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Abstract An ordering relation is a central concept in many areas of human activity. This work is
concerned with ordering relations in the setting of fuzzy logic. We consider the notion of fuzzy
order, where antisymmetry is inherently linked to a many-valued equality on the underlying
universe. We thoroughly examine the origins of this concept, including the seemingly different
point of view used in some works; provide remarks and observations on the existing studies; and
prove new results. Then we offer a unifying concept of antisymmetry in the setting of fuzzy logic
and thus also unified notion of fuzzy order. In particular, we prove that all the definitions of
fuzzy order, we are concerned with, are mutually equivalent and also equivalent to the proposed
generalized view. By doing so, we uncover that the link between fuzzy order and underlying
fuzzy equality is even deeper than usually assumed. Finally, we utilize these new observations
on the role of fuzzy equality by reconsidering the problem of Szpilrajn-like extension of fuzzy
order and by providing a way to extend any fuzzy order into a linear fuzzy order in a broad
class of fuzzy logics.
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Preface

An ordering relation is a central concept in many areas of human activity. In 1970s Zadeh (1971)
coined generalizations of ordinary similarity and ordering relations into his, in that time novel,
setting of fuzzy sets (Zadeh, 1965). Since this seminal paper appeared, many deep, theoretical
results and applications were described and implemented. This thesis focuses on some basic
aspects of the theory of fuzzy orderings. Namely the concept of fuzzy order itself, related
axioms, a link to similarity relations, and a possibility of an extension of fuzzy ordering into
a linear fuzzy ordering. We are interested in, arguably up-to-date most developed, approach
where antisymmetry is defined with respect to underlying fuzzy equality and approaches which
turned out to be equivalent. Note that this thesis does not reflect on other definitions of fuzzy
order although many may be found in the literature. We focus only on the point of view where
underlying similarity is taken into account, as this approach proved to be useful by great number
of studies.

The thesis consists of three research papers (attached as Appendices A, B, and C) and this
accompanying text with a brief summary of the obtained results, some additional observations,
historical context, and plans for the future. The first and second papers, concerned with the
concept of fuzzy order itself, are based on the outcomes of joint scientific work with my super-
visor, Radim Belohlavek, without whom they would not be possible. The third paper is then
devoted to a possibility of linearization of fuzzy order, i.e. to an extension of fuzzy order in
a Szpilrajn-like way. Presented observations offer unifying view on up-to-date available defini-
tions of fuzzy order with respect to fuzzy equality and some new arguments for equality-order
connection to be taken into account even when studying further properties and applications of
such fuzzy orders.

Note that this document is to be taken as accompanying text to the aforementioned studies.
As such, it only briefly summarizes the most important results we obtained on the concept of
fuzzy order itself, its definitions, and various aspects of its connection with underlying fuzzy
equality. In particular all the proofs, auxiliary lemmas, many remarks, comments, and also
some of the obtained results are omitted. If the reader is interested in some particular result,
its proof, or some related information, it can be found in the attached papers in full detail.



Chapter 1

Preliminaries

We start by basics of ordinal order theory, fuzzy logic, fuzzy sets, and fuzzy relations. The hope
is that the text is self contained and accessible even for a reader who does not work in the setting
of fuzzy logic and order theory on the daily basis. If the reader is familiar with these topics then
appendices of the first and third papers attached to this text may be used as a brief summary
of this chapter.

One of the most fundamental concepts in mathematics is a relation, the formal counterpart of
a relationship between entities in our world. We are concerned with particular type of relations
— binary relations on a set. Such relations capture relationships between pairs of elements in a
given situation. Arguably, the most important relationships in our perception of the world are of
two kinds: the ones, which groups similar things together, and the ones, which compare objects
to each other. Corresponding binary relations are called equivalences and orders, respectively.

In this chapter, we first briefly summarize the well known definitions and properties of binary
relations on a set in general and of equivalences and orders in particular. Then, we move our
attention to basics of fuzzy logic, especially to the way fuzzy relations and their properties are
defined. The last part of present chapter is then devoted to fuzzy equivalences and in particular
fuzzy equalities.

1.1 Binary relations on a set

Let U be a set. Any subset R of U x U is called a binary relation on U. For any u,v € U we
say that u is related to v by R if (u,v) € R — this is often denoted simply by R(u,v) or uRuv.
As relations are just special kinds of sets, we may carry out the well known set operations
in a straightforward way. Moreover, we call a relation E an extension of a relation R if R C E.
There are numerous intriguing properties of binary relations on a given set of which the
following will be of importance in subsequent chapters.
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Definition 1.1.1. For a binary relation R on a set U, we define the following well-known
properties:

R(u,u), (reflexivity)

R(u,v) = R(v,u), (symmetry)

R(u,v) AN R(v,u) = u = v, (antisymmetry)
R(u,v) = —R(v, u), (asymmetry)

R(u,v) A R(v,w) = R(u,w), (transitivity)
u#v= R(u,v)V R(v,u), (completeness)

R(u,v) V R(v,u), (strong completeness)

for each u,v,w € U.

We call R reflexive, symmetric, antisymmetric, asymmetric, transitive, complete, and strongly
complete if it fulfills the respective property.

It is worth noting that different terms, such as linear, connex, connected, total, and tri-
chotomic, are used in the literature to describe (strong) complete relations, depending on the
context.

All of these and many more properties of relations together with their interrelationships
may be found e.g. in (Toth, 2020). Using some of the properties above, we may define various
interesting classes of binary relations on a set.

Definition 1.1.2. Binary relation R on U is called:
e preorder (or quasiorder) if it is reflexive and transitive;
e cquivalence if it is a symmetric preorder, i.e. a reflexive, transitive, and symmetric binary
relation;
e order (also partial order, ordering) if it is an antisymmetric preorder, i.e. a reflexive,
transitive, and antisymmetric binary relation.
We denote preorders by <, equivalences by = and orders by <, possibly with sub- or super-
scripts.

