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1 Introduction 

According to the latest reports, the human genome encodes for approximately 19 000 protein-
coding genes, which represents only 1.0 – 1.5% of 3 billion-plus base pairs it contains [1]. The rest 
was originally considered “junk” DNA. However, closer exploration of the genome revealed that in 
fact about 80% has biochemical role and is integral to the function of cells, particularly for the control 
of the gene activity [2]. In addition to various regulatory elements, the genome harbors at least 
18 000 non-coding genes that produce over 47 000 non-coding RNAs including tRNAs, rRNAs, 
lncRNAs, snRNAs, piRNAs, circRNAs, siRNAs, miRNAs and many others, often with unknown 
function. One of the relatively well-characterized classes are microRNAs (miRNAs) – tiny, but all 
the more important regulators of gene expression. First miRNA was discovered by Victor Ambros 
and his co-workers Rosalind Lee and Rhonda Feinbaum in 1993 [3]. They found that lin-4, a gene 
known to control timing of C. elegans larval development by repression of the lin-14 gene, does not 
code for a protein, but instead produces a pair of small RNAs. This discovery represented dramatic 
breakthrough in our understanding of the transcriptome. Since then, miRNAs have been shown to 
play important roles in modulation of an array of physiological and pathological processes ranging 
from embryonic development to neoplastic progression. This brought them significant attention as 
potential therapeutic targets. Another wave of excitement came with the discovery that miRNAs are 
released into extracellular environment and are stably present in the circulatory system and various 
body fluids. The realization that circulating miRNA levels change in response to pathophysiological 
processes meant that they might serve as promising and non-invasive clinical biomarkers to aid 
diagnosis, prognosis and monitoring of the response to treatment.  

Whether the goal is to elucidate regulatory roles of the miRNAs, or find novel biomarkers, miRNA 
expression patterns provide essential information for these endeavors. Therefore, since the very 
beginning quantitative profiling of miRNA expression has played a pivotal role in the miRNA 
research. Several techniques for miRNA profiling are nowadays available for both targeted and 
global measurements, including microarrays, RT-qPCR and next generation sequencing methods. 
However, to obtain precise and reliable readouts of miRNA profiles is not straightforward because 
of many technical challenges associated with the workflow.  

This thesis focuses on the development of novel methods and tools for improved miRNA 
quantitative workflows and on the assessment of small-RNA sequencing methods for better 
understanding of their impact on the resulting data. After establishment of the technical base, these 
methods are applied together with global mRNA expression profiling to dissect molecular and 
cellular response to acute central nervous system injuries including stroke and spinal cord injury in 
rodent models. 
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2 Aims and scope 

The broader goal of this thesis was to develop and establish robust and reliable workflows for both, 
targeted and global miRNA expression profiling, including profiling of challenging samples such as 
biofluids. The ultimate goal was to utilize these workflows together with techniques for gene 
expression profiling to improve our understanding of molecular mechanisms of central nervous 
system (CNS) injury.  

The specific aims of the work described in this thesis were: 

• To develop, optimize and validate new method for miRNA quantification based on RT-
qPCR that would allow precise and cost-effective quantification from various samples 
including animal and plant tissues, cells and biofluids. 

• To develop easy-to-use tool that would allow convenient optimization and troubleshooting 
of the wet-lab workflow of quantitative miRNA studies as well as routine control of sample 
quality. 

• To comprehensively evaluate all currently available methods for small RNA-Seq library 
preparation with focus on their performance with challenging samples such as biofluids to 
reveal their strengths, drawbacks, biases and impact on resulting data quality. 

• To dissect global gene and miRNA expression changes after ischemic stroke and spinal 
cord injury (SCI) to reveal underlying molecular and cellular mechanisms. 
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3 Literature review 

3.1 MicroRNAs 
MicroRNAs (miRNAs) are short non-coding regulatory RNA molecules with length of  ~ 22 nt [4]. 
They are found in animals, plants and some viruses where they regulate expression of protein-codi 
ng genes at the post-transcriptional level. The miRNA pathway is derived from a closely related 
RNA-silencing pathway called RNA interference (RNAi). While RNAi pathway starts with longer 
dsRNA producing various small interfering RNAs (siRNAs), the hallmark of evolutionally younger 
miRNA pathway is the production of short hairpin RNAs giving rise to well-defined class of miRNAs 
[5]. In mammals, hundreds of miRNAs have been identified, including 1978 mature miRNAs in 
mouse and 2654 miRNAs in human according to latest release of the miRBase database [6]. Many 
of these miRNAs are conserved across species and it is estimated that over 60% of the mammalian 
protein-coding genes are subject to miRNA-mediated regulation [7]. It is perhaps not surprising that 
miRNAs play important regulatory roles in nearly every physiological and pathological aspect of 
biology including developmental processes and various diseases [8]. 

3.1.1 MiRNA genomic organization 

MiRNA genes are located in all chromosomes in humans, except for Y chromosome [9]. Around 
half of all currently identified miRNAs are intragenic and processed mostly from introns and few 
exons of protein coding genes, while the remaining are intergenic, transcribed independently of a 
host gene and regulated by their own promoters. About 50% of intergenic miRNAs are found in 
close proximity to other miRNAs, forming extended clusters transcribed as a single polycistronic 
unit [10]. MiRNAs originating from a single pri-miRNA are often related, and share their mRNA 
targets [11]. MiRNAs are grouped into families based on their targeting properties, which depend 
primarily on the identity of their extended seed region (see below) and members of the same seed 
family are usually evolutionarily related [5]. A spectrum of miRNAs in most metazoan animals 
usually consists of species-specific miRNAs that are evolutionary novelties and evolutionary 
conserved miRNA families that are found also in other animal groups [12]. For example, of the 500-
plus canonical miRNA genes confidently identified in the human genome, 296 fall within 177 seed 
families conserved among placental mammals [5].  

3.1.2 MiRNA biogenesis 

In animals, miRNA genes are transcribed by RNA polymerase II into primary miRNA transcripts 
(pri-miRNAs) several hundreds to thousands of nucleotides long. Each pri-miRNA contains at least 
one 60- to 80- nucleotide stem-loop structure [13]. In the first miRNA biogenesis step, pri-miRNAs 
are processed in the nucleus by a protein complex called microprocessor, composed of RNase III 
Drosha and its binding partner DGCR8 (known as Pasha in flies and nematodes). Drosha cuts 
each strand of the stem of the pri-miRNA hairpin with a 2 bp overhang, which releases a ~ 60 nt 
stem-loop precursor called pre-miRNA [5]. The pre-miRNA is then exported into the cytoplasm by 
Exportin-5, where it is further processed by another RNase III enzyme Dicer. Dicer cuts both RNA 
strands close to the loop region of the hairpin, which liberates the ~ 22-25 nt miRNA duplex. The 
miRNA duplex has a ~ 2 nt 3ʹ overhang on each end and is composed of the miRNA guide strand 
hybridized to its passenger strand, often called the miRNA* („miRNA star“). The miRNA duplex is 
subsequently loaded by one of the members of the Argonaute (AGO) protein family, which selects 
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one strand to become the mature miRNA (guide strand), while the other strand is degraded 
(passenger strand, miRNA*). AGO proteins loaded with mature miRNAs form RNA-induced 
silencing complex (RISC), which is driven by guide miRNA to the target mRNAs and other 
transcripts, promoting their repression (Figure 1A) [14]. 

In addition to the canonical biogenesis described above, several non-canonical pathways, which 
do not require all of the proteins mentioned above, have been characterized [14]. Mirtrons are 
a major class of non-canonical miRNAs produced by Drosha-independent pathway. They originate 
from introns that, once spliced, form pre-miRNA hairpins that are exported into the cytoplasm and 
immediately processed by Dicer, bypassing the microprocessor cleavage [15]. Mirtrons are present 
in A. thaliana, C. elegans, D. melanogaster [16, 17] and mammals, where hundreds of mirtron loci 
have been identified [18]. Drosha-mediated processing is also bypassed in miRNAs derived from 
other non-coding RNAs, such as tRNAs or snoRNAs [19–21]. Although Dicer-independent miRNA 
processing is rare, there is an example of miRNA generated via this pathway which is all the more 
interesting (Figure 1A). Mir-451 is one of the most highly expressed miRNAs in erythrocytes and it 
is required for proper erythroblast maturation [22]. In contrast to other non-canonical miRNAs, miR-
451 does require Drosha for its processing. However, the resulting pre-mRNA is too short to be 
processed by Dicer and instead is cleaved directly by Ago2 and further trimmed by a poly(A)-
specific ribonuclease [23–25]. The existence of alternative biogenesis pathways demonstrates 
evolutionary flexibility of miRNA biogenesis. However, it is notable that vast majority of vertebrate 
miRNAs follow canonical biogenesis pathway, and functional relevance of most non-canonical 
miRNAs, with notable exceptions such as miR-320 or miR-451, remains elusive [13].  

 
Figure 1. A) Scheme describing canonical and alternative miRNA biogenesis in animals. B) 
Scheme depicting various modes of miRNA target repression. Figure adapted from [26]. 
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3.1.3 MiRNA regulatory mechanisms 

The mature miRNA guides RISC to complementary sequences located mainly in the 3ʹ untranslated 
region of its target mRNAs. Several mechanisms for subsequent post-transcriptional repression 
have been proposed, including target slicing, repression of translation, or acceleration of mRNA 
decay (Figure 1B) [4]. MiRNAs with highly complementary binding can trigger mRNA cleavage, a 
mechanism derived from the ancestral RNAi pathway, in which target slicing provides an anti-viral 
and anti-transposon defense. While this mode of miRNA action is common in plants [27], in animals 
it is very rare, with miRNA-directed slicing reported for only 20 cellular transcripts [5]. Moreover, 
three of the four human AGO clade proteins are catalytically inactive. Therefore, most animal 
miRNAs mediate target gene regulation through a mechanism that is independent of RNA 
endonucleolytic cleavage. 

The vast majority of miRNAs in animals recognize their targets through much less extensive pairing 
of their seed sequence. The seed represents nucleotides at positions 2 to 7 from the 5ʹ end of the 
miRNA, which can be often supplemented by nucleotide at the 8th position (so called “mate”) or an 
A across from miRNA nucleotide 1, or both, to make 7 or 8 nt long binding sites [4]. These 7–8 nt 
sites mediate the bulk of the repression for each miRNA [28]. Upon the formation of a miRNA–
mRNA interaction, AGO recruits a member of the GW protein family TNRC6. TNRC6 interacts with 
the poly(A)-binding protein (PABPC) associated with the mRNA poly(A) tail and also recruits 
deadenylase complexes. The deadenylases shorten the poly(A) tail, which in most systems causes 
mRNA destabilization through decapping and 5′-to-3′ exonucleolytic decay [29]. Recruitment of 
TNRC6 also causes translational repression [26]. However, an overwhelming evidence from 
miRNA knock-in or knock-out experiments with subsequent quantitative readouts of mRNA and 
protein levels revealed that destruction of target mRNAs is a dominant mode of miRNA action [30–
33]. mRNA destruction explains as much as 84% of miRNA-directed repression in mammals, with 
only modest (11-16%) effect attributable to translational repression [30, 31]. From an experimental 
perspective, this is good news for researchers aiming to study miRNA-mediated regulation. It 
means that changes of mRNA levels (which are measured much easier than protein or translational 
efficiency effects) provide a good quantitative readout of miRNA action, e.g. after its experimental 
perturbation. Notable exception to this phenomenon is the early zebrafish embryo, where miR-430 
reduces translational occupancy of target mRNAs, thus repressing their translation, and only later 
triggers the mRNA decay [34]. This effect appears to be dependent on the cellular context, rather 
than specific miRNA properties. In cells with robust surveillance mechanisms, such as post-
embryonic cells, shortening the tail of an mRNA reduces its stability but does not change its 
translational efficiency, whereas in early embryos, shortening the tail of an mRNA does not change 
its stability but dramatically decreases its translational efficiency [5, 35, 36].  

3.1.4 Plant miRNAs 

While plant miRNA pathway bears many similarities to the animal miRNAs, there are also 
considerable differences in plant miRNA genomic organization, biogenesis as well as the way 
miRNAs mediate post-transcriptional repression of their targets. Plant genomes typically encode a 
hundred to several hundreds of miRNA genes, which represent independent transcription units 
[37]. As opposed to animals, intronic miRNAs in plants are very rare, with only few cases identified 
to date [37–39].  While in animals roughly half of miRNA genes are located in clusters often 
composed of different mature miRNAs, plant genomes contain fewer cases of miRNA clusters and 
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they mostly encode for homologous miRNAs [40]. Plant pri-miRNA transcripts are much more 
variable in length (ranging from ~ 60 nt to several hundred nt) and bear more complex structures 
than animal pri-miRNAs [41]. In plants, DICER-Like 1 (DCL1), a dicer homolog, is responsible for 
both cropping the pri-miRNA and dicing the pre-miRNA, and these steps of miRNA biogenesis both 
occur in nucleus in specialized subnuclear regions called D-bodies, while in animals second 
cleavage occurs in cytoplasm [37, 42].  

A unique feature of plant miRNAs is the 2ʹ-O-methylation of the 3ʹ most nucleotides of the 
miRNA/miRNA* duplex by the action of HEN1 methyltransferase. This modification prevents 
untemplated uridylation of the 3ʹ ends, which is crucial for miRNA stability in plants [43, 44]. 
Importantly, 2ʹ-O-methylation can also significantly impair detection and quantification of miRNAs 
due to severe inhibition of polyadenylation and ligation reactions employed by numerous 
quantification assays [45]. Therefore researchers should keep this in mind as appropriate methods 
and/or modifications to the protocols have to be chosen for quantification of miRNAs bearing 2ʹ-O-
Me modification [46, 47]. Another difference between plant and animal miRNAs is in their mode of 
action. Unlike in animals, target binding of plant miRNAs requires a nearly full complementarity, 
leading to the endonucleolytic cleavage of the target by the AGO protein, although translational 
inhibition also occurs [48, 49]. Due to requirement for extensive complementarity, each plant 
miRNA has at least two orders of magnitude fewer targets compared to animal miRNAs [41]. This 
also makes it much easier to identify targets in silico. 

3.1.5 MiRNA annotation and nomenclature 

Canonical miRNAs can be characterized by distinctive set of features and striking sequence 
conservation, not seen in other types of small RNAs [50, 51]. These structural features are typically 
used in conjunction with expression criteria to identify and annotate novel miRNAs (reviewed in 
[52]). Undoubtedly, the most popular miRNA sequence database is miRBase (www.mirbase.org; 
Kozomara et al., 2019). miRBase accepts new entries from published miRNA papers, and in its 
latest release (version 22.1) contains 38589 entries across 271 organisms. However, identifying 
what is and what is not a miRNA has not been a straightforward task, which in combination with 
ever-increasing amount of next generation sequencing (NGS) data and relatively lenient criteria for 
new entries to miRBase led to significant amount of false-positive entries. It was recently found that 
almost half of all animal entries in miRBase are not derived from bona fide miRNA genes [53]. In 
accordance, numerous other studies called large part of miRBase into question, showing that many 
entries actually originate from fragments of longer RNAs as a result of degradation [54–57]. At the 
same time, novel miRNAs without miRBase annotation have been identified and validated by 
several studies [57–59]. As the nomenclature for miRNA products evolved over the years, changes 
to the naming and/or sequence of miRNAs between miRBase releases were also introduced. Such 
misannotations can lead to erroneous conclusions on miRNA biology (e.g. Engkvist et al., 2017). 
In response, efforts have been made to identify and track changes to the miRBase [61, 62] as well 
as to build high-confident miRNA databases with uniform annotation system [53, 63, 64]. The 
aforementioned observations warrant caution for researchers studying miRNAs that have been 
introduced in later miRBase releases, species-specific miRNAs without evolutionary conservation, 
or when working with degraded samples, which is often unavoidable in clinical setting. 
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3.1.6 IsomiRs – miRNA variants 

Often, miRNAs are thought of as a single defined sequence, perhaps owing to the way they are 
annotated in popular miRNA databases, such as miRBase [6]. However, with the advent of NGS 
technologies, it has become clear that mature miRNAs exist in several variants differing in their 
length and/or sequence composition. These variants are called isomiRs and can be produced by 
several mechanisms (Figure 2) [65]. IsomiRs heterogeneous in length at either or both ends can 
arise due to imprecise cleavage of pre-miRNA by Drosha and/or Dicer [26], or through action of 
exonucleases “nibbling” of the 3ʹ end [66, 67], which leads to production of isomiRs with matching 
sequence to the pre-miRNA (templated modifications). In addition, post-transcriptional addition of 
one or more bases or RNA editing can lead to isomiRs whose sequence may not exactly match 
the parent gene (non-templated modifications) [5, 68]. 

Although many questions regarding the regulation of isomiR biogenesis and their functional 
relevance remain to be elucidated, isomiRs have been demonstrated to associate with RISC and 
regulate target mRNAs, demonstrating they are real physiological miRNA variants [69]. The most 
frequently observed type of isomiRs both in plants and animals are 3ʹ variants, while 5ʹ variants are 
less common [65]. Any variation at the 5ʹ end of the miRNAs has a potential to alter targeting 
repertoire due to alterations to the seed sequence. The relative rarity of the 5ʹ isomiRs thus 
suggests that evolutionary selection has prioritized processing precision to maximize targeting 
specificity [5]. Nevertheless, there are cases where 5ʹ isomiRs expand regulatory repertoire of 
conserved miRNA genes, such as miR-10-5p in Drosophila [70] or miR-223 in mouse neutrophils 
[71], and at least 12 out of 90 conserved miRNA families produce one or more 5ʹ isomiRs at 
considerable levels [72]. It has been hypothesized that 5ʹ isomiRs may potentially function to 
increase signal-to-noise ratio of miRNA targeting by distributing off-target effects while still 
cooperatively targeting the core network of targets [73]. Unlike 5ʹ isomiRs, variations at the 3ʹ ends 
are not expected to directly alter miRNA targeting specificity. Instead, they may be associated with 
miRNA processing, stability or trafficking to various cellular compartments [74, 75].  

Importantly, it appears to be common that particular isomiR variant is highly abundant, or even 
surpasses the abundance of the canonical variant listed in miRBase [65, 76]. In addition, 
expression of isomiRs can be cell-type specific and can change in response to biological stimuli 
[76–79]. For example, a recent reanalysis of small RNA-Seq data from 126 primary cell and 82 
cancer cell samples have revealed that canonical miRNA was always the most abundant variant 
only for 33% of the detected miRNAs [76]. In addition, on average only 45% of sequencing reads 
for each isomiR group (i.e. isomiRs originating from the same gene) were assigned to the most 
abundant isomiR variant, suggesting that each miRNA is present as a relatively heterogeneous 
isomiR pool, rather than a single defined sequence [76]. Similar observations have been made in 
other biological models [80, 81]. This heterogeneity of sequences is increased in cancer samples, 
suggesting that miRNA processing in cancer is skewed towards randomness [76]. These 
observations have potentially several important implications for researchers studying miRNAs. 
First, isomiRs can have profound effect on miRNA quantification by commercial hybridization-
based assays, or experimental manipulation by miRNA mimics/inhibitors, which are typically 
designed for the canonical miRNA variants listed in databases. Indeed, Blondal and colleagues 
found that their qPCR-based assay failed to quantify 60 out of 517 miRNAs in serum, due to their 
presence as non-canonical isomiRs [82]. Second, methods or analytical pipelines that fail to include 
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isomiRs may underestimate the presence of miRNAs or miss on relevant biological signal. For 
example, the expression profile of full set of isomiRs better separated healthy from tumor samples 
compared to canonical miRNAs only [83, 84]. Third, computational prediction of miRNA targeting 
may benefit from increased efficiency by taking into account all isomiR variants, as has been 
demonstrated with A. thaliana and human sequencing data [85]. 

 

Figure 2. Schematic representation of isomiR variants. Figure reprinted from [65]. 

3.1.7 Extracellular miRNAs 

MiRNAs were originally characterized only within cells. However, first evidence that miRNA may 
be released into extracellular environment came in 2008 when Chim and colleagues identified 
miRNAs of placental origin in the plasma of pregnant women [86]. Several reports on circulating 
miRNAs in serum of patients followed the same year [87, 88] and since then the presence of 
miRNAs has been reported in virtually every biofluid including serum, plasma, saliva, urine, breast 
milk, cerebrospinal fluid and others [89–94]. Two populations of extracellular miRNAs exist in 
biofluids. One can be found in extracellular vesicles (EVs), which is an umbrella term used to 
describe all secreted vesicles independent of their size and origin [95, 96]. The other population is 
associated with proteins or lipoproteins, especially AGO2 [97]. These carriers confer high stability 
to circulating miRNAs, as storage at room temperature, boiling, repeated freeze-thaw cycles, pH 
changes or even chemical agents and enzymes do not lead to significant degradation [98–100]. 
MiRNAs are released from cells either through active transport via EVs or as part of protein-miRNA 
complexes. In addition, passive release from broken or damaged cells, e.g. after injury, or during 
inflammation, apoptotic and necrotic processes, can occur [101]. Actively secreted miRNAs may 
act as signaling molecules and exert biological functions in recipient cells, thereby serving for 
hormone-like communication [101, 102]. EVs that reach recipient cells may activate intracellular 
signaling pathways, release their content into the cell by membrane fusion or enter the cell via 
phagocytosis or receptor-mediated endocytosis. Afterwards, various molecules carried in EVs may 
be released into the cytoplasm, where they may elicit functional response. However, what 
determines the miRNA content of particular EVs and how they are taken up by potential target cells 
is not well understood [102].  

3.1.8 Circulating miRNAs as clinical biomarkers 

The discoveries that miRNAs are present in quantifiable amounts in biofluids, are highly stable and 
reflect physiological and pathological status of the tissue of origin have brought them to attention 
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as a new promising group of biomarkers and sparked a whole new avenue of research. Contrary 
to standard tissue biopsies, sampling of biofluids is quick, minimally invasive and painless and 
individual miRNAs may be detected with high sensitivity and specificity, which makes them 
attractive biomarker candidates for diagnosis and monitoring of patients’ responses to therapy 
[103]. In recent years, myriad of studies aimed at identification of miRNA biomarkers for diagnosis, 
prognosis and monitoring of multitude of human diseases has been published [103, 104]. This led 
to initiation of several clinical trials as well as international efforts aimed at deeper understanding 
of circulating miRNA function and standardization of the miRNA analysis field, e.g. Extracellular 
RNA Communication Consortium (ERCC; www.exrna.org) or CANCER-ID (www.cancer-id.eu). 
Despite the great promise of circulating miRNAs, there have been several issues that hamper the 
progress in the field [105, 106]. These are partly associated with technical difficulties accompanying 
workflow of miRNA quantitative experiments [107, 108]. Therefore, attention must be paid to the 
technological aspects of the measurements and they are discussed in the next chapters. 

3.2 Quantitative miRNA profiling  
Since the early days of miRNA research, quantitative profiling of miRNA expression has been 
crucial for understanding biological roles of miRNAs in health and disease and has become even 
more important for utilization of miRNAs for potential diagnostics. The process of obtaining 
quantitative miRNA profile from the sample involves multiple steps (Figure 3), which are discussed 
below. 

 

Figure 3. Schematic of the main steps of miRNA analysis workflow. 

3.2.1 Experimental design 

Proper experimental design, including a reasonable number of biological and technical replicates 
are crucial to every RNA expression study. Biological replicates are used to evaluate the variability 
between individuals to allow generalized conclusions about particular condition, whereas technical 
replicates help to tackle inevitable variability arising from technical workflow. The exact number of 
biological replicates required for each study is dependent of various factors, including inter-
individual genetic variation (e.g. heterogeneous human population vs inbred mice), sampling bias 
and expected amplitude of differences between studied conditions [109]. Special attention is 
required for circulating miRNA analysis from biofluids, as it is known that the miRNA spectrum may 
vary not only due to pathophysiological processes, but also with the time of the day, diet, gender, 
age, alcohol consumption, medications, etc. [110–112] and well documented is also inter-individual 
variability of the basal miRNA levels [113, 114]. 

The character and number of technical replicates is also dependent on the nature of the sample, 
quantification platform and the amount of variability introduced by particular steps in the workflow. 
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Tichopad and colleagues investigated the effect of replication on different levels of PCR-based 
workflow and found that sampling introduced largest variability with solid tissues, cell cultures and 
single cells. The authors also found that bias introduced by reverse transcription (RT) is 
substantially higher compared to the bias from qPCR and suggested to invest technical replicates 
into the RT step, rather than qPCR as is typically done by many researchers [115]. With RNA-Seq-
based readouts, it has been a question whether a higher number of biological replicates or higher 
sequencing depth (i.e. number of reads obtained from each sample) is better. Today, this has been 
addressed by several studies, which unequivocally arrived to the same conclusion that higher 
number of biological replicates is preferable over deeper sequencing [116, 117]. At least three 
biological replicates per group have been recommended [118], but recent study reported that such 
experiments are typically underpowered, and while results improve gradually with increasing 
replication, at least 12 biological replicates are needed to correctly detect 90% of differentially 
expressed genes [119]. RNA-Seq is considered highly reproducible and thus technical replicates 
are not typically performed [116]. 

3.2.2 Sampling and storage 

Sampling and storage of material is a crucial step as it can have critical impact on the quality of 
RNA and subsequently on the resulting data and conclusions drawn. Widely used methods for 
tissue preservation include snap freezing, storage in commercial preservation buffers such as 
RNAlater (Thermo Fisher) or formalin fixation and paraffin-embedding (FFPE), which is common in 
clinical setting. However, FFPE leads to RNA degradation and therefore other methods are 
preferable. It has been initially argued that miRNAs are relatively stable in degraded RNA samples 
[120, 121] and it is true that there are differences in the rate and susceptibility of various RNA 
classes to degradation [122]. However, it has become clear that, at least with NGS and microarray-
based readouts [56, 123], but also some qPCR assays [124], degraded RNA samples introduce 
bias into measured miRNA profiles, as short fragments of high molecular RNAs interfere with the 
measurement. Thus, assessment of RNA integrity should not be omitted for miRNA profiling 
experiments from cells and tissues (see chapter 3.2.4). 

In biofluids, several  studies have documented extraordinary miRNA stability in samples stored at 
various temperatures and after repeated freeze-thaw cycles [88, 100, 125], although the impact of 
storage conditions is still debated [126]. A major complication in miRNA analysis of blood-based 
samples, such as serum or plasma is contamination with miRNAs derived from lysed blood cells, 
and in particular hemolysed erythrocytes [127, 128]. Even minimal contamination with blood cells 
can increase certain miRNAs by up to 50-fold, which seriously confounds the analysis [128]. 
Therefore, care should be taken during pre-analytical phase to minimize cellular contamination, 
e.g. by proper blood collection and centrifugation steps, and plasma and serum samples should be 
screened for hemolysis prior to analysis (see chapter 3.2.4) [127, 128]. 

3.2.3 MiRNA extraction 

General principles for the isolation of miRNAs are similar to that of longer RNAs, except that some 
protocols are modified to retain, alternatively enrich the small RNA fraction. The extraction methods 
may broadly be grouped into three categories: i) organic extraction (guanidine-phenol-chloroform 
based method), ii) filter-based methods (derivatized silica), and iii) magnetic particles-based 
methods [129]. While standard organic extraction using TRIzol reagent is typically sufficient for 
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cells and tissues, there are some caveats that one should keep in mind. It has been reported that 
TRIzol extraction leads to selective loss of short structured RNAs with low GC content when starting 
with low amount of cells [130]. This problem can be minimized by extracting the aqueous phase 
after TRIzol lysis with commercial spin column [131] or increase the concentration of ethanol in the 
purification step to 80%, which leads to decreased solubility of RNA pellet and minimization of small 
RNA losses [132]. Commercial isolation kits typically offer two regimes for RNA extraction: i) 
isolation of total RNA including small RNAs and ii) specific enrichment for small RNA fraction < 200 
nt. While enrichment for small RNA can lead to lower background signals with some of the older 
quantification technologies such as northern blot and microarray, it usually results in lower total 
yield of small RNAs and may introduce bias to relative miRNA profiles. Isolation of total RNA is 
therefore preferred [133]. 

MiRNA extraction becomes particularly important when working with biofluids as the total level of 
RNA may be very low. Many efforts have been made to compare different isolation protocols from 
biofluids and although there is no clear consensus, commercial kits from Qiagen and Exiqon (now 
part of Qiagen) tend to rank higher than others [129]. Common observation from these studies is 
unexpectedly large variability of replicated extractions, stressing the need for rigorous quality 
control (see chapter 3.2.4). In addition, all methods tend to introduce some bias due to preference 
to certain miRNAs relative to others. A recent RNA-Seq study compared five isolation kits for serum 
and found that sample clustering was clearly driven by kit-specific differences [134]. Therefore, 
results obtained using different isolation protocols are essentially incomparable. 

Regardless of the isolation method used, it is advisable to first perform a small pilot experiment to 
explore the performance of the protocol, before a more complex study is initiated [115, 135]. Such 
empirical optimization can identify optimal input and elution volumes for the highest yield, while 
maintaining low level of carryover inhibition [136–138]. In addition, usage of carriers during RNA 
isolation from low-concentrated samples may improve yield as well as reproducibility [136, 139]. 
However, care should be taken to choose non-RNA-based carriers such as glycogen, BSA or linear 
acrylamide if RNA-Seq is used for readout, due to risk of interference [109].  

It has been argued that most circulating miRNAs in plasma and serum are derived from blood or 
endothelial cells and the contribution of miRNAs derived from diseased cells is rather low [106]. In 
such cases, isolation of EVs may provide fraction that is enriched in disease or tissue-specific 
miRNAs. However, EVs released from different cell types (and even from a single cell type) are 
heterogeneous in size and in protein, nucleic acid and lipid content [96]. Different separation 
methods enrich for single or multiple EV subtypes with diverse composition and variable purity, 
thus identifying method-dependent EV content and function [140, 141]. A more than 1000 unique 
isolation protocols have been identified from a survey of 1742 experiments, demonstrating 
enormous heterogeneity of EV isolation procedures [140]. As a response, international efforts to 
establish experimental guidelines, reporting and standardization have been launched [95, 140, 
142]. Detailed discussion of EV extraction and miRNA extraction from EVs is out of the scope of 
this thesis and readers are referred to the recent papers addressing this issue [143, 144]. 

3.2.4 Quality control 

Controls that test for confounding technical variation are essential for any gene expression study 
[145]. When analyzing tissues and/or cells, sufficient RNA quality is critical. RNA quality is typically 
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assessed by automatic electrophoresis systems, such as Bioanalyzer or Fragment Analyzer (both 
from Agilent), which calculate a so called RIN (RNA integrity number) or RQN (RNA quality number) 
values from 1 to 10, usually by assessing the ratios of 18S and 28S ribosomal peaks as well as 
other parameters [146]. However, as this control is based on RNAs other than miRNAs, it 
essentially represents an indirect measure for the quality of miRNAs. Similarly, RNA quantities are 
typically normalized based on quantity of total RNA. Nevertheless, the seeming increase of small 
RNA fraction, measured as percentage of total RNA, is observed in samples with low RIN values, 
resulting from degradation products, which may negatively influence the results, as discussed 
previously. Therefore, assessment of RNA quality should be performed also for profiling of miRNAs 
from tissues and cells [124]. 

When analyzing circulating miRNAs from biofluids, standard quantification and quality control 
methods are not reliably applicable. Instead, a fixed volume of the biofluid is typically used and 
efficiency of the extraction procedure can be tested by spike-in controls. A spike-in control is a 
foreign small RNA molecule of same length as native miRNAs without sequence homology to the 
endogenous miRNAs [147, 148]. The spike-ins are added to the sample prior to the extraction and 
their recovery is then measured (e.g. by RT-qPCR) and compared to the standard sample to 
identify problematic extractions (Figure 4). Several different spike-ins can be added at various 
stages of the workflow to identify steps introducing technical variation, e.g. addition before RT can 
identify potential inhibition in downstream RT-qPCR (Figure 4). As the methods for reliable 
quantification of isolated miRNA from liquid biopsies are not currently available, sufficient quantity 
can be judged by measurement of few selected miRNAs that are expected to be present in the 
sample and serve as endogenous control [136, 149]. 

 

Figure 4. Concept of miRNA spike-in quality control. Samples are spiked with known amounts of 
exogenous spike-in miRNAs before extraction and RT. Quantification of the spike-in levels via RT-qPCR 
identifies material losses, inhibition, outlier samples and steps introducing severe variability. 

A major complication in miRNA analysis of serum/plasma samples is contamination with miRNAs 
derived from lysed blood cells, and in particular hemolysed erythrocytes [128, 150]. Hemolysis can 
be assessed prior to extraction visually or spectroscopically by measuring the absorbance of 
hemoglobin at 414 nm [127]. An alternative approach is to measure the ratio of miR-23a, which is 
insensitive to hemolysis, and miR-451, which is highly enriched in erythrocytes [149]. This ratio 
increases with increased level of hemolysis and can be used to assess hemolysis levels even when 
the original sample is no longer available. The same strategy can be used to assess contamination 
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with other cell-types if needed. For example, miR-425 level may reflect contamination with platelets 
[151]. To ease the complete quality control of circulating miRNAs from biofluids, commercial [149] 
as well as freely-available [136] protocols combining exogenous, endogenous and hemolysis 
controls have been developed.  

3.2.5 MiRNA quantification 

3.2.5.1 Challenges of miRNA quantification 

Quantification of miRNA profiles bears several unique challenges that are not present with long 
RNA transcripts and that are mainly associated with inherent properties of these small non-coding 
RNAs [108, 152–154]. These are: 

• MiRNAs are very short (~22nt), which impedes efficient hybridization of detection probes or 
PCR primers and therefore miRNA elongation is typically one of the first steps of quantitative 
assays.  

• Variable GC content of miRNAs results in relatively large interval of melting temperatures, 
representing a problem for efficient hybridization of nucleic acid duplexes.  

• Unlike mRNAs, mature miRNAs lack a common sequence, such as poly(A) tail that would 
facilitate their selective capture or universal RT.  

• Some mature miRNA sequences can be nearly identical and differ in only few nucleotides, 
which imposes a great challenge for specificity of the assays. Particularly variations in 5ʹ 
region where the seed match is located can have profound impact on miRNA targeting 
repertoire, and high specificity is also required for detection of miRNA biomarkers in clinical 
setting.  

• Due to the nature of miRNA biogenesis, the sequence of mature product is also contained in 
its precursors and it may be desirable to quantify both, or distinguish between these classes, 
depending on the research question.  

• MiRNAs exist as pool of isomiRs heterogeneous in their length and/or sequence, which may 
interfere with the quantitative assays usually designed for the canonical variant. Without prior 
sequencing data it is essentially impossible to tell in advance which of the isomiRs is 
dominant and thus relying on the canonical sequence may lead to biased results.  

• Biochemical modifications of terminal nucleotides, such as 3ʹ methylation in plant miRNAs or 
animal piRNAs inhibit certain enzymatic steps such as polyadenylation or ligation of the 
adapters to the miRNAs and certain methods are therefore not suitable for their 
quantification.  

Despite these challenges, we and others developed approaches for miRNA quantification, and 
today three most commonly used platforms are microarrays, RT-qPCR and small RNA-Seq.  In the 
following chapters, RT-qPCR and RNA-Seq-based quantification workflow is described, as these 
were two major technologies utilized in this thesis. 

3.2.5.2 RT-qPCR 

RT-qPCR is a gold standard technique for miRNA quantification. It offers highest sensitivity (down 
to tens of molecules per reaction) and high specificity (in some cases down to single nucleotide 
difference) [46, 155, 156] with large dynamic range over 7 orders of magnitude [154]. The wet-lab 
workflow is fast, with sample-to-data time in order of few hours, the methodology is easily adaptable 
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for any laboratory familiar with qPCR and the data analysis workflows are well established [157]. 
In addition, RT-qPCR data can be calibrated for absolute quantification. On the other hand, similarly 
to hybridization-based techniques, only previously known miRNAs and limited spectrum of isomiRs 
can be detected [152]. Although RT-qPCR is considered low- to mid-throughput method, 
microfluidic and array formats capable of profiling hundreds of miRNAs in parallel are also 
available. However, use of RT-qPCR for high-throughput screening may be financially more 
demanding compared to other global techniques.  

The first step in RT-qPCR is to convert the miRNAs into the cDNA by reverse transcription. As 
discussed above, the short length of miRNAs does not allow usage of standard PCR primers (~ 
18-25 nt) and miRNAs have to be elongated. There are two main strategies to do this: i) extension 
of miRNAs during RT via specific RT-primers (Figure 5A, 5B) and ii) extension of all miRNAs with 
a universal sequence prior to cDNA synthesis so that subsequent RT can be performed with 
universal primer (Figure 5C, 5D). Each approach has its advantages and limitations. Specific RT 
primers have 3ʹ ends complementary to the miRNA sequence, whereas their 5ʹ ends serve as 
extensions. The specific RT primers may be linear (Figure 5B) [158], or bear secondary structures 
(Figure 5A) [46, 159, 160]. While linear primers are easier to design, they suffer from higher 
background signal as they easily bind to precursor miRNAs and other sequences [154]. The stem-
loop structured primers [159], commercially sold as TaqMan miRNA assays (Thermo Fisher), are 
better at targeting the mature miRNAs and lowering the background signal, as their unspecific 
binding is reduced, but the disadvantage is hindered RT of isomiRs [46, 161]. Regardless of the 
primer structure, the limitation of specific RT approach is that only miRNAs that are targeted with 
RT primers can be quantified. Hence, if researchers want to add new targets later, they have to 
revert to the RNA (rather than starting from the cDNA) and include additional primers in the RT 
reaction. The complex design of structured RT primers and higher cost of some commercial assays 
also represent a limiting factor, although cost-efficient alternatives were recently introduced [46]. 

The possibility to reverse transcribe all miRNAs in a single reaction is the greatest advantage of 
the second, universal RT-priming approach (Figure 5C, 5D). It relies either on addition of artificial 
poly(A) tail by poly(A) polymerase (PAP) and subsequent priming with oligo(dT) primer (Figure 5C) 
[162], or on ligation of an adapter to the 3ʹ end of miRNAs by T4 RNA ligase and universal priming 
with oligo complementary to the adapter sequence (Figure 5D) [163]. In addition, combination of 3ʹ 
polyadenylation and 5ʹ adapter ligation is commercially available (TaqMan Advanced miRNA 
Assays, Thermo Fisher). Downside to the universal RT approaches is the extension of other RNA 
classes, which increases the background, lower specificity for mature miRNA sequences and 
variable efficiency of the enzymatic steps due to sequence preferences or terminal modifications 
of miRNAs [108, 152, 154]. Since the universal RT-primers reverse transcribe all miRNAs, they do 
not contribute to the specificity of the analysis. Specificity is then conferred only by single qPCR 
primer, as the second qPCR primer is typically universal and binds to the extension sequence. To 
improve specificity and optimize melting temperature, primers containing LNA bases with improved 
hybridization properties were introduced (commercially sold as miRCURY LNA assays by Qiagen) 
[158, 164]. However, their higher price and complicated design hinder their wide utilization [152].  

Whichever the RT strategy, cDNA is subsequently amplified using standard qPCR with either dye- 
or probe-based detection. Using dyes lowers the cost and allows assessment of the reaction 
specificity by melting curve analysis, although certain risk of false-positive detection prevails [165]. 
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As an alternative, hydrolysis probes binding to a specific site in the target amplicon and giving rise 
to specific fluorescence can be used. They were introduced for miRNA applications by Chen and 
colleagues (2005), commercially provided as TaqMan miRNA assays (Thermo Fisher). However, 
in this system the hydrolysis probes bind to a universal sequence present in all RT primers and 
thus do not contribute to the specificity of the reaction. The probe design is improved in the newer 
generation of TaqMan advanced miRNA assays (Thermo Fisher).  

In summary, RT-qPCR-based miRNA analysis is suitable for smaller studies analyzing a predefined 
set of miRNAs, for validation of high-throughput techniques, for applications that require absolute 
quantification, and for routine diagnostics when high sensitivity and/or specificity is required [129].  

 

Figure 5. Schematic representation of strategies for cDNA generation from miRNAs. A) Targeted 
RT with specific stem-loop primers. B) Targeted RT with specific linear primers. C) Universal RT of all 
miRNAs by poly(A) tailing and oligo(dT) priming. D) Universal RT of all miRNAs by linker ligation and 
universal priming. Figure reprinted from [152]. 
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3.2.5.3 RNA sequencing 

Small RNA-Seq is becoming a leading technology for miRNA research. RNA-Seq does not suffer 
from saturation effects and offers higher sensitivity and broader dynamic range than microarrays, 
although it may not match optimized RT-qPCR [155, 166]. It is a high-throughput technology, 
currently allowing convenient multiplexing of up to 96 samples with commercially available kits and 
even more with in-house technologies [167]. Unlike previous technologies, RNA-Seq can detect 
both novel and known miRNAs and allows precise identification of closely related miRNAs, 
isomiRs, edited miRNAs as well as other classes of small RNAs [166]. However, not every small 
RNA obtained is a functional miRNA; degradation fragme nts from longer RNAs can introduce 
artefacts into the data [56] and significant computational effort is needed to properly analyze and 
interpret the results, which can be considered as one of the main drawbacks of the technology. 
Another downsides include biases introduced during library preparation (see below), lack of 
absolute quantification, challenging data analysis or lack of standardization [129]. 

For small RNA-Seq, RNA transcripts need to be converted into sequencing libraries. Several 
protocols for miRNA library preparation are available (Figure 6). The most standard protocol 
employs two sequential ligations of adapters to the 3′ and 5′ ends of the miRNA (Figure 6A) [168]. 
It takes advantage of the 5′ phosphate and the 3′ hydroxyl groups on the miRNA termini to 
selectively target and enrich miRNAs using ligases that require these terminal groups. After ligation 
of the adapters, a universal RT-primer complementary to the 3′ adapter is used for cDNA synthesis. 
The cDNA library is then PCR-amplified using primers complementary to the adapters. These 
primers also introduce the flow-cell binding sequences and sample-specific barcodes. The final 
amplified library typically consists of approximately 120-150 bp of adapter sequences plus an insert 
of the original miRNA sequence of 20–30 bp, which makes a total of 140–180 bp. Longer products 
are generated from adapter ligation to non-miRNA species, including tRNAs, snoRNAs, piRNAs 
and other RNAs having 3′ hydroxyl and 5′ phosphate termini. These can either be retained as part 
of the library or removed by bead-based size selection or polyacrylamide gel electrophoresis 
(PAGE) purification [129].  

One of the issues with the ligation-based library preparation methods is the accumulation of 
unwanted adapter dimers formed by the direct ligation of the 3ʹ and 5ʹ adapters without an RNA 
insert. These artefacts amplify during the PCR and may consume substantial portion of sequencing 
reads. One way to exclude them from the library is to purify only desired products via PAGE after 
PCR amplification. Alternatively, several modifications to the standard protocol have been 
proposed in order to minimize the formation of adapter dimers [169–173].  

Another problem is that ligations of the adapters introduce substantial bias to the representation of 
miRNA sequences in the final data [174]. It arises due to variable efficiency of the adapter ligation 
to different miRNAs, in dependence of their sequence composition and secondary structure [175, 
176]. Consequently, many miRNAs are over or under represented in the data, and some may even 
completely drop out. The measured values provide therefore a distorted picture of the real miRNA 
levels and the quantification must be performed relative to a reference or standard sample (i.e. 
case vs control). To reduce the ligation bias, three approaches have been developed so far. First 
method uses adapters with a stretch of random nucleotides at their ends adjacent to the ligation 
site, which provide a preferred pair of sequences for each miRNA and equalizes the ligation 
efficiency (Figure 6B) [177]. Second method omits ligation altogether and employs poly(A) tailing 
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and subsequent template-switching during RT to introduce adapter sequences (Figure 6C) 
(commercial kits by Takara and Diagenode). Third method relies on the ligation of a single combo 
adapter to the 3ʹ end and subsequent circularization of the molecule prior to RT (Figure 6D) [178]. 
The intramolecular circularization is more efficient than intermolecular ligation and should introduce 
less bias. In addition, strategies to computationally correct ligation bias post hoc are also being 
developed [179, 180]. 

 

Figure 6. Schematic representation of methods for small RNA-Seq library preparation. A) 
Sequential ligation of two defined adapters. B) Sequential ligation of two adapters with randomized 
nucleotides to reduce ligation bias. C) Poly(A) tailing and subsequent oligo(dT)-primed RT with template 
switching. D) Single adapter ligation and circularization. 

Another source of bias, although less prominent than adapter ligation, is the PCR amplification 
[109, 174]. PCR is known to suffer from unequal efficiencies in most RNA-Seq workflows. It has 
been argued that for small RNA-Seq, PCR bias is negligible, owing to short and even length of 
cDNA templates [176, 181, 182]. However, recent studies that assessed the impact of PCR bias 
via unique molecular identifiers (UMIs) call this into question [183, 184]. UMIs are stretches of 
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random sequences that tag each RNA molecule with a unique barcode [185]. Therefore, after 
sequencing it is possible to computationally identify PCR duplicates and correct for PCR bias. The 
usage of UMIs has become standard in the single cell RNA-Seq field, and recently it has been 
introduced also for small RNA-Seq in a commercial kit from Qiagen. 

Several recent studies compared the performance of small RNA library preparation protocols [47, 
184, 186–188]. In general, all protocols showed similar performance in terms of sensitivity, 
reproducibility, accuracy or diversity of detected miRNAs, but strongly differed in the ability to 
capture true representation of miRNA levels, proportion of miRNA reads in the libraries, or detection 
of isomiRs. Polyadenylation-based protocols minimized sequence bias, but produced considerably 
more unwanted side-products, low mapping rates, higher proportion of false isomiR detection and 
as a result did not perform well for biological samples [47, 184, 186]. Among ligation-based 
protocols, methods utilizing adapters with randomized nucleotides had less bias and better miRNA 
coverage at low sequencing depths [47, 184, 186, 188]. The studies also concluded that relative 
quantification is consistently accurate despite biases and that the results are reproducible between 
various laboratories, as long as the same protocol is used [47, 187]. 

Small RNA-Seq is still undergoing novel developments and currently will find its applications mainly 
for screening and discovery studies that will benefit from its immense power to profile global miRNA 
profiles with single-nucleotide resolution in large amount of samples in parallel [129].  

3.2.5.4 Other techniques 

In addition to previous approaches, other techniques for miRNA quantification, often aimed at 
standardized routine applications are emerging. Examples include the HTG EdgeSeq miRNA 
Whole Transcriptome Assay (abbr. EdgeSeq; HTG Molecular Diagnostics) and nCounter system 
(NanoString Technologies) [189, 190]. Both are based on hybridization for recognition of targets, 
but the hybridization is performed in solution, which increases its efficiency. EdgeSeq utilizes a 
large pool of capture probes to bind target miRNAs (>2000) and single strand specific nuclease is 
subsequently used to remove all unbound probes. The remaining probes are then amplified and 
sequencing is used for readout. Compared to conventional small RNA-Seq, the EdgeSeq workflow 
completely avoids ligation bias and allows the analysis of crude biofluids (down to 15 μl), which 
also eliminates bias in the extraction procedure. nCounter relies on multi-step hybridization of 
miRNAs to probes followed by splinted ligation. After ligation of targets to miRNA-specific extension 
sequences, streptavidin capture probes co-hybridize with reporter probes carrying fluorescent 
barcodes to create target-probe complexes. These are immobilized and, after several washing 
steps, fluorescent barcodes, which correspond to the amount of specific miRNAs, are digitally 
counted. This leads to higher precision and dynamic range compared to microarrays [153]. In 
addition to these technologies, various other methods based on probe-ligations [191, 192], 
isothermal amplifications [193, 194] or biosensors [195, 196] have been described. 

