
for them based on the adjacency information.

The proposed method to identify the narrow passage, finds a sequence of cells along the
graph edges that have the same size, preceded and followed by a bigger cells size. This
smaller sequence is more likely to be located in the narrow passage.

53

Because of the graph of adjacency characteristic, which has many loop connections
between the adjacent cells the minimum spanning tree algorithm is used to linearize this
graph. Many methods have been proposed to manipulate the edges cost in the graph, in
order to make the generated spanning tree traverse through narrow passages in a detectable
way, which means following the pattern of the narrow area "bigger-smaller-bigger"
sequence of cells. Five methods are proposed, some of them give bad results, and the
others give better results as shown in the simulation.

We noticed that the first two methods which gave a bad results (real distance cost,
uniform cost), can be updated to find obstacles boundaries cells, based on that, the non
uniform distribution can be introduced to be used in the motion planning samplers, which
improve the performance.

We also notice that the minimum spanning tree has a drawback in this algorithm, where
some routes are lost. That is happened when the workspace has multi-routes between free
areas, where the MST does not distinguish between the loop around obstacle and the loop
between cells.

More studies and analysis to the cost manipulation process should be reviewed in the
future work.

In the next chapter, the rapidly exploring random tree is reviewed and our contributions
using this method combined with exact cell decomposition are presented.

4 RAPIDLY-EXPLORING RANDOM TREE (RRT)

Rapidly-exploring random tree is a probabilistic algorithm introduced in (Lavalle 1998). It
is proposed originally for non-holonomic systems, which contain dynamic constraints. The
algorithm builds a space-filling tree that is constructed incrementally using samples drawn
randomly from the search space, as shown in Figure 4-1. RRT is designed for efficient
search in environments that have nonconvex obstacles. In addition, it works directly with a
set of admissible inputs. This feature makes the algorithm applicable to complex and
dynamic systems. This algorithm also, has the ability to use holonomic or non-holonomic
movement, and respect algebraic and differential constraints, and that due to its
incremental behaviors. The key idea of the RRT is to bias the exploration toward
unexplored regions of the space, where the sampler takes points from these regions, and
incrementally pulling the search tree outward of the initial position.

Figure 4-1: RRT expansion in 2D and 3D workspace

RRT algorithm proofed to be probabilistically complete (LaValle et al. 2001), and
resolution complete (Cheng et al. 2002).

The algorithm, which shown in Figure 4-3, takes as inputs the initial and the goal
locations, along with termination parameters, e.g. the maximum number of iterations to
grow a branch, time limit, or other parameters based on the application. RRT algorithm is
an incremental approach, where the incremental step is passed to the algorithm as an input
parameter (in the basic RRT algorithm). The output of the algorithms is a tree structure,
where the nodes represent free samples of the workspace, and the edges represent feasible
connections between these vertices.

The principle of the basic RRT algorithm is shown in Figure 4-2. The algorithm places
the tree's root at the initial location. Then it takes a random sample from the configuration
space, and finds the nearest tree's vertex to this sample (nearestPnt). A new point is
created on the segments between the random point and the nearest point, it is located far

from the nearest point by e distance, where e is the incremental step. If no collision is
detected with the segment between the nearest and the new points, then the algorithm adds
the new point as a vertex to the tree and the segments is added as an edge to the tree
structure. These steps are repeated until a termination condition is satisfied or a path
between the initial and the goal locations is found.

Figure 4-2: RRT algorithm principle

A l g o r i t h m : RRT
I n p u t : I n i t i a l , Goal, Max I t e r a t i o n I,

and t h e i n c r e m e n t a l s t e p e.
Output: The t r e e graph G.
1. G . i n i t { I n i t i a l)
2. FOR (i = 1 TO J) BEGIN
3. randomPnt = r a n d C o n f i g u r a t i o n ()
4. nearestPnt = G.nearestVertex(randomPnt)
5. newPnt = N e w C o n f i g u r a t i o n (n e a r e s t P n t , r a n d o m P n t , e)
6. IF NOT isCollided(nearestPnt,newPnt) BEGIN
7. G.addVertex(newPnt)
8. G.addEdge(nearestPnt,newPnt)
9. IF G.checkGoal(Goal)BEGIN
10. RETURN G.success()
11. END
12. END
13. END
14. RETURN G . f a i l ()

Figure 4-3: Basic concept of RRT algorithm

The quality of RRT solutions is proofed as asymptotically optimal when applying
special variations of RRT, e.g. RRT* (Karaman et al. 2012, 2011), LQR-RRT*, and others
(Perez et al. 2012; Nasir et al. 2013; L i et al. 2014).

The drawbacks of the basic RRT algorithm can be summaries as follows:

1. The basic RRT algorithm does not take the path cost into account, which generates
non-optimal path.

2. Large numbers of redundant points are generated, when exploring the space to find a
path between two locations.

3. It has some difficulty when planning and exploring small areas and narrow passages,
because the probability to choose a configuration in these areas is small. Moreover, the
probability to connect configurations from these regions to other tree vertices without
collision is also small.

4. The generated paths are usually tortuous, and have abrupt changes in the curve.

Researchers try to overcome the downsides of the original RRT. They proposed many
ideas to improve the performance and efficiency of this randomize technique. Some of
their work based on new ideas, and the other based on improving the algorithm itself,
where RRT algorithm can be divided into sub-functions, i.e. 1- Initialize the tree. 2-
Choose the next configuration in order to pull the tree toward it. 3- Find the nearest vertex
of the tree to the chosen point. 4- Expand a new tree branch. 5- Check the collision. These
sub-functions were studied and reformulated to be more efficient.

The first sub-function is developed in various methods, i.e. instead of using one tree, bi
directional trees or multi-trees can be used (Kuffner et al. 2011; Lavalle et al. 2000;
Militao et al. 2010; Strandberg 2004), and that lead to other researches on choosing the
root of these trees (Wang et al. 2012).

The second category of RRT improvements enhances the sampling strategies. For
example, the bias toward goal configuration, or toward hull around the goal (Lavalle et al.
2000). In another work the authors introduce a bias toward previous success (Bruce et al.
2002). Other researchers adapt the choosing of a next point, based on the environmental
aspects, e.g. large Voronoi regions (Lindemann et al. 2004; Sakahara et al. 2008), narrow
passage identification (Jiandong et al. 2011; Zhong et al. 2012), and collision information
(Peng Cheng 2001; Cheng et al. 2001; Jaillet et al. 2011).

The third category of improvement optimizes the nearest-point searching in the tree
structure, using spatial indexing techniques, e.g. kd-tree (Urmson et al. 2003; Yershova et
al. 2007; Atramentov et al. 2002).

In the fourth category, some researches try to develop the way of extending the branch
(Militao et al. 2010) or to introduce a new branching method to fit kinematic and dynamic
constraints (LaValle 2006; Jaillet et al. 2011; LaValle et al. 2001).

The fifth category improve the efficiency by manipulating the collisions checking
methods, e.g. the use of lazy approach, which postpone the collision checking until it's
needed (Vahrenkamp et al. 2007).

Many RRT variants try to solve the disadvantages of basic RRT algorithm. A survey of
some RRT variations were reviewed and published in (Abbadi, Matousek 2012; Abbadi et
al. 2011). In the next paragraphs, some of these methods are discussed in more details.

Bidirectional and multidirectional planners are examples of the RRT variants that try to
speed up the exploration by controlling the root location and the tree number. In

bidirectional planners, two trees are expanded. The first one rooted on the initial position
and the second tree rooted on the goal location. The two trees branch until they meet each
other, and then the algorithm merges them and find the path from the start to the goal
locations. Figure 4-4, Shows dual RRT trees in the T-trap workspace.

Figure 4-4: Dual RRT trees

Another improvement, in the same course, uses multi RRT planners. The trees work
simultaneously, and try to connect to each other in order to find a solution. The choosing of
trees roots is done uniformly, or based on heuristic concepts.

Another approach uses augmented local trees beside the bidirectional trees. This method
proposed to explore the hard to reach regions (Strandberg 2004). It is based on the idea that
RRT algorithm needs to take better care of samples which fall into crucial, but hard to
reach, regions. The algorithm spawns a new local tree, which grows until it reaches outside
of the hard to reach the region, and merges with another tree. However, a new issue based
on this method rises up, where the quantity and percent of growing for these trees to main
trees should be optimized. The author in (Strandberg 2004) suggests using a limited
number of the local trees, during the planning phase to prevent this method from acting
like R P M . Another suggestion is to use a probability parameter to make a tuning between
the growth of the two main trees and the local trees. Another idea suggests the use of
volume of the box bounding the tree in the configuration space in order to reduce the cost
of trees' connection checking. Each time the bounding box of a tree grows, the new node
will be used for possible connection with other trees, since it was this node that caused the
growth of the bounding box (Strandberg 2004).

This methods increase the probability to find a path, because, instead of testing the
reachability to the goal point, they test if any points of the tree are near to other points in
different trees, which increases the probability to find a path.

The drawbacks of using multi-trees can be summarized as follows.

1- The generated path is very tortuous and contains many sharp angles between edges.

2- Many redundant points are generated in each tree.

3- When the tree uses kinematic equations to generate the branches, the connection
between two trees could be inapplicable; that happens when the connection between
two nodes of the trees cannot adapt to satisfy the constraints.

4- The other drawback come out when the goal is not a specific configuration (Bruce et
al. 2002), it could be desire state or set of configurations, which means the
bidirectional or multidirectional search are not used, because they decrease the
generality of the goal state specification.

Another development of the RRT algorithm improve the expanding methods, in order to
pull the growth of the trees outward of the root rapidly. For example, bias the tree
expansion toward the large Voronoi regions. Originally, the basic RRT algorithm uses the
randomize approach to approximate the bias toward large Voronoi areas, and that because
the correlation between the probability of selecting a random point and the volume of its
Voronoi region, where the larger regions implied a higher probability of selecting points
from them.

Some techniques of RRT construct a Voronoi diagram explicitly. Then update it
incrementally, while the algorithm grows the tree. RRT uses this information to choose a
node of the tree, which has the largest Voronoi region for the next expansion. The direction
of expansion pointed to somewhere in the region, e.g. the center of Voronoi region or to
the farthest Voronoi vertex from tree node. In (Lindemann et al. 2004) the authors
proposed two methods to improve the bias to larger Voronoi regions without explicitly
calculating the Voronoi diagram. The first one is the Volume-based Voronoi-biased RRT
(VB-RRT). It directs the exploration to the approximate center of the region. The second
method is dispersion-reducing Voronoi-biased (DR-RRT). It directs the exploration to the
farthest vertex of the approximate vertices that bounded the largest Voronoi region. This
strategy for dispersion reduction based on the idea that, connecting nearest neighbor with
farthest vertex will reduce the dispersion, since this distance is considered as the largest
empty distance in configuration space and eliminating this distance from dispersion
calculation will reduce it.

The VB-RRT method based on selecting K samples from the space instead of selecting
only one as in original RRT. Then, a node is chosen from the tree, if it is the nearest one to
most of selected samples. The average of the samples approximates the center of their
region. The cost of doing K nearest-neighbor queries in every iteration for all tree's node is
highly expensive. To reduce this cost, the K samples are kept for further reuse in next
iterations. If at some point during the search the initial K samples are insufficient, more

samples are added. The drawback of VB-RRT strategy is, it can easily trap in local minima
when the search tree encounters obstacles in the large Voronoi regions.

The DR-RRT (Dispersion-reducing Voronoi-biased RRT) method proceeds similarly to
the previous approach. It is based on the choosing of K random samples and creates
ordered samples-set S; it sorts them based on the distance to their nearest neighbors in the
search tree. Then it chooses the farthest sample and grows a branch toward it. If this fails,
the algorithm takes the next farthest sample and repeats the process. When it fails for all
samples, more samples are added and the algorithm continues until it achieves its goal.

Figure 4-5: Standard RRT vs dispersion-reducing RRT using initial samples number = 1000. Source:
(Lindemann et al. 2004)

The distance and nearest neighbor are computed one time when a sample is added to S
initially or later on when it is needed. This step adds more cost to the algorithm, but the
benefit is the fast exploration. Figure 4-5 shows the difference between original RRT and
DR-RRT from exploration point of view.

Another expansion-based improvement to RRT called RRT-Connect. It uses a greedy
approach to growing up the tree. It is based on the iterative growth of the tree's branches as
long as they can; Instead of attempting to extend an RRT branch by a single step e, it
iterates branching in the same direction until it reaches the random point or an obstacle is
collided. This greedy approach frequently performs better since any relatively open and
unobstructed regions are traversed in a single iteration. However, the RRT-Connect
planner was designed for path planning problems that do not involve differential
constraints. In this case, the need for incremental motions is less important. This approach
proved to be probabilistically complete (Kuffner et al. 2000).

RRT-Blossom is another variant of RRT that behaves in the same way like the basic
RRT. However, it adapts the branching function of RRT. It adds a new point to the tree if
the distance between the new point and the other tree's nodes is more than a specific
distance BLOOSM_DIS. The benefit of that is to reduce redundant points, which are added
to the tree, and make the tree spreads in the free space faster by preventing the tree from

growing from inside. Figure 4-6, shows the principle of this method. Generally, reducing
the number of nodes in RRT trees has a significant effect on the performance of RRT
algorithm when checking the nearest neighbor (Maciej Kalisiak et al. 2006; Almahairi
2010).

<3

Figure 4-6: RRT-BLOSSOM principle. Source: (Maciej Kalisiak et al. 2006)

Variable Length RRT (VLRRT) is proposed by (Militao et al. 2010). It uses the
information that is collected throughout the exploration to adapt the length of the tree's
branches. The tree will cover the less obstructed regions faster, while maintaining the
ability to navigate through more obstructed areas. This proposal suggests changing the
extension lengths as follows. The extension lengths of the branches become longer in open
areas and shorter in cluttered ones. For implementing this idea, each node of the tree has an
extension factor associated with it. Whenever an extension from a node fails, the extension
factor is decreased. Else, the extension factor is increased. The new node inherits the
extension factor from its parent.

The way of increasing or decreasing extension factor realized in many ways, e.g.
multiplying the original extension-length by a fixed value, or adding a constant value to the
extension length. In decreasing the extension factor, the same principle is used in addition
to another option, which reset the extension factor to the original extension length.

Another update to the previous method takes into account the direction of obstacle. In
the directional variable length (DVLRRT) approach (Militao et al. 2010), the successful or
unsuccessful branching provides an information about the presence or the absence of
obstacles in a particular direction, not in all directions. This method is realized by storing a
directional map of the extension factor in each node of the tree. The extension value is
chosen based on the direction of the obstacle.

In similar way, as in VLRRT, the success or fail affect the extension factor, but here in
obstacle direction. The new node also inherits the map from its parent. Figure 4-7 shows an
example of this method in simulation.

Figure 4-7: The generated path using DVLRRT

In the next paragraphs, we review some RRT improvements that based on trees-growth
directing. These strategies improve the original RRT by reformulating the random-point
choosing procedure.

RRT-GoalBias method chooses the goal point as the chosen point using a probability of
p, instead of choosing a random point randomly (Lavalle et al. 2000). Usually converges to
the goal would be much faster than the basic RRT. However, in this method, a trade off
should be considered when choosing the p value. If p were a big value, the planner would
behave like the randomized potential field method, which is trapped in a local minimum. In
general, the bias value is chosen to be small, because, even a small value of the bias forces
the planner to reach the goal faster.

The RRT-GoalZoom method is an improvement to GoalBias method (Lavalle et al.
2000). It uses a p probability to choose the goal instead of a random sample, and uses a q
probability to choose a sample from the hull around the goal. The nearest RRT vertex at
any iteration controls the size of the region around the goal. The more close the RRT to the
goal, the smaller the size of the region around the goal. The author claim, that, this planner
has performed well in practice, but still some possibility that the performance is degraded
due to the local minima.

The waypoint cache RRT (ERRT) method is proposed for real-time multi-robot systems
(Bruce et al. 2002). The key idea of this method is to keep the successful plans in the
previous queries, and reuse them as guidance to the RRT growth. The waypoint cache was
implemented by keeping an array of constant size of states. Whenever a plan was found, all
the states in the plan were placed into the cache. This stores the knowledge of where a plan
might again be found in the near future, where the space does not change too much. The
results of re-planning using ERRT are more efficient than the basic RRT planner. The
algorithm starts with an initial state as the root of the tree, and then it iterates. It uses a
probability of p as a bias value toward the goal, and a probability of q as a bias toward the

62

old path points, in addition to a probability of 1-q-p to pick a random point uniformly from
the space. This technique can be used to speeds up the path finding in moving obstacles
spaces, where first, it finds the path regardless of these moving obstacles, and then biases
toward the path's points when a new plan is required.

Another methods was proposed in (Urmson et al. 2003) for guiding the tree growth. The
heuristically guided RRT (hRRT) method guides the growth of the randomized tree, based
on two aspects. 1- The size of Voronoi region for tree nodes. 2- The quality of the path to
that node. Using these aspects, it estimates the quality of tree regions and expands branches
from the qualified ones, which means, the regions of the tree are chosen for expansion
rather than particular nodes.

RRT with the collision tendency method (RRT-CT) was proposed to improve the
planner under kinematic and dynamic constraints (Peng Cheng 2001; Cheng et al. 2001).
The key idea is to keep track of the unsuccessful edge expansions, and exploiting this
information. The authors proposed two methods to improve the original RRT; the first one
depends on excluding control-input from re-execution, if it is already applied to a specific
node. The second improvement is done by reducing the probability of choosing nodes that
have a high collision tendency. They call this factor the constraint violation frequency
(CVF). Each node in the tree has a CVF, which calculated over the route from the initial
state to this node. It represents the number of collisions when applying control-inputs,
divided by the number of all branching possibility. The advantage of this method is to
prevent further expansion attempts, which have high probability to fail. In addition, it uses
the available information to bias the selection of next node to the nodes with lower
collision tendency. Figure 4-8, shows the C V F value, where the darker points represent
node with high C V F value.

i
' i

* •

• *
J

I

n
r js > - * J

': V I . * t

t '

•

. 4

Figure 4-8: CVF; the darker points the higher value. Source: (Cheng et al. 2001)

The conditional density growth (CDG) model is proposed in (Esposito 2013) as an
idealized model of RRT growth. It is primarily suited to holonomic systems operating in

expansive configuration spaces. Using this model various statistical properties of the
RRT's configuration space could be derived such as the expected value, variance, and
distribution properties.

In the next section, our contributions to develop the RRT algorithm are presented, in
addition to the simulation results.

4.1 Contributions, Tests and Results
In this section, we present our contributions to the motion-planning problem using RRT
algorithm. We re-implement the RRT algorithm to fit the applications of omnidirectional
mobile robot, and propose some advance methods to enhance the RRT performance and
overcome the drawbacks.

This section is divided into five parts. In the first three, we review many RRT
developments and made an evaluation of them, in addition to statistical analysis. We also
proposed a new algorithm to shorten the RRT's path. In the last two parts, new methods to
enhance the RRT navigation in small and narrow areas are presented. A l l contributions in
this domain are published, and the title of each section is taken from the publication name.

4.1.1 RRTs Review and Options

The path planning is an important issue in the mobile robot field. It allows the robot to
move from point A to point B safely. Many methods have been proposed in this domain,
which are differed in efficiency and time complexity. One of the advanced path planning
methods is the rapidly exploring Random Trees (RRT). In this work (Abbadi et al. 2011),
several variations of RRTs are reviewed, and an evaluation of their performance was tested
in different environments.

Experiments and Results

Many RRTs options are tested in four different workspaces, which are, the free workspace,
the low density of obstacles, the high density of obstacles, and trap workspace as shown in
Figure 4-9.

The parameters of the experiments are set as follows. The maximum number of RRT
iteration is limited to 2000; the iteration means the number of RRT attempts to grow a
branch of the tree.

The results are obtained statistically using 100 tests for each method. The outputs of the
tests are the average value of node number in RRT tree, the average value of path's nodes
number, the average value of the execution time and the success rate to find a path.

The result of each attempt is considered in the average calculation, if the RRT find a
path, else, the results of failed tries are ignored.

The average of tree nodes number comparing to the number of path nodes gives an idea
about redundant points in each method. In addition the average of path nodes corresponds
to the number of curves in that path; the higher the number the more torturous the path.

(c) (d)
Figure 4-9: RRT testing workspaces, (a) the free space workspace, (b) the trap obstacle workspace, (c)
the low density of obstacles workspace, (d) the high density of obstacles workspace

The simulation results of the free workspace are listed in Table 4-1, where the
bidirectional-connect method has the best results in terms of time efficiency. Generally, the
bidirectional methods were able to find the solution faster than the unidirectional
approaches.

The trap workspace results are shown in Table 4-2. The bidirectional-VLRRT method
has the best result in terms of time efficiency. Moreover, the bidirectional methods show
better results in completeness aspect. They were able to find a solution 100% (except the
ExtExt; the bidirectional basic RRT).