Equivalences and equality

As noted above, equivalences are of utmost importance as they allow us to model indistinguisha-
bility of objects in the given situation. Arguably, the most prominent of all the equivalences on
any set U is the equality relation.

Definition 1.1.3. An equality (or identity) on U is an equivalence = on U, which moreover
satisfies

w=v implies u=uv (separability)
for any u,v in U. Here, u = v means that v and v are the same object.

Note: The form of the definition above may feel overcomplicated as the notion of eqaulity
is well-known and can be defined in a more straightforward manner. Nevertheless, we use this
form to highlight the analogy between definitions of equality in the classical setting and the
setting of fuzzy logic (see below).

Equality is of such importance that it is often distinguished from all other predicates on the
level of language of first order logic — the language is then called language with equality. That
is there is the symbol = reserved in the language, which should always be interpreted by the
equality relation. Introduction of this symbol into the language comes hand in hand with extra
axioms — called equality axioms — whose meaning goes back to Leibniz’s considerations. For
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more information, we refer the reader to standard textbooks on mathematical logic, e.g. Cori
and Lascar (2000). In accordance with this practice, we use the symbol = only for the identity
relation on the respective set. It is also worth noting that the equality is the only reflexive
relation on a set which is symmetric and antisymmetric at the same time.

In the following sections, we will see that, contrary to the Boolean case, there is an abundance
of equalities within a fuzzy logic framework. This well known observation leads to various
possible generalizations of many classical concepts and properties which are in the Boolean
case defined with respect to the identity. In Chapter 3, we focus on antisymmetry and its
interrelationship with separability of underlying equality as these properties are crucial for the
concept of order in the setting of fuzzy logic.

Orders

The other prominent kind of binary relations is ordering on a set, i.e. relations modeling com-
parison between objects. There are two common views on an ordering on a set, the first one as
per Definition 1.1.2, the second one known as a strict order.

Definition 1.1.4. A strict order on a set U is a binary relation on U which is transitive and
asymmetric.

It is a well known fact that both definitions delineate same class of relations.

Proposition 1.1.5. If < is an order on a set U then a binary relation < on U defined by
u<v=u<vAu#v for each u,v € U is a strict order on U.

If < is a strict order on U then a binary relation < on U defined byu <v=u<vVu=0v
for each u,v € U is an order on U.

The constructions are mutually inverse.

The structure (U, <), consisting of a set U and an order relation < defined on U, is commonly
referred to as an ordered set. In the subsequent chapters, we extensively utilize two distinguished
classes of orders — linear orders and lattices.

Linear orders

Definition 1.1.6. An order relation < on U is called a linear order (or chain) if it is moreover
strong complete.

In other words, order is linear if for any pair of objects we can decide which object is a
predecessor and which object is a successor in the given sense, e.g. which is smaller, better,
further, ...Note that such concept is utterly natural — many common orders are linear, e.g.
numbers or anything that can be numbered.

One of the most fundamental results in the field of order theory is an extension theorem
proved by Szpilrajn (1930).!

Theorem 1.1.7 (Szpilrajn’s extension theorem). For any order < on a set U there is a linear
order on U which contains <.

That is every order can be extended into a linear order while preserving the original compar-
isons between objects. For finite cases, this extension is straightforward — decide for every pair
of uncomparable elements, pair by pair, what the resulting order should be. There is always at
least one option to do so without breaking properties necessary for a relation to be an order and
after finite number of steps we obtain desired linear order. In general case, this theorem only
holds if we accept the axiom of choice.

Using Szpilrajn’s result, Dushnik and Miller (1941) introduced so called realizers of an order
and the concept of an order dimension.

1Szpilrajn acknowledges the prior existence of unpublished proofs by Banach, Kuratowski, and Tarski.
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Definition 1.1.8. Let < be an order on U. A collection K of linear orders on U is called a
realizer of < if for any two elements u,v in U we have u < v if and only if u <" v holds for every
<’ in K. That is we have u < v = Ne<rexc v <’ w for each u,v € U.

Alternatively we say that IC realizes < or < is realized by (linear orders of) K.

Theorem 1.1.9 (Dushnik and Miller 1941, Theorem 2.32). If < is any partial order on a set
U then there exists a collection K of linear orders on U which realize <.

Definition 1.1.10. A dimension of an order < on U is the smallest cardinal number m such
that < is realized by m linear orders on U. Dimension of < is often denoted by dim (<).

These outcomes initiated the development of dimension theory and led to many useful appli-
cations, e.g Arrow’s and Suzumura’s extension theorems used in theory of social choice (Arrow,
2012; Suzumura, 1983), Schnyder’s characterization of planar graphs (Schnyder, 1989), effective
storage of finite orderings in computer memory by the set of its realizers, and many more. Today,
the dimension theory is a well-established field in the study of ordered sets, as it enables us to
characterize any order by using the most prevalent type of orderings — chains.

Lattices

This section contains few selected results from lattice theory. In this work, lattices are employed
in two ways. First, particular type of lattices is used as a structure of truth degrees in fuzzy
logic while some of the obtained results depends on further properties of this structure. Second,
lattices are the most understood types of orders in setting of fuzzy logic, including deeply
developed applications (Belohlavek, 2001, 2002, 2004; Hohle, 1987). As such, they serve as one
of justifications for our choice of an approach to fuzzy orders and a source of motivation.

It is a well known, yet still captivating, fact that there are two equivalent definitions of a
lattice structure. One characterizes a lattice as a special type of an order while the other defines
it as an algebra.

Definition 1.1.11. Let L be a non-empty set. An ordered set (L, <) is called a lattice if every
pair of elements from L has an infimum, i.e. greatest lower bound, and a supremum, i.e. least
upper bound, in (L, <).

Alternatively, lattice is an algebra (L,V,A) where V and A are two binary operations on L
such that both V and A are commutative and associative and where absorption laws — aV (aAb) =
a=aA(aVb), for every a,bin L — hold. The operations V and A are then called join and meet,
respectively.

We say that a lattice is complete if every subset of L has supremum and infimum in (L, <).

