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Abstract

In the last decades, species distribution models (SDMs) have been widely
applied to model species-environment relationships, often involving
environmental variables (based on remotely sensed data) and species
occurrences (based on field observations). Although these models
are now routinely used, they still have critical limitations, especially
those related to spatial data quality issues. However, studying the
influence of varying spatial data quality on SDMs using real species
would be extremely difficult as a real species itself brings additional
(often unknown) uncertainties into the equation. For example, the
real species prevalence or response to environmental gradients may
be unknown or only approximate, as well as the magnitude of data
error. Virtual species approach, on the other hand, allows researchers
to isolate certain aspects of spatial data quality and to test its effect on
SDMs. This thesis aims to test how different species characteristics and
the quality of both species and environmental data affect SDMs and
to answer the question whether species data or environmental data of
high accuracy may be replaced by lower accuracy data. Specifically, the
thesis addresses: 1) the influence of species characteristics (e.g. species
response to environmental gradients, species prevalence, niche breadth);
2) the effect of species data quality (e.g. sample size, sampling bias,
positional error); 3) the interactions between species characteristics
and diverse data quality and 4) how different sources of environmental
data (e.g. digital elevation models), its processing and subsequent use
in modeling affect SDMs. Overall, the results showed that all these
factors have a considerable effect on the output models. Therefore, it is

always critical to evaluate the quality of input data with respect to their



source or the way of their processing. In the case of previously gathered
species and environmental data where the accuracy is questionable or
unknown, scientists should be cautious when interpreting their results.
Where new surveys are undertaken, it is recommended to pay attention
to data collection techniques to minimize the data error (e.g. positional
error in species occurrences) and to help avoid its negative effect on
SDMs. Additionally, it has been shown that there is a high level of
interactions among individual species characteristics and the influence
of various data quality on SDMs. Ignoring this may lead to misleading

outcomes and conclusions.



Abstrakt (Czech)

Modely druhové distribuce jsou v poslednich desetiletich bézné pouzivany
k modelovani vztahtt mezi druhem a prostredim, ve kterém se vysky-
tuje. Tyto modely jsou zalozeny na environmentalnich proménnych
(Casto ziskanych pomoci metod déalkového pruzkumu zemé, DPZ) a
datech o vyskytu druht ziskanych predevsim pri terénnich pozorovanich.
Prestoze jsou dnes tyto modely pouzivany rutinné, stale narazeji na
mnohd omezeni, a to predevsim na ta spojené s kvalitou vstupnich
dat. Studovat vliv rtizné kvality prostorovych dat na modely druhové
distribuce s pouzitim redlnych druhovych dat je nicméné velmi obtizné,
jelikoz realné druhy vnaseji do celého procesu radu dalsich, casto
neznamych faktort, které mohou vysledné modely ovlivnit. U redl-
nych druhii se miize stat, ze napriklad nezname prevalenci nebo reakci
na zmeény v prostredi, ve kterém se studovany druh vyskytuje, stejné
tak jako casto nezname chybovost pouzitych druhovych dat. Oproti
tomu pouziti virtualnitho druhu umoznuje védctim izolovat specifické
aspekty spojené s kvalitou prostorovych dat a studovat jejich vliv na
vysledné modely. Cilem této disertacni prace je testovat vliv riznych
druhovych charakteristik a kvality prostorovych dat (druhovych i en-
vironmentélnich) na modely druhové distribuce a zodpovédét otazku,
zda a za jakych podminek je mozné nahradit presna prostorova data
témi s nizsi presnosti. Specificky se tato diserta¢ni prace zabyva: 1)
vlivem druhovych charakteristik (napt. reakci druhu na environmentélni
gradient, druhovou prevalenci, §itkou niky); 2) vlivem rizné kvality
druhovych dat (napt. velikosti vzorku, nadmérnym sbérem dat v
urcitych lokalitach, polohovou chybou); 3) interakcemi mezi druhovymi