Table 4-1: The results of free workspace. The (BI) denote the using of bidirectional trees, and the bold
numbers indicate the best results

Time [s] Tree node Path node Success [%]
Basic RRT 0.1240 384.27 38.83 100
Con RRT 0.0835 409.12 7.51 100
Bias RRT 0.0421 124.52 36.63 100
ConCon (BI) 0.0026 36.06 3.00 100
ConExt (BI) 0.0094 87.13 10.79 100
ExtCon (BI) 0.0106 93.53 11.74 100
ExtExt (BI) 0.0208 75.71 37.54 100
RRT-BLOS SOM 0.1559 352.99 38.89 100
B L O B L O (BI) 0.0251 76.85 37.97 100
V L R R T 0.0177 51.41 16.85 100
VLRRT(BI) 0.0114 35.36 21.25 100
D V L R R T 0.0263 71.76 23.71 100
D V L R R T (BI) 0.0163 47.30 26.60 100

Table 4-2: The results of trap workspace. The (BI) denote the using of bidirectional trees, and the bold
numbers indicate the best results

Time [s] Tree node Path node Success [%]
Basic RRT 0.6236 815.58 89.40 11
Bias RRT 0.6722 697.66 87.06 31
RRT Con 0.3591 708.89 26.06 99
ConCon (BI) 0.3253 645.14 26.64 100
ConExt (BI) 0.4362 723.97 39.27 100
ExtCon (BI) 0.4102 696.12 38.44 100
ExtExt (BI) 0.7815 1019.40 85.14 96
RRT-BLOS SOM 0.6708 591.36 55.51 74
B L O B L O (BI) 0.4665 464.40 55.16 100
V L R R T 0.2750 272.63 27.81 100
V L R R T (BI) 0.2406 279.77 40.23 100
D V L R R T 0.4030 368.91 36.77 98
D V L R R T (BI) 0.3039 326.09 42.57 100

The results of the last two tests in low-density and high-density of obstacles are shown

in Table 4-3, and Table 4-4, respectively. The ConCon (bidirectional connect RRT

method) has the best results regarding to the execution time. Also, it is notable, that all

bidirectional methods are probabilistically complete in these tests.

Summary

The aim of this work was to review and test the performance of the reviewed algorithms.

The results show that the dual tree variants are more completeness in all workspaces. The

most successful strategy regarding to the time of execution is the bidirectional-VLRRT in

66

trap obstacles. Also, the bidirectional-ConCon strategy gives the best results in the low and

the high density of obstacles. However, the result cannot be generalized for all

environments.

Table 4-3: The results of low-density workspace. The (BI) denote the using of bidirectional trees, and
the bold numbers indicate the best results

Time [s] Tree node Path node Success [%]
Basic RRT 0.1650 336.49 43.03 100
Bias RRT 0.0841 147.97 41.55 100
RRT Con 0.1232 375.27 11.24 100
ConCon (BI) 0.0270 127.57 7.56 100
ConExt (BI) 0.0393 144.56 16.51 100
ExtCon (BI) 0.0362 140.71 16.11 100
ExtExt (BI) 0.0512 111.32 41.42 100
RRT-BLOSSOM 0.1620 259.36 43.73 100
B L O B L O (BI) 0.0556 104.24 40.80 100
V L R R T 0.0519 87.94 25.10 100
V L R R T (BI) 0.0366 68.31 27.34 100
D V L R R T 0.0634 102.05 30.28 100
D V L R R T (BI) 0.0434 76.24 31.49 100

Table 4-4: The results of high-density workspace. The (BI) denote the using of bidirectional trees, and
the bold numbers indicate the best results

Time [s] Tree node Path node Success [%]
Basic RRT 1.0550 0 0 0
Bias RRT 1.1255 0 0 0
RRT Con 1.2552 1552.15 33.29 07
ConCon (BI) 0.3984 518.46 25.27 100
ConExt (BI) 0.4906 550.77 53.83 100
ExtExt (BI) 0.4900 406.33 87.37 100
RRT-BLOSSOM 0.8902 0 0 0
B L O B L O (BI) 0.5133 328.38 87.11 100
V L R R T 1.1311 0 0 0
V L R R T (BI) 0.5444 380.29 66.37 100
D V L R R T 1.1497 0 0 0
D V L R R T (BI) 0.5422 365.49 70.68 100

4.1.2 RRTs Review and Statistical Analysis
Many ideas have been proposed to solve the path-planning problem. One of them is the

rapidly exploring random Tree (RRT). This method is not optimal, but it reduces the

required time to obtain a solution. The result of the RRT is a tortuous path, which has

many useless vertices.

In this work (Abbadi, Matousek 2012) statistical tests were done, to make a better
decision about using a variant of RRT. This work is based on the previous results in
(Abbadi et al. 2011), where the tested methods give a variety of results, some of them are
very close and some are very diverse. For that, a statistical analysis is done to build some
confidence of using one RRT variation instead of another one in some situations.

In addition to statistical tests, we propose a method to reduce the degree of tortuous, and
make the path shorter by omitting the useless points.

(c) (d)
Figure 4-10: The testing workspaces, (a) low obstacles density, (b) T-trap workspace, (c) high obstacles
density, (d) doors workspace

Test and Results

We made the tests for 13 RRT variations in four spaces as shown in Figure 4-10. The first
workspace has low-density of obstacles (a). The second one has T-trap obstacle (b); the
high density of obstacle shown in (c) and the last one is the doors workspace (d).

68

The test is applied in every workspace separately; we test 13 variants of RRT, 100
times. The fails occurs when RRT variation attempted to extend a branch 2000 times
without reaching the goal. We used PC equipped with 2.5 GHz Core2Duo CPU, 2 GB
R A M .

The implementation of RRT variations is developed in Matlab and the statistical results
are done using Minitab. The comparison between the tests results is done based on the time
of execution, the success rate of reaching the goal and the path length.

Execution Time results

The tests results show that the best variation in Low obstacles space is the Vlrrt(2) method,
where the average of the time to reach the goal is 0.0467 second and the median is 0.0418,
the second best variation is Dvlrrt(2), it has the mean value of 0.0484 second and median
value equal to 0.0407. Table 4-5 shows the numerical result of the tests in low obstacle
space and the Figure 4-11 shows the boxplots representation of these results.

Table 4-5: Tests results of low density of obstacles. The bold numbers correspond to the best two
results, the best results marked by (*), the (2) indicate a bidirectional method

Method Mean StDev Variance Median Success
BIAS 0.1035 0.0484 0.0023 0.0890 100
B L O S S O M 0.3552 0.2584 0.0668 0.2714 94
B L O S S O M (2) 0.0615 0.0255 0.0007 0.0564 100
C O N 0.3434 0.2546 0.0648 0.2526 93
CON(2) 0.0578 0.0198 0.0004 0.0559 100
ConExt(2) 0.0617 0.0202 0.0004 0.0585 100
E X T 0.2806 0.1991 0.0396 0.2380 95
EXT(2) 0.0516 0.0249 0.0006 0.0444 100
ExtCon(2) 0.0637 0.0234 0.0006 0.0621 100
D V L R R T 0.0893 0.0493 0.0024 0.0734 100
DVLRRT(2) 0.0484 0.0259 0.0007 0.0407 100
V L R R T 0.0840 0.0436 0.0019 0.0698 100
VLRRT(2) *0.0467 *0.01754 *0.0003 *0.0418 100

Boxpbt of Time/variation in bw obstacles space

1,2

1,0

0,8

J 0,6

0,4

0,2

0,0

Variations

Figure 4-11: Boxplots representation of the results of in the low-density of obstacles

In the T obstacle workspace, the Vlrrt has the best result regarding to the time of
execution, however, it also has one fail of reaching the goal. The time average is 0.3740
and the median is 0.3713. The second result achieved by the bidirectional-Vlrrt(2) which
has the average time of 0.3984 and median of 0.3849, and without any fail. The numerical
results are presented in Table 4-6. And Figure 4-12 shows the boxplot representation of
execution time results.

A statistical test was done on Vlrrt and Vlrrt(2), which give the best results. The aim of
this test is to validate the hypothesis of using the second best method instead of the first
one. Which means, if we use the second best option Vlrrt(2) without any fail, it will give
the same result in confidence level of 95%.

This hypothesis implies that we can replace the method that has more probabilistically
completeness, with the method that has a less completeness ratio; Figure 4-13 shows the
tested hypothesis.

Based on the P-Value, which is >5%, the hypothesis of "Vlrrt and Vlrrt(2) are not
equal" is rejected, which means, there is no sufficient difference between the two
variations, and the Vlrrt(2) variant can be used instead of Vlrrt, using the confidence level
of 95%.

T i T 4 ± 4 T I

70

Boxpbt of Time/variations in T space
1,6 H

1,2-

Variations

Figure 4-12: Boxplots representation of results in T obstacle

Table 4-6: Tests results of T-trap obstacle. The bold numbers correspond to the best two results, the best
results marked by (*), the (2) indicate a bidirectional method

Method Mean StDev Variance Median Success
BIAS 0,5968 0,0736 0,0054 0,6121 71
B L O S S O M 0,7482 0,1068 0,0114 0,7476 35
B L O S S O M (2) 0,9371 0,1852 0,0343 0,9198 100
C O N 0,5320 0,2062 0,0425 0,5017 81
CON(2) 0,3996 0,1024 0,0105 0,3948 100
ConExt(2) 0,4484 0,1433 0,0205 0,4326 100
E X T 0,5592 *0,0721 *0,0052 0,5521 97
EXT(2) 0,6696 0,1211 0,0147 0,6712 100
ExtCon(2) 0,4502 0,1303 0,0170 0,4388 35
D V L R R T 0,5188 0,0887 0,0079 0,5109 100
DVLRRT(2) 0,6250 0,1235 0,0153 0,6369 100
V L R R T *0,3740 0,0984 0,0097 *0,3713 99
VLRRT(2) 0,3984 0,1224 0,0150 0,3849 100

In the high obstacle workspace, the Con(2) method gives the best time average, where

the mean is 0.1871 and the median is 0.1844. The numerical results are presented in Table

4-7 and the boxplot representation is shown in Figure 4-14.

A statistical analysis is conducted to figure out if the Vlrrt(2) can be used generally

based on the confidence level of 95%. The T-test result gives P-Value > 5%, as shown in

Figure 4-15, which indicate that there is no sufficient difference between the use of Con(2)

the best method, and the Vlrrt(2) method, the third best one, in confidence level of 95%.

Two-sample T for Vlrrt vs Vlrrt(2)

N Mean StDev SE Mean

V l r r t 99 0.3740 0.0984 0. 0099

V l r r t (2) 100 0.398 0. 122 0. 012

D i f f e r e n c e = mu (V l r r t) - mu (V l r r t (2))

E s t i m a t e f o r d i f f e r e n c e : -0.0244

95% CI f o r d i f f e r e n c e : (-0.0554; 0.0067)

T-Test o f d i f f e r e n c e = 0

vs not =): T-Value = -1.55

P-Value = 0.123 DF = 18 9

Figure 4-13: T-test for the hypothesis "Vlrrt and Vlrrt(2) not equal" in T

Table 4-7: Tests results of high-density of obstacles. The best results marked by (*), the (2) indicate a
bidirectional method

Method Mean StDev Variance Median Success
BIAS 0.3790 0.1316 0.0173 0.3662 100
B L O S S O M 0.5642 0.2259 0.0510 0.5559 82
B L O S S O M (2) 0.2665 0.1148 0.0132 0.2485 100
C O N 0.4397 0.2582 0.0667 0.3640 83
CON(2) *0.1871 *0.0712 *0.0051 *0.1844 100
ConExt(2) 0.2033 0.0945 0.0089 0.1902 100
E X T 0.4738 0.1968 0.0387 0.4070 80
EXT(2) 0.2024 0.0738 0.0055 0.1981 100
ExtCon(2) 0.2053 0.0843 0.0071 0.1960 100
D V L R R T 0.3700 0.1510 0.0228 0.3506 99
DVLRRT(2) 0.2175 0.0746 0.0056 0.2033 100
V L R R T 0.3370 0.1216 0.0148 0.3324 99
VLRRT(2) 0.2072 0.0837 0.0070 0.1905 100

72

Boxplot of Time/Variations in high

1,2

1,0

0,8

E 0,6

0,4

0,2

Variations

Figure 4-14: Boxplots representation of results in high-density of obstacles

N Mean StDev SE Mean

Con(2)
V l r r t (2)

100
100

0 .1871
0.2072

0.0712
0.0837

0.0071
0.0084

D i f f e r e n c e = mu (Con(2)) - mu (V l r r t (2)
E s t i m a t e f o r d i f f e r e n c e : -0.0201
95% CI f o r d i f f e r e n c e : (-0.0418; 0.0015)
T-Test o f d i f f e r e n c e = 0
(vs not =): T-Value = -1.83
P-Value =0.068 DF = 193

Figure 4-15: T-test for the hypothesis "Con(2) and Vlrrt(2) not equal" in high density obstacles

In the doors obstacles workspace, the best variant is Dvlrrt(2) which has the time
average equal to 0.2961 and the median equal to 0.2623. The numerical results are shown
in Table 4-8, and the boxplot representation is shown in Figure 4-16 for all tested
variations.

In the same manner, we test if the Vlrrt(2) can replace the best method in this
workspace. The T-test hypothesis assumes that there is a difference between the best
variant Dvlrrt(2) and the second best one Vlrrt(2) as shown in Figure 4-17. Based on this
test we reject the hypothesis, because of the value of P-Value is greater than 0.05, which
means there is no sufficient difference between the two best variations in the confidence
level of 95%.

Boxplot of Time/Variations in doors obstacle

2 ,0-

Variations

Figure 4-16: Boxplots representation of results in doors obstacles

N Mean StDev SE Mean
D v l r r t (2) 100 0.296 0 .148 0 .015
V l r r t (2) 100 0.317 0 .198 0 . 020
D i f f e r e n c e = mu (D v l r r t (2) - mu V l r r t (2))
E s t i m a t e f o r d i f f e r e n c e : -0.0213
95% CI f o r d i f f e r e n c e : (-0.0702; 0.0275)
T-Test o f d i f f e r e n c e = 0
(vs not =): T-Value = -0.86
P-Value = 0.390 DF = 183

Figure 4-17: T-test for the hypothesis "Dvlrrt(2) and Vlrrt(2) not equal" in doors obstacle

Table 4-8: Tests results of doors obstacles. The best results marked by (*), the (2) indicate a
bidirectional method

Method Mean StDev Variance Median Success
BIAS 0.4232 0.2040 0.0416 0.3690 100
B L O S S O M 0.8529 0.4155 0.1727 0.8450 82
B L O S S O M (2) 0.3830 0.2202 0.0485 0.3433 100
C O N 0.8834 0.5052 0.2552 0.8670 84
CON(2) 0.3316 0.2315 0.0536 0.2757 100
ConExt(2) 0.3320 0.1854 0.0344 0.2883 100
E X T 0.7535 0.3801 0.1444 0.6839 84
EXT(2) 0.3511 0.1794 0.0322 0.3065 100
ExtCon(2) 0.3427 0.2057 0.0423 0.2896 100
D V L R R T 0.3884 0.1987 0.0395 0.3915 100
DVLRRT(2) *0.2961 *0.1479 *0.0219 *0.2623 100
V L R R T 0.4522 0.2389 0.0571 0.4003 99
VLRRT(2) 0.3174 0.1984 0.0394 0.2775 100

74

The last result and statistical analysis indicate that the Vlrrt(2) can be used in all spaces
without sufficient difference between it and the best variants in all space, based on the
confidence level of 95%.

Successful rate results

The tests show some variations have a tendency to fail of reaching the goal location,
mainly the unidirectional methods. Table 4-9 shows the successful rate of planning process
between the initial and the goal locations. The test repeated 100 times, in the four
workspaces. In each iterations, the RRT tree tries 2000 times to grow a branch and the test
is considered failed if the tree did not reach the goal within this limit.

Table 4-9: Successful rate of RRT methods, the number (2) after the method names, indicates a
bidirectional method

Low T High Doors
BIAS 100 71 100 100
B L O S S O M 94 35 82 82
B L O S S O M (2) 100 100 100 100
C O N 93 81 83 84
CON(2) 100 100 100 100
ConExt(2) 100 100 100 100
E X T 95 35 80 84
EXT(2) 100 100 100 100
ExtCon(2) 100 100 100 100
D V L R R T 100 97 99 100
DVLRRT(2) 100 100 100 100
V L R R T 100 99 99 99
VLRRT(2) 100 100 100 100

Unsuccessful variation in Low space
7-

6-

(A

g 4-
U

c
3 2-

1-

Variations

Figure 4-18: Unsuccessful results in low-density obstacles workspace

70-

60-

•2 50-

8 -
3 30-
(A
C 20-3

10-

unsuccessful variation in T space
70-

60-

•2 50-

8 -
3 30-
(A
C 20-3

10-
i—i

>j# 0<^ 0 ^ r c f 0 ^ # # x O ^ # x O ^ r o ^ x O ^

Variations

Figure 4-19: Unsuccessful results in T obstacle workspace

unsuccessful variations in High space
20-

a is-
(A
(A V
8 io-3
(A
C 3 5-

n n
U 1 1 1 1 1 1 1 1 1 1 1 1 1

0 # 0 ^ fO^ 0 > # # x < ^ # x 0 ^ f O * v # jfP*

Variations

Figure 4-20: Unsuccessful results in high-density obstacles workspace

un
su

cc
es

sf
ul

D

un
 O

un

o

Unsuccessful variations in Doors space

un
su

cc
es

sf
ul

D

un
 O

un

o

n
U 1 1 1 1 1 1 1 1 1 1 1 1 1

4& ^ co^ ^ l& ^ & <fr & \ # x<^

Variations Figure 4-21: Unsuccessful results in doors obstacles workspace

The results show that unidirectional algorithms have more tendencies to fail, more than
the bidirectional versions. Figure 4-18, Figure 4-19, Figure 4-20, and Figure 4-21 show
graphical representations of the unsuccessful rate in low-density, t-trap, high-density and
doors workspaces, respectively.

Path length and short path tests

In this section, the path length is tested for all variations in low, T, High and Doors
workspaces. And a method for shortening the generated RRT path is proposed.

The generated path of RRT usually a tortuous path and has many points and sharp
curves. The proposed algorithm makes the path shorter in the length by omitting the
useless points. It tries to replace multi-segments by one straight segment when it is
possible. The generated path is not the optimal, neither the shortest one, but, it has fewer
vertices and much more straightforward. Figure 4-22 shows the original path generated by
RRT (a) and the shortened path (b).

(a) (b)
Figure 4-22: The shortening path algorithm, (a) the original RRT path (38 point, length

=18.13), (b) the shortened path (6 point, length= 14.2)

The algorithm pseudo code is shown in Figure 4-23. The algorithm tests the connection
between the first points of the path with the last points directly, if a connection exists
without a collision, it deletes the midpoints between these two locations. In case of failure
the algorithm tries to connect the next vertex of the path {testing point) to the last one
(tested points). It repeats this process until the testing point is reached the last vertex in the
path, in this case, the algorithm starts again from the first point and tries to connect to the
previous vertex of the last one. The algorithm stops when the tested points reach the first
vertex.

The collisionCheck function is used to check the collisions between the obstacles and
the segment from pntl to pnt2 location.

77

The generated path is a path has fewer vertices and segments. It is not the optimal one,
because, it is based on the original path, which generated by RRT.

Figure 4-24 shows the short path in two different workspaces. The thick line represents
the generated RRT path, while the dashed one represents the shortened path.

S h o r t e n i n g RRT Pa t h A l g o r i t h m .
I n p u t : The RRT's p a t h .
Output t h e s h o r t e n p a t h .
LastTestedPntlnd =index o f l a s t p o i n t i n t h e p a t h ;
WHILE (LastTestedPntlnd ~= 2)

pnt2 = p a t h . g e t (L a s t T e s t e d P n t l n d) ;
FOR (floatPntInd=l;floatPntInd<LastTestedPntInd-l;floatPntInd++)

pntl = p a t h . g e t (f l o a t P n t l n d) ;
IF ~ c o l l i s i o n C h e c k (p n t l , p n t 2)

p a t h = p a t h . r e m o v e (f l o a t P n t l n d , LastTestedPntlnd);
LastTestedPntInd=updateInd(LastTestedPntlnd);
LastTestedPntlnd = LastTestedPntlnd-l;
BREAK;

END
END

END

Figure 4-23: Shortening path algorithm.

(a) (b)
Figure 4-24: The original RRT path (thick-red), and the shortened path (dashed-green)

The path length tests are conducted in the four workspaces. In the first workspace, the
low-density obstacle workspace, all variations are tested in order to estimate the difference
between these variations. The numerical results are listed in Table 4-10, and a graphical
representation of them is shown as boxplots in Figure 4-25. The results show that the best
method based on path length is the unidirectional Bias RRT.