The transition between the two definitions is straightforward. Given a lattice as an ordered
set (L, <), for every a and b in L, defining a V b = sup(a, b) and a A b = inf(a,b) transforms it
into a lattice as an algebra. Conversely, for a lattice as an algebra, if we set a < b to be true if
and only if a A b = a, we obtain a lattice as an ordered set.

In Chapter 4, we discuss the possibility of linear extension of any fuzzy order on a set. It
turns out that such possibility is dependent on extra properties of the underlying residuated
lattice (see below). We therefore define the following concept of join-irreducibility.

Definition 1.1.12. (Davey and Priestley, 2002)

Let L be a lattice. An element x € L is join-irreducible % if
1. 2 # 0 (in case L has a zero)
2. x=yV zimpliesx =y or x = z for all y,z € L.

2Also called supremum-irreducible or sup-irreducible.
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Note 1.1.13. It is also possible to define related concept of irreducibility by arbitrary joins, i.e.
x € L is irreducible by arbitrary joins if there is no subset K of L such that z ¢ K and \/ K = x.

We use the term join-(ir)reducibility in the sense of definition above. If there is a need for
the notion of (ir)reducibility by arbitrary joins then it is clearly stated.

The join-irreducibility turns out to be crucial for the top element of a lattice as this element
plays the role of full truth in fuzzy logic. Therefore, we often utilize the following lemma.

Lemma 1.1.14. In any lattice L with top element 1 and bottom element 0 the element 1 s
join-irreducible if and only if for every finite set K C L\ {1} we have \| K # 1.

Proof. If 1 is join-irreducible in L then for every such finite set K we have \/ K # 1 by induction.
That is \/ ) = 0, for K with K = {a} we have \/ K = a # 1 and for K,, = {a1,...,a,}, i.e. with
| Ky | = n, we have \/ K, = \/ K;,—1 V a; for some K,,_; with |K,_1| =n—1and i € {1,...,n},
ie. VK, =a Vb for some a,b € L\ {1} therefore \/ K,, # 1 by 1 being join-irreducible.

If any finite K has supremum lower than 1 then also every K with |K| = 2 has supremum
lower than 1. That is 1 is join-irreducible in L. O

Since the concepts mentioned above have been introduced, a lot has been done in areas
related to order dimension (Trotter, 1992), lattices (Birkhoff, 1940; Davey and Priestley, 2002;
Griétzer, 2002), and in the theory of ordered sets in general (Caspard et al., 2012; Schréder,
2003).

1.2 Fuzzy logic and residuated lattices

In contrast to classical logic, which relies on a fixed two-element set of truth values L = {0, 1} and
classical truth functions for logical connectives, fuzzy logic takes a different approach. In fuzzy
logic, neither the set of truth degrees nor the truth functions for logical connectives are fixed.
Instead, fuzzy logic operates with a general set of truth degrees, usually denoted by L, and allows
for general truth functions of logical connectives, which are subject to natural basic conditions.
Essentially, fuzzy logic embraces a general structure of truth degrees with appropriate generalized
connectives which allows for more nuanced and flexible reasoning compared to classical logic.

Since the seminal work by Goguen (1967, 1969), the structure L of truth degrees is usu-
ally assumed to form a complete residuated lattice (Belohlavek, 2002; Belohlavek et al., 2017;
Gottwald, 2001; Hajek, 1998; Novék et al., 1999). A given theory is then often developed for
the general complete residuated lattice L and is thus valid also for all the particular cases.

This way, we have class of structures at hand, which includes various particular cases such
as the real unit interval L = [0, 1] equipped with the Lukasiewicz connectives, Heyting algebras,
or even two-element Boolean algebra 2 of classical logic. Each of these structures then forms a
basis of particular case of fuzzy logic.

Definition 1.2.1. A complete residuated lattice is an algebra
L=(LAV,® —,01)

such that (L, A, V,0,1) is a complete lattice with 0 and 1 being the least and greatest element
of L, respectively; (L,®,1) is a commutative monoid (i.e. ® is commutative, associative, and
a®1=a for each a € L); ® and — satisfy the so-called adjointness property:

a®@b<c iff a<b—c (1.1)

for each a,b,c € L. The elements a of L are called truth degrees and ® and — are considered
as the truth functions of (many-valued) conjunction and implication?, respectively.

3The operation — is also called residuum.
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Often, one additional connective, biresiduum, is defined. Its interpretation is the truth
function of (many-valued) equivalence.

Definition 1.2.2. The biresiduum in L is the binary operation defined by
a<b=(a—b)A(b— a), (1.2)
for every a,b in L.

There are various, well known, examples of complete residuated lattices, particularly those
with L being a chain. A common choice of L is a structure with L being unit interval, A and Vv
being minimum and maximum, and ® being a continuous (or at least left-continuous) t-norm
(i.e. a commutative, associative, and isotone operation on [0,1] with 1 acting as a neutral
element). The corresponding — is then given by

a— b=max{c|a®c<b}.

The three most important pairs of adjoint operations on the unit interval are:

a®b=max(a+b—1,0),

Lukasiewicz:
ukasiewicz a—b=min(l —a+b,1),

a ® b=min(a,b),
Godel: Ly 1 ifas<h (1.4)
@ | b otherwise,

a®b=a-Db,
G : 1 ifa< 1.5
oguen a_)():{b 1a_l?, (1.5)
- otherwise.

Another common choice for L is a finite chain. For example on L = {ag = 0,a1,...,a, =
1} € [0,1] (ap < -+ < ay) we can define ® by ay ® a; = amax(k+i—n,0) and — by ap — a; =
Umin(n—k+l,n)- Such defined L is called a finite Lukasiewicz chain. Similarly we can define a
finite Godel chain using same L = {ap = 0,a1,...,a, = 1} C [0,1] with the operations ® and
— given as restrictions of the Gédel operations from [0, 1] to L.