charakteristikami a rtznou kvalitou prostorovych dat a 4) otézkou,



jak riuzné zdroje environmentédlnich dat (napt. digitalnich vyskovych
modeli), jejich zpracovéni a nasledné vyuziti ovliviiuji kvalitu modeli
druhové distribuce. Vysledky této prace ukazuji, ze vSechny tyto faktory
maji na vysledné modely vyznamny vliv. Proto je nezbytné pred samot-
nym modelovanim kriticky zhodnotit kvalitu vstupnich prostorovych
dat s ohledem na jejich zdroj nebo zpusob zpracovani. V pripadé vyuziti
druhovych nebo environmentalnich dat, ktera byla sbirana v minulosti
a jejichz kvalita je neznamé nebo pochybna je nutné vysledné modely
interpretovat obezietné. V pripadé sbéru novych dat, jak druhovych,
tak environmentalnich, je nutné zamérit se na spravnou metodiku sbéru
s cilem minimalizovat jejich prostorovou chybovost (napiiklad polo-
hovou chybu), kterd negativné ovliviiuje vysledné modely. Déle bylo
prokazano, ze vliv riizné kvality prostorovych dat na modely druhové
distribuce se méni v zavislosti na odlisnych druhovych charakteristikach
a ignorovani téchto interakci muze vést k zavadéjicim vysledkiim a

Zaveérum.
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Chapter 1

Thesis Preface

1.1 Foreword

Biodiversity has been decreasing at a rate unprecedented in human
history and its conservation should be the world s highest priority. A
proper understanding of the relationships between species and their
environment represents a fundamental prerequisite for effective con-
servation actions. Species distribution models (SDMs), also known as
species niche models or climatic models have, become a powerful tool
helping scientists to understand such relationships. With the increasing
availability of both species and environmental data in the last two
decades, the implementation of SDMs has dramatically increased. How-
ever, despite this boom, the question of how such models are affected
by the quality of spatial data has been only poorly investigated. We
do neither know how SDMs based on data of poor quality may interact
with species characteristics, nor how this may vary at different spatial
scales. This lack of knowledge offers a broad field of research opportu-
nities. Besides, handling spatial data through geographic information
systems is often naive (e.g., different approaches to deriving terrain
attributes derived from DEM are used), which in turn hampers the
repeatability of studies. The presented thesis partially answers some
unresolved issues related to interactions data and species character-

istics and provides guidelines for appropriate spatial data handling.
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Specifically, positional error in species occurrences, sampling bias and
sample size across different species characteristics (i.e. prevalence, niche
breadth), and the influence of various sources of environmental data

and their processing on SDMs were explored.

1.2 Scientific motivation

Species distribution models (SDMs) use species occurrences and envi-
ronmental data to produce a set of rules explaining the environmental
space where species were collected or observed. In the last few decades,
SDM-related methodological studies have been mostly focused on choos-
ing appropriate modeling algorithms or evaluation metrics. However, to
my surprise, the effect of varying data quality on SDMs has remained
mostly uncharted for a long time, assuming that the input data were
free of spatial error. Nonetheless, all spatial data inherently contain a

certain level and type of spatial errors.

When I was going through prior studies focusing on the effect of varying
quality of spatial data on SDMs, I realized several things. Firstly,
studies that focused solely on the quality of species data often yielded
contradictory conclusions. Secondly, prior studies mostly did not include
interactions between various ecological characteristics of species and
differences in data quality. Thirdly, I began to realize that many studies
on SDMs use data non-critically, without the necessary GIS knowledge.
Therefore, 1 personally believe that it is necessary to demonstrate,
quantify and understand the consequences of using spatial data of
varying quality in SDMs. Such research can lead to much-needed
improvements in the current methodological standards for SDMs and
its conclusions should be used for practical nature conservation and

biodiversity protection.
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1.3 Thesis structure

The thesis consists of four published studies and is divided into 2 Parts
and 8 Chapters. The Part I contains a preface and general introduction
into the field of species distribution modeling. The Part II consists of
individual published studies:

o Study I: How do species and data characteristics affect species

distribution models and when to use environmental filtering?

e Study II: The effect of positional error on fine scale species distri-

bution models increases for specialist species

o Study III: On the use of global DEMs in ecological modelling and

the accuracy of new bare-earth DEMs

o Study I'V: Potential pitfalls in rescaling digital terrain model-derived

attributes for ecological studies.
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Chapter 2