78

Box plot of Path Len. in Low Obstacle
30

25

3
20-

15

10-

4 4 H T T
- I 1 1 1 1 1 - - I 1 1 1 1 1—

^ # # ^ & & ^

Variations

Figure 4-25: Path length boxplots in low density of obstacle workspace

of obstacle workspace. The best results marked by (*), the Table 4-10: Path length results in low density
(2) indicate a bidirectional method

Path Path S-path S-Path Rate
Median Min Median Min %

BIAS *14.336 12.770 11.856 11.478 17.30
B L O S S O M 15.373 13.316 11.817 *11.471 23.13
B L O S S O M (2) 14.644 12.947 11.787 11.490 19.51
C O N 17.359 13.366 14.085 11.553 18.86
CON(2) 18.880 12.210 14.195 11.532 24.81
ConExt(2) 16.534 12.796 12.010 11.556 27.36
E X T 15.189 13.235 11.831 11.473 22.11
EXT(2) 14.604 13.155 *11.810 11.496 19.13
ExtCon(2) 16.929 *12.062 12.058 11.530 *28.77

D V L R R T 14.540 12.444 11.834 11.504 18.61
DVLRRT(2) 14.773 12.808 11.862 11.499 19.70
V L R R T 14.846 12.565 11.946 11.565 19.53
VLRRT(2) 14.545 12.629 11.846 11.476 18.56

79

Box plot of Path Len. in T obstacle

*
e

L 1

r "
1

T
T 1 1 1 1 1 1 1 1 1 1 1 r

4& J* & C 0 < > & # # K < ^ & J C 0 < > ^ ^

Variations

Figure 4-26: Path length boxplot in T obstacle workspace

Table 4-11: Path length in T obstacle workspace. The best results marked by (*), the (2) indicate a
bidirectional method

Path Path S-Path S-Path Rate
Median Min Median Min %

BIAS 30.124 25.814 *24.089 22.309 20.03
B L O S S O M *29.976 26.635 24.488 22.191 18.31
B L O S S O M (2) 32.166 27.269 24.498 22.643 *23.84

C O N 33.658 26.281 25.934 22.277 22.95
CON(2) 33.618 26.742 25.831 22.462 23.16
ConExt(2) 33.170 27.120 25.427 *21.740 23.34
E X T 30.385 26.432 23.908 22.491 21.32
EXT(2) 32.562 26.460 25.091 22.127 22.94
ExtCon(2) 32.815 25.764 25.378 22.050 22.66
D V L R R T 31.148 25.324 25.104 22.522 19.40
DVLRRT(2) 33.177 26.489 25.831 22.367 22.14
V L R R T 32.041 *25.318 25.906 22.534 19.15
VLRRT(2) 33.436 28.006 26.165 23.233 21.75

In the T-obstacle workspace, the best result is recorded by blossom method based on the

median value of the path length. As shown in Table 4-11. The boxplot of these results is

plotted in Figure 4-26.

Box plot of Path Len. in High obstacle

35

30-

c
3 25

20-

15 y V V T T 1

1

T
i 1 1 1 1 1 1 1 1 1 1 1 1

& & , & aQ> <fr # KQ> <fr c& & &

Variations

Figure 4-27: Path length boxplot in high density of obstacle workspace

Table 4-12: Path length of high density of obstacle workspace. The best results marked by (*), the (2)
indicate a bidirectional method

Path Path S-Path S-Path Rate
Median Min Median Min %

BIAS 17.911 *14.233 15.045 13.269 16.00
B L O S S O M 17.766 15.349 *14.70 13.353 *17.26

B L O S S O M (2) 19.879 14.977 16.716 13.321 15.91
C O N 19.004 15.260 16.697 13.252 12.14
CON(2) 21.144 15.253 17.541 13.498 17.04
ConExt(2) 21.363 15.079 18.164 *13.191 14.97
E X T 17.752 15.542 14.702 13.286 17.18
EXT(2) 19.947 15.328 17.277 13.222 13.39
ExtCon(2) 20.535 14.613 17.109 13.393 16.68
D V L R R T 18.263 14.415 16.185 13.236 11.38
DVLRRT(2) 20.350 15.087 17.376 13.479 14.61
V L R R T *17.528 14.846 14.919 13.347 14.88
VLRRT(2) 20.022 14.730 16.832 13.412 15.93

In the high obstacle workspace, the RRT variations are tested and the results are listed

in Table 4-12. In addition, the boxplot representations of these results are shown in Figure

4-27. The best method's result in terms of the median of the path length is achieved by

Vlrrt method.

Boxplot of Path Len. in doors obstacle
28

26

24

. 22

I 2 0

£ 18-

16-

14-

12-

* * 5 I * * 8 f 2 * í í

- i 1 1 1 1 1 1 r - - | 1 1 r -

^ # # ^ & & &

Variations

Table 4-13: Path len;
bidirectional method

Figure 4-28: Path length boxplot in doors obstacle workspace

th in doors obstacles workspace. The best results marked by (), the (2) indicate a

Path Path S-Path S-Path Rate
Median Min Median Min %

BIAS 17.089 14.145 14.285 11.826 16.41
B L O S S O M 17.389 13.787 *13.960 11.771 *19.72

B L O S S O M (2) 17.256 14.153 14.127 *11.740 18.13
C O N 18.072 15.407 14.883 11.869 17.65
CON(2) 17.810 13.757 14.792 11.797 16.95
ConExt(2) 17.422 13.574 14.749 11.930 15.34
E X T 17.263 14.872 14.157 11.802 17.99
EXT(2) 17.413 13.685 14.304 11.764 17.85
ExtCon(2) 17.583 *12.278 14.524 11.799 17.40
D V L R R T 16.934 13.604 14.250 11.850 15.85
DVLRRT(2) 17.532 14.104 14.134 11.787 19.38
V L R R T *16.878 13.957 14.411 11.870 14.62
VLRRT(2) 17.577 13.046 14.165 11.835 19.41

In the last workspace, the door obstacle, the tests show that Vlrrt has the lowest median
of the path length. Table 4-13 shows the numerical results of the tested methods, while
Figure 4-28 shows the boxplot representation for these results.

Based on the results in all testing workspaces, the unidirectional tree methods generally,
give better results than the bidirectional trees do. The reason of this difference is the
extending procedure of RRT, where in unidirectional tree the expansion is done from the
nearest node in the tree, while in bidirectional cases, the path is composed of two paths,
which make it longer than unidirectional path.

The results also show that using shortening method reduces the path length in the
average of 13% - 28%, depending on the testing environment, the obstacles shape, and the
methods.

Summary

In this work, many approaches of RRT were tested in four different workspaces, some
statistical analyses have been done to support our decision about using one variation
instead of the others. In addition, we proposed a shortening algorithm to reduce the length
and the tortuous of the RRT paths.

We conclude that regarding to the time of execution, in low-density obstacles the
Vlrrt(2) method gives the best result. It has the rate of 100% of success. For the T obstacle
workspace, Vlrrt achieves the best result, however, it has one fail. So we choose to use the
Vlrrt(2) based on the statistical result, which shows that there is no sufficient difference in
these two variants with a confidence level of 95%. In high-density workspace, the best
variant is Con(2) method, and in the last workspace, the best variant is Dvlrrt(2).

4.1.3 Rapidly-Exploring Random Trees: 3D planning

In this work (Abbadi, Matousek, et al. 2012) the RRT algorithm is applied in three-
dimensional workspace to find a path for a holonomic system. We also developed an
algorithm for path shortening. This algorithm shortens the path by omitting unnecessary
points from the original path. Furthermore, we present a smoothing-out technique for real
dynamic behavior.

The result of this work can be applied in many applications, e.g. the robot arms, the
flying objects, CNC machine, 3D laser cutting machines, and other machines that work in
3D dimension.

Proposed methods

The generated path using RRT is a tortuous path. It has many nodes and sharpness edges.
We try to shorten the RRT path and make it as smooth as possible by removing useless
points. We introduce an algorithm in (Abbadi, Matousek 2012). It generates a shortened
path based on the original one. A new version is shown in Figure 4-30.

The algorithm tries to connect vertices from both path's edges and delete the midpoints
between them. The updated version tests the path from two directions and returns the
shortest one.

The original tortuous path that is generated by RRT is shown in Figure 4-29, in addition
to the first shortened path that starts from first toward the last point, and the second
shortened path, which start from last toward the starting point of the original path.

Figure 4-29: The shortening algorithms results. The solid red line represents the original RRT path, the
(black - -) line represent the first shortened path, and the (blue - .) line represent the second shortened
path

1. EndPnt ^ i n d e x o f l a s t p o i n t i n t h e p a t h ;
2. S t a r t P n t <-l;
3. t m p P a t h l ^ o r i g i n a l P a t h ;
4. WHILE (EndPnt ~= 2)
5. pnt2 «- t m p P a t h l (EndPnt);
6. FOR (S t a r t P n t <-l ; S t a r t P n t < EndPnt -1 ; S t a r t P n t ++)
7. p n t l «- t m p P a t h l (S t a r t P n t) ;
8. IF ~ c o l l i s i o n C h e c k (p i , p 2)
9. t m p P a t h l «- t m p P a t h l (1 t o S t a r t P n t)
10. + t m p P a t h l (E n d P n t t o t h e end) ;
11. Endpnt <- i n d e x o f p r e v i o u s p o i n t t o EndPnt;
12. BREAK;
13. END
14. END
15. END
16. tmpPath2^- o r i g i n a l P a t h ;
17. startpnt«-l;
18. WHILE (S t a r t P n t < tmpPath2's s i z e)
19. p n t l «- tmpPath2 (S t a r t P n t) ;
20. FOR (EndPnt ^tmpPath2's s i z e ; EndPnt > S t a r t P n t +1 ; EndPnt —)
21. pnt2 «- tmpPath2 (E n d P n t) ;
22. IF ~ c o l l i s i o n C h e c k (p i , p 2)
23. tmpPath2 <- tmpPath2 (1 t o S t a r t P n t)
24. + tmpPath2(EndPnt t o t h e end) ;
25. S t a r t P n t «- S t a r t p n t + 1 ;
26. BREAK;
2 7. END
28. END
29. END
30. IF (l e n g t h o f t m p P a t h K l e n g t h o f tmpPath2)
31. RETURN t m p P a t h l ;
32 . ELSE
33. RETURN tmpPath2;
34 . END

Figure 4-30: The shortening path algorithm

84

A smoothing-out technique is applied to the shortened path using Catmul-Rom spline
(Catmull et al. 1974), as shown in Figure 4-31. Advantage of this solution is also for the
future extension of the path planner. The shorter and smooth path is more convenient for a
dynamic ride of the real vehicle.

Figure 4-31: The smoothed path (bold ...) which generated based on the shortened path (- -)

There are several approaches to spline design. Catmul-Rom spline is a special kind of
Hermite spline. The spline is a sequence of curves joined together to form a larger curve.
These curves pass through given points smoothly and continually.

Hermite spline method calculates the curve using two points and tangents vectors in
these points as shown in Figure 4-32, (Shikin et al. 1995; Salomon 2011).

Figure 4-32: Hermite spline principle, and the effect of the tangent magnitude, po, pi are the start and
the end points, mo, mi are the corresponding tangents in the points, Source: (Salomon 2011)

The curve P(f) is calculated using the following equation

P(t) = (2t 3 - 3t 2 + l) p 0 + (t 3 - 2t 2 + t)m 0 + (- 2 t 3 + 3t2)p± + (t 3 - t2)mlt

0 < t < 1

Where po, pi is the given points, mo, mi is the tangents vectors, t is the knots parameter
in the intervals [0,1].

Using the matrices notation, the previous equation is written as follows.

P(t) = T(t)HB = (t 3 t 2 t 1)

2
- 3
0
1

- 2
3
0
0

1
- 2
1
0

Where the H matrix is called a Hermite basis matrix.

Figure 4-33: Catmull-Rom calculation method, Source: (Salomon 2011)

In Catmul-Rom case, four points are used to generate the curve on the segment P2P3, i.e.
[Pi, P 2 , P 3 , P 4] , where the tangent on P 2 is parallel to the P 3 P 1 segment, and the tangent in
P 3 is parallel to the P 4 P 2 segment, as shown in Figure 4-33. Based on these settings the
equations is written as follows

The tension parameter s is used to change the magnitude of the tangent vectors. The
effect of these changes is shown in Figure 4-32. In Catmull-Rom method, the s parameter
is fixed and has the value (0.5).

For multiple points, [P i , P 2 , . . . , P m] , the Catmull-Rom curve is calculated for every
segment P,-,P,-+.z using four points [P w , P , - , P j + i , P j + 2] . The points' sets that generate the curves
are overlapped, i.e. [P i , P 2 , P 3 , P 4] , [P 2 , P 3 , P 4 , P 5] , [P m - 3 , P m - 2 , P m - i , P m] .

A problem rises up because of spline algorithm; the smoothed line sometime collides
the near obstacles, and that is because the smoothing algorithm does not check the
generated path if it collide or not, moreover the Catmull-Rom method generate
uncontrollable curves. Because of this problem, the algorithm is re-implemented and the
local-spline is proposed. It smoothes the path around the corners, which means the path
will be kept straightforward, but only sharp edges will be smoothed.

To implement the local spline, two points on the path near the corner are used. These
points are taken far from the corner by d distance, where d is chosen depending on the

kinematic and dynamic constraints. These points in addition to the corner point are passed
to the smoothing algorithm to generate a path around the corners. Figure 4-34 shows how
the normal spline collides with walls and how the new local-spline works. However, this
method reduces the collided points, but it still needs more checking for collision.

Figure 4-34: Local spline. The dashed line represents the spline path, the (.-) path represents the local-
spline path

In literatures, many researches deal with the smoothing problem, for example, in (Kito
et al. 2003), the authors proposed a global path generation method. It is based on the
visibility graph, and it re-arranges the path to be as a sequence of sub-goals (middle
points). Then it constructs a graph for the smoothed paths. Another work is presented by
(Yang 2013) for smoothing non-holonomic path planning, they proposed the Spline-based
Rapidly-exploring Random Tree (SRRT) algorithm. It uses the cubic Bezier splines as a
local planner to connect two states, which replace the dynamic simulation of RRT by
parameterization of the cubic Bezier splines. Another research on non-holonomic domain
proposed a real-time method for re-planning the path and smoothing it. The smoothing step
is achieved by selecting appropriate sequences of alternating trims and maneuvers from a
precomputed library of motion primitives (Bottasso et al. 2008).

Testing Environments

We have constructed four testing scenarios. The first one involves a wall has a passage as
shown in Figure 4-35-a. This obstacle evaluates the algorithm efficiency in simple narrow
passage scenario. The second workspace involves two walls where each one has a window
as shown in Figure 4-35-b.

The third workspace has three walls with windows in different locations as shown in
Figure 4-36-a. The last scenario has vertical and horizontal obstacles with different
locations of the windows as shown in Figure 4-36-b.

(a) (b)
Figure 4-35: (a) The narrow passage workspace Wall 1, (b) the different windows location workspace
Wall 2

0 0
(a) (b)

Figure 4-36: (a) Multi-walls and different windows location workspace, Wall 3, (b) the horizontal and
vertical walls workspace, Wall 4

Results

We have tested six variations of RRT the basic RRT (Ext), Blossom, Vlrrt and the
bidirectional versions of them.

The tests were executed for every method 100 times per scenario. The testing platform
was as follows, a PC equipped with Intel Core2Duo CPU 2.53 GHz, and 2 GB of memory,
and Windows7 64-bit is used. The algorithms have been implemented in Matlab
environment. We consider the RRT failed to reach the goal after 2000 attempts to grow a
branch.

88

Wall 1 Wall 2

2Vlrrt - \-\

Vlrrt

2Vlrrt -

Vlrrt-

2Blossom - H

Blossom -

2Ext- H T ~

Ext-

2Blossom - fj]}̂ HbHH-t-

Blossom - l—

2Ext- ^H+t-^-

Ext- h -

0 1 2 3 4
Execution Time

Wall 3

0 1 2 3
Execution Time

Wall 4

2Vlrrt -

Vlrrt -

2Blossom -

Blossom

2Ext

Ext

0

2Vlrrt -

Vlrrt

2Blossom -

Blossom

2Ext

Ext

-t- +

- C Q

1 2 3 4
Execution Time

0 1 2 3 4
Execution Time

Figure 4-37: Boxplots for RRT variations based on an average time of executing

The numerical results in every testing method are shown in Table 4-14. They represent
the average of execution time for successful tries to find a path. In addition, the boxplot
representation is shown in Figure 4-37.

The results show that using bidirectional-trees are better than unidirectional methods
where these methods has the lowest average of execution time to find a result, they also
more probabilistically complete, as shown graphically in Figure 4-38, which shows the
number of failed tries to find a path.

The tested algorithms have some difficulties to find a solution in a narrow passage,
where even the bidirectional approaches failed to find a solution in some tests, as shown in
Figure 4-38-walll.

Table 4-14: The average execution time for the successful tries of the RRT

W a l l l Wall 2 Wall 3 Wall 4
Ext 2.16 1.83 3.17 2.87
2Ext 1.16 0.24 1.29 0.95
Blossom 2.16 1.74 2.76 2.56
2Blossom 1.08 0.26 1.40 0.96
Vlrrt 1.73 1.57 2.80 2.27
2Vlrrt 1.05 0.20 0.99 0.57

Unsuccessful Algorithm - Wall 1 Unsuccessful Algorithm - wall 2

20 40 60 80 100
Unsuccessful Algorithm - wall 3

20 40 60 80 100
Unsuccessful Algorithm - wall 4

20 40 60 80 100 0 20 40 60 80
4-38: Unsuccessful attempts to find a path in 100 tests per scenario

100
Figure

The result shows that the bidirectional Vlrrt (2Vlrrt) is better than the other methods,
where the successful branching increases the extension step that makes the tree spreads
faster in free spaces, and performs a fine exploration around the obstacle.

The advance of 2Vlrrt can be inferred also from the boxplot representation of the
number of nodes in the generated path, see Figure 4-39. 2Vlrrt has a small path size that
means the path has less curves, which in consequence indicates that the path is more
straightness and has longer branches than the other generated paths.

The Vlrrt method's performance is affected by the increase or the decrease of the
branching length factors. In these tests, the incremental factor is set to add 20% of the
current node's extension step. The decrement factor, in case of branching fail, is reset to be
as the original extension step (e=0.5).

In the Blossom algorithm, an optimization of the blossom distance (Blossom_Dis)
variable is tested to find the best performance in the given situations. The optimization is
based on the effect of Blossom_Dis on the blossom method. If the distance is very small,
the blossom RRT will behave like the basic RRT, in the opposite, if it set to a large value,
the old branches will block the new ones, which cause a failure to navigate through the

90

small area, windows, and narrow passages. The used value of Blossom_Dis in our test is
set to be equal to e*l.25, where the e is the original extension distance.

Wall 1 Wall 2

2Vlrrt

Vlrrt

2Blossom

Blossom

2Ext-

Ext-

i — U J — |

2Vlrrt - -t-h-

Vlrrt - i—

2Blossom -

Blossom -

2Ext-

Ext-

-t- -t- +

20 30 40 50
Path size

Wall 3

60 20 30 40 50
Path size
Wall 4

2Vlrrt

Vlrrt

2Blossom

Blossom

2Ext

Ext

H + -t- -t- +

H -t-tt-t- -t-

2Vlrrt

Vlrrt

2Blossom

Blossom

2Ext

Ext

- m -

20 40 60
Path size

80 20 40 60
Path size

80

Figure 4-39: Boxplot of path size in the tested workspaces

We make the Blossom_Dis optimizing in the Wall2 scenario, and the result is shown in
Figure 4-40, where mean, median and median filter are drawn. The median curve is
smoothed by the median filter, for a better estimation. The best estimation based on the
curve is between 0.2 and 1.5 and the MIN value of median is when Blossom_Dis =1.1
which corresponding to execution time ~= 0.174.

In the same way, another optimization for the extension step e in two different
workspaces is tested. The results show that the optimal value of Wall 2 scenario is between
1.25 ~ 3.25 as shown in Figure 4-41-b, and the optimal one in the Wal l l located in the
range between 0.5-1, Figure 4-41-a.

Optimaize Blossom Dis on wall 2
1 F —r- —^"

0 0.5 1 1.5 2
Blossom Dis 0.1:0.1:2

Figure 4-40: Bloosom_Dis optimization in Wall2 scenario

Optimaize Extension Step on Wall 1 Optimaize Extension Step on wall 2

1
1 mean
1
1
1 median
I
\

filter median
1
1
1 I
1

•. \ X
\

V

1 2 3
Extention step 0.1:0.1:4

(a)

mean
median
filter median

1 2 3
Extension Step 0.1:0.1:4

(b)
Figure 4-41: Extension step optimization in the walll scenario (a), and in the Wall2 scenario (b)

Summary

In this work, we test RRT algorithms in three-dimensional workspaces. In addition, an
algorithm for shortening the path is introduced, and a smoothing-out technique to the
shortened path has been presented.

The results show that using two trees is better than using one tree in all scenarios.
Several failures of finding the path have occurred in the narrow passage scenario.

The 2Vlrrt is better than the other methods in terms of execution time to find the path and
the generated path has fewer points than the others do.

We conducted several tests to optimize the parameter of Blossom RRT and to
optimize the length of extension; the results were different depend on the environment and
scenario. In the future works, narrow passage environments needs more study to find
efficient methods and avoid algorithm failures.

4.1.4 Spatial Guidance to RRT Planner using the Cell-Decomposition
Algorithm

In this work (Abbadi, Matousek, et al. 2014), we made a comparison between the
probabilistic path-planning method, i.e. RRT and the spatial planner, i.e. exact cells-
decomposition algorithm.

A new test is proposed to make some tradeoff between the efficiency of planning using
CD in 2D space and the planning in dynamic space using RRT. The proposed method uses
the path's points of the CD inside the RRTs planner as a spatial guidance.