As noted above, even two-element Boolean algebra 2 = ({0,1},A,V,®,—,0,1), i.e. the
structure of truth degrees of classical logic, is a particular case of a complete residuated lattice.
This is vital because when considering the specific case L = 2, the established concepts and out-
comes align with those developed in classical setting. Specifically, the concepts related to fuzzy
sets and fuzzy relations (see the subsequent section) may be identified with their counterparts
in the theory of classical sets and relations.

1.3 Fuzzy sets and relations

Given a complete residuated lattice L, the basic set-theoretic notions are generalized into logical
framework defined by L. We briefly survey the fundamental principles of fuzzy set theory,
focusing particularly on binary fuzzy relations on a set, such as preorders, equivalences, and
equalities. If the used complete residuated lattice is obvious from the context or if the given
proposition is valid for any complete residuated lattice, we usually use terms such as fuzzy set,
fuzzy relation, fuzzy order, etc. On the other hand, if we consider some particular complete
residuated lattice, we denote it by L and then talk about L-set, L-relation, L-order, etc.

“Derived from the operations used as ®, the term “minimum structure” is commonly used when referring to
a Godel structure, whereas a Goguen structure is commonly referred to as a “product structure”.
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Fuzzy sets

Definition 1.3.1. A fuzzy set (or L-set) A in a universe U is a mapping A: U — L. The value
A(w) is interpreted as “the degree to which u belongs to A.”

The collection of all L-sets in U is denoted by LY. A fuzzy set A € LU is called crisp if
A(u) =0 or A(u) = 1 for each u € U. Every crisp fuzzy set A € LY may be easily recognized as
equivalent to the classical subset {u € U | A(u) = 1} of U. In fact, a crisp fuzzy set represents
the characteristic function of the corresponding subset of U. It is customary to treat crisp fuzzy
sets in U and their corresponding subsets of U interchangeably, as long as there is no danger of
confusion.

For a € L and u € U, we denote by {*/u} the fuzzy set A in U, called a singleton, for which
A(r) = aif z = uw and A(x) = 0 if  # u. A crisp singleton {! /u} may be identified with a
one-element ordinary subset {u} of U.

An a-cut of fuzzy set A in U is a set “A = {u € U | A(u) > a}. A crisp set A may be
identified with its 1-cut. The basic operations with fuzzy sets are based on the residuated lattice
operations and are defined componentwise.

Definition 1.3.2. Let A, B be fuzzy sets in U. We define the following operations derived from
those of used complete residuated lattice:

(ANB)(u) = A(u) A B(u),
(AUB)(u) = A(u)V B(u),
(A® B)(u) = A(u)® B(u),
(A— B)(u) = A(u) = B(u),
(VAN @) = Aser Aiuw),
el
(JA@w) = Vier Ai(u),
el

for each v € U.

It follows from previous paragraphs that all 2-sets are crisp fuzzy sets, i.e. these operations
on 2-sets are to be identified with their ordinary counterparts.
Given A, B € LY, we define the degree A C B of inclusion of A in B by

ACB = NAuey(A(u) — B(w)) (1.6)
and the degree of equality of A and B by

A=B = NA,ey(A(u) < B(w)). (1.7)
Note that (1.6) generalizes the ordinary subsethood relation C and (1.7) generalizes the ordinary
equality = of sets.
Binary fuzzy relations

Binary fuzzy relation R between U and V is just a fuzzy set in the universe U x V.

Definition 1.3.3. A binary fuzzy relation (or binary L-relation) R between U and V is any
mapping R: U x V — L. ®

SIf U = V then R is called a binary fuzzy relation on U.
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The definition is a straightforward generalization of the definition of classical binary relation.
Similarly, the basic properties of binary fuzzy relations are generalizations of their classical
counterparts. But contrary to the case of the definition, these generalizations do not have to
be so straightforward for each property. Generalizing reflexivity, symmetry, and transitivity
appears immediate:

Definition 1.3.4. For a binary fuzzy relation R on a set U, we define following well known
properties:

R(u,u) =1, (reflexivity)
R(u,v) < R(v,u), (symmetry)
R(u,v) ® R(v,w) < R(u,w), (transitivity)

for each u,v,w € U.
We say that R is reflexive, symmetric, and transitive if it fulfills the respective property.

These definitions have been proven useful and naturally behaving by a great number of
studies. Generalizing antisymmetry and completeness, however, is much less immediate. Using
the properties above we may instantly define preorders and equivalences in the setting of fuzzy
logic. We postpone the discussion of antisymmetry, fuzzy order, and linear fuzzy order to
Chapters 3 and 4 where we analyze them thoroughly.

Definition 1.3.5. Binary fuzzy relation R on U is called:
o fuzzy preorder (or fuzzy quasiorder) if it is reflexive and transitive;
o fuzzy equivalence if it is symmetric fuzzy preorder, i.e. reflexive, transitive, and symmetric
binary fuzzy relation;
We denote fuzzy preorders by < and fuzzy equivalences by =, possibly with subscripts or
superscripts. We also use terms L-preorder and L-equivalence if L is to be empahsized.

Transitive closures

Transitivity is a crucial property both for equalities and orders — the main subjects of this work.
Therefore, we often discuss various consequences of extending some relation into its transitive
closure.

Definition 1.3.6. Transitive closure Tra(R) of a binary fuzzy relation R on U is the least
transitive binary fuzzy relation on U containing R.

It is well known fact that transitive closure may be formed using only composition and union.

Lemma 1.3.7. For any binary fuzzy relation R: U x U — L we have Tra(R) = \/72; R" =
RURoRURoRoRU---.

For further details on general theory of fuzzy sets and relations we refer to the books by Be-
lohlavek (2002); Belohlavek et al. (2017); Gottwald (2001); Hajek (1998); Novék et al. (1999).