Objectives of the Thesis

The aim of this thesis is to test how different species characteristics
and quality of species and environmental data affect SDMs and to
answer the question whether species and/or environmental data of
high accuracy may be replaced by those of lower accuracy. Specifically,
the thesis addresses: 1) the influence of species characteristics (e.g.
species response to the environmental gradient, species prevalence,
niche breadth); 2) the effect of species data quality (e.g. sample size,
sampling bias, positional error); 3) the interactions between species
characteristics and diverse data quality and 4) how different sources of
environmental data (e.g. digital elevation models), its processing and

subsequent use in modeling affect SDMs.
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Chapter 3

Theoretical Background

3.1 Introduction

Biodiversity is declining throughout the world and understanding of
how species are distributed in space and time is crucial for mitigat-
ing that decline and answering conservation questions at hand. Over
the last few decades, this effort was facilitated by advances in vari-
ous modeling techniques. The objective of modelling is to relate an
in situ response variable (e.g. species occurrences) and explanatory
variables (environmental variables, often derived by remote sensing) to
describe the relationship between them or to predict unknown values of
the response variables characterizing biodiversity (Ferrier et al. 2017).
Species distribution models (SDMs) represent the most frequently used
tool for such analyses. Although these models are now routinely used,
they still have critical limitations, especially those related to spatial
data quality (Aratjo et al. 2019).

The use of accurate spatial data (e.g. Duputié et al. 2014, Guillera-
Arroita et al. 2015, Aratjo et al. 2019, Gabor et al. 2019, 2020) is
an elementary prerequisite for creating a valid SDMs. Unfortunately,
there are many inherent sources of uncertainty of (both species and
environmental) input data that can affect the model performance.
Species data may be affected for example by sampling bias (Isaac and
Pocock 2015, Boria et al. 2014), by low sample size (Pearce and Ferrier

2000, Stockwell and Peterson 2002), by positional error (Johnson and
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Gillingham 2008, Fernandez et al. 2009, Osborne and Leitao 2009) or
limited by scale (Simova et al. 2019). Similarly, environmental data can
be negatively affected by positional error (Osborne and Leitao 2009), by
its origin or type (Moudry et al. 2018), by the way of data processing
(Moudry et al. 2019b) or resolution (Gottschalk et al. 2011, Turner
et al. 2019). All these play a role when modelling species distribution

and were more or less explored.

In addition, the performance of SDMs is complicated by various spa-
tial (e.g. prevalence or range size) and ecological (e.g. niche breadth)
characteristics of the studied species (Luoto et al. 2005, Bulluck et al.
2006, McPherson and Jetz 2007, Evangelista et al. 2008, Chefaoui et al.
2011, Connor et al. 2018). These characteristics are usually studied
separately or in combinations of two or three (but see Thibaud et al.
2014, Fernandes et al. 2018, Liu et al. 2019) and rarely together with
data quality issues. Therefore, studies addressing both are particu-
larly valuable as they help understand interactions between ecological
characteristics of the studied species and issues related to poor data

quality.
Studying the influence of different spatial data quality and its inter-

actions with various species characteristics on SDMs with real species
is challenging. For example, species response to the environmental
gradient, its prevalence or rarity rate is unknown. In addition, the
magnitude of error in the data is often unknown or approximate. The
use of a virtual species approach, on the other hand, facilitates the
isolation of certain aspects of spatial data quality and species character-
istics and testing their effects on SDMs (Zurell et al. 2010). Therefore,
this approach is increasingly used for evaluating the effects of data
inaccuracies on model performances (see for example Meynard et al.
2019).

The presented thesis focuses on answering the question of how differences
in the quality of spatial data and in its processing, together with

differences in species characteristics, affect species distribution models.
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3.2 Species distribution models

Understanding of the relationship between species and its environment
is an ongoing effort of ecologists and biogeographers, representing one
of the cornerstones of these fields (see for example Humbold von and
Bonpland 1807). For this purpose, species and environment data from
in situ (i.e. field) observations are combined and used for explanatory
studies. The first experiments on modeling species-environment rela-
tionship can be dated back to the end of 1950s (e.g. Hairston 1959,
Neyman and Scott 1959, MacArthur 1960). The development of com-
puting technology, geographic information systems, remote sensing and
various statistical methods (with the greatest boom in the mid-1980s)
led to attempts to use more complex species-environment combinations
and to the first experiments with modeling species distribution (predic-
tive studies; see review by Ferrier et al. 2017) (see Figure 3.1 for SDMs

workflow).