Problem formulation and proposed solution

The RRTs as example of randomized algorithms, has a good performance in high
dimension or continuous spaces. In general, the limitation of these algorithms is the
planning in small areas. In cell-decomposition case, it is efficient in low dimensions
planning; however, the building of its graph could be hard in some cases.

The available spatial information and the randomize approaches is combined to
overcome the drawbacks in narrow area. The CD is used to produce a primitive path over
2D or 3D workspace and provide this path to the RRTs planner as bias-path. This approach
will keep some reasonable balance between dynamic and uncertainties from one side, and
optimality, efficiency in spatial planning from the other side. Moreover, the CD can guide
RRTs in a small area.

In order to show the difference between these two planners we make some tests in two
scenarios. The first one is a simulation of offices and corridors architecture-schema and the
other is the typical issue for RRTs, which is a small area and narrow passage.

Results

We repeat the test 100 times for RRTs in every scenario and take the mean of the results
for the successful tries to reach the goal. In each run, RRTs planner is setup as follows. The
extending length set to (e = 0.5). The tests are repeated based on the RRT iteration, where
the RRT is considered failed to reach the goal after {3000, 5000, 10000, and 100000} tries
to grow a branch. We use Intel Xeon(R) PC with C P U of 2.67 GHz, and 6 GB of memory,
and Windows 7 64-bit. We implement the algorithm in M A T L A B environment.

The CD planner uses the Dijkstra's algorithm for search on the graph. The Dijkstra in
this case has 0(\og(N)E) time complexity. Where N represents the nodes number and E is
the edges number in the graph.

In the first workspace (building-like scenario), a simulation was lunched for a path
planning, and the results are listed in Table 4-15.

The results show the generated nodes number in both CD and RRT cases. In CD case
the nodes number represents the number of graph's nodes, which is constant. While in
RRTs case, the node numbers are taken as an average of the results in a 100 times of
repeated tests.

The results show that the RRT algorithm is probabilistically complete when the iteration
approaching 10000 in this workspace. In addition, the results show that CD algorithm is
faster than RRTs in complete case by 7.6032 times.

(a) (b)
Figure 4-42: Path planning in building-like workspace using (a) RRT, (b) CD algorithm

Table 4-15: Test results of building-like scenario, the numbers in time fields (), represent the percent of
RRT's time comparing to CD's time

Nodes
number

Preparing
Time

Planning
Time

Total time
when
success

Path
Length

Time
when
fail

Successful

C E L L Dec. 33 0.3152 0.0056(1) 0.3208(1) 40.92 - 100%

RRTs(3K) 478.17 0 1.85(331.03) 1.85
(5.77)

43.46 2.0520 12%

RRTs(5K) 547.17 0 2.46(493.17) 2.46(7.67) 41.77 3.2539 90%
RRTs(lOK) 540.48 0 2.44(435.55) 2.44(7.60) 42.71 - 100%

The preparing time is the time required to generate the graph in CD. However, it is not
required in the RRT case. We can infer based on the planning time that the CD is an
efficient planner comparing to RRTs in 2D workspace for non-holonomic movements. In
consequence, for repeated task, the CD can be 436 times faster than RRTs. In addition, the
graph size in the CD is constant, which makes it applicable for real-time planning.

Figure 4-42 shows the testing workspace, which consists of rooms and corridors. The
first part Figure 4-42-a shows the solution founded by RRTs planner. While Figure 4-42-b

uses the CD planner to find a path. The generated cells are shown graphically in Figure
4-43-a, and the corresponding CD's graph is also represented graphically in Figure 4-43-b.

In the second scenario, the narrow passage problem is simulated. The result is shown in
Table 4-16. It indicates that the RRT records some failures, even when the iteration-limit
set to 100000 iterations.

This workspace is presented in Figure 4-44, where the first figure (a) uses the RRT
planner to find a solution. In (b) the generated cells using CD algorithm are shown, in
addition to the path between the initial and goal positions, which lay on the cells (2 and
15). The generated graph is shown in Figure 4-45, where the shaded cells represent the
path between cells 2 to 15.

Table 4-16: Test results in the narrow passage scenario, the numbers in time fields (), represent the
percent of RRT's time comparing to CD's time

Nodes
Preparing

Time
Planning

Time

Total time
when

success

Path
Length

Time
when
fail

Successful

C E L L Dec. 19 0.2 0.003(1) 0.203(1) 24.33 - 100%
RRTs(3000) 554.65 0 1.19(441.48) 1.19(5.88) 22.14 2.13 31%
RRTs(5K) 629.66 0 1.59(587.22) 1.59(7.82) 23.17 3.24 41%
RRTs(lOK) 644.9 0 1.80(668.11) 1.80(8.90) 23.08 5.82 44%
RRTs(lOOK) 729.07 0 6.39(2368.40) 6.39(43.90) 23.00 50.44 67%

In order to enhance the RRT planner, a new method was proposed. It tries to exploit the

spatial information that provided by CD and guide the RRT growth toward the possible

path. The CD's path points are considered as bias points to the RRT trees as shown in

Figure 4-46, where the dots represent these points.

Figure 4-45: The generated graph by CD algorithm in the narrow passage workspace. The shaded nodes
represent the corresponding path in the graph between initial and goal cells

Figure 4-46: Path planning using RRTs with a bias toward CD path points, the dots represent points on
CD path

We set the RRTs planner to bias toward these points in the probability of (0.2). The
results are listed in Table 4-17, and Table 4-18 for both building-like and narrow passage
workspaces, respectively.

Table 4-17: Test results in the building-like workspace, the bias to CD-path's points is equal to 20%,
and the numbers in () in planning time fields represent the time reduction percent using the bias

1st scenario Nodes
Num.

Planning Time
(without bias)

Planning Time Successful Successful
(without bias)

RRTs(3000) 428.58 1.8538 1.8189 (-1.9%) 64% 12%
RRTs(5000) 447.1 2.4594 2.0266 (-17.5%) 100% 90%
RRTs(10000) 463.31 2.4391 2.1459 (-12%) 100% 100%

Table 4-18: Test results in narrow passage workspace, the bias to CD-path's points is equal to 20%, and
the numbers in (), in planning time fields represent the time reduction percent using the bias.

1st scenario Nodes
Num.

Planning Time
(without bias) Planning Time Successful Successful

(without bias)

RRTs(3000) 297.10 1.1920 0.5676(-52.4%) 86% 31%

RRTs(5000) 292.72 1.5855 0.5512(-65.2%) 86% 41%

RRTs(10000) 299.96 1.8039 0.6178(-65.8%) 86% 44%

In comparison with the previous results, the bias enhances the RRT algorithm's
completeness significantly in all cases. Also in the narrow passage scenario, the time of
planning decreases about 52% in worth case while the completeness increases. The success
of the planner in a narrow passage workspace using spatial guidance remained at 86%. It is
because of another drawback of RRTs, which is the branch blocking. That means the tree's
nodes are located near to the narrow area's gate and they take some position where the new
branch cannot pass to the passage without colliding with obstacles. The solution for this
case can be made by choosing a smaller extension distance. However, that generate a
larger number of nodes to construct the tree, which means it increases the computation and
memory cost.

Summary

In this work, we test CD algorithm, which construct an adjacency graph of the free
workspace cells, in addition, to the RRT planner. The results show that the CD planner
finds a path efficiently in static and known environments. The CD is faster than the RRT
planner in preparing and planning a path in simple workspace. We test the idea of
introducing the spatial information to the RRT planner and it gives a good result. It
improves the completeness and the planning time.

This work was a first step to build a hybrid planner, which works efficiently in
continuous, high dimension space using the available knowledge and spatial information,

and overcome the drawback of randomized sampling-base algorithms. The future work
will focus on using available information to speed up the complex motion planning for
robots in uncertainty and dynamic environments.

4.1.5 Collided path replanning in dynamic environments using RRT and
Cell decomposition algorithms

In this work, the cell decomposition algorithm is used to find a spatial path in preliminary
static workspaces, and then the RRT is used to validate this path in the actual workspace
(Abbadi, Prenosil 2015b). Two methods are proposed to enhance the omnidirectional
robot's navigation in partially changed workspace. First, the planner creates RRT tree and
biases its growth toward the path's points in ordered form. The planner reduces the
probability of choosing the next point if a collision is detected, which increases the RRT
expansion in the free space. Second method uses a straight planner to connect the CD-
path's points. If a collision is detected, the planner places RRT trees in the both sides of
collided segment. The proposed methods are compared with others approaches. The
simulation shows that the proposed methods have better results in terms of efficiency and
completeness.

Figure 4-47: (a) The drawback of ACD in dynamic environments, (b) the drawback of RRT in narrow
passage and small regions

Proposed Methods

In this work, the RRT and approximation cell decomposition (ACD) algorithms are
combined together in order to exploit the advantages of each of them. The new planners try
to overcome the drawbacks, which effect the performance of the navigation process
significantly, by complementing these two approaches.

The RRT planner has relatively high tolerance to obstacles shapes and workspace
changes. This feature is missing in the A C D planner as shown in Figure 4-47-a. However,
The RRT is not efficient in small areas and narrow passage as shown in Figure 4-47-b,
unlike the A C D planner, which does not face this problem. Based on that, the efficient
spatial planner, A C D , is used to plan a primary path in stationary workspace. Then, this
path is used to guide the RRT growth.

The RRT planner validates the ACD's path when a query is established in the actual
workspace. If a collision is detected due to the change in the workspace, the planner re-
plans the path locally through the changed regions. Figure 4-48 shows the generated path
using this principle.

Two approaches have been proposed to benefit from this combination. These planners
focus on the enhancement of navigation problem for omnidirectional robots in partially
dynamic workspace. In next sections these two proposed methods is discussed in more
details.

Figure 4-48: The generated path using the combination between A C D and RRT

a. RRT Validator Planner

The RRT validator uses ACD's path as a guidance to the RRT tree's growth. It considers
the CD-path's points as an ordered set, and directs the bias toward these vertices. The RRT
trees branching toward these set in the same order, point by point. In the initial state, the
probability of choosing the next point of the path is set to the value of 100%. If a collision
is detected, then this probability is reduced in order to allow the RRT explores the free
space and attempts to reconnect to any point of the ordered set.

If it reconnects, then the probability to choose the next point is reset again to the value
of 100% to force the planner follows the original ACD's path once again.

This strategy forces the planner to follow the guiding path when it is possible, and at the
same time, it gives the planner a freedom to find an alternative local path to the collided
segments.

In our tests, two RRT validators are used to validate the path. The first one rooted at the
initial position and the second one rooted at the goal position. They try to follow the A C D
path, or find an alternative local path. The RRT trees are shown in Figure 4-49-a, where
they try to follow the A C D ' path (the dotted line).

(a) (b)
Figure 4-49: Examples of the proposed methods. The dotted line represents the ACD path in stationary
workspace, (a) The RRT validator method, which creates two RRT trees from the initial and the goal
location, (b) The local RRTs method, which creates nine local RRT trees

b. Local RRT Planners

The second proposed planner uses simple straight-line planner to connect the A C D path's
points and test the collision. The planner tracks the valid points of the path and creates
sequences of these points. In case that all points are valid, then the planner returns these
points as a solution. In the other case when the workspace is changed, and a collision
happened, the planner breaks the original path sequence in the collided locations and
rebuilds sequences of the continuance valid points. It also excludes the points, which locate
in the obstacle areas.

Each of these sequences is associated with RRT tree. The trees later on explore the
space freely with small bias toward the other tree's nodes. If two trees are near to each
other, they are merged to form one tree. When all trees are merged, they form a single tree,
which include the initial, and goal locations.

In this planner, our strategy is to generate augmented local RRTs, in order to navigate
around the new obstacles locally. Figure 4-49-b shows the local RRTs planners method in

100

simulation. In this example, it creates nine local RRT trees based on the original path,
which is generated in the stationary workspace.

Tests and Results

The proposed approaches are tested in two different workspaces as shown in Figure 4-50.
The first one represents an office with one route between the rooms, and the second one
represents offices, which have two possible routes between them.

1 1 1 1 1
* 1 i l f i i

1 — 1

1 1
(a) (b)

Figure 4-50: Testing workspaces, (a) one route office between rooms (WS1), (b) multi routes between
offices (WS2)

I -

• i
3 10

(a) (b)
Figure 4-51: Example of RRT path using (a) Local RRTs method, (b) RRTs validator method, in
partially changed workspaces. The bold-green lines represent the shortened RRT path in both tested
workspaces. The boxes represent the new obstacles

101

The robot in this work is considered as a holonomic point translates in the workspace.
The results of the proposed methods are compared to the other methods, i.e. the basic RRT
algorithm, Goal Bias RRT, and the bias toward the other trees. Figure 4-51 shows an
example of RRT path for the proposed methods, the local RRTs method (a), and RRTs
validator method (b) in the testing workspaces.

a. Testing Parameters

The bias values, which are given to the compared methods, are set as shown in Table 4-19,
where the basic RRT chooses a random point without any bias. The goal-bias RRT directs
the growth of the tree toward the goal location by selecting this location in probability of
10%. In the tree's nodes bias, the RRT chooses a point of the others trees by the
probability of 30% that force the trees to merge more quickly.

Table 4-19: The probability of choosing next points (bias value)
Method Bias Value
RRT 0
Goal Bias 0.1
Tree Node Bias 0.3
RRTs validator (valid point) 1
RRTs validator (Collison) [0.2,0.1,0.7]
Local RRTs 0.3

In our proposed methods, the bias value of the validator RRTs is set to 100% when no
collision occurred. Else, the bias value is set as follows, it has the value of 20% toward the
next valid point in the ordered set, in addition, to the value of 10% bias toward any other
points in those points set. The planner in this case has the probability of 70% to explore the
workspace freely and biases the growth toward a randomly chosen sample.

The last method, the local RRTs approach, uses the bias toward the other trees by the
value of 30%.

The simulation repeated 100 times and the average of the successful attempts are taken
for results comparison. The results include the execution time, the number of RRT
iterations, which is corresponding to the number of RRT branching attempts, and the
number of successful attempts to find a path.

The probabilistically completeness is estimated using the successful attempts result.
While the efficiency is estimated using the time of execution and iterations results. The
time of execution could be varied significantly based on the hardware and code
optimization, while RRT iteration is independent of HW and the programmers skillful.

The A C D resolution is set to be 0.2 unit. Moreover, the ACD's path points are
generated in ordered form, from the initial to the goal locations. They are constructed using
the initial and the goal points, the free cells' centers, and the barriers' midpoint between
the consequence cells. We use the Dijkstra's algorithm to search in the ACD's graph. RRT

102

parameters are set as follows; the extension step is equal to 0.3 unit. And, the bias
probability is fixed at 100% for next path' points in case of no collision is detected.

The reduced bias is divided into three values when the path is collided within obstacles.
1- The bias toward the next valid point is set to a value of 20%. 2- The bias toward other
path's points is given the value of 10%. 3- The rest of the bias is relaxed to allow the
planner chooses random samples freely. The RRT planner considered as failed if it cannot
find a path after 2000 tries of branching.

b. Results and Discussions

In the first workspace, new obstacles are scattered in the original workspace. They are
positioned to collide within the A C D path and add more difficulty to navigation process
through the changed workspace. The workspace changes are shown in Figure 4-52-b,
where the boxes represent the new obstacles. The A C D path is shown as a solid line
between the initial and the goal locations. The cycle markers represent the bias points.
A C D algorithm approximates the free cells as shown graphically in Figure 4-52-a, the path
in this case is produced using the Dijkstra searching method in the A C D adjacency graph.
Figure 4-53, shows the generated path using RRT validator (a), and the local RRT (b)
methods.

The numerical results are shown in Table 4-20, where the proposed methods show more
probabilistically completeness than the other methods do.

(a) (b)
Figure 4-52: Office-like workspace (WS1); (a) cell decomposition approximation, (b) new obstacles,
ACD path represented by the solid line, and the bias points represented by cycle markers

103

1
• — —

l l l l 1 l •
• — —

l l l l

(a) (b)
Figure 4-53: (a) The generated RRT path using RRT validator method, (b) the generated RRT path
using local RRTs method in WS1 workspace, the red-bold line represents the original RRT path, the
green-dotted line represents the shortened path, the bias points represented as (o) markers

Table 4-20: The result of the tested methods in WS1
Method Mean Time Mean Iteration Success
RRT 1.03 1137.11 96
Goal Bias 1.12 1180.57 87
Tree Node Bias 1.23 1365.34 80
RRTs validator 0.45 270.19 100
Local RRTs 0.19 95.20 100

The Local RRT trees method gives the best results; it has the lowest execution time, and

the lowest iteration to find a path. Moreover, the RRT validator method gives better results

than the other competitor does. Figure 4-54-a sums up the iteration results for the first

workspace WS1 using the boxplot representation.

Office like workspace; WS1 Offices like workspace; WS2

2000-

1800-

1600-

1400

1200-

1000-

800

600

400

200

0-

GoalBias TreeBias RRTs validator Local RRTs

(a)

2000 -

1800-

1600

1400-

1200-

1000

800

600

400

200

0-
RRT GoalBias TreeBias RRTs validator Local RRTs

(b)
Figure 4-54: RRT iteration boxplots for WS1 (a) and WS2 (b)

104

In the second workspace, the partially changes are introduced by scattering new
obstacles in the stationary workspace. The obstacles collide the A C D path and produce
more narrow passages. Figure 4-55-b shows the changes in the workspace, where the
obstacles are represented by the boxes. The A C D path is shown in the figures as a solid
line between initial and goal locations, and the bias points, which are generated on this
path, are shown in the figures as cycle-markers. The approximation of the free workspace
using A C D is shown in Figure 4-55-a. And the generated path using RRT validator, and
the local RRT methods are shown in Figure 4-56.

Table 4-21: The result of the tested methods in WS2
Method Mean Time Mean Iteration Success
RRT 0.92 817.13 96
Goal Bias 0.98 871.06 94
Tree Node Bias 1.076 1005.10 86
RRTs validator 0.62 332.07 100
Local RRTs 0.24 117.17 100

The numerical results are presented in Table 4-21. As shown in this table the proposed
methods give the best results; they are probabilistically complete as it is inferred from the
success rate result. The Local RRT trees method gives the best results in terms of
efficiency; it has the lowest execution time, and the lowest iteration average. Figure 4-54-b
condenses the iteration results for WS2 using the boxplot.

Summary

In this work, the approximation cell-decomposition algorithm (ACD) is combined with the
RRT planner in order to enhance the omnidirectional robot navigation in partially changed
workspace. The A C D finds a spatial path in preliminary and stationary workspaces, and
then the RRT is used to validate this path in the actual workspace.

Two methods have been proposed in this work. First, the planner creates instances of
RRT which bias toward the path's points in ordered form. It updates its bias value based on
the collision detection information. The Second method uses a straight-line planner to
connect path's points and creates local RRT trees on both sides of the collided segment of
the path. The proposed methods compared with other approaches and the simulation shows
that they give the best results in terms completeness, while the local RRTs method gives
the best result in terms of efficiency in both testing workspaces.

(a) (b)
Figure 4-55: Offices-like workspace (WS2); (a) approximation cell decomposition, (b) new obstacles,
A C D ' path represented by the solid line, and the bias points represented by cycle markers

•
•

— p J | J

•

— p J | J
B f i i •

•

•
m • • . -

•

T •
•

1 " •
• •

•

(a) (b)
Figure 4-56: (a) The generated RRT path using RRT validator method, (b) the generated RRT path
using local RRTs method in WS2 workspace, the red-bold line represents the original RRT path, the
green-dotted line represents the shortened path, the bias points represented as (o) markers

106

5 EXPERT SYSTEM

Expert system (ES) is "An intelligent computer program that uses knowledge and inference
procedures to solve problems that are difficult enough to require significant expertise"
[prof. Feigenbaum].

Expert systems are designed to solve complex problems by reasoning about knowledge
like an expert, they do not follow the procedure way as in conventional programming case,
rather they act as an expert to solve a problem in a particular domain. ES processes the
information in symbolic form, copes with errors in data, and with imperfect rules of
reasoning. In addition, ES can answer why and how questions reasonably well, and
explains how it arrived at a particular (Sasikumar et al. 2007; Negnevitsky 2005).

The terms of expert system and knowledge-based system are used interchangeably,
even though there are small differences between them. These differences are based on the
inference methods, data storage, and knowledge collecting methods.

The expert systems are used in many applications, e.g. interactive application, faults
diagnostic, medical decision support, educational application, knowledge management,
resource planning, controls, and many other fields.

ESs have many advantages, they are used to capture the scarce expertise, increased
productivity, and quality, decreased decision-making time, reduced downtime via
diagnosis, knowledge transfer, integration of several experts' opinions, and working with
uncertain information.

Expert system

Inference Engine

Knowledge-base

Required facts,
Advise, and solution

Figure 5-1: Expert system components

5.1 Expert system structure
The expert system contains two main components, the knowledge base module, and the
inference engine module. Other parts can be added based on the application (Sajja et al.
2010). For example, user interface, knowledge engineer interface, and explanation
facilities, etc. Figure 5-1 shows the basic expert system components.

5.1.1 Knowledge base

The knowledge is a theoretical or practical understanding of a specific area. The
knowledge base in expert system contains the "domain-specific knowledge," which is
required knowledge to solve a problem.

The knowledge can be represented in many ways, e.g. production rules (if-then rules),
clausal logic, Object-Attribute-Value Triples, semantic networks, and frame
representations.