3.2.6 Data analysis 

Although each platform includes technology-specific data processing steps, these can be broadly 
categorized into i) data quality control and pre-processing, ii) normalization, and iii) secondary 
analysis.  
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The first assessment of data quality is performed during data pre-processing. It includes analysis 
of positive and negative controls, replicates, melting curves in RT-qPCR, or examination of various 
parameters reflecting the quality of a sequencing run such as the number of identified reads, quality 
score distribution, flow cell loading, presence of over-represented sequences, etc. Data are then 
pre-processed to remove technical artefacts, identify unreliable measurements, and produce a 
matrix of measured target quantities. Instruments for qPCR are usually provided with software that 
performs most pre-processing steps with minimal user intervention, such as amplification curve 
modelling, fluorescence normalization, baseline subtraction, thresholds setting and Cq readout 
[129]. In contrast, RNA-Seq data pre-processing is time consuming, computationally demanding 
and not fully standardized. It includes the trimming of sequencing reads from adapters, removal of 
sequences with inadequate length or low quality, and finally alignment to a reference sequence 
[197]. miRNA reads are typically mapped against a reference genome or miRBase. Mapping 
against the genome sequence provides the most comprehensive view on the data and allows for 
the discovery of novel miRNAs [109]. Mapping against miRBase or similar databases is significantly 
faster and avoids issues with reads mapped to multiple genomic locations, which can introduce 
severe bias if handled inappropriately [109]. 

After data pre-processing, another round of quality control follows, focusing on the identification of 
samples of compromised quality. Typically, low quality samples show reduced number of detected 
miRNAs, reduced overall signal or total number of sequencing reads, deviations from typical 
expression profiles, or high proportion of reads mapped to longer, degraded RNAs [197, 198]. To 
avoid subjective calling of failed samples, pass/fail criteria may be set or statistical tests for outlier 
detection applied [199]. The sample quality may also be evaluated based on the quantification of 
typically expressed miRNAs, indicators of hemolysis in case of blood-derived biofluids, or other cell 
type contamination markers, and the examination of exogenous spike-in controls [136]. 

Next step in the data analysis workflow is normalization. This is arguably one of the most critical 
steps for comparison of samples and may severely compromise the quality of the data if done 
inappropriately, in worst case leading to erroneous conclusions [200]. The goal of the normalization 
is to reduce between-sample variation arising during the experimental procedure. RT-qPCR data 
of mRNAs are typically normalized to the expression of reference genes with stable expression. 
Application of this concept to miRNA expression is more problematic, as there are no universal 
reference miRNAs and it is critical to identify and validate them for every study [152, 200]. A widely 
used alternative is normalization to other small RNA molecules such as RNU6, RNU6A, RNU44, 
and 5S rRNA. Although these may be suitable for cell cultures and some tissues, they are 
inappropriate for normalization of biofluids due to their intracellular character. In addition, they have 
different biogenesis and processing steps, which may not mirror properties of miRNAs [200]. 
Normalization to mean expression may also be applied to RT-qPCR, if a large number of miRNAs 
is quantified [201]. Other normalization strategies include the volume of biofluid, total amount of 
miRNAs, and spike-in molecules. Main problems of these approaches is that they do not account 
for variation in RNA quality, input quantity, and individual variation. Recommended strategy is to 
perform a pilot experiment with a small representative set of samples that is screened for all 
miRNAs using a global platform and from those select the most promising candidates for validation 
by RT-qPCR [106, 200].  
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Normalization of RNA-Seq data aims to minimize differences in library size and composition caused 
by varying sequencing depth between samples. The general strategy is based on calculating a 
scaling factor for each sample, which is used to adjust for library size. Numerous strategies have 
been developed for the sequencing of long RNAs and many are applicable to miRNAs as well 
(reviewed in [202, 203]).  

Secondary analysis depends on the particular objectives of the experiment and biological 
questions. First step is usually descriptive statistics to identify the number of positive and negative 
miRNAs. Further, miRNAs with prohibitively low readouts for reliable analysis are discarded. If 
complete data matrices are needed for analysis, imputation methods may be applied to replace 
missing values [204]. As the goal of majority of experiments is to identify differences between 
groups of samples, statistical tests are used to identify likely differentially expressed miRNAs. 
Standard statistical methods can be usually applied directly on RT-qPCR data analysis. However, 
RNA-Seq data, where the number of miRNAs typically is much larger than the number of samples, 
may require more sophisticated models to identify differential expression. The most popular tools 
are DESeq2 [205], edgeR [206], and limma [207], although plethora of others has been developed 
[208, 209] and the selection of proper tool depends on the properties of individual dataset, such as 
number of replicates [119]. A major area of interest is in silico identification of miRNA targets. As 
animal miRNAs only require partial match to a potential target and targeting regions are not clearly 
defined, prediction algorithms mostly rely on 3ʹ UTR matches are generally known to suffer from 
relatively high false positivity, although improve strategies employing machine learning are 
emerging [28]. For in-depth description of prediction algorithms, several reviews are available [210, 
211]. Another attractive application of miRNA profiling analysis is integration of miRNA expression 
with mRNA profiles from same samples to uncover mRNA-miRNA regulatory networks. Several in 
silico tools are available and have been reviewed elsewhere [212].  

3.3 MiRNAs in central nervous system 
Non-coding RNAs, particularly miRNAs are of prime importance in the CNS, because neural cells 
are highly transcriptionally active and exhibit robust expression of miRNAs [213, 214]. The 
proportion of non-coding DNA sequence in the genome correlates with organismal complexity (in 
contrast to number protein-coding genes) [215], and it has been argued that non-coding RNAs 
mediated the complex CNS evolution and underlie the unique functional repertoire of the brain 
[216–218]. Indeed, among all tissues, brain contains the largest number of unique miRNAs [59, 
219]. Among miRNAs highly enriched in the brain are miR-124, miR-9, miR-219, miR-29, miR-128 
and others, which play a role in a variety of specialized processes required for CNS function 
including cell proliferation [220, 221], cell specification [222], synaptic plasticity [223] or 
neurogenesis [224, 225]. Although neurons harbor majority of brain-specific miRNAs, the various 
cell types in the brain, (that is neurons, astrocytes, oligodendrocytes and microglia) have distinct 
miRNA profiles [226, 227]. Various neuronal subpopulations, for example, glutamatergic and 
GABAergic neurons also show distinct miRNA composition [228, 229]. Moreover, miRNAs are 
localized in many different subcellular compartments such as axons and synapses, where they play 
roles in axon extension, pathfinding and local protein synthesis [230, 231]. Because of their 
potential roles in regulating individual genes as well as large gene networks, miRNAs confer neural 
cells the capacity to exert very precise control over the spatiotemporal deployment of genes, which 
is crucial for executing complex neurobiological processes [213]. For example, a network of four 
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non-coding RNAs impacting neuronal excitability, formed by circRNA Cdr1as, lncRNA Cyrano and 
two miRNAs (miR-7 and miR-671) has been recently identified [232]. Another examples include 
transcriptional network mediating neural cell-fate decisions composed of miR-124 and miR-9 and 
transcription factors CREB, REST and coREST [233, 234], or network of four miRNAs (miR-124, 
miR-29, miR-9 and miR-128) and two RBPs acting as primary determinant of mRNA stability profile 
in the brain [235]. Since miRNAs participate in such a variety of cellular processes, changes in their 
levels can have profound effects on the CNS function. Indeed, numerous studies have shown 
involvement of miRNAs in the neurodevelopmental [236], neuropsychiatric [237, 238], 
neurodegenerative [239] as well as acute CNS disorders [240, 241]. 

3.3.1 MiRNAs in acute CNS injury  

Acute injuries to the CNS including stroke and SCI affect significant proportion of the population 
and cause long-term functional disability and huge social and economic burden [242]. The progress 
of CNS injury can be divided into two phases: a primary trauma that affects the neural tissue directly 
and secondary injury induced by multiple biological processes including temporal changes in gene 
expression [243]. MiRNAs serve as important regulators in many pathological aspects of CNS 
injury. Global expression studies revealed significant reorganization of miRNA expression after 
SCI, pointing to their neuroprotective as well as detrimental roles [243–246]. Several miRNAs 
undergo expression changes that can be related to immune response, associated either with the 
invasion of immune cells or modulation of inflammatory pathways [247]. For example, neutrophil 
infiltration explains the upregulation of miR-223 [248], whereas increased expression of the 
lymphocyte specific miR-142 correlates with the access of these immune cells to the injury site 
[249]. Several studies demonstrate that increased levels of pro-inflammatory factor TNF-α may 
result from downregulation of miR-181 and miR-125b [250, 251] and increased levels of cytokines 
IL-6 and IL-1β correlate with reduced expression of its regulators let-7a, miR-181a, miR-30b and 
miR-30c [243, 244, 250, 252]. MiRNAs are also implicated in regulation of cell death after SCI, as 
administration of miR-20a decreased apoptosis and functional deficits in mouse model [253]. 
Similarly, silencing miR-486 resulted in decreased neural death and led to an improvement in motor 
recovery after SCI [254]. Other studies implicate miRNA function in astrogliosis, myelination and 
intrinsic and extrinsic control of axonal regeneration, important hallmarks of response to SCI [240, 
255, 256].  

Several global profiling studies also demonstrated altered miRNA expression following 
experimental stroke, both in the brain and blood [257–260]. Up to 19-25% of assayed miRNAs were 
dysregulated within 3 days of injury. Ontological analyses predicted that the targets of the 
dysregulated miRNAs were involved in angiogenesis, hypoxia, endothelial cell regulation, and the 
immune response – pivotal pathophysiological processes of ischemic stroke. Interestingly, the 
miRNA expression pattern correlates with the extent of the infarct area, and allowed distinguishing 
between different etiologies and predict the clinical outcome [259]. Recent study employed AGO 
CLIP and RNA-Seq approaches to identify miRNA binding sites and expression changes following 
stroke [261]. The authors identified a key protective role for miR-29 family, which acts in astrocytes 
and regulates glutamate homeostasis. In addition to global profiling approaches, targeted studies 
implicated roles of miR-497, miR-29b, miR-134 or miR-21 in stroke pathology [262].  
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Emerging studies also highlight roles for miRNAs in EVs, where they contribute to cell-cell 
communication in the brain and throughout the nervous system [263]. For example, increased 
levels of miR-124 were found in microglial EVs after brain injury and it was observed that this 
miRNA inhibits neuronal inflammation and promotes neurite outgrowth via transfer to neurons 
[264]. As such, EVs are being evaluated for their potential as biomarkers or for targeted delivery of 
therapeutic agents for the treatment of CNS injuries [265]. Overall, these studies show various and 
multifaceted roles of miRNAs in progression of SCI and stroke. They also demonstrate viability of 
examining global expression changes and subsequent targeted manipulation of dysregulated 
miRNAs to influence functional outcomes of the injury. Nevertheless, some miRNAs are reported 
with contradictory data and information about roles and targets of many other miRNAs is limited 
and needs to be clarified. 
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4 Materials and methods 

This section describes the methods with focus on the procedures performed by the author. Detailed 
description of all methods can be found in the publications provided in the supplementary section. 

4.1 Samples 
Animal samples were obtained from C57Black/6 or FVB mice, or from Wistar rats (Supp. I, V). 
Experimental stroke was induced by permanent MCAO on female mice (Supp. V), experimental 
SCI was induced by balloon compression lesion on male rats. For the preparation of rat serum, 1 
ml of blood was collected from orbital plexus into 2 ml tubes (Eppendorf) using glass capillary. 
Blood was allowed to clot for 1 hour at room temperature and then centrifuged at 1000 g for 10 min. 
The clot was mechanically retracted from the tube wall before the centrifugation. Serum was 
transferred to another 2 ml tube and centrifuged a second time at 3000 g for 10 min. The 
supernatant was then transferred to cryovials (Biologix) and stored at −80 °C until analysis. All 
procedures involving the use of laboratory animals were performed in accordance with appropriate 
regulations and efforts were made to minimize both the suffering and the number of animals used. 

Human blood samples were obtained from healthy volunteers (Supp. II, III). Informed consent was 
obtained from all volunteers participating in the study. For the preparation of human serum, blood 
was collected into 8.5 ml BD Vacutainer SST II Advance tubes (Beckman Dickinson) and allowed 
to clot for at least 30 min before centrifugation at 1500 g for 10 min at room temperature. The serum 
was then transferred to 2 ml tubes (Eppendorf) and stored at −80 °C. For the preparation of human 
plasma, blood was collected from four healthy volunteers into K2EDTA BD Vacutainer tubes 
(Beckman Dickinson) and centrifuged within 30 min at 1500 g for 15 min at room temperature. The 
plasma fraction was aspirated and transferred to 2 ml tubes (Eppendorf) and centrifuged again for 
15 min at 3000 g. The supernatant was transferred to new 2 ml tubes and stored at −80 °C until 
analysis. Standardized human plasma sample was prepared by pooling high-quality RNA eluates 
from four healthy individuals (Supp. III). 

4.2 Primers and synthetic oligonucleotides 
Sequences of the miRNA oligonucleotides were obtained from the miRBase (www.mirbase.org). 
RNA oligonucleotides were synthesized and quantified by Integrated DNA Technologies. DNA 
primers were synthesized and quantified by Invitrogen (Supp. I, II, III, V). Precursor miRNAs were 
synthesized by in vitro transcription from corresponding PCR products using T7 RNA polymerase 
(New England Biolabs) according to the manufacturer′s protocol (Supp. I). Secondary structure of 
the Two-tailed RT primers were predicted using the UNAfold web server 
(http://unafold.rna.albany.edu/) (Supp. I, II). Spike-in miRNA sequences were screened in silico for 
homology against human, mouse and rat miRBase records (Supp. II). 

4.3 RNA isolation 
For RNA isolation from tissue, samples were homogenized using the Tissue-Lyser (Qiagen). Total 
RNA was extracted with TRI Reagent (Sigma-Aldrich) according to the manufacturer’s protocol and 
treated with TURBO DNA-free kit (Thermo Fisher). RNA quantity and purity was assessed using 
NanoDrop 2000 spectrophotometer (Thermo Fisher) and RNA integrity was assessed using 
Fragment Analyzer (Agilent) (Supp. I, III, V). For total RNA isolation from human plasma and human 
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and rat serum miRNeasy Serum/Plasma Advanced Kit (Qiagen) was used according to the 
manufacturer’s instructions (Supp. II, III). 1 μl of isolation spike-in mix containing synthetic cel-miR-
54 (1e+7 copies/μl), spike-A (2e+5 copies/μl), spike-B (4e+3 copies copies/μl) and, when 
appropriate 1 μl of GlycoBlue Coprecipitant (15 mg/mL) (Invitrogen), per sample was added at the 
lysis step. RNA was eluted into 20 μl nuclease-free water and stored at −80 °C (Supp. II, III). 

4.4 RT-qPCR of miRNAs 
RT reactions were performed with the qScript flex cDNA kit (Quantabio) in a total reaction volume 
of 10 μl. The reaction mixture contained either 10 ng of total RNA or synthetic miRNA template, 1× 
RT buffer, 0.05 μM RT primer, 1 μl GSP enhancer and 0.5 μl RT enzyme. RT reactions were 
incubated in a 96-well plate in a Bio-Rad CFX 1000 thermocycler for 45 min at 25°C, 5 min at 85°C 
and then held at 4°C (Supp. I, II, III). Reactions using TaqMan miRNA assays (Thermo Fisher) and 
Quantabio qScript miRNA system (Quantabio) were performed according to the manufacturer′s 
protocol except that the total reaction volume was scaled down to 10 μl. Reactions using miQPCR 
method were performed as described in [163] (Supp. I). Quantitative PCR (qPCR) was performed 
in a total volume of 10 μl. One reaction contained 1x SYBR Grandmaster Mix (Tataa Biocenter), 
forward and reverse primer (final concentration 0.4 μM), and 2 μl of diluted cDNA template. qPCR 
was performed in a total reaction volume of 10 μl containing 1× SYBR Grandmaster Mix (TATAA 
Biocenter), 0.4 μM forward and reverse primer and the cDNA product diluted at least 10x. Reactions 
were performed in duplicates and incubated in a 96- or 384-well plate in a CFX 96 or CFX 384 Real 
Time Detection System (Bio-Rad) at 95°C for 30 s, followed by 45 cycles of 95°C for 5 s and 60°C 
for 15 s. Reaction specificity was assessed by melting curve analysis immediately after the qPCR 
(Supp. I, II, III). qPCR with TaqMan miRNA assays and Quantabio qScript miRNA system were 
performed according to manufacturers′ protocols in a total reaction volume of 10 μl (Supp. I). 

4.5 Library preparation and sequencing 
Small RNA libraries were prepared in technical duplicates starting from 5 ul of plasma RNA pool 
and 5 ul of miRXplore Universal Reference (2e+6 copies/ul) with six commercial kits (from Lexogen, 
Norgen Biotek, Bioo Scientific, Takara, Qiagen and Somagenics) according to each manufacturerʹs 
protocol (Supp. III). Libraries were quantified on the Qubit 3 fluorometer (Thermo Fisher) and 
Fragment Analyzer (Agilent). Libraries generated by the same kit were pooled and run on 5% TBE-
PAGE on Mini-PROTEAN tetra cell (BioRad). A region representing fragments with RNA inserts of 
length 22 nt ± ~10 nt (i.e. fragments corresponding to the size of miRNAs) was excised from the 
gel and purified. All libraries were sequenced in one sequencing run on NextSeq 500 high-output 
(Illumina) with 85bp single-end reads. Small RNA libraries for tissue profiling were prepared from 
100 ng total brain RNA with RealSeq kit (Somagenics) according to manufacturerʹs protocol. mRNA 
libraries were prepared from 400 ng total brain RNA with QuantSeq 3’ Library Prep Kit FWD 
(Lexogen) according to manufacturer’s protocol (Supp. V). 1 μl of ERCC spike-in (c = 0.01x; 
Thermo Fisher) per library was included. This library preparation method generates stranded 
libraries predominantly covering the 3’ end of the transcript, thus producing gene-centric expression 
values. 

4.6 High-throughput RT-qPCR 

Samples were reverse transcribed in a reaction volume of 10 μl containing: 5 μl template (either 
125 ng total tissue RNA or 100 sorted cells after direct lysis), 0.5 μl spike-in RNA (Tataa Biocenter; 
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c = 0.1x for tissues or 0.01x for sorted cells), 0.5 μl equimolar mixture of random hexamers with 
oligo(dT) (c = 50 μM), 0.5 μl dNTPs (c = 10 mM), 2 μl 5× RT buffer, 0.5 μl RNaseOUT, 0.5 μl 
Maxima H-Reverse Transcriptase (all Thermo Fisher) and 0.5 μl nuclease-free water. After the pre-
incubation step at 65°C (t = 5 min), followed by the immediate cooling on ice, the main incubation 
was performed at 25°C (t = 10 min), 50°C (t = 30 min), 85°C (t = 5 min), after which the samples 
were immediately cooled on ice. cDNA from tissue samples was diluted 4x in nuclease-free water; 
sorted cell-cDNA was left undiluted. All cDNA samples were pre-amplified immediately after RT in 
40 μl total reaction volume containing 4 μl cDNA, 20 μl IQ Supermix buffer (Bio-Rad), 4 μl primer 
mix of 96 assays (c = 250 nM each), and 12 μl of nuclease-free water. Reactions were incubated 
at 95°C (t = 3 min) following by 18 cycles of 95°C (t = 20 s), 57°C (t = 4 min) and 72°C (t = 20 s). 
After thermal cycling, reactions were immediately cooled on ice and diluted in nuclease-free water 
(sorted cells 4x, tissue 50x). High-throughput qPCR was then performed on a 96.96 microfluidic 
platform BioMark (Fluidigm) as previously described [266]. Cycling program consisted of activation 
at 95°C (t = 3 min), followed by 40 cycles of 95°C (t = 5 s), 60°C (t = 15 s) and 72°C (t = 20 s) and 
melting curve analysis (Supp. V). 

4.7 Bioinformatic and statistical data analysis  
4.7.1 Differential gene expression analysis 

Differential gene expressions from RNA-Seq data between desired groups of samples were 
analysed in R project using DESeq2 package (Supp. V). 

4.7.2 Gene set enrichment analysis (GSEA) 

GSEA was performed for pairwise differential expression comparisons. First, a gene score was 
calculated for every gene using DESeq2 output as −log10(padj) and assigned a positive or negative 
sign based on direction of regulation. Genes were ranked by their gene-scores and GSEA was run 
in a weighted pre-ranked mode with 1000 permutations. Gene sets were downloaded from 
http://download.baderlab.org/EM_Genesets/. Significantly overrepresented gene sets were 
visualized as a network using Enrichment Map. In the network, each node represents gene set and 
highly overlapping gene sets are connected with edges, resulting in a tight clustering of highly 
redundant gene sets. For functional annotation of discrete sets of genes, we used Cytoscape plugin 
ClueGO with all expressed genes (16048 genes) as the background set (Supp. V). 

4.7.3 Cell-specific gene sets and cell type proportion estimation 

Marker genes for major cell types specifically in the mouse cortex region were taken as an initial 
reference. In order to acquire marker genes with stable expression regardless of activation states, 
we have further removed the genes previously found to be differentially expressed under similar 
conditions in studies on purified cell types (Supp. V). DESeq2-normalized gene expression data 
and the cell-specific gene lists were used as an input into the marker-GeneProfile R package or 
the estimation of marker gene profiles (MGPs), which serve as a proxy for relative cell type 
proportion changes. Differences in expression of final marker gene sets were analyzed by linear 
mixed model in R project v3.6.0 using lmerTest package. To validate the first estimations, we 
employed CIBERSORT, a transcriptome deconvolution algorithm that uses gene expression matrix 
of individual cell types as a reference, and deconvolutes the cellular composition of mixed sample 
by linear support vector regression. We used published single-cell RNA-Seq dataset of adult mouse 
cortex as a reference gene expression signature (Supp. V).  
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4.7.4 Weighted gene co-expression network analysis (WGCNA) 

Standard WGCNA procedure was followed to create gene co-expression networks using 
blockwiseModules function from the WGCNA R package. This analysis groups genes with highly 
correlated expression pattern across samples into modules (Supp. V). 

4.7.5 Motif and transcription factor enrichment analysis 

Cytoscape plugin iRegulon with default parameters was used to search for over-represented motifs 
and their associated transcription factors 500 bp upstream of the transcription start site. All genes 
from a particular WGCNA module were used as an input (Supp. V). 

4.7.6 Protein-protein interaction network 

Known interactions between genes in the desired gene sets were downloaded from STRING 
database v10.5. The resulting interaction network was then visualized and analyzed in Cytoscape. 
Spectral partition-based network clustering algorithm via Cytoscape ReactomeFI plugin was used 
for network clustering (Supp. V). 

4.7.7 Custom gene set enrichment 

Gene sets of interest were collected directly from relevant publications. R package GeneOverlap 
v1.20 was used to calculate the odds ratio (OR) and the significance of the overlap of the gene sets 
of interest with the Fisher’s exact test (Supp. V). 

4.7.8 RT-qPCR data analysis 

Raw data were pre-processed with the Real-Time PCR analysis software v4.1.3 (Fluidigm); 
unspecific values were deleted based on melting-curve analysis. Further processing was done in 
GenEx v6.0.1 (MultiD Analyses AB): Cq value cutoff was applied; gDNA background was 
substracted using ValidPrime (Tataa Biocenter); data were normalized to the mean expression of 
5 reference genes (Actb, Gapdh, Ppia, Ywhaz, Tubb5); outliers were deleted (within group Grubbs 
test, p < 0.05) and a gene was considered undetected for given group if more than 75% values per 
group were missing; technical replicates (RT and FACS) were averaged; if appropriate, missing 
data were inputed on a within-group basis and remaining missing data were replaced with Cqmax 
+2 for tissue samples or Cqmax+0.5 for sorted cells (Supp. V).  

Temporal expression of individual genes was first analyzed with two-way ANOVA in R project v3.6., 
then differences between time-points were tested separately for each age by one-way ANOVA and 
post-hoc t-tests using emmeans package v1.3.5. P-values were adjusted with Benjamini-Hochberg 
method. Temporal expression of groups of cellular marker genes was first analyzed using linear 
mixed model in R project v3.6.0 (lmerTest package), then differences between time-points were 
tested separately for each age. Significance was tested by Satterthwaite’s method. Post-hoc 
pairwise t-tests were performed using emmeans package v1.3.5 and p-values were adjusted by 
Holm method. Temporal expression of IFN-I pathway was analyzed in similar steps using random 
slope and random intercept mixed model with 23 interferon-stimulated genes as response 
variables. IFN-I pathway expression in sorted cells was analyzed in the same way with two-factor 
design (age, injury) with interaction, using only detected ISGs per each cell type. Differential 
expression of individual genes (relative to age-matched control) in sorted cells was tested in GenEx 
v6.0.1 (MultiD Analyses AB) using ANOVA with Bonferroni’s post-hoc test for selected pairwise 
comparisons and p-values were corrected using Benjamini-Hochberg method (Supp. V). 
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5 Survey of results 

5.1 Development of novel RT-qPCR-based method for highly accurate miRNA 
quantification 
As discussed in previous chapters, sensitive and specific quantification of miRNAs is challenging. 
Although several methods for RT-qPCR analysis of miRNAs have been developed, they suffer from 
one or more drawbacks and are typically available only commercially, and costly. We have 
therefore aimed to develop novel specific and cost-effective approach to quantify miRNA 
expression that would improve on the available methods. 

 

Figure 7. Schematic of Two-tailed RT-qPCR. A) Two-tailed RT primer with two hemiprobes connected 
by a hairpin folding sequence. B) The hemiprobes bind cooperatively, one at each end of the target 
miRNA, forming a stable complex. C) Reverse transcriptase binds the 3′-end of the hybridized Two-
tailed RT primer and elongates it to form tailed cDNA. D) The cDNA is amplified by qPCR using two 
target-specific primers. 

We have designed a RT-qPCR system that utilizes specific structured primers for reverse 
transcription and SYBR-Green-based qPCR, which we named “Two-tailed RT-qPCR” (Figure 7 
and Supp. I). Briefly, RT primers containing two binding probes (“hemiprobes”) complementary to 
the target miRNA joined by sequence forming hairpin structure were designed (Figure 7A). We 
hypothesized that the introduction of 5ʹ binding sequence would improve sensitivity and specificity 
as larger part of the miRNA sequence will be interrogated compared to previously available 
methods, which target only 3ʹ region of the miRNA. Importance of the 5ʹ hemiprobe was assessed 
on synthetic miRNA oligonucleotides with positive results (Supp. I, Fig. 2). Next, parameters of the 
method, including repeatability, sensitivity and dynamic range, ability to discriminate between 
highly similar miRNAs, between mature and precursor miRNAs, and ability to capture isomiRs were 
assessed and compared against three other previously available methods, each of which employs 
different technical approach (Supp. I., Table 1, Fig. 3, 4 and 7). These experiments revealed that 
Two-tailed RT-qPCR matches or outperforms other methods, while simultaneously being less 
costly (Supp. I, Table 2). In addition, Two-tailed RT-qPCR was used to profile seven miRNA targets 
in various mouse tissues, both in singleplexed and multiplexed setting and compared against then-
industry-standard TaqMan miRNA assays (Thermo Fisher), which revealed good agreement of 
relative quantification both between single and multiplexed setting as well as between the two 
methods (Supp. I, Fig. 5 and 6). 



38 
 

In summary, we have developed a highly sensitive and exceedingly specific method called Two-
tailed RT-qPCR, suitable for rapid and cost-effective miRNA profiling. At the same time, Two-tailed 
RT-qPCR reflects on the current state of miRNA field and confers several advantages over current 
RT-qPCR methods, including increased specificity and ability to capture the full isomiR profile. 

5.2 Development of quality control tool for circulating miRNA studies 
As discussed in chapter 3.1.9, application of circulating miRNAs as clinical biomarkers is an exciting 
avenue of miRNA research. In our laboratory, we were interested to study circulating miRNA 
profiles from serum and plasma samples to identify potential biomarker candidates for acute spinal 
cord injury and its severity. However, the miRNA profiling workflow from liquid biopsy samples is 
even more challenging than from typical tissue or cellular samples, and proper quality control 
becomes even more critical. Because standard quantification and quality control tools are 
inappropriate for biofluid profiling (see chapter 3.2.4), we have developed an RT-qPCR-based 
quality control tool for circulating miRNA studies (Supp. II). It is freely available and allows users to 
monitor quality of miRNA isolation, degree of inhibition, and erythrocyte contamination to ensure 
technical soundness of the obtained results.  

 

Figure 8. Quality control workflow with the Two-tailed QC panel. A mix of three synthetic RNA spike-
ins is added prior to RNA isolation from the biofluid sample. A second mix of two spike-ins is added 
before cDNA synthesis step. Optionally, a diluted isolation spike-in mix is used as a template in a “spike-
only” control reaction to determine spike-in baseline signal. Two-tailed RT-qPCR is used to quantify the 
spike-ins along with three endogenous microRNAs to evaluate the technical quality of RNA isolation, 
effect of inhibition and the level of hemolysis. 

Briefly, we have designed five synthetic spike-in miRNAs and eight two-tailed RT-qPCR assays 
targeting these synthetic spike-ins, and three endogenous miRNAs serving as controls for miRNA 
yield and indicators of hemolysis (Figure 8 and Supp. II, Fig. 1). We then demonstrated how the 
protocol can be utilized to optimize input volume of the sample to obtain the best yield and purity 
using human plasma, human serum and rat serum and identified optimal volumes for isolation of 
these biofluids with miRNeasy Serum/Plasma Advanced Kit (Qiagen) (Supp. II, Fig. 2). Next, we 
assessed the effect of carriers (specifically glycogen) on the isolation procedure and demonstrated 
that it improves yield and reproducibility of the repeated isolations (Supp. II, Fig. 3). Next, we 
prepared hemolysis dilution series and constructed calibration curve to correlate hemolysis 
indicator based on ΔCq values (miR-23a – miR-451a) to the absorbance at 414 nm (wavelength 
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indicative of hemolysis). This allowed us to establish reference ΔCq values that can be used to 
identify level of hemolysis in any new sample as long as the described workflow is used (Supp. II, 
Fig. 4).  

Taken together, we have developed Two-tailed RT-qPCR panel for quality control, monitoring of 
technical performance, and optimization of miRNA profiling experiments from biofluid samples. The 
detailed experimental protocol including guide to data interpretation, and sequences of the RNA 
oligonucleotides and RT-qPCR assays is provided to the community and will hopefully contribute 
to the increased quality and reliability of the results from circulating miRNA studies. 

5.3 Comprehensive performance comparison of small RNA-Seq library 
preparation methods from biofluids 
During the exploratory phase of miRNA studies, it is desirable to interrogate expression of the whole 
miRNome in several samples at once. For this purpose, small RNA-Seq is becoming a leading 
technology. At the same time, library preparation methods are known to suffer from several biases 
(see chapter 3.2.5.3), and new technical solutions including usage of randomized adapters, usage 
of poly(A)-tailing and template switching or usage of single-adapter ligation and circularization were 
recently developed. In the past years, several studies compared different protocols for small RNA-
seq. Although they provided valuable insights, they focused on the profiling of tissues and cells and 
typically covered only some of the available protocols. How various library preparation protocols 
perform with biofluid samples is not established. Therefore, we carried out comprehensive 
comparison of the six commercially available protocols for small RNA-Seq library preparation (from 
following vendors: Lexogen, Norgen Biotek, Bioo Scientific, Qiagen, Takara, Somagenics) with 
focus on their technical biases and performance in biofluids (Figure 9 and Supp. III). To our 
knowledge, this is the first study that covers all currently available approaches for small RNA library 
preparation. 

 

Figure 9. Design of the benchmarking study. Two types of samples were used for comparison of 
library preparation approaches – human plasma and miRXplore universal reference. After RNA isolation, 
six different protocols were used for library preparation and resulting libraries were sequenced on 
Illumina NextSeq platform. Data were trimmed, filtered according to length and further mapped to the 
respective reference sequences. After normalization, various metrics were evaluated. 
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Briefly, plasma samples were obtained from healthy volunteers and RNA was isolated using 
commercial kit. Quality of the isolation procedure was assessed using previously developed Two-
tailed QC panel and RNA samples passing QC criteria were used to prepare standardized human 
plasma sample. Small RNA-Seq libraries were prepared with each kit in duplicates from human 
plasma as well as from synthetic mixture of 962 miRNAs in equimolar amount (miRXplore), which 
allowed us to assess technical biases of each method (Figure 9 and Supp. III, Fig. 1). 

Mapping statistics for both plasma and miRXplore samples were examined, which revealed varying 
performance, particularly low mapping rate to miRNAs for the polyadenylation-based kit from 
Takara (SMARTer) and surprisingly low mapping rate for all kits in human plasma (Supp. III, Fig. 
2). Next, ligation bias was assessed for each kit on the miRXplore samples as the fold-deviation 
from the expected number of reads for each miRNA (Supp. III, Fig. 3A). This analysis revealed that 
all kits suffer from substantial ligation bias, as percentage of miRNAs that can be considered 
unbiased ranged from 13.1% for Norgen kit to 50.7% for SMARTer. Notably, single-molecule 
ligation and circularization approach from Somagenics (RealSeq), that was recently claimed to be 
bias-free [178] showed only 21% unbiased miRNAs and was outperformed in this metric by three 
other kits (Supp. III, Fig. 3A). We also assessed the contribution of ligation bias vs PCR bias through 
UMIs that are incorporated in the Qiagen kit (QIAseq) (Supp. III, Fig. 3B). We found that ligation is 
a dominant source of bias (ligation bias explained more than 75% variability for 518 out of 962 
miRNAs), although for approximately quarter (227) of miRNAs, PCR is significant contributor to 
bias too and explains more than half of their variation. We then assessed how the sequencing 
reads are allocated to the detected spectrum of miRNAs for each kit (Supp. III, Fig. 4 and 5) and 
how sensitive for miRNA detection is each kit at various sequencing depths (Supp. III, Fig. 6). We 
found that few most abundant miRNAs consumed majority of the reads in all kits (Supp. III, Fig. 2 
and 6) and that the kits that detected most miRNAs at all sequencing depths in human plasma were 
SMARTer and NextFlex (Supp. III, Fig. 6). Arguably, this is due to their lower rates of bias, which 
causes that reads are progressively allocated to the larger spectrum of miRNAs. To examine which 
kit quantified abundances in plasma samples most truthfully, we have performed absolute 
quantification of 19 miRNAs in our plasma samples by Two-tailed RT-qPCR and compared 
absolute quantities to abundances reported by each kit (Supp. III, Fig. 7). SMARTer RNA-seq 
expression was closest to the true expression (Pearson r = 0.94), followed by RealSeq, QIAseq 
and NextFlex. Lexogen and Norgen data showed lower correlation (Pearson r = 0.81 and 0.73; 
Supp. III, Fig. 7). In order to compare kits at the level of individual miRNAs and identify which 
miRNAs are most affected by kit-specific technical performance, we clustered kits based on 
miRNAs with highest differential expression between all kits (Supp. III, Fig. 8). Such clustering of 
miRXplore samples showed that measured expression was similar in kits with similar technical 
procedures.  

In summary, this study provides comprehensive overview of the performance of all currently 
available technical approaches for library preparation from biofluids and can serve as a guide for 
selection of optimal kit for each experiment. In addition, it contributes to our understanding of 
various technical biases, which is important for proper interpretation of the data and potential 
development of novel wet-lab protocols as well as in silico correction algorithms and data analysis 
pipelines. 
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5.4 Decoding the transcriptional response to ischemic stroke in young and 
aged mice 
The previously described work covers the laboratory methodology for quantitative analysis of 
miRNA ranging from pre-analytical aspects to the establishment of methods for low and high-
throughput measurements. In addition to this work, we reviewed the current state of circulating 
miRNA analysis in Supplement IV. 

In a biological setting, we apply miRNA profiling and complementary technologies (mRNA-Seq, 
single-cell RNA-Seq, high-throughput RT-qPCR) to study gene expression changes and gene 
regulatory networks underlying CNS injuries, such as spinal cord injury and ischemic stroke. For 
similar biological questions, miRNA profiling alone provides only limited picture, considering that 
miRNAs have pleiotropic roles, and changes in their mRNA targets have to be inferred indirectly. 
Depending on the goal of biological experiments, direct mRNA profiling or integrative profiling of 
mRNA and miRNA expression from the same samples can provide more accurate picture of the 
gene expression changes. Therefore, we first focused on the mRNA analysis with the perspective 
of integrated analysis in the next study. 

 

Figure 10. Design, analysis workflow and major findings of the study.  
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Ischemic stroke is one of the leading causes of mortality and major healthcare and economic 
burden. It is a well-recognized disease of aging, yet it is unclear how the age-dependent 
vulnerability occurs and what are the underlying mechanisms. To address these issues, we 
performed a comprehensive mRNA-Seq analysis of aging, ischemic stroke and their interaction 
(Figure 10 and Suppl. V). Briefly, we have modelled ischemic stroke in 3-month old and 18-month 
old mice and RNA-sequenced the brain of injured (at 3 days after stroke) and age-matched control 
mice. We have analyzed the gene expression changes with normal aging (Supp. V, Fig. 1) and 
after ischemic stroke (Supp. V, Fig. 2 and 3) on the level of genes, gene ontology (GO) terms, 
pathways and custom gene sets. These analyses revealed activation of glial subpopulations with 
normal aging and increased inflammatory environment after stroke in aged mice. In order to provide 
cell-specific context to the observed transcriptional changes, we assessed relative changes of the 
cell type proportions by computational deconvolution of the RNA-Seq data (Supp. V, Fig. 4). This 
revealed increased infiltration of peripheral leukocytes and greater damage to Parvalbumin-positive 
interneurons in aged mice after stroke. To capture the full extent of expression trends from systems 
perspective, we complemented our results with weighted co-expression network analysis 
(WGCNA, Supp. V, Fig. 5). WGCNA recapitulated results of cell type proportion estimates in an 
unsupervised manner and highlighted amplified activation of module of inflammatory and 
interferon-stimulated genes (ISGs).  

It has been reported that activation of type-I interferon (IFN-I) signaling is detrimental to stroke 
outcome in young mice [267]. To explore the IFN-I signaling in detail, we mapped our RNA-Seq 
data to the published IFN-I regulatory network, which revealed age-dependent activation of one of 
the signaling submodules and suggested that age-dependent amplification of ISG expression 
occurs through action of canonical regulators including Stat1 and Irf9 (Supp. V, Fig. 6 A-D). To 
reveal temporal changes of interferon pathway, we analyzed expression of ISGs at several time-
points after stroke by microfluidic RT-qPCR in both age groups. This revealed activation of IFN-I 
pathway around 1 day post-stroke, which prevailed at least until 14 days and was higher in aged 
mice (Supp. V, Fig. 6E). Because little was known about cell types that contribute to the IFN-I 
signaling post-stroke, we FACS-purified endothelial and three glial cell populations and analyzed 
their expression of ISGs. Our cell-specific analysis revealed that not only microglia, but also 
oligodendrocytes heavily induce IFN-I signaling following stroke and all cell types converge on 
higher ISG expression in aged mice, although their individual responses differ (Supp. V, Fig. 6F). 
In summary, this study provides detailed insights into transcriptional response to stroke in young 
and aged mice and may contribute to our understanding of the interplay between stroke pathology 
and aging. 

5.5 mRNA-miRNA regulatory networks in CNS injury (unpublished results) 
Several studies have implicated in vitro and in vivo effects of miRNAs after CNS injury (see chapter 
3.3.1). After previously exploring global mRNA changes at single time-point after experimental 
stroke, we focused on understanding of temporal alterations of mRNA-miRNA regulatory networks 
following CNS injury. Two models of CNS injuries have been employed: middle cerebral artery 
occlusion (MCAo) on mice to model ischemic stroke and spinal cord compression lesion on rat, to 
model spinal cord injury (SCI). Groups of injured and sham operated control animals have been 
sacrificed at different time points after injury: 3h, 7h, 24h, 3d and 7d. RNA from each sample was 
used for preparation of mRNA and small-RNA sequencing libraries, which were sequenced on 
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Illumina NextSeq instrument. The detailed analysis is ongoing and here we report the initial results 
from the SCI model. Samples were clustered using PCA based on mRNA (Figure 11A) and miRNA 
expression (Figure 11B) separately. In both cases, naive controls cluster together with sham 
samples and injured samples clearly separate from controls indicating widespread changes in 
expression of both RNA modalities after injury. mRNA expression more clearly separated individual 
time-points, while miRNA expression separated injured samples into early (3h, 12h, 24h) and later 
(3d, 7d) time-points, indicating that overall post-transcriptional regulatory response is lacking 
behind mRNA changes and is lower in magnitude during early phase. 

 

Figure 11. Principal component analysis of mRNA and miRNA expression after spinal cord injury. 
A) PCA clustering based on mRNA expression shows well-separated clusters of control and injured 
samples at different time-points after SCI. B) PCA clustering based on miRNA expression shows 
separation of control and injured samples and progressively greater global miRNA changes. 

Next, we used WGCNA to cluster genes with similar expression profiles into modules. Several gene 
modules showing various patterns of differential expression with respect to control were identified 
(Figure 12A). We then searched for significant enrichment of cell-specific markers in the modules 
and found that several of them are associated with single cell type, and likely reflect temporal 
changes of the particular cell type or cell-specific expression (Figure12B). We also annotated 
selected modules functionally by GO and pathway enrichment analysis. This revealed time-
dependent changes in wound healing processes upon SCI (Figure 13). Positive regulation of wound 
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healing was associated mainly with brown expression module with continuously increasing 
expression (Figure 13A), while green-yellow module associated with negative regulation of wound 
healing was downregulated in early time-points and then its expression started to increase after 
12h post injury (Figure 13B). 

 
Figure 12. WGCNA identified modules of co-expressed genes associated with progression of 
SCI. A) Selected modules with various patterns of temporal differential expression are shown. B) Several 
modules are associated with specific cell-type, as revealed by significant enrichment of cell-specific 
markers. 
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Figure 13. Gene ontology and pathway enrichment analysis revealed time-dependent changes 
in wound healing processes after SCI. Positive regulation of wound healing (A) was associated mainly 
with brown expression module identified by WGCNA, whereas negative regulation (B) with greenyellow 
module. Enriched GO terms and genes involved are visualized as network, with nodes representing 
enriched GO terms and genes, and lines representing association between GO term and genes. 

Clustering of the top differently expressed miRNAs identified in total 135 miRNAs with distinctive 
profiles in each time-point (Figure 14). Similarly to mRNA expression, the miRNA expression 
variance is driven partly by cellular composition. We identified several cell-specific miRNAs 
corresponding to the distinct profiles including miR-142 (microglia), miR-124 and miR-129-2 
(neurons), miR-144 and miR-451 (hematopoietic lineage), miR-221 and miR-27a (endothelial cells) 
or miR-92b (astrocytes). These initial results point to significant reorganization of both cellular 
composition and expression of mRNAs and miRNAs after SCI and highlight several interesting 
avenues for further exploration such as expression changes of wound-healing-associated genes. 

As a next step, we aim to perform in silico integrative analysis of miRNA-mRNA expression to 
elucidate roles of miRNAs on their respective targets. However, the miRNA-mRNA correlative 
relationship may be confounded by the expression variation due to changing cellular composition. 
We are therefore developing procedures to correct bulk tissue gene expression as well as miRNA 
expression data for cellular composition before parsing them to integrative analysis algorithms in 
order to better reveal true targeting relationships. These analyses are subject to ongoing research. 
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Figure 14. Heatmap showing top differently expressed miRNAs after SCI. Differential gene 
expression analysis identified in total 135 microRNA having distinctive profiles in 3h, 12h, 24h, 3d and 
7 day after injury. 
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6 Conclusion 

This thesis deals with methods and workflows for targeted as well as global quantitative miRNA 
analysis and applies them together with global measurements of mRNA expression to understand 
pathophysiological responses after acute CNS injuries. 

The most important outcomes of the work are summarized below: 

• Novel RT-qPCR method called “Two-tailed RT-qPCR” for accurate measurement of miRNA 
expression in cells, tissues and biofluids was developed (Supp. I).  

• Two-tailed RT-qPCR was utilized to develop quality control protocol allowing monitoring of 
technical workflow of miRNA expression studies, particularly studies of circulating miRNAs 
from biofluid samples (Supp. II). 

• Methods for small RNA-Seq library preparation were comprehensively evaluated in a 
benchmarking study with focus on biofluid samples and understanding of technical biases 
distorting the small RNA-Seq data (Supp. III).  

• Current state of the art of technical aspects of circulating miRNA analysis was reviewed 
(Supp. IV). 

• Global RNA-Seq analysis provided detailed insights into the impact of stroke, aging and 
their interaction on genome-wide expression profiles (Supp. V).  

• Paired mRNA and miRNA profiling of neural tissue revealed temporal changes to the 
transcriptome and miRNome after SCI. 

• Future detailed integrative analysis will reveal impact of post-transcriptional regulation of 
miRNAs on the mRNA targets after SCI and stroke. 

In summary, this thesis provides novel tools for the field of miRNA analysis and contributes to the 
detailed understanding of the technical performance of small-RNA-Seq methods including various 
biases that hamper the accurate quantification. These results may serve for the miRNA research 
community to obtain reliable results from the quantitative studies and guide the choice of the small 
RNA-Seq platform. They can be utilized for the development of improved small RNA-Seq protocols 
and computational methods aimed at correction of small RNA-Seq data. In addition, global 
analyses of mRNA and miRNA expression reported in this thesis may contribute to our 
understanding of molecular and cellular mechanisms underlying CNS injuries such as stroke and 
spinal cord injury and open new avenues for the search for future therapeutic strategies. 
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ABSTRACT

MicroRNAs are a class of small non-coding RNAs
that serve as important regulators of gene ex-
pression at the posttranscriptional level. They are
stable in body fluids and pose great potential to
serve as biomarkers. Here, we present a highly spe-
cific, sensitive and cost-effective system to quantify
miRNA expression based on two-step RT-qPCR with
SYBR-green detection chemistry called Two-tailed
RT-qPCR. It takes advantage of novel, target-specific
primers for reverse transcription composed of two
hemiprobes complementary to two different parts of
the targeted miRNA, connected by a hairpin struc-
ture. The introduction of a second probe ensures
high sensitivity and enables discrimination of highly
homologous miRNAs irrespectively of the position
of the mismatched nucleotide. Two-tailed RT-qPCR
has a dynamic range of seven logs and a sensitiv-
ity sufficient to detect down to ten target miRNA
molecules. It is capable to capture the full isomiR
repertoire, leading to accurate representation of the
complete miRNA content in a sample. The reverse
transcription step can be multiplexed and the miRNA
profiles measured with Two-tailed RT-qPCR show ex-
cellent correlation with the industry standard TaqMan
miRNA assays (r2 = 0.985). Moreover, Two-tailed RT-
qPCR allows for rapid testing with a total analysis
time of less than 2.5 hours.

INTRODUCTION

MicroRNAs (miRNAs) are short non-coding RNA
molecules (∼19–24 nt long) that mediate regulation of
gene expression at the post-transcriptional level (1,2).
Production of miRNAs starts with the transcription of
genomic DNA into long primary transcripts called pri-
miRNAs. The pri-miRNAs are subsequently cleaved by
RNase III Drosha into shorter precursor transcripts with

hairpin structure called pre-miRNAs. The pre-miRNAs are
transported into the cytoplasm where they are processed
by RNase III Dicer into ∼22 nt double-stranded miRNA
molecules. Both strands of this duplex may become func-
tional mature miRNAs (3–5). MiRNAs may function as
master regulators of numerous physiological and patho-
logical processes and changes in their expression patterns
are often observed in various diseases (6–10). Because
of their remarkable stability in biofluids miRNAs have
exciting potential to serve as minimally invasive diagnostic
biomarkers (11–14).