Environmental data

-
=

‘ -
B
Model -~
I 3 s -
g .
J et 17 Lo
Joro v -
L au - Probability of
] : ._E'"M species distribution
b, -.—_p—//

Species data

Figure 3.1 SDMs workflow. Species data from in situ field observations
and various environmental data (for example derived from remote sensing)
are combined to study species-environment relationships or to predict species
distribution in geographical space.

29



As mentioned above, the objective of such modelling is to relate an
in situ response variable (e.g. species distribution) and explanatory
variables (e.g. remotely sensed environmental data) in order to describe
the relationship between these two or to predict unknown values of
the biodiversity response variable (Ferrier et al. 2017). Later, these
models became known as ecological niche models (ENMs) or, more
often, species distribution models (SDMs). They are widely used, for
example, in determining locations potentially threatened by invasive
species or for studying the impact of climate change on biodiversity

(see Table 3.1 for more examples).

Table 3.1 Examples of various uses of species distribution models.

Assessing species invasion Battini et al. 2019, Guan et al. 2020

Della Rocca et al. 2019, Sun et al.
2020

Assessing the impact of climate
changes on species distributions
Modelling species assemblages from  Zurell et al. 2020, Norberg et al. 2019
individual species predictions
Quantifying the environmental niche Chen et al. 2019, Manzoor et al. 2020
of species

Escalera-Vazquez et al. 2018, Mc-
Cune 2019

Suggesting unsurveyed sites with a
high potential of occurrence for rare
species

Supporting conservation planning

Testing biogeographical, ecological
and evolutionary hypotheses

Filer et al. 2020, Préau et al. 2020

Soley-Guardia et al. 2019, Dufresnes
et al. 2020

Based on Guisan and Thuiller 2005

SDMs can be classified into three

and analytical models. When modeling species distribution, two out

categories: mechanical, empirical

of three desirable model characteristics (reality, precision and general-
ity) can be simultaneously optimized when a model is developed and
refined (Guisan and Zimmermann 2000). This fact is still generally ac-

cepted because no model can simultaneously achieve a high performance
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(precision), be based on natural processes (reality) and be universally

applicable (see Figure 3.2).

Reality

empirical

phenomenological

(ecological)
statistical

mechanistic

physiological
(fundamental)
proces-based

Precision l Generality

analytical
mathematical
theoretical

Figure 8.2 Classification of species distribution models based on their intrinsic
properties (Guisan and Zimmermann 2000).

The process of modeling species distribution could be divided into three
interconnected parts (Austin 2002, 2007, Williams et al. 2012):

« conceptual model based on ecological theory
o data model

e statistical model

The formulation of the conceptual model includes defining the objec-
tives of modeling, postulating working hypotheses and, in particular,
deciding what environmental data are relevant for studied species. The
data model part should be focused on both species (response) and
environmental (explanatory) data. For species data, their type (i.e.
presence-only versus presence-absence) and source (e.g. systematic filed

surveys, records from museums or global databases) are important. For
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example, techniques appropriate for presence-absence data modeling in-
clude generalized linear models, generalized additive models or boosted
decision trees whereas Bioclim, Maxent or multivariate distance are
designed for presence-only (presence-background) techniques (Elith
et al. 2006). For environmental data, their resolution and extent, source
(in situ observations versus remote sensing) and the way of processing
play a role. Finally, statistical modeling includes the elimination of
poorly performing variables and selection of proper statistical methods

of model fitting and evaluation (Williams et al. 2012).

Many studies focused on the conceptual model formulation and sta-
tistical model part (e.g. Austin 2007, Jiménez-Valverde et al. 2008,
Elith and Graham 2009, Peterson and Soberén 2012). Nevertheless,
the data model part has been neglected because the availability of
both species and environmental data was limited. The increased data
accessibility in the last few decades, however, changed the situation
considerably. Unfortunately, this has led to combining data of different
quality without any advanced knowledge of how this could affect SDMs
(Bayraktarov et al. 2019, Isaac et al. 2020). Therefore, this dissertation
aims to contribute to the knowledge related to the data model part

(sensu Austin 2002) of modelling species distribution.