Rule-based representation

If-then rules are one of the most common forms of knowledge representation that used in
expert systems. Most experts are capable to express their knowledge in the form of rules.

Any rule consists of two parts: the IF part, called the condition (premise or antecedent),
which is evaluated based on what is currently known about the problem; and, the THEN
part, which is called the action (conclusion or consequent). For example,

I F pathFallure > 3 THEN pathWeight is 0
I F pathExecTlme is High, and pathFallure is High THEN collldeTendency is High

In the first example, the variables in IF-THEN statements are crisp variables
(constants); in this case, if the knowledge about these variables is not certain, then a degree
of certainty is attached to each rule. These degrees of certainty are called certainty factors.

In the second example, the variables have symbolic value. In this case, uncertainty in
variables' values, beside the certainty factor method, can be handled using fuzzy expert
system. The fuzzy expert system is discussed in a separate section.

Clausal Logic statements representation

The clausal logic statements are similar to rules-based structure. However, the expressive
power of logic based knowledge representation languages is much better than that in if-
then rules.

A clause is formed by combining a number of literals using connectives. The
permissible connectives are (<— implication), (and), and (or). A clause begins with a
consequent-part, followed by an implication and then an antecedent (Sasikumar et al.
2007).

108

Object-Attribute-Value Triples representation

The 3-tuple representation is a very simple form. It consists of three parts, for example

- Path Length 10
Path nVertices 23
RRT execTime 0.5sec

The drawbacks of these structures are it repeats the name of the object many times, in
addition, this representation does not reflect the priority between these statements, and the
data structure.

Semantic networks representation

The basic idea behind semantic networks is to link the related concepts together. A
semantic network consists of nodes representing concepts. The concepts, which are
semantically close to each other will be closer to each other in the network, while concepts
that do not have direct connection will be far apart. The path in this network between two
concepts represents how they related, and the length of the path indicates how these
concepts are close to each other.

A semantic network differs from a graph in that there is meaning (semantics) associated
with each link. This semantics comes usually from the fact that the links are labelled with
English words (Sasikumar et al. 2007).

Frames representation

The frame is a data structure; it represents a cluster of facts and properties that describe an
object in detail. A knowledge representation using frames can be thought as a network of
nodes and relations, where each node represents a frame.

Frames provide a natural way for the structured and concise representation of
knowledge. The frame combines all necessary knowledge about a particular object or
concept in a single entity. They are an application of the object-oriented programming in
the expert systems domain (Sasikumar et al. 2007).

In the rule-based system, a set of rules representing the knowledge is used for problem
solving. Each rule captures some heuristic of the problem, and each new rule adds some
new knowledge and thus makes the system smarter. The rule-based system can easily be
modified by changing, adding, or subtracting rules.

In a frame-based system, the problem is viewed in a different manner, where the overall
hierarchical structure of the knowledge is decided first. The classes and their attributes are
identified, and hierarchical relationships between frames are established. The architecture
of a frame-based system should provide a natural description of the problem (Negnevitsky
2005).

109

5.1.2 Inference Engine
The inference engine is a part of ES, it tries to derive new information about a given
problem using the knowledge base. In rule-based systems, it is used to decide which rules
should be executed based on the satisfaction of the antecedents and priorities of the rules.
Inference engines in the rule-based systems use different strategies to derive the goal. The
most common strategies are the forward chaining, and the backward chaining (Sasikumar
et al. 2007). The expert systems can use either one of these strategies or a combination of
them.

Forward chaining is a data driven reasoning. It starts from antecedent parts of the rules,
and evaluates these rules based on the available facts, until the goal is reached or the
inference process requires other facts to find a goal. Generally, this method is used in
applications such as monitoring, controlling, and prognosticating problem.

Backward chaining is the goal-driven reasoning, where, the expert system has the goal
(a hypothetical solution) and the inference engine attempts to find the evidence to prove it
(Negnevitsky 2005). This method is good for problems like diagnosis problems.

5.2 Fuzzy Expert System
Fuzzy or multi-valued logic was introduced in 1930s by Jan Lukasiewicz. He studied the
mathematical representation of fuzziness, and introduced a logic that extended the range of
truth-values to all real numbers in the interval between 0, and 1. He used a number in this
interval to represent the possibility that a given statement was true or false. Then, in 1937,
Max Black, a philosopher, published a paper called 'Vagueness: an exercise in logical
analysis' where, he defined the first simple fuzzy set and outlined the basic ideas of fuzzy
set operations. In 1965 Lotfi Zadeh, published his paper 'Fuzzy sets', where he
rediscovered the fuzziness. Zadeh extended the work on possibility theory into a formal
system of mathematical logic, and introduced a new concept for applying natural language
terms. This new logic for representing and manipulating fuzzy terms was called fuzzy logic
(Negnevitsky 2005).

Fuzzy-logic deals with approximate reasoning rather than fixed and exact one. Fuzzy-
logic handles the concept of partial truth, where the truth-value may range between
completely true and completely false.

In fuzzy rules-based inference system, e.g. Mamdani method, the input data are
converted into fuzzy values using fuzzification procedure. Then, the fuzzy rules are
evaluated, these rules determine the inputs-outputs relations and the system behavior.

The output of each rule is a fuzzy set. In order to obtain a precise solution, not a fuzzy
one, the outputs of all rules are aggregated into a single fuzzy output, and then it is
defuzzified into a single number. Figure 5-2, shows the structure of Mamdani inference
method.

Fuzzification

1

0.5
0.2

0

1
0.7

0.1

1

0.5
0.2

0

1
0.7

0.1

B I \ 6 2
1

0.5
0.2

0

\i{x=Al) = 0.5
\Hx = A2) = 0.2

X 0

VHy= Bl) =

\My- si) =
0.1
0.7

Rule evaluation

^ A3
_L

0.0

B l \

> v 0 .1

^ A3
_L

0.0

B l \

> v 0 .1
>-

OR
(max)

0 x 1 X 0 yl Y

OR
(max)

Rule 1 : I F x i s A3 (0.0) O R y i s B l (0.1)

1

THEN

0.2

I Z

0.7
B2

0 x l X 0 y l

Rule 2: I F x i s ^ 2 (0.2) A N D y i s B2 (0.7)

1
0.5

THEN

0 x l X

Rule 3: I F x i s Al (0.5) THEN

Aggregation of rule consequents

CI
0.2

0 Z 0

z i s CI (0.1) z i s C2 (0.2) z i s C3 (0.5)

^ 7 Defuzzification

zl Z

Crisp output
z l

Figure 5-2: The basic structure of Mamdani fuzzy inference, source (Negnevitsky 2005)

The linguistic variables are used to represent the input and output fuzzy-sets. The range
of possible values of a linguistic variable represents the universe of discourse of that
variable. For example, in the following rules

I F RegionState is Changed AND CollisionRate is Low THEN BiasToReg is High
I F RegionState is Changed AND CollisionRate is High THEN BiasToReg is Low

The universe of discourse of the linguistic variable might have a value such as
{Changed, Unchanged, }, in the RegionState variable case. It may include fuzzy
subsets as Low, Medium, and High as in CollisionRate variable.

The fuzzy reasoning, in general, includes two parts: evaluating the rule antecedent, and
applying the result to the consequent of the rules. In classical rule-based systems, if the
rule antecedent is true, then the consequent is also true. However, in fuzzy systems, where
the antecedent is a fuzzy statement, all rules are evaluated and the uncertainty is expressed
using the fuzzy sets. A typical process to develop the fuzzy expert system incorporates the
following steps (Negnevitsky 2005):

1. Specify the problem and define linguistic variables.
2. Determine fuzzy sets.
3. Elicit and construct fuzzy rules.
4. Encode the fuzzy sets, fuzzy rules, and procedures to perform fuzzy inference into

the expert system.
5. Evaluate and tune the system.

5.3 Expert System application in motion planning problems
The experience of robots when they move from one location to another one can be stored
and then used by ES to guide the planner.

Many attempts introduced to improve the robotic motion planner using the previous
experience (Berenson et al. 2012; Lien et al. 2009; Martin et al. 2007; Zucker et al. 2007,
2008 ; Atkeson et al. 2003; Stolle et al. 2006).

Figure 5-3 shows a framework called "Lightning framework" which utilizes this idea. It
uses the old success path, when a new query is established, both modules retrieve-repair
(RR) and planning from scratch (PFS) are started simultaneously, and the first path
produced by either module is executed on the robot while the other module is stopped.
After generating a new path, a library manager decides whether to store that path or not,
based on the computation times of the two modules and the generated path's similarity to
the retrieved one (Berenson et al. 2012).

-que ry -

Retrieve-Repair (RR)

Path
Library

Library
Manager

Retrieve
Path

Repair
Path

stop

Planning From Scratch (PFS)

Path

Smoother/
Optimizer To robot

Path

Figure 5-3: Diagram of the lightning framework. Source: (Berenson et al. 2012)

Fuzzy expert system is used in robotics applications frequently as a fuzzy controller to
steer robots based on sensor data, also in motion-planning, navigations problems, and in
location estimation (Aguirre et al. 2000; Sharef et al. 2010; Petr Krcek et al. 2004;
Montaner et al. 1998; Driankov et al. 2001). An important problem in autonomous
navigation is the need to cope with the large amount of uncertainty that is inherent of
natural environments, which is one of fuzzy systems' strong side.

The author in (Saffiotti 1997), uses fuzzy logic to make an adequate tool to address the
problem of uncertainty. They focus on designing robust modules and coordinate the
activity between them. They use data from several sensors, and integrate the high-level
reasoning with the low-level of execution.

Some researches combined the fuzzy system with the other motion planning techniques,
for example the in (Jaradat et al. 2012), the fuzzy-based potential field method is presented
to autonomous mobile robot motion planning. They used Mamdani and TSK methods to
develop the total attractive and repulsive forces acting on the mobile-robot's workspace.
These methods use a fuzzy logic expert system to provide the robot with the most
appropriate heading toward a stationary or moving target. The attractive force modeled
using expert if-then rules based on the position and the velocity of the robot with respect to
the target.

A new perspective, which utilizes a knowledge-driven approach for path planning, is
studied in (Chen et al. 2014). The concept of relative state tree (RST) is proposed to
develop an incremental learning method based on a path planning knowledge base. The
knowledge library established by offline or online learnings techniques. As the robot plans
online, its movement is guided by the optimal decision that is retrieved from the library
based on the information that matches mostly the current environment.

ES in our work is adapted and utilized to evaluate the free regions in the workspace and
guide the planner to possible routes in the workspace. It uses the workspace map, and the
experimental results analysis, e.g. collision tendency, for reasoning about these regions.

113

5.4 Contribution, Tests and Results
In the next section, we use the fuzzy expert system to bias the sampler module in the
motion planner. The sampler drew samples from free regions in a different density, based
on the region evaluation. The evaluation of the free region is calculated using fuzzy rule-
based expert system (Abbadi et al. 2015).

5.4.1 Hybrid rule-based motion planner in cluttered workspace

In this work, two new planners have been proposed. They depend on rules-based adviser.
Each of these hybrid planners is composed of two-layers to enhance motion planning in
heterogeneous, cluttered, and dynamic workspace. The first layer uses the exact cell
decomposition algorithm, in order to find the free regions and the graph of adjacency in
simple, static, and 2D workspace. Then, the second layer utilizes the rapidly exploring
random trees approach, to find a path in cluttered and dynamic workspace. The
information about free regions from the first layer and the exploration information from the
second layer are combined to guide the growth of RRT trees. The combination is done
using expert rules-based adviser that classifies the free regions and update their bias-
weights.

The adviser of the first planner biases and pulls the trees growth toward the boundary
areas between explored and unexplored regions. While the adviser of the second planner
uses the collision information, and fuzzy rule-based set, to bias the trees growth toward
low collision areas around the boundaries of the explored regions.

These planners exploit and combine the advantages of the exact cell decomposition in
simple, and low dimensional workspace, and the advantages of RRTs, which have a
relatively higher tolerance to the changes in the environments.

The planners are tested in stationary workspaces, minor changes, and major changes
scenarios. The proposed methods have been compared to other approaches, and the
simulations results show that the proposed methods have better results, in terms of
completeness and efficiency.

Proposed methods

The planner consists of two layers, the first one uses the trapezoidal cell decomposition
method in static workspace to find the adjacency graph of free cells, while the second layer
uses RRTs algorithm to find a path in the same workspace, but after new cluttered and
dynamic obstacles are added. In order to enhance the RRTs ability to find a path, rules-
based advisers have been proposed also. The function of this adviser is to update the
weights of free regions in order to pull the trees growth toward the most important regions
in the workspace.

The rules-based adviser in first planner uses the adjacency graph information and RRTs
nodes' location to update the regions' weight. The rules-based adviser in second planner
uses in addition to former information the collision information in the workspace regions.
These resources of information are combined to bias the exploration toward the most
important and low collision areas.

The adjacency graph contains information about the free regions and the relations
between them, while the information that comes from RRTs contains the location of trees'
nodes in the free areas and the difficulty to reach these regions.

To formulate this procedure the region state variable (stater) is defined to take one of
these four values [boundary, neighbor, expanded, and far]. The value of this variable
depends on the existence of any valid RRT node inside the corresponding region r, or in its
neighbors. The formulation of this proposal is described as follows.

R is the set of all free regions in the workspace.

Sr is a set of all samples in region r.

Nr is a set of all regions neighbor to region r.

RRTree is a set of all samples, which are considered as valid node in RRT trees.

For any region r the variable stater takes the value of far when the region and its
neighbors do not contain any sample belongs to RRT. It takes the value of neighbor when
at least one sample of RRT is located in r's neighbor regions but not in r itself. The stater

takes the value of boundary when at least one sample of RRT is located in region r and
there is still at least one neighbor not explored yet. Lastly, the stater takes the value of
expanded when at least one sample of RRT is located in region r and all neighbors are
explored; i.e. their state is expanded or boundary. The formulation of these values and
conditions are listed in Figure 5-4.

far, {RRTree nSr = 0)A(VC G Nr: RRTree n St = 0)
neighbor, (RRTree n Sr = 0)A(3£ G Nr: RRTree CiSt*0)
boundary, (RRTree n Sr ± 0)A(3£ G Nr: RRTree n St = 0)

expanded, (RRTree n Sr ± 0)A(VC G Nr: RRTree n St ± 0)

Figure 5-4: The stater variable values and their Conditions

Adviser's rules in planner 1
I F stater is far T H E N weight is veryLow
I F stater is expanded T H E N weight is low
I F stater is boundary T H E N weight is high
I F stater is neighbor T H E N weight is veryHigh

Figure 5-5: The adviser's rules of "bias toward boundaries" planner

Based on these values, the regions' weight are updated. Figure 5-5 shows the rules-
based adviser in the first planner. After each iteration of RRTs, the regions' weight are

updated to identify the most important ones. The weight variable could take one of these
values [veryLow, low, high, veryHigh]. These values are translated into RRT bias. The
RRTs is directed to grow trees to the boundaries of explored areas, by making the neighbor
regions having the highest weights, and the boundary regions have less or equal
importance. Figure 5-6 shows the RRT growth and the regions classifications.

In explored areas, the algorithm blocks RRT trees from branching or selecting a new
node inside them. However, a small amount of bias toward these regions is kept to avoid
the situation where the planner works in small regions and block itself.

0 1 2 3 4 5 6 7 8 9 10

Figure 5-6: RRT growth and rules-based classification of free Regions; a: far regions, b: neighbor
regions, c: boundary regions, d: expanded regions, S represents the initial position, G represents the goal
position, and the blue regions represent the obstacles

The trees grow and follow the free areas, and do more work to navigate through local
workspace instead of the whole workspace. If a region is obstacle-free, then the planner
passes through it rapidly, if not the RRTs tries to navigate around the local obstacles.

Adviser's rules in planner 2

IF stater is far
IF stater is expanded
IF stater is boundary
IF stater is boundary
IF stater is neighbor
IF stater is neighbor

AND collisionRate is low
AND collisionRate is high
AND collisionRate is low
AND collisionRate is high

THEN weight is veryLow
THEN weight is low
THEN weight is high+
THEN weight is high-
THEN weight is veryHigh+
THEN weight is veryHigh-

Figure 5-7: The adviser's rules of fuzzy bias planner

The second proposed method uses fuzzy rules-based to update the weights as in
previous version, in addition, the collision information is considered. The new fuzzy
variable collisionRate is defined. This variable takes the values of [low, high]. The
information about the collision is collected during the execution.

The influence of collision rate is restricted to the most important areas. The weight
variable in this case takes a value of [veryLow, low, high-, high+, veryHigh-, veryHigh+].

For a high value of collision rate, the weight of the boundary and Neighbor regions is
reduced and the exploration is pulled toward more relax regions. Figure 5-7 shows the
Rules-based for this fuzzy planner.

(c) (d)
Figure 5-8: The testing scenarios, (a) Office-like workspace (WS1), (b) WS2, (c) WS3, (d) WS4

Simulations and Results

The tests are made in four workspaces to simulate the holonomic robots movements in
offices and cluttered or crowded areas. The workspaces are shown in Figure 5-8. Every
workspace is tested in three levels of changes. The first level is for stationary workspace.
The second level includes workspace with minor changes, and the last one has major

117

changes in the workspace. The major change means close some routes or cluttered
obstacles in high density.

The results of the first proposed planner "biasTowardBoundaries" and the second
proposed one "FuzzyBias" are compared with other methods, i.e. RRTs without bias;
RRTs with a bias toward the goal; RRTs with a bias toward others RRTs' nodes; RRTs
with a bias toward the path that is generated by the cell decomposition algorithm.

The trapezoidal cell decomposition planner is used in these tests. It uses the Dijkstra's
algorithm for searching the graph. In this case the Dijkstra has 0(\og(N)E) time
complexity, where /V is the number of nodes in the graph, and E is the number of edges.

Our focus in this work is to improve the completeness and efficiency in cluttered
workspace.

The results are organized in two tables for every scenario. The first table lists the
completeness value of each planner on the three levels of changes, while the second table
contains data about the RRTs iterations. The RRTs iterations mean the number of required
steps to find the goal. The smaller the iteration, the efficient the planner is.

Testing parameters

The tests are repeated 100 times, in every workspace. The completeness comparison uses
the percent of successful tries to reach the goal, while, the average of RRT iteration is used
for efficiency comparison.

The RRTs planner has extending-length (e = 0.3). The RRTs planning result is
considered as failed, if it fails to reach the goal after 2000 tries of growing a branch.

The simulator implemented in Matlab and it uses a PC equipped with Intel Xeon (R)
CPU 2.67 GHz, 6 GB of memory, and Windows 7 64-bit.

The bias value of every method is shown in Table 5-1. These values represent the
probability of choosing the bias points. The complementary probability represents the
choosing of a random sample from the workspace using a pseudo-random number
generator.

Table 5-1: Bias values in the testing methods

Goal Other Trees C D path Fuzzy Boundaries
0.1 0.3 0.5 1 1

Results

In the first scenario, the path-planning problem in the "WS1" workspace is simulated.
Figure 5-9 shows the original workspace, while the Figure 5-10 shows the minor changes,
and the major changes in the workspace. The thin line represents the generated path of cell

decomposition, and the bold one is the shortened path of the original CD path. G and S
points represent the goal and the initial locations, respectively.

The probabilistically completeness results are presented in Table 5-2, while, the
iterations values are shown in Table 5-3. In this scenario, the office-like workspace is
simulated. The major changes test simulates the situation where the shortest path is closed
and the robot should find an alternative route to the goal, and avoid the cluttered obstacles.

Table 5-2: Number of successful attempts to reach the goal in WS1 workspace

Methods/ workspace Without change Minor change Major change
No bias 98 94 45
Goal bias 96 90 47
Other Trees bias 97 90 25
CD path bias 99 95 24
Fuzzy bias 100 100 100
Boundaries bias 100 99 95

Table 5-3: The average of RRTs branching attempts to reach the goal in WS1 workspace

Methods/ workspace Without change Minor change Major change
No bias 439 693 1253
Goal bias 470 780 1302
Other Trees bias 461 821 116
CD path bias 208 647 1404
Fuzzy bias 79 397 590
Boundaries bias 77 428 669

Figure 5-9: The basic workspace WS1. The thin line represents the CD path, and the bold line
represents the shortened path. G and S represent the goal and the initial locations, respectively

(a) (b)
Figure 5-10: (a) The minor changes in WS1, (b) the major changes in WS1. The thin line represents the
CD path, and the bold line represents the shortened path. G and S represent the goal and the initial
locations, respectively

In the second scenario, the path-planning problem in "WS2" workspace is simulated.
Figure 5-11 shows the original workspace. The minor changes and the major changes in
workspace are shown in Figure 5-12. In these figures, the thin line represents the generated
path using cell decomposition, and the bold line represents the shortened path of the
original CD path. G and S represent the goal and the initial locations, respectively. The
probabilistically completeness results are presented in Table 5-4, and the iterations values
are shown in Table 5-5. In this scenario, the major changes test simulates the highly
cluttered obstacles situation where the robot should pass through very small regions.

