Logické a fyzikální aplikace ortosvazů – Bc. Tomáš Cícha
Bc. Tomáš Cícha
Diplomová práce
Logické a fyzikální aplikace ortosvazů
Logical and physical applications of ortholattices
Anotace:
Práce se zabývá studiem svazů, které vznikají jako algebraické reprezentace logik kvantově-mechanických systémů. Ukazuje se, že těmito svazy jsou množiny podprostorů Hilbertových prostorů a tyto tvoří podtřídu třídy ortosvazů. Prezentovány jsou zde především výsledky, kterých bylo dosaženo ve snaze nalézt úplný popis této podtřídy v jazyce teorie svazů. Na příkladech je naznačeno, jak lze pomocí abstraktních …víceAbstract:
This thesis studies lattices that arise as algebraical representations of logics of quantum mechanical systems. It is shown here, that those lattices are sets of subspaces of Hilbert spaces, and that they form certain subclass in the class of ortholattices. Presented here are results achieved in efforts to describe this subclass entirely by means of lattice theory. Examples are used to indicate, how …více
Jazyk práce: čeština
Datum vytvoření / odevzdání či podání práce: 12. 5. 2011
Identifikátor:
https://is.muni.cz/th/c74o0/
Obhajoba závěrečné práce
- Obhajoba proběhla 15. 6. 2011
- Vedoucí: Mgr. David Kruml, Ph.D.
- Oponent: doc. RNDr. Jan Paseka, CSc.
Plný text práce
Obsah online archivu závěrečné práce
Zveřejněno v Theses:- světu
Jak jinak získat přístup k textu
Instituce archivující a zpřístupňující práci: Masarykova univerzita, Přírodovědecká fakultaMasarykova univerzita
Přírodovědecká fakultaMagisterský studijní program / obor:
Matematika / Matematika s informatikou
Práce na příbuzné téma
-
Testing of IBM quantum computers with focus on Bell inequalities
Tomáš Terem -
Nekomutativní kvantová mechanika
Michal Pazderka -
Potenciály a geometrie v kvantové mechanice
František Martínek -
Podpora výuky úvodního kurzu kvantové mechaniky
Patrik KRIEK -
Algebraic models for quantum logic
Kadir Emir -
Efektové algebry a kvantové logiky
Roman Štěpánek -
Využití kvantové informace v analýze textu
Martin Kössler -
Kvantová logika
Petr DVOŘÁK