3.3 Ecological niche

The term ecological niche describes how, rather than just where, species
live (Townsend et al. 2003). It is a quite old term that has undergone
much development over the last century (see for example Grinnell 1917).
The modern concept of the ecological niche was established by Hutchin-
son in 1957. Hutchinson (1957) defined the niche as a hypervolume
n-dimensional area shaped by the environmental conditions under which
species can exist indefinitely. It is easy to illustrate this relationship

for a one-dimensional niche. An example of this is the change of the
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probability of species occurrence along an environmental gradient (e.g.

temperature; see Figure 3.3).

A) B)
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2 e
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Temperature Temperature

Figure 3.3 An example of a changing probability of species occurrence for
species with wider (A — red line) and narrower (B — blue line) niche breadth
along the temperature gradient (one-dimensional species niche).

Hutchinson (1957) s definition of ecological niche forms the theoretical
basis for describing the relationship between species and environmental
variables, which is crucial for understanding ecological processes and
has been used to frame SDMs studies (Franklin 2010).

This definition was further developed and in 1961, Hutchinson intro-
duced new terms - the fundamental and the realized niche (Figure
3.4). The term “fundamental niche” describes the range of natural
conditions where a species is naturally capable of living whereas the
“realized niche” exemplifies the real distribution of species. According
to Hutchinson (1961), the realized niche is made up of subsets of the
fundamental niche as a result of biotic interactions (e.g. predation,
symbiosis). Additionally, it is expected that the realized niche depends
also on the biogeography, respectively on the historical occurrence of
species. Although additional information on the co-occurrence of com-
peting / host species and detailed historical species records is rarely

available for modeling (but see Schweiger et al. 2012, Singer et al. 2018,
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Zurell 2017), it is generally agreed that SDMs allow us to quantify the

realized niche of the species (Guisan and Thuiller 2005).

Fundamental Niche

Realized Niche

Canopy height

Topography wetness index

Figure 3.4 A conceptual diagram of the Hutchinson’s (1961) fundamental and
realized niche. The fundamental niche (blue) color illustrates the fundamental
range of natural conditions where a hypothetical species is naturally capable
of living whereas a realized niche (green) exemplifies the real distribution
determined by biotic interactions (e.g. predation, symbiosis).

3.4 Species data and associated error

In terms of data collection, species data could be divided into struc-
tured and unstructured. Structured data are gathered from stratified,
repeatable sampling designs, which are mostly geographically restricted
(Kindsvater et al. 2018, Peterson and Soberén 2018), and it is expected
that they are free of any kind of spatial bias. Unstructured data, on
the other hand, suffer from various types of spatial bias; most of the
currently available species occurrence data are of this type (Isaac and
Pocock 2015, Isaac et al. 2020).
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Both structured and unstructured data are increasingly combined
in online global databases such as eBird (www.ebird.org), Vertnet
(www.vertnet.org) or iNaturalis (www.inaturalist.org) where not only
scientists but also general public throughout the world share their field
observations. Data from these databases are usually freely available and
together with data from other sources (e.g. museum records, atlases
or natural history collections) easily available for download through
global aggregators such as Global Biodiversity Information Facility
(GBIF; www.ghif.org) or Ocean Biogeographic Information System
(OBIS; www.obis.org). While the number of records in aggregated
databases is constantly growing, their spatial quality varies and not
all of them are, therefore, necessarily useful for modeling species dis-
tribution (Bayraktarov et al. 2019, Moudry and Devillers 2020). Even
though some ecologists argue that quality datasets are essential for
decision-making processes (e.g. Bayraktarov et al. 2019), the majority
of them may still be seduced by the idea that “the more data, the
better”. However, existing studies addressing the question of whether a
smaller sample size of more accurate data is better than a larger sample
size with an inferior positional accuracy yielded inconsistent results
(Reside et al. 2011, Mitchell et al. 2017, Bayraktarov et al. 2019, Gabor
et al. 2020).