Figure 5-11: The basic workspace WS2. The thin line represents the CD path. Bold line represents the
shortened path. G and S represent the goal and the initial locations, respectively

120

Table 5-4: Number of successful attempts to reach the goal in WS2 workspace

Methods/ workspace Without change Minor change Major change
No bias 97 88 51
Goal bias 97 75 53
Other Trees bias 91 66 27
CD path bias 100 88 71

Fuzzy bias 100 100 62
Boundaries bias 100 99 66

Table 5-5: The average of RRTs branching attempts to reach the goal in WS2 workspace

Methods/ workspace Without change Minor change Major chan
No bias 792 1104 1235
Goal bias 864 1153 1269
Other Trees bias 1012 1227 1295
CD path bias 372 701 798

Fuzzy bias 164 472 1017
Boundaries bias 186 476 1027

Figure 5-12: (a) The minor change in WS2, (b) the major change in WS2. The thin line represents the
CD path, and bold line represents the shortened path. G and S represent the goal and the initial
locations, respectively

Figure 5-13: Basic workspace, WS3. The thin line represents the CD path, and bold line represents the
shortened path. G and S represent the goal and the initial locations, respectively

In the third scenario, the "WS3" workspace is shown in Figure 5-13, while the minor
changes and the major changes are shown in Figure 5-14. The thin line represents the
generated path using the cell decomposition approach, and the bold line represents the
shortened path of this original CD path. G and S represent the goal and the initial locations,
respectively. The probabilistically completeness results are listed in Table 5-6. The
iterations values are shown in Table 5-7.

In major changes test, we simulate the situation where some paths are closed and the
robot should find an alternative route and avoid the cluttered obstacles.

Table 5-6: Number of successful attempts to reach the goal in WS3 workspace

Methods/ workspace Without change Minor change Major change
No bias 100 100 33
Goal bias 100 100 23
Other Trees bias 100 100 9
CD path bias 100 98 0
Fuzzy bias 100 100 73
Boundaries bias 100 100 98

Table 5-7: The average of RRTs branching attempts to reach the goal in WS3 workspace

Methods/ workspace Without change Minor change Major change
No bias 206 462.8 1627.8
Goal bias 217 482 1728.6
Other Trees bias 284 609 1735.6
CD path bias 139 301 -

Fuzzy bias 50 214 823
Boundaries bias 49 200 794

122

(a) (b)
Figure 5-14: (a) The minor change in WS3, (b) the major change in WS3. The thin line represents the
CD path, and bold line represents the shortened path. G and S represent the goal and the initial
locations, respectively

In the fourth scenario, the path-planning problem is simulated in the "WS4" workspace,
which is shown in Figure 5-15. The minor changes and the major changes are presented in
Figure 5-16. The thin line represents the generated path using cell decomposition, and the
bold line represents the shortened path of the original CD path. G and S represent the goal
and the initial locations, respectively. The probabilistically completeness results are
presented in Table 5-8. The iterations values are shown in Table 5-9.

In this test, we simulate the narrow passage and narrow area problems. The robot should
pass through narrow and long corridors, which contains cluttered obstacles, and narrow
connection between free regions.

Figure 5-15: Basic workspace, WS4. The thin line represents the CD path, and bold line represents the
shortened path. G and S represent the goal and the initial locations, respectively

123

(a) (b)
Figure 5-16: (a) The minor change in WS4, (b) the major change in WS4. The thin line represents the
CD path, and bold line represents the shortened path. G and S represent the goal and the initial
locations, respectively

Table 5-8: Number of successful attempts to reach the goal in WS4 workspace

Methods/ workspace Without change Minor change Major change
No bias 0 0 0
Goal bias 0 0 0
Other Trees bias 0 0 0
CD path bias 0 0 0
Fuzzy bias 100 98 11

Boundaries bias 100 98 12

Table 5-9: The average of RRTs branching attempts to reach the goal in WS4 workspace

Methods/ workspace Without change Minor change Major change
No bias
Goal bias
Other Trees bias
CD path bias
Fuzzy bias 326.9 422 748.7
Boundaries bias 255.7 407.5 747.8

Discussions

The results show that, the proposed planners work more efficiently than the other planners

do in cluttered workspaces except in WS2 (the major change test). In all scenarios, the

probabilistically completeness results, for both proposed planners, have a higher value in

comparison to the other methods. Our planners navigate through all problems and find a

path where the others competitors could not i.e. in WS4 tests.

The time of execution is not discussed here, because the execution time varies based on
implementation platform and code optimization. Instead, the average of required iterations
to find a solution is discussed.

During the simulation, the high impact of the sampling strategy is noticed on the results.
In this work, the pseudo-random number generator is used to generate samples inside
regions. The sampling strategies need more review and research as future work.

Summary

In this work a new hybrid planners have been proposed. The planners use rules-based
adviser as a guidance toward the most important region in the space.

Each planner has two layers; the first one utilizes trapezoidal cell-decomposition
algorithm to find a feasible path in the workspace. The second layer utilizes RRTs to find
path in the configuration space. The information about the free regions, which is obtained
from the first layer, is combined with the exploration information that is inferred from the
second layer. The combination is done using rule-based adviser, which classifies the free
regions and updates their weights.

These planners enhance the efficiency and completeness of the motion-planning
problem in heterogeneous, cluttered, and dynamic workspaces. The planners exploit and
combine the advantages of the exact cell decomposition in simple and low dimensional
workspace, and the advantages of RRTs, which has a relatively higher tolerance to the
changes in the environments.

The adviser of first planner biases and pulls the trees growth toward the boundary areas
between explored and unexplored regions. The adviser of second planner uses the collision
information and a fuzzy expert system to bias the trees growth toward low collision areas
around the boundaries of explored regions.

The proposed methods are compared with other methods; the simulations results show
that the proposed methods have better results, in terms of completeness and efficiency.

125

6 CONCLUSION

The aim of this dissertation was to improve the mobile robot path planning strategies,
which, consequently, improves the robots autonomy and thus makes it more adaptable to
our everyday life.

The goals of this thesis are fulfilled as many motion-planning algorithms and their
applications in mobile robot path planning have been reviewed and simulated. Then, some
of these algorithms were tested in 2D and 3D workspaces and the performance results were
evaluated using statistical analyses. Based on these tests, the advantages and drawbacks of
these methods were identified, and, new methods for path planning and path shortening
were introduced to overcome the drawbacks and improve the performance.

The new motion planning methods are classified in three types. First, the cell
decomposition based planners which generate a path that keeps a safety distance between
the robot and the obstacle boundaries. At the same time, they perform the maneuvers
through the large free regions in the workspace.

The second type uses hybrid two-layer planners which combine the advantages of RRT
algorithms and CD approaches to overcome the difficulty when planning a path through
narrow areas and dynamic workspaces.

The third type, the hybrid rule-based planner, utilizes the collected experience and
expert knowledge base to produce better solution in an efficient way. This type of planner
is constructed using multi-planning layers, i.e. the fuzzy expert system, RRT, and CD
algorithms.

In this work, also new supportive methods were proposed to solve specific problems,
for example the problem of navigation in a narrow area using sample-based algorithms. A
combination of CD and minimum spanning tree has been proposed to identify the narrow
passages and important regions in the workspaces.

The objectives of this work are met and the simulations show the ability of these
planning approaches to solve different problems in the motion-planning domain. The
simulation environment has been developed using Matlab to conduct the simulations and
generate the numerical and graphical results, while the statistical analyses were done using
Mini tab and Matlab.

Naturally, the results open many new research questions. For example, determine the
best sampling methods in the sampling-based algorithms. And, describe the impact of
using different knowledge bases on path generating, i.e. the collision tendency, primitive
local paths, etc.

127

BIBLIOGRAPHY

A B B A D I , Ahmad and M A T O U S E K , Radomil, 2012, RRTs Review and Statistical
Analysis. International journal of mathematics and computer In simulation. 2012. Vol . 6,
no. 1.

A B B A D I , Ahmad and M A T O U S E K , Radomil, 2014, Path Planning Implementation Using
Matlab. In: International Conference of Technical Computing Bratislava 2014.
Bratislava : Humusoft.cz. 11 April 2014. p. 1-5. ISBN 978-80-7080-898-6.

A B B A D I , Ahmad and M A T O U S E K , Radomil, 2015, Hybrid rule-based motion planner in
cluttered workspace. Soft Computing. 2015.

A B B A D I , Ahmad, M A T O U S E K , Radomil, JANCIK, Stanislav and ROUPEC, Jan, 2012,
Rapidly-exploring random trees: 3D planning. In : Mendel. 2012. p. 594-599.

A B B A D I , Ahmad, M A T O U S E K , Radomil and KNISPEL, Lukas, 2015, Narrow passage
identification using cell decomposition approximation and minimum spanning tree. In :
Mendel. 2015. p. 131-138.

A B B A D I , Ahmad, M A T O U S E K , Radomil, K R C E K , Petr and SOUSTEK, Petr, 2011,
RRTs Review and Options. In : computational Engineering In Systems Applications. 2011.
p.194-199.

A B B A D I , Ahmad, M A T O U S E K , Radomil, OSMERA, Pavel and L U K A S KNISPEL,
2014, Spatial Guidance to RRT Planner Using Cell-decomposition Algorithm. In : 20th
International Conference on Soft Computing, MENDEL 2014. 25 June 2014. ISBN 978-
80-214-4984-8.

A B B A D I , Ahmad and PRENOSIL, Vaclav, 2015a, Safe Path Planning Using Cell
Decomposition Approximation. In : International Conference DISTANCE LEARNING,
SIMULATION AND COMMUNICATION. Brno : University of Defence, Brno. 2015. p. 8-
14. ISBN 978-80-7231-992-3.

A B B A D I , Ahmad and PRENOSIL, Vaclav, 2015b, Collided Path Replanning in Dynamic
Environments Using RRT and Cell Decomposition Algorithms. In : Modelling and
Simulation for Autonomous Systems. Cham : Springer International Publishing, p. 131-
143. ISBN 978-3-319-22382-7. Available from: http://link.springer.com/10.1007/978-3-
319-22383-4_9

AGUIRRE, Eugenio and GONZALEZ, Antonio, 2000, Fuzzy behaviors for mobile robot
navigation: design, coordination and fusion. International Journal of Approximate
Reasoning. November 2000. Vol.25, no. 3, p. 255-289. DOI 10.1016/S0888-
613X(00)00056-6.

AL-JAZARI-WIKrPEDIA, 2014, al-Jazari - Wikipedia, the free encyclopedia. . 2014.
Available from: http://en.wikipedia.org/wiki/Al-Jazari

A L M A H A I R I , Amjad, 2010, Rapidly-Exploring Random Trees in Highly Constrained
Environments. McGlll University, Mobile Robotics Project. 2010.

http://Humusoft.cz
http://link.springer.com/10.1007/978-3-
http://en.wikipedia.org/wiki/Al-Jazari

A M A T O , Nancy M . , BAYAZIT , O. Burchan, D A L E , Lucia K., JONES, Christopher and
V A L L E J O , Daniel, 1998, OBPRM: An Obstacle-Based P R M for 3D Workspaces. In :
WAFR '98 Proceedings of the third workshop on the algorithmic foundations of robotics
on Robotics : the algorithmic perspective. 1998. p. 155-168. ISBN 1-56881-081-4.

AMLT PATEL, 2014, Introduction to A * . . 2014. Available from:
http://www.redblobgames.com/pathfinding/a-star/introduction.html

A R A M B U L A COSÍO, F. and PADILLA CASTAŇEDA, M . A. , 2004, Autonomous robot
navigation using adaptive potential fields. Mathematical and Computer Modelling.
November 2004. Vol . 40, no. 9-10, p. 1141-1156. DOI 10.1016/j.mcm.2004.05.001.

A T K E S O N , Christopher G. and MORIMOTO, Jun, 2003, Nonparametric Representation
of Policies and Value Functions: A Trajectory-Based Approach. In : In NIPS 15. MIT
Press. 2003. p. 1611-1618.

A T R A M E N T O V , A . and L A V A L L E , S.M., 2002, Efficient nearest neighbor searching for
motion planning. In : IEEE International Conference on Robotics and Automation, 2002.
Proceedings. ICRA '02. 2002. p. 632-637 vol.1.

A U R E N H A M M E R , Franz, 1991, Voronoi Diagrams-a Survey of a Fundamental
Geometric Data Structure. ACM Comput. Surv. September 1991. Vol . 23, no. 3, p. 345-
405. DOI 10.1145/116873.116880.

A U R E N H A M M E R , Franz and KLEIN, Rolf, 2000, Voronoi diagrams. Handbook of
computational geometry. 2000. Vol. 5, p. 201-290.

BAGfNSKI, Boris, 1996, The Z3-Method for Fast Path Planning in Dynamic
Environments. In : Proc. IASTED Conf. Applications of Control and Robotics. 1996.
p. 47-52.

B A R R A Q U A N D , J. and L A T O M B E , J . -C, 1990, A Monte-Carlo algorithm for path
planning with many degrees of freedom. In : , 1990 IEEE International Conference on
Robotics and Automation, 1990. Proceedings. May 1990. p. 1712-1717 vol.3.

B A R R A Q U A N D , J. and L A T O M B E , J . -C, 1991, Robot Motion Planning: A Distributed
Representation Approach. The International Journal of Robotics Research. 1 December
1991. Vol . 10, no. 6, p. 628-649. DOI 10.1177/027836499101000604.

BERENSON, D., A B B E E L , P. and GOLDBERG, K., 2012, A robot path planning
framework that learns from experience. In : 2012 IEEE International Conference on
Robotics and Automation (ICRA). May 2012. p. 3671-3678.

B E R N A R D C H A Z E L L E , 1987, Algorithmic and geometric aspects of robotics. Hillsdale,
N.J : L. Erlbaum Associates. Advances in robotics, vol. 1. ISBN 0-89859-554-1.

BOOR, V. , O V E R M A R S , M . H . and V A N DER STAPPEN, A.F., 1999, The Gaussian
sampling strategy for probabilistic roadmap planners. In : 7999 IEEE International
Conference on Robotics and Automation, 1999. Proceedings. 1999. p. 1018-1023 vol.2.

130

http://www.redblobgames.com/pathfinding/a-star/introduction.html

BORENSTEIN, J. and K O R E N , Y . , 1991, The vector field histogram-fast obstacle
avoidance for mobile robots. IEEE Transactions on Robotics and Automation. June 1991.
Vol . 7, no. 3, p. 278-288. DOI 10.1109/70.88137.

BOTTASSO, C.L., LEONELLO, D. and SAVHSfl, B., 2008, Path Planning for
Autonomous Vehicles by Trajectory Smoothing Using Motion Primitives. IEEE
Transactions on Control Systems Technology. November 2008. Vol . 16, no. 6, p. 1152-
1168. DOI 10.1109/TCST.2008.917870.

BROOKS, R.A. and LOZANO-PEREZ, T., 1985, A subdivision algorithm in
configuration space for findpath with rotation. IEEE Transactions on Systems, Man and
Cybernetics. March 1985. Vol . SMC-15, no. 2, p. 224-233.
DOI 10.1109/TSMC.1985.6313352.

BRUCE, J. and VELOSO, M . , 2002, Real-time randomized path planning for robot
navigation. In : IEEE/RSJ International Conference on Intelligent Robots and Systems,
2002. 2002. p. 2383-2388 vol.3.

B U , Tian-Ming, LI, Zhen-Jian and SUN, Zheng, 2005, Adaptive and relaxed visibility-
based P R M . In : 2005 IEEE International Conference on Robotics and Biomimetics
(ROBIO). 2005. p. 174-179.

B U N I Y A M I N , N . , W A N N G A H , W. A. J., SARIFF, N . and M O H A M A D , Z., 2011, A
simple local path planning algorithm for autonomous mobile robots. International journal
of systems applications, Engineering & development. 2011. Vol . 5, no. 2, p. 151-159.

C A T M U L L , Edwin and R O M , Raphael, 1974, A CLASS OF L O C A L INTERPOLATING
SPLINES. In : Computer Aided Geometric Design. Elsevier, p. 317-326. ISBN 978-0-12-
079050-0.

CHEN, Yang, CHENG, Lei, W U , Huaiyu, ZHAO, Xingang and H A N , Jianda, 2014,
Knowledge-driven path planning for mobile robots: relative state tree. Soft Computing. 9
May 2014. DOI 10.1007/s00500-014-1299-4.

CHENG, Peng and L A V A L L E , S.M., 2001, Reducing metric sensitivity in randomized
trajectory design. In : 2001 IEEE/RSJ International Conference on Intelligent Robots and
Systems, 2001. Proceedings. 2001. p. 43-48 vol.1.

CHENG, Peng and L A V A L L E , S.M., 2002, Resolution complete rapidly-exploring
random trees. In : IEEE International Conference on Robotics and Automation, 2002.
Proceedings. ICRA '02. 2002. p. 267-272 vol.1.

CHOI, Jinwoo, CHOI, Minyong, N A M , Sang Yep and CHUNG, Wan Kyun, 2011,
Autonomous topological modeling of a home environment and topological localization
using a sonar grid map. Autonomous Robots. 1 May 2011. Vol . 30, no. 4, p. 351-368.
DOI 10.1007/s 10514-011-9223-6.

CHOSET, Howie and BURDICK, Joel, 2000, Sensor-based exploration: The hierarchical
generalized voronoi graph. The International Journal of Robotics Research. 2000. Vol . 19,
no. 2, p. 96-125.

CHOSET, HOWIE, L Y N C H , K E V I N M . and HUTCHINSON, SETH, 2005, Principles of
Robot Motion: Theory, Algorithms, and Implementation. MIT Press. ISBN 978-0-262-
03327-5.

DE BERG, Mark, CHEONG, Otfried, V A N K R E V E L D , Marc and O V E R M A R S , Mark,
2008, Computational Geometry. Berlin, Heidelberg : Springer Berlin Heidelberg.
ISBN 978-3-540-77973-5.

D E N N Y , Tory and A M A T O , N . M . , 2011, Toggle P R M : Simultaneous mapping of C-free
and C-obstacle - A study in 2D -. In : 2011 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS). September 2011. p. 2632-2639.

D E N N Y , L , M O R A L E S , M . , RODRIGUEZ, S. and A M A T O , N . M . , 2013, Adapting RRT
growth for heterogeneous environments. In : 2013 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS). November 2013. p. 1772-1778.

DRIANKOV, Dimiter and SAFFIOTTI, Alessandro (eds.), 2001, Fuzzy Logic Techniques
for Autonomous Vehicle Navigation. Heidelberg : Physica-Verlag HD. Studies in Fuzziness
and Soft Computing. ISBN 978-3-7908-2479-7.

ESPOSHO, Joel M . , 2013, Conditional Density Growth (CDG) model: a simplified model
of RRT coverage for kinematic systems. Robotica. August 2013. Vol . 31, no. 05, p. 733-
746. DOI 10.1017/S0263574712000690.

ETYMONLINE, 2014, Online Etymology Dictionary. . 2014. Available from:
http://www.etymonline.com/index.php?allowed_in_frame=0&search=Robot&searchmode
=none

FABBRI, R., ESTROZI, L . F. and COSTA, L . F., 2002, On Voronoi diagrams and medial
axes. Journal of Mathematical Imaging and Vision. 2002. Vol . 17, p. 27-40.

GARRIDO, Santiago, MORENO, Luis, B L A N C O , Dolores and JUREWICZ, Piotr, 2011,
Path planning for mobile robot navigation using voronoi diagram and fast marching.
International Journal of Robotics and Automation (IJRA). 2011. Vol . 2, no. 1, p. 42-64.

G L A V r N A , B., 1990, Solving findpath by combination of goal-directed and randomized
search. In : , 1990 IEEE International Conference on Robotics and Automation, 1990.
Proceedings. May 1990. p. 1718-1723 vol.3.

HANI ALSAFADI , 2007, Local Path Planning Using Potential Field. . 2007. Available
from: http://www.cs.mcgill.ca/~hsafad/robotics/

HSU, D., JIANG, Tingting, REIF, J. and SUN, Zheng, 2003, The bridge test for sampling
narrow passages with probabilistic roadmap planners. In : IEEE International Conference
on Robotics and Automation, 2003. Proceedings. ICRA '03. September 2003. p. 4420-
4426.

H W A N G , Y . K . and AHUJA, N . , 1992, A potential field approach to path planning. IEEE
Transactions on Robotics and Automation. February 1992. Vol . 8, no. 1, p. 23-32.
DOI 10.1109/70.127236.

http://www.etymonline.com/index.php?allowed_in_frame=0&search=Robot&searchmode
http://www.cs.mcgill.ca/~hsafad/robotics/

H W A N G , Joo Young, K I M , Jun Song, L I M , Sang Seok and P A R K , Kyu Ho, 2003, A fast
path planning by path graph optimization. IEEE Transactions on Systems, Man and
Cybernetics, Part A: Systems and Humans. January 2003. Vol . 33, no. 1, p. 121-129.
DOI 10.1109/TSMCA.2003.812599.

JAILLET, L. , H O F F M A N , J., V A N D E N BERG, J., A B B E E L , P., PORTA, J .M. and
GOLDBERG, K , 2011, EG-RRT: Environment-guided random trees for kinodynamic
motion planning with uncertainty and obstacles. In: 2011 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS). September 2011. p. 2646-2652.