MiRNA expression can be measured by many tech-
niques; the three most common being microarrays, next
generation sequencing (RNA-Seq), and reverse transcrip-
tion quantitative PCR (RT-qPCR). In addition, non-PCR
based isothermal amplification methods have also been pro-
posed (15–18). Each of these methods has its advantages
and limitations. Microarray analysis is generally more cost
efficient than RNA-Seq and offers the possibility to mon-
itor large number of targets, but, at least with conven-
tional microarrays, specificity and dynamic range are lim-
ited. RNA-Seq is suitable for high-throughput and is the
only platform capable of discovering new miRNAs. Dis-
advantages of RNA-Seq are the rather high cost per sam-
ple and the complexity of the workflow and data analysis.
Also, the precision of quantitation is poor for the low abun-
dant miRNAs. RT-qPCR is the method commonly used for
the validation of results from screening experiments and
when high accuracy and precision is required. It is also the
method of choice when only a small number of targets is
quantified, particularly when the amount of material is lim-
iting. Another appealing aspect is the simple workflow eas-
ily set up in laboratories that have experience in RT-qPCR
(19–22).

There are, however, significant technical challenges in
miRNA expression profiling using RT-qPCR. MiRNA
molecules are only 19–24 nt long, which is the length
of a conventional PCR primer. The sequence of the ma-
ture miRNA is contained in its precursor molecules (pri-
miRNAs and pre-miRNAs), however, only the mature miR-
NAs are believed to have effector functions and they usually
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are the targets for quantification. The GC content of miR-
NAs is highly variable, which complicates assay design and
protocol optimization, particularly when a common proto-
col is sought for multiple/all miRNA targets. The sequences
of miRNAs within the same family, such as let-7, may be
highly similar, differing only in a single base position. MiR-
NAs are subject to various post-transcriptional modifica-
tions and may differ in sequence and nucleotide composi-
tion at either or both ends. This obscures specific quantifi-
cation with many techniques (23–25).

Several methods to quantify miRNAs based on RT-
qPCR have been developed to date, many of which are com-
mercially available. Generally, the methods can be divided
into two groups that are based on universal and specific re-
verse transcription, respectively. In addition, probe-ligation
methods that do not require reverse transcription have also
been proposed (26,27). In the universal RT approach, all
miRNA molecules are elongated by an identical tail used
to prime the reverse transcription into cDNA. These meth-
ods include the addition of poly-A tails to the 3′-end with
the poly(A) polymerase (Exiqon´s miRCURY LNA sys-
tem, Qiagen´s miScript PCR system, Quantabio´s qScript
microRNA system) (28,29), polyuridylation with poly(U)
polymerase (30), ligation of a universal linker with T4 RNA
ligase (31), and more recently combination of linker liga-
tion and end tailing (Thermo Fisher´s TaqMan Advanced
miRNA assays). The main advantage of these approaches
is that all miRNAs are converted into cDNA in the same
tube. However, they may suffer from high background noise
and they are often limited by the efficiency of the extra en-
zymatic steps needed. Some also require special reagents.
Moreover, small RNAs possessing a 2′-O-methyl (2′-O-Me)
modification on their 3′ terminal nucleotide, such as plant
mature miRNAs and piRNAs, are resistant to polyadeny-
lation and cannot be efficiently reverse transcribed using
a polyadenylation-based cDNA synthesis approach (32).
The polyadenylation and ligation steps also introduce bias
(33–35). The second group of methods includes the use of
linear primers (36,37), pincer probes (38), and stem–loop
RT primers (39), also known as TaqMan miRNA assays
(Thermo Fisher). The stem–loop method is probably the
most common today and is frequently used for benchmark-
ing and validation of other methods (40).

The stem–loop primers of the TaqMan miRNA assays
are composed of a short single stranded sequence at their
3′-ends that anneals to the 3′-end of the targeted miRNA, a
double-stranded segment (the stem) and a loop. The stem–
loop structure shifts the equilibrium to the formation of
an RNA/DNA duplex and should prevent binding of the
primer to pri- and pre-miRNAs and to any dsDNA that
may be present. Nevertheless, it has been reported that pres-
ence of genomic and plasmid DNA containing sequences
of the corresponding pre-miRNA give rise to significant
background signal leading to false positive results (41). The
method uses hydrolytic probes that are costly to produce
and do not allow controlling the specificity of the reaction
by melting curve analysis. Notably, the TaqMan probe does
not contribute to the specificity of the reaction, as it binds
to a site originating from the sequence of the RT primer.
Another limitation of this design is the reduced ability to
reverse transcribe isomiR variants (24,41,42). Although the

stem–loop approach employs target-specific RT primers,
the reverse transcription step can be multiplexed using mul-
tiple RT primers in the same tube (43–45).

We have developed a novel specific and cost-effective ap-
proach to quantify miRNA expression that utilizes specific
structured primers for reverse transcription and SYBR-
green based qPCR named ‘Two-tailed RT-qPCR’. The
Two-tailed RT primers are composed of two hemiprobes
complementary to separate regions of the target miRNA
and of an oligonucleotide tether folded into a hairpin.
This novel design increases the binding strength of the RT
primer to its template leading to increased sensitivity. The
3′-hemiprobe can be short, providing high discriminatory
power to mismatches in the 3′-region and leaving enough
space for the design of miRNA specific qPCR primers with
sufficient melting temperature (Tm). The 5′-hemiprobe im-
proves the discrimination between highly similar sequences,
particularly when the differing nucleotide is located in the
center or close to the 5′-end of the miRNA sequence. Since
Two-tailed RT primers do not interact with the ends of the
miRNA they are able to detect all terminal variants of any
miRNA (isomiRs) and therefore accurately reflect the true
miRNA content in a sample.

MATERIALS AND METHODS

Primers, templates and synthetic oligonucleotides

Sequences of the miRNA oligonucleotides were obtained
from the miRBase Release 21 (www.mirbase.org) (46). Se-
quences of primers and targets are listed in supplementary
file. Secondary structure of the Two-tailed RT primers were
predicted using the UNAfold web server (http://unafold.
rna.albany.edu/) (47). RNA oligonucleotides were synthe-
sized and quantified by Integrated DNA Technologies.
DNA primers were synthesized and quantified by Invitro-
gen. Precursor miRNAs were synthesized by in vitro tran-
scription from corresponding PCR products using T7 RNA
polymerase (New England Biolabs) according to the manu-
facturer´s protocol (suppl. file). Reactions were treated with
the Turbo DNA-free kit (Thermo Fisher), RNA was pre-
cipitated in 3M LiCl and quantified with the Qubit 2.0 flu-
orometer (Thermo Fisher). Correct size of the precursor
miRNA products was verified using the Fragment Analyzer
(Advanced Analytical).

cDNA synthesis

RT reactions were performed with the qScript flex cDNA
kit (Quantabio) in a total reaction volume of 10 �l. The
reaction mixture contained either 10 ng of total RNA
or synthetic miRNA template, 1× RT buffer, 0.05 �M
RT primer, 1 �l GSP enhancer and 0.5 �l RT enzyme.
RT reactions were incubated in a 96-well plate in a Bio-
Rad CFX 1000 thermocycler for 45 min at 25◦C, 5 min
at 85◦C and then held at 4◦C. Reactions using TaqMan
miRNA assays (Thermo Fisher) and Quantabio qScript mi-
croRNA system (Quantabio) were performed according to
the manufacturer´s protocol except that the total reaction
volume was scaled down to 10 �l. Reactions using miQPCR
method were performed as described in (31) according to
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the protocol obtained from the corresponding author (per-
sonal communication): ligation of template miRNAs to the
miLINKER adaptor was performed in a total reaction vol-
ume of 8 �l containing 0.8× T4 buffer (New England Bio-
labs), 5 mM MgCl2, 17% PEG 8000, 0.15 �M miLINKER
adaptor, 0.1 �l RNaseOUT (40U/�l) (Thermo Fisher) and
0.18 �l T4 RNA Ligase 2, truncated K227Q (New England
Biolabs). The ligation reaction was incubated for 30 min
at 25◦C and then placed at 4◦C. The ligated miRNAs were
then incubated for 2 min at 85◦C with 0.5 �M dNTPs and
0.05 �M universal mQ-RT primer in a total reaction vol-
ume of 14 �l and then reverse transcribed in total reaction
volume of 20 �l containing 1× RT buffer, 5 mM DTT and
1 �l SuperScript III (Thermo Fisher) for 30 min at 46◦C, 5
min at 85◦C and finally held at 4◦C.

Quantitative PCR

qPCR was performed in a total reaction volume of 10 �l
containing 1× SYBR Grandmaster Mix (TATAA Biocen-
ter), 0.4 �M forward and reverse primer and the cDNA
product diluted at least 10×. Reactions were performed in
duplicates and incubated in a 96- or 384-well plate in a CFX
96 or CFX 384 Real Time Detection System (Bio-Rad) at
95◦C for 30 s, followed by 45 cycles of 95◦C for 5 s and
60◦C for 15 s. Reaction specificity was assessed by melt-
ing curve analysis immediately after the qPCR. qPCR with
TaqMan miRNA assays and Quantabio qScript microRNA
system were performed according to manufacturers´ pro-
tocols in a total reaction volume of 10 �l. cDNA was di-
luted at least 15× or 10× for the TaqMan and Quanta re-
actions respectively. qPCR with the miQPCR method was
performed in a total reaction volume of 10 ul containing
1x SYBR Grandmaster Mix, 0.15 �M forward and reverse
primer and the cDNA product diluted 100× according to
the recommended protocol (31). Reactions were incubated
at 95◦C for 30 s, followed by 45 cycles of 95◦C for 10 s and
60◦C for 35 s followed by melting curve analysis.

MiRNA profiling in mouse tissues

All procedures involving the use of laboratory animals were
performed in accordance with the European Community
Council Directive of 24 November 1986 (86/609/EEC) and
animal care guidelines approved by the Institute of Experi-
mental Medicine, Academy of Sciences of the Czech Repub-
lic (Animal Care Committee decision on 17 April 2009; ap-
proval number 85/2009). Mouse tissue samples from brain,
cerebellum, liver, lung, kidney, heart and skeletal muscle
were dissected, placed into TRI Reagent (Sigma-Aldrich)
and were immediately frozen on dry ice. Before use, samples
were thawed, homogenized using the TissueLyser (Qiagen)
and total RNA was extracted with TRI Reagent (Sigma-
Aldrich) according to the manufacturer´s protocol. RNA
quantity and purity was assessed using the NanoDrop 2000
spectrophotometer (Thermo Fisher) and RNA integrity
was assessed using the Fragment Analyzer (Advanced An-
alytical). Inhibition of the RT-qPCR workflow was tested
for using an RNA spike control (Tataa Biocenter). Data
were normalized to total amount of RNA. Same aliquots
were used for all measurements. Cq values were transformed

to quantities relative to the sample with the lowest expres-
sion for each target miRNA separately and expression val-
ues were converted to log scale. Pearson correlation co-
efficients were calculated based on logarithmic expression
values. GenEx 6 software (MultiD) was used for data pre-
processing.

RESULTS

General assay design

A novel two step RT-qPCR system for the quantification
of microRNAs is presented (Figure 1). Reverse transcrip-
tion is performed with target-specific structured primers
that are about 50 nucleotides long and contain two target
specific hemiprobes complementary to the miRNA. The 3′-
hemiprobe is about 6 nt long and binds to the 3′-region of
the target miRNA. The 5′-hemiprobe is usually longer and
binds within the 5′-region of the targeted microRNA. The
two hemiprobes are connected by an oligonucleotide tether
designed to fold into a hairpin to prevent nonspecific inter-
actions (Figure 1A). After hybridization, the RT reaction
is primed from the 3′-hemiprobe. The 5′-hemiprobe is dis-
placed by the RT enzyme and the Two-tailed RT primer is
elongated to produce cDNA with a sequence complemen-
tary to the targeted miRNA (Figure 1B and C). The cDNA
is then quantified by conventional qPCR utilizing SYBR-
Green chemistry with two target-specific PCR primers. The
reverse PCR primer is specific for the miRNA target se-
quence while the forward primer is specific for the pre-
designed region in the 5′-end of the Two-tailed RT primer
(Figure 1D).

The Two-tailed RT primer has 3 functions: i) it primes
specifically the reverse transcription of the target miRNA
template ii) it contributes with additional sequence to the
cDNA making it long enough for PCR amplification iii)
it contains the sequence of the forward PCR primer. We
reasoned that the introduction of a second binding ele-
ment, the 5′-hemiprobe that binds within the 5′-end of the
miRNA, will increase the sensitivity and specificity of the
RT reaction, as more nucleotides can be interrogated. Also,
the 3′-hemiprobe can be made shorter (5–6 nt), provid-
ing flexibility to design the reverse PCR primer with ad-
equate Tm without overlapping with the 3′-hemiprobe se-
quence, thereby avoiding the risk of undesired self-priming
and primer-dimer formation. The 5′-hemiprobe also con-
tributes to increased discriminatory power between highly
similar targets that differ only by 1 nt in the center or close
to the 5′-end of the miRNA sequence. The reason is that
the target miRNAs are subjected to sequence interrogation
twice: first in the RT and then in the qPCR.

To test the concept we designed three Two-tailed RT
primers with the same 3′-hemiprobe (5 nt), but different 5′-
hemiprobes: one with 10 complementary nucleotides to the
target, one with 10 non-complementary nucleotides, and
one without 5′-hemiprobe. We found that Two-tailed RT
primers that lacked complementary 5′-hemiprobe gave sig-
nificantly higher qPCR Cq values demonstrating the contri-
bution of the 5′-hemiprobe to the sensitivity of the system
(Figure 2A).

To test the contribution of the 5′-hemiprobe to the speci-
ficity, we compared two Two-tailed RT primers for their

D
ow

nloaded from
 https://academ

ic.oup.com
/nar/article-abstract/45/15/e144/3958703 by ESIEE Paris user on 09 M

arch 2020



e144 Nucleic Acids Research, 2017, Vol. 45, No. 15 PAGE 4 OF 13

cDNA

5‘

FORWARD primer
2nd qPCR cycle

REVERSE primer
1st qPCR cycle

3‘

5‘

3‘

3‘
5‘

RT 5‘

3‘

3‘
5‘

RT

5‘ 3‘

5‘
3‘

miRNA

Two-tailed RT primer

‘3‘5

3‘
5‘ 3‘ hemiprobe5‘ hemiprobe

DCBA

Figure 1. Schematic of Two-tailed RT-qPCR. (A) Two-tailed RT primer having two hemiprobes connected by a hairpin folding sequence. (B) The
hemiprobes bind cooperatively, one at each end of the target miRNA, forming a stable complex. (C) Reverse transcriptase binds the 3′-end of the hy-
bridized Two-tailed RT primer and elongates it to form tailed cDNA. (D) The cDNA is amplified by qPCR using two target-specific primers.
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Figure 2. Importance of the 5′-hemiprobe for sensitivity and specificity. (A) Two-tailed RT primers with 5 nt complementary 3′-hemiprobe and either 10
nt complementary 5′-hemiprobe (top), 10 nt non-complementary 5′-hemiprobe (middle), or no 5′-hemiprobe at all (bottom) targeting let-7a. Cq values
obtained with the Two-tailed RT primer having a complementary 5′-hemiprobe are about nine cycles lower than those obtained with the Two-tailed RT
primers lacking 5′-complementarity. (B) Two-tailed RT primers used to assay targets that differ in one nucleotide. The variable nucleotide is in the non-
interrogated region between the hybridization sites of the 3′- and 5′-hemiprobes (left) and the variable nucleotide is within the 5′-hemiprobe binding site
(right).
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ability to discriminate between two members of the Let-7
miRNA family: Let-7a and Let-7f. These differ only in one
nucleotide located in the center of the miRNA sequence. RT
1 primer was designed to bind with its 5′-hemiprobe to the
first ten nucleotides from the 5′-end of let-7a, while RT 2
primer had a 5′-hemiprobe that binds to 8 nucleotides in the
center of the let-7a sequence (Figure 2B). With this design,
the nucleotide distinguishing let-7a from let-7f is sensed by
the 5′-hemiprobe of the RT 2 primer, but not by the RT
1 primer. The 5′-hemiprobe of the RT 2 primer was also
shorter (8 instead of 10 nucleotides), as we reasoned the im-
pact of a mismatch will be more prominent with a shorter
probe sequence. The rest of the RT 1 and RT 2 primer se-
quences as well as the PCR primers used were identical.
The measured �Cq between the fully matched and the mis-
matched template was substantially larger when using the
RT 2 primer, which overlapped the differing base with its
5′-hemiprobe (�Cq = 11.07), than with the RT 1 primer,
which did not (�Cq = 4.66). This demonstrates the sig-
nificant contribution from the 5′-hemiprobe to the speci-
ficity of the system. Notably, the Cq values for the let-7a mi-
croRNA, to which both Two-Tailed RT primers were fully
complementary, were equal suggesting that the assay sensi-
tivity remained the same even though the length of the 5′-
hemiprobe differed by two bases.

Repeatability

To compare the performance of the Two-tailed RT-qPCR
to other RT-qPCR methods for miRNA analysis we per-
formed most of the experiments also with the TaqMan mi-
croRNA assays, the Quantabio qScript microRNA system,
and the miQPCR method published in (31) (in the following
text referred to as TaqMan, Quanta, and miQPCR). These
methods use different strategies to produce cDNA for sub-
sequent qPCR. TaqMan uses miRNA specific RT primers.
Quanta uses poly(A) polymerase to add poly(A) tails to the
3´ ends of miRNAs to allow for universal reverse transcrip-
tion with an oligo(dT) primer, and miQPCR ligates a de-
fined adaptor sequence to the 3´ end of miRNAs prior to
reverse transcription of ligated constructs with an universal
RT primer.

We assessed the repeatability of the new Two-tailed RT-
qPCR and the three known methods by measuring the im-
precision, expressed as standard deviation of Cq values ob-
tained from triplicate measurements having the same input
RNA (Table 1). Three miRNAs expressed at high (let-7a),
moderate (miR-21), and low levels (miR-193a) were mea-
sured in total RNA extracted from mouse cerebellum. First
step in the workflow of every method was taken as the point
for replication. Overall, all tested methods displayed very
high repeatability as demonstrated by low standard devia-
tions of the replicate measurements (Table 1).

Sensitivity and dynamic range

The sensitivity and dynamic range of the Two-tailed RT-
qPCR were evaluated using synthetic let-7d miRNA as tar-
get. A dilution series spanning 8 orders of magnitude was
prepared ranging from approx. 10 to 109 copies of let-7d
miRNA molecules per RT reaction. 10% of the cDNA prod-

uct was used for qPCR. The Two-tailed RT-qPCR assay ex-
hibited excellent linearity between the log of the miRNA
input and Cq values over 7 orders of magnitude and accu-
rately quantified down to 10 cDNA copies of let-7d cor-
responding to 100 miRNAs in the original sample (Fig-
ure 3A). Similar results were obtained when 100 ng of
yeast total RNA was added to each RT reaction to simu-
late the complex background in biological samples (Figure
3A). To determine the limit of detection (LoD) more pre-
cisely, a 2-fold serial dilution of let-7d approaching zero-
concentration was performed with each sample analyzed in
hexaplicate. LoD is estimated at the lowest concentration
that produces 95% positive replicates and can be roughly
estimated by fitting the fraction of positive replicates to the
logarithm of the concentration using GenEx software (Mul-
tiD) (48). LoD of the two-tailed RT PCR assay for let-7d
microRNA was estimated to 111 miRNA molecules, which
corresponds to 11 cDNA molecules in our workflow as only
10% of the cDNA was used as template for qPCR (suppl.
file). The LoD estimate relies on the miRNA stock con-
centration provided by the oligonucleotide manufacturer
(IDT), which was determined spectroscopically. This may
have overestimated the concentration of intact full length
miRNA to some degree as any contaminating byproducts
contribute to absorption. Hence, the LoD we estimate is an
upper limit.

To further compare the sensitivity and dynamic range of
the two-tailed RT-qPCR to the other methods we prepared
dilution series also of let-7a, let-7d and miR-21. Three of the
methods (two-tailed, TaqMan, Quanta) typically detected
hundreds of miRNA copies with linear response down to
at least 103 miRNAs in the original sample or 100 cDNA
per RT reaction (Figure 3B). miQPCR performed less good,
producing significantly higher Cq values and a narrower lin-
ear dynamic range reaching down to 104 miRNA copies
(Figure 3B).

Discrimination of highly similar sequences

The capability to discriminate between highly homologous
sequences with the Two-tailed RT-qPCR was tested on the
let-7 miRNA family. The members of this family are highly
similar as four pairs of the let-7 miRNAs differ only in a
single nucleotide in different positions, posing major chal-
lenge for specific quantification (Figure 4A). We started by
identifying the optimal length of the 5′-hemiprobe to maxi-
mize specificity, without compromising too much on sensi-
tivity, and then designed assays for the let-7 family members
accordingly (Supplementary Figure S1, suppl. file). We as-
sayed approximately 2 × 108 copies of each let-7 miRNA
target with each let-7 Two-tailed RT-qPCR assay. Cross-
reactivity was estimated for each of the assay-target pairs
based on the Cq difference between the reactions with the
perfectly matched target and with the mismatched target as-
suming 100% efficiency for the matched target. Only negli-
gible levels of unspecific signal were observed (<1%), and
only for targets that differed from the perfect match by a
single nucleotide: let-7a versus let-7c, let-7b versus let-7c,
let-7a versus let-7e, let-7a versus let-7f (Figure 4B). Over-
all, all Two-tailed RT-qPCR assays exhibited exceptional
specificity. None of the other tested methods reached simi-
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Table 1. Average Cq values and standard deviations of triplicate measurements of three miRNAs quantified by four different methods. Sample was total
RNA isolated from mouse cerebellum

Two-tailed RT-qPCR TaqMan Quanta miQPCR

Cq St.dev Cq St.dev Cq St.dev Cq St.dev

let-7a 19.59 0.21 26.69 0.28 19.87 0.14 24.65 0.16
miR-21 23.73 0.22 28.92 0.24 23.36 0.02 29.39 0.16
miR-193a 29.12 0.17 35.95 0.85 31.13 0.29 35.15 0.12

Figure 3. Dynamic range and sensitivity of Two-tailed RT-qPCR, TaqMan, Quanta and miQPCR. (A) Amplification plots and standard curves of let-7d
assayed in water and against a background of 100 ng yeast RNA. The dynamic range is seven logs. (B) Standard curves of let-7a, let-7d, and miR-21
assayed with Two-tailed RT-qPCR, TaqMan, Quanta, and miQPCR. Cq values outside the linear range are indicated with red border.

lar level of specificity with false positive signals more than
200 times stronger, reaching as high as 22.48% (TaqMan),
50.71% (Quanta) and 122.47% (miQPCR) (Figure 4A).

Discrimination between mature and precursor miRNAs

To test if the Two-tailed RT-qPCR assays can distinguish
mature miRNAs from their precursor molecules we indi-
vidually assayed the same amount of mature let-7a, let-
7b and let-7f miRNAs (∼2 × 108 copies) and their corre-
sponding precursor miRNAs. Cross-reactivity with precur-
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Figure 4. Specificity of Two-tailed RT-qPCR, TaqMan, Quanta, and miQPCR. (A) Measured false-positive levels of let-7 miRNA family members ex-
pressed relative to the level of the targeted member. (B) Sequences of eight members of the let-7 family. Nucleotide variations relative to let-7a are indicated.
(C) Cq values and relative detection levels of pre-miRNAs relative to the targeted mature microRNA measured with Two-tailed RT-qPCR.

sor molecules was estimated from the measured �Cq val-
ues. It ranged from 0.82% for let-7f to 6.98% for let-7a (Fig-
ure 4C), demonstrating that the Two-tailed RT-qPCR as-
says specifically quantify the amounts of mature miRNAs.

Performance of the system with biological samples and com-
parison with independent platform

We validated the Two-tailed RT-qPCR assays on biologi-
cal samples measuring the expression of 8 miRNAs across
7 mouse tissues and compared with measurements using
commercially available TaqMan miRNA assays (Figure
5A). Relative expression levels across the tissues were cal-
culated from the Cq values. The results were in agreement
with previous reports (36,49) with miR-122–5p being highly
expressed in liver, while miR-1a-3p having high expression

in heart and muscle. The other microRNA targets exhibited
lower variation in expression levels across the tissues. Let-
7a and miR-21a, which are thought to have housekeeping
functions, were indeed expressed at high levels in all the ex-
amined tissues. MiR-615–5p was not detected by any of the
methods, suggesting it is either not present at all or only at
exceedingly low levels.

The correlation between the measured �Cq ( = Cq
tissue, lowest expression – Cq tissue,x) with the Two-tailed RT-qPCR
assays and with the TaqMan miRNA assays was excel-
lent (Figure 5A). Pearson correlation coefficients (r) were
0.981 or larger for all the measured targets but miR-30c-
1–3p, where r was 0.874. This lower correlation could be
ascribed to the TaqMan miR-30c-1–3p assay, which gener-
ated very high and therefore uncertain Cq values (33.85 -
36.33). In the liver sample the TaqMan assay failed to de-
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Figure 5. Comparison of expression profiles measured with Two-tailed RT-qPCR and TaqMan miRNA assays. (A) Relative fold changes of the expres-
sion of each target in seven tissues measured with Two-tailed RT-qPCR and TaqMan miRNA assays, respectively. (B) Overall correlation of the relative
expression changes measured with the two methods.
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tect miR-30c-1–3p, while the Two-tailed RT-qPCR assay
showed clear positive signal with Cq = 32.91. Consider-
ing all the measured data the correlation between the Two-
tailed RT-qPCR and the TaqMan miRNA assays was ex-
cellent (R2 = 0.985, Figure 5B).

Multiplexing of the reverse transcription

Multiplexing the reverse transcription could significantly
increase the analysis throughput, save on reagents costs, and
reduce the amount of material required. We tested multi-
plexing the RT step with the Two-tailed RT-qPCR assays by
measuring expression of eight miRNA targets across seven
mouse tissues. Eight Two-tailed RT primers were pooled
and 10 ng of total mouse RNA was reverse transcribed in
multiplex. 5% of the cDNA produced was used for each
qPCR with one set of PCR primer pair. The Cq values
and calculated relative expression levels from singleplex and
multiplex protocols were compared. Neither protocol de-
tected miR-615–5p, as in the previous experiment. For miR-
122, miR-24, and miR-30c-1 there was no significant dif-
ference in Cq values between the singleplex and multiplex
protocol. For the remaining four assays there was a shift
ranging from 0.68 cycles for let-7a to 2.30 cycles for miR-
21a (Figure 6A). The shift was assay specific, but constant
and reproducible across samples, and therefore did not in-
fluence the calculation of relative expression levels. This is
analogous to the mRNA dependent RT yields we have re-
ported before, which do not affect calculations of relative
expression levels as they too are constant and reproducible
across samples (50,51). The agreement between the relative
quantities measured by the multiplex and singleplex proto-
cols was excellent (R2 = 0.995, Figure 6B).

Detection of isomiRs

We assessed the ability of the Two-tailed RT-qPCR assays to
measure isomiR variants that differ from the canonical se-
quence in their length and nucleotide composition in the 3′-
terminus. We modified the design of the miR-21 Two-tailed
assay such that the 3′-hemiprobe binding site is shifted two
nucleotides upstream from the 3′-end of the miR-21 canon-
ical sequence. This allows the detection of isomiRs that are
two nucleotides shorter at the 3′-end, as well as all isomiRs
with extended 3′-ends. We tested the assay analyzing equal
amounts (∼2 × 108 copies) of five different synthetic vari-
ants of hsa-miR-21–5p that had 3′-terminus: (a) shortened
by 2 nt, (b) shortened by 1 nt, (c) fully matching canonical
sequence (d) extended by 1 nt (-C-3′) and (e) extended by 2
nt (-CA-3′) and also with the equimolar mixture of all five
(suppl. file). For comparison, we also analyzed the samples
with the miR-21 TaqMan, Quanta, and miQPCR assays.

We found that Two-tailed RT-qPCR along with the
Quanta´s miR-21 assay reflects the amounts of different
isomiRs with much better precision than the TaqMan and
miQPCR miR-21 assays (Figure 7). The Cq values of the
different miR-21 isomiRs measured with the Two-tailed
RT-qPCR and Quanta miScript assays were similar, as
expected, since the initial amount of template had been
the same. This demonstrates the ability of the two-tailed
RT-qPCR to detect all 3′-isomiR variants with equal effi-

ciency. On the contrary, the TaqMan and miQPCR meth-
ods greatly underestimated the amounts of isomiRs that dif-
fer from the canonical sequence (Figure 7).

DISCUSSION

We present a new method for the quantification of miR-
NAs and other small RNAs by RT-qPCR (Figure 1). The
new method is called Two-tailed RT-qPCR and is based
on sequence specific RT primers with a novel design that
allows the RT primer to hybridize to two regions of the
miRNA target with separate complementary parts called
hemiprobes. This design offers several advantages over ex-
isting strategies for RT-qPCR based detection of miRNAs,
including high sensitivity, improved discrimination between
similar miRNAs, and ability to quantify isomiRs.

It is well known that specific detection of a nucleic acid
sequence requires targeting it with two probe molecules, as
a single unmodified standard probe does under most condi-
tions not confer sufficient specificity. The short length of mi-
croRNAs limits the size of probes that can be used to inter-
rogate the sequence. For example, two regular PCR primers
cannot be used to amplify a regular cDNA copy of the mi-
croRNA, as they cannot be fitted without overlap. Reducing
the primers´ lengths in order to fit makes binding too weak.
Binding strength can be increased by incorporation of mod-
ified bases such as the Locked Nucleic Acids (LNAs) into
the primers (36). Modified primers may have higher melt-
ing temperature (Tm) and enhanced sequence discrimina-
tion (52). However, results are highly dependent on the de-
sign of the LNA oligomers, which often requires extensive
trial-and-error optimization (40). LNA-containing primers
are also more expensive than conventional primers and may
exhibit lower amplification efficiencies (28,53).

We wanted to find a way to interrogate the sequence of a
microRNA with two unmodified non-overlapping probes.
To solve the thermal stability problem, we reasoned this
should be possible by using two short hemiprobes that are
connected. This way each hemiprobe would bind with high
specificity, as a single mismatch would greatly distort the
rather short hybrid it forms, while overall high thermal
stability is achieved through cooperativity. Connecting the
hemiprobes leads to cooperative binding as they drag each
other to the binding site. As a consequence the overall bind-
ing strength is comparable to that of a long probe. Con-
necting the hemiprobes with an oligonucleotide stretch that
forms a hairpin protects it from undesired interactions. We
call this new primer ‘Two-tailed RT primer’. When used in
reverse transcription, the Two-tailed RT primer is extended
forming a tailed cDNA. The cDNA can then be amplified
by PCR.

Another aspect of the Two-tailed RT primer is that the
3′-hemiprobe can be made rather short (5–6 nt). This leaves
enough space to design an unmodified miRNA-specific
qPCR primer without overlapping with the 3′-hemiprobe.
Also, a short 3′-hemiprobe is more sensitive to mismatches
in the target sequence, while sufficient binding strength
is obtained through cooperative binding with the longer
5′-hemiprobe. Indeed, when we compared Two-tailed RT
primers with the same length of the 3′-hemiprobe (5nt), but
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Figure 6. Comparison of singleplex and multiplex Two-tailed RT-qPCR. (A) �Cq = Cqmultiplex - Cqsingleplex. (B) Overall correlation of the relative expres-
sion changes between tissues measured with the singleplex and multiplex protocol.

Figure 7. Relative sensitivities of Two-tailed RT-qPCR, TaqMan, Quanta,
and miQPCR to miR-21 isomiRs. Cq values are normalized such that the
Cq of the canonical form is set to 20. Error bars indicate SD of two inde-
pendent cDNA syntheses.

different length of the 5′-hemiprobe we found significant
differences (Figure 2A).

By strategic design of the 5′-hemiprobe the specificity
of the Two-tailed RT-qPCR can be optimized for different
cases. For example, closely related miRNAs often differ in
base positions in their 5′-regions. Those variants are poorly
distinguished with current methods for miRNA analysis,
which use only on one of the qPCR primers for discrimi-
nation. This holds also for the specific-primer based Taq-
Man miRNA assays, as this part of the microRNA is not
sensed by its stem–loop primer. With the Two-tailed RT-
qPCR assays, the nucleotides in the 5′-regions, such as those
distinguishing let-7a, let-7e, let-7f, and let-7g, are interro-
gated twice: first time in the reverse transcription by the
5′-hemiprobe of the RT primer and second time in the
qPCR by the reverse PCR primer (Figure 1). Specificity
can be maximized using a short 5′-hemiprobe designed to
sense all the sequence variants in the variable region of
the miRNA (Supplementary Figure S1). Using this strat-
egy, we designed Two-tailed RT-qPCR assays that exhibit
negligible cross-reactivity between the members of the let-7
miRNA family (Figure 4B). When these members were as-

sayed with the three other methods, substantial undesired
cross-reactivity was observed (Figure 4A).

Since the sequence of the mature transcript is contained
in its precursors (3), RT-qPCR assays designed to de-
tect mature miRNAs may also amplify their precursor
molecules. Although precursors are usually present in cells
at much lower levels than the mature miRNAs (54–57), it
may still be relevant to measure them separately. We decided
to test if the two-tailed RT-qPCR can distinguish between
mature miRNAs and the corresponding pre-miRNAs. Our
results show that the Two-tailed RT-qPCR assays designed
for mature miRNAs show minimal cross-reaction with pre-
miRNAs (Figure 4C). One contributing factor is that re-
verse transcription is performed at rather low temperature
(25◦C) without any pre-heating step that would open the
secondary structure of pre-miRNAs making them available
for priming with the Two-tailed RT primer. We observed
that even without the pre-heating step, sensitivity of the sys-
tem is not influenced by potential microRNA-long RNA in-
teractions (Supplementary Figure S2). The specificity of the
two-tailed RT-qPCR assays for mature miRNAs is further
confirmed by the excellent correlation with the expression
profiles measured using TaqMan miRNA assays (Figure 5),
which do not cross-react with precursor miRNAs because
of its particular RT-priming mechanism (39,44).

Target-specific priming of the reverse transcription has
several advantages including higher specificity and lower
background, but a common disadvantage is that each tar-
get requires a separate RT reaction. This can be resolved
by multiplexing the RT step using an RT primer pool. Mul-
tiplexing RT increases throughput, saves on reagent costs,
minimizes labor, and reduces the sample amount needed.
Usually, it is problematic to have many long oligomers,
such as multiple RT primers, in the same reaction as it
leads to unspecific amplification (58). The Two-tailed RT
primers are, however, designed with a hairpin structure that
prevents non-specific interactions. As demonstrated, multi-
plexing eight targets showed perfect agreement with the cor-
responding singleplex reactions (Figure 6). Importantly, the
specificity of the multiplex measurement was not compro-
mised, based on negative controls and melting curve anal-
yses (suppl. file). This is likely due to the use of two spe-
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Table 2. Comparison of parameters of four tested RT-qPCR methods for miRNA quantification. Cost estimate per assay with 20 RT and 60 qPCR
reactions is indicated (details available in suppl. file)

cDNA
synthesis
strategy

Sensitivity
(miRNA copies in
analyzed volume)

Linear
dynamic

range

Unspecific
cross-

reaction

Accurate
detection of

isomiRs

Melting curve for
specificity

control

Detection of
piRNAs and

plant miRNAs Cost

Two-tailed
RT-qPCR

specific
RT primer

102 - 103 6–7 logs < 1% yes yes yes $

TaqMan specific
RT primer

102 - 103 6–7 logs < 23% no no yes $$$$

Quanta poly(A)
tailing

102 - 103 6–7 logs < 51% yes yes no $$

miQPCR linker
ligation

104 5 logs > 100% no yes yes, but efficiency
is reduced

$$$

cific PCR primers for each target in the downstream qPCR,
while other methods for miRNA analysis commonly use
only one miRNA specific primer combined with a univer-
sal primer. The Two-tailed RT-qPCR assays are designed
with target specific PCR primers as follows: one miRNA
specific reverse primer and one forward primer that is spe-
cific to an internal segment of the corresponding Two-tailed
RT primer. This way both PCR primers are specific to one
cDNA only. Although using a second specific PCR primer
provides no advantage with the singleplex protocol, it adds
specificity to the multiplex protocol, where many different
cDNAs are present as qPCR templates. In our experiment,
we performed reverse transcription in octaplex and then di-
vided the cDNA into aliquots that were analyzed with tar-
get specific PCR primer pairs in singleplex qPCR using dye
based detection. This workflow is, however, not limited to
any particular number of targets and should be applicable
to virtually any degree of multiplexing. When only a small
number of microRNAs are targeted 1-step RT-qPCR can
be employed, distinguishing the PCR products with fluo-
rescent probes.

Another advantage of the Two-tailed RT-qPCR is its ca-
pability to reverse transcribe isomiRs with the same ef-
ficiency as the canonical sequence (Figure 7). IsomiRs
are miRNA variants that differ in length and sequence
composition in their 3′- and/or 5′-termini from the anno-
tated canonical sequence (23,24). Growing evidence sug-
gests isomiRs are expressed in a cell, tissue, and gender spe-
cific manner, possess relevant physiological functions, and
are potential biomarkers in clinical diagnostics (59–63). In
some cases, isomiRs, derived from the same precursor arm,
bind to other targets than the canonical miRNA. Another
function is that isomiRs cooperate with the canonical form
to drive similar biology by targeting the same set of core
biological networks while distributing the off-target effects
and thus increasing the signal to noise ratio of gene silenc-
ing (62,64). Measuring full isomiR profiles may therefore be
more valuable than targeting the canonical sequence only.
This was recently demonstrated when clearly improved dis-
crimination of cancerous and healthy tissues was obtained
by inclusion of full isomiR profiles (59,65).

The heterogeneity of the miRNA sequences pose a sub-
stantial issue for many RT-qPCR methods. Those employ-
ing universal reverse transcription should generally be able
to amplify all terminal sequence variants, but biochemi-
cal modifications of terminal nucleotides may interfere with

the enzymatic steps upstream of the RT-qPCR. Further-
more, the design of the stem–loop primers used in the Taq-
Man miRNA assays renders the method less sensitive to
isomiRs. Due to the stem-part , which blocks annealing
to longer sequences, only the particular sequence with the
defined ends is amplified with optimal efficiency, and the
method may completely miss on some variants (40–42). Par-
ticularly isomiRs that differ at the 3′-end pose a problem.
Notably, largest variability across isomiRs is found in their
3′-ends, and in some cases the canonical sequence repre-
sents only a small fraction of the total amount of a miRNA
(24,59,62,64,66,67).

To test the ability of the Two-tailed RT-qPCR to de-
tect different 3′-isomiRs we measured five synthetic termi-
nal variants of miR-21. We observed that the Two-tailed
RT-qPCR accurately quantifies shorter as well as longer
variants of the canonical sequence, reaching the level of a
poly(A)-tail based method while providing all advantages
of RT-specific priming. The full isomiR repertoire of the
miRNA is thus measured and no potentially important
isomiRs are missed (Figure 7). This is in difference from the
TaqMan and miQPCR approaches, which exhibited high
variation across the miR-21 isomiRs, greatly underestimat-
ing the amounts of those that differ from the canonical se-
quence (Figure 7).

In some applications only a certain isomiR is of inter-
est. Although it should be possible to target it specifically
with custom-designed TaqMan miRNA assays, our results
(Figure 7) as well as reports in the literature suggest this is
not always the case and various degree of cross-reactivity to
other isomiRs is observed (41,42,68,69). Therefore, it seems
the TaqMan miRNA assays are neither specific to a single
3′-end isomiR nor do they detect all the isomiRs with equal
sensitivity, which may lead to an underestimation of the to-
tal amount of a given miRNA in a sample (25,42). To our
knowledge, the only qPCR based method that can be used
to distinctively quantify specific isomiRs with 1 nt resolu-
tion is the ‘Dumbbell-PCR’ (69). This method exploits the
properties of T4 RNA ligase 2 to ligate stem–loop adapters
to the ends of the targeted isomiR. The formed dumbbell-
like structure is then quantified with TaqMan qPCR. Such
extreme specificity is currently not achieved with the two-
tailed RT-qPCR, but the Two-tailed RT primer can be
designed to reverse transcribe all isomiRs of a particu-
lar miRNA to obtain a correct quantification of the total
amount.
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RT-qPCR technology remains unequalled tool in small-
RNA expression profiling, vital for validation of genome-
wide experiments and accurate measurement of challenging
samples such as liquid biopsies. However, measurements of
higher number of targets significantly increases the cost of
such analyses. We have developed a highly sensitive and ex-
ceedingly specific method called Two-tailed RT-qPCR, suit-
able for rapid and cost-effective microRNA profiling. At the
same time, Two-tailed RT-qPCR reflects on the current state
of microRNA field and confers several advantages over cur-
rent RT-qPCR methods, including increased specificity and
ability to capture the full isomiR profile (Table 2). Two-
tailed RT-qPCR uses only standard oligomers, can employ
either dye or probe based detection and can be used for ani-
mal and plant small RNAs alike. The whole analysis can be
performed in just 2.5 h.
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two-tailed Rt-qpCR panel for 
quality control of circulating 
microRNA studies
peter Androvic1,2, Nataliya Romanyuk3, Lucia Urdzikova-Machova3, Eva Rohlova  1,5, 
Mikael Kubista1,4 & Lukas Valihrach1

Circulating cell-free microRNAs are promising candidates for minimally invasive clinical biomarkers for 
the diagnosis, prognosis and monitoring of many human diseases. Despite substantial efforts invested 
in the field, the research so far has failed to deliver expected results. One of the contributing factors is 
general lack of agreement between various studies, partly due to the considerable technical challenges 
accompanying the workflow. Pre-analytical variables including sample collection, RNA isolation, 
and quantification are sources of bias that may hamper biological interpretation of the results. Here, 
we present a Two-tailed RT-qPCR panel for quality control, monitoring of technical performance, 
and optimization of microRNA profiling experiments from biofluid samples. The Two-tailed QC 
(quality control) panel is based on two sets of synthetic spike-in molecules and three endogenous 
microRNAs that are quantified with the highly specific Two-tailed RT-qPCR technology. The QC panel 
is a cost-effective way to assess quality of isolated microRNA, degree of inhibition, and erythrocyte 
contamination to ensure technical soundness of the obtained results. We provide assay sequences, 
detailed experimental protocol and guide to data interpretation. The application of the QC panel is 
demonstrated on the optimization of RNA isolation from biofluids with the miRNeasy Serum/Plasma 
Advanced Kit (Qiagen).

Circulating cell-free microRNAs have emerged in recent years as promising candidates for minimally invasive 
clinical biomarkers for diagnosis, prognosis, and monitoring of a multitude of human pathologies1–6. After 
this recognition, a massive wave of research aiming at identifying disease-associated microRNAs followed. A 
search for the keywords “microRNA”, “biomarker” and “blood” returns over 5000 hits in the PubMed database 
(September 2018) with the number of studies increasing every year. Despite promising advances in the field 
(www.clinicaltrials.gov), there is still no microRNA test in clinical practice7,8. There are many reasons behind the 
current unsatisfactory state and their comprehensive discussion is beyond the scope of this article (for reviews 
see8,9). One issue is the poor agreement between studies, which may in part be attributed to the lack of stand-
ardization10 and technical difficulties associated with the workflow11,12. Protocols for blood collection, sample 
processing, storage, RNA isolation, and microRNA quantification often vary across laboratories leading to dis-
cordant results11,13,14. Efforts are ongoing to standardize the blood sampling and processing steps to improve 
the reproducibility of microRNA analyses15–18 (www.cancer-id.eu; www.spidia.eu). However, notable sources of 
variation remain. These include the RNA isolation, co-purification of inhibitors of enzymatic reactions, and cel-
lular contamination of the biofluid samples19–21. These factors may bias the measured microRNA profiles leading 
to false-positive discoveries of disease-associated biomarkers. Rigorous control of sample quality and technical 
workflow is therefore of highest importance.

An efficient way to monitor technical variation is the addition of exogenous spike-in molecules prior to RNA 
isolation22–24. The signal from the spike-ins reflect yields and extraction efficiency, which identifies abnormal 
samples that should be reanalysed or disqualified. A second set of exogenous spike-ins can be added before 
the microRNA quantification to control for bias introduced downstream of this step, such as the inhibition of 

1Institute of Biotechnology of the Czech Academy of Sciences - BIOCEV, Vestec, 252 50, Czech Republic. 2Laboratory 
of Growth Regulators, Faculty of Science, Palacky University, Olomouc, 78371, Czech Republic. 3institute of 
Experimental Medicine of the Czech Academy of Sciences, Prague, 142 20, Czech Republic. 4TATAA Biocenter AB, 
Gothenburg, 411 03, Sweden. 5Department of Anthropology and Human Genetics, Faculty of Science, Charles 
University, Prague, 128 43, Czech Republic. Correspondence and requests for materials should be addressed to L.V. 
(email: lukas.valihrach@ibt.cas.cz)

Received: 14 November 2018

Accepted: 14 February 2019

Published: xx xx xxxx

opeN

https://doi.org/10.1038/s41598-019-40513-w
http://orcid.org/0000-0001-6190-4837
http://www.clinicaltrials.gov
http://www.cancer-id.eu
http://www.spidia.eu
mailto:lukas.valihrach@ibt.cas.cz


2Scientific RepoRts |          (2019) 9:4255  | https://doi.org/10.1038/s41598-019-40513-w

www.nature.com/scientificreportswww.nature.com/scientificreports/

enzymatic reactions. This concept has been described previously20,22,23 and is also available as a commercial prod-
uct (e.g. RNA Spike-In Kit, for RT marketed by Qiagen). Yet, to our knowledge, there is no tool to perform such 
extended quality control on challenging experimental samples described in detail in literature.

Here, we present the Two-tailed quality control (QC) panel; a tool to assess the technical quality of RNA isola-
tion, degree of inhibition and erythrocyte contamination, primarily in liquid biopsy samples, such as serum and 
plasma. The panel is based on Two-tailed RT-qPCR; a highly specific method for microRNA quantification25. We 
provide detailed experimental protocol, guide to data interpretation, and sequences of the RNA oligonucleotides 
and RT-qPCR assays used (Supplementary file) that can be ordered from any licensed oligo manufacturer. The 
QC panel is based on standard reagents and is intended to provide researchers a convenient tool to assess techni-
cal performance and quality of the samples before investing resources into extensive quantification experiment, 
such as small-RNA sequencing or high-throughput RT-qPCR. We demonstrate its utility by optimizing an RNA 
isolation protocol, screening for haemolysis, and testing for outliers with compromised quality. We also report 
data obtained with the recently launched miRNeasy Serum/Plasma Advanced Kit (Qiagen) for two biofluids 
collected from human and rat.

Results
Design of the QC panel. The Two-tailed QC panel is composed of five synthetic spike-in microRNAs 
and eight Two-tailed assays targeting these synthetic spike-ins, and three endogenous microRNAs (Fig. 1). The 
spike-ins are based on C. elegans microRNAs and artificial sequences and have no significant homology to any 
known human, mouse or rat microRNA (Table 1). All spike-ins have 5′ terminal phosphate to mimic endogenous 
microRNAs, and to allow incorporation into microRNA libraries for Next Generation Sequencing (NGS).

Three spike-in RNAs (cel-miR-54, spike-A and spike-B) comprise the isolation spike-in mix and are added to 
the samples at a known constant amount prior to RNA isolation, serving as control for the technical performance 
of the RNA isolation protocol (Fig. 1A). The three spike-ins have varying GC content (41.7–63.6%) and are pres-
ent at concentrations reflecting high (cel-miR-54, 1e + 7 copies/μl), moderate (spike-A, 2e + 5 copies/μl), and low 
(spike-B, 4e + 3 copies/μl) abundant microRNAs (Supplementary file). The ΔCq’s between the isolation spike-ins 
should, in absence of inhibition, be in the range 3.5–5.5 cycles (accounting for differences in RT-PCR efficiencies 
of the Two-tailed assays), however, these values may be influenced differently by individual isolation protocols 
due to various biases26,27.