When modeling species distribution, high quality occurrence records
were suggested to generate informative and accurate SDMs (Osborne
and Leitao 2009, Duputié et al. 2014, Moudry et al. 2017). Most of
the species in global databases are however under-sampled, particularly
rare and endangered species (i.e. those of the highest importance from
a conservation perspective), resulting in a sample size that is too low
to provide reliable models. The effects of the sample size on model
performance have been studied extensively (e.g. Jiménez-Valverde
et al. 2009, Moudry and Simova 2012), although no consensus has
been reached; some studies concluded that even very small sample sizes
can provide reliable models (Varela et al. 2014, Proosdij et al. 2016)
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while others have shown the opposite (Wisz et al. 2008, Tessarolo et al.
2014). Therefore, additional studies focusing on this topic, especially

in combination with additional data quality issues, are needed.

Furthermore, species occurrence records are often spatially biased (i.e.,
the sampling effort is uneven, typically higher in protected or easily
accessible areas) (Isaac and Pocock 2015). Such sampling bias has
been reported towards easily accessible areas (Reddy and Dévalos
2003), protected areas (Boakes et al. 2010), or more populated areas
(Geldmann et al. 2016). In the case of global databases, the sampling
bias can occur because species records are shared only by some countries
(Beck et al. 2014). It is important to account for spatial bias in SDMs
because it may affect model calibration and cause an overestimation of
SDM performance (Leitao et al. 2011, Hijmans 2012, Boria et al. 2014).
Various methods have been proposed to compensate for sampling bias
in species occurrence records, including manipulation of background
data (Phillips et al. 2009) and spatial filtering (Veloz 2009, Anderson
and Raza 2010, Boria et al. 2014, Tessarolo et al. 2014). Recently,
Varela et al. (2014) suggested that spatial filtering could fail because
species occurrences with unique environmental conditions could be
removed. Instead, they suggested the use of environmental filtering
to down-weight repeated species occurrences in similar environmental
conditions. However, filtering necessarily reduces the sample size, and
although Varela et al. (2014) suggested that a filtered subsample of
occurrences can be better than using all available records to calibrate
models, the trade-off between lower sample size after filtering and higher

sample size without filtering has yet to be tested.

Besides, most applications of SDMs naively assume that species oc-
currence data are free of positional error, even though it is inherently
present in all datasets. The negative influence of positional error in spa-
tial modelling is a long-known fact (Heuvelink 1998) and many studies
addressed this issue. For example, several studies explored the limits

and impacts of image registration errors in remote sensing (Townshend
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et al. 1992, Wang and Ellis 2005), others suggested solutions for han-
dling georeferencing errors and calculating uncertainty (e.g. Wieczorek
et al. 2004). When modelling species distribution, it is often expected
that the negative effects of positional error in species occurrence data
are minimal or mainly associated with relatively older datasets that are
often georeferenced from textual descriptions of their locations, which
may cause errors of up to hundreds of meters (Wieczorek et al. 2004).
However, it is also necessary to consider positional errors inherent to
data georeferenced using global navigation satellite systems (GNSS).
Moreover, species occurrence data often represent the position of the
observer and not the actual position of the species (Zhang et al. 2018).
Therefore, even though the accuracy of a standard GNSS is usually
below 30 meters (Frair et al. 2010), the errors associated with such
data may be much bigger. The number of studies focusing on the
influence of positional error in species occurrences on the performance
of SDMs has been growing, there is, however, still little consensus on
how this influence is manifested. For instance, while Graham et al.
(2008) or Mitchell et al. (2017) concluded that SDMs are robust to
positional error, others argued that positional errors reduce the model
performance (Johnson and Gillingham 2008, Fernandez et al. 2009,
Osborne and Leitao 2009). Furthermore, prior studies used relatively
coarse environmental data (but see Mitchell et al. 2017). Positional
error considered in prior studies ranged from 50 m up to 50 km (see
Table 5.1). While such error results in a shift over several cells in a
coarse-resolution SDM (e.g. 1 x 1 km), it will cause a much greater
shift in a fine-resolution SDM (e.g. 10 x 10 m). Therefore, with the
increasing availability of fine-scale data, additional studies are needed
(Osborne and Leitao 2009); it can be expected that SDMs at fine scales
would be more sensitive to positional error. In addition, it is intuitive
that positional error of a given magnitude might have a greater effect
on specialist (narrow niche breadth) than generalist species (wide niche

breadth), as it is more likely that occurrences get incorrectly shifted
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into cells representing an unsuitable environment, i.e. an environment
that is outside of the species’ environmental niche. This, however, has

never been thoroughly explored.