Fuzzy equivalences and fuzzy equalities

Expressing the similarity to some extent between two objects is a common practice in natural
language, as exemplified by the sentence: “These two options are quite different, but there is
yet another one, which is, in a way, similar to both.” Modeling such propositions by means of
classical logic is possible, but it has some drawbacks. For example, we can not easily use theory of
preorders, equivalences, and related concepts, as the described similarity relationship is not even
transitive. On the other hand, fuzzy logic offers a convenient way to handle gradual information
and, moreover, the properties of fuzzy equivalences and equalities are just the properties one
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naturally expects from such similarity. For this reason among others, fuzzy equivalences and
equalities have been deeply developed and widely utilized.

The basic notion in presence of fuzzy equivalence ~ on a set is the compatibility® of a set or
a relation with ~.

Definition 1.3.8. A fuzzy set A in a universe U is compatible with a fuzzy equivalence =~ on U
if

Alu) @ur~v < Av) (1.8)

for every w,v in U.
A binary fuzzy relation R: U x U — L is compatible with a fuzzy equivalence ~ on U if

R(u1,v1) @ (w1 = u2) ®@ (v1 = v2) < R(ug,v2) (1.9)
for every wui, u2,v1,ve in U.

In words, compatibility of a fuzzy set A with ~ means that if v is in A and u and v are
equivalent, then v is in A as well. Similarly, compatibility of binary fuzzy relation R reads that
if u1 and v are related by R, uq is equivalent to us, and vy is equivalent to v, then uo and vy
are related by R as well. That is compatibility generalizes the classical axiom of equality.

In the end, we briefly turn our attention to fuzzy equalities, as their properties are crucial
for the definition and utilization of fuzzy orders. Similarly to the classical case, fuzzy equalities
are defined as separable fuzzy equivalences. However, unlike in the classical setting, there may
exist multiple fuzzy equalities on a given set. We will often discuss various properties of fuzzy
equalities in subsequent chapters.

Definition 1.3.9. A fuzzy equality (or L-equality) is a fuzzy equivalence, which moreover sat-
isfies

u~v=1 implies u=w (separability)

for each u,v € U.
To emphasize that =~ is a fuzzy equality, not a mere fuzzy equivalence, we use the symbol
=, possibly with subscripts or superscripts.

A comprehensive treatment of fuzzy equivalences, equalities, and related topics may be found
in (Recasens, 2011, 2022).

50ften the term extensionality or congruence with respect to a fuzzy equivalence = is used.



Chapter 2

Historical notes

Any abstract concept may be fully grasped only if we know initial motivations and historical
aspects of its development. Therefore, this chapter briefly discusses these topics for the case
of fuzzy order defined with respect to fuzzy similarity and related relations. We also pay some
attention to the works on fuzzy lattices, as this particular type of fuzzy order was often the
driving force behind new results on the concept of fuzzy order itself.

The story of fuzzy order starts with Zadeh’s seminal paper (Zadeh, 1971). Since this work,
a lot has been done in the fields of order theory and in particular lattice theory in the setting of
fuzzy logic. Table 1 shows number of papers devoted to fuzzy order and lattice-type fuzzy order
indexed by Scopus for various time frames including individual decades starting from 1970s. We
find interesting that, according to this data, almost exact half of the papers devoted to these
topics was written in the last 10 years and almost three quarters in the last 15 years. On the
other hand, one has to be careful with such interpretations as this increase of paper count may
go hand in hand with better online databases and overall better internet access in last 20 years
or so. Also it may be related to the phenomenon of inflation in publishing as described by
Belohlavek (2022).

Time frame Order or lattice | Order | Lattice
1971-1980 6 6 0
1981-1990 30 21 9
1991-2000 94 48 46
2001-2010 241 151 92
2011-2020 522 388 140

2021-2023 (April) 134 104 31
2008-2023 (April) 754 554 207
2013-2023 (April) 560 423 143
1971-2023 (April) 1027 718 318

Table 1: Number of papers devoted to fuzzy orders or fuzzy lattices by time frames (mostly
decades) according to Scopus. Second column contains count of papers for the given period and
query “fuzzy order™” OR “fuzzy lattice” in abstract, keywords, and title. The third and fourth
columns contain similar information only for “fuzzy order®™” resp. “fuzzy lattice” queries. The
asterisk symbol in Scopus query represents wildcard — in this case the word “order” may have
any suffix.

2.1 The concept of fuzzy order

Now, we briefly cover the history of the concept of fuzzy order defined with respect to an
underlying similarity by summarizing the results obtained in some works on the topic. We

11
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choose the works which were, in our opinion, the most essential or influential. As such choice
may be regarded as opinionated, we support it by notes on the later influence of obtained
results and also by citation count of each of the papers, which usually serves as one of metrics
of the paper’s influence. By doing so, we note that in some cases it may take time, further
development, and possibly luck for the results to be actually recognized by the community in a
form of citations. Therefore here, the citation counts are to be taken just as supplement to the
notes on historical development.

The works are listed in chronological order by years of their publication. The citation counts
are according to Scopus database in the end of April, 2023.

Zadeh (1971)

The first, and also most influential (2000 citations in Scopus), work on the topic was done by
Zadeh (1971), where the author coined the concepts of fuzzy order! and fuzzy similarity.

The motivation was a study of concepts of equivalences and orders in the fuzzy setting — an
emerging theory in that time. Various properties of such similarity relations and fuzzy orderings
are investigated and some applications are outlined. In the end, a Szpilrajn’s extension theorem
is extended into the setting of fuzzy logic as an example of usefulness and depth of the theory.
The utilized axioms of antisymmetry and linearity are different from today’s perspective and
also from the point of view of this thesis.

Blanchard (1983)

The second work, although overlooked by community (1 citation in Scopus), is very interesting
from today’s point of view. It is the first paper, which considers definition of fuzzy order in a
sense equivalent to those used nowadays.

The motivation of this study was purely theoretical — to asses various candidates for the
definition of fuzzy orders. The validity of some form of Szpilrajn’s extension theorem is used
as the touchstone of worthiness of the given axiom system. In total, four systems are described
and then assessed in this way. Out of these candidates, the so called 4-fuzzy orderings are the
ones, we will be concerned with (among different definitions) in later chapters.