Two RNA spike-ins (cel-miR-76 and cel-miR-2) comprise the reverse transcription (RT) spike-in mix and are 
added to the RT reaction serving as controls for cDNA synthesis, PCR amplification and as general controls for 
the presence of inhibitors in RNA eluates (Fig. 1A). Cel-miR-76 (1e + 7 copies/μl) is added at 100x higher con-
centration than cel-miR-2 (1e + 5 copies/μl) and their ΔCq should be 5.5–6.5 cycles (accounting for differences 
in PCR efficiency of the Two-tailed assays).

The QC panel also contains assays for the three endogenous microRNAs: let-7a, miR-23a and miR-451a. 
Let-7a is abundant in plasma and serum20,28,29 and serves as positive control. Mir-23a is also abundant in plasma/
serum and its level is independent of haemolysis, while miR-451a is highly abundant in erythrocytes and its level 
increases dramatically upon haemolysis20,30. The ΔCq (mir-23a – mir-451a) indicates degree of haemolysis in the 
samples20.

Optimization of sample input volume. A factor that is often neglected, but can have major impact on the 
quality of microRNA quantification data, is the initial input volume used for the RNA isolation13,26. Liquid biopsy 
samples contain very low amounts of microRNAs and researchers may be tempted to use as much sample mate-
rial as possible for RNA isolation. However, with increasing amount of starting material risk of carryover of con-
taminating substances and saturation of the purification column increases31,32. Most commercial RNA isolation 
kit manufacturers recommend 200 μl starting serum/plasma volume, however, optimum volume depends on the 
isolation protocol, sample type and also organism26. Optimizing the sample volume is therefore recommended 
when setting up a new isolation protocol or extracting a new type of sample. For such optimization the Two-tailed 
QC panel is a tool to assess relative isolation efficiency, absolute yield, and test for the presence of inhibitors 
to decide the optimal input volume. With this strategy we optimized protocol based on the miRNeasy Serum/
Plasma Advanced Kit (Qiagen) for RT-qPCR analysis of human plasma, human serum, and rat serum (Fig. 2).

We found a non-linear relation between the input sample volume and cDNA yield as reflected by RT-qPCR 
signal of endogenous microRNAs (Fig. 2). The non-linearity is caused neither by RT nor PCR inhibition, as the 
signals from the RT spike-ins were independent of volume. Rather the non-linear response is due to variations 
in RNA isolation efficiency, as reflected by the RT-qPCR response of the isolation spike-ins (Fig. 2). We observed 
poor isolation efficiency with low input volumes (<200 μl for human, <100 μl for rat), but also with higher input 
volumes (≥300 μl for human, ≥200 μl for rat), where the response was also more variable (Fig. 2). Based on our 
results, optimum starting sample volumes with our workflow are: 250 μl for human plasma, 300–500 μl for human 
serum, and 150 μl for rat serum.

Assessing the effect of co-precipitants in the isolation procedure. Since biofluids like serum and 
plasma contain very low amounts of RNA, significant portion may be lost during the isolation procedure due to 
adsorption to the pipette tips, tube walls etc. Losses can be reduced by adding carriers such as MS2 phage RNA 
or yeast tRNA to the samples before RNA isolation33,34. However, RNA-based carriers are less suited when NGS is 
used for downstream analysis as the exogenous RNAs may consume sequencing reads. Other carriers, such as lin-
ear acrylamide, BSA or glycogen may then be used instead24. Using the Two-tailed QC panel we tested the impact 
of using glycogen as carrier in our isolation procedure (Fig. 3). In accordance with previous observations33,34, we 
found that addition of glycogen significantly improved the reproducibility of isolation (F-test, p < 0.001) and sig-
nificantly increased the yield (average Cq difference 1.25; paired T-test p = 0.011) with no negative effects on the 
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downstream RT-qPCR analysis (Fig. 3). Based on these findings, we recommend addition of glycogen to increase 
the robustness and efficiency of microRNA isolation with the miRNeasy Serum/Plasma Advanced Kit (Qiagen).

Assessing the level of haemolysis in serum/plasma samples. A major complication in microRNA 
analysis of serum/plasma samples is contamination with microRNAs derived from lysed blood cells20,30,35 and 
in particular haemolysed erythrocytes. Plasma and serum samples should therefore be assessed for haemolysis. 

Figure 1. QC workflow with the Two-tailed QC panel. (A) A mix of three synthetic RNA spike-ins (cel-
miR-54, spike-A, spike-B) is added prior to RNA isolation from the biofluid sample. A second mix of two 
spike-ins (cel-miR-76, cel-miR-2) is added before cDNA synthesis step. Optionally, a diluted isolation spike-in 
mix is used as a template in a “spike-only” control reaction to determine spike-in baseline signal (for details 
see Supplementary file section 3.2.2). Two-tailed RT-qPCR is used to quantify the spike-ins along with three 
endogenous microRNAs (let-7a, miR-23a and miR-451a) to evaluate the technical quality of RNA isolation, 
effect of inhibition and the level of haemolysis. (B) Decision chart for data interpretation and troubleshooting 
(see also Supplementary file section 4).

Usage Name Sequence GC % Origin

Isolation spike-ins

cel-miR-54-3p /5Phos/UACCCGUAAUCUUCAUAAUCCGAG 41.7 C. elegans

miR-spike-A /5Phos/UGCAGCCCUACCGACACGUUCC 63.6 artificial

miR-spike-B /5Phos/ACUCAGGUUGUAGGAGCGGUCUU 52.2 artificial

RT spike-ins
cel-miR-76-3p /5Phos/UUCGUUGUUGAUGAAGCCUUGA 40.9 C. elegans

cel-miR-2-3p /5Phos/UAUCACAGCCAGCUUUGAUGUGC 47.8 C. elegans

Table 1. Synthetic RNA spike-ins used in the Two-tailed QC panel.
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Standard method is to measure absorption at 414 nm, 540 nm and 578 nm, which are the absorption peaks of free 
oxyhemoglobin36. An alternative approach, which is applicable also when the original sample is no longer availa-
ble, is to measure the ratio of miR-23a, which is insensitive to haemolysis, and miR-451a, which is highly enriched 
in erythrocytes20. Blondal et al.20 established threshold ΔCq (miR-23a–miR-451a) values as quality indicators for 

Figure 2. Optimizing input volumes of (A) human plasma, (B) human serum, and (C) rat serum for RNA 
isolation. Data are presented as ΔCq between Cqs obtained with the tested volume and an input volume of 
200 μl (human) or 100 μl (rat). Each dot is one isolation replicate. Optimum starting serum/plasma volumes 
based on absolute endogenous microRNA yields are 250 μl for human plasma, 300–500 μl for human serum, and 
150 μl for rat serum (blue mean profiles). Error bars on mean profiles panels indicate standard deviation (SD).
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human samples: ΔCq > 5 indicates there may be erythrocyte contamination, and ΔCq > 7 indicates high risk of 
haemolysis. A complication, however, is that the indicator is sensitive to the relative isolation yields of miR-23a 
and miR-451, as well as their relative RT yields and PCR efficiencies of the assays used to quantify them. Hence, 
the threshold ΔCq’s reported by Blondal et al.20 are valid only for their particular workflow and protocol, and 
should not be used as general indicators. Here, we establish threshold ΔCq values for the Two-tailed QC panel 
and our recommended workflows (Supplementary file).

We prepared duplicate haemolysis dilution series for each sample type and constructed standard curves to 
correlate ΔCq (miR-23a – miR-451a) values to absorbance at 414 nm (Fig. 4B). To increase the number of data 
points, samples screened in other experiments with the same workflow were also included. Correlation between 
A414 and linear transformation of ΔCq (2ΔCq) is significant for all three biofluids (Pearson r ≥ 0.80, p < 0.0001). 
A414 for plasma sample 1 was outside the linear range of the absorption spectrophotometer and was estimated by 
interpolation. A540 and A578 nm dependences show the same trend, although those peaks are considerably less 
significant in the absorbance spectrum (Fig. 4A). A414 ≤ 0.2–0.25 has previously been recommended as threshold 
for non-haemolysed samples13,20,35. Based on our calibration this corresponds to a ΔCq of 15 cycles for human 
plasma, 11 cycles for human serum, and 6 cycles for rat serum for our workflow (Fig. 4B; Supplementary file).

Discussion
We present an RT-qPCR based protocol to assess the technical performance of workflows for analysis of microR-
NAs in body fluids such as serum and plasma. The QC panel developed is based on two sets of synthetic spike-in 
molecules and three endogenous microRNAs to assess RNA isolation yield, RT yield, PCR efficiency, and haemol-
ysis (Fig. 1).

A highly error-prone step in microRNA analysis workflow is RNA isolation. Several studies have studied the 
effect of input volume on microRNA recovery, reporting varying results26,37,38. However, consistent observations 
are substantial variability between replicate isolations and non-linear dependence of the input volume on the 
amount of microRNAs detected26,31. Here, we studied the effect of input sample volume when extracting with 
the recently launched miRNeasy Serum/Plasma Advanced Kit from Qiagen and found that optimal input vol-
ume is different for the three sample types: human plasma, human serum, and rat serum (Fig. 2). We also found 
that higher input volumes (>300 μl for human, >150 μl for rat), although still in the range recommended by the 
manufacturer, lead to less reproducible Cq values compared to moderate input volumes (200–300 μl for human, 
100–150 μl for rat). Using spike-in controls we showed this is due to inhibition of neither cDNA synthesis nor 
PCR, as suggested previously20, but rather to impaired isolation efficiency, possibly because of saturation of the 
purification column. We confirm previous observations that adding a carrier improves extraction yield and repro-
ducibility32–34,39. We also show glycogen is a suitable alternative to RNA-based carriers when using the miRNeasy 
Serum/Plasma Advanced Kit (Qiagen) conferring advantage when samples shall be analysed with NGS (Fig. 3).

Another contribution to bias is microRNAs from leaking blood cells30,35. While cellular contamination can 
be minimized by careful removal of the plasma fraction and dual centrifugation to efficiently remove plate-
lets, haemolysis remains a problem. Haemolysis can occur during sampling and handling procedures and the 
released cellular microRNAs distort the measured microRNA profiles, which no longer reflect exclusively cell 
free microRNA30,35,36. This not only hampers biological interpretation of the results, but can distort normalization 
or RT-qPCR data. For example, miR-16-5p is widely used as reference microRNA9, but it is also one of the most 
abundant microRNAs in erythrocytes30 and its level is therefore perturbed even at low level of haemolysis35,40.

Haemolysis can be assessed by visual inspection of the samples or, more precisely, spectroscopically. An alter-
native approach is to compare the levels of the erythrocyte-enriched miR-451a and the haemolysis-insensitive 
miR-23a20. While visual inspection is rather subjective and not particularly sensitive, spectroscopic assessment 
and RT-qPCR quantification of miR-451a and miR-23a levels reveal even low degree of haemolysis35. Shah et al.41, 
compared several methods to assess the level of haemolysis in human serum samples and found ΔCq (miR-23a –  
miR-451a) to be the most sensitive indicator41. In contrast, Vliet et al.13 reported that absorption measurement 
is more sensitive for rat plasma samples. Our results show that the approaches are comparable and correlate 

Figure 3. Effect of glycogen carrier on microRNA quantification in human plasma. Identical sample aliquots 
were isolated with (n = 5) or without (n = 6) addition of glycogen carrier starting from 200 μl, and quantified 
with the Two-tailed QC panel. Extractions with glycogen had significantly higher yields (average difference 
between Cq means: 1.25 cycles; paired T-test p = 0.011) and higher reproducibility (F-test, p < 0.001).
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well even at very low levels of haemolysis for all three sample types we tested (Fig. 4). An advantage of the qPCR 
approach is that haemolysis can be assessed even when the original sample is no longer available. The same 
strategy can be used to assess contamination with other cell-types when needed. For example, miR-425 level may 
reflect contamination of platelets13. It is important to be aware that the ΔCq (miR-23a–miR-451) indicator must 
be calibrated for every new biofluid, isolation procedure and RT-qPCR method, as the ratio of the measured levels 
of miR-23a and miR-451 depend on the relative bias introduced by the methods used26,27,42, but also the particular 
species and biofluids analysed. Indeed, in our study we concluded different threshold ΔCq values for the three 
sample types analysed. The ΔCq indicator should therefore be established for every workflow. Once calibrated 
the ΔCq indicator can be used to compare processed samples to identify outliers that should be reanalysed or 
discarded (see Supplementary file).

Figure 4. Assessing haemolysis in serum/plasma samples. (A) Human plasma samples with varying degree 
of haemolysis, corresponding A414, ΔCq (miR-23a–miR-451a), and selected UV-Vis spectra. (B) Correlation 
between ΔCq (miR-23a–miR-451a) and A414, A540 and A578, respectively. Exponential regression line with 95% 
confidence interval is shown. Dashed red line indicates A414 = 0.25 as threshold for non-haemolysed samples. 
Corresponding ΔCq thresholds are ~15 (human plasma), ~11 (human serum), and ~6 (rat serum).
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Despite several advances, circulating microRNA research has been hampered by inconsistency and poor 
reproducibility1. The Two-tailed quality control panel developed here is a simple yet powerful tool for researchers 
to optimize new workflows, assess the technical performance of an analysis, identify outlier samples, and gener-
ally improve the reliability of circulating microRNA data.

Methods
Oligonucleotides. Sequences of mature microRNAs were obtained from the miRBase release 22 (www.
mirbase.org). RNA oligonucleotides with 5′-phosphate were synthesized and quantified by Integrated DNA 
Technologies. Spike-in miRNA sequences were screened in silico for homology against human, mouse and rat 
miRBase records (Release 22) with the following parameters - search sequences: mature miRNAs, search method: 
SSEARCH, e-value cut-off: 100, max. no. of hits: 100. No significant homology was found. DNA oligonucleotides 
were synthesized and quantified by Invitrogen. Sequences are available in Supplementary file.

Samples. For the preparation of human serum, blood was collected from two healthy volunteers into 8.5 ml 
BD Vacutainer SST II Advance tubes (Beckman Dickinson) and allowed to clot for at least 30 min before cen-
trifugation at 1500 g for 10 min at room temperature. The serum was then transferred to 2 ml tubes (Eppendorf) 
and stored at −80 °C. For the preparation of human plasma, blood was collected from four healthy volunteers 
into K2EDTA BD Vacutainer tubes (Beckman Dickinson) and centrifuged within 30 min at 1500 g for 15 min at 
room temperature. The plasma fraction was aspirated and transferred to 2 ml tubes (Eppendorf) and centrifuged 
again for 15 min at 3000 g. The supernatant was transferred to new 2 ml tubes and stored at −80 °C until analysis. 
Informed consent was obtained from all volunteers participating in the study. All procedures involving the use of 
human samples were performed in accordance with the ethical standards of Institute of Experimental Medicine, 
Academy of Sciences of the Czech Republic and with the Declaration of Helsinki. All methods were approved 
by the Ethical committee of the Institute of Experimental Medicine (decision on 22 June 2018, approval number 
04/2018). For the preparation of rat serum, animals were anesthetized using 2–4% isoflurane. One millilitre of 
blood was collected from orbital plexus into 2 ml tubes (Eppendorf) using glass capillary. Blood was allowed 
to clot for 1 hour at room temperature and then centrifuged at 1000 g for 10 min. The clot was mechanically 
retracted from the tube wall before the centrifugation. Serum was transferred to another 2 ml tube and centri-
fuged a second time at 3000 g for 10 min. The supernatant was then transferred to cryovials (Biologix) and stored 
at −80 °C until analysis. All procedures involving the use of laboratory animals were performed in concordance 
with the European Community Council Directive of 24 November 1986 (86/609/EEC) and animal care guidelines 
approved by the Institute of Experimental Medicine, Academy of Sciences of the Czech Republic (Animal Care 
Committee decision on 17 April 2009; approval number 85/2009).

Haemolysis dilution series. After whole-blood centrifugation, erythrocytes from the lower phase were col-
lected into a separate tube and subjected to a freeze-thaw cycle followed by vigorous vortexing for at least 90 sec-
onds to lyse the erythrocytes. The haemolysed test sample was prepared by adding 1% (v/v) of lysed erythrocytes 
into a non-haemolysed sample. A two-fold haemolysis dilution series was prepared by diluting the haemolysed 
sample sequentially with non-haemolysed sample. Dilution series from two subjects were prepared for each bio-
fluid type (human serum, human plasma, and rat serum). Absorbance of free haemoglobin was measured at 
414 nm, 540 nm, and 578 nm with a NanoDrop 2000 spectrophotometer (ThermoFisher) in duplicates. RNA was 
isolated from the serum and plasma samples as described below, starting with either 200 μl (human) or 150 μl 
(rat) input volume.

RNA isolation. Total RNA was isolated from human plasma, and human and rat serum samples using the 
miRNeasy Serum/Plasma Advanced Kit (Qiagen) according to the manufacturer´s instructions. 1 μl of isolation 
spike-in mix containing synthetic cel-miR-54 (1e + 7 copies/μl), spike-A (2e + 5 copies/μl), spike-B (4e + 3 copies 
copies/μl) and, when appropriate 1 μl of GlycoBlue Coprecipitant (15 mg/mL) (Invitrogen), per sample was added 
at the lysis step. RNA was eluted into 20 μl nuclease-free water and stored at −80 °C.

Reverse transcription and quantitative PCR. Reverse transcription (RT) reactions were performed with 
the qScript flex cDNA kit (Quantabio) in a total reaction volume of 10 μl. One reaction contained 2 μl of tem-
plate RNA, 1x buffer, mix of 0.05 μM Two-tailed RT primers, 1 μl of GSP enhancer and 0.5 μl of RT enzyme, and 
nuclease-free water up to 10 μl. RT reactions were incubated in a CFX 1000 thermocycler (Bio-Rad) for 45 min at 
25 °C, 5 min at 85 °C and then held at 4 °C. Immediately after incubation, cDNA was diluted by addition of 50 μl 
nuclease-free water. Quantitative PCR (qPCR) was performed in a total volume of 10 μl. One reaction contained 
1x SYBR Grandmaster Mix (Tataa Biocenter), forward and reverse primer (final concentration 0.4 μM), and 2 μl 
of diluted cDNA template (resulting in a final cDNA dilution of 15x). qPCR was performed in duplicates and 
incubated in a 384-well plate in a CFX 384 Real Time Detection System (Bio-Rad) at 95 °C for 30 s, 45 cycles of 
95 °C for 5 s, and 60 °C for 15 s followed by melting-curve analysis.

Data Availability
Cq values were pre-processed with CFX Manager 3.1 (Bio-Rad). Missing values were replaced with maximum 
Cq per assay + 1 (Cqmax + 1). Paired two-tailed T-test was used to calculate significance of difference of mean Cq 
values between extractions with and without glycogen and F-test was used to calculate significance of difference 
of spread of replicates (Fig. 3). For the calculation of F-test, Cq values were transformed to achieve normal distri-
bution as: 2^ΔCq (Cq − Cqmean), where Cqmean represents mean Cq of particular assay.
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Circulating microRNAs (miRNAs) represent a new group
of promising biomarkers. Recently, small RNA-sequencing
(RNA-seq) has been introduced for quanti�cation of circu-
lating miRNAs allowing their comprehensive analysis with-
out need for prior knowledge of target sequences. Despite
great promises, themiRNA pro�ling by RNA-seq has not de-
livered the expected outcomes, particularly for high level
of biases inheritably related to the work�ow. The issue
has been addressed by several new approaches trying to
minimize bias and provide more e�cient work�ow. Here,
we compare the performance of all currently available ap-
proaches for RNA-seq based miRNA analysis in bio�uids
using a complex set of parameters. The protocols include
traditional two-adapters ligation methods as well as meth-
ods developed to reduce bias via application of randomized
adapters, polyadenylation, circularization or unique molec-
ular identi�ers (UMI). The new methods over-performed
the traditional ones in the majority of parameters con�rm-
ing their superiority. Among them, the technology based
on randomized adapters showed the most balanced perfor-
mance together with the protocol using UMI correction. On
the contrary, the polyadenylation generated large propor-
tion of wasted reads and hampered the analysis of isomiRs.
The circularization approach failed in the reduction of lig-
ation bias. To sum up, we provide the most comprehensive
comparison of current RNA-seq based protocols for analysis
of circulating miRNAs up to date. The study may be used
as a guide for new users of the technology as well as a ref-
erence for further comparative studies or for developing of
new technologies.

RNA-seq | microRNA | liquid biopsy | biofluid
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Introduction
MicroRNAs (miRNA) are class of short non-coding small
RNAs playing a role in post transcriptional regulation of
gene expression (1, 2). They repress translation or initiate
mRNA degradation via complementary pairing with mRNA
(3, 4) and thus in�uence various biological processes (5, 6).
MiRNAs are primarily localized within the cell but they may
be also found in various bio�uids protected in extracellular
vesicles or in complexes with RNA-binding proteins (7, 8).
Due to the stability of extracellular miRNAs and easiness

of bio�uids sampling, they have started to be studied as a
new promising group of biomarkers (9, 10). Association of
speci�c miRNAs with a disease or speci�c biological pro-
cess requires precise and accurate quanti�cation. Several
approaches are applied for miRNA quanti�cation in bio�u-
ids, including microarray, reverse transcription quantitative
PCR (RT-qPCR) or small RNA-sequencing (RNA-seq). Small
RNA-seq stands out as the most comprehensive method al-
lowing for discovery of novel miRNAs, quanti�cation of
isomiRs or other classes of small RNA without need of probe
designs and previous sequence information (11). As miR-
NAs are of short length, the �rst step in a standard RNA-seq
work�ow involves their extension by ligation of a pair of
adapters. Unfortunately, the ligation reaction tend to incor-
porate bias in miRNA quanti�cation as it may favor miR-
NAs with preferred sequences or secondary structures. This
unequal ligation e�ciency causes under- or over- represen-
tation of some miRNAs and is considered to be the main
source of bias in small RNA-seq (12, 13). Another source
of bias is introduced in the ampli�cation step that may sim-
ilarly to ligation bias prefer certain miRNAs. Although this
source of bias has been considered negligible in small RNA-
Seq work�ows due to similar length of cDNA molecules, re-
cent studies show its e�ect and e�cient reduction of bias
using unique molecular identi�ers (UMIs) (14–16). There
are ongoing e�orts to overcome the ligation bias to make
small RNA-seq more accurate and quantitative. Inclusion of
randomized adapters has been shown to signi�cantly im-
prove sequence speci�c bias (12, 17). Another approach
omits the 5’ end adapter ligation and uses only 3’ end liga-
tion with subsequent circularization (18). The ligation step is
completely omitted with polyadenylation-based protocols.
However, the polyadenylation complicates the recognition
of native adenine at the 3’ end of miRNAs, thus impairs
analysis of isomiRs (19). Moreover, there are also targeted
RNA-seq approaches, such as as EdgeSeq (HTG Molecular
Diagnostics) that also completely avoids ligation. Instead,
EdgeSeq relies on large pool of capture probes that are con-
sequently ampli�ed and sequenced (20, 21). In the past years,
there have been several e�orts to compare di�erent proto-
cols for small RNA-seq (17, 22–24). Although they provided
a valuable insight into the performance of selected proto-
cols, a comprehensive benchmarking of all currently avail-
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able methods for miRNA analysis in bio�uids is still missing.
In this study, we compared six commercially available proto-
cols for small RNA-seq library preparation in terms of their
yield, sensitivity, accuracy, precision, isomiR detection and
correlation with RT-qPCR (Fig.1, Tab.1). The protocols uti-
lized �ve di�erent approaches to prepare libraries and min-
imize bias. We tested methods based on ligation of two
adapters, single adapter ligation and subsequent circulariza-
tion, randomized adapters, polyadenylation with template
switching, and UMI correction. In order to assess various as-
pects of library preparation methods, we used two standard-
ized types of samples, RNA isolated from human plasma and
miRXplore Universal Reference containing equimolar mix of
962 miRNAs from human, mouse, rat and virus. The data
we present may guide the informed selection of appropriate
protocol for analysis of circulating miRNAs.

Results
In this study, we compared the performance of six di�erent
commercially available protocols for small RNA-seq library
preparation using two standardized types of samples: hu-
man plasma and equimolar pool of miRNAs (Fig.1). The se-
lected protocols utilized �ve di�erent approaches to prevent
the ligation and ampli�cation bias (Fig.1), which are integral
parts of inherent bias in small RNA-seq data. Protocols were
evaluated in terms of their yield, isomiR detection, accuracy,
precision, sensitivity of miRNAs detection and correlation
with RT-qPCR data. For each metric, one or more parame-
ters were selected as representatives for �nal evaluation.

Yield and IsomiR Detection. The �rst step in the data
analysis is the mapping of raw sequencing reads to respec-
tive references. The percentage of successfully mapped
reads (yield) provides the overall picture how e�ciently a
library preparation protocol captures molecules of interests
and what proportion of reads is wasted. The information
about protocol-speci�c yield helps to select appropriate se-
quencing depth and optimize the total cost of experiment.
Mapping statistics of miRXplore, equimolar pool of miR-
NAs, showed consistently high mapping rate for all tested
protocols ranging from 70 to 93% (Fig.2A). The best yield
was reached by QIAseq and NEXT�ex protocols which also
had the highest proportion of reads that were not mapped to
overrepresented miRNAs (top 10) or false isomiRs. Interest-
ingly, most of the reads discarded in QIAseq and NEXT�ex
mapped to rRNA and UniVec (database of vector contamina-
tion occurring in NGS), while for the rest of the protocols,
the main reason was the inappropriate length (Fig.2 C). As
the miRXplore sample is composed of de�ned miRNA se-
quences and does not contain isomiRs, the mapping proce-
dure in miRXplore sample allowed us to identify the rate
of false isomiR detection, that are presumably introduced
by protocol as an technical artefact. The highest level of
false isomiRs was detected in SMARter polyadenylation pro-
tocol, where they consumed up to 15% of all reads. The
high incidence was caused by the technology of polyadeny-
lation and template switching as shown by high frequency

of adenosines on 3’ end of false isomiRs (70%) and cytosines
and guanines (50, 35%) on 5’ end of false isomiRs (Additional
�le 3, Fig.1). In other libraries the level of false isomiRs
was low and contributed by 0.5% to 3% to mapping statis-
tics (Additional �le 2). Completely di�erent results were
observed in the plasma samples where additional factors
such as various miRNA concentrations and presence of other
RNA species play an important role. The overall mapping
results showed that percentage of reads uniquely mapped
to miRNAs was lower than in miRXplore for all protocols
(Fig.2B). The highest percentage of discarded and unmapped
reads was produced by SMARter (70% and 23%,Fig.2B). Most
of the SMARter reads were discarded because of unsuitable
length for miRNA which was probably caused by polyadeny-
lation of fragments of other RNA species. SMARter also
showed most diverse mapping to various classes of small
RNA (Fig.2E, Additional �le 3, Fig.2). The highest percent-
age of mapped reads was detected by Norgen and RealSeq
as both protocols showed considerably high percentage of
detected isomiRs than other protocols (more than 15% com-
pared to 1-7%). However, most of the detected isomiRs be-
longed to the most abundant miRNA detected by partic-
ular protocol (hsa-miR-451a in RealSeq and hsa-miR-486-
5p in Norgen) which suggests that such high mapping ra-
tio to isomiRs does not represent their truly higher detec-
tion rate and consequently wider spectrum of isomiRs cap-
tured (Additional �le 2). Overall, the highest proportion of
reads uniquely mapped to canonical miRNAs was reached
by QIAseq (70%), closely followed by Norgen, RealSeq and
NEXT�ex. However, all these libraries resulted also in con-
siderable proportion of reads mapped to ten most detected
miRNAs (discussed below). As the true composition of the
plasma sample is unknown, we can only hypothesize if
higher mapping rate re�ects high levels of particular miR-
NAs or the level of ligation bias. Considering this e�ect, the
percentages of mapped reads excluding top 10 miRNAs may
provide more relevant metrics to compare the protocols. In
this comparison, the highest proportion of reads were cap-
tured by QIAseq and NEXT�ex (5-6%) which is in accordance
with the data measured in miRXplore sample (Fig.2A). Statis-
tics of discarded reads showed balanced ratio of reads not
passing length criteria and mapping to rRNA and UniVec
database (Fig.2D). To sum up, QIAseq and NEXT�ex proto-
cols showed the best yield in both types of samples. The rest
of the protocols showed comparable results, except SMARter
having considerably lower yield in both samples. On the
other hand, the mapping statistics showed that SMARter
had the lowest proportion of reads mapping to the ten most
abundant miRNAs which in the case of miRXplore sample
indicates the lower level of ligation or PCR bias.

Accuracy and Precision. Precision is another important
aspect which must be considered when choosing suitable
protocol. High precision guarantees low deviation between
technical replicates, high reproducibility of results and al-
lows for inter-sample comparison. Here, we calculated Pear-
son correlation coe�cient between technical replicates for
both, miRXplore and plasma samples as a parameter re�ect-
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Table 1. Evaluated small RNA-seq methods
Information based on protocol manuals or webpages of commercial suppliers. Approximate price per reaction is without taxes and it was calculated from protocol with the highest
possible number of reactions available for purchase. * Standardized volume used in this study was 5µl.

Commercial
Supplier Name Name used in

this study Input RNA Maximum
input volume *

No. pipeting
steps

Incubation
time (hours)

Catalogue
number

Approximate price
per sample (no.
reactions per
protocol)

Bioo
Scienti�c Corp.

NEXT�ex Small RNA-Seq Library
Prep Kit v3 NEXT�ex 1 ng - 2 µg 10.5 µl 55 6:00 5132-05 $56 (48)

Lexogen Small RNA-Seq Library Prep Kit Lexogen 0.5 ng - 1 µg 6 µl 32 2:50 052 $50 (96)
Norgen

Biotek Corp.
Small RNA Library Prep Kit for

Illumina Norgen 50 ng - 500 ng 6 µl 25 3:40 63600 $65 (24)

Qiagen QIAseq miRNA Library Kit QIAseq 1-500 ng 5 µl 46 5:30 331505 $73 (96)

Somagenics RealSeq Bio�uids Plasma/Serum
miRNA RealSeq 0.2 ng-20 ng 9.5 µl 26 5:40 600-00048 $71 (48)

Takara SMARTer smRNA-Seq kit for Illumina SMARTer 1 ng - 2 µg 7 µl 36 1:40 635031 $77 (96)

Fig. 1. Workflow
Experimental design. Two types of samples were used for comparison of selected approaches – human plasma and miRXplore universal reference. A�er RNA isolation, six di�erent
protocols were used for library preparation and resulting libraries were sequenced on Illumina NextSeq platform. Data were trimmed, filtered according to length and further
mapped to the respective reference sequences. A�er normalization, various metrics were calculated.

ing the precision of measurement. The precision of mea-
surement was very high for all protocols (r > 0.98, Additional
�le 3, Fig.5) which is in agreement with current knowledge
considering RNA-Seq as highly reproducible type of analy-
sis (25). Accuracy of measurement indicates how close are
the measured values from the true values. Contrary to the
plasma samples, the concentration of miRNAs in miRXplore
sample are known, therefore allowed for the evaluation of
each protocol accuracy. As the �rst parameter describing the
accuracy, we used coe�cient of variation (CV) expressing
how measured expression varies between individual miR-
NAs. As the concentration of miRNAs in miRXplore is iden-
tical, the expected CV for a highly accurate protocol is zero.
Contrary to the high precision of all protocols, the accuracy

of expression measurement was relatively poor. The low-
est CVs (<1) were shown by QIAseq after removal of PCR
bias using UMI correction (“QIAseq_UMI” in Fig.3A) and by
SMARter, indicating the best accuracy of expression mea-
surement. Other protocols showed higher CVs, with the
highest values achieved in the protocols based on subse-
quent ligation of two adapters (Lexogen, Norgen).
Another parameter assessing the accuracy level was the
distribution of fold-di�erence between measured and pre-
dicted expression values (Fig.3A). The visualization shows
the overall pattern how each protocol overestimates or un-
derestimates the expression of individual miRNAs. Uni-
modal distribution resembling Gauss distribution with zero
mean indicates better accuracy than multimodal and skewed
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Fig. 2. Mapping Statistics
A,B, percent distribution of raw reads; Mapped reads, raw reads uniquely mapping to relevant reference; Unmapped reads, non-uniquely mapping reads and reads which did
not mapped to any of used references; C, D, percent distribution of raw reads discarded before mapping; Short a�er adapter trimming, reads containing only adapter sequences;
Longer than 28 bp and Shorter than 16 bp; long or short reads a�er adapter trimming; E, percent distribution of raw reads mapped to other small RNA than miRNA; ncRNA, RNA
mapping to ensemble reference of non-coding RNA; a, legend to mapping statistics of miRXplore and plasma; b, legend to discarded reads of miRXplore and plasma; c, legend to
mapping of other small RNA.

distribution that originates predominantly from ligation and
PCR bias. Constantly with CVs, the highest level of accu-
racy was achieved by SMARter protocol measuring more
than 50% of miRNAs without bias (within two-fold change).
The medium performance showed protocols employing ap-
proaches for bias reduction (NEXT�ex, QIAseq) whereas tra-
ditional two-adapters ligation methods resulted in the high-
est proportion of miRNAs outside the optimal range (up to
86% for Norgen and Lexogen). Surprisingly, RealSeq pro-
tocol based on circularization displayed rather poor perfor-
mance and traditional two-adapters based QIAseq proto-
col without UMI correction were similarly accurate as the
NEXT�ex method. Although SMARter does not employ lig-
ation at all and the distribution was closest to Gauss distribu-
tion, there was still substantial number of miRNAs over- or
-underestimated. To assess the contribution of ligation and
PCR bias separately, we applied linear mixed model on QI-
Aseq data and quanti�ed the contribution of both type of bi-
ases (Fig.3B). 518 miRNAs showed more than 75% contribu-
tion of ligation bias. However, over quarter (227) of miRNAs
displayed more than 50% contribution of PCR bias, which
indicates that PCR is also signi�cant contributor to overall
bias. As was seen from the distribution of ligation bias in
Figure 3, the majority of the measured miRNAs were under-
estimated which suggested high consumption of reads by

small number of preferentially ligated miRNAs. The con-
sumption of reads by individual miRNAs may be visualized
as a dependence of cumulative frequency on number of miR-
NAs ordered according to increasing number of their counts
(Fig.4). Fast increase in cumulative frequency indicates that
even miRNAs with the lowest abundance contribute signi�-
cantly to the total number of counts per sample. Number of
miRNAs at cumulative frequency of 50% (CF50) was selected
as a metric for comparison on miRXplore samples. Ideally,
CF50 value would be around 481 (half of 962 miRNAs con-
sumes half of the reads) and the lower the number is the
better. The best distribution of reads between all miRNA
was shown by QIAseq with UMI correction and SMARter
(Fig.4A), whereas Norgen and Lexogen resulted in highest
CF50 indicating that the majority of miRNAs consumed only
50% of all reads and few miRNAs consumed the rest.

Curve of cumulative frequency calculated on plasma sam-
ples had considerably di�erent progress than in miRXplore
(Fig.4B). Since the true concentration of miRNA in plasma
was much less balanced than in miRXplore, the low abun-
dant miRNAs consumed substantially less reads than the
most abundant miRNA. Therefore, the number of miRNAs at
cumulative frequency 1% (CF1) was selected as a metric for
comparison (Fig.4B). The cumulative frequency was plotted
in log10 scale in order to better visualize the di�erences be-
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tween protocols. In agreement with percentage of unbiased
miRNAs, SMARter and QIAseq after UMI correction showed
the best performance, whereas Norgen and RealSeq showed
the worst performance.

Cumulative frequency is strongly a�ected by the percentage
of reads consumed by the most abundant miRNAs. This was
especially pronounced in the plasma, where the top 10 miR-
NAs consumed the majority of all reads mapped to miRNAs
(Fig.2B). This may re�ect true biological abundance, but it
might be also a consequence of the ligation and PCR biases
(Fig.3A). To visualize and potentially distinguish true biolog-
ical abundance from the bias, we plotted ten most abundant
miRNAs in plasma with the corresponding bias measured
in miRXplore sample (Fig.5). Surprisingly, in each proto-
col, except SMARter and NEXT�ex, there was always a sin-
gle miRNA consuming more than 50% of all mapped reads.
Moreover, the most abundant miRNA was not the identical
in all protocols. In SMARter, NEXT�ex and RealSeq libraries
hsa-miR-451a was the most abundant, whereas in Norgen
and Lexogen samples the dominant miRNA was hsa-miR-
486-5p. The inspection of log2 fold changes predicted based
on miRXplore suggests that the relative abundance of hsa-
miR-486-5p together with hsa-miR-10b-5p in Norgen and
Lexogen is presumably strongly overestimated (up to 64x)
and data are therefore distorted. On the other hand, hsa-
miR-451a re�ected rather true or underestimated biological
concentration in the sample as its log2 fold change showed
mostly negative values. The only exception was the RealSeq
protocol. The observed high proportion of hsa miR-451a in
this dataset (over 90% or all miRNA reads) may be there-
fore attributed to relatively higher ligation e�ciency com-
pared to other protocols. To sum up, although the precision
of tested protocols was high, we observed dramatic di�er-
ences in accuracy e�ecting many parameters of measure-
ment. The accuracy was in�uenced mainly by the ligation
bias, although the contribution of the PCR bias was not neg-

ligible. Omitting the ligation step via polyadenylation or the
application of randomized adapters successfully reduced the
ligation bias as well as the UMI correction diminished the
bias originating from PCR step.

Sensitivity of miRNAs Detection. The important factor
that needs to be consider is a number of detected miRNAs
at a given sequencing depth (further called sensitivity). This
parameter helps a researcher to predict the number of miR-
NAs that will be available for the analysis as well as opti-
mize overall experimental design with respect to sequenc-
ing cost. To visualize the dependency of sensitivity on se-
quencing depth, the raw counts from miRXplore and plasma
samples were down sampled (randomly from Binomial dis-
tribution) and plotted against number of detected miRNAs
(Fig.6). The plots may be used to compare library prepara-
tion protocols in terms of their requirements for sequencing
output and consequently their cost e�ciency. Ideally, the de-
pendence will show steeply growing curve, which indicates
that majority of miRNAs can be captured at low sequencing
depth. In our settings, the sensitivity of detection for miRX-
plore samples was comparable between protocols resulting
in 11-15 dropouts (undetected miRNAs) at detection thresh-
old > 5 raw counts (Fig.6A). The shape closest to the ideal
state was shown by all protocols except Lexogen and Norgen
in miRXplore samples which showed slowly growing curves
suggesting that sequencing depth needs to be higher to cap-
ture full spectrum of miRNAs. The sensitivity of detection
in plasma was much lower and di�erences between proto-
cols more profound than in miRXplore samples, although
the performance of each protocol relatively to others was
retained. Highest sensitivity and the steepest curve were
shown by QIAseq and NEXT�ex (Fig.6B), whereas Lexogen
and Norgen achieved the lowest sensitivity. However, this
was true only for higher sequencing depth (> 5M reads). At
lower depth, the sensitivity of RealSeq and SMARter proto-
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cols started to be similar to Lexogen and Norgen. Overall,
the highest number of detected miRNAs were measured in
QIAseq, 444 miRNAs, compared to 223 miRNAs in Norgen
libraries. Interestingly, the number of miRNAs jointly de-
tected by all protocols was relatively low – 90 (Additional
�le 3,Fig.6). In conclusion, we observed a similar sensitivity
between protocols in the sample with balanced miRNA con-
centration, but it varied profoundly in real plasma sample.
While the best performing protocols detected over 200 miR-
NAs at sequencing depth below 1M r eads, the worst proto-
col hardly reached this goal at 10-times higher sequencing
depth. These di�erences highlight the importance of proto-
col selection, especially for analysis of samples where un-
balanced proportion of miRNA concentrations may be ex-
pected.

Correlation with RT-qPCR. Despite many advantages,
small RNA-seq is not capable to deliver absolute quanti�-
cation of miRNA molecules in the sample. For this purpose,
the method of choice is the RT-qPCR. In order to examine
which protocols showed miRNA abundances in plasma sam-
ples closest to the truth, we have performed absolute quan-
ti�cation of 35 miRNAs in the plasma samples by Two tailed
RT-qPCR (26). The targets involved miRNAs presented in
di�erent concentrations which were detected by all of the
tested protocols. After rigorous quality control, the absolute
concentration levels of 19 miRNAs were correlated with the
RNA-Seq data.
The expression levels of selected miRNAs spread wide range
of concentration from 4x10e2 to 3x10e7 molecules per µl of
isolated plasma RNA (Additional �le 3, Fig. 7). The most
abundant miRNA was hsa-miR-451a, followed by hsa-miR-
16-5p and hsa-miR-486-5p. Interestingly, the prime posi-
tion of hsa-miR-451a agrees with the RNA-seq results of
protocols preventing ligation bias - SMARter, RealSeq and
NEXT�ex (Fig.5). Contrary, the third most abundant hsa-
miR-486-5p accounts for majority of miRNA reads (>70%)
in the libraries generated by traditional two-adapters liga-

tion procedure due to strong overestimation of its true abun-
dance (log2 fold changes > 5). Correlation of qPCR data
with RNA-seq data (Fig.7) showed that SMARter RNA-seq
expression were closest to the true expression (r = 0.94), fol-
lowed by RealSeq, QIAseq and NEXT�ex (r > 0.88). Lexogen
and Norgen data showed the worse correlation (r < 0.81).
The poor correlation of Lexogen and Norgen protocols with
RT-qPCR may be explained by strong ligation bias (Fig.3A).
Interestingly, QIAseq, which did not use any prevention to
ligation bias, showed good correlation with RT-qPCR data,
which suggests that the application of UMI might lead to
overall good accurate results. To assess the overall simi-
larity of library preparation protocols, we calculated di�er-
entially expressed miRNAs between the protocols in miRX-
plore and plasma samples and clustered the data using 15
miRNAs with lowest adjusted p-value calculated by DESeq2
likelihood ratio test. Clustering based on miRXplore samples
showed similar expression patterns in protocols utilizing the
same principles for library preparation (Fig.8). Lexogen and
Norgen do not include any steps to overcome PCR and liga-
tion bias and clustered closely together. Interestingly, Re-
alSeq showed similar expression pattern even though the
circularization approach should minimize ligation bias (18).
QIAseq and SMARter achieved the best performance in ac-
curacy of measurement in miRXplore samples (Fig.3A) and
indeed clustering showed that their expression values were
the most similar. Contrary to miRXplore, clustering of li-
brary preparation protocols based on top 15 di�erently ex-
pressed miRNAs in plasma samples displayed di�erent pat-
terns and were driven by the most abundant miRNAs that
consumed the majority of reads (Fig.5, Fig.8B). To summa-
rize, the RNA-seq data correlated with absolute numbers of
miRNAs relatively well, although the protocols developed
to minimize biases in the work�ow achieved higher level
of concordance. The di�erential analysis revealed similarity
between protocols and created two groups of methods, clus-
tering RealSeq protocol into the group of traditional two-
adapter ligation-based methods.
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Evaluation Metrics. To summarize performance of pro-
tocols, all discussed metrics were assessed relatively to
achieved maximum and minimum and three values repre-
senting relative performance were assigned (Good, Average,
Poor). All absolute and relative values used in metrics are
listed in Supplement1. Relative values were used for cluster-
ing of protocols to provide overall comparison (Fig.9). The
heatmap and clustering clearly showed that Lexogen and
Norgen had similar and worst performance which related to
fact that ligation and PCR biases were not prevented. QIAseq
and NEXT�ex on the other hand showed the most consistent
performance throughout all metrics. Interestingly, RealSeq
which omits the second ligation and this way should reduce

ligation bias (18) clustered together with Lexogen and Nor-
gen. It suggests that substantial proportion of the bias still
remains in the process.