JARADAT, Mohammad Abdel Kareem, GARIBEH, Mohammad H. and FEILAT, Eyad
A. , 2012, Autonomous mobile robot dynamic motion planning using hybrid fuzzy potential
field. Soft Computing. January 2012. Vol . 16, no. 1, p. 153-164. DOI 10.1007/s00500-011-
0742-z.

JIANDONG, Zhong and JIANBO, Su, 2011, Narrow passages identification for
Probabilistic Roadmap Method. In : Control Conference (CCC), 2011 30th Chinese. July
2011. p. 3908-3912.

JOHANN BORENSTEIN, 1990, VFF and V F H - Fast Obstacle Avoidance for Mobile
Robots.. 1990. Available from: http://www-personal.umich.edu/~johannb/vff&vfh.htm

K A M O N , Ishay, REVION, Elon and RIVLIN, Ehud, 1998, TangentBug: A Range-Sensor-
Based Navigation Algorithm. The International Journal of Robotics Research. 1
September 1998. Vol . 17, no. 9, p. 934-953. DOI 10.1177/027836499801700903.

K A R A M A N , Sertac and FRAZZOLI, Emilio, 2011, Sampling-based algorithms for
optimal motion planning. The International Journal of Robotics Research. 1 June 2011.
Vol . 30, no. 7, p. 846-894. DOI 10.1177/0278364911406761.

K A R A M A N , Sertac and FRAZZOLI, Emilio, 2012, Sampling-based algorithms for
optimal path planning problems. Massachusetts Institute of Technology.

K A T E V A S , Nikos I., TZAFESTAS, Spyros G. and PNEVMATIKATOS, Christos G.,
1998, The Approximate Cell Decomposition with Local Node Refinement Global Path
Planning Method: Path Nodes Refinement and Curve Parametric Interpolation. Journal of
Intelligent and Robotic Systems. 1 July 1998. Vol . 22, no. 3-4, p. 289-314.
DOI 10.1023/A: 1008034314006.

K A V R A K I , L.E. , SVESTKA, P., L A T O M B E , J.-C. and O V E R M A R S , M . H . , 1996,
Probabilistic roadmaps for path planning in high-dimensional configuration spaces. IEEE
Transactions on Robotics and Automation. August 1996. Vol . 12, no. 4, p. 566-580.
DOI 10.1109/70.508439.

KELOUWANI , Sousso, 2013, Human-Robot Collaborative Planning for Navigation Based
on Optimal Control Theory. Open Journal of Optimization. 2013. Vol . 02, no. 03, p. 72-
79. DOI 10.4236/ojop.2013.23010.

KHATIB, O., 1985, Real-time obstacle avoidance for manipulators and mobile robots. In :
1985 IEEE International Conference on Robotics and Automation. Proceedings. March
1985. p. 500-505.

133

http://www-personal.umich.edu/~johannb/vff&vfh.htm

KTM, J. and KHOSLA, P., 1991, Real-time obstacle avoidance using harmonic potential
functions. In : , 1991 IEEE International Conference on Robotics and Automation, 1991.
Proceedings. April 1991. p. 790-796 vol.1.

KXTO, T., OTA, J., KATSUKI , R , MIZUTA, T., ARAI , T., U E Y A M A , T. and
NISHIYAMA, T., 2003, Smooth path planning by using visibility graph-like method. In :
IEEE International Conference on Robotics and Automation, 2003. Proceedings. ICRA
'03. September 2003. p. 3770-3775 vol.3.

KNEPPER, R.A., SRINIVASA, S.S. and M A S O N , Matthew T., 2010, Hierarchical
planning architectures for mobile manipulation tasks in indoor environments. In : 2010
IEEE International Conference on Robotics and Automation (ICRA). May 2010. p. 1985—
1990.

KUFFNER, J.J. and L A V A L L E , S.M., 2000, RRT-connect: An efficient approach to
single-query path planning. In: IEEE International Conference on Robotics and
Automation, 2000. Proceedings. ICRA '00. 2000. p. 995-1001 vol.2.

KUFFNER, J.J. and L A V A L L E , S.M., 2011, Space-filling trees: A new perspective on
incremental search for motion planning. In : 2011 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS). September 2011. p. 2199-2206.

L A T O M B E , Jean-Claude, 1991, Robot motion planning. Boston: Kluwer Academic
Publishers. ISBN 0-7923-9129-2.

L A V A L L E , Steven M . , 1998, Rapidly-Exploring Random Trees: A New Tool for Path
Planning.

L A V A L L E , Steven Michael, 2006, Planning algorithms. Cambridge; New York:
Cambridge University Press. ISBN 0-521-86205-1.

L A V A L L E , Steven M . , B R A N I C K Y , Michael S. and L I N D E M A N N , Stephen R , 2004,
On the relationship between classical grid search and probabilistic roadmaps. The
International Journal of Robotics Research. 2004. Vol . 23, no. 7-8, p. 673-692.

L A V A L L E , Steven M . and KUFFNER, James J., 2001, Randomized Kinodynamic
Planning. The International Journal of Robotics Research. 1 May 2001. Vol . 20, no. 5,
p. 378-400. DOI 10.1177/02783640122067453.

L A V A L L E , Steven M . , KUFFNER, James J. and JR., 2000, Rapidly-Exploring Random
Trees: Progress and Prospects. In : Algorithmic and Computational Robotics: New
Directions. 2000. p. 293-308.

L E O N A R D , John J. and DURRANT-WHYTE, Hugh F., 1991, Simultaneous map building
and localization for an autonomous mobile robot. In : Intelligent Robots and Systems'
91. 'Intelligence for Mechanical Systems, Proceedings IROS '91. IEEE/RSJ International
Workshop on. Ieee. 1991. p. 1442-1447.

LIEN, Jyh-ming and L U , Yanyan, 2009, Planning Motion in Environments with Similar
Obstacles. In : Robotics: Science and Systems V. Seattle, USA : MIT Press. 2009.
ISBN 978-0-262-51463-7.

LI, Dachuan, LI, Qing, CHENG, Nong and SONG, Jingyan, 2012, Extended RRT-based
path planning for flying robots in complex 3D environments with narrow passages. In :
2012 IEEE International Conference on Automation Science and Engineering (CASE).
August 2012. p. 1173-1178.

LI, Jiadong, LIU, Shirong, Z H A N G , Botao and ZHAO, Xiaodan, 2014, RRT-A* Motion
planning algorithm for non-holonomic mobile robot. In : SICE Annual Conference (SICE),
2014 Proceedings of the. September 2014. p. 1833-1838.

LIN, Yu-Te, 2006, The Gaussian P R M Sampling for Dynamic Configuration Spaces. In :
9th International Conference on Control, Automation, Robotics and Vision, 2006. ICARCV
'06. December 2006. p. 1-5.

L I N D E M A N N , Stephen R. and L A V A L L E , Steven M . , 2003, Current Issues in Sampling-
Based Motion Planning. . 2003. Vol . 15, p. 36-54.

L I N D E M A N N , S.R. and L A V A L L E , S.M., 2004, Incrementally reducing dispersion by
increasing Voronoi bias in RRTs. In : 2004 IEEE International Conference on Robotics
and Automation, 2004. Proceedings. ICRA '04. April 2004. p. 3251-3257 Vol.4.

LIU, Hong, RAO, Kai and XIAO, Fang, 2013, Obstacle guided RRT path planner with
region classification for changing environments. In : 2013 IEEE International Conference
on Robotics and Biomimetics (ROBIO). December 2013. p. 164-171.

LOZANO-PEREZ, Tomas and WESLEY, Michael A. , 1979, An Algorithm for Planning
Collision-free Paths Among Polyhedral Obstacles. Commun. ACM. October 1979. Vol. 22,
no. 10, p. 560-570. DOI 10.1145/359156.359164.

L U L U , L . and E L N A G A R , A. , 2005, A comparative study between visibility-based
roadmap path planning algorithms. In : 2005 IEEE/RSJ International Conference on
Intelligent Robots and Systems, 2005. (IROS 2005). August 2005. p. 3263-3268.

L U M E L S K Y , Vladimir J. and STEPANOV, A .A . , 1986, Dynamic path planning for a
mobile automaton with limited information on the environment. IEEE Transactions on
Automatic Control. November 1986. Vol .31, no. 11, p. 1058-1063.
DOI 10.1109/TAC. 1986.1104175.

MACIEJ KALISIAK and V A N DE PANNE, Michiel, 2006, RRT-blossom: RRT with a
local flood-fill behavior. In : . 2006.

MARTIN, S.R., WRIGHT, S.E. and SHEPPARD, J.W., 2007, Offline and Online
Evolutionary Bi-Directional RRT Algorithms for Efficient Re-Planning in Dynamic
Environments. In: IEEE International Conference on Automation Science and
Engineering, 2007. CASE 2007. September 2007. p. 1131-1136.

M A S E H I A N , E., AMUSf-NASERI, M.R. and K H A D E M , S.E., 2003, Online motion
planning using incremental construction of medial axis. In: IEEE International
Conference on Robotics and Automation, 2003. Proceedings. ICRA '03. September 2003.
p. 2928-2933 vol.3.

M A S E H I A N , Ellips and NASERI, Amin, 2010, Mobile Robot Online Motion Planning
Using Generalized Voronoi Graphs. Journal of Industrial Engineering. 2010. Vol . 5, p. 1-
15.

M A S O U D , Ahmad A. , 2013, A harmonic potential field approach for joint planning and
control of a rigid, separable nonholonomic, mobile robot. Robotics and Autonomous
Systems. June 2013. Vol . 61, no. 6, p. 593-615. DOI 10.1016/j.robot.2013.02.007.

MATHIA, Karl, 2010, Robotics for Electronics Manufacturing: Principles and
Applications in Cleanroom Automation. Cambridge University Press.

M A Z E R , Emmanuel, AHUACTZfN, Juan Manuel and BESSfERE, Pierre, 1998, The
Ariadne's clew algorithm. Journal of Artificial Intelligence Research. 1998. Vol . 9, no. 1.
DOI 10.1613/jair.468.

M B E D E , Jean Bosco, H U A N G , Xinhan and W A N G , Min, 2000, Fuzzy motion planning
among dynamic obstacles using artificial potential fields for robot manipulators. Robotics
and Autonomous Systems. 31 July 2000. Vol . 32, no. 1, p. 61-72. DOI 10.1016/S0921-
8890(00)00073-7.

MCFETRIDGE, L. and YOUSEF IBRAHIM, M . , 1998, New technique of mobile robot
navigation using a hybrid adaptive fuzzy potential field approach. Computers & Industrial
Engineering. December 1998. Vol.35, no. 3-4, p. 471-474. DOI 10.1016/S0360-
8352(98)00136-3.

MfLITAO, Filipe, N A D E N , Karl and TONfNHO, Bernardo, 2010, Improving RRT with
Context Sensitivity 15-780 Grad AI. In : . 2010.

MONTANER, Marc Boumedine and RAMIREZ-SERRANO, Alejandro, 1998, Fuzzy
knowledge-based controller design for autonomous robot navigation. Expert Systems with
Applications. January 1998. Vol.14, no. 1-2, p. 179-186. DOI 10.1016/S0957-
4174(97)00059-6.

MOORE, K .L . and F L A N N , N.S., 1999, Hierarchical task decomposition approach to path
planning and control for an omni-directional autonomous mobile robot. In : Proceedings of
the 1999 IEEE International Symposium on Intelligent Control/Intelligent Systems and
Semiotics, 1999. 1999. p. 302-307.

M O R A L E S , Marco, TAPIA, Lydia, PEARCE, Roger, RODRIGUEZ, Samuel and
A M A T O , Nancy M . , 2005, A Machine Learning Approach for Feature-Sensitive Motion
Planning. In : Algorithmic Foundations of Robotics VI. Berlin, Heidelberg : Springer
Berlin Heidelberg. p. 361-376. ISBN 978-3-540-25728-8. Available from:
http://link.springer.com/10.1007/10991541_25

NASIR, Jauwairia, ISLAM, Fahad, M A L I K , Usman, A Y A Z , Yasar, H A S A N , Osman,
K H A N , Mushtaq and M U H A M M A D , Mannan Saeed, 2013, RRT*-SMART: A Rapid
Convergence Implementation of RRT*. International Journal of Advanced Robotic
Systems. 2013. Vol . 10.

NEGNEVITSKY, Michael, 2005, Artificial intelligence: a guide to intelligent systems. 2nd
ed. Harlow, England; New York : Addison-Wesley. ISBN 0-321-20466-2.

http://link.springer.com/10.1007/10991541_25

NG, James and B R A U N L , Thomas, 2007, Performance Comparison of Bug Navigation
Algorithms. Journal of Intelligent and Robotic Systems. 2 August 2007. Vol. 50, no. 1,
p. 73-84. DOI 10.1007/s 10846-007-9157-6.

NISSOUX, C , SIMEON, T. and L A U M O N D , J-P, 1999, Visibility based probabilistic
roadmaps. In: 7999 IEEE/RSJ International Conference on Intelligent Robots and
Systems, 1999. IROS '99. Proceedings. 1999. p. 1316-1321 vol.3.

PENG CHENG, 2001, Reducing RRT metric sensitivity for motion planning with
differential constraints. Graduate College Iowa State University.

PEREZ, A. , PLATT, R., KONIDARIS, G., K A E L B L I N G , L. and LOZANO-PEREZ, T.,
2012, LQR-RRT*: Optimal sampling-based motion planning with automatically derived
extension heuristics. In : 2012 IEEE International Conference on Robotics and Automation
(ICRA). May 2012. p. 2537-2542.

PETRES, C , ROMERO-RAMIREZ, M . -A. and PLUMET, E , 2012, A potential field
approach for reactive navigation of autonomous sailboats. Robotics and Autonomous
Systems. December 2012. Vol . 60, no. 12, p. 1520-1527.
DOI 10.1016/j.robot.2012.08.004.

PETR K R C E K and JIRI D V O R A K , 2004, MOBILE ROBOT MOTION CONTROL B Y
M E A N S OF F U Z Z Y RULES. In : Engineering Mechanics 2004. Svratka : nstitute of
Thermomechanics AS CR, v.v.i., Prague. May 2004.

RODRIGUEZ, S., T A N G , Xinyu, LIEN, Jyh-Ming and A M A T O , N . M . , 2006, An
obstacle-based rapidly-exploring random tree. In : Proceedings 2006 IEEE International
Conference on Robotics and Automation, 2006. ICRA 2006. May 2006. p. 895-900.

ROSELL, J., CRUZ, L , SUAREZ, R. and PEREZ, A. , 2011, Importance sampling based
on adaptive principal component analysis. In : 2011 IEEE International Symposium on
Assembly and Manufacturing (ISAM). May 2011. p. 1-6.

ROSELL, J. and INIGUEZ, P., 2005, Path planning using Harmonic Functions and
Probabilistic Cell Decomposition. In : Proceedings of the 2005 IEEE International
Conference on Robotics and Automation, 2005. ICRA 2005. April 2005. p. 1803-1808.

SAFFIOTTI, A. , 1997, The uses of fuzzy logic in autonomous robot navigation. Soft
Computing - A Fusion of Foundations, Methodologies and Applications. 16 December
1997. Vol . 1, no. 4, p. 180-197. DOI 10.1007/s005000050020.

SAHA, Mitul, L A T O M B E , Jean-claude, C H A N G , Yu-chi and PRINZ, Friedrich, 2005,
Finding narrow passages with probabilistic roadmaps: The small step retraction method.
In : in Proc. IEEE/RSJ Int. Conf. on Intelligent Robots & Systems. 2005.

SAJJA, Priti Srinivas and RAJENDRA A K E R K A R (eds.), 2010, Advanced Knowledge-
Based Systems: Models, Applications and Research. ISBN 978-81-908426-0-0.

S A K A H A R A , H. , MASUTANI , Y . and M I Y A Z A K I , E , 2008, Real-time motion planning
in unknown environment: Voronoi-based StRRT (Spatiotemporal RRT). In : SICE Annual
Conference, 2008. August 2008. p. 2326-2331.

S A L O M O N , David, 2011, The Computer Graphics Manual. London : Springer London.
Texts in Computer Science. ISBN 978-0-85729-885-0.

SASIKUMAR, M . , R A M A N I , S., R A M A N , S. Muthu, A N J A N E Y U L U , K. S. R. and
C H A N D R A S E K A R , R., 2007, A Practical Introduction to Rule Based Expert Systems.
Narosa Publishing House, New Delhi.

SCHWARTZ, Jacob T and SHARJR, Micha, 1983, On the "piano movers" problem. II.
General techniques for computing topological properties of real algebraic manifolds.
Advances in Applied Mathematics. September 1983. Vol . 4, no. 3, p. 298-351.
DOI 10.1016/0196-8858(83)90014-3.

SCIENCEKIDS, 2014, History of Robotics - Timeline, AI, Industrial, Toy Robots, Robotic
Arm, Technology. . 2014. Available from:
http ://w w w. sciencekids. co. nz/sciencef acts/technology/hi story ofrobotics. html

SEDA, Milos, 2007, Roadmap methods vs. cell decomposition in robot motion planning.
In : Proceedings of the 6th WSEAS International Conference on Signal Processing,
Robotics and Automation. World Scientific and Engineering Academy and Society
(WSEAS). 2007. p. 127-132.

SFEIR, J., S A A D , M . and SALIAH-HASSANE, H , 2011, An improved Artificial
Potential Field approach to real-time mobile robot path planning in an unknown
environment. In: 2011 IEEE International Symposium on Robotic and Sensors
Environments (ROSE). September 2011. p. 208-213.

SHAREF, S.M., SATD, W.K. and K H O S H A B A , F.S., 2010, A rule-based system for
trajectory planning of an indoor mobile robot. In : 2010 7th International Multi-
Conference on Systems Signals and Devices (SSD). 2010. p. 1-7.

SHIKIN, E. V . and PLIS, Alexander I., 1995, Handbook on splines for the user. Boca
Raton : CRC Press. ISBN 0-8493-9404-X.

SHKOLNIK, Er and T E D R A K E , Russ, 2009, Path planning in 1000+ dimensions using a
task-space voronoi bias. In: In IEEE International Conference on Robotics and
Automation. 2009.

SIDDHARTHA SRINLVASA, 2013, Sampling-Based Methods, Lecture 12. 2013.
[Accessed 22 December 2014]. Available from:
https://personalrobotics.ri.cmu.edu/courses/16662/notes/rrt/16662_Lecturel2.pdf

SLEUMER, Nora H. and TSCHICHOLD-GŮRMAN, Nadine, 1999, Exact Cell
Decomposition of Arrangements used for Path Planning in Robotics.

SLOVNÍK, Slovník spisovného jazyka českého. Available from:
http://ssjc.ujc.cas.cz/search.php?hledej=Hledat&heslo=robot&sti=EMPTY&where=hesla&
hsubstr=no

SMITH, Randall C , 1986, Development System for Flexible Assembly System. . 1986.
DOI 10.1177/027836498600500404.

138

https://personalrobotics.ri.cmu.edu/courses/16662/notes/rrt/16662_Lecturel2.pdf
http://ssjc.ujc.cas.cz/search.php?hledej=Hledat&heslo=robot&sti=EMPTY&where=hesla&

S M O G A V E C , G. and ZALIK, B., 2012, A fast algorithm for constructing approximate
medial axis of polygons, using Steiner points. Advances in Engineering Software. October
2012. Vol . 52, p. 1-9. DOI 10.1016/j.advengsoft.2012.05.006.

STOLLE, M . and A T K E S O N , C.G., 2006, Policies based on trajectory libraries. In :
Proceedings 2006 IEEE International Conference on Robotics and Automation, 2006.
ICRA 2006. May 2006. p. 3344-3349.

STRANDBERG, M . , 2004, Augmenting RRT-planners with local trees. In : 2004 IEEE
International Conference on Robotics and Automation, 2004. Proceedings. ICRA '04.
April 2004. p. 3258-3262 Vol.4.

SUN, Zheng, HSU, D., JIANG, Tingting, KURNIAWATI, H. and REIF, J.H., 2005,
Narrow passage sampling for probabilistic roadmap planning. IEEE Transactions on
Robotics. December 2005. Vol . 21, no. 6, p. 1105-1115. DOI 10.1109/TRO.2005.853485.

Supersampling, 2015. , Available from: http://en.wikipedia.org/wiki/Supersampling

TAPIA, Lydia, THOMAS, Shawna, B O Y D , Bryan and A M A T O , Nancy M . , 2009, An
unsupervised adaptive strategy for constructing probabilistic roadmaps. In : in Proc. IEEE
Int. Conf. Robot. Autom. (ICRA. 2009. p. 4037-4044.

TITAS BERA, M . S E E T H A R A M A B H A T and DEBASISH GHOSE, 2014, Analysis of
Obstacle based Probabilistic RoadMap Method using Geometric Probability. In : 3rd
International Conference on Advances in Control and Optimization of Dynamical Systems.
IIT-Kanpur, Kanpur, India. 2014. p. 462-469.

URMSON, C. and SIMMONS, R., 2003, Approaches for heuristically biasing RRT
growth. In : 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems,
2003. (IROS 2003). Proceedings. October 2003. p. 1178-1183 vol.2.

U Y A N I K , Kadir Firat, 2011, Social Robot Partners: Still Sci-fi? . 2011.