Hohle and Blanchard (1985)

The next work we mention offers an important observation of a link between a fuzzy ordering
and an underlying fuzzy similarity on the given set. Nowadays, this observation is crucial in
utilization of fuzzy orderings, but the work was again overlooked by the community for a long
time. It has 60 citations in Scopus where all but one are from year 2002 or later. The reason is
that around year 2000 this link between order and similarity has been rediscovered independently
of this contribution (see below).

The purpose of the paper was to improve initial results on fuzzy ordering obtained by Zadeh
(1971). The link described above is captured in this excerpt from the abstract of the work: “In
opposition to Zadeh’s, our point of view is that an axiom of antisymmetry without a reference
to a concept of equality is meaningless.” Their setting is that of residuated lattice and they
define all the notions in terms of category theory. In spirit of Zadeh’s paper, the soundness of
their approach is demonstrated by the validity of Szpilrajn’s extension theorem generalization.

Interestingly until lately, no connection between both versions of fuzzy order definitions from
Blanchard (1983) and Hohle and Blanchard (1985) was established, even though both works had
one author in common and were published close in time to each other (see Chapter 3).

Tt is worth noting that before Zadeh, many-valued orders were considered by Menger (1951) as part of his
probabilistic approach to relations.



13 CHAPTER 2: HISTORICAL NOTES

Hohle (1987)

The fourth work, we find important for the development of fuzzy orders, is concerned with
defining fuzzy real numbers as Dedekind cuts. It has 44 citations in Scopus, only seven of which
are before the year 2002. Its importance lies in being the first paper defining complete fuzzy
lattices as a special kind of fuzzy order respecting the link to underlying fuzzy similarity relation.
Interestingly, the used definition of fuzzy order is slightly different than the one by Hohle and
Blanchard (1985), but reasons for such modification of the definition are not explained. The
difference lies in antisymmetry axiom and we discuss it in more detail in Chapter 3.

Among other notions, the obtained results include Dedekind-MacNeille style completion of
any fuzzy order, i.e. embedding of a fuzzy order to a reasonably constrained fuzzy lattice.
These results are then applied to a generalization of real numbers into the setting of fuzzy logic,
which turns the results into another convincing argument for reasonability and applicability
of fuzzy orders defined in this way. It is of interest that almost the same definition was later
independently proposed by Belohlavek and led to a significant development of theory of lattice-
type fuzzy orders by means of formal concept analysis in the setting of fuzzy logic (see below).

Fuzzy Sets Theory and its Applications conference (1998)

After a long time, two authors — Radim Belohlavek and Ulrich Bodenhofer — came up with the
concept of fuzzy order defined with respect to underlying similarity, again. They were not aware
of each others research nor the works described above, albeit they were both strongly influenced
by Hohle’s work on fuzzy logic. Still, they announced their preliminary results on the same
conference — Fourth Fuzzy Sets Theory and its Applications conference in Liptovsky Jan, 1998.
Their definitions are slightly different, but the core idea is same. We cover both definitions in
detail in Chapter 3. After this conference, both authors published several papers devoted to
their respective notions, although they never got to compare them directly.

Belohlavek (1998 and beyond)

As noted above, Belohlavek published several papers on the topic since 1998, e.g. (Belohlavek,
2001, 2002, 2004). Out of all these works, we cover in some detail (Belohlavek, 2004).2 Its main
topic is the theory of complete lattice-type fuzzy orders, while examples and motivations are
based on concept lattices (i.e. hierarchical structures of concepts) generalized into the setting
of fuzzy logic. The notions of fuzzy partial order, lattice-type fuzzy order, and fuzzy formal
concept are introduced. Also, as a particular application of the approach, Dedekind—MacNeille
completion of a partial fuzzy order is described.

Although the results were obtained independently, the used definition of fuzzy order is almost
the same as the one utilized by Hohle (1987). That is, similarly to previous two cases, this work
follows its specific motivations and arrives to almost the same concept of fuzzy ordering.

The work was highly influential in the community around formal concept analysis, where
it sprung the research on its fuzzy counterpart, complete lattice-type fuzzy orders, and related
topics. Up to date, it has 399 citations in Scopus.

Bodenhofer (1998 and beyond)

Also Bodenhofer published several papers on the topic since 1998, e.g. (Bodenhofer, 1999a, 2000,
2003). In his case, we mention some details of (Bodenhofer, 2000). The work is devoted to the
various notions of fuzzy orders available at that time and shows what they are lacking by means
of natural examples such as subsethood relation or implication-induced order. Then the author
proceeds by discussion of involved axioms and notes their connection to underlying similarity.

2We note that this Belohlavek’s first paper on the topic got stuck in the production process: As is apparent
from the acknowledgement in this paper and from (Belohlavek, 2001), the 2004 paper was submitted in 2000.
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Following this link, he finally obtains the definition of fuzzy order with respect to the underlying
similarity relation which is, although obtained independently and in slightly different framework,
same as the definition obtained by Hohle and Blanchard (1985). Bodenhofer was apparently
not aware of previous work by Hohle and Blanchard in that time, but he acknowledges their
historical priority later (Bodenhofer, 2003). The 2000 paper has 92 citations in Scopus so far.

Fan (2001)

Finally, the last contribution we include in this list is (Fan, 2001). This work is concerned with
category theoretical research on the so-called Q2-categories. They may seem to be out of the
scope of our work, but objects of such categories are just the fuzzy orders defined in the same
way as in (Blanchard, 1983). Therefore, although approached with different motivations, the
fuzzy orders were independently defined in an equivalent way again. According to Scopus, this
paper has been cited 91 times so far.

Note 2.1.1. (a) Although all the mentioned works were independent and had motivations of
their own, they arrived to two classes of definitions of fuzzy order. In Chapter 3, these definitions
will be studied in some detail. In the end, we will see that all of them have common generalization
and that they in fact describe the same class of binary fuzzy relations on a set with some possible
limitations given by the context they are utilized in.