Discussion
Small RNA-seq is the most suitable method for discovery
and global miRNA pro�ling, since it does not require any
prior knowledge about sequences of interest. However, the
library preparation work�ow includes steps which intro-
duce bias and a�ect sensitivity of detection and accuracy
of quanti�cation (12, 19). As a consequence, the expres-
sion of some miRNAs can be over- or under-estimated or
completely undetected. To address this issue, several meth-
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ods to diminish the bias were developed and are currently
commercially available. Here, we have compared six library
preparation protocols using di�erent approaches to mini-
mize the bias (Tab.1). Using comprehensive set of metrics
(Fig. 9), we assessed their performance in equimolar pool
of synthetic miRNAs and RNA isolated from human plasma
pooled from four volunteers (Fig. 1). The main conclusions
of our study include i) superiority of new methods in mini-
mizing ligation bias over the traditional ligation-based meth-
ods; ii) bene�cial e�ect of UMI correction in small RNA se-
quencing experiments; iii) good performance of polyadeny-
lation methods despite its low mapping rate and issues with
isomiRs quanti�cation; iv) balanced performance of meth-
ods using randomized adapters; v) lower accuracy of circu-
larization methods and its unbalanced allocation of reads
to miRNA spectrum; and vi) surprisingly consistent per-
formance of the standard ligation-based method after data
correction with UMIs. Takara SMARTer smRNA-seq proto-
col has been used in our comparison as a representative of
polyadenylation methods. It is the only group of methods
that completely avoids the ligation step which is believed to
be the main source of bias in small RNA-seq (19, 27). As ex-
pected and also in agreement with previous studies (28, 29),
our data showed poor mapping rate of reads generated by
polyadenylation approach in plasma sample (Fig.2B) . It is
a predictable consequence of polyadenylation reaction that
extents not only miRNA molecules, but also any other RNA
species or fragments present in the reaction creating a sub-
stantial background. As this may represent a disadvantage
in the studies focused on miRNA, it provides a chance for
analysis of larger spectrum of various RNA species simulta-
neously. Contrary to plasma samples, the poor mapping rate
was not observed in miRXplore sample (Fig. 2A). This is in

disagreement with recent work utilizing another polyadeny-
lation protocol CATS Small RNA-seq Kit from Diagenode
that documented low mapping rate even in miRXplore (22).
We hypothesize that the di�erences may be caused by dif-
ference in library preparation protocols.
The poor mapping rate of polyadenylation methods is re-
�ected in the sequencing requirements and total cost of an
experiment. In plasma samples, only 5% of raw reads were
mapped to miRNAs compared to 27-61% mapped reads in
other libraries. This implicates that for robust di�erential
expression analysis or discovery of novel miRNAs the se-
quencing cost will be inevitably higher. However, our results
showed that even with low number of raw reads, SMARter
is still sensitive method detecting average number of miR-
NAs (Fig.6). As the ligation bias is absent, the accuracy of
measurements achieved the best values among tested meth-
ods (Fig.3A) as well as there is no single miRNA dominating
in the mapping statistics (Fig.5). The disadvantage of the
polyadenylation is its inability to distinguish between natu-
rally occurring adenines on the 3’ end and adenines added
during polyadenylation in the data analysis step. This may
hamper quanti�cation of miRNAs with adenine at the 3’ end
as well as increase proportion of false isomiRs (Fig.2A). The
true importance of this bias is however questionable as it
depends on sample composition and experimental goals. In
our data, we observed relatively low proportion of isomiRs
(up to 15%). A partial loss of them may be therefore accept-
able and balanced by other advantages of the polyadenyla-
tion system. This is partially supported by the strongest cor-
relation of RNA-Seq expression values achieved by SMARter
with RT-qPCR results (Fig.7) that is considered to be the
gold standard for miRNA quanti�cation (11). In conclusion,
polyadenylation protocols are suitable only for experiments
where high accuracy of measurement is required, and the se-
quencing cost together with hampered detection of isomiRs
do not represent an issue.
Another promising approach for the reduction of ligation
bias is based on the application of randomized adapters. The
concept stands on the hypothesis that if a single adapter may
prefer speci�c sequences, the pool of adapters having ran-
dom sequences will contain all combinations that will e�-
ciently and equally bind any miRNAs presented in a sample
(12). Interestingly, the data soon showed that not the se-
quence itself, but the secondary structure is the key element
in�uencing the e�ciency of the ligation process (12). This
approach was shown to be able to decrease the ligation bias
and increase the sensitivity of detection (17, 24). Moreover,
the e�ect was even stronger when the combination with
UMIs were used (16). This agrees with our results that con-
�rmed the good or average performance of the method in
the majority of tested parameters including precision, accu-
racy and sensitivity (see Additional �le 3, Fig.3A,5-6). Note-
worthy, the protocol based on randomized adapters simi-
larly to polyadenylation method showed a good agreement
with qPCR data in the ability to quantify the most abundant
miRNA - hsa miR-451a (Fig.7,Additional �le 3, Fig.7). Al-
though the mapping rate was moderate compared to other
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methods, the fraction of reads mapped to miRNAs exclud-
ing top 10 mapped targets was together with QIAseq and
SMARter the highest among the tested protocols (Fig.2A-B).
Similarly, to the mapping statistics, the correlation of small
RNA-seq data with qPCR data was rather moderate, but still
su�ciently high (r = 0.88, Fig.7). To sum up, the protocol
based on randomized adapters is characterized by balanced
performance and may be therefore recommended for rou-
tine applications in various experimental settings. The sta-
tus of the well-established method will be probably even in-
creasing in the future, as some of the large consortia selected
this approach as a standard for their RNA-Seq based studies
(17, 30). The latest approach to overcome the ligation bias
comprises of ligation of single 3’ pre-adenylated adapter and
subsequent circularization (18). As the 5 ligation is intra-
molecular, rather than inter-molecular, the process should
be more e�cient and diminish a substantial part total bias.
Its superior performance, especially the accuracy of mea-
surement, was demonstrated with Somagenics RealSeq-AC
protocol designed for RNA isolated from tissue (18). Note-
worthy, in our study we used newer version of RealSeq li-
brary preparation protocol designed for serum or plasma
samples. Since its introduction no other evaluation and com-
parison with other library preparation protocols was pub-
lished. Only recently, (22) published benchmarking study
which included beta version of Takara SMARTer miRNA-
seq protocol utilizing single adapter ligation and circulariza-
tion. However, the initial mapping statistics provided poor
results, therefore the protocol was excluded from further de-
tailed analysis. Our data are in agreement with this observa-
tion. Although in the miRXplore sample the mapping statis-
tics were comparable to other protocols (Fig.2), the percent-

age of reads mapped to miRNAs excluding top 10 mapped
miRNAs was the lowest (Fig.2, Additional �le 2). Strikingly,
among the top 10 mapped miRNAs the absolute majority of
reads was consumed by only single miRNA - hsa miR-451a
(Fig.5, Additional �le 2). The unsatisfactory result was ap-
parent also in the accuracy metric, where the circulariza-
tion approach achieved similar values as traditional ligation-
based methods (Fig.3A). The similarity is also highlighted by
clustering of the circularization method with ligation meth-
ods in a single group (Additional �le 3, Fig.8) and by cluster-
ing based on evaluation metrics (Fig.9). Our data show that
circularization protocol is similarly prone to ligation bias as
any other ligation-based methods. However, as hsa miR-
451a was con�rmed to be the most abundant miRNA quanti-
�ed by RT-qPCR screen (Additional �le 3, Fig.7), we further
speculate if also other sources of bias that exaggerate the sig-
nal of most prominent miRNAs do not contribute to the pro-
cess.To conclude, despite large promises during its introduc-
tion we saw rather poor performance of the circularization-
based protocol. The reasons for this discrepancy are unclear
and other more thorough studies focused on the individual
steps of the work�ow will be needed to provide some satis-
factory conclusions. The last group of methods consists of
traditional ligation-based methods utilizing subsequent lig-
ation of 3’ and 5’ adapter. There are several vendors pro-
viding this type of solution . In our comparison we tested
two of them (Lexogen and Norgen). As expected, they did
not perform well in the majority of tested parameters (Fig.9)
which is in agreement with the recent literature (17, 22). Re-
cently, a new updated version of the classical ligation-based
protocol was released by QIAseq. Contrary to others, their
library protocol utilizes UMI to correct for PCR bias. Al-
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though there has been some discussion about the impor-
tance of UMI correction in small RNA-library preparation
protocols (12, 31, 32), recent studies showed their positive
e�ect on the data quality (16, 33). The same e�ect we saw
in our data. Although the UMI correction does not mitigate
the ligation bias and contribution of PCR to the total bias
is lower (Fig.3B), we observed a substantial improvement of
the accuracy as well as cumulative frequency after UMI cor-
rection (Fig.3A, Fig.4). Surprisingly, the distribution of liga-
tion bias closely resembled the pro�le of protocols based on
randomized adapters or polyadenylation even before UMI
correction and was not similar to traditional ligation-based
methods (Fig. 3A). The higher similarity to the methods try-
ing to minimize ligation biased was apparent also in the re-
maining metrics (Fig.2A-B, Fig. 4, Fig.5, Fig.6, Fig.7, Fig.9).
The reason for this pattern is not clear as the protocol should
resemble traditional ligation protocols, especially in the met-
rics where UMI correction is not utilized. Possible explana-
tion may the use of some proprietary additives, chemistry
or careful optimization of the process (31, 34–36). As a sim-
ilar data has been reported by other groups (22, 28), we may
con�rm a good performance of the protocol and advise its
further use.

Conclusions
Here, we provide comprehensive comparison of all current
approaches for high-throughput RNA-seq based analysis of
small RNAs. We focused on miRNAs and their quanti�cation
in plasma samples as they represent promising candidates
for application in diagnosis and prognosis of many human
diseases and pathological states (37). Our data con�rmed the
large bias in the data generated by traditional two-steps liga-
tion methods and highlighted the superiority of the methods
using randomized adapters or polyadenylation and impor-
tance of UMI correction. At the same time, we documented
some drawbacks that still exist and provide opportunities
for further development and improvement of existing work-
�ows. Taken together, our data provides a point of reference
for an informed selection of library preparation method and
contributes to the standardization of small RNA-seq for anal-
ysis of circulating RNAs.

Methods
Samples and RNA Isolation. Informed consent was ob-
tained from all volunteers participating in the study. All
procedures involving the use of human samples were per-
formed in accordance with the ethical standards of Institute
of Biotechnology of the Czech Academy of Sciences, and
with the Declaration of Helsinki. Blood samples were col-
lected from four healthy volunteers into K2EDTA BD Vacu-
tainer tubes (Beckman Dickinson) and centrifuged within 30
min from collection at 1500 x g for 15 min at room tempera-
ture. The plasma fraction was aspirated and transferred into
2 ml tubes (Eppendorf) and centrifuged again for 15 min at
3000 x g. The supernatant was transferred into new 2 ml
tubes and stored at -80 °C until analysis. Levels of hemolysis

Lexogen

Norgen

SMARTer

RealSeq

NEXTflex

QIAseq

Precision
Mapped_reads_plasma
Mapped_reads_miRXplore
False_isomirs
Unbiased_miRNA
CF1_plasma
Sensitivity plasma
Sensitivity_miRXplore
Correlation with qPCR data
CF50_miRXplore
Top10_miRNAs

Good

Average

Worse

Evaluation Metrics

Fig. 9. Performance Evaluation
Clustering of protocols based on selected metrics for assessment of their performance.
Performance categories (Good, Average and Worse) were assigned relatively accord-
ing to the minimal and maximal values of all measured values at specific metric.

were assessed in each sample by measuring absorbance at
414 nm using NanoDrop 2000 (Thermo Fisher). Total RNA
was isolated starting from plasma aliquots of 250 µl using the
miRNeasy Serum/Plasma Advanced Kit (Qiagen) according
to manufacturers instructions. 1 µl of isolation spike-in mix
and 1 µl of GlycoBlue Coprecipitant (Invitrogen) were added
at the lysis step as described in (38). RNA was eluted into 20
µl of nuclease-free water and stored at -80 °C. Each RNA elu-
ate was assessed for quality of isolation, levels of hemolysis
and presence of inhibitors by Two-tailed RT-qPCR panel, as
described in (38). RNA eluates were then pooled together
to produce standard plasma RNA sample used through the
study. Finally, 497 µl of plasma RNA pool was mixed with
1µl ExiSeq spike-in mix (Exiqon) and 2 µl of the mix of cel-
miR-76 and cel-miR-2 synthetic spike-ins (5x103 copies/µl),
aliquoted and stored at -80°C. miRXplore Universal Refer-
ence, an equimolar mixture of 962 synthetic microRNAs,
was purchased from Miltenyi Biotec.

Library Preparation. Libraries were prepared in technical
duplicates starting from 5 µl of plasma RNA pool and 5µl
of miRXplore Universal Reference (2x106 copies/µl) accord-
ing to each manufacturers protocol using compatible set of
sample indexes. The version of the protocol, adapter con-
centrations and number of PCR cycles for each protocol
are listed in Additional �le 1. Libraries were quanti�ed on
the Qubit 3 �uorometer (ThermoFisher) and Fragment An-
alyzer (Agilent). Libraries generated by the same protocol
were pooled and run on 5% TBE-PAGE on Mini-PROTEAN
tetra cell (BioRad). A region representing fragments with
RNA inserts of length 22 nt ± ∼10 nt (i.e. fragments orig-
inating from miRNAs) was excised from the gel, DNA was
eluted into nuclease-free water and puri�ed with SPRIselect
reagent (Beckman Coulter). All libraries were sequenced in
one sequencing run on NextSeq 500 high-output (Illumina)
with 85bp single-end reads. 5.8 – 17.9 million reads per li-
brary were obtained with a median of 11 million reads (see
Additional �le 3).

10 | bioRχiv Androvič and Benešová et al. | Small RNA-seq



Data Processing. Raw reads of all samples were trimmed
with cutadapt tool (version 1.18) (39) according to the re-
spective library preparation manual. After trimming, reads
were �ltered based on their length. Only reads longer than
16 and shorter than 29 bp were kept. Filtered reads were
subsequently mapped with Bowtie aligner (40) to rRNA and
UniVec databases obtained from sortmerna github reposi-
tory. Reads which did not map to UniVec and rRNA se-
quences were further mapped to relevant references with
STAR aligner (41) with usage of “end-to-end” mode and 5%
of sequence was allowed to mismatch. Counting of reads
was performed with featureCounts and only uniquely map-
ping reads were counted. Since QIAseq protocol utilizes
UMI for correction of PCR bias, UMI-tools software was
used for deduplication before counting of mapped reads
in QIAseq samples. For comparability with other proto-
cols non-deduplicated QIAseq samples were used for cal-
culation of relevant metrics. Deduplicated QIAseq sam-
ples are referred to as “QIAseq_UMI”. Plasma samples were
�rst mapped to human genome (GRCh38.95). Reads map-
ping to genome were further mapped to mature human
miRNA sequences in miRBase v22 (42). Reads which were
not mapped to miRBase were further mapped in descended
order to tRNA database (435 mature tRNA sequences from
gtRNAdb), piRNA database (8 million sequences from piR-
Base v2) and ncRNA database (36 thousand non-coding se-
quences from ensemble GRCh38). Only reads which were
not mapped were used for mapping to subsequent database.
MiRXplore samples were mapped to miRXplore reference
with same settings as plasma samples to miRBase. For
counting of isomiRs detected in plasma samples isomiRROR
tool was used with adjusted setting, when only longer and
shorter isomiRs without mismatch within mature sequence
were counted. Counting of false isomiRs detected in miRX-
plore was performed by custom bash-based script and only
isomiRs longer than mature sequences were counted with
no mismatch within the original miRXplore sequence.

Evaluation Metrics. Data were normalized to library size
(counts per million CPM) for further calculations and if not
stated otherwise all statistics were calculated separately for
each technical replicate and their mean values are shown.
Ligation bias was calculated for each miRNA as a fold change
of mean value of two technical replicates from its predicted
value. The predicted value was calculated as a number of
normalized counts per sample divided by 962 (number of
miRNAs in miRXplore). The contribution of PCR bias and
ligation bias to overall bias in small RNA-seq was assessed
on samples processed by QIAseq protocol with usage of
variancePartition R package which employed linear mixed
model to separate the variance of multiple variables (PCR
bias, ligation bias and technical replicates). Dependence of
number of detected miRNAs on sequencing depth was as-
sessed by down sampling the raw counts. Down sampling
was performed with usage of random generator for bino-
mial distribution in R. The number of miRNAs was used as
a number of observations and the number of raw counts be-
longing to individual miRNAs corresponded to number of

trials. The probability of success in each trial corresponded
to proportion of raw reads at speci�c sequencing depth re-
lated to the number of raw reads at the original sequencing
depth. For correlation of RT-qPCR data with RNA-seq data
Pearson correlation was used and technical replicates were
averaged before correlation.

RT-qPCR. Absolute quanti�cation was performed for 35
pre-selected miRNAs using Two-tailed PCR technology as
described in (26). Brie�y, 4 µl of the standard sample (miRX-
plore sample) in di�erent concentration (5-5x107 copies/µl)
were reverse transcribed in the 20-µl reaction containing
pool of miRNA-speci�c primers. After cDNA synthesis, the
total volume was diluted to 200 µl and 2 µl of 10-times diluted
cDNA used as a template in 10-µl qPCR reaction. The data
was processed in the Biorad CFX Manager software discard-
ing Cq values generated by reactions which melting curve
analysis indicated aberrant Tm values. For each assay, the
standard curves were calculated using the available number
of miRXplore standards. The absolute concentration of the
standard plasma was calculated based on the parameters of
the standard curve. The plasma sample was measured in
four technical replicates and two replicates were used for
miRXplore standards. After quality control, only 19 miRNAs
measured with the high con�dence were used for correlation
analysis with RNA-Seq data.
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A B S T R A C T

Successful treatment of cancer depends on early diagnosis and effective monitoring of patients’ response to
therapy. Traditional tools based on tumor biopsies lack the sensitivity and specificity to capture cancer devel-
opment in its early phases and are not applicable for continuous monitoring. To overcome these barriers, liquid
biopsies have been introduced as a minimally invasive and cost-efficient means of diagnosis with high level of
specificity and sensitivity. Traditionally, liquid biopsy markers include circulating tumor cells and circulating
tumor DNA. During the last decade, a new promising group of biomarkers has appeared and its utilization for
cancer diagnosis and monitoring is intensively studied – the microRNAs (miRNAs). In this review, we provide a
comprehensive overview of circulating miRNA analysis. We highlight the importance of sampling and quality
control, discuss the technical aspects of miRNA extraction and quantification, summarize recommendations for
downstream analysis and conclude with future perspectives. Taken together, we present the current state of
knowledge in the field of miRNA analysis in liquid biopsies and the expected development and standardization.

1. Introduction

miRNAs are a class of naturally occurring short non-coding RNA
molecules containing about 22 nucleotides (He and Hannon, 2004). In
total, over 48000 miRNAs have been identified so far (based on miR-
Base Sequence Database release 22), including 2693 miRNAs of human
origin (Kozomara et al., 2019). The function of most eukaryotic
miRNAs is to regulate gene expression post-transcriptionally (Gebert
and MacRae, 2019). After base-pairing with target mRNA molecules,
miRNAs reduce translation rate by cleavage of the mRNA, blocking
translation or regulating mRNA turnover (Ameres and Zamore, 2013).
Since a single miRNA may target up to 400 different mRNAs, it is
predicted that over half of the human genes are directly regulated by
miRNAs (Friedman et al., 2009). miRNAs are therefore expected to
have key regulatory roles in possibly every physiological and patholo-
gical aspect of biology. Dysfunctional expression of miRNAs is a feature
of many pathological processes, including cancer, metabolic disorders,
inflammatory, cardiovascular, neuro-developmental and autoimmune
diseases (Rupaimoole and Slack, 2017).

The majority of miRNAs is found within the cells. The average
number of individual miRNAs per cell has been estimated to about 500
copies (Liang et al., 2007). Low levels of miRNAs are also found in
extracellular environments, including various biological fluids and cell

culture media - referred to as extracellular or circulating miRNAs
(Pritchard et al., 2012a). In the extracellular space, miRNAs are at-
tached to proteins or lipoproteins, or loaded inside extracellular vesicles
(EVs - a generic term referring to all secreted vesicles independent of
size and origin, Thery et al. (2018)), providing them high stability
(Cortez et al., 2011). If protected by lipid or protein-based carriers,
miRNAs are resistant to boiling, pH changes, repeated freeze-thawing
cycles, and fragmentation by chemical agents and enzymes (Chen et al.,
2008; Gilad et al., 2008; Mitchell et al., 2008). miRNAs are released
into the extracellular space by either passive or active secretion. While
the actively secreted miRNAs may act as signaling molecules, the pas-
sively released miRNAs are mostly artefacts of broken cells after injury,
cells undergoing apoptotic or necrotic processes, cells exposed to
chronic inflammation and cells with a short half-life such as platelets
(Bayraktar et al., 2017). Interestingly, recent studies showed the pos-
sibility that tumor-derived miRNAs could modulate non-tumor cells to
the benefit of the tumor (Ruivo et al., 2017). The facts that miRNAs are
present in various body fluids, are stable and may reflect the patho-
physiologic condition of the tissue of origin brought them to attention
as a new promising group of biomarkers.

The first evidence that miRNAs may have diagnostic and ther-
apeutic potential was presented soon after the identification of the first
miRNAs in human (Pasquinelli et al., 2000). The study showed
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correlation between the loss of miR-15 and miR-16 and the occurrence
of B-cell leukemia (Calin et al., 2002). The first genetic evidence for the
vital importance of miRNAs was described three years later. The
homozygous deletion of the gene coding for Dicer, which is an enzyme
essential for miRNA biogenesis, disrupted prenatal development of the
murine embryo (Yang et al., 2005). The first indication that miRNAs
may become easily accessible biomarkers for cancer diagnosis and
prognosis came three years later when miRNAs were isolated from
patient serum (Lawrie et al., 2008; Mitchell et al., 2008) and their
profiling revealed specific patterns across different groups of diseases
(Chen et al., 2008). Following studies confirmed specific miRNA sig-
natures in many types of human diseases, including different cancers
(Izzotti et al., 2016; Larrea et al., 2016; Matsuzaki and Ochiya, 2017),
and showed that such signatures can be measured in various body fluids
(Godoy et al., 2018; Weber et al., 2010). Increasing number of pub-
lications reporting applicability of circulating miRNAs for cancer di-
agnostics and prognostics (Fig. 1) led to initiation of several clinical
trials (Anfossi et al., 2018) as well as international efforts aimed at
deeper understanding of circulating miRNA function and standardiza-
tion of the miRNA analysis field, e.g. Extracellular RNA Communication
Consortium (ERCC; https://exrna.org/) or CANCER-ID (www.cancer-
id.eu).

Circulating miRNAs have many features that make them attractive
biomarker candidates for cancer diagnosis and monitoring of patients’
responses to therapy. Contrary to standard tissue biopsies, sampling of
biofluids is quick, minimally invasive and painless. There is low risk of
associated complications and the tumor does not even have to be lo-
calized (Hayes et al., 2014). Individual miRNAs may be detected with a
resolution down to single nucleotide (Hunt et al., 2015). There are in-
dications that the power to distinguish normal from cancer samples
may be higher than with traditional biomarkers such as proteins and
mRNAs (Lu et al., 2005). Cost and time-effectiveness of the analysis and
the exceptional stability of miRNAs in biofluids as well as in routinely
prepared formalin-fixed paraffin-embedded (FFPE) materials are addi-
tional reasons miRNAs have become promising biomarkers (Andrews
et al., 2015; Arata et al., 2012; Boisen et al., 2015; Hall et al., 2012).

Despite these advantages, reproducible and robust miRNA quanti-
fication is challenging and attention must be paid to the technological
aspects of the measurements (Buschmann et al., 2016; Khan et al.,
2017). Challenges in miRNA analysis include pre-analytical variables,
usually limited amounts of the analyte, cellular contamination, risk of
inhibition, inadequate standardization of methods, data analysis, nor-
malization, and interpretation (Table 1). In this review, we focus on the
impact of confounding factors and provide recommendations to mini-
mize their effects.

2. Sampling

Proper experimental design and sampling protocol are critical to
ensure the validity of the obtained results and eventually their trans-
lation to clinical practice. miRNA studies often suffer from poor re-
producibility, since the natural variation of miRNA expression is un-
derestimated (Becker and Lockwood, 2013; Jarry et al., 2014). It is
known that the miRNA spectrum detected in various body fluids may
vary not only due to pathophysiological processes, but also with the
time of the day, diet, gender, age, alcohol consumption, medications,
etc. (Ameling et al., 2015; de Boer et al., 2013; Flowers et al., 2015;
Takahashi et al., 2013). Well-documented is also high inter-individual
variability of the basal miRNA levels (Margue et al., 2015; McDonald
et al., 2011). Taken together, these factors confound the measurement
and large sample size are often needed to reach statistical significance.
Confounding variation is also presumed cause of the poor consistency of
many recent studies reporting contradictory results (Witwer and
Halushka, 2016).

During the specimen collection measures have to be taken to sta-
bilize the analytes. miRNAs are generally considered rather stable
molecules, quite resistant to many potential biases such as storage
conditions or impropriate handling. Indeed, numerous studies have
documented extraordinary stability of miRNAs stored at various tem-
peratures and upon repetitive freeze-thawing (Balzano et al., 2015;
Chen et al., 2008; Grasedieck et al., 2012; Mitchell et al., 2008).
However, a recent study reported the opposite (Glinge et al., 2017).
Using blood samples from 12 healthy individuals, authors investigated
the stability of miRNAs under various conditions including different
collection tubes, storage at different temperatures, physical dis-
turbance, as well as serial freeze-thaw cycles. Contrary to previous re-
ports, the majority of tested parameters influenced the measured
miRNA levels. Although the study tested only selected miRNAs and data
may not be generalized to the complete miRNA spectrum, the results
point at several possible sources of bias that are easily overlooked.

Measures should be taken during specimen collection and transport
to prevent cell lysis. Failure to do so may lead to contamination of the
cell-free miRNA fraction with cellular miRNAs introducing severe bias
into the measured profiles (Kirschner et al., 2011; McDonald et al.,
2011). For example, hemolyzed plasma or serum show very high
background of erythrocyte miRNAs and should not be used for analysis
of circulating miRNAs (Androvic et al., 2019; Blondal et al., 2013).
Issues caused by contaminating cellular miRNAs were reported as early
as four years after the discovery of circulating miRNAs in human serum
(Lawrie et al., 2008). Pritchard et al. (2012b) analyzed miRNA profiles
in erythrocytes, myeloid cells, and lymphocytes and correlated the

Fig. 1. Timeline showing the number of publications and historical milestones related to circulating miRNAs in cancer research. Data from PubMed using
search term “circulating microRNA cancer” (Fabbri et al., 2012; Gourzones et al., 2010; Melo et al., 2014).
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abundant miRNAs with those previously identified as potential bio-
markers for several types of solid tumors. Out of 79 frequently nomi-
nated miRNA biomarkers, 58% were highly expressed in one or more
blood cells e.g., miR-223, miR-197, miR-574-3p, let-7a, which are
prevalent in myeloid, miR-150 prevalent in lymphoid, and miR-486-5p,
miR-451, miR-92a, miR-16 prevalent in erythrocytes. Even miniscule
contamination with blood cells increased certain miRNA levels by up to
50-fold, which seriously confounded the analysis. Results that are in-
terfered by contamination should be interpreted with great care
(Pritchard et al., 2012b).

The first instance of the risk of blood cell miRNA contamination is
the venipuncture itself (Lippi et al., 2012). Care should be taken to
minimize the risk of damaging the cells by using a needle of appropriate
size (typically≥ 22-gauge), avoiding a traumatic venipuncture, pro-
longed tourniquet application or fist clenching, discarding the first
1–2mL of blood (skin plug), etc. (Becker and Lockwood, 2013; Khan
et al., 2017). It is also advisable to discuss the detailed venipuncture
protocol, including the follow-up collection tube handling with ex-
perienced staff directly at the blood collection site (Witwer et al., 2013).
After venipuncture, the time interval between blood collection and
processing should be kept short to minimize cell lysis and contamina-
tion risk (Page et al., 2013). Blood cells are typically removed by two
sequential centrifugations, 800–2000 g for 10–15min, optionally fol-
lowed by a third bench top spin (1000 g for 5min) to pellet any re-
maining cells and cellular debris (Page et al., 2006). Notably, the cen-
trifugation protocol influences the spectrum of miRNAs detected (Page
et al., 2013). Since leaking erythrocytes are the most frequent source of
miRNA contamination (Kirschner et al., 2013b), plasma and serum
should routinely be inspected for hemolysis either visually, by absor-
bance measurement at 414 nm - detecting oxyhemoglobin (Kirschner
et al., 2011), or by the use of molecular markers (see section 4. Quality
control) (Androvic et al., 2019; Blondal et al., 2013). Anti-coagulants
used in plasma collection tubes, including EDTA, citrate and heparin,

may influence the measured miRNA spectrum (Fichtlscherer et al.,
2010) and impact the downstream analysis, e.g. heparin-coated tubes
inhibit reverse transcription quantitative PCR (RT-qPCR) (Glinge et al.,
2017; Kroh et al., 2010). Blood should be processed within 2 h after
collection, whereas processed plasma or serum could be stored at 4 °C
for up to 24 h (Khan et al., 2017). For their long-term storage, −20 °C
or preferably −80 °C freezers are recommended.

The processing of all samples should be documented and any de-
viation from the protocol recorded (Robb et al., 2014). For detailed
instructions for specimen collection, obey relevant CEN and ISO
guidelines when available (https://www.cen.eu/, https://www.iso.
org/), and appropriate standard operating procedures (SOP) produced
in dedicated initiatives such as SPIDIA4P (www.spidia.eu), CANCER-ID
(www.cancer-id.eu), ERCC (https://exrna.org/), Early Detection Re-
search Network (EDRN, https://edrn.nci.nih.gov/).

3. miRNA extraction

After sample collection and specimen pre-processing, miRNAs are
extracted. General principles for the isolation of miRNAs are similar to
total RNA, except that some protocols are modified to retain, alter-
natively enrich the small RNA fraction. The extraction methods may
broadly be grouped into three categories - organic extraction (guani-
dine-phenol-chloroform based method), filter-based methods (deriva-
tized silica) and magnetic particles-based methods. A popular choice
represents hybrid methods that combine the effectiveness of organic
extraction with the easiness of filter-based methods (e.g. miRNeasy
Serum/Plasma Kit, Qiagen, Germany).

The choice of extraction method depends on several factors: type of
sample, volume, interest in EVs or total cell-free miRNA content, need
to enrich the small RNA fraction, expected RNA yield, required elution
volume, miRNA purity, reproducibility, user-friendliness, turnaround
time, health hazards of reagents, throughput, cost and need to

Table 1
Challenges analyzing miRNAs in liquid biopsies.

Analysis workflow Typical challenges

Study design Establish suitable numbers of biological and technical replicates
Estimate confounding variation due to genetic factors in the studied populations
Identify environmental and biological pre-analytic variables
Establish sampling and analysis protocols, and document those
Select type of specimen (e.g. plasma or serum, extracellular vesicles or total cell-free miRNAs, total RNA or enriched small RNA fraction)

Sampling and storagea Minimize variation in specimen collection and processing
Select collection tubes and protocol
Document deviations in the sampling protocol
Establish procedures to prevent contamination with intracellular miRNAs

RNA extractiona Select and validate appropriate extraction method
Optimize and validate extraction protocol - volume of sample, use of carrier, etc.
Assess variability in extraction including batch effects

Quality controla Identify samples of compromised quality
Assess the quality and quantity of the isolated RNA
Control for contamination of intracellular miRNAs
Test for activity of RNases, inhibitors and other interfering substances

Quantification Select and validate method to quantify miRNAs
Control for method-specific biases
Detect and quantify low abundant miRNAs (sensitivity)
Distinguish closely related miRNAs (specificity)
Capture full isomiR spectrum
Control for batch effects

Analysis Establish method for normalization of measured data
Establish annotation rules (isomiRs, degradation artefacts)
Establish RNA-Seq data analysis pipeline
Select miRNAs reflecting the studied conditions (biomarker identification)

Interpretation Validation of potential biomarkers
Inter-laboratory comparison
Influence of pre-analytical variables

a Identify technical specifications, standards and regulations. The protocol shall be complaint with recent CEN (the European Committee for Standardization) and
ISO (the International Organization for Standardization) guidelines on the pre-analytical workflow and miRNA analysis. For diagnostic applications also compliance
with the new CE-IVDR regulation - (EU) 2017/745 (European Community marking for in vitro diagnostic devices) will be requested from 2022 (Dagher et al., 2019).
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automatize (Thatcher, 2015). The nature of specimen is usually the
predominant factor in the selection process. For most common plasma
and serum samples (Larrea et al., 2016), a large spectrum of commer-
cial extraction kits is available. Next, the decision to isolate EVs or total
cell-free miRNA content from plasma or serum is given purely by re-
search purposes and technological considerations (Salehi and Sharifi,
2018; Schwarzenbach, 2015). In contrast, miRNAs in urine and cere-
brospinal fluid (CSF) are typically analyzed via EVs extraction, which
concentrates miRNAs to the levels suitable for quantification (Cheng
et al., 2014; Whitehead et al., 2017). The concentration can also be
increased by enriching for short RNA molecules. The enrichment re-
duces the background of other RNA molecules and may enhance sen-
sitivity when using microarray-based technologies or northern blotting.
However, the enrichment leads to losses reducing the total amount of
some miRNAs, and it is likely to introduce bias. RT-qPCR and small
RNA sequencing (RNA-Seq) analyses may therefore benefit from isola-
tion of total RNA, which is usually preferred (Redshaw et al., 2013).

Since concentrations of most miRNAs are low in liquid biopsies,
many efforts have been made to compare different isolation protocols
(Table 2). Most studies focused on plasma/serum, although some less
frequent specimens including CSF and urine have also been studied.
The studies show no consensus, although kits from Qiagen (Germany)
and Exiqon (a part of Qiagen now) usually ranked among the best
judged by the yield, spectrum of detected miRNAs, or recovery of
exogenous spike-in molecules. Most notably, majority of the studies
uncovered unexpectedly large variability of repeated extractions,
highlighting the need for rigorous quality control with consequences to
data analysis and interpretation (Brunet-Vega et al., 2015; Burgos et al.,
2013; El-Khoury et al., 2016; Kloten et al., 2019; McAlexander et al.,
2013; McDonald et al., 2011). Similar results were reported already in
one of the earliest studies comparing two commercially available kits
against TRIzol-based extraction (Ach et al., 2008). Somewhat un-
expectedly, TRIzol extraction showed significantly lower sample-to-
sample variation than the kits.

Today the standard TRIzol protocol is not widely used for miRNA
extraction from liquid biopsies, partly for its toxicity, but also due to a
study which reported severe bias due to loss of miRNAs with stable
secondary structures and low GC content (Kim et al., 2012b). The bias
was documented in cell culture samples with low cell numbers and it is
assumed that similar bias will arise in liquid biopsies that also have low
RNA content. Possible ways to overcome this limitation is to extract the
aqueous phase remaining after TRIzol lysis with commercially available
spin column (Duy et al., 2015) or increase the concentration of ethanol
(to 80%) in the purification step of the standard TRIzol protocol. Higher
ethanol concentration reduces the solubility of the RNA pellet which
consequently minimizes losses of small RNA molecules (Clerget et al.,
2015). Still, studies investigating the effect of the bias introduced using
TRIzol extraction are missing.

Regardless of the differences in extraction yield, all methods tend to
introduce some biases because they give preference to certain miRNAs
relative to others. A recent RNA-Seq-based study compared perfor-
mance of five commonly used isolation kits using serum of a single
healthy donor (Guo et al., 2017). The spectrum of miRNAs, but also
other classes of RNAs, showed a kit-specific profile clearly clustering
the samples by the extraction protocol. Moreover, up to 21% of miRNAs
were uniquely identified in samples isolated by one of the tested kits,
but not by the others. Even higher proportion of preferentially or ex-
clusively isolated miRNAs (over 50%) was identified in another recent
study comparing miRNA profiles in plasma, plasma EVs and urine,
processed by two broadly utilized small RNA extraction kits (El-Khoury
et al., 2016). These reports clearly demonstrate that each isolation kit
displays inherent characteristics that introduce extraction bias and
must be considered when comparing different studies.

Another layer of bias is added when EVs are purified. Noteworthy,
the term “extracellular vesicles” include all extracellular particles of
different size and origin released from cells that are delimited by a lipid

bilayer and cannot replicate, including exosomes, microvesicles,
apoptotic vesicles, etc. (Thery et al., 2018). Depending on the isolation
principle, different populations of EVs with varying cargo of miRNAs
and other molecules are isolated, resulting in different profiles and
clinical relevance (Chevillet et al., 2014; Taylor and Shah, 2015). Ex-
traction techniques exploit particular features of EVs, such as density,
shape, size, solubility, dispersibility or surface proteins for isolation (Li
et al., 2017). A recent study compared five isolation methods for EVs
and their suitability for miRNA-based biomarker discovery using RNA-
Seq (Buschmann et al., 2018). The study revealed method-specific
variation in the properties and miRNA composition of the isolated EVs.
While profiling of EVs isolated by precipitation and membrane affinity
separated patients with septic shock from controls, methods based on
size-exclusion chromatography showed less successful separation.
However, for other conditions, a different subpopulation of EVs may be
more clinically relevant. The optimal method of EVs isolation may not
be therefore the one with highest yield, nor purity, but rather the
method that isolates the miRNAs that are biologically most informative
of the studied condition.

An important step towards standardization of EVs-oriented research
has recently been made by the ERCC program (Das et al., 2019). The
consortium compared ten popular miRNA extraction methods in five
specimens: plasma, serum, bile, cells and cell cultured medium
(Srinivasan et al., 2019). Focus was put on methods for EVs isolation,
although some non-EVs specific methods were tested as well. To
minimize other confounding contributions, all samples were analyzed
using the same RNA-Seq protocol (Giraldez et al., 2018) and data
analysis pipeline (Rozowsky et al., 2019). The results confirmed pre-
vious observations that the spectrum of the miRNAs and also the re-
producibility vary broadly across the isolation methods. Using decon-
volution techniques, the authors explained the observed variation by
differential preference of the methods to distinct classes of miRNAs
(two classes of EVs, AGO2-associated structures, high-density lipopro-
teins and a lipoprotein-free fraction considered). An interactive web-
based tool miRDaR (https://exrna.shinyapps.io/mirdar/) was laun-
ched, which provides a quality metrics for each extraction technique for
any set of target miRNAs entered by the user for a given type of spe-
cimen. Of note, the deconvolution approach was further employed in
another ERCC study to correct for the isolation bias and enable cross-
study analysis (Murillo et al., 2019).

When a method for miRNA extraction is selected, it is advisable to
perform a small pilot experiment to explore the performance of the
protocol before a more complex study is initiated (McAlexander et al.,
2013; Tichopad et al., 2009). The manufacturer's recommendations do
not always specify the optimum volume of specimen for processing.
User optimization of input material can significantly improve the yield,
while maintaining the levels of inhibitors at non-interfering levels
(Androvic et al., 2017; El-Khoury et al., 2016; Kim et al., 2012a;
McAlexander et al., 2013; Sourvinou et al., 2013). Addition of carriers
may improve isolation yield and is frequently recommended. Common
carriers are MS2 phage RNA, yeast tRNA, glycogen, BSA and linear
acrylamide (Ramon-Nunez et al., 2017). RNA-based carriers are not
suitable for RNA-Seq based workflows, since they may consume se-
quencing reads (Buschmann et al., 2016). Another important effect of
carriers is the reduction of extraction variability and improvement of
measurement reproducibility (Andreasen et al., 2010; Androvic et al.,
2017; McAlexander et al., 2013).

After extraction, the RNA pellet is resuspended or the RNA is re-
leased from the isolation columns and stored for downstream analysis.
Methods using small elution volumes are preferred as RNA at higher
concentration is more stable upon storage and more easily tested for
quality by analytical techniques. Higher miRNA concentration also al-
lows larger miRNA input in downstream analysis, which maximizes the
spectrum of reliably quantified miRNAs (Moret et al., 2013). The
compatibility of the elution medium with downstream steps must be
validated. TE-buffer or nuclease-free water are common choices

L. Valihrach, et al. Molecular Aspects of Medicine xxx (xxxx) xxxx

5

https://exrna.shinyapps.io/mirdar/


(Schrader et al., 2012). Lastly, since miRNAs are unprotected after
isolation and susceptible to degradation (Aryani and Denecke, 2015;
Ludwig et al., 2017), general rules for RNA manipulation and storage
must be followed, including the use of RNase-free reagents and con-
sumables, the addition of RNase inhibitors, keeping samples on ice
during manipulation and storage of samples in aliquots at −80 °C.

To sum up, miRNA extraction is a key step in the miRNA analysis
workflow. The careful selection and optimization of the extraction
procedure is highly recommended to minimize variability. The appli-
cation of the same extraction method throughout a study is mandatory.
An alternative approach represents direct detection of miRNAs in liquid
biopsies without RNA extraction. The concept is already utilized com-
mercially, e.g. HTG EdgeSeq miRNA Whole Transcriptome Assay (HTG
Molecular Diagnostics, USA - see section 5.4) or Firefly particle tech-
nology (Abcam, UK). The advantages of these platforms include re-
duced turnaround time, ease of use and no material loss during ex-
traction. On the other hand, lower sensitivity, accuracy and in the case
of Firefly technology also reduced reproducibility compared to RNA-
Seq represent potential drawbacks (Godoy et al., 2019).

4. Quality control

Quality control is essential in any gene expression study (Bustin
et al., 2009). Controls should test for confounding technical variation
introduced at different experimental steps and may allow to mitigate
their effect in the data analysis (Becker et al., 2010). As demonstrated,
important technical variation is introduced in the sampling and ex-
traction steps.

During specimen collection, care must be taken to avoid cell lysis
that would contaminate samples with cellular miRNAs (Kirschner et al.,
2013a). This is particularly important for specimens rich in cells, such
as blood. Standard quality control for hemolysis includes visual in-
spection for pink color or spectrophotometric measurement of he-
moglobin absorbance at 414 nm (Pizzamiglio et al., 2017). Since other
substances may contribute to absorbance at 414 nm, additional spec-
trophotometric assessment may help, e.g. 385 nm is used for lipemia
indication, which increases absorption at 414 nm (Tiberio et al., 2015).
Extended hemolysis control is based on measuring miRNAs enriched in
different blood cell types and normalization of their levels to stable,
hemolysis-insensitive miRNAs. This ratio indicates the increased lysis of
particular cell type relative to normal, e.g. the ratio miR-23a/miR-451
indicates lysis of erythrocytes and miR-23a/miR-425 lysis of platelets
(van Vliet et al., 2017). Some authors even define cut-off values to
identify hemolyzed specimens, e.g. absorbance at 414 nm > 0.2
(Kirschner et al., 2011; Shah et al., 2016), or delta of quantification

cycles ΔCq (miR23a-miR451) > 5 indicating possible hemolysis and
ΔCq (miR23a-miR451) > 7 indicating high risk of hemolysis (Blondal
et al., 2013). However, these values are species- and assay-dependent,
and the ranges need to be calibrated for every new study (Androvic
et al., 2019). Samples that do not meet pre-set quality criteria should be
excluded from analysis (Pritchard et al., 2012b). However, some con-
tamination may be missed by this assessment of quality. A recent study
demonstrated release of vesicle-associated miR-16 and miR-21 from
blood cells during inappropriate storage of whole blood, which was
independent of hemolysis and may not be reflected by ΔCq (miR23a-
miR451) (Koberle et al., 2016).

The efficiency of the extraction procedure can be tested using spike-
in controls. A spike-in control is a foreign small RNA molecule of same
length as native miRNAs without sequence homology to the en-
dogenous miRNAs. It can have a completely artificial sequence or a
sequence from an unrelated species, such as Caenorhabditis elegans and
Arabidopsis thaliana. The spike-in is added to the sample prior to ex-
traction and its levels are measured at different stages of the workflow
to identify any steps of severe material losses (Li and Kowdley, 2012;
Mitchell et al., 2008). The procedure may be expanded to control also
for the presence of inhibitors by adding a second set of spike-ins before
the reverse transcription (RT) step (Fig. 2). As the extraction efficiency
may be sequence-dependent, single spike-in should not be used for post-
hoc correction of the data, but only for identification of problematic
samples and steps introducing technical variability. To minimize the
issue, complex mixtures of miRNA spike-ins are used. They are typically
applied for quality control of high-throughput data (Locati et al., 2015;
Lutzmayer et al., 2017).

Methods for reliable quantification of total miRNA concentration
from liquid biopsies are currently not available. Instead, selected en-
dogenous miRNAs expected to be present at a stable level are measured
to assess the extraction procedure (Brunet-Vega et al., 2015; Duy et al.,
2015). Their analysis is typically combined with exogenous spike-ins
using RT-qPCR before the samples are processed by costly high-
throughput methods such as microarrays or RNA-Seq (Androvic et al.,
2019; Blondal et al., 2013). Endogenous miRNA controls should be
present at high level that is not appreciably affected by contamination
with cellular material. miRNAs that may be suitable as endogenous
positive controls are collected in databases, such as miRandola (http://
mirandola.iit.cnr.it/) and in literature (Russo et al., 2018). An excellent
source is a recently updated version of the Human miRNA Tissue Atlas
including 253 whole blood samples, 66 fractionated blood cell isolates,
72 serum samples, 278 plasma samples, 29 urine samples, and 16 saliva
samples from different collection and storage conditions (Fehlmann
et al., 2016). An alternative approach to test the quality of the

Fig. 2. Concept of miRNA spike-in quality control in a typical RT-qPCR workflow. Samples are spiked with known amounts of exogenous miRNAs before
extraction and RT. Quantification of the spike-in levels identifies material losses, inhibition and steps introducing severe variability. The approach can be used in
routine analysis to identify deviating samples.
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extraction is to prepare a reference sample of high quality and compare
levels of selected stable miRNAs in test samples to this standard
(Ibberson et al., 2009).

Highly optimized and validated RT-qPCR assays are typically used
to monitor the spike-ins, to assess hemolysis, presence of contaminating
cellular miRNAs and positive endogenous miRNA controls (Androvic
et al., 2019; Blondal et al., 2013). Such panels are excellent tools for the
optimization and validation of sample processing and isolation proto-
cols during method development and as tools to identify low quality
samples during routine analysis (Fig. 2).

5. Quantification

Quantification of individual miRNAs possesses several challenges
arising from their natural properties (Pritchard et al., 2012a). The
highly variable GC content of miRNAs impedes efficient hybridization
of detection probes and their length is too short to harbor a pair of
standard PCR primers. miRNAs also lack a common sequence, such as
the poly(A) tail of mRNAs, that could be used for selective capturing
and priming of RT. For the analysis, miRNAs have to be extended by
artificial sequences via specific primers, ligation of linkers or poly-
adenylation. However, the efficiency of these enzymatic steps is
strongly dependent on the miRNA base composition and terminal se-
quence heterogeneity, referred to as isomiRs. This leads to severe
method-dependent bias, with some miRNAs quantified preferentially,
while other show low yields and some may even escape detection
completely.

Ability to distinguish and quantify isomiRs is another challenge.
IsomiRs comprise groups of miRNAs typically originating from the same
precursor miRNA, but having different length and/or base composition,
particularly at the 3′ and less so at the 5’ termini (Neilsen et al., 2012).
In recent years, several reports acknowledged their importance as
biomarkers (Koppers-Lalic et al., 2016; Telonis et al., 2015), therefore
the ability to characterize the complete isomiR spectrum can be im-
portant for certain applications (Guo and Chen, 2014). The precise and
discriminative quantification of closely related miRNAs, often differing
in just a few nucleotides (e.g. let-7 and miR-302 family), or distin-
guishing mature miRNAs from their precursor (pri- and pre-miRNAs)
represent additional challenges. Despite these complications, three
major approaches have been adapted for miRNA quantification and are
used with different frequency in cancer diagnostics: microarrays, RT-
qPCR and RNA-Seq.

5.1. Microarrays

Microarray was the first technology that allowed high-throughput
analysis of miRNAs (Liu et al., 2004). In the standard setting, micro-
array analysis consists of three steps: i) labelling of the miRNAs, ii)
hybridization of the miRNAs to immobilized probes, and iii) scanning
and quantification of the signal. Several variations of each step were
developed during last two decades to improve the performance of the
method (Love and Dave, 2013; Yin et al., 2008).

However, from the very beginning several inherent drawbacks of
the microarray technology were evident. First, microarray hybridiza-
tion is a semi-quantitative method, mostly used in a differential set-up
(healthy vs cancer samples). Any absolute quantification is limited, or
requires validation by other methods (typically by RT-qPCR). The
method exhibits a limited linear dynamic range causing fold change
compression and subsequent underestimation of real changes in miRNA
levels (Dong et al., 2013; Pritchard et al., 2012a), although recent
technology improvements, such as the elevated hybridization spots on
the 3D-Gene platform (Toray, Japan) that allows for agitation, have
increased the sensitivity and dynamic range dramatically (Nagino et al.,
2006; Sato et al., 2009; Sudo et al., 2012). Microarrays require rather
high RNA input (typically 100–2000 ng) which may be a limiting factor
when analyzing liquid biopsies (Ono et al., 2015). Another drawback is

that hybridization is performed at one particular temperature, which
makes the probe design challenging due to short length and variable GC
content of miRNAs. The introduction of chemically modified nucleo-
tides, such as locked nucleic acids (LNA) helped to mitigate this issue
(Beuvink et al., 2007; Castoldi et al., 2006). Probes with LNA bases
display enhanced hybridization properties including increased melting
temperature (relative to probe length) and mismatch discrimination,
allowing more flexible probe design (Castoldi et al., 2006; Vester and
Wengel, 2004).

Hybridization strategies can only be used to analyze known
miRNAs, as probes must be designed. Probes are typically based on the
most recent version of the miRBase Sequence Database (Griffiths-Jones
et al., 2006), which is periodically updated. This makes cross-study
analysis complicated because the number of targets may differ, which
may also impact data normalization if global strategies are used. Bias
may also be introduced by unequal efficiencies of the labelling step of
the different miRNAs (Hunt et al., 2015). Traditional enzymatic label-
ling using T4 RNA ligase or 3’ tailing introduces significant sequence
bias (Hafner et al., 2011; Jayaprakash et al., 2011; Zhuang et al., 2012),
and alternative approaches such as chemical alkylation and platinum
coordination chemistry have been developed (Pritchard et al., 2012a).
All techniques to some degree label also other RNA molecules. These
may bind to capture probes and increase background. Unspecific hy-
bridization to other RNA species can be reduced by enriching for small
RNAs using column or gel purification methods (Yin et al., 2008).

Despite many drawbacks, microarrays have been successfully ap-
plied in many studies and they remain popular even with the advent of
other high-throughput methods. Ease of use, availability of equipment
and expertise, and large amounts of reference data available for com-
parisons are the main reasons. The technology is quite standardized and
various guidelines are available (Ball et al., 2002; Brazma et al., 2001;
Chen et al., 2007). For these reasons, microarrays remain an attractive
choice for large screening studies when the amounts of material are
sufficient, there is no desire to detect novel miRNAs or isomiRs, and
standardization and robustness are priorities rather than sensitivity and
specificity.

5.2. RT-qPCR

RT-qPCR is considered gold standard for miRNA analysis. It offers
high sensitivity and high specificity with large dynamic range (Chugh
and Dittmer, 2012). Further, the complete analysis is fast, procedure is
easily adaptable to any laboratory familiar with quantitative PCR
(qPCR) and data are analyzed with well-established workflows (Kubista
et al., 2006). It is also possible to analyze just selected miRNAs, which
dramatically reduces cost, when only some are of interest. RT-qPCR
results can be calibrated for absolute quantification and miRNAs dif-
fering in just a few nucleotides can be distinguished. On the other hand,
high-throughput studies may be financially demanding and time con-
suming, although array-formats are also available. Similar to micro-
arrays, only known miRNAs and limited spectrum of isomiRs can be
quantified (Benes and Castoldi, 2010).