V A H R E N K A M P , N . , ASFOUR, T. and D I L L M A N N , R., 2007, Efficient motion planning
for humanoid robots using lazy collision checking and enlarged robot models. In :
IEEE/RSJ International Conference on Intelligent Robots and Systems, 2007. IROS 2007.
October 2007. p. 3062-3067.

V A N D E N BERG, J. P., 2005, Using Workspace Information as a Guide to Non-uniform
Sampling in Probabilistic Roadmap Planners. The International Journal of Robotics
Research. 1 December 2005. Vol . 24, no. 12, p. 1055-1071.
DOI 10.1177/0278364905060132.

V E N D R E L L , Eduardo, M E L L A D O , Martin and CRESPO, Alfons, 2001, Robot planning
and re-planning using decomposition, abstraction, deduction, and prediction. Engineering
Applications of Artificial Intelligence. August 2001. Vol.14, no. 4, p. 505-518.
DOI 10.1016/S0952-1976(01)00027-6.

W A N G , Quan, W A N G , Wei and LI, Yan, 2012, A multi-RRT based hierarchical path
planning method. In : 2012 IEEE 14th International Conference on Communication
Technology (ICCT). November 2012. p. 971-975.

http://en.wikipedia.org/wiki/Supersampling

W A N G , Wei, Y A N , L i , X U , Xin and Y A N G , Simon X . , 2010, An adaptive roadmap
guided Multi-RRTs strategy for single query path planning. In : 2010 IEEE International
Conference on Robotics and Automation (ICRA). May 2010. p. 2871-2876.

WIKIPEDIA, 2014a, History of robots - Wikipedia, the free encyclopedia. . 2014.
Available from: http://en.wikipedia.org/wiki/History_of_robots

WIKIPEDIA, 2014b, Minkowski addition. Wikipedia, the free encyclopedia. 2014.
Available from:
http://en.wikipedia.org/w/index.php?title=Minkowski_addition&oldid=637892103

W I L M A R T H , S.A., A M A T O , N . M . and STILLER, P.F., 1999, M A P R M : a probabilistic
roadmap planner with sampling on the medial axis of the free space. In : 7999 IEEE
International Conference on Robotics and Automation, 1999. Proceedings. 1999. p. 1024-
1031 vol.2.

Y A N G , Kwangjin, 2013, An efficient Spline-based RRT path planner for non-holonomic
robots in cluttered environments. In : 2013 International Conference on Unmanned
Aircraft Systems (ICUAS). May 2013. p. 288-297.

Y E H , Hsin-Yi, THOMAS, Shawna, EPPSTEIN, David and A M A T O , Nancy M . , 2012,
U O B P R M : A uniformly distributed obstacle-based P R M . In : Intelligent Robots and
Systems (IROS), 2012 IEEE/RSJ International Conference on. IEEE. 2012. p. 2655-2662.

Y E R S H O V A , A. and L A V A L L E , S.M., 2007, Improving Motion-Planning Algorithms by
Efficient Nearest-Neighbor Searching. IEEE Transactions on Robotics. February 2007.
Vol . 23, no. 1, p. 151-157. DOI 10.1109/TRO.2006.886840.

Z H A N G , Qiushi, CHEN, Dandan and CHEN, Ting, 2012, An Obstacle Avoidance Method
of Soccer Robot Based on Evolutionary Artificial Potential Field. Energy Procedia. 2012.
Vol . 16, PartC, p. 1792-1798. DOI 10.1016/j.egypro.2012.01.276.

ZHONG, Jiandong and SU, Jianbo, 2012, Triple-Rrts for robot path planning based on
narrow passage identification. In : 2012 International Conference on Computer Science
and Information Processing (CSIP). August 2012. p. 188-192.

ZUCKER, Matt, KUFFNER, James and B A G N E L L , J. Andrew, 2008, Adaptive
workspace biasing for sampling-based planners. In : Robotics and Automation, 2008. ICRA
2008. Pasadena, C A : IEEE. May 2008. ISBN 978-1-4244-1647-9.

ZUCKER, M . , KUFFNER, J. and B R A N I C K Y , M . , 2007, Multipartite RRTs for Rapid
Replanning in Dynamic Environments. In : 2007 IEEE International Conference on
Robotics and Automation. April 2007. p. 1603-1609.

http://en.wikipedia.org/wiki/History_of_robots
http://en.wikipedia.org/w/index.php?title=Minkowski_addition&oldid=637892103

AUTHOR'S PUBLICATIONS

[I] A . Abbadi and R. Matousek, "Hybrid rule-based motion planner in cluttered
workspace," Soft Computing, 2015. (Accepted)

[2] A. Abbadi and V . Prenosil, "Collided Path Replanning in Dynamic Environments
Using RRT and Cell Decomposition Algorithms," in Modelling and Simulation for
Autonomous Systems, vol. 9055, J. Hodicky, Ed. Cham: Springer International Publishing,
2015, pp. 131-143.

[3] A. Abbadi and R. Matousek, "RRTs Review and Statistical Analysis," International
journal of mathematics and computer in simulation, vol. 6, no. 1, 2012.

[4] A. Abbadi, R. Matousek, and L. Knispel, "Narrow passage identification using cell
decomposition approximation and minimum spanning tree," presented at the Mendel,
2015, vol. 2015-January, pp. 131-138.

[5] A. Abbadi and V. Prenosil, "Safe Path Planning Using Cell Decomposition
Approximation," presented at the International Conference DISTANCE LEARNING,
SIMULATION A N D COMMUNICATION, Brno, 2015, vol. DLSC2015, pp. 8-14.

[6] L. Knispel, R. Matousek, A. Abbadi, and J. Dvorak, " A note about pseudo 3D grid
approximation of landscape for a holonomic robot path planning with naive path
optimization," presented at the Mendel, 2015, vol. 2015-January, pp. 127-130.

[7] A. Abbadi and R. Matousek, "Path Planning Implementation Using Matlab,"
presented at the International Conference of Technical Computing Bratislava 2014,
Bratislava, 2014, pp. 1-5.

[8] A. Abbadi, R. Matousek, P. Osmera, and Lukas Knispel, "Spatial Guidance to RRT
Planner Using Cell-decomposition Algorithm," presented at the 20th International
Conference on Soft Computing, M E N D E L 2014, 2014.

[9] A. Abbadi, R. Matousek, S. Jancik, and J. Roupec, "Rapidly-exploring random
trees: 3D planning," presented at the Mendel, 2012, pp. 594-599.

[10] S. Jancik, R. Matousek, J. Dvorak, and A. Abbadi, "Local navigation techniques by
means of ICPF," in Ubiquitous Positioning, Indoor Navigation, and Location Based
Service (UPINLBS), IEEE, 2012, 2012, pp. 1-7.

[II] S. Jancik, R. Matousek, J. Dvorak, and A. Abbadi, "The ICP for fragment
identification," presented at the Mendel, 2012, pp. 588-593.

[12] A. Abbadi, R. Matousek, P. Krcek, and P. Soustek, "RRTs Review and Options," in
computational Engineering in Systems Applications, 2011, vol. 2, pp. 194-199.

141

A. APPENDIX: MATLAB IMPLEMENTATION

In this appendix, the main simulation software is presented. It is used for conducting tests,
simulations, generating the numerical and graphical results and building workspaces map
in graphical and interactive way.

This chapter is divided into two sections, the first one describes very concisely RRT and
cell decomposition implementation on Matlab, while the second section lists some GUI
snapshots of the software.

Some parts of the code where published online for robotics community as an open-
source software1.

Path planning implementation using Matlab
This section is based on a technical paper published in (Abbadi, Matousek 2014) for
describing the implementation of the RRT planner and the cell decomposition algorithms
in Matlab environment.

The basic RRT implementation is shown in Figure A - l . It shows the main structure for
the RRT's class.

%%RRT c l a s s
CLASSDEF RRTClass<handle & cSpace

PROPERTIES
c o r d s ; p a r e n t ; s t a r t P o s ; g o a l P o s ; m a x l t e r a t i o n ;
e x t e n s i o n S t e p = E; r r t T y p e = ' b a s i c RRT';

% b i a s t o g o a l , o t h e r t r e e s , s p e c i f i c points,...
b i a s . e n a b l e = l ;
b i a s . type= [' b i a s T o G o a l ' , 'biasToTreePoints',...] ;
b i a s . rangeVal=[0.05, 0.07,...] ;

% b i a s T o G o a l i n range 0 - 0 . 0 5 = 5 % , b i a s T o T r e e P o i n t s i n range 0.05-0.07=2% t h e
% r e s t i s normal random p o i n t s e l e c t i o n

END
METHODS
FUNCTION R R T = R R T C l a s s (i n i t i a l V a l u e s)

FUNCTION [o b j e c t i v e , t E l a p s e d] = r r t P l a n n e r (R R T , d r a w T y p e)
t R R T S t a r t = t i c ;
FOR i t e r = l : R R T . m a x l t e r a t i o n

[o b j e c t i v e] = g r a w T r e e (R R T) ;

% drawType : r e a l t i m e draw, draw t h e r e s u l t , don't draw
R R T . d r a w (i t e r ,drawType);
IF o b j e c t i v e
BREAK;

END
END

t E l a p s e d = t o c (t R R T S t a r t) ;
END

https://sourceforge.net/projects/celldecopositionmotionplanning/

https://sourceforge.net/projects/celldecopositionmotionplanning/

FUNCTION [o b j e c t i v e] = g r a w T r e e (R R T)
obj e c t i v e = 0 ;
[r a n d o m C o n f i g u r a t i o n] =

R R T @ c S p a c e . g e t R a n d o m P o i n t (r r t . b i a s) ;
[n e a r e s t C o n f i g u r a t i o n] = R R T . g e t N e a r e s t P o i n t (r a n d o m C o n f i g u r a t i o n) ;
[n e w C o n f i g u r a t i o n] =

R R T . b r a n c h i n g (n e a r e s t C o n f i g u r a t i o n , r a n d o m C o n f i g u r a t i o n) ;
I s C o l l i d = R R T @ c S p a c e . c h e c k C o l l i s i o n (n e a r e s t C o n f i g u r a t i o n ,

n e w C o n f i g u r a t i o n) ;
IF I s C o l l i d ; RETURN ; END;
R R T . a d d T o T r e e (n e a r e s t C o n f i g u r a t i o n , n e w C o n f i g u r a t i o n) ;
[o b j e c t i v e] = R R T . c h e c k G o a l () ;

END
Figure A - l : Selected lines of RRT code in Matlab

In our implementation, either the pseudo-random number generator is used to draw a
random sample from the workspace, or the bias toward a specific set using
"getRandomPoint" function, as shown in Figure A-2.

The bias to point/points set associated with some probability that represents the
percentage of choosing a point from the points set. Example of points set are the bias
toward the goal point, toward other trees-points, toward points around the goal, toward
points drawn from old successful path, or toward points from important regions. We
implement the function "getBiasPoinf to give users the freedom to specify the bias
methods and the probability value to these biases.

%%%%%%%% c o n f i g u r a t i o n S p a c e c l a s s %%%%%%%

FUNCTION newPnt= getRandomPoint(CSpace , b i a s)
newPnt=[];
IF b i a s . e n a b l e

newPnt = C S p a c e . g e t B i a s P o i n t (b i a s) ;
END
IF empty(newPnt)

r a n g e = a b s (C S p a c e . d i m e n s i o n s (: , 2) - C S p a c e . d i m e n s i o n s (: , 1)) ;
FOR i = l : s i z e (C S p a c e . d i m e n s i o n s , 1)

newPnt (l , i) = C S p a c e . d i m e n s i o n s (i , 1) + r a n g e (i) * r a n d ;
END

END
END
FUNCTION n e w P o i n t = g e t B i a s P o i n t (C S p a c e , b i a s)

r a n d V a l = r a n d ; % b i a s p r o b a b i l i t y
m e t h o d I n d e x = f i n d (r a n d V a l <= b i a s . r a n g e V a l , 1 , ' f i r s t ') ;
biasMethod= b i a s . t y p e (m e t h o d l n d e x) ;
SWITCH b i a s M e t h o d

CASE ' b i a s T o G o a l '
newPnt =goalPos;

CASE ' b i a s T o T r e e P o i n t s ' % b i a s t o one p o i n t i n o t h e r t r e e s

CASE ' b i a s T o G i v e n P o i n t s '

r a n d V a l = r a n d p e r m (s i z e (C S p a c e . b i a s G i v e n P o i n t s , 1)) ;
newPnt = C S p a c e . b i a s G i v e n P o i n t s (r a n d V a l (1) , :) ;

END
END

Figure A-2: Selected lines of getRandomPoint function

144

The implementation of cell decomposition in Matlab finds the graph of adjacency graph
based on sweep-line technique. Then, to deal with this generated graph the Bioinformatics
toolbox functions was used. An example of these functions is "graphshortestpath" it
searches over the graph for the shortest path between the initial and the goal positions. This
function could be configured to use (Bellman-Ford, BFS, Acyclic, or Dijkstra) algorithms
as a searching method. In this implementation, the Dijkstra's algorithm was used. Another
useful function is "graphallshortestpaths" which gives all available shortest paths.
Moreover, for graph visualization the "biograph" function was used to create graph object,
and then draw it using "view" function, Figure A-3 shows selected lines of code that search
and visualize the graph of adjacency. The result of this code is seen in Figure A-4.

% p r e p a r e U n d i r e c t e d Graph
w i e g h t = l ;
D G = s p a r s e (g r a p h . e d g e s (: , 1) , g r a p h . e d g e s (: , 2) , w i e g h t) ;
UG=tril(DG+DG');
% Graph s e a r c h f u n c t i o n s i n Graph Theory, B i o i n f o r m a t i c s T oolbox
[d i s t , p a t h] =
g r a p h s h o r t e s t p a t h (g r a p h , I n i t i a l P o s i t i o n , G o a l P o s i t i o n , ' d i r e c t e d ' , f a l s e) ;
%draw graph o f a d j a c e n c y
h = v i e w (b i o g r a p h (U G , c e l l s t r (n u m 2 s t r ([1 : s i z e (U G , 1)] ')) , ' S h o w A r r o w s ' , ' o f f ' , '
ShowWeights','on'));

Figure A-3: Search and draw graph, based on bioinformatics toolbox function

Figure A-4: Cell-decomposition planner GUI and the generated graph

The results from cell-decomposition and RRT algorithms are integrated together. Figure
A-5-a, shows the RRT path without bias, and the CD path in Figure A-5-c, then the RRT
path using the bias to CD path's points, as shown in Figure A-5-b.

The planner in Figure A-5-a, has to explore wide areas before it finds the goal, while the
using of the bias-points increase the efficiency for RRT tree.

(a) (b) ©
Figure A-5: (a) RRT planner without bias, (b) RRT with bias toward cell-decomposition path's points,
and (c) the cell-decomposition path

Software snapshots
The main window of the simulation software contains the working space window, as
shown in Figure A-6-(8), and some general options, for example, place the goal and initial
positions, and clear the workspace, Figure A-6-(l), load a workspace Figure A-6-(6), some
statistics parameter Figure A-6-(5). It also contains some RRT parameters Figure A-6-(4),
exact cell decomposition options Figure A-6-(3), cell decomposition approximation Figure
A-6-(2), and the information bar Figure A-6-(7).

I planner_GUI

• 0

EdgeGraph CeUD processed!

Approximate

ResoMion|~ 0.2 |

H Clean Mixed C.

Plan. Meth. equal Weight •

[pjannar | [Clean]

| CD Appro 3. | 1 CD Appro. |

show Narrow Area

|sized«... • M S T

^3acte2 RRT

Run Time Draw

Draw Result

No Draw

Method Bias Statistics

No Bias
Goal
Tree Nodes
CD Path
Fuzzy
Ordered Regions
Ord.Reg.Appro.CD
Appr CD path following
ApprCD terminal roots.

0.1000
0.3000
0.5000

•
IB
•
IV!

^laTsucs^^
Save file tag

Repeate 20

Create 2d CS | j Load CSpace

Figure A-6: Main Software window

The workspaces are drawn in separate window as shown in Figure A-7, where the user
can draw polygon obstacles and modify the coordinates.

The RRT algorithm can be set to bias to specific points for example the exact cell
decomposition path1 as shown in Figure A-9. It can be also used to simulate the dynamic
workspace2, as shown in Figure A-8.

1 See section 4.1.4 and 5.4.1

2 See section 4.1.5

147

File Edit View Insert Tools Debug Desktop Window Help " f

Q aaäI k I \ % •"/• ® ̂ • w a m a &0

Fuzzy
Oroered Regen s
j • -• Reg Appro CO
Appr CD pa:- ' c i i : . ' . ;
Appr CO termnsl roots

1 ffl
1 n
1 SI

)00 J
Save tie tag

Repeate 20

Create 2d CS Load CSpace

Figure A-9: RRT bias toward CD's path points

• a

Expo.»FH J J s.p«H
EdgeGraph CeO processed

Plan Uew eau*. We>gti<

CO Appro 3. 1 CO Appro,

show Narrow Area

ITSettrig RRT lerston 2000

Oy" OP" j |OwrDyw.OW| : . fan Tme Driw

No Draw

Method J _ K M [SbtitiaJ

0 1000 J
0 3000 /
0.5000 W\

t •

1 m
CO Pith

Ordered Regions
Ord Reg Appro CD I
Apor CD patti folowmg 1
A ppr CD lemwial roots 0 3000

Repeals 20

Create 2d CS Load CSpace

Figure A-10: Exact cell decomposition, and the generated graph

The exact cell decomposition options contain generating the cells, planning a path,
shortening the path, and other visualization tool as draw the graph, as shown in Figure
A-10.

The approximation cell decomposition algorithm is implemented in the way that the
user can set the minimum resolution as shown in Figure A - l l . In addition, the cost of
graph edges can be set using four methods1, i.e. equal translation cost, cost proportional to

See chapter 3.3.1

cells size, cost proportional to translation between different cells size, and cost based on
real distance between cell centers.

In Figure A-12, minimum spanning tree algorithm is implemented to identify the
narrow passages using five methods 1 that set the graph edges' cost. We use
"graphMinSpanTree" function from bioinformatics toolbox to find the required graph.

_ planner^GUl ^ faOJ'

(0 0 1 ~ 1 Resoknon 02 | (J -CO / Clean U K M C

Expo. M Fig. S path
Plan Meth equal Weight »j

i EH_E3H
T T T 4 T 4 - AT 4 - 4 - - [EdgaGrapft | jCaeDproooaaadj

p * n n ' "
CD «pf'3 change level

— 1 I'-; show Distance

saeaa » [USt]

-

I'-; show Distance

saeaa » [USt]

- | HRTpamnar | | RflTScatag | (w

OynOMI CMrOynOM «

i Adapted RRT 1

•erahon 2000

dun T«T» Draw
Draw Resut
No Draw

-

ftuTo

•erahon 2000

dun T«T» Draw
Draw Resut
No Draw

-

Method | Bias ISUtntksl

-

Goat 0.10M ffl
Jtm Nodes 0 3000 [/
CO Path 0 5000 _]
Fuzzy 1 _3

-

Ordered Regena 1 •/
Ord Reg Appro CD 1 SB
Appr CD pttti Mowing 1 S]
Appr CD termral roots 0.3000 |_]

1

1

1 >

Save fie lag rji

Repeats | 20]

Create 2d CS j loadCSpaee

- kitortratbn * « = 2 H 1 H 2 '

Statstic* Create 2d CS j loadCSpaee

Figure A - l l : Cell decomposition approximation and the planning options

• planner.GUI .

A A
0 0

-CO

[DwwCe\

| Expo, to F*.

CD planner

S.path

Resolution 02 |

_] Clean MKedC

Plan Meth equal Waqnt »

l — l l - l f ; j - A 4 =4 ;
' i i t

0 0
-CO

[DwwCe\

| Expo, to F*.

CD planner

S.path

Resolution 02 |

_] Clean MKedC

Plan Meth equal Waqnt »

l — l l - l
i ľ 1 !

>
| CD Appro 3 ! CD Appro.

seeds... j] [HST |

< ^z. > — HRT

RRT pamnar | | RRT Setting RRT , Uniform

< > [Dyn O0SI Clear Dyr. 00»t d

, Uniform

< >
Bias To

: Adapted RRT Xaw Result

< A ^ Bias To
No Draw

— > — — < — : Method Bias Statirt.cs

< H4- — < r
Mo Bias
Goal
Tree Nodes
CO Path
Fuzzy

0 10
0 30
0.S0

0 W:
M m
DO J < ^>

Mo Bias
Goal
Tree Nodes
CO Path
Fuzzy

0 10
0 30
0.S0 n r2

t /
- Ordered Regcni i 12
•> Ord Reg Appro CD ' J

Appr CD path folowng 1 __
Appr CD terminal root* 0 3000 _)

1

Ord Reg Appro CD ' J
Appr CD path folowng 1 __
Appr CD terminal root* 0 3000 _)

1
i

Ord Reg Appro CD ' J
Appr CD path folowng 1 __
Appr CD terminal root* 0 3000 _)

1
i i

Save He tag

Reoeate

»1

•0

Creale20CS (LoadCSoaee

3 4 5 8 9 1

| a — Creale20CS (LoadCSoaee | a — Creale20CS (LoadCSoaee

Figure A-12: Minimum spanning tree usage, over cell decomposition approximation's graph, and the
narrow areas identification options

1 See section 3.3.2

http://Statirt.cs