3.5 Environmental variables and
associated error

Species distribution models rely on the availability of environmental
variables in the form of spatial data (Goodchild 1996, Franklin 2010),
which can be divided into three different categories, depending on their
effect on species distribution (Austin 1980: resource, direct and indirect

variables).

o Resource variables have a direct impact on the species growth (e.g.

the amount of light, water, nutrients)

e Direct variables have a direct impact on species growth, but in a

different way than resources (e.g. temperature, humidity, pH)

¢ Indirect variables don’t have a direct impact on species growth but
usually correlate with the resource or direct variables (e.g. altitude,

slope)

The traditional way of gathering mainly resource and direct environmen-
tal variables were long-term in situ observations. As an example of such
data sources, we could name the global weather and climate database
WorldClim (www.worldclim.org). Available environmental variables
from this database were created by interpolating data obtained from
in situ weather station measurements (Hijmans et al. 2005, Fick and
Hijmans 2017). However, the weather station network across the world
is sparse and thus, the final resolution of these data is coarse. Advances
in in-situ monitoring, such as the Temperature-Moisture-Sensor (TMS;

allows to gather air, surface and soil temperatures or moisture) (Wild

38


www.worldclim.org

et al. 2019) facilitated measuring resource and direct variables on a fine

scale. Still, fine-scale in situ monitoring remains limited to small areas.

For large areas and repeated monitoring, an alternative option is to
use remote sensing data. It has been shown that a wide range of
environmental variables derived from various types of remote sensing
can be used as explanatory variables for species distribution (Mahecha
et al. 2017, Randin et al. 2020). For example, the use of data on land
cover derived from passive remote sensing is common (Seoane et al. 2004,
Venier et al. 2004, Verburg et al. 2011). Similarly, the climatic variables
such as temperature and precipitation are increasingly based on remote
sensing data (Naumann et al. 2012, Chen and Li 2016, Macharia et al.
2020).

An excellent example of how SDMs benefit from advances in remote
sensing is the possibility to use 3D ecosystem structure variables derived
from active remote sensing methods. 3D ecosystem structure was long
ago suggested as an important variable that plays a role in species dis-
tribution (e.g. of birds) (Dunlavy 1935). Nevertheless, its standardized
measurement was extremely problematic in the past (MacArthur and
MacArthur 1961, Brown 1981). Nowadays, 3D vegetation structure
is commonly measured using active remote sensing methods such as
LiDAR (light detection and ranging - a remote sensing method that
uses light in the form of a pulsed laser to measure ranges) and variables
representing 3D vegetation structure were shown to be important vari-
ables of species distribution. As example, we can mention the canopy
structural variability or understory density derived from airborne laser

scanning data (see reviews by Davies and Asner 2014, Bakx et al. 2019.

Arguably one of the most common remote sensing products used in
SDMs is the digital elevation model (DEM) and terrain attributes
derived from it (e.g. slope, aspect, topographic wetness index). DEM’s
derived attributes can be used as surrogates for a variety of field-
measured environmental variables such as air temperature, soil moisture

and incoming solar radiation (Hengl and Reuter 2009). For example,
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topographic wetness index is a surrogate for soil moisture, an envi-
ronmental variable that affects the vegetation composition (Besnard
et al. 2013, Reif et al. 2018). Slope is another example of such a vari-
able. Slope affects the velocity of subsurface and surface flow and it is,
therefore, an important variable in predictive vegetation mapping (e.g.
Zhang et al. 2016).