(b) We find interesting that there were two independent periods of time, where same alter-
native definitions of fuzzy order were proposed. First time, it was in the 80s due to Blanchard
and Hohle, second time, at the turn of the century due to Belohlavek, Bodenhofer, and Fan.

(c) If we examine an impact these two periods had on fuzzy order research activity, we may
see another interesting phenomenon. The first appearance of the definitions remained more or
less unnoticed for many years, while the second appearance caused reignition of research on
fuzzy orders, their theory, and their applications in other branches of mathematics. This seems
to be an another reason why number of new papers on the topic spiked in last 15 years or so.
Moreover, thanks to this renewed interest in the topic, also the older works became much more
appreciated by the community.

2.2 Sgzpilrajn-like extension theorem for fuzzy orders

Szpilrajn-like extension theorem in the setting of fuzzy logic was considered already by Zadeh
in his seminal paper on fuzzy equivalences and fuzzy orderings (Zadeh, 1971, Theorem 8).
This version of the theorem was stated with respect to different concepts of antisymmetry and
linearity. See Chapter 3 or (Belohlavek et al., 2017) for in-depth analysis of differences between
Zadeh’s and our setting. More results on Szpilrajn-like extension principle in the setting of
fuzzy logic emerged soon, e.g. (Blanchard, 1983; Chakraborty and Sarkar, 1987; Hashimoto,
1983). Of these works, we once again highlight (Blanchard, 1983) where one of outlined views
on fuzzy orders was lately shown to be in a sense equivalent to our view on fuzzy orderings (see
Chapter 3). The main distinction lies in the different setting® and the fact that Blanchard in
general defines the notion of a fuzzy order on a fuzzy set A € LU.

For the approach to fuzzy orders we utilize, i.e. the one which considers fuzzy equality
on the underlying set, the first version of Szpilrajn-like theorem was stated already in (Hohle
and Blanchard, 1985) — the work which coined this approach — see their Theorem II.7 and
its corollaries. This version of the theorem was stated with respect to ®-linearity and sligthly
different definition of a fuzzy order (see Chapter 3 for in detail comparison of various definitions).

As far as we know, the most detailed study on linearity of fuzzy orderings and related concepts
so far is (Bodenhofer and Klawonn, 2004). This study builds upon research on the concept of

3That is particular type of residuated lattices where L = [0,1] and ® = A.
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fuzzy order itself, reignited by Belohlavek and Bodenhofer in the late 1990s to early 2000s. It
analyzes several notions of linearity proposed by various authors in the setting of fuzzy order on
the set with fixed fuzzy equivalence. The fixing of underlying similarity is the most important
difference between their approach and the one utilized in this thesis. In the end, achievability
of Szpilrajn-like theorem is studied for several situations, given by used t-norm and axiom of
linearity (see their Table 1). Their main results include following observations mentioned in the
conclusion of their work: The strong completeness can only serve as an appropriate concept of
linearity in the setting of fuzzy logic, if ® = A; The ®-linearity coined in (Hoéhle and Blanchard,
1985) provides preservation of the most important properties of order extension in the setting
of residuated lattices on [0,1]. However, it is very weak, non-intuitive, and poorly expressive
concept if L does not have a strong negation.

In a sense, our work on the topic of linear extensions of fuzzy orders builds upon this study.
To compare the approaches with fixed underlying similarity and with possibility to modify it
together with the order, some of our observations throughout the Chapter 4 are related to their
results.



Chapter 3

What is fuzzy order?

As it was indicated in previous parts, the first topic of this thesis is to sum, sort, and scrutinize
the various approaches to fuzzy order defined with respect to underlying similarity relation found
in the literature. This chapter contains summary of main results obtained in (Belohlavek and
Urbanec, 2023a,b) — a two-part study on the concept of fuzzy order itself conducted jointly with
Radim Belohlavek.

We focus only on the essential results regarding the concept of fuzzy order in general and its
interplay with underlying fuzzy equality in particular. Therefore, we consider only part of the
study’s content here. Namely, although they are very interesting, we do not cover the results
regarding graded point of view on the various properties of fuzzy relations. We also omit all
the proofs, auxiliary lemmas, many remarks, and comments which may be of interest to reader
later. For this case whole study is attached to this document (see Appendices A and B). All
the definitions, theorems, etc. are accompanied with an exact references into these appendices.
We present them here in their original form with only exception being a different symbol for a
fuzzy equality (see Preliminaries),

3.1 Aim of the chapter

The central topic of the study is same as the one of this thesis — the arguably most developed
approach to fuzzy orders, pursued originally by Ulrich Hohle, Nicole Blanchard, Ulrich Boden-
hofer, and Radim Belohlavek. This approach is distinctive and significant by its treatment of
antisymmetry. It assumes that the underlying universe, the fuzzy order is defined on, is already
equipped with a fuzzy similarity relation, i.e. some fuzzy relation which generalizes the concept
of classical equality. In fact, the above mentioned authors proposed several definitions of fuzzy
order in this sense, where difference between them is mainly in the used axiom of antisymmetry.

Although many papers on fuzzy orders and their properties were published since these pio-
neering works (see Table 1 in Chapter 2), some basic questions on the concept of fuzzy order
itself still remain open. The arguably most important of them is the question of what is an
appropriate definition of fuzzy order?

All the above mentioned definitions are examined in detail and their mutual relationships
described. Note also that the purpose of the study is not a quest for “the right” definition
of fuzzy order which might be considered naive, or even ill-posed. Rather, the study should
be approached as an exploration of an approach to fuzzy orders involving antisymmetry with
respect to fuzzy equality, possible definitions of such fuzzy order, their common bits, differences,
benefits, and drawbacks.

The chapter is organized as follows. We start by examining the definitions per se (Sections
3.2 to 3.5). The rest of the chapter (Sections 3.6 to 3.9) is then devoted to the axiom of
antisymmetry.