The essential steps of the RT-qPCR workflow are 1) RT producing
cDNA and 2) cDNA amplification and quantification by qPCR. Since the
short length of miRNAs does not allow the use of two standard PCR
primers (each 18–20 bases long), the miRNAs must be extended. There
are two strategies: i) extension of the miRNAs during cDNA synthesis
using specific RT-primers and ii) extension of the miRNAs with a uni-
versal sequence prior to cDNA synthesis, which makes it possible to
perform RT with a universal RT-primer (Table 3).

Specific RT-primers have 3′ ends complementary to the miRNA se-
quence, whereas their 5′ ends serve as the extensions. The specific RT-
primers may be linear (Raymond et al., 2005), but more often are de-
signed to form a secondary structure that improves sensitivity and
specificity of the assay (Androvic et al., 2017; Chen et al., 2005; Honda
and Kirino, 2015). When a universal sequence is added directly to the 3′
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end of miRNAs, either through polyadenylation by polyadenylate
polymerase (PAP) or ligation of an adapter by T4 RNA ligase (Balcells
et al., 2011; Benes et al., 2015; Shi and Chiang, 2005), an universal RT
primer can be used. The combination of 5′ end adapter ligation and 3′
end polyadenylation has been also introduced (TaqMan Advanced
miRNA Assays, Thermo Fisher Scientific, USA).

Each group of methods has its advantages and limitations. Specific
RT-primers bind only one miRNA and increase the specificity of the
assay. Secondary structures introduced into RT-primers reduce non-
specific binding, which lowers the background (Benes and Castoldi,
2010). The main limitation of this approach is that only miRNAs that
are targeted with RT-primers are quantified. Hence, if the researchers
want to add new targets, they have to revert back to the RNA (rather
than starting from the cDNA) and include additional primers in the RT
reaction. The complex design of structured RT primers and higher cost
of some commercial assays also represent a limiting factor, although
cost-efficient alternatives were recently introduced (Androvic et al.,
2017).

The possibility to reverse transcribe all miRNAs in a single reaction
is the greatest advantage of universal RT-priming. On the other hand,
the variable efficiency of the enzymatic step due to sequence pre-
ferences is a main issue of these methods. Particularly ligation in-
troduces substantial sequence bias (Hafner et al., 2011; Jayaprakash
et al., 2011; Zhuang et al., 2012). The efficiency of the reaction is also
significantly lower for miRNAs with chemically modified terminal nu-
cleotides (Munafo and Robb, 2010). As polyadenylation and ligation
are not specific to miRNAs, other RNA molecules are also extended and
reverse transcribed, which increases background. Since the universal
RT-primers reverse transcribe all miRNAs, they do not contribute to the
specificity of the analysis. Specificity is then conferred by a single qPCR
primer, as the second qPCR primer is typically universal and binds to
the extension sequence. As a consequence, specificity of microRNA
assays relying on global cDNA synthesis is lower than of those based on
specific RT priming, which are preferred when closely related miRNAs
shall be distinguished. To improve specificity, primers containing LNA
bases with improved hybridization properties were introduced
(Raymond et al., 2005; Vester and Wengel, 2004). However, higher
price and complicated design hinder their wide utilization (Benes and
Castoldi, 2010).

Whichever the RT strategy, cDNA is subsequently amplified using
standard qPCR with either dye or probe based detection. Using dyes
lowers the cost and allows assessment of the reaction specificity by
melting curve analysis (Benes and Castoldi, 2010). At the same time,
there is a certain risk of false positivity, as the unspecific products may
sometimes be undistinguishable from specific amplicons (Zipper et al.,
2004). As an alternative, hydrolysis probes binding to a specific site in
the target amplicon giving rise to specific fluorescence can be used.
They were introduced for miRNA applications by Chen et al. (2005),
commercially provided as TaqMan microRNA assays (Thermo Fisher
Scientific, USA). However, in this system the hydrolysis probes bind to a
universal sequence present in all RT primers and thus do not contribute
to the specificity of the reaction (Androvic et al., 2017). The probe
design is improved in the newer generation of TaqMan advanced mi-
croRNA assays (Thermo Fisher Scientific, USA).

In general, RT-qPCR-based miRNA analysis is preferred for smaller
studies analyzing a predefined set of miRNAs, for validation, applica-
tions that require absolute quantification, and for routine diagnostics
when high sensitivity and/or specificity is required. Several experi-
ment-specific requirements shall be considered to select the most sui-
table RT-qPCR method. In our hands, polyadenylation combined with
dye based qPCR provides a good balance between cost and perfor-
mance, although optimization and occasionally primer redesign may be
necessary to obtain good results. However, this is the case with any
system currently available. If a high level of specificity is required or
there is need to capture the complete isomiR repertoire of a given
miRNA, the recently published Two-tailed RT-qPCR becomes theTa
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method of choice (Androvic et al., 2017). Finally, if only a single spe-
cific isomiR shall be detected, the Dumbbell-PCR is currently the only
method available (Honda and Kirino, 2015).

5.3. RNA-Seq

RNA-Seq holds great promise to become a leading technology for
miRNA research (Hunt et al., 2015). Unlike older technologies, RNA-
Seq neither requires targets to be known nor probes to be designed. It
can be used for de novo analysis including the discovery of novel
miRNAs, isomiRs, edited miRNAs and even other classes of small RNAs.
It is a high-throughput technology, currently allowing convenient
multiplexing of up to 96 samples with commercially available kits
(Table 4) and even more with in-house technologies (Persson et al.,
2017). Sensitivity and specificity is higher and dynamic range is
broader than that of classical microarrays (there is no fold change
compression), though it may not match optimized RT-qPCR (Chugh and
Dittmer, 2012). Drawbacks of the technology include complex and
time-consuming library preparation, bias introduced during the work-
flow (see below), impossibility to perform absolute quantification,
challenging data analysis requiring computational infrastructure and
bioinformatics skills, and lack of standardization (Pritchard et al.,
2012a). Cost may also be higher, although it depends on the number of
samples and targets the users wish to analyze and scales favorably with
increasing level of multiplexing. Another possible source of error is
RNA degradation products, which may cause errors during data ana-
lysis (Ludwig et al., 2017).

Several protocols for miRNA library preparation are available. The
most common protocol employs two sequential ligations of adapters to
the 3′ and 5′ ends of the miRNAs (Fig. 3A) (Hafner et al., 2008). The
protocol takes advantage of the 5′ phosphate and the 3′ hydroxyl groups
on the miRNA termini to selectively target and enrich small RNA spe-
cies using ligases that recognize these terminal groups. After ligation of
the adapters, a universal RT-primer complementary to the 3′ adapter is
used for cDNA synthesis. The cDNA library is then PCR-amplified using
primers complementary to the adapters. These primers also introduce
the flow-cell binding sequences and sample-specific barcodes. The final
amplified library typically consists of approximately 120 bp of adapter
sequences plus an insert of the original miRNA sequence of 20–30 bp,
which makes a total of 140–150 bp. Longer products are generated from
adapter ligation to non-miRNA species, including tRNAs, snoRNAs,
piRNAs and other RNAs having 3′ hydroxyl and 5′ phosphate termini.
These can either be retained as part of the library or removed by bead-
based size selection or polyacrylamide gel electrophoresis (PAGE)
purification (Buschmann et al., 2016).

An issue with the ligation-based library preparation methods is

accumulation of adaptor dimers. This is an undesired side product
formed by the direct ligation of a 3′ and 5′ adaptor without an RNA
insert. The adaptor dimers amplify during the PCR step and may con-
sume a substantial portion of the sequencing reads. This is particularly
serious when RNA concentration is low, such as in liquid biopsy sam-
ples. There are strategies to reduce adapter-dimer formation. These
include digestion of excess 3′ adaptors with ssDNA-specific exonuclease
RecJ (Pease, 2011; Xu et al., 2015), using chemically modified adaptors
that do not ligate without an insert (Shore et al., 2016), binding the
excess of 3′ adaptors to the RT-primer forming double stranded product
that is less effective substrate for ligation to single stranded 5’ adaptor
(Vigneault et al., 2012), adding blocking oligonucleotide specific to
adaptor dimers that interferes with their RT (Kawano et al., 2010),
CRISPR/Cas9-targeted removal of adaptor dimers (Hardigan et al.,
2019) or traditional PAGE or bead-based purification (Head et al.,
2014).

Library preparation procedure introduces substantial bias. Ligation
is considered the dominant source (Raabe et al., 2014). Ligation bias
arises due to the variable efficiency of the adapter ligation, which is
dependent on the sequence composition and secondary structure
(Hafner et al., 2011; Jayaprakash et al., 2011; Zhuang et al., 2012).
Consequently, many miRNAs are over or under represented in the data,
and some may even completely drop out. The measured values provide
therefore a distorted picture of the biological miRNA levels and the
quantification must be performed relative to a reference or standard
sample (i.e. case vs control). Another issue is that heavily over-re-
presented miRNAs may consume substantial portion of the sequencing
reads and higher sequencing depth may be needed to detect low-
abundant and underrepresented miRNAs. The problem is particularly
pronounced in liquid biopsies samples. Here, often a small number of
miRNAs are highly abundant and dominate the sequencing reads
(Godoy et al., 2018) and it is hard to separate the contribution of li-
gation bias from true variation in the levels of miRNAs (Baroin-
Tourancheau et al., 2019).

To reduce the ligation bias, three approaches have so far been de-
veloped. One method uses adaptors with a stretch of random nucleo-
tides at the ends (Fig. 3B) (Baran-Gale et al., 2015). The rationale is that
a preferred pair of random adaptor sequences is present for each miRNA
and the ligation efficiency for the different miRNAs will be equalized.
The second method omits the ligation step and employs polyadenyla-
tion and a template-switching mechanism to incorporate the 3′ and 5′
adaptor sequences (Fig. 3C). As all poly-adenylated RNAs are processed
into libraries, purification of the short-length fragments is mandatory
with this approach. A problem also appears in the analysis of the se-
quencing data, as it is not possible to distinguish native adenines from
those introduced by polyadenylation (Barberan-Soler et al., 2018;

Table 4
Overview of commercially available small RNA-Seq kits.

Company/Reference Library prep kit Technique used Maximum no. of available
barcodes

Illumina, USA TruSeq Small RNA Library Prep Kit Ligation of two adapters 48
New England Biolabs, USA NEBNext Multiplex Small RNA Library Prep

Set
Ligation of two adapters 48

SeqMatic, USA TailorMix miRNA Sample Preparation Kit Ligation of two adapters 96
Norgen Biotek Corp., Canada Small RNA Library Prep Kit Ligation of two adapters 48
Lexogen GmbH, Austria Small RNA-Seq Library Prep Kit Ligation of two adapters 96
TriLink BioTechnologies, Inc., USA/Shore et al.

(2016)
CleanTag Small RNA Library Prep Kit Ligation of two adapters with chemical

modifications
48

Bioo Scientific, USA/Baran-Gale et al. (2015) NEXTflex Small RNA Sequencing Kit Ligation of two adapters with randomized
nucleotides

48

Qiagen, Germany QIAseq miRNA Library Kit Ligation of two adapters and UMI
correction

96

Takara Bio, Japan SMARTer smRNA-Seq Kit Poly(A) tailing and template switching 96
Diagenode, Belgium CATS Small RNA-Seq Kit Poly(A) tailing and template switching 24
Somagenics, USA/Barberan-Soler et al. (2018) RealSeq-AC and RealSeq-biofluids Kit Single adapter ligation and circularization 48
Takara Bio, Japan SMARTer microRNA-Seq Kit Single adapter ligation and circularization 96
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Coenen-Stass et al., 2018; Dard-Dascot et al., 2018). The third method
relies on the ligation of a single 3’ adaptor and subsequent circular-
ization of the molecule (Fig. 3D). The intramolecular circularization
reaction is more efficient than intermolecular 5′ ligation and introduces
much less bias (Barberan-Soler et al., 2018).

Other sources of bias, though considered less important than the
ligation bias, are the RT and in particular the reverse transcriptase used,
number of PCR cycles, variation in gel size selection, library quantifi-
cation, flow cell loading, sequencer-specific bias, lane and flow cell
effects - reviewed in Buschmann et al. (2016). PCR bias, which is
considered important in most RNA-Seq workflows, has been claimed
negligible in small RNA-Seq protocols by several authors, possibly due
to even length of cDNA library for PCR amplification (Fuchs et al.,
2015; Hafner et al., 2011; Jayaprakash et al., 2011). However, recent
studies call this into question (Fu et al., 2018; Wright et al., 2019).
These studies assessed the impact of PCR bias via usage of unique
molecular identifiers (UMIs), which allow identification of PCR dupli-
cates. Both studies demonstrated increased quality of UMI-corrected
data, advocating for their routine use in small RNA-Seq experiments.

Another source of error associated particularly with RNA-Seq, but

also with microarrays or RT-qPCR, is between-run technical variation,
also known as batch-effects. Because even slight deviations from the
workflow can have significant impact on the measured values, users
should take great care to minimize batch variations with proper ex-
perimental design including balanced representation of sample groups
between run batches (Buschmann et al., 2016).

Several recent studies have compared RNA-Seq protocols (Barberan-
Soler et al., 2018; Coenen-Stass et al., 2018; Dard-Dascot et al., 2018;
Giraldez et al., 2018; Wright et al., 2019; Yeri et al., 2018). In general,
all protocols showed similar performance in terms of sensitivity, re-
producibility, accuracy or diversity of detected miRNAs, but strongly
differed in the ability to capture true representation of miRNA levels,
proportion of miRNA reads in the libraries, or detection of isomiRs.
According to a recent study the largest part of ligation bias was reduced
with the library preparation based on intramolecular circularization
(Barberan-Soler et al., 2018). By reducing ligation bias the method al-
lowed detection of highest number of miRNAs as well as provided high
accuracy across several logs of dilution. However, the comparison was
made on tissue samples rich in miRNAs not being representative for
liquid biopsy samples. The polyadenylation-based techniques did

Fig. 3. Schematic representation of alternative protocols for small RNA library preparation. A) Sequential ligations of two defined adapters (Hafner et al.,
2008). B) Sequential ligation of two adapters with randomized nucleotides (Baran-Gale et al., 2015). C) Poly(A) tailing and template switching. D) Single adapter
ligation and circularization (Barberan-Soler et al., 2018).
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mitigate ligation bias, but introduced other artefacts, including low
mapping rates to miRNAs and false positive isomiR detection
(Barberan-Soler et al., 2018; Coenen-Stass et al., 2018; Dard-Dascot
et al., 2018; Wright et al., 2019). The protocol using adapters with
random nucleotides at the ligation boundary showed consistently good
results across the majority of comparison studies. It did reduce ligation
bias, allowed detection of similar number of miRNAs as other methods,
provided high proportion of miRNA reads or showed low level of false
isomiR detection (Barberan-Soler et al., 2018; Coenen-Stass et al., 2018;
Dard-Dascot et al., 2018; Giraldez et al., 2018; Wright et al., 2019; Yeri
et al., 2018). In conclusion, at present time the protocols using adapters
with random nucleotides represent the well-performing, established
and validated approach. Noteworthy, this approach has been selected
by the ERCC program as standard for their RNA-Seq based studies (Das
et al., 2019; Giraldez et al., 2018).

Small RNA-Seq is a rapidly developing technology still undergoing
important improvements. Currently, small RNA-Seq finds its applica-
tion mainly for large screens and discovery studies that benefit from its
power to cover the complete miRNA diversity, including the detection
of novel molecules with single nucleotide resolution. Once the tech-
nology becomes standardized and user-friendly tools, including soft-
ware for data analysis, become more common, small RNA-Seq will grow
even more in popularity.

5.4. Other techniques

The traditional high-throughput techniques for miRNA detection
are optimal for discovery studies focused on identification of candidate
diagnostic and prognostic miRNAs. For routine applications, particu-
larly if fast turnaround time is requested, they are less suitable due to
their rather complicated setup and data analysis (Anfossi et al., 2018).

New approaches more suitable for the standardization required in
routine applications are emerging. Examples include the HTG EdgeSeq
miRNA Whole Transcriptome Assay (abbr. EdgeSeq; HTG Molecular
Diagnostics, USA) and nCounter system (NanoString Technologies,
USA). Both are based on hybridization for recognition of targets, but the
hybridization is performed in solution which increases its efficiency
(Geiss et al., 2008; Tsang et al., 2017). EdgeSeq then performs targeted
RNA-Seq for readout. A large pool of capture probes is used to bind
target miRNAs (> 2000) by hybridization and single strand specific
nuclease is used to removes all unbound probes. The remaining probes
are then amplified, barcoded and sequenced. Data analysis, which is
performed in GenEx software (MultiD, Sweden), is standardized and
includes several quality controls leading to reliable results that are
comparable across laboratories. Compared to conventional small RNA-
Seq, the Edgeseq workflow completely avoids ligation bias (Girard
et al., 2016; Lizarraga et al., 2016) and allows analysis of crude bio-
fluids (down to 15 μl), which also eliminates bias in the extraction
procedure.

nCounter relies on multi-step hybridization of miRNAs to probes
followed by splinted ligation. Once targets are ligated to miRNA-spe-
cific extension sequences, streptavidin capture probes co-hybridize with
color-coded reporter probes (> 800) to create target-probe complexes.
These are immobilized and, after several washing steps, the number of
fluorescent barcodes, which corresponds to the number of miRNA tar-
gets, is counted. Therefore, unlike microarrays, nCounter offers digital
counting of the miRNA copies, which leads to higher precision and
wider dynamic range (Pritchard et al., 2012a). The method requires
neither RT nor amplification, and miRNAs, mRNAs, DNA and proteins
can be measured simultaneously (3D Biology Technology). A recent
publication compared the EdgeSeq and nCounter platforms (Godoy
et al., 2019). Although both platforms showed lower bias than tradi-
tional RNA-Seq, their performance varied in several aspects that may
affect their utility as assay systems for clinical applications.

Instruments for routine diagnostic use must be user-friendly, stan-
dardized, include controls and compliant with regulations such as IVDR

in Europe (In Vitro Diagnostic Regulation) and FDA (Food and Drug
Administration) in the US. These instruments analyze a limited number
of validated analytes, without upstream labeling and other laborious
processes, provide quick response and robust results (Hunt et al., 2015).
A number of methods and detection systems are being developed, most
based on biosensors that can roughly be categorized as electrochemical
or optical-based platforms and are described in several recent reviews
(Degliangeli et al., 2014; Hamidi-Asl et al., 2013; Johnson and
Mutharasan, 2014; Kilic et al., 2018).

5.5. Inter-platform comparison

In last two decades, several miRNA quantification platforms have
been developed based on hybridization, RT-qPCR and sequencing.
Since the very beginning there have been efforts to compare their
performance and concordance (Ach et al., 2008; Blondal et al., 2017;
Git et al., 2010; Jensen et al., 2011; Kelly et al., 2013; Kolbert et al.,
2013; Leshkowitz et al., 2013; Meyer et al., 2012; Pradervand et al.,
2010; Wang et al., 2011). However, these reports compared only some
of the techniques using rather limited test material and data was
evaluated with poorly defined performance metrics that cannot be ex-
trapolated for comparison with other studies or for other applications.
The microRNA quality control (miRQC) study was therefore initiated to
provide a comprehensive evaluation of quantitative miRNA expression
platforms (Mestdagh et al., 2014). The miRQC involved all major
vendors of miRNA profiling technologies, who all received the same set
of 20 samples that were analyzed for> 196 miRNAs. In total, 12
platforms (seven RT-qPCR, three hybridization-based arrays and two
RNA-Seq workflows) from nine vendors were included.

Considering all the tested parameters, there was no obvious single
superior technology. Still, some metrics were technology related. RT-
qPCR showed superior sensitivity, particularly for low RNA input
samples. Higher sensitivity was accompanied by better accuracy and
more reliable results. Hybridization based methods suffered from low
sensitivity even when RNA input was not limited. RNA-Seq technology
demonstrated rather concentration dependent sensitivity. It was not
compromised at high input RNA concentration, but decreased with low
RNA input amount. The most striking variation between platforms was
the poor agreement on differently expressed microRNAs detected. On
average, only 54% of the differently expressed targets were in con-
cordance between any two quantification systems. This underscores the
necessity to validate results achieved on one platform with an alter-
native platform or technology. Of note, there was a considerable
variability in specificity and reproducibility even between platforms
based on same technology. Thus some platforms are not suitable to
measure small expression changes, particularly when the number of
samples is limited. Negative correlation was observed between the
sensitivity and the specificity, i.e. platforms that detected higher
number of miRNAs also showed higher number of false positives.

In summary, each technology has its advantages and limitations.
The platform should therefore be selected based on the particular study
requirements and questions addressed (Fig. 4). The validation of results
by an independent platform or technology is always recommended.

6. Data analysis

Data analysis represents an important step in any miRNA study.
Depending on the technology, data analysis has a varying level of
complexity and different critical points that need to be addressed to
obtain reliable data (Gao and Jiang, 2016; Pritchard et al., 2012a;
Witwer and Halushka, 2016). Although each platform includes tech-
nology-specific data processing steps, these can be broadly categorized
as: data pre-processing and quality control, data normalization, and
secondary analysis.

The first assessment of data quality is performed during data pre-
processing. It includes analysis of internal controls, that may be probes
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randomly distributed on the microarray chips, negative and positive
samples, replicates, melting curves in RT-qPCR, or examination of
various parameters reflecting the quality of a sequencing run such as
the number of identified reads, quality score distribution, flow cell
loading, presence of over-represented sequences, etc. Data are then pre-
processed to remove technical artefacts, identify unreliable measure-
ments, and produce a matrix of measured target quantities.

The complexity of data pre-processing correlates with the maturity
of a given technology (Cristiano and Veltri, 2016). Instruments for well-
established microarrays as well as for RT-qPCR are today provided with
software that performs most of the procedures with minimal user in-
tervention such as identification of spots, probe intensity extraction,
and background subtraction in microarrays; amplification curve mod-
elling, fluorescence normalization or baseline subtraction, threshold
setting and Cq readout for qPCR. In contrast, RNA-Seq data-pre-
processing is time-consuming, computationally demanding and not
fully standardized. It includes the trimming of sequencing reads from
adapters, removal of sequences with inadequate length or low quality,
and finally alignment to a reference sequence (Fu and Dong, 2018).
miRNA reads are typically mapped against a reference genome or
miRBase (Buschmann et al., 2016). Mapping against the genome se-
quence provides the most comprehensive view on the data and allows
for the discovery of novel miRNAs. Mapping against miRBase or similar
databases is significantly faster and avoids issues with reads mapped to
multiple genomic locations, which can introduce severe bias if handled
inappropriately (Taub et al., 2010). The stringency of the mapping may
influence the rate of false positives and introduce bias due to erroneous
mapping to other classes of small RNAs, degraded mRNAs and rRNAs
(Ludwig et al., 2017). A specific challenge is the mapping of isomiRs, as
a comprehensive database covering those is yet to be developed
(Desvignes et al., 2015). After mapping of the miRNAs, other classes of
small RNAs may be examined against dedicated databases such as

piRNABank (Sai Lakshmi and Agrawal, 2008), piRBase (Zhang et al.,
2014) and piRNACluster (Rosenkranz, 2016) for piRNA; gtRNAdb
(Chan and Lowe, 2016) for tRNA; GENCODE release 27 (Harrow et al.,
2012) for snRNA and snoRNA; and circBase (Glazar et al., 2014) for
circular RNA. An interesting option is to map all remaining reads to a
nucleotide database to reveal any contamination such as exogenous
miRNAs in the sample (Coordinators, 2013).

After data pre-processing, another round of quality control follows,
focusing on the identification of samples of compromised quality.
Typically, low quality samples show reduced number of detected
miRNAs, reduced overall signal or total number of sequencing reads,
deviations from typical expression profiles, or high proportion of de-
graded RNAs (Fu and Dong, 2018; Motameny et al., 2010). To avoid
subjective calling of failed samples, pass/fail criteria may be set or
statistical tests for outlier detection applied (Kwak and Kim, 2017;
Norton et al., 2018). The sample quality may also be evaluated based on
the quantification of typically expressed miRNAs, indicators of hemo-
lysis or other cell type contamination markers, and the examination of
spike-in controls, as discussed above.

Next step in the data analysis workflow is normalization. This is
arguably one of the most critical steps for comparison of samples and
may severely compromise the quality of the data if done in-
appropriately, in worst case leading to totally erroneous conclusions
(Schwarzenbach et al., 2015). The goal of normalization is to reduce
between-sample technical variation arising during the experimental
procedure.

Microarray data are typically normalized using a global measure of
miRNA expression (Pritchard et al., 2012a). It assumes that the levels of
the majority of the genes is unchanged under the conditions studied and
each sample should therefore have similar global signal. Options in-
clude global mean, trimmed mean, which removes the least and highest
expressed fractions, quantile normalization and their variations.

Fig. 4. Selection of miRNA profiling platform.
Decision tree to guide informed choice of miRNA
quantification platform. The structure was adapted
from Pritchard et al. (2012a). The metrics are based
on the data from the miRQC study (Mestdagh et al.,
2014), recent comparison studies in the RNA-Seq
field (Barberan-Soler et al., 2018; Coenen-Stass et al.,
2018; Dard-Dascot et al., 2018; Giraldez et al., 2018;
Wright et al., 2019; Yeri et al., 2018) and data ob-
tained in the CANCER-ID (www.cancer-id.eu) and
SPIDIA4P (www.spidia.eu) consortia.
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Normalization to mean expression may also be applied to RT-qPCR, if a
large number of miRNAs is quantified (Mestdagh et al., 2009). How-
ever, this approach is less practical as the data cannot be compared to
another study that used a different set of microRNAs as the two means
will be calculated on different sets. For RT-qPCR preferred normal-
ization is to reference genes that have stable expression under condi-
tions that is invariable to the treatments applied (Meyer et al., 2010).
Although this normalization concept is widely popular for mRNA ana-
lysis, its application to miRNA hurdles on the identification of genes
having stable expression. It is therefore critical to identify and validate
a set of reference miRNAs for every study. Recommended strategy is to
perform a pilot experiment with a small representative set of samples
that is screened for all microRNAs using a global platform and from
those select the most promising candidates for validation by RT-qPCR
(Pritchard et al., 2012a). Standard tools such as GeNorm or NormFinder
are typically used to validate candidate's stable expression (Andersen
et al., 2004; Vandesompele et al., 2002).

A widely used alternative is normalization to other small RNA
molecules such as RNU6, RNU6A, RNU44, and 5S rRNA
(Schwarzenbach et al., 2015). Although these may be suitable for cell
cultures and some tissues, they are inappropriate for normalization of
biofluids due to their intracellular character (Chugh and Dittmer,
2012). Also, individual variations in microRNA levels may not be re-
flected by variations of other short RNAs. Other normalization strate-
gies include the volume of biofluid, total amount of miRNAs, and spike-
in molecules. Main problems of these approaches is that they do not
account for variation in RNA quality, input quantity, and individual
variation (Meyer et al., 2010; Schwarzenbach et al., 2015). Lastly, the
quality of sample needs to be considered when performing normal-
ization. If a liquid biopsy sample is affected by hemolysis or other
cellular contamination, the measured profile may be severely distorted
and global normalization would compromise the data further (Blondal
et al., 2013; Faraldi et al., 2019). The same problem arises if normal-
ization is based on microRNAs influenced by cellular contamination.

Normalization of RNA-Seq data aims to minimize differences in li-
brary size and composition caused by varying sequencing depth be-
tween samples. The general strategy is based on calculating a scaling
factor for each sample, which is used to adjust for library size.
Numerous strategies have been developed for the sequencing of long
RNAs and many are applicable also to miRNAs (Buschmann et al.,
2016). Popular methods include: normalization to library size, to upper
quartile of reads, to the quantile with most similar gene distribution, to
weighted trimmed mean of the log expression ratios (M-values), to the
median of expression ratios of geometric means and artificial spike-in
control. Recent publications that compare these options identified the
median of expression ratios from geometric means being preferred
under the studied conditions (Dillies et al., 2013; Zyprych-Walczak
et al., 2015). However, the most appropriate normalization strategy
may depend on the experiment. To avoid unwanted data distortion, a
selection procedure was recently described using a set of well-defined
criteria such as introduction of bias, variance, sensitivity, specificity
and error prediction (Zyprych-Walczak et al., 2015).

Once raw data have undergone quality control, pre-processing, and
normalization, secondary analysis takes place. Secondary analysis de-
pends on the particular objectives of the experiment and whether it is
an exploratory or hypothesis testing study (Buschmann et al., 2016;
Cristiano and Veltri, 2016; Fu and Dong, 2018). First step is usually
descriptive statistics to identify the number of positive and negative
miRNAs. Further, miRNAs with prohibitively low readouts for reliable
analysis are discarded. If complete data matrices are needed for ana-
lysis, imputation methods may be applied to replace missing values. As
the goal of majority of experiments is to identify differences between
groups of samples, statistical tests are used to identify likely differen-
tially expressed miRNAs. Standard statistical methods can be usually
applied directly on RT-qPCR data analysis. However, microarray and
RNA-Seq data, where the number of miRNAs typically is much larger

than the number of samples, may require more sophisticated models to
identify differential expression (Buschmann et al., 2016). The most
popular tools are DESeq and DESeq2 (Anders and Huber, 2010; Love
et al., 2014), edgeR (Robinson et al., 2010) and limma (Law et al.,
2014; Ritchie et al., 2015), although plethora of others has been de-
veloped. The selection of proper tool is dependent on the feature of
individual data set and number of biological replicates. While the ma-
jority of methods perform well when the number of samples is large,
DESeq2 and edgeR handle cases with only few samples per group better
than others (Rapaport et al., 2013; Soneson and Delorenzi, 2013). We
note, however, that these findings were derived primarily from bulk
mRNA data and future work is needed to establish whether these ob-
servations hold for microRNA data from liquid biopsies.

The experimental data analysis represents an important step in the
miRNA quantification workflow. Whereas the traditional methods such
as RT-qPCR and microarrays offer standardized protocols for data
processing and analysis, they lack the comprehensiveness of RNA-Seq
technology. On the other hand, RNA-Seq requires substantial compu-
tational skills and resources that may be a limiting factor for many
laboratories. Advantages and disadvantages of each technology as well
as experiment-specific requirements on the data analysis need to be
therefore taken into account at the early phases of each study.

7. Biomarker identification and characterization

An ultimate goal of the majority of studies focused on liquid biop-
sies is to find miRNA biomarkers that identify diseased samples, allow
to predicting patient's response to therapy or estimate the probability of
relapse. Candidate miRNA biomarkers are often selected directly from
the set of differently expressed miRNAs. However, miRNAs that show
largest differential expression may not be optimal for sample classifi-
cation as underlying statistical tests used for differential analysis con-
sider each miRNA as independent variables and correlations between
their levels are not taken into account (Robotti et al., 2014). In contrast,
multivariate modelling considers these dependences.

Taking positive and negative correlations into account and also the
binary nature of the data (key miRNAs being either present or absent in
a sample), multivariate analytic tools can identify the optimal set of
biomarker miRNAs that produces highest sensitivity and specificity
(Buschmann et al., 2016). Multivariate methods can be divided into: i)
unsupervised pattern recognition methods such as hierarchical clus-
tering, principal component analysis, self-organizing maps, canonical
correlation analysis; and ii) supervised classification techniques such as
linear discriminant analysis, classification and regression tree, partial
least squares discriminant analysis, deep learning and artificial in-
telligence. Whereas the unsupervised methods (also called clustering
techniques) can be applied directly on data measured on unknown
samples, supervised methods require a training set of independently
classified samples to be available. For comprehensive overview of
multivariate methods for biomarker identification, we recommend re-
cent reviews from the related field of proteomics (Robotti et al., 2014;
Smit et al., 2008).

Once candidate miRNA biomarkers are identified and a classifier
developed, its performance can be evaluated by receiver operating
characteristic (ROC) analysis (Lusted, 1971). ROC analysis informs on
specificity and sensitivity of the miRNA classifier and alternative clas-
sifiers can be compared by the area under the curve (AUC) of a plot of
the sensitivity vs. (1-specificity) or other parameters derived from the
ROC analysis (Florkowski, 2008; Hajian-Tilaki, 2013).

Parallel to the development of diagnostic applications based on
circulating miRNAs, large number of studies focus on their potential to
predict treatment response (Chen et al., 2019; Guo et al., 2018;
Sabarimurugan et al., 2019). Predictors are identified using standard
statistical methods for survival analysis, including Kaplan-Meier esti-
mator, the log-rank test, and the Cox regression model (Bewick et al.,
2004; Clark et al., 2003; Johnson and Shih, 2007). These methods are
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typically based on categorical features such as the presence or absence
of a mutation, gene fusion and other genetic events. Contrary to that,
cell-free miRNA level is a continuous variable and adjustments to the
traditional methods are needed. The simplest approach is the conver-
sion of measured levels to binary output based on a pre-defined
threshold (so called dichotomization). However, based on a recent
study comparing survival analysis methods for biomarker identification
in RNA-Seq cancer studies (Raman et al., 2019), methods that preserve
continuous data were superior to those using dichotomization. In this
comparison the well-established Cox regression methods achieved the
highest level of accuracy, reliability and robustness. One advantage of
the Cox regression methods is the possibility to include multiple cov-
ariates, such as clinical data, batch effects, etc., to improve prediction.
Deep learning and other artificial intelligence approaches and in-
tegrative analysis are emerging as new strategies for biomarker iden-
tification. Although still in their infancy, they show great promise for
the future development of the field (Huang et al., 2019; Iuliano et al.,
2016).

miRNAs identified as potential biomarkers may be further char-
acterized by functional analysis. First step usually involves miRNA
targets prediction using tools like miRanda (Betel et al., 2010), Tar-
getScan (Agarwal et al., 2015) and DIANA-microT tools
(Paraskevopoulou et al., 2013; Reczko et al., 2012); reviewed by Riffo-
Campos et al. (2016). As each tool usually predicts a large number of
targets, a consensus set can be generated with various algorithms to
reduce false positive hits (Oliveira et al., 2017). The resulting set of
targets can then be tested for functional correlation using tools such as
gene ontology (Ashburner et al., 2000), pathway databases such as the
Kyoto Encyclopedia of Genes and Genomes (Ogata et al., 1999), the
Reactome (Fabregat et al., 2018) and other specialized databases
(Bader et al., 2006). Wide spectrum of tools has been developed for the
enrichment analysis and visualization, including DAVID (Dennis et al.,
2003), g:Profiler (Raudvere et al., 2019), Gorilla (Eden et al., 2009) and
others (Liu, 2017). Interaction networks (miRNA-mRNA, miRNA/
mRNA-protein, protein-protein) can add to the amount of information
extracted from the data by assigning possible functions to the identified
biomarkers (Miryala et al., 2018). For the gene set enrichment and
interaction network analyses, some commercial all-in-one packages are
available including the CLCGenomics Workbench and Ingenuity
Pathway Analysis (both Qiagen, Germany), and Genomatix Genome
Analyzer (Genomatix, Germany). For comprehensive overview of the
available tools and trends in miRNA analysis we recommend the recent
review compiling information about 1000 miRNA bioinformatics tools
developed since 2003 (Chen et al., 2018).

8. Conclusions and future perspectives

Measurements of circulating miRNAs are likely to have major im-
pact on cancer management in near future. Hundreds of studies have
already proved their potential as an ideal biomarker for early diag-
nostics, prognostics and support of clinical decisions. Substantial
number of clinical trials focused on different cancer types and disease
stages highlights the ongoing trend (https://clinicaltrials.gov). Still,
there are many challenges to bring miRNA biomarkers into clinical
practice. Poor experimental design, insufficient sample cohorts, pre-
analytical variability, bias introduced during sample processing, data
acquisition and analysis are the most prominent ones. The issues have
been already recognized and are currently addressed by international
efforts such as SPIDIA4P (www.spidia.eu) and CANCER-ID (www.
cancer-id.eu) aiming the standardization of procedures for use of
miRNA biomarkers in diagnostics.

In the future, we anticipate the understanding of the roles of cir-
culating miRNAs in cancer development and communication to be
improved, potentially uncovering new routes for cancer therapy. We
predict further standardization and improvement of current technolo-
gies allowing more precise and reliable cancer diagnostics and

prognostics. As in other fields, the application of machine learning will
improve data analysis and in combination with patient's medical history
or other classes of biomarkers will accelerate the clinical utility of
miRNAs. Finally, completely new technologies for fast and robust point-
of-care miRNA or multi-analyte quantification will ensure smooth and
effective transition of any new knowledge into clinics, thus sub-
stantially improve management of cancer patients and hopefully the
disease outcome.
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Abstract Graphical summary 

Ischemic stroke is one of the leading 
causes of mortality and major healthcare 
and economic burden. It is a well-recog-
nized disease of aging, yet it is unclear 
how the age-dependent vulnerability oc-
curs and what are the underlying 
mechanisms. To address these issues, 
we performed a comprehensive RNA-
Seq analysis of aging, ischemic stroke 
and their interaction using a model of 
permanent middle cerebral artery occlu-
sion (MCAO) in 3 and 18 month old 
female mice. We assessed differential 
gene expression across injury status and 
age, estimated cell type proportion 
changes, assayed the results against a 
range of transcriptional signatures from 
the literature and performed unsuper-
vised co-expression analysis, identifying 
modules of genes with varying response 
to injury. We uncovered selective vulner-
ability of neuronal populations and 
increased activation of type-I interferon 
(IFN-I) signaling and several other in-
flammatory pathways in aged mice. We 
extended these findings via targeted ex-
pression analysis in tissue as well as 
acutely purified cellular populations to 
show differential temporal dynamics of 
IFN-I signaling between age groups and 
contribution of individual cell types. To-
gether, these results paint a picture 
of ischemic stroke as a complex age-re-
lated disease and provide insights into 
interaction of aging and stroke on cellular 
and molecular level. 
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Introduction 

Cerebral stroke affects nearly 17 million people per year 
worldwide, with a death rate of 5.9 million1, making it the sec-
ond leading cause of death in the developed world2. In 
addition, stroke is the primary cause of long-term disability3 
and represents a major healthcare and economic burden4. Is-
chemic stroke is caused by a loss of blood flow to the brain 
and accounts for ~87% of all strokes. The remaining ~13% of 
stroke cases are hemorrhagic and are caused by blood leak-
age into the brain5. 

Pathophysiology of ischemic stroke is complex, and in-
volves various mechanisms including disruption of blood-
brain barrier (BBB), excitotoxicity, inflammation, oxidative 
damage, ionic imbalances, apoptosis, angiogenesis and neu-
roprotection. The ultimate result of ischemic cascade is 
neuronal death along with an irreversible loss of neuronal 
function6,7. Two main approaches considered to treat acute is-
chemic stroke are reperfusion (restoration of blood flow) and 
neuroprotection (protection of neurons from ischemic in-
jury)8,9. Despite substantial efforts invested into research and 
development of neuroprotective strategies, with more than 
1000 drugs investigated and 100 tested in clinical trials10, early 
clot lysis with recombinant tissue plasminogen activator re-
mains the sole approved therapy11. 

One of the reasons for this translational roadblock is that 
most preclinical studies have used only young animals, de-
spite tremendous evidence that ischemic stroke is a disease 
of aging2,12–14. 75-89% of strokes occur in people aged > 65 
years, and for each decade after the age of 55 years the 
stroke rate doubles2. Along with higher incidence, aged pa-
tients have higher mortality, suffer more severe deficits and 
recover slower than younger patients15,16. In addition, sex 
modifies the influence of age; although ischemic burden is 
higher in men throughout most of the lifespan, elderly women 
suffer more strokes and have poorer functional outcomes and 
quality of life13,17–20. These clinical features are largely recapit-
ulated in experimental rodent models of acute ischemic 
stroke. Old animals of both sexes have higher mortality and 
more severe neurological deficits than young animals21–23. In 
addition, sex-specific differences are seen throughout the 
lifespan in infarct volumes, inflammation, blood-brain barrier 
(BBB) permeability12,24 and glial cell reactivity25,26.  

With rapidly aging human population, the global stroke 
burden increases. There is a need to understand the age-re-
lated mechanisms of ischemic injury to improve our ability to 
discern which therapeutics can be translated from the bench 
to the bedside2. Previous global gene expression studies of 
experimental stroke using microarrays27–34 and more recently 
RNA-Seq35–37 have provided useful insights into the patho-
physiology of ischemic stroke and uncovered many altered 
molecular pathways38. However, few studies included aged 
animals. One microarray report found that inflammation and 
synaptic plasticity-related genes had attenuated transcrip-
tional response to stroke in aged mice39. Another microarray 
study identified age-dependent response of DNA-damage 
and pro-apoptotic genes, but assayed only limited number of 
genes (442) in pre-selected pathways40, while the follow-up 
study focused solely on angiogenesis41. In addition, these 
studies employed only male animals and clinically less rele-
vant model of transient ischemia42–46. The complex factors 

underlying worsened stroke outcome in the elderly thus re-
main poorly understood, particularly in females that are often 
underrepresented in both clinical and pre-clinical stroke re-
search14,47–49. 

In this study, we aimed to dissect the interaction between 
stroke and aging at the genome-wide level. We used perma-
nent middle cerebral artery occlusion (MCAO) – a clinically 
most relevant model of ischemic stroke42–46 – on young adult 
(3 months) and aged (18 months) female mice and analyzed 
the post-ischemic cortex at 3 days after MCAO using RNA-
Seq. We combined differential gene expression and pathway 
analyses with network and cell type deconvolution ap-
proaches and intersected the results with relevant 
transcriptional signatures from the literature. Our results show 
age-dependent alterations in processes predominantly asso-
ciated with inflammation and interferon signaling, as well as 
the selective vulnerability of specific neuronal subpopulations. 
We then complemented the results with targeted expression 
analysis on acutely isolated cell populations and provide de-
tailed insight into temporal dynamics and cell-specific 
response of interferon signaling pathway in the young and 
aged post-ischemic brain. Our data provide new insights into 
the mechanisms of ischemic injury in the aged brain and 
serve as a publicly available resource for future studies. 

Results 

We hypothesized that there are two components leading to a 
more severe outcome of ischemic stroke in aged animals: 
i) changes in the brain environment during normal aging mak-
ing the aged brain more susceptible to ischemic injury, and 
ii)  the difference in the response to ischemic challenge be-
tween young and aged brain leading to secondary injury and 
impaired regeneration. To explore both of these components, 
we performed 3’ mRNA sequencing of parietal cortex isolated 
from 3 month old and 18 month old female mice (representing 
young adult and aged animals) at 3 days after MCAO and 
from their age-matched controls (in total 4 groups, 6 animals 
per group). 

Aging is accompanied with increased 
neuroinflammation involving primarily glial cells 
Building on our hypotheses, we first explored factors that may 
contribute to the increased vulnerability of the aged brain to 
ischemic challenge. We compared differentially expressed 
(DE) genes between young and aged controls and analyzed 
them using Gene set enrichment analysis (GSEA)50. We found 
52 upregulated and only 13 downregulated genes (log2FC > 
1, padj < 0.05; Figure S1). GSEA revealed upregulation of de-
fense response-related processes, positive regulation 
of immune response, and increased secretion of cytokines 
and protein catabolism (Figure 1A). Concomitantly, downreg-
ulated processes mapped to positive regulation of protein 
polymerization, dendrite development and axon projection, al-
together pointing towards increased inflammation and axonal 
degeneration in the aged brain. To gain further tissue- and 
cell-specific context of observed transcriptional changes, we 
searched the literature for transcriptomic datasets related to 
brain aging, neuroinflammation and stroke, and quantified 
overlap with our lists of differentially expressed genes (Fig-
ures 1B, S2). There was a significant overlap between the 
genes upregulated within the aged controls and signatures of 
aged astrocytes (such as Gfap, Anln, Pcdhb6, 
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Figure 1. Gene sets with altered expres-
sion during normal aging  
A) Enrichment map of significantly up- or 
down-regulated gene ontology (GO) terms be-
tween aged (18 months) and young adult (3 
months) control mice. Nodes represent gene 
sets. Highly similar gene sets are connected 
by edges, grouped in sub-clusters and anno-
tated manually.  
B) Meta-analysis showing enrichment of se-
lected transcriptional signatures from 
literature. Several inflammatory and glial cell 
activation-related states are significantly up-
regulated. See Table S1 for gene set 
descriptions. 
See also Figures S1 and S2. 

C4b, Serpina3n, Lyz2, Neat1, Plin4)51,52, aged microglia (such 
as Clec7a, Cst7, Cybb, Lgals3, Mmp12, Spp1, C4b, Ccl8)53,54, 
aging oligodendrocyte precursor cells (OPCs) (such as 
Rab37, Tnfaip2)55, in LPS-treated microglia (such as Bcl3, 
C3ar1, Ccl3, Ccl4, Cst7, Cybb, Tnfaip2)56,57 and/or LPS-
treated astrocytes (such as Casp1, Flnc, Mpeg1, Runx1, Ser-
pina3n)57, as well as with genes that are part of the common 
inflammatory signature (such as Ptprc, Rab32, Slc11a1, St14, 
Tep1, Trem2, Tyrobp)58. We also found significant upregula-
tion of genes enriched in bone marrow-derived macrophages 
(BMDMs) versus brain-resident microglia (such as Cdkn2a, 
Itgax, Tep1), while microglia-enriched genes (such as Cask, 
Gda, Nav3, Nrep, Sox4) were downregulated, indicating the 
convergence of microglial and macrophagal signatures with 
aging, as previously suggested54,59. Furthermore, aging-upreg-
ulated genes strongly overlapped with the 
neurodegeneration-related transcriptional profile of micro-
glia59 and recently identified markers of Ccl4-expressing 
subpopulation of microglia that expand during aging, injury60 
and neurodegeneration61. Overall, these results show that 
brain aging leads to subtle alterations in the neuroinflamma-
tory environment, involving particularly glial cells. A subset of 
pro-inflammatory primed microglia and/or astrocytes may 
confer adverse milieu that may contribute to aggravation of 
the ischemic injury in aged animals. 

Aging alters the magnitude of the transcriptional 
response to ischemic stroke 
Next, we explored transcriptional changes at 3 days after 
stroke separately in young and aged mice relative to their 
age-matched controls. A large number of genes were DE in 

both young (2556) and aged (3435) 
mice, with a high prevalence of upregu-
lation, both in terms of number of 
regulated genes and the fold-change 
(Figures 2A, S3A). There was a substan-
tial overlap between DE genes in young 
and aged mice, although aged mice dif-
ferentially regulated more genes, often 
with a greater magnitude (Figures 2C, 
S4). Functional analysis with GSEA re-

vealed hundreds of significantly enriched gene ontology (GO) 
terms. To remove redundancy, we clustered overlapping, 
functionally related gene sets into the network using Enrich-
ment Map62 (Figure S5). This analysis revealed several 
clusters of stroke-upregulated gene sets related to metabolic 
activity, reactive oxygen species (ROS) production, extracel-
lular matrix, angiogenesis and two major clusters associated 
with the cell cycle and immune response (Figure S5). Stroke-
downregulated genes were associated with ion channel and 
synaptic transporter activity, oxidative phosphorylation, neu-
ronal projection and synaptic vesicles production and GO 
terms “learning and memory” and “locomotory behavior” (Fig-
ure S5). Although comparison of the significantly enriched 
gene sets between young and aged animals revealed sub-
stantial overlap, GO terms related to inflammatory response 
(such as type-I interferon signaling, cytokine production, neu-
trophil degranulation), cell-cell interactions (such as integrin 
cell-surface interaction, extracellular matrix organization) and 
cell-cycle (such as regulation of DNA replication) were upreg-
ulated to a greater extent in aged animals after injury (Figures 
2B, S3B). Similarly, gene sets associated with synaptic sig-
naling and plasticity, neurotransmitter transport and 
potassium ion channels were downregulated exclusively, or 
to a greater extent in aged animals after stroke (Figures 2B, 
S3B). 