Although highly accurate DEMs exist at both local and national lev-
els (for example from airborne laser scanning missions), many studies
rely on global space-borne DEMs that have lower spatial resolutions
and accuracy (e.g. Zhang et al. 2016). Nowadays, global or near-
global DEMs are available from several spaceborne missions: Shuttle
Radar Topography Mission (SRTM), Advanced Spaceborne Thermal
Emission Reflectometer (ASTER) onboard NASA’s Terra satellite,
Advanced Land Observing Satellite (ALOS), or TANDEM-X. Unfor-
tunately, both interferometric (SRTM, TANDEM-X) and stereoscopic
(ASTER, ALOS) DEMs suffer from local inaccuracies or errors due to
limitations associated with the methods used for elevation measure-
ments. It has been shown that such inaccuracies and errors can in turn
influence the derived topographic indices (Van Niel et al. 2004, Oksanen
and Sarjakoski 2005, Sofia et al. 2013, Lecours et al. 2017¢, Moudry
et al. 2018) and various steps of the species distribution modelling pro-
cess (e.g., the shape of response curves, prediction accuracy measures,
spatial extent of predictions) (Van Niel and Austin 2007, Lecours et al.
2017b, Moudry et al. 2019b).

SRTM DEM (1 arc-second resolution; approximately 30m at the equa-
tor) is one of the most commonly used global DEMs. However, an
important but often misunderstood characteristic of the SRTM DEM
is that it does not provide a “bare-earth” elevation: the measurements
actually include a systematic positive bias due to the objects above
the ground (such as canopy), the height of which is included into
the model. This in turn produces considerable differences in accu-

racy between forested and open areas (e.g. Nelson et al. 2009). All
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available versions of the SRTM DEM are impacted by vertical error,
including one of the most — if not the most — cited versions of the
SRTM DEM produced by the Consultative Group for International
Agriculture Research Consortium for Spatial Information (CGIAR-CSI;
http://www.cgiar-csi.org/data; e.g. Simové et al. 2015, Kosicki 2017).
By not acknowledging the vertical error, and more particularly its
vegetation offset component, most studies use global DEMs as digital
terrain models (DTM). If using the appropriate nomenclature, the
original SRTM product and many of its subsequent alterations are
actually digital surface models (DSM); they do not represent the bare
ground elevation in vegetated areas and require further processing to

remove vegetation height in order to create a proper ‘bare-earth’” DTM.

3.6 Spatial scale

Spatial scale is one of the most important characteristics of spatial data
and requires a thorough consideration in any ecological study. Three
types of spatial scale are relevant for modeling species distribution: (1)
the ecological scale, which is the scale at which a pattern or process
occurs, (2) the observational scale, which refers to the characteristics of
the data, usually defined by the spatial resolution and extent of the data
and (3) the analytical scale that refers to the methods used to analyse
the environmental data (e.g., the neighbourhood size used in focal
statistics or geomorphometry) (Dungan et al. 2002, Moudry et al. 2019b).
It is well known that the lack of explicit consideration of scale affects
the outcomes of ecological analyses such as the assessment of species-
environment relationships (Levin 1992, Mertes and Jetz 2018). Almost
30 years ago, Wiens (1989) argued that most ecological studies had
been ignoring spatial scale and its effects. Most studies were performed
as if patterns and processes were scale-independent and studies from
different scales were often inappropriately compared. Since then, the
role and importance of spatial scale have been extensively discussed

in both the geographic and ecological literature (e.g., Schneider 2001,

41


http://www.cgiar-csi.org/data

Dungan et al. 2002, Goodchild 2011, Moudry and Simova 2012), and
it is now widely recognized that ecological patterns and processes are
scale-dependent and that no single scale is appropriate for the study of

all natural phenomena.

One of the main challenges of using remotely sensed data in SDMs
is that the original spatial resolution of different datasets included in
the analysis may vary significantly (Cord et al. 2013). In terrestrial
applications, the use of high-resolution remotely sensed environmental
data is often limited by the resolution of species distribution data, which
are usually available at much coarser scales (Jetz et al. 2012, Stmova
et al. 2019). An opposite situation may occur in marine applications
(e.g., in deep water environments), where the scale at which the species
are observed can be much finer than that of available environmental
data. In some cases, the highest available resolution of environmental
data may not be required for the SDMs if the biological / ecological
processes, or species distribution / abundance in SDMs, occur at a
coarser