16
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3.2 Definitions of fuzzy order

Two definitions of fuzzy order on a set equipped with a generalized equality follow. We provide
them in the forms used in the works of Bodenhofer and Belohlavek, as these are mostly refered
to in literature. There are some mild differences in the forms present in the works by Hohle.
We comment on the differences in appropriate places.

Definition 3.2.1 (Appendix A, Definition 1; Hohle, Blanchard, Bodenhofer). A fuzzy order on
a set U equipped with a fuzzy equality relation =< is a binary fuzzy relation < on U satisfying

u=v < uSw, (=-reflexivity)
(uSv)@Iw) < uw, (transitivity)
(usv)®@(wIu) < usv, (®-antisymmetry)

for each u,v,w € U. (Note: Hohle’s and Blanchard’s as well as Bodenhofer’s original definitions
actually assume, more generally, that =< is a fuzzy equivalence rather than fuzzy equality; this
is discussed below.)

Definition 3.2.2 (Appendix A, Definition 2; Hohle, Belohlavek). A fuzzy order on a set U
equipped with a fuzzy equality relation =< is a binary fuzzy relation < on U compatible with ~,
i.e. fulfilling

(ug Sv1) ®(up =~ ug) ® (v ~wv2) < ug S w9

~

for every wy, us, v1,v2 € U, which satisfies

uSu = 1, (reflexivity)
(uSv)®@vIw) < uw, (transitivity)
(uSv)A(vSu) < usw, (A-antisymmetry)

for each u,v,w € U.

If distinction is needed, we shall call fuzzy orders according to Definitions 3.2.1 and 3.2.2
fuzzy orders with ®-antisymmetry and fuzzy orders with A-antisymmetry, respectively. As noted
in Chapter 2, both the Definitions 3.2.1 and 3.2.2 were introduced twice in two different time
periods.

Definition 3.2.1 was in both cases defined by same conditions as listed above but with respect
to a general fuzzy equivalence rather than fuzzy equality. First appearance is due to Hohle and
Blanchard (1985) motivated by further study and improvement of the notion of order in the
framework of fuzzy logic. The exactly same definition, but in slightly different framework, was
later reinvented by Bodenhofer, who was apparently not aware of Hohle and Blanchard’s work.

Definition 3.2.2 appeared, though in a little different setting, for the first time in the work by
Hohle (1987), where it was stated in the framework of complete residuated lattices on [0, 1] and
with the concept of similarity interpreted by general fuzzy equivalence instead of fuzzy equality.
It was later reinvented by Belohlavek who was not aware of Hohle’s paper, this time in the
exactly same form as Definition 3.2.2. See Chapter 2 for more details regarding history of the
notion.

There are three obvious distinctions when comparing Definitions 3.2.1 and 3.2.2. First,
Definition 3.2.2 assumes compatibility of < with =. Second, the Definition 3.2.1 requires < to
be =-reflexive, while Definition 3.2.2 assumes reflexivity of < instead. And third, the definitions
use different form of antisymmetry where ®-antisymmetry of Definition 3.2.1 seems to be weaker,
i.e. more general, than A-antisymmetry of Definition 3.2.2. The aspect of one definition being
seemingly more general than the other one is also explored in some detail in subsequent sections.
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3.3 Fuzzy equivalence vs. fuzzy equality

As noted in Definition 3.2.1, the original definitions of Hohle, Blanchard, and Bodenhofer assume
that = is a fuzzy equivalence rather than a fuzzy equality. Fuzzy equality is a particular case of
fuzzy equivalence, i.e. fuzzy equivalence moreover satisfying separability. We assume that < is
fuzzy equality in the Definition 3.2.1 for two reasons. Above all, it provides cleaner generalization
of the concept of order into setting of fuzzy logic. Moreover, it allows better comparison of
both definitions, as both kinds of fuzzy orders are then considered in the same context. To
avoid confusion, we also note that Hohle and Blanchard (1985) use name L-equality for fuzzy
equivalence relation. In the rest of the section, this distinction between definitions and reasons
for our choice are briefly examined.

In our view, assuming fuzzy equivalence instead of fuzzy equality in Definition 3.2.1 represents
generalization among two lines at once. First, the framework of the two-element Boolean algebra
is replaced by more general framework of a complete residuated lattice. Second, the identity,
i.e. the only equality in Boolean case, is replaced by a fuzzy equivalence.

The essential justification is done by considering both versions of the Definition 3.2.1, i.e. the
current one with an equality and the original one with an equivalence, in the setting of classical
logic.

On the one hand, the notion resulting from Definition 3.2.1 coincides with the classical notion
of order. Namely, fuzzy equality becomes classical equality — identity. The defining conditions
then become classical reflexivity, transitivity, and antisymmetry.

On the other hand, the notion emerging from the definition of a fuzzy order on a set with a
fuzzy equivalence is not the notion of a classical order. Rather, such relation becomes a slightly
restricted classical preorder (i.e. reflexive and transitive binary relation on a set limited by the
choice of equivalence). The argumentation is as follows. Fuzzy equivalence becomes classical
equivalence =. Then, on the set U equipped with =, the classical relation < is defined, such
that < contains =, is transitive, and satisfies antisymmetry generalized with respect to the
equivalence: v < v and v < uw implies u = v. The relation < is obviously reflexive and transitive,
i.e. a preorder. Moreover, since = is contained in <, we obtain that

w=v ifandonly if u <wandwv <u.

That is < makes some elements to be lower or equal to each other if and only if the underlying
equivalence = makes them equivalent to each other.

In the standard terminology of ordered sets, the relation < is a preorder which moreover
induces a fixed equivalence =. As such, the concept is obviously more general than the concept
of classical order which demands = to be the identity.

Let us point out that it is clear from Bodenhofer’s papers that he was aware of this property
of the definition of fuzzy order assuming fuzzy equivalence as may be seen from Bodenhofer
(2000, 2003). His point of view differs from ours as he considers it to be a feature of order-
preorder relationship rather than a problem. See the attached full version of the study for more
details.

Moreover, we note that using a fuzzy equivalence instead of a fuzzy equality also leads to
possibly not unique distinguished e