These results suggest that in addition to common genes, 
distinct cellular processes are activated and repressed in re-
sponse to ischemic impact in aged brain. Surprisingly, almost 
no functional gene sets were induced or repressed exclu-
sively in young animals (Figures 2B, S3B). 
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Figure 2. Comparison of differentially expressed genes and gene sets after stroke between young and aged mice 
A) Scatter plot comparing stroke-induced log2 fold-change in young and aged mice. Genes with |log2FC| >1 are highlighted in color. See also 
Figure S3A. 
B) Scatter plot comparing stroke-induced alteration of Reactome pathways in young and aged mice. Pathways wih q-val < 0.05 are highlighted 
in color. Sign depicts UP (+) or DOWN (-) regulation. See also Figure 4S3B and S5. 
C) Venn diagrams showing overlaps of DE genes between selected pairwise comparisons. See also Figure S4. 
D) Scatter plots of stroke-induced log2 fold-change in young and aged mice. Color maps to log2 fold-change between aged and young con-
trols (left) or between aged and young stroke groups (right). Genes with larger stroke-induced upregulation in young mice tend to increase in 
expression during normal aging.  

Stroke does not activate exclusive neuroprotective 
pathways in young compared to aged mice 
Since we did not identify any uniquely responsive gene sets 
in young mice, we took a step back and focused on individual 
genes that showed a greater stroke-induced upregulation in 
young mice compared to the aged group (“more up MCAO3”). 
We postulated that such genes may display a neuroprotective 
effect (considering the better outcome of stroke in young ani-
mals), and serve as possible targets for pharmacological 
activation in aged patients. We found that although some 
genes do show greater upregulation upon MCAO in young 
mice (log2FCyoung >> log2FCaged), almost all of them are also up-
regulated in aged controls compared to young controls 
(Figure 2D, left) and their abundance levels in young stroke 
group do not rise above the levels in aged stroke group (Fig-
ure 2D, right). Considering the inflammatory nature of these 
genes, the strong overlap with markers of aged and activated 
microglia60,61,63 (Figure S2), as well as the presence of reactive 
astrocyte marker (Gfap), it is apparent that these genes reflect 
age-induced glial activation, which is partially saturated after 
stroke in aged mice.  

These results suggest that the group of genes showing 
stronger activation in young animals (after stroke) does not 
involve exclusive neuroprotective pathways, but rather re-
flects the resting baseline level of microglia and astrocytes in 

young control animals and a more polarized baseline state in 
aged control animals. 
Combination of aging and stroke leads to massive 
activation of type-I interferon signaling and aggravated 
inflammatory response 
We then explored the genes showing greater upregulation 
upon ischemic impact in aged mice, which are likely to exert 
detrimental effects (“more up MCAO18”). There were more 
than 400 such genes, of which a large proportion were im-
mune-related (Figure 3A). GO and pathway enrichment 
analysis revealed T-cell activation, cell adhesion, chemotaxis 
and leukocyte migration, as the ones of the most strongly en-
riched functional clusters, suggesting an increased infiltration 
and activation of peripheral immune cells (Figure 3A). We 
also found strong enrichment of genes associated with anti-
gen processing and presentation, MHC class I, and cytokine 
secretion. Several signaling pathways, namely ERK/MAPK 
signaling and cAMP/cGMP mediated signaling were also sig-
nificantly enriched, as were the GO terms associated with lipid 
metabolism, transport of fatty acids and oxidative phosphory-
lation. Pathway enrichment revealed clusters of extracellular 
matrix organization and cluster of pathways mediating regu-
lation of cell cycle, suggesting that cellular proliferation may 
be increased in aged post-stroke mice (Figure 3A). Genes 
that are more induced by stroke in aged mice also significantly 
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Figure 3. Functional annotation of genes with different quantitative response to stroke between young and aged mice 
A) Enrichment map showing significantly enriched GO terms (circles) and pathways (hexagons) for genes with greater upregulation after 
stroke in aged mice (“more up MCAO18”). Similar gene sets are grouped into sub-clusters and annotated manually. See also Figure S2 for 
enrichment of gene sets from the literature. 
B) Same as (A), but for genes with greater downregulation after stroke in aged mice (“more down MCAO18”).  

overlapped with several inflammation and aging associated 
signatures from the literature (Figure S2). This was expected, 
considering the highly inflammatory nature of the genes in the 
“more up MCAO18” gene set. However, an interesting feature 
was the strong overlap with the LPS-induced / A1 pro-inflam-
matory astrocytic profile (Figure S2). Previously, it has been 
reported that MCAO induces a beneficial A2 astrocytic pro-
file64. Our result suggests this may not be the case in the aged 
brain, which would be consistent with reports that aging pro-
motes inflammatory A1 profile of astrocytes51,52 and 
accelerates injury-induced astrocyte reactivity65–67. Another 
striking feature was particularly strong overrepresentation of 
interferon-stimulated genes, indicating that specifically type-I 

interferon signaling pathway is much strongly activated by 
stroke in aged animals (Figures 2A, S2). 

In parallel to larger upregulation, aged mice also downreg-
ulated larger number of genes after stroke, often with a 
greater magnitude (“more down MCAO18”) (Figure 3B). 
Functional annotation of the “more down MCAO18” gene set 
revealed significant enrichment of K+ transmembrane 
transport (Atp1b1, Hcn1), voltage-gated K+ channels (Kcnc1, 
Kcnc2, Kcnc3, Kcnj6, Kcnj9, Kcnma1, Kcnt1) and their regu-
latory subunits (Kcnab2, Kcnab3, Kcnjp2), neurofilament 
proteins (Nefh, Nefm, Ina) and genes involved in synaptic 
vesicle exocytosis regulation and neurotransmitter release 
(such as Cadps, Pnkd, Lin7a, Braf, Dnm1, Rims1, Cplx1, 
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Syt2, Nrxn3) (Figure 3B). These genes mainly localize along 
the presynaptic and neuron projection membranes, indicating 
greater axonal damage and impaired synaptic communication 
in aged post-stroke mice. “More down MCAO18” genes were 
also enriched with genes involved in the regulation of circa-
dian rhythm (such as Cry2, Rorb, Per3). An impact of 
ischemic stroke on circadian rhythm has been observed be-
fore68 and our results suggest that aged animals may be more 
susceptible to its destabilization, which is linked to sleep, 
mood and post-stroke depression, and may therefore impact 
recovery69,70. Overall, analysis of age-stroke interacting genes 
revealed an increased neuroinflammatory environment in 
aged animals, which is connected to higher infiltration and ac-
tivation of peripheral immune cells, pro-inflammatory cytokine 
secretion and activation of signaling pathways (ERk/MAPK, 
type-I interferon) that may contribute to secondary injury. On 
the other hand, K+ transmembrane channels, neurofilament 
and synaptic communication proteins were specifically re-
pressed in aged animals, likely reflecting increased axonal 
damage. 

Transcriptome deconvolution reveals cell type 
composition changes during aging and after stroke 
In order to provide cell-specific context to the observed tran-
scriptional profiles, we assessed relative changes of cell type 
proportions by computational deconvolution. First, we built a 
reference of stable cell-specific genes for major CNS cell 
types (for details see Methods). We then used the marker-
GeneProfile R package71, which summarizes expression of 
multiple cell-specific genes into a single marker gene profile 
(MGP), serving as a surrogate for the cell type proportions. 
To validate the estimates, we used transcriptome deconvolu-
tion algorithm CIBERSORT72 (see Methods). Except for 
astrocytes, concordance analysis confirmed the robustness 
of the results (Figure S6). Closer inspection showed that as-
trocyte-specific genes do not significantly overlap with any DE 
geneset (Figure 4B), and cluster into different co-expression 
modules (see below), which may be due to heterogeneity of 
astrocytic response or intrinsic transcriptional regulation of 
large part of astro-specific genes. To ease the interpretation, 
we report the relative changes in cell type proportions as 
marker gene profiles (MGPs) selected by markerGeneProfile 
package (Figure 4A). 

We found a significant increase in the MGPs of all non-
neuronal cell types following stroke in both age groups 
(padj < 2.2e-16; Figure 4A). The largest increase was in micro-
glial and endothelial marker genes (log2FC 1.26-1.77) and the 
lowest in oligodendrocytic markers (log2FC 0.47-0.60), which 
also significantly increased with normal aging (p = 1.20e-19; 
Figure 4A). Glial marker genes had generally higher expres-
sion in aged stroke group compared to young stroke group, 
although the magnitudes of their activation by stroke were rel-
atively comparable between both ages. The most prominent 
difference was in endothelial cell markers (log2FCyoung = 1.26, 
log2FCaged = 1.74), which were also significantly overrepre-
sented among “more up MCAO18” genes (Figure 4B). 
Furthermore, cell type proportion estimates revealed signifi-
cant depletion of pyramidal/excitatory neurons during aging 
and following stroke in both age groups (padj < 1.00e-06, 

log2FCyoung = -0.56, log2FCaged = -0.63) without effect of interac-
tion (pinteraction = 0.154; Figure 4A). 

Aged ischemic brain is characterized by selective 
vulnerability of PV+ interneurons and increased 
infiltration of peripheral leukocytes 
Unlike pyramidal/excitatory neurons, parvalbumin-positive 
(PV+) GABAergic interneuron markers were downregulated 
after stroke to a greater degree in aged animals (log2FCyoung = 
-0.42, log2FCaged = -0.89, pinteraction = 6.22e-08; Figure 4A), which 
was supported by the significant overlap with “more down 
MCAO18” gene set (Figure 4B), suggesting that this neuronal 
class is particularly vulnerable to ischemia in aged mice. PV+ 
interneurons play key roles in cortical plasticity and thus may 
have profound effect on post- stroke recovery73,74. Testing for 
enrichment of independent set of marker genes of 6 pheno-
typically well-defined interneuron populations75 also revealed 
significant overlap of “more down MCAO18” genes with mark-
ers of PV+ fast-spiking basket cells, but not other interneuron 
populations (Figure 4C). We then searched the literature and 
found that additionally, at least 30 out of 122 genes in the 
“more down MCAO18” gene set are directly linked to PV+ in-
terneurons and are often localized in their projections73,75,84–89,76–

83 (Figure S7A). We then confirmed the enrichment of these 
genes in PV+ interneurons using two recent single-cell RNA-
Seq datasets90,91 (Figure S7B, C), providing strong indication 
that the decreasing transcriptional signal indeed reflects the 
selective impairment of PV+ interneurons in aged post-stroke 
mice. Afterwards we analyzed selected marker genes of CNS 
cell types at several time-points after stroke by RT-qPCR in a 
new set of mice (see below), which again revealed a signifi-
cant impact of stroke on PV+ interneurons in aged (p = 6.95e-
07), but not young mice (p = 0.156; Figure S8). 

Since peripheral immune cells can infiltrate the brain fol-
lowing the disruption of blood-brain barrier after stroke, we 
assessed their contribution by analyzing the overlap of DE 
gene sets with cell-specific genes of several leukocyte popu-
lations (Figure 4D). Stroke-induced genes in both age groups 
were highly enriched with macrophage-, monocyte- and neu-
trophil-specific genes (p ≤ 4.19e-14) and less strongly with 
mast cell/basophil-, dendritic cell- and activated T-cell-specific 
genes (p ≤ 1.18e-5). Interestingly, granulocyte-enriched 
genes (neutrophils, mast cells/basophils) were significantly 
overrepresented among “more up MCAO18” DE genes (p ≤ 
1.67e-6), as were monocyte-enriched genes (p = 2.14e-6) 
and, to a smaller degree, innate lymphocyte (NK cells; p = 
0.025) and activated T-cell-enriched genes (p = 0.003), alt-
hough T-cell pan markers were barely detectable in our 
sequencing data (Figure S9). These trends were recapitu-
lated by expression of individual marker genes reported as 
highly specific and stable by at least two recent expression 
studies59,60,92,93 and by ImmGen database (www.immgen.org; 
Figure S9). 

Overall, the analysis of relative cell type proportions high-
lighted both similarities and dissimilarities in cellular response 
to stroke between the two age groups. Similarities include 
proliferation of non-neuronal cells (particularly of microglia 
and endothelial cells), death of pyramidal neurons and tem-
poral  dynamics of cellular responses. Dissimilarities manifest
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Figure 4. Cell type proportion estimation by transcriptome deconvolution 
A) Raincloud plots showing z-scored expression of selected marker genes for major brain cell populations. Astrocytes not shown (see text 
and Figure S6). Asterisks show Holm-corrected post-hoc t-test p-values. Significance codes (***) <0.001; (**) <0.01; (*) <0.05; (ns) >0.05. 
B) Overlap between cell marker gene sets and the sets of differentially expressed genes. 
C) Overlap between sets of aging/stroke downregulated genes and the markers of seven phenotypically well-characterized GABAergic inter-
neuron subpopulations. CHC = Chandelier cells; PVBC = PV+ fast-spiking basket cells; other subpopulations named after dominant markers 
(see 75). 
D) Overlap between sets of aging/stroke upregulated genes and the marker genes of the major leukocyte populations. 
See also Figures S7 and S8.  

in greater damage to PV+ interneurons, increased abundance 
of endothelial cells and increased infiltration of granulo-
cytes/neutrophils in aged mice.  
Network analysis provides systems perspective 
on aging, stroke and their interaction 
To capture the full extent of expression trends from systems 
perspective and reveal relationships between the genes, we 
complemented our results with weighted co-expression 
network analysis (WGCNA). We found 27 modules of highly 
co-expressed genes. Ten modules were strongly associated 
with aging and/or injury status, of which nine modules 
corresponded to stroke-induced or stroke-repressed genes 
(Figure S10A, B). The remaining module (darkturquoise) was 
upregulated with age, contained many oligodendrocyte-
specific genes and was enriched in GO terms like “myelin 
sheath” and “metabolism of lipids” (Figures 5A-D, S10A), 

providing further support for positive correlation of 
oligodendrocyte-related expression with aging from previous 
analysis (Figure 4A). Among stroke-repressed modules, blue 
neuron-associated module was similarly downregulated in 
both young and aged mice, while green module showed 
greater downregulation in aged mice (Figure 5C). The green 
module was significantly enriched in markers of PV+ 
interneurons (p = 9.29e-06) and synaptic-transmission- and 
axon-related genes, showing that selective axonal damage of 
PV+ interneurons is embodied at the system-wide 
transcriptional level (Figure 5B, D). The turquoise module 
contained a large number of genes upregulated after stroke 
in both age groups, majority of which were 
immune/inflammation- and cell cycle-related and was 
significantly enriched with microglial and endothelial markers 
(Figure 5A-D). This module likely reflects the increased 
proportion and activation of these cell types after stroke. 
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Figure 5. Gene co-expression and interaction network analysis. 
A) Expression of selected WGCNA modules associated with aging and/or stroke. 
B) Module enrichment with cell-specific genes of major CNS and immune cell populations. 
C) Module enrichment with differentially expressed genes. 
D) Functional characterization of modules via enrichment of gene ontology sets, cellular pathways and targets of transcription factors. kIM = 
intramodular connectivity. MM = module membership. 
E) Protein interaction network constructed from “more up MCAO18” DE gene set. Network sub-clusters with functional annotations are shown 
in different colors. Key signaling hubs with high betweenness centrality highlighted with increasing node size. 
See also Figure S10. 
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In addition, turquoise genes were significantly enriched with 
targets of transcription factors such as Spi1, Runx1, Runx3, 
Tal1, Fli1, Elf4 -  known master regulators of hematopoietic 
development94,95 and microglial homeostasis and activation96,97 
(Figure 5D). The yellow co-expression module was more up-
regulated by stroke in aged mice compared to young mice, 
significantly enriched in leukocyte and endothelial-specific 
genes, with many GO terms related to inflammation, cytokine 
production, antigen processing and presentation, leukocyte 
chemotaxis, lymphocyte activation and interferon signaling as 
well as regulation of gene expression, suggesting that the yel-
low module is largely subject to intrinsic transcriptional 
activation (Figure 5A-D). Supporting this, in the yellow module 
we detected the largest number of enriched transcription fac-
tors (relative to other modules) including Stat1, Cebpd, 
Cebpb, Ets1, Elf1, Jun, Nfkb1 and many interferon regulatory 
factors (Irf9, Irf5, Irf7) (Figure 5D). In accordance, there was 
a striking overrepresentation of interferon-stimulated genes (p 
= 1.25e-50). Together, WGCNA largely recapitulated results 
of cell type proportion estimates in an unsupervised manner, 
supported our previous observation that no neuroprotective 
transcriptional program is activated specifically in young ani-
mals (as no such module was detected by WGCNA), and 
highlighted amplified activation of yellow inflammatory/inter-
feron module by stroke in aged mice. 

We noted that yellow co-expression module generally cor-
responds to the “more up MCAO18” DE gene set. Vast 
majority of the “more up MCAO18” DE genes either directly 
belonged to, or was highly correlated with the yellow module 
(Figure S10C, D). To investigate how these genes interact, 
we constructed a combined protein interaction network (Fig-
ure 5E). 227 out of 409 genes in the “more up MCAO18” DE 
set were highly connected within the network. Network clus-
tering revealed six clusters enriched in related, but distinct 
functional terms including cluster of interferon-stimulated 
genes, cluster of genes involved in antigen presentation, clus-
ter of cell-cycle regulatory genes, chemokine/cytokine and 
chemokine receptors cluster and one less rigid cluster of 
genes involved in extracellular matrix organization, 
ERK/MAPK signaling and response to oxidative stress  (Fig-
ure 5E). Searching the network for signaling hubs with high 
betweenness centrality highlighted transcription factors Stat1, 
Jun and Myc as well as matrix metalloproteinase 9 (Mmp9), 
chemokine ligands Cxcl9 and Cxcl13, leptin receptor (Lepr), 
and cyclin-dependent kinase 1 (Cdk1) as key hubs acting as 
crosstalks between functional clusters of the network (Figure 
5E). These results suggest that “more up MCAO18” genes 
are part of the transcriptional program composed of several 
distinct, but molecularly connected gene modules.  
Age-dependent activation of type-I IFN regulatory 
modules after stroke 
A striking hallmark of the differential response of aged ani-
mals to ischemic stroke was activation of type-I interferon 
signaling pathway (Figures 2B, 3A, 5A-E, S2, S3B). Type I 
interferons (IFN-Is) are key antiviral cytokines that elicit pro-
totypical interferon-stimulated genes (ISGs) encoding 
antiviral and inflammatory mediators98 and also activate other 
signaling pathways including MAPK cascades, other cyto-
kines, chemokines and cell-cell interaction modifiers (MHC-I, 
Lgals9)99. It has been reported that  blocking  the IFN-I signal-
ing improves stroke outcome in young mice100. IFN-I signaling 

may therefore act as the central player in the increased neu-
roinflammatory signature that we detected in the aged 
animals post-stroke, aggravating the neuronal injury. 

To explore this signaling component in greater detail, we 
mapped our expression data onto the recently published 
cross-species IFN-I regulatory network99 (Figure 6B-D). IFN-I 
network is divided into five regulatory clusters (C1-C5) with 
functional differences and variable disease associations99. 
Mapping our data against the network revealed that cluster 
C3 (composed mainly of antiviral effector genes) and C5 (en-
riched in inflammation mediators and regulators) were 
upregulated after stroke in both aged and young animals 
while the remaining three clusters were non-responsive (Fig-
ure 6B). Of the two responsive clusters only cluster C3 was 
differentially induced between young and aged animals (p = 
3.63e-36). C3 represents a putative cluster containing pre-
dominantly genes under control of ISGF3 transcription factor 
complex composed of STAT1, STAT2 and IRF999. In accord-
ance, several regulators of the C3 cluster including 
components of ISGF3 complex were part of “more up 
MCAO18” DE set (Figure 6C, D); altogether suggesting that 
age-dependent amplification of ISG expression occurs in a 
STAT-dependent manner.  

Post-stroke temporal dynamics of IFN-I signaling in 
young and aged mice 
IFN-I signaling is typically characterized by rapid ISG induc-
tion, which is afterwards quickly attenuated by negative 
feedback mechanisms99. As the outcomes of the IFN-I signal-
ing within the CNS may depend on a delicate balance98,101, we 
asked if the increased IFN-I signature in the aged post-stroke 
mice is due to constitutively greater expression or rather al-
tered expression dynamics relative to young mice. To answer 
this question, we analyzed the expression of IFN-Is, IFN re-
ceptors, ISGs and other selected genes by microfluidic RT-
qPCR at several time points following stroke (Figures 6E, 
S11).  

As expected, all 23 ISGs changed in a largely coordinated 
fashion throughout the time course, albeit with varying fold-
changes (Figure 6E). Expression of ISGs in young animals 
initially slightly decreased at 3h post MCAO and then started 
to increase, with peak at 7 days after MCAO (average log2FC 
= 3.30; n = 23 ISGs). In aged mice, the increase of ISG levels 
was on average four times greater at day 1 and day 3 com-
pared to the increase in young animals. Unlike in young mice, 
the expression of ISGs did not further fluctuate, but remained 
at elevated levels until the latest investigated time point (14 
days, average log2FC = 2.66). Together, these results show 
that activation of IFN-I signaling occurs early, but not sooner 
than 3h after stroke, and both timing and overall magnitude of 
ISG expression are important factors in the different response 
of aged brain to ischemic injury. 

Cell-specific analysis of IFN-I signaling in young and 
aged mice after stroke 
Stat1 activation in neurons102 and more recently increased 
IFN-I signaling in microglia103 following tMCAO have been 
demonstrated in young animals. However, little is known 
about the IFN-I signaling in other cell types following ischemic 
stroke, and no cell type specific data are available in the aged 
brain. We have therefore focused on the key players in the 
brain inflammatory responses – glia and endothelial cells104 – 
and aimed to identify how they contribute to IFN-I signaling 
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Figure 6. Transcriptional response of IFN-I signaling after stroke in young and aged mice 
A) Scatter plot of stroke-induced log2 fold-change in young and aged mice. Highlighted is a set of 207 interferon-stimulated genes. 
B) Enrichment of IFN-I regulatory network clusters from 99 in aging/stroke upregulated gene sets. 

(figure legend continues on next page) 
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C) Heatmap of IFN-I network regulatory links between regulators (kinases, phosphatases, transcription factors) and target genes reconstructed 
from 99. Binarized mapping of genes to stroke-upregulated gene sets in young/aged mice is shown on top and right.  
D) Network visualization of IFN-I regulatory network; 1000 strongest edges are shown. Network is colored by regulatory cluster (top) or by 
difference in stroke-induced log2FC between aged and young mice (bottom). 
E) Time-course analysis of ISG expression after stroke in young and aged mice. Bold line shows average expression of 23 ISGs measured 
by RT-qPCR. Error bars show standard deviation of biological replicates (n = 2-5). Thin lines show average expression of each gene. Asterisk 
show significant difference relative to control for each age separately (mixed model with post-hoc t-tests). Mind the break in x-axis. Due to 
limited number of 18-month old animals, 3h and 8h time points were omitted for the aged group. See also Figure S11 for expression of 
additional genes and Table S2 for per-gene statistics. 
F) ISG expression in purified cell populations 3 days after MCAO from young and aged mice. Asterisks show Holm-corrected post-hoc t-test 
p-values. See also Figure S12. 
Significance codes: (***) <0.001; (**) <0.01; (*) <0.05; (ns) >0.05.  

following stroke. We have FACS-sorted populations of astro-
cytes (GFAP+), microglia (CD11b+), oligodendrocytes (O4+) 
and endothelial cells (CD31+) from young and aged mice 3 
days after MCAO as well as from the age-matched controls 
and measured expression of ISGs and other selected genes 
by microfluidic RT-qPCR (Figure 6F, S12).  

Microglia and oligodendrocytes heavily upregulated ISG 
expression following stroke in both young and aged animals 
(Figures 6F, S12B). Endothelial cells displayed opposite be-
havior and significantly downregulated vast majority of 
measured ISGs in young, and to a much lesser extent in the 
aged mice. In astrocytes, 9 out of 23 ISGs were undetected. 
The expression of the remaining 14 ISGs did not change in a 
synchronized fashion, altogether showing a limited response 
of astrocytes to IFN after stroke in both age groups. In addi-
tion, astrocytes and microglia, but not endothelial cells and 
oligodendrocytes, showed significant ISG upregulation with 
normal aging (Figure 6F).  

Next, we assessed the relative differences in ISG expres-
sion between cell types for each experimental group 
separately (Figure S12C). This comparison revealed that in 
young and aged controls, endothelial cells are the main ISG 
expressors, both in terms of number of expressed ISGs and 
their expression levels, suggesting homeostatic role of IFN-I 
signaling in these cells. In contrast, microglia, oligodendro-
cytes and astrocytes expressed lower ISG levels under 
homeostasis and maintained predominantly expression of 
ISGs with regulatory roles, such as transcription factors 
(Stat1, Stat2, Irf9) and receptors (Ifih1, Ddx58). After stroke, 
the relative cell type contributions changed and microglia ex-
pressed similar levels of ISGs to endothelial cells (Figure 
S12C). Overall, our cell-specific analysis revealed that not 
only microglia, but also oligodendrocytes heavily induce IFN-
I signaling following stroke. All cell types converge on higher 
ISG expression in aged post-stroke brain, although their indi-
vidual contribution and response to stroke differ. Despite this 
trend, it is likely that effects in bulk tissue reflect also ISG in-
duction in other cell types, such as non-microglial immune 
cells entering the brain through compromised BBB. 

Discussion 

In this study, we systematically analyzed the impact of aging, 
stroke and their interaction on genome-wide expression pro-
files. Several findings emerged from the analysis, including 
that i) brain aging is accompanied by increased inflammation 
driven by alterations of glial cells, ii) transcriptional response 
to stroke in young and aged brain is highly similar and differs 
primarily in magnitude, iii) aged PV+ GABAergic interneurons 

are particularly vulnerable to stroke with potential implications 
for functional recovery, iv) differential stroke outcome is asso-
ciated with over-activation of pro-inflammatory pathways and 
other potentially detrimental factors in aged mice, rather than 
activation of neuroprotective program in young mice, v) in-
creased activation of IFN-I signaling represents a key 
difference in response to stroke between young and aged 
mice vi) subnetworks of IFN-I signaling are differentially sen-
sitive to combination of stroke and aging, vii) temporal profile 
of IFN-I activity after stroke differs between young and age 
mice and viii) microglia and oligodendrocytes, but not astro-
cytes and endothelial cells massively upregulate IFN-I 
signature following stroke. 

First, we analyzed factors that may sensitize aged brain to 
greater stroke damage during normal aging process. A num-
ber of studies has documented that inflammation is increased 
in the aged brain105–107, and it has been reported that the 
changes occur predominantly in glial cells108,109. Our results are 
well in line with these reports as we detected upregulation of 
a number of pro-inflammatory genes (Figures 1A, S1A) that 
map to signatures of aged and reactive glial cells, including 
the signature of a recently identified subpopulation of Ccl4+ 
pro-inflammatory microglia60,61 (Figures 1B, S2). Activated mi-
croglia can promote astrocyte reactivity through secretion of 
modulatory factors110, and thus further amplify the neurotoxic 
environment. Together, these changes are likely to sensitize 
aged brain towards more severe stroke and secondary injury. 
In addition, we detected increase in oligodendrocyte-specific 
expression with normal aging (Figures 4A, 5), which has been 
also seen in human brain111,112 and can be possibly attributed 
to increased number of oligodendrocytes113–115. 

Next, we investigated how adult and aged brain responds 
to ischemic challenge. The assessment of cellular differences 
by computational deconvolution revealed that PV+ GABAer-
gic interneurons are particularly vulnerable to ischemic stroke 
in aged mice (Figures 4A-C, S8). This result was recapitulated 
by RT-qPCR (Figure S8) and unsupervised WGCNA analysis 
where we detected PV+ interneuron-associated module 
(“green") with greater repression in aged post-stroke mice 
(Figure 5). Dysfunction or loss of PV+ interneurons is impli-
cated in the pathology of numerous neuropsychiatric 
disorders, including schizophrenia116,117, Alzheimer’s disease118 
and depression119,120. Given their central role in the modulation 
of neuronal plasticity and cortical information pro-
cessing73,74,121,122 – processes that underlie recovery after 
stroke123 – the PV+ interneurons may represent novel thera-
peutic target to promote functional recovery in elderly stroke 
patients. 
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Surprisingly, we did not detect any exclusive or greater 
activation of neuroprotective genes in young mice compared 
to aged mice (Figure 2). Instead, stroke in young mice more 
highly induced similar pro-inflammatory signatures of acti-
vated glial cells that are already upregulated with normal 
aging (Figures 2, S2). On the other hand, in aged post-stroke 
mice we found markedly stronger upregulation of >400 genes, 
many involved in the processes of the inflammatory cascade 
(Figure 3A). This was accompanied by a greater influx of pe-
ripheral leukocytes, particularly neutrophils (Figure 4D), 
which are the strongest producers of reactive oxygen species 
(ROS) and matrix metallopeptidases (MMPs) and promote 
neuronal injury and BBB disruption124–126. In agreement, an in-
creased number of neutrophils with altered phenotypic 
responses was previously seen in aged male mice and hu-
man stroke patients compared to their younger counterparts127 
and an increased neutrophil to lymphocyte ratio has been as-
sociated with stroke severity and outcome128. Although the 
absence of neuroprotective signal in bulk tissue does not rule 
out the possibility of its presence in individual cell types, these 
results suggest that an increased neuroinflammation and in-
filtration of circulating immune cells are one of the primary 
drivers for the exacerbated pathology in aged mice.  

An outstanding feature of differential response of aged an-
imals to ischemic stroke was upregulation of IFN-I pathway 
(Figure 2B, 3A, 5A-E, S2, S3B), which persisted for at least 
14 days (Figure 6E). IFN-Is are antiviral cytokines with plei-
otropic roles129 implicated in a number of CNS pathologies 
including multiple sclerosis130,131, Aicardi-Goutières syndrome, 
amyotrophic lateral sclerosis132, Alzheimer’s disease59,133,134, 
spinal cord injury135, traumatic brain injury136,137 and ischemic 
stroke100,103,138. 

Therefore, we have explored INF-I signaling in more detail 
and found that two IFN-I regulatory modules are activated by 
stroke irrespective of age, but only the canonical STAT-
dependent module is differentially activated in aged animals 
(Figure 6B-D), likely contributing to an increased neurotoxi-
city100. Indeed, Stat1 and Irf9 have deleterious roles in stroke 
and can act directly on neurons102,138. ISG activation typically 
requires both IFNAR1 and IFNAR2 receptor subunits139. Re-
cently the IFNAR2- and STAT-independent pathway, 
triggered by IFNβ, was shown to be involved in systemic LPS-
induced toxicity140. While the genetic or pharmacological 
blocking of IFNAR1 leads to neuroprotection after transient 
MCAO100, the same study reported no effect in IFNAR2-/- 
mice. This suggests the involvement of the compensatory 
IFNAR2- and STAT-independent pathway after stroke as well, 
although it has not been explored in aged animals. Our finding 
of a predominant increase in the IFNAR2- and STAT-
dependent module in aged animals indicates that the detri-
mental effects of IFN-I signaling after stroke may be exerted 
by ISGs that are common to the IFNAR2-/STAT-dependent 
and independent pathways. 

As the cell-specific context to the IFN-I signaling after 
stroke has not been well described in the literature, we pro-
filed the responses of the glia and endothelial cells – known 
key players in brain neuroinflammatory responses104 (Figures 
6, S12). Our results support the perspective that not only mi-
croglia, but also oligodendrocytes are active players in the 
acute inflammatory response after stroke. On the other hand, 

although endothelial cells expressed the highest levels of 
ISGs under control conditions, they downregulated IFN-I 
pathway after stroke. This disparity may be associated with 
different roles of IFN-I signaling in the endothelial cells, evi-
dent by the vastly different baseline ISG levels, in line with the 
role IFNb plays in the maintenance of the BBB integrity98.  

Despite the overall trend of increased ISG expression in 
the aged post-stroke brain in the analyzed cell populations, it 
is unlikely to explain alone the overall ISG increase we repro-
ducibly detected in the bulk tissue. These results indicate the 
involvement of other contributors, such as the early-infiltrating 
peripheral leukocytes. Previously, the hematopoietic compo-
nent has been identified as a major source of IFN-I signaling 
following traumatic brain injury136 and aged mice with bone-
marrow transplants from young mice have improved stroke 
outcome127. In concordance, we detected greater upregulation 
of granulocyte signature genes in aged animals (Figure 4D). 
In addition, it has been suggested that IFN levels correlate 
with severity of injury and differently influence functional out-
come, as IFN signaling is beneficial in context of mild 
ischemic preconditioning141,142, but it is detrimental following 
more severe stroke100. Our findings appear to be consistent 
with this notion, as aged animals generally suffer more severe 
strokes. One potential mechanism of this phenomenon could 
be the greater disruption of BBB, which in turn leads to the 
greater influx of peripheral leukocytes. Nonetheless, it is clear 
that the differential activation of IFN-I signaling pathway in 
aged animals is likely to contribute significantly to the exacer-
bated stroke outcome in aged mice and represents a potential 
target for therapeutic intervention that has been so far over-
looked. Our results provide one of the first steps in this 
direction and open the door to future studies needed to ad-
dress the mechanisms underlying IFN-I neurotoxicity 
following stroke in the aged brain. 

As with the majority of studies, our results also need to be 
viewed in light of potential limitations. Since our RNA-Seq 
data are based on bulk tissue, the expression signal is partly 
confounded by the cell type composition and the power to de-
tect genes altered in a cell-specific manner is lowered. To 
tackle this effect, we have employed cell type deconvolution 
techniques and assayed the results with a range of cell-spe-
cific signatures. Another limitation is that our RNA-Seq 
experiment assayed a single time-point (3 days) after experi-
mental stroke relative to the control. Although the selected 
time-point can be considered well representative of the sub-
acute phase, informative on early damage as well as initiation 
of repair processes143,144, there is a space for future studies an-
alyzing later subacute and chronic phases. Being aware of the 
aforementioned limitations, we provide direct cell-specific as 
well as time course data targeted at the most significant find-
ings. 

 In conclusion, detailed insights into transcriptional re-
sponse to stroke described in this study may contribute to our 
understanding of the interplay between stroke pathology and 
aging, and open new avenues for the future search for effec-
tive therapeutic approaches. 
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Methods 

Animals 
Experiments were performed on 3 and 18 month-old 
C57Black/6 or FVB female mice. FVB mice are GFAP/EGFP 
transgenic (line designation TgN(GFAP-EGFP), FVB back-
ground), in which the expression of enhanced green 
fluorescent protein (EGFP) is controlled by the human glial 
fibrillary acidic protein (GFAP) promoter (marker of astro-
cytes)145. The mice were kept on a 12-hr light/dark cycle with 
access to food and water ad libitum. All procedures involving 
the use of laboratory animals were performed in accordance 
with the European Communities Council Directive 24 Novem-
ber 1986 (86/609/EEC) and animal care guidelines approved 
by the Institute of Experimental Medicine, Academy of Sci-
ences of the Czech Republic (Animal Care Committee on 
April 7, 2011; approval number 018/2011). All efforts were 
made to minimize both the suffering and the number of ani-
mals used. 

Induction of middle cerebral artery occlusion (MCAO) 
Prior to the induction of MCAO, mice were anaesthetized with 
3% isoflurane (Abbot) and maintained in 2% isoflurane using 
a vaporizer (Tec-3, Cyprane Ltd.). A skin incision between the 
orbit and the external auditory meatus was made, and a 1-2 
mm hole was drilled through the frontal bone 1 mm rostral to 
the fusion of the zygoma and the squamosal bone and about 
3.5 mm ventrally to the dorsal surface of the brain. The middle 
cerebral artery (MCA) was exposed after the dura was 
opened and removed. The MCA was occluded by short coag-
ulation with bipolar tweezers (SMT) at a proximal location, 
followed by transection of the vessel to ensure permanent oc-
clusion. During the surgery, body temperature was 
maintained at 37±1°C using a heating pad. This MCAO model 
yields small infarct lesions in the parietal cortical region. Intact 
cortical tissue from 3 and 18 month-old mice was used as 
control.  
Dissection of brain tissue from the mouse cortex 
Mice were deeply anesthetized with pentobarbital (PTB) (100 
mg/kg, i.p.), and perfused transcardially with cold (4–8°C) iso-
lation buffer containing (in mM): NaCl 136.0, KCl 5.4, Hepes 
10.0, glucose 5.5, osmolality 290 ± 3 mOsmol/kg. To isolate 
the cerebral cortex, the brain (+2 mm to -2 mm from bregma) 
was sliced into 600 μm coronal sections using a vibrating mi-
crotome HM650V (MICROM International GmbH), and the 
uninjured or post-ischemic parietal cortex was carefully dis-
sected out from the ventral white matter tracks. 

Preparation of single cell suspensions 
The collected tissues were incubated with continuous shaking 
at 37°C for 45 min in 2 ml of papain solution (20 U/ml) and 0.2 
ml DNase (both Worthington) prepared in isolation buffer. Af-
ter papain treatment, the tissue was mechanically dissociated 
by gentle trituration using a 1 ml pipette. Dissociated cells 
were layered on the top of 5 ml of Ovomucoid inhibitor solu-
tion (Worthington) and harvested by centrifugation (140 x g 
for 6 min). This method routinely yielded ~2 x 106 cells per 
mouse brain. Cell aggregates were removed by filtering with 
30 μm cell strainers (Becton Dickinson). The cell suspension 
was then labeled for oligodendrocyte marker 1:50 anti-O4-PE 
(Miltenyi Biotec), endhothelial cell marker 1:50 anti-CD31-PE 

(Miltenyi Biotec) and microglial marker 1:50 anti-CD11b-APC 
(Miltenyi Biotec), according to the standard manufacturer´s 
protocol. To collect astrocytes, GFAP/EGFP mice were used. 
The cells were kept on ice until sorting. 

Cell sorting and collection 
Single cell suspensions were sorted using flow cytometry 
(FACS; BD Influx). Hoechst 33258 (Life Technologies, Carls-
bad, CA, USA) was added to the suspension to check 
viability. 100 cells per well were collected into 96-well plates 
(Life Technologies) containing 5 μl nuclease-free water with 
bovine serum albumin (1 mg/μl, Fermentas) and RNaseOut 
20 U (Life Technologies). The plates were placed on a pre-
cooled rack and stored at -80 °C until analysis. After discard-
ing samples of insufficient quality, we used 2-5 mice per cell 
type per experimental group for the RT-qPCR analysis (see 
below). We note that all samples were strongly enriched in 
respective cellular markers and depleted in markers of other 
cell types, confirming high purity of sorted suspensions (Fig-
ure S12A). 

RNA isolation, library preparation and sequencing 
Brain tissue samples were homogenized using the Tissue-
Lyser (Qiagen). Total RNA was extracted with TRI Reagent 
(Sigma-Aldrich) according to the manufacturer´s protocol and 
treated with TURBO DNA-free kit (Thermo Fisher). RNA 
quantity and purity was assessed using the NanoDrop 2000 
spectrophotometer (Thermo Fisher) and RNA integrity was 
assessed using the Fragment Analyzer (Agilent). All samples 
had RQN > 8. Libraries were prepared from 400 ng total RNA 
with QuantSeq 3' Library Prep Kit FWD (Lexogen) according 
to manufacturer’s protocol. 1 μl of ERCC spike-in (c = 0.01x; 
Thermo Fisher) per library was included. This library prepara-
tion method generates stranded libraries predominantly 
covering the 3’ end of the transcript, thus producing gene-
centric expression values. Libraries were quantified on the 
Qubit 2 fluorometer (Thermo Fisher) and Fragment Analyzer 
(Agilent) and sequenced on the NextSeq 500 high-output (Il-
lumina) with 85 bp single-end reads. 11.5 – 38 million reads 
were obtained per library with a median of 16 million reads. 

RNA-Seq data processing, mapping and counting  
Adaptor sequences and low quality reads were removed us-
ing TrimmomaticSE v0.36146. Reads mapping to mtDNA and 
rRNA were filtered out using SortMeRNA v2.1 with default pa-
rameters147. The remaining reads were aligned to GRCm38 
and ERCC reference using STAR v2.5.2b with default param-
eters148. Mapped reads were counted over Gencode vM8 
gene annotation using htseq-count with union mode for han-
dling of overlapping reads149. 
Differential expression analysis 
Several comparisons of differential expression were gener-
ated using DESeq2 v1.16.1150. For pairwise comparisons, we 
compared aged controls to young controls, young stroke 
group to young controls, aged stroke group to aged controls 
and aged stroke group to young stroke group (padj < 0.05, 
log2FC >1 for upregulation and < -0.65 for downregulation). 
We also generated two-factor comparisons using injury (con-
trol/MCAO) and age (3m/18m) and their interaction as 
predictor variables. DESeq2 results are available in Supple-
mentary file 1. Searchable visualization table is available in 
Supplementary file 2. During the initial analysis of the dataset, 
we noted that there was a relatively large number of genes 
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induced or repressed exclusively, or with a greater fold-
change in aged animals, although only a subset of them 
reached statistically significant interaction term as outputted 
by DESeq2 analysis. In order to identify all of the genes that 
are likely subject to age-stroke interaction, we have prepared 
four additional sets of genes with age-dependent differential 
response to stroke containing genes that are significantly in-
fluenced by stroke in one age group and at the same time 
their fold-change (vs control) is at least doubled compared to 
second age group. That is, the set “more up MCAO18” is com-
prised of genes significantly upregulated in aged animals after 
stroke (compared to aged controls; padj < 0.01, log2FCaged > 1), 
and at the same time having significant interaction term (padj < 
0.1) and/or having at least double the fold change of young 
strokes (compared to young controls; log2FCaged - log2FCyoung > 
1). The same rationale was applied for more highly upregu-
lated genes in the young stroke group (“more up MCAO3”) 
and for downregulated genes in both age groups (“more down 
MCAO18”, “more down MCAO3”), with an exception that the 
log2FC threshold was < -0.65 for downregulation. DE sets leg-
end is also available in Table S1. Gene sets composition can 
be found in Supplementary file 3. Only genes with average 
expression ≥ 5 normalized counts in at least one experimental 
condition were considered for further analysis. 

Gene set enrichment analysis (GSEA) 
GSEA50 was performed for pairwise differential expression 
comparisons. First, a gene score was calculated for every 
gene using DESeq2 output as -log10(padj) and assigned a pos-
itive or negative sign based on direction of regulation. Genes 
were ranked by their gene-scores and GSEA was run in a 
weighted pre-ranked mode with 1000 permutations. Gene 
sets were downloaded from http://download.ba-
derlab.org/EM_Genesets/, and GSEA was run separately for 
two gene ontology (GO) categories (biological process – 
GOBP, cellular component – GOCC). Only gene sets contain-
ing between 15 and 1000 (for GOBP) or 5 to 1000 (for GOCC) 
genes were considered. Annotations with IEA (inferred from 
electronic annotation) evidence codes were excluded. For 
pathway enrichment, a gene set file integrating several path-
way databases was used. Significantly overrepresented gene 
sets were visualized as a network using Enrichment Map 62. 
In the network, each node represents gene set and highly 
overlapping gene sets are connected with edges, resulting in 
a tight clustering of highly redundant gene sets. For functional 
annotation of discrete sets of genes we used Cytoscape 
plugin ClueGO151 with the following parameters: no IEA codes, 
right-sided hypergeometric test with Benjamini-Hochberg cor-
rection for statistical testing and all genes after filtering (16048 
genes) as the background set. 

Cell-specific gene sets and cell type proportion 
estimation 
Marker genes for major cell types specifically in the mouse 
cortex region were taken as an initial reference71 (Supplemen-
tary File 3). Unlike other marker databases that rely on a 
single data source, this marker set represents a consensus 
from several published studies and accounts for brain re-
gional heterogeneity. The microglial marker genes in the 
reference marker set were already devoid of genes differen-
tially expressed in activated microglia53. In order to acquire 
marker genes with stable expression regardless of activation 

states, we have further removed the genes previously found 
to be differentially expressed in microglia after tMCAO152; in 
aged cortical microglia54, and aged whole-brain microglia53 
compared to young microglia; and genes enriched in bone 
marrow-derived macrophages compared to microglia153. We 
have also removed genes that were differentially expressed 
in astrocytes after tMCAO64 and aged cortical astrocytes51,52. 
Because peripheral immune cells may infiltrate the brain fol-
lowing stroke, we have also excluded genes enriched in the 
major leukocyte populations obtained from ImmGen database 
(www.immgen.org). 

DESeq2-normalized gene expression data and the cell-
specific gene lists were used as an input into the marker-
GeneProfile R package v1.0.371 for the estimation of marker 
gene profiles (MGPs), which serve as a proxy for relative cell 
type proportion changes. We used a more stringent expres-
sion cutoff (average ≥ 5 normalized counts across all 
samples) to reduce the transcriptional noise.  Since it still may 
be possible that some marker genes are transcriptionally reg-
ulated under our experimental conditions, genes with reduced 
correlation (potentially regulated) to the majority of marker 
genes (assumed to reflect primarily cell type proportion 
change) were excluded from final estimates as described in71. 
Resulting MGP estimates were flagged if a high proportion of 
marker genes was removed in the previous step (> 40%) 
and/or proportion of variance explained by the first principal 
component was low (< 50%). Differences in expression of fi-
nal marker gene sets were analyzed by linear mixed model in 
R project v3.6.0 using lmerTest package v3.1154 on log2 trans-
formed, DESeq2-normalized expression values. We used 
two-factor design (age, injury) with interaction as fixed effects 
and gene intercept as random effect. Significance was tested 
by Satterthwaite's method. Post-hoc t-tests were performed 
using emmeans package v1.3.5 and p-values were adjusted 
by Holm method. 

To validate the first estimations, we employed 
CIBERSORT, a transcriptome deconvolution algorithm that 
uses gene expression matrix of individual cell types as a ref-
erence, and deconvolutes the cellular composition of mixed 
sample by linear support vector regression72. We used pub-
lished single-cell RNA-Seq dataset of adult mouse cortex as 
a reference gene expression signature155. From the normal-
ized gene-expression matrix, we excluded all intermediate 
cells as definded by authors and used the remaining 1424 
core cells assigned to the major CNS cell types. CIBERSORT 
was run in the relative mode with 1000 permutations, quantile 
normalization was disabled as recommended for RNA-Seq 
data and q-value cutoff was lowered to 0.15. The results were 
correlated to the corresponding cellular MGPs (Figure S6). 

Weighted gene co-expression network analysis 
(WGCNA) 
Standard WGCNA procedure was followed to create gene co-
expression networks using blockwiseModules function from 
the WGCNA R package v1.68156. Filtered DESeq2-normalized 
expression data were used to calculate Pearson correlation 
between all gene pairs. Soft-thresholding was then applied by 
raising correlation values to a power of 22 to amplify disparity 
between strong and weak correlations. The soft-thresholding 
power was chosen to achieve approximately scale-free net-
work topology, as recommended for biological networks157,158. 
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The resulting signed adjacency matrix was used to calculate 
topological overlap matrix (TO), which was then hierarchically 
clustered with (1-TO) as a distance measure. Genes were 
then assigned into co-expression modules by dynamic tree 
cutting algorithm requiring minimal module size of 20 genes. 
Modules with a distance between the module eigengenes 
(MEs) of less than 0.2 were merged. ME is the first principal 
component of the gene expression values within a module 
and is used to summarize the module’s expression. Pearson 
correlation between each gene and ME was then calculated. 
This value is called module membership and represents how 
close a particular gene is to a module. Finally, each gene was 
assigned to a module for which it had the highest module 
membership. 

Motif and transcription factor enrichment analysis 
Cytoscape plugin iRegulon159 with default parameters was 
used to search for over-represented motifs and their associ-
ated transcription factors 500 bp upstream of the transcription 
start site. All genes from a particular WGCNA module were 
used as an input. A transcription factor was considered a hit 
for a given module only if its gene belonged to the same mod-
ule. 

Protein-protein interaction network  
Known interactions (minimal interaction score 0.4) between 
genes in the “more up MCAO18” DE gene set were down-
loaded from STRING database v10.5160. Remaining 
unconnected genes from “more up MCAO18” gene set were 
then added to the network based on their correlation with any 
of the genes already present in the network requiring Pearson 
r ≥ 0.96 (edges visualized with orange dotted line in Figure 
5E). The resulting interaction network was then visualized and 
analyzed in Cytoscape v3.5.1. Spectral partition-based net-
work clustering algorithm161 via Cytoscape ReactomeFI plugin 
v6.1.0162 was used for network clustering. 

Custom gene set enrichment 
Gene sets of interest were collected directly from relevant 
publications. For references and legends, see Table S1. 
R package GeneOverlap v1.20 was used to calculate the 
odds ratio (OR) and the significance of the overlap of the gene 
sets of interest with the Fisher’s exact test. 

High-throughput RT-qPCR 
Samples were reverse transcribed in a reaction volume of 10 
μl containing: 5 μl template (either 125 ng total tissue RNA or 
100 sorted cells after direct lysis), 0.5 μl spike-in RNA (Tataa 
Biocenter; c = 0.1x for tissues or 0.01x for sorted cells), 0.5 μl 
equimolar mixture of random hexamers with oligo(dT) (c = 50 
μM), 0.5 μl dNTPs (c = 10 mM), 2 μl 5× RT buffer, 0.5 μl 
RNaseOUT, 0.5 μl Maxima H- Reverse Transcriptase (all 
Thermo Fisher) and 0.5 μl nuclease-free water. After the pre-
incubation step at 65°C (t = 5 min), followed by the immediate 
cooling on ice, the main incubation was performed at 25°C (t 
= 10 min), 50°C (t = 30 min), 85°C (t = 5 min), after which the 
samples were immediately cooled on ice. cDNA from tissue 
samples was diluted 4x in nuclease-free water; sorted cell-
cDNA was left undiluted. All cDNA samples were pre-ampli-
fied immediately after reverse transcription in 40 μl total 
reaction volume containing 4 μl cDNA, 20 μl IQ Supermix 
buffer (Bio-Rad), 4 μl primer mix of 96 assays (c = 250 nM 
each), and 12 μl of nuclease-free water. Reactions were incu-
bated at 95°C (t = 3 min) following by 18 cycles of 95°C (t = 

20 s), 57°C (t = 4 min) and 72°C (t = 20 s). After thermal cy-
cling, reactions were immediately cooled on ice and diluted in 
nuclease-free water (sorted cells 4x, tissue 50x). High-
throughput qPCR was then performed on a 96.96 microfluidic 
platform BioMark (Fluidigm) as previously described163. Cy-
cling program consisted of activation at 95°C (t = 3 min), 
followed by 40 cycles of 95°C (t = 5 s), 60°C (t = 15 s) and 
72°C (t = 20 s) and melting curve analysis.  

RT-qPCR data analysis 
Raw data were pre-processed with the Real-Time PCR anal-
ysis software v4.1.3 (Fluidigm); unspecific values were 
deleted based on melting-curve analysis. Further processing 
was done in GenEx v6.0.1 (MultiD Analyses AB): Cq value 
cutoff of 28 was applied; gDNA background was substracted 
using ValidPrime164 (Tataa Biocenter); data were normalized 
to the mean expression of 5 reference genes (Actb, Gapdh, 
Ppia, Ywhaz, Tubb5); outliers were deleted (within group 
Grubbs test, p < 0.05) and a gene was considered undetected 
for given group if more than 75% values per group were miss-
ing; technical replicates (RT and FACS) were averaged; if 
appropriate, missing data were inputed on a within-group ba-
sis and remaining missing data were replaced with Cqmax +2 
for tissue samples or Cqmax+0.5 for sorted cells. Of note, the 
RT-qPCR and RNA-Seq data showed high correlation (Pear-
son r ≥ 0.942; Figure S13). 

Temporal expression of individual genes was first ana-
lyzed with two-way ANOVA in R project v3.6.0 using time-
point and age as predictor variables, then differences be-
tween time-points were tested separately for each age by 
one-way ANOVA and post-hoc t-tests using emmeans pack-
age v1.3.5. P-values were adjusted with Benjamini-Hochberg 
method. Temporal  expression of groups of cellular marker 
genes was first analyzed using linear mixed model in R pro-
ject v3.6.0 (lmerTest package v3.1154) with random gene 
intercept using two-factor design (time-point including control, 
age) with interaction, then differences between time-points 
were tested separately for each age. Significance was tested 
by Satterthwaite's method. Post-hoc pairwise t-tests were 
performed using emmeans package v1.3.5 and p-values were 
adjusted by Holm method. Temporal expression of IFN-I path-
way was analyzed in similar steps using random slope and 
random intercept mixed model with 23 interferon-stimulated 
genes as response variables. IFN-I pathway expression in 
sorted cells was analyzed in the same way with two-factor de-
sign (age, injury) with interaction, using only detected ISGs 
per each cell type. Differential expression of individual genes 
(relative to age-matched control) in sorted cells was tested in 
GenEx v6.0.1 (MultiD Analyses AB) using ANOVA with Bon-
ferroni’s post-hoc test for selected pairwise comparisons and 
p-values were corrected using Benjamini-Hochberg method 
(Table S2).  
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1 Introduction 

According to the latest reports, the human genome encodes for approximately 19 000 protein-
coding genes, which represents only 1.0 – 1.5% of 3 billion-plus base pairs it contains [1]. The rest 
was originally considered “junk” DNA. However, closer exploration of the genome revealed that in 
fact about 80% has biochemical role and is integral to the function of cells, particularly for the control 
of the gene activity [2]. In addition to various regulatory elements, the genome harbors at least 
18 000 non-coding genes that produce over 47 000 non-coding RNAs including tRNAs, rRNAs, 
lncRNAs, snRNAs, piRNAs, circRNAs, siRNAs, miRNAs and many others, often with unknown 
function. One of the relatively well-characterized classes are microRNAs (miRNAs) – tiny, but all 
the more important regulators of gene expression. First miRNA was discovered by Victor Ambros 
and his co-workers Rosalind Lee and Rhonda Feinbaum in 1993 [3]. They found that lin-4, a gene 
known to control timing of C. elegans larval development by repression of the lin-14 gene, does not 
code for a protein, but instead produces a pair of small RNAs. This discovery represented dramatic 
breakthrough in our understanding of the transcriptome. Since then, miRNAs have been shown to 
play important roles in modulation of an array of physiological and pathological processes ranging 
from embryonic development to neoplastic progression. This brought them significant attention as 
potential therapeutic targets. Another wave of excitement came with the discovery that miRNAs are 
released into extracellular environment and are stably present in the circulatory system and various 
body fluids. The realization that circulating miRNA levels change in response to pathophysiological 
processes meant that they might serve as promising and non-invasive clinical biomarkers to aid 
diagnosis, prognosis and monitoring of the response to treatment.  

Whether the goal is to elucidate regulatory roles of the miRNAs, or find novel biomarkers, miRNA 
expression patterns provide essential information for these endeavors. Therefore, since the very 
beginning quantitative profiling of miRNA expression has played a pivotal role in the miRNA 
research. Several techniques for miRNA profiling are nowadays available for both targeted and 
global measurements, including microarrays, RT-qPCR and next generation sequencing methods. 
However, to obtain precise and reliable readouts of miRNA profiles is not straightforward because 
of many technical challenges associated with the workflow.  

This thesis focuses on the development of novel methods and tools for improved miRNA 
quantitative workflows and on the assessment of small-RNA sequencing methods for better 
understanding of their impact on the resulting data. After establishment of the technical base, these 
methods are applied together with global mRNA expression profiling to dissect molecular and 
cellular response to acute central nervous system injuries including stroke and spinal cord injury in 
rodent models. 
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2 Aims and scope 

The broader goal of this thesis was to develop and establish robust and reliable workflows for both, 
targeted and global miRNA expression profiling, including profiling of challenging samples such as 
biofluids. The ultimate goal was to utilize these workflows together with techniques for gene 
expression profiling to improve our understanding of molecular mechanisms of central nervous 
system (CNS) injury.  

The specific aims of the work described in this thesis were: 

• To develop, optimize and validate new method for miRNA quantification based on RT-
qPCR that would allow precise and cost-effective quantification from various samples 
including animal and plant tissues, cells and biofluids. 

• To develop easy-to-use tool that would allow convenient optimization and troubleshooting 
of the wet-lab workflow of quantitative miRNA studies as well as routine control of sample 
quality. 

• To comprehensively evaluate all currently available methods for small RNA-Seq library 
preparation with focus on their performance with challenging samples such as biofluids to 
reveal their strengths, drawbacks, biases and impact on resulting data quality. 

• To dissect global gene and miRNA expression changes after ischemic stroke and spinal 
cord injury (SCI) to reveal underlying molecular and cellular mechanisms. 
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3 Materials and methods 

3.1 Samples 
Animal samples were obtained from C57Black/6 or FVB mice, or from Wistar rats. Experimental 
stroke was induced by permanent MCAO on female mice, experimental SCI was induced by 
balloon compression lesion on male rats. For the preparation of rat serum, 1 ml of blood was 
collected from orbital plexus into 2 ml tubes (Eppendorf) using glass capillary. Blood was allowed 
to clot for 1 hour at room temperature and then centrifuged at 1000 g for 10 min. The clot was 
mechanically retracted from the tube wall before the centrifugation. Serum was transferred to 
another 2 ml tube and centrifuged a second time at 3000 g for 10 min. The supernatant was then 
transferred to cryovials (Biologix) and stored at −80 °C until analysis. All procedures involving the 
use of laboratory animals were performed in accordance with appropriate regulations and efforts 
were made to minimize both the suffering and the number of animals used. 

Human blood samples were obtained from healthy volunteers. Informed consent was obtained from 
all volunteers participating in the study. For the preparation of human serum, blood was collected 
into 8.5 ml BD Vacutainer SST II Advance tubes (Beckman Dickinson) and allowed to clot for at 
least 30 min before centrifugation at 1500 g for 10 min at room temperature. The serum was then 
transferred to 2 ml tubes (Eppendorf) and stored at −80 °C. For the preparation of human plasma, 
blood was collected from four healthy volunteers into K2EDTA BD Vacutainer tubes (Beckman 
Dickinson) and centrifuged within 30 min at 1500 g for 15 min at room temperature. The plasma 
fraction was aspirated and transferred to 2 ml tubes (Eppendorf) and centrifuged again for 15 min 
at 3000 g. The supernatant was transferred to new 2 ml tubes and stored at −80 °C until analysis. 
Standardized human plasma sample was prepared by pooling high-quality RNA eluates from four 
healthy individuals. 

3.2 Primers and synthetic oligonucleotides 
Sequences of the miRNA oligonucleotides were obtained from the miRBase (www.mirbase.org). 
RNA oligonucleotides were synthesized and quantified by Integrated DNA Technologies. DNA 
primers were synthesized and quantified by Invitrogen. Precursor miRNAs were synthesized by in 
vitro transcription from corresponding PCR products using T7 RNA polymerase (New England 
Biolabs) according to the manufacturer′s protocol. Secondary structure of the Two-tailed RT 
primers were predicted using the UNAfold web server (http://unafold.rna.albany.edu/). Spike-in 
miRNA sequences were screened in silico for homology against human, mouse and rat miRBase 
records. 

3.3 RNA isolation 
For RNA isolation from tissue, samples were homogenized using the Tissue-Lyser (Qiagen). Total 
RNA was extracted with TRI Reagent (Sigma-Aldrich) according to the manufacturer’s protocol and 
treated with TURBO DNA-free kit (Thermo Fisher). RNA quantity and purity was assessed using 
NanoDrop 2000 spectrophotometer (Thermo Fisher) and RNA integrity was assessed using 
Fragment Analyzer (Agilent). For total RNA isolation from human plasma and human and rat serum 
miRNeasy Serum/Plasma Advanced Kit (Qiagen) was used according to the manufacturer’s 
instructions. 1 μl of isolation spike-in mix containing synthetic cel-miR-54 (1e+7 copies/μl), spike-A 
(2e+5 copies/μl), spike-B (4e+3 copies copies/μl) and, when appropriate 1 μl of GlycoBlue 
Coprecipitant (15 mg/mL) (Invitrogen), per sample was added at the lysis step. RNA was eluted 
into 20 μl nuclease-free water and stored at −80 °C. 
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3.4 RT-qPCR of miRNAs 
RT reactions were performed with the qScript flex cDNA kit (Quantabio) in a total reaction volume 
of 10 μl. The reaction mixture contained either 10 ng of total RNA or synthetic miRNA template, 1× 
RT buffer, 0.05 μM RT primer, 1 μl GSP enhancer and 0.5 μl RT enzyme. RT reactions were 
incubated in a 96-well plate in a Bio-Rad CFX 1000 thermocycler for 45 min at 25°C, 5 min at 85°C 
and then held at 4°C. Reactions using TaqMan miRNA assays (Thermo Fisher) and Quantabio 
qScript miRNA system (Quantabio) were performed according to the manufacturer′s protocol 
except that the total reaction volume was scaled down to 10 μl. Reactions using miQPCR method 
were performed as described in [4]. Quantitative PCR (qPCR) was performed in a total volume of 
10 μl. One reaction contained 1x SYBR Grandmaster Mix (Tataa Biocenter), forward and reverse 
primer (final concentration 0.4 μM), and 2 μl of diluted cDNA template. qPCR was performed in a 
total reaction volume of 10 μl containing 1× SYBR Grandmaster Mix (TATAA Biocenter), 0.4 μM 
forward and reverse primer and the cDNA product diluted at least 10x. Reactions were performed 
in duplicates and incubated in a 96- or 384-well plate in a CFX 96 or CFX 384 Real Time Detection 
System (Bio-Rad) at 95°C for 30 s, followed by 45 cycles of 95°C for 5 s and 60°C for 15 s. Reaction 
specificity was assessed by melting curve analysis immediately after the qPCR. qPCR with TaqMan 
miRNA assays and Quantabio qScript miRNA system were performed according to manufacturers′ 
protocols in a total reaction volume of 10 μl. 

3.5 Library preparation and sequencing 
Small RNA libraries were prepared in technical duplicates starting from 5 ul of plasma RNA pool 
and 5 ul of miRXplore Universal Reference (2e+6 copies/ul) with six commercial kits (from Lexogen, 
Norgen Biotek, Bioo Scientific, Takara, Qiagen and Somagenics) according to each manufacturerʹs 
protocol. Libraries were quantified on the Qubit 3 fluorometer (Thermo Fisher) and Fragment 
Analyzer (Agilent). Libraries generated by the same kit were pooled and run on 5% TBE-PAGE on 
Mini-PROTEAN tetra cell (BioRad). A region representing fragments with RNA inserts of length 22 
nt ± ~10 nt (i.e. fragments corresponding to the size of miRNAs) was excised from the gel and 
purified. All libraries were sequenced in one sequencing run on NextSeq 500 high-output (Illumina) 
with 85bp single-end reads. Small RNA libraries for tissue profiling were prepared from 100 ng total 
brain RNA with RealSeq kit (Somagenics) according to manufacturerʹs protocol. mRNA libraries 
were prepared from 400 ng total brain RNA with QuantSeq 3’ Library Prep Kit FWD (Lexogen) 
according to manufacturer’s protocol. 1 μl of ERCC spike-in (c = 0.01x; Thermo Fisher) per library 
was included. This library preparation method generates stranded libraries predominantly covering 
the 3’ end of the transcript, thus producing gene-centric expression values. 

3.6 High-throughput RT-qPCR 
Samples were reverse transcribed in a reaction volume of 10 μl containing: 5 μl template (either 
125 ng total tissue RNA or 100 sorted cells after direct lysis), 0.5 μl spike-in RNA (Tataa Biocenter; 
c = 0.1x for tissues or 0.01x for sorted cells), 0.5 μl equimolar mixture of random hexamers with 
oligo(dT) (c = 50 μM), 0.5 μl dNTPs (c = 10 mM), 2 μl 5× RT buffer, 0.5 μl RNaseOUT, 0.5 μl 
Maxima H-Reverse Transcriptase (all Thermo Fisher) and 0.5 μl nuclease-free water. After the pre-
incubation step at 65°C (t = 5 min), followed by the immediate cooling on ice, the main incubation 
was performed at 25°C (t = 10 min), 50°C (t = 30 min), 85°C (t = 5 min), after which the samples 
were immediately cooled on ice. cDNA from tissue samples was diluted 4x in nuclease-free water; 
sorted cell-cDNA was left undiluted. All cDNA samples were pre-amplified immediately after RT in 
40 μl total reaction volume containing 4 μl cDNA, 20 μl IQ Supermix buffer (Bio-Rad), 4 μl primer 
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mix of 96 assays (c = 250 nM each), and 12 μl of nuclease-free water. Reactions were incubated 
at 95°C (t = 3 min) following by 18 cycles of 95°C (t = 20 s), 57°C (t = 4 min) and 72°C (t = 20 s). 
After thermal cycling, reactions were immediately cooled on ice and diluted in nuclease-free water 
(sorted cells 4x, tissue 50x). High-throughput qPCR was then performed on a 96.96 microfluidic 
platform BioMark (Fluidigm) as previously described [5]. Cycling program consisted of activation at 
95°C (t = 3 min), followed by 40 cycles of 95°C (t = 5 s), 60°C (t = 15 s) and 72°C (t = 20 s) and 
melting curve analysis (. V). 

3.7 Bioinformatic and statistical data analysis  
3.7.1 Differential gene expression analysis 
Differential gene expressions from RNA-Seq data between desired groups of samples were 
analysed in R project using DESeq2 package. 

3.7.2 Gene set enrichment analysis (GSEA) 
GSEA was performed for pairwise differential expression comparisons. First, a gene score was 
calculated for every gene using DESeq2 output as −log10(padj) and assigned a positive or negative 
sign based on direction of regulation. Genes were ranked by their gene-scores and GSEA was run 
in a weighted pre-ranked mode with 1000 permutations. Gene sets were downloaded from 
http://download.baderlab.org/EM_Genesets/. Significantly overrepresented gene sets were 
visualized as a network using Enrichment Map. In the network, each node represents gene set and 
highly overlapping gene sets are connected with edges, resulting in a tight clustering of highly 
redundant gene sets. For functional annotation of discrete sets of genes, we used Cytoscape plugin 
ClueGO with all expressed genes (16048 genes) as the background set. 

3.7.3 Cell-specific gene sets and cell type proportion estimation 
Marker genes for major cell types specifically in the mouse cortex region were taken as an initial 
reference. In order to acquire marker genes with stable expression regardless of activation states, 
we have further removed the genes previously found to be differentially expressed under similar 
conditions in studies on purified cell types. DESeq2-normalized gene expression data and the cell-
specific gene lists were used as an input into the marker-GeneProfile R package or the estimation 
of marker gene profiles (MGPs), which serve as a proxy for relative cell type proportion changes. 
Differences in expression of final marker gene sets were analyzed by linear mixed model in R 
project v3.6.0 using lmerTest package. To validate the first estimations, we employed 
CIBERSORT, a transcriptome deconvolution algorithm that uses gene expression matrix of 
individual cell types as a reference, and deconvolutes the cellular composition of mixed sample by 
linear support vector regression. We used published single-cell RNA-Seq dataset of adult mouse 
cortex as a reference gene expression signature.  

3.7.4 Weighted gene co-expression network analysis (WGCNA) 
Standard WGCNA procedure was followed to create gene co-expression networks using 
blockwiseModules function from the WGCNA R package. This analysis groups genes with highly 
correlated expression pattern across samples into modules. 

3.7.5 Motif and transcription factor enrichment analysis 
Cytoscape plugin iRegulon with default parameters was used to search for over-represented motifs 
and their associated transcription factors 500 bp upstream of the transcription start site. All genes 
from a particular WGCNA module were used as an input. 
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3.7.6 Protein-protein interaction network 
Known interactions between genes in the desired gene sets were downloaded from STRING 
database v10.5. The resulting interaction network was then visualized and analyzed in Cytoscape. 
Spectral partition-based network clustering algorithm via Cytoscape ReactomeFI plugin was used 
for network clustering. 

3.7.7 Custom gene set enrichment 
Gene sets of interest were collected directly from relevant publications. R package GeneOverlap 
v1.20 was used to calculate the odds ratio (OR) and the significance of the overlap of the gene sets 
of interest with the Fisher’s exact test. 

3.7.8 RT-qPCR data analysis 
Raw data were pre-processed with the Real-Time PCR analysis software v4.1.3 (Fluidigm); 
unspecific values were deleted based on melting-curve analysis. Further processing was done in 
GenEx v6.0.1 (MultiD Analyses AB): Cq value cutoff was applied; gDNA background was 
substracted using ValidPrime (Tataa Biocenter); data were normalized to the mean expression of 
5 reference genes (Actb, Gapdh, Ppia, Ywhaz, Tubb5); outliers were deleted (within group Grubbs 
test, p < 0.05) and a gene was considered undetected for given group if more than 75% values per 
group were missing; technical replicates (RT and FACS) were averaged; if appropriate, missing 
data were inputed on a within-group basis and remaining missing data were replaced with Cqmax 
+2 for tissue samples or Cqmax+0.5 for sorted cells.  

Temporal expression of individual genes was first analyzed with two-way ANOVA in R project v3.6., 
then differences between time-points were tested separately for each age by one-way ANOVA and 
post-hoc t-tests using emmeans package v1.3.5. P-values were adjusted with Benjamini-Hochberg 
method. Temporal expression of groups of cellular marker genes was first analyzed using linear 
mixed model in R project v3.6.0 (lmerTest package), then differences between time-points were 
tested separately for each age. Significance was tested by Satterthwaite’s method. Post-hoc 
pairwise t-tests were performed using emmeans package v1.3.5 and p-values were adjusted by 
Holm method. Temporal expression of IFN-I pathway was analyzed in similar steps using random 
slope and random intercept mixed model with 23 interferon-stimulated genes as response 
variables. IFN-I pathway expression in sorted cells was analyzed in the same way with two-factor 
design (age, injury) with interaction, using only detected ISGs per each cell type. Differential 
expression of individual genes (relative to age-matched control) in sorted cells was tested in GenEx 
v6.0.1 (MultiD Analyses AB) using ANOVA with Bonferroni’s post-hoc test for selected pairwise 
comparisons and p-values were corrected using Benjamini-Hochberg method. 
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4 Survey of results 

4.1 Development of novel RT-qPCR-based method for highly accurate miRNA 
quantification 
Sensitive and specific quantification of miRNAs is challenging. Although several methods for RT-
qPCR analysis of miRNAs have been developed, they suffer from one or more drawbacks and are 
typically available only commercially, and costly. We have therefore aimed to develop novel specific 
and cost-effective approach to quantify miRNA expression that would improve on the available 
methods.  

We have designed a RT-qPCR system that utilizes specific structured primers for reverse 
transcription and SYBR-Green-based qPCR, which we named “Two-tailed RT-qPCR”. Briefly, RT 
primers containing two binding probes (“hemiprobes”) complementary to the target miRNA joined 
by sequence forming hairpin structure were designed. We hypothesized that the introduction of 5ʹ 
binding sequence would improve sensitivity and specificity as larger part of the miRNA sequence 
will be interrogated compared to previously available methods, which target only 3ʹ region of the 
miRNA. Importance of the 5ʹ hemiprobe was assessed on synthetic miRNA oligonucleotides with 
positive results. Next, parameters of the method, including repeatability, sensitivity and dynamic 
range, ability to discriminate between highly similar miRNAs, between mature and precursor 
miRNAs, and ability to capture isomiRs were assessed and compared against three other 
previously available methods, each of which employs different technical approach. These 
experiments revealed that Two-tailed RT-qPCR matches or outperforms other methods, while 
simultaneously being less costly. In addition, Two-tailed RT-qPCR was used to profile seven 
miRNA targets in various mouse tissues, both in singleplexed and multiplexed setting and 
compared against then-industry-standard TaqMan miRNA assays (Thermo Fisher), which revealed 
good agreement of relative quantification both between single and multiplexed setting as well as 
between the two methods.  

In summary, we have developed a highly sensitive and exceedingly specific method called Two-
tailed RT-qPCR, suitable for rapid and cost-effective miRNA profiling. At the same time, Two-tailed 
RT-qPCR reflects on the current state of miRNA field and confers several advantages over current 
RT-qPCR methods, including increased specificity and ability to capture the full isomiR profile.  

For more details see:  
Androvic, P., Valihrach, L., Elling, J., Sjoback, R., and Kubista, M. (2017). Two-tailed RT-qPCR: a 
novel method for highly accurate miRNA quantification. Nucleic Acids Research 45, e144–e144 

4.2 Development of quality control tool for circulating miRNA studies 
Application of circulating miRNAs as clinical biomarkers is an exciting avenue of miRNA research. 
In our laboratory, we were interested to study circulating miRNA profiles from serum and plasma 
samples to identify potential biomarker candidates for acute spinal cord injury and its severity. 
However, the miRNA profiling workflow from liquid biopsy samples is even more challenging than 
from typical tissue or cellular samples, and proper quality control becomes even more critical. 
Because standard quantification and quality control tools are inappropriate for biofluid profiling, we 
have developed an RT-qPCR-based quality control tool for circulating miRNA studies. It is freely 
available and allows users to monitor quality of miRNA isolation, degree of inhibition, and 
erythrocyte contamination to ensure technical soundness of the obtained results.  
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Briefly, we have designed five synthetic spike-in miRNAs and eight two-tailed RT-qPCR assays 
targeting these synthetic spike-ins, and three endogenous miRNAs serving as controls for miRNA 
yield and indicators of hemolysis. We then demonstrated how the protocol can be utilized to 
optimize input volume of the sample to obtain the best yield and purity using human plasma, human 
serum and rat serum and identified optimal volumes for isolation of these biofluids with miRNeasy 
Serum/Plasma Advanced Kit (Qiagen). Next, we assessed the effect of carriers (specifically 
glycogen) on the isolation procedure and demonstrated that it improves yield and reproducibility of 
the repeated isolations. Next, we prepared hemolysis dilution series and constructed calibration 
curve to correlate hemolysis indicator based on ΔCq values (miR-23a – miR-451a) to the 
absorbance at 414 nm (wavelength indicative of hemolysis). This allowed us to establish reference 
ΔCq values that can be used to identify level of hemolysis in any new sample as long as the 
described workflow is used. 

Taken together, we have developed Two-tailed RT-qPCR panel for quality control, monitoring of 
technical performance, and optimization of miRNA profiling experiments from biofluid samples. The 
detailed experimental protocol including guide to data interpretation, and sequences of the RNA 
oligonucleotides and RT-qPCR assays is provided to the community and will hopefully contribute 
to the increased quality and reliability of the results from circulating miRNA studies. 

For more details see:  
Androvic, P., Romanyuk, N., Urdzikova-Machova, L., Rohlova, E., Kubista, M., and Valihrach, L. 
(2019). Two-tailed RT-qPCR panel for quality control of circulating microRNA studies. Scientific 
Reports 9, 4255.  

Valihrach, L., Androvic, P., Kubista, M. (2019). Circulating miRNA Analysis for Cancer Diagnostics 
and Therapy. Molecular Aspects of Medicine, https://doi.org/10.1016/j.mam.2019.10.002. 

4.3 Comprehensive performance comparison of small RNA-Seq library preparation 
methods from biofluids 
During the exploratory phase of miRNA studies, it is desirable to interrogate expression of the whole 
miRNome in several samples at once. For this purpose, small RNA-Seq is becoming a leading 
technology. At the same time, library preparation methods are known to suffer from several biases, 
and new technical solutions including usage of randomized adapters, usage of poly(A)-tailing and 
template switching or usage of single-adapter ligation and circularization were recently developed. 
In the past years, several studies compared different protocols for small RNA-seq. Although they 
provided valuable insights, they focused on the profiling of tissues and cells and typically covered 
only some of the available protocols. How various library preparation protocols perform with biofluid 
samples is not established. Therefore, we carried out comprehensive comparison of the six 
commercially available protocols for small RNA-Seq library preparation (Lexogen, Norgen Biotek, 
NextFlex, Qiagen, Takara, Somagenics) with focus on their technical biases and performance in 
biofluids. To our knowledge, this is the first study that covers all currently available approaches for 
small RNA library preparation. 

Briefly, plasma samples were obtained from healthy volunteers and RNA was isolated using 
commercial kit. Quality of the isolation procedure was assessed using previously developed Two-
tailed QC panel and RNA samples passing QC criteria were used to prepare standardized human 
plasma sample. Small RNA-Seq libraries were prepared with each kit in duplicates from human 
plasma as well as from synthetic mixture of 962 miRNAs in equimolar amount (miRXplore), which 
allowed us to assess technical biases of each method. 
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Mapping statistics for both plasma and miRXplore samples were examined, which revealed varying 
performance, particularly low mapping rate to miRNAs for the polyadenylation-based kit from 
Takara and surprisingly low mapping rate for all kits in human plasma. Next, ligation bias was 
assessed for each kit on the miRXplore samples as the fold-deviation from the expected number 
of reads for each miRNA. This analysis revealed that all kits suffer from substantial ligation bias, 
as percentage of miRNAs that can be considered unbiased ranged from 13.1% for Norgen kit to 
50.7% for Takara kit. Notably, single-molecule ligation and circularization approach from 
Somagenics, that was recently claimed to be bias-free [6] showed only 21% unbiased miRNAs and 
was outperformed in this metric by three other kits. We also assessed the contribution of ligation 
bias vs PCR bias through UMIs that are incorporated in the Qiagen kit. We found that ligation is a 
dominant source of bias (ligation bias explained more than 75% variability for 518 out of 962 
miRNAs), although for approximately quarter (227) of miRNAs, PCR is significant contributor to 
bias too and explains more than half of their variation. We then assessed how the sequencing 
reads are allocated to the detected spectrum of miRNAs for each kit and how sensitive for miRNA 
detection is each kit at various sequencing depths. We found that few most abundant miRNAs 
consumed majority of the reads in all kits and that the kits that detected most miRNAs at all 
sequencing depths in human plasma were Takara and NextFlex. Arguably, this is due to their lower 
rates of bias, which causes that reads are progressively allocated to the larger spectrum of 
miRNAs. To examine which kit quantified abundances in plasma samples most truthfully, we have 
performed absolute quantification of 19 miRNAs in our plasma samples by Two-tailed RT-qPCR 
and compared absolute quantities to abundances reported by each kit. Takara RNA-seq expression 
was closest to the true expression (Pearson r = 0.94), followed by Somagenics, Qiagen and 
NextFlex. Lexogen and Norgen data showed lower correlation (Pearson r = 0.81 and 0.73). In order 
to compare kits at the level of individual miRNAs and identify which miRNAs are most affected by 
kit-specific technical performance, we clustered kits based on miRNAs with highest differential 
expression between all kits. Such clustering of miRXplore samples showed that measured 
expression was similar in kits with similar technical procedures.  

In summary, this study provides comprehensive overview of the performance of all currently 
available technical approaches for library preparation from biofluids and can serve as a guide for 
selection of optimal kit for each experiment. In addition, it contributes to our understanding of 
various technical biases, which is important for proper interpretation of the data and potential 
development of novel wet-lab protocols as well as in silico correction algorithms and data analysis 
pipelines. 

For more details see: 
Androvic, P., Benesova, S., Kubista, M., Valihrach, L. (2020). Performance comparison of small 
RNA-Seq library preparation methods for biofluid samples. Manuscript in preparation 

4.4 Decoding the transcriptional response to ischemic stroke in young and aged mice 
The previously described work covers the laboratory methodology for quantitative analysis of 
miRNA ranging from pre-analytical aspects to the establishment of methods for low and high-
throughput measurements. In addition to this work, we reviewed the current state of circulating 
miRNA analysis. 

In a biological setting, we apply miRNA profiling and complementary technologies (mRNA-Seq, 
single-cell RNA-Seq, high-throughput RT-qPCR) to study gene expression changes and gene 
regulatory networks underlying CNS injuries, such as spinal cord injury and ischemic stroke. For 
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similar biological questions, miRNA profiling alone provides only limited picture, considering that 
miRNAs have pleiotropic roles, and changes in their mRNA targets have to be inferred indirectly. 
Depending on the goal of biological experiments, direct mRNA profiling or integrative profiling of 
mRNA and miRNA expression from the same samples can provide more accurate picture of the 
gene expression changes. Therefore, we first focused on the mRNA analysis with the perspective 
of integrated analysis in the next study. 

Ischemic stroke is one of the leading causes of mortality and major healthcare and economic 
burden. It is a well-recognized disease of aging, yet it is unclear how the age-dependent 
vulnerability occurs and what are the underlying mechanisms. To address these issues, we 
performed a comprehensive mRNA-Seq analysis of aging, ischemic stroke and their interaction. 
Briefly, we have modelled ischemic stroke in 3-month old and 18-month old mice and RNA-
sequenced the brain of injured (at 3 days after stroke) and age-matched control mice. We have 
analyzed the gene expression changes with normal aging and after ischemic stroke on the level of 
genes, gene ontology (GO) terms, pathways and custom gene sets. These analyses revealed 
activation of glial subpopulations with normal aging and increased inflammatory environment after 
stroke in aged mice. In order to provide cell-specific context to the observed transcriptional 
changes, we assessed relative changes of the cell type proportions by computational deconvolution 
of the RNA-Seq data. This revealed increased infiltration of peripheral leukocytes and greater 
damage to Parvalbumin-positive interneurons in aged mice after stroke. To capture the full extent 
of expression trends from systems perspective, we complemented our results with weighted co-
expression network analysis (WGCNA). WGCNA recapitulated results of cell type proportion 
estimates in an unsupervised manner and highlighted amplified activation of module of 
inflammatory and interferon-stimulated genes (ISGs).  

It has been reported that activation of type-I interferon (IFN-I) signaling is detrimental to stroke 
outcome in young mice. To explore the IFN-I signaling in detail, we mapped our RNA-Seq data to 
the published IFN-I regulatory network, which revealed age-dependent activation of one of the 
signaling submodules and suggested that age-dependent amplification of ISG expression occurs 
through action of canonical regulators including Stat1 and Irf9. To reveal temporal changes of 
interferon pathway, we analyzed expression of ISGs at several time-points after stroke by 
microfluidic RT-qPCR in both age groups. This revealed activation of IFN-I pathway around 1 day 
post-stroke, which prevailed at least until 14 days and was higher in aged mice. Because little was 
known about cell types that contribute to the IFN-I signaling post-stroke, we FACS-purified 
endothelial and three glial cell populations and analyzed their expression of ISGs. Our cell-specific 
analysis revealed that not only microglia, but also oligodendrocytes heavily induce IFN-I signaling 
following stroke and all cell types converge on higher ISG expression in aged mice, although their 
individual responses differ. In summary, this study provides detailed insights into transcriptional 
response to stroke in young and aged mice and may contribute to our understanding of the interplay 
between stroke pathology and aging. 

For more details see: 
Androvic, P., Kirdajova, D., Tureckova, J., Zucha, D., Rohlova, E., Abaffy, P., Kriska, J., Anderova, 
M., Kubista, M., and Valihrach, L. (2019). Decoding the transcriptional response to ischemic stroke 
in young and aged mouse brain. BioRxiv 769331.  
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4.5 mRNA-miRNA regulatory networks in CNS injury (unpublished results) 
Several studies have implicated in vitro and in vivo effects of miRNAs after CNS injury [7, 8]. After 
previously exploring global mRNA changes at single time-point after experimental stroke, we 
focused on understanding of temporal alterations of mRNA-miRNA regulatory networks following 
CNS injury. Two models of CNS injuries have been employed: middle cerebral artery occlusion 
(MCAo) on mice to model ischemic stroke and spinal cord compression lesion on rat, to model 
spinal cord injury (SCI). Groups of injured and sham operated control animals have been sacrificed 
at different time points after injury: 3h, 7h, 24h, 3d and 7d. RNA from each sample was used for 
preparation of mRNA and small-RNA sequencing libraries, which were sequenced on Illumina 
NextSeq instrument. The detailed analysis is ongoing and here we report the initial results from the 
SCI model. Samples were clustered using PCA based on mRNA and miRNA expression 
separately. In both cases, naive controls cluster together with sham samples and injured samples 
clearly separate from controls indicating widespread changes in expression of both RNA modalities 
after injury. mRNA expression more clearly separated individual time-points, while miRNA 
expression separated injured samples into early (3h, 12h, 24h) and later (3d, 7d) time-points, 
indicating that overall post-transcriptional regulatory response is lacking behind mRNA changes 
and is lower in magnitude during early phase. 

Next, we used WGCNA to cluster genes with similar expression profiles into modules. Several gene 
modules showing various patterns of differential expression with respect to control were identified. 
We then searched for significant enrichment of cell-specific markers in the modules and found that 
several of them are associated with single cell type, and likely reflect temporal changes of the 
particular cell type or cell-specific expression. We also annotated selected modules functionally by 
GO and pathway enrichment analysis. This revealed time-dependent changes in wound healing 
processes upon SCI. Positive regulation of wound healing was associated mainly with brown 
expression module with continuously increasing expression, while green-yellow module associated 
with negative regulation of wound healing was downregulated in early time-points and then its 
expression started to increase after 12h post injury. 

Clustering of the top differently expressed miRNAs identified in total 135 miRNAs with distinctive 
profiles in each time-point. Similarly to mRNA expression, the miRNA expression variance is driven 
partly by cellular composition. We identified several cell-specific miRNAs corresponding to the 
distinct profiles including miR-142 (microglia), miR-124 and miR-129-2 (neurons), miR-144 and 
miR-451 (hematopoietic lineage), miR-221 and miR-27a (endothelial cells) or miR-92b (astrocytes). 
These initial results point to significant reorganization of both cellular composition and expression 
of mRNAs and miRNAs after SCI and highlight several interesting avenues for further exploration 
such as expression changes of wound-healing-associated genes. 

As a next step, we aim to perform in silico integrative analysis of miRNA-mRNA expression to 
elucidate roles of miRNAs on their respective targets. However, the miRNA-mRNA correlative 
relationship may be confounded by the expression variation due to changing cellular composition. 
We are therefore developing procedures to correct bulk tissue gene expression as well as miRNA 
expression data for cellular composition before parsing them to integrative analysis algorithms in 
order to better reveal true targeting relationships. These analyses are subject to ongoing research. 
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5 Conclusion 

This thesis deals with methods and workflows for targeted as well as global quantitative miRNA 
analysis and applies them together with global measurements of mRNA expression to understand 
pathophysiological responses after acute CNS injuries. 

The most important outcomes of the work are summarized below: 

• Novel RT-qPCR method called “Two-tailed RT-qPCR” for accurate measurement of miRNA 
expression in cells, tissues and biofluids was developed.  

• Two-tailed RT-qPCR was utilized to develop quality control protocol allowing monitoring of 
technical workflow of miRNA expression studies, particularly studies of circulating miRNAs 
from biofluid samples. 

• Methods for small RNA-Seq library preparation were comprehensively evaluated in a 
benchmarking study with focus on biofluid samples and understanding of technical biases 
distorting the small RNA-Seq data.  

• Current state of the art of technical aspects of circulating miRNA analysis was reviewed. 

• Global RNA-Seq analysis provided detailed insights into the impact of stroke, aging and 
their interaction on genome-wide expression profiles. 

• Paired mRNA and miRNA profiling of neural tissue revealed temporal changes to the 
transcriptome and miRNome after SCI. 

• Future detailed integrative analysis will reveal impact of post-transcriptional regulation of 
miRNAs on the mRNA targets after SCI and stroke. 

In summary, this thesis provides novel tools for the field of miRNA analysis and contributes to the 
detailed understanding of the technical performance of small-RNA-Seq methods including various 
biases that hamper the accurate quantification. These results may serve for the miRNA research 
community to obtain reliable results from the quantitative studies and guide the choice of the small 
RNA-Seq platform. They can be utilized for the development of improved small RNA-Seq protocols 
and computational methods aimed at correction of small RNA-Seq data. In addition, global 
analyses of mRNA and miRNA expression reported in this thesis may contribute to our 
understanding of molecular and cellular mechanisms underlying CNS injuries such as stroke and 
spinal cord injury and open new avenues for the search for future therapeutic strategies. 
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8 Súhrn (Summary, in Slovak) 

MikroRNA (miRNA) sú krátke nekódujúce molekuly RNA, ktoré plnia dôležitú úlohu ako negatívne 
regulátory génovej expresie na posttranskripčnej úrovni. Deregulácia miRNA je implikovaná v 
mnochých fyziologických ako aj patologických procesoch a preto sú tieto molekuly stredobodom 
záujmu ako potenciálne terapeutiká. Navyše, objav extracelulárnych, cirkulujúcich miRNA v 
telesných tekutinách znamenal, že miRNA by mohli slúžiť ako nové, neinvazívne klinické 
biomarkery. Všetky tieto aplikácie si vyžadujú metódy pre presnú a citlivú kvanitfikáciu hladín 
miRNA v rôznych vzorkách. Avšak spoľahlivá kvantifikácia miRNA je pomerne náročná, vzhľadom 
na ich vlastnosti ako je krátka dĺžka, ako aj kvôli ďalším technickým faktorom ako je variabilita 
izolácie a pod.  

Táto práca sa zameriava na vývin nových metód a nástrojov pre vylepšenie kvantitatívnej analýzy 
miRNA. Cieľom práce bolo vyvinúť novú špecifickú a cenovo prijateľnú metódu pre kvantifikáciu 
miRNA, založenú na technológii RT-qPCR. Ďalej, vyvinúť protokol, ktorý by umožnil jednoduchú 
optimalizáciu postupu kvantitatívnej miRNA analýzy a tiež rutinné testovanie kvality vzoriek, najmä 
problematických vzoriek ako sú telesné tekutiny. Ďalším cieľom bolo komplexné porovnanie 
komerčne dostupných metód pre miRNA sekvenovanie, ktoré by umožnilo nájsť najvhodnejšiu 
metódu pre sekvenáciu z telesných tekutín a tiež lepšie pochopiť jednotlivé technické nedostatky, 
ktoré vplývajú na kvalitu dát. Posledným cieľom bolo aplikovať takto získané poznatky a techniky, 
spolu s príbuznými technikami pre globálne profilovanie génovej expresie, v zvieracích modeloch 
poškodenia centrálneho nervového systému (CNS) za účelom lepšieho porozumenia 
molekulárnych a bunkových zmien v poškodenom tkanive. 

Najskôr sme navrhli novú RT-qPCR metódu pre kvantifikáciu miRNA zvanú „Two-tailed RT-qPCR“. 
Je založená na špecifických primeroch pre reverznú transkripciu. Tieto sú zložené z dvoch 
hybridizačných prób (“hemiprób”), ktoré sú navzájom spojené DNA sekvenciou tvoriacou 
sekundárnu vlásenkovú štruktúru. Predpokladali sme, že pridanie druhej väzobnej hemipróby na 
5´ koniec miRNA zvýši špecificitu a senzitivitu oproti dostupným technológiám. Tento predpoklad 
sme otestovali s pozitívnym výsledkom na syntetických miRNA templátoch. Ďalej sme novú metódu 
po jej optimalizácii porovnali s tromi dostupnými RT-qPCR metódami. Každá z nich je založená na 
inom princípe. Vyhodnotenie parametrov ako senzitivita, špecificita, reproducibilita, dynamický 
rozsah či schopnosť zachytiť spektrum miRNA variánt ukázalo, že naša metóda funguje rovako 
dobre, alebo lepšie ako predtým dostupné techniky a zároveň je cenovo výhodnejšia. Ďalej sme 
našu metódu použili na profilovanie niekoľkých miRNA v reálnych biologických vzorkách a 
porovnali výsledky s komerčnou technológiou, čo ukázalo dobrú zhodu tak v jednoduchom ako aj 
v “multiplex” formáte. 

Po tom čo sme vyvinuli nový RT-qPCR systém sme sa zamerali na vývin protokolu umožňujúceho 
monitorovanie kvality vzoriek a laboratórneho postupu miRNA štúdií. Konkrétnym zameraním bola 
kontrola kvality pre profilovanie telových tekutín ako plazma a sérum, ktoré sú obvzlášť 
problematické. Navrhli sme päť syntetických miRNA spike-in oligonukleotidov a osem Two-tailed 
RT-qPCR esejí, ktoré cielia tieto syntetické miRNA ako aj tri endogénne miRNA ciele. Celkovo 
exogénne spike-in spolu s endogénnymi cieľmi umožňujú kontrolovať výťažok miRNA izolácie, jej 
variabilitu, prítomnosť inhibítorov enzymatických reakcií, variabilitu RT-qPCR a tiež úroveň 
hemolýzy vo vzorkách. Pomocou takto vytvoreného panelu sme demonštrovali optimalizáciu 
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izolačného protokolu. Ďalej sme identifikovali najlepší vstupný objem ľudského a potkanieho séra 
a ľudskej plazmy do RNA izolácie pomocou komerčného kitu a demonštrovali sme užitočnosť 
pridania polyakrylamidu ako nosiča minimalizujúceho variabilitu izolácie. Panel pre kvalitu kontroly, 
ktorý sme vytvorili je spolu s detailným protokolom a návodom na interpretáciu dát voľne dostupný 
pre vedeckú komunitu. 

Počas exploratívnej fázy miRNA štúdií je často žiadúce získať globálny profil všetkých miRNA 
prítomných vo vzorke. Za týmto účelom je čoraz viac využívanou metódou sekvenovanie malých 
RNA. Protokoly pre prípravu knižníc z malých RNA sú však známe tým, že sú zaťažené rôznymi 
technickými nedostatkami. V našej štúdii sme sa zamerali na porovnanie technického výkonu 
všetkých v súčasnosti dostupných komerčných kitov pre sekvenovanie malých RNA, konkrétne 
s cieľom otestovať ich výkon so vzorkami z telesných tekutín ako krvná plazma. Pripravili sme 
knižnice zo štandardizovanej vzorky ľudskej plazmy ako aj zo syntetického ekvimolárneho mixtu 
962 miRNA, čo nám umožnilo vyhodnotiť jednak výkon kitov s reálnymi vzorkami plazmy a jednak 
spoľahlivo vyhodnotiť mieru jednotlivých technických chýb vznikajúcich počas procesu prípravy 
knižníc. Pre každý kit sme vyhodnotili rôzne paramete ako senzitivita, ligačná a amplifikačná chyba, 
presnosť atď. Naše výsledky poskytujú komplexný a detailný pohľad na technický výkon 
jednotlivých kitov a môžu slúžiť ako návod pre výber správnej metódy, pre lepšie pochopenie chýb 
a toho ako vplývajú na dáta, ako aj na vývin nových vylepšených protokolov. 

Predošlá práca pokrýva technickú metodiku kvantitatívnej analýzy miRNA. Tieto techniky sme ďalej 
využili spolu s globálnym profilovaním génovej expresie pomocou RNA sekvenovania na štúdium 
zmien expresie po poškodení CNS, konkrétne po ichémii mozgu a po poranení miechy. Na myších 
a potkaních modeloch sme indukovali jednotlivé poškodenia a výsledné sekvenačné dáta sme 
analyzovali škálou komputačných techník ako diferenciálna expresia na úrovni génov, termínov 
génovej ontológie, signálnych dráh a vybraných génových setov a tiež doplňujúcimi technikami ako 
identifikácia ko-exprimovaných génových modulov a dekonvolúcia bunkových populácií. Naše 
analýzy poukázali na signifikantnú reorganizáciu expresie mRNA ako aj miRNA a tiež na zmeny 
zastúpenia jednotlivých bunkových populácií. Identifikovali sme konkrétne signálne dráhy, ktoré 
môžu hrať rolu v progresii poranenia (napríklad interferón typu jeden) a poukázali na potenciálne 
regulátory. Nasledovať bude detailnejšia integrovaná analýza mRNA a miRNA expresie vo 
viacerých časoch po poranení. 

Záverom, táto práca prináša nové metódy a nástroje pre analýzu expresie miRNA a prispieva 
k detailnému poroziumeniu technických parametrov metód pre sekvenovanie miRNA. Tieto 
výsledky môžu slúžiť vedeckej komunite na získanie spoľahlivých dát a slúžiť ako návod pre 
informovanú voľbu metódy pre miRNA sekvenovanie, či pre vývin nových metód. Okrem toho, 
výsledky globálneho profilovania mRNA a miRNA expresie po poranení CNS môžu prispieť 
k lepšiemu porozumeniu mechanizmov poranenia nervového tkaniva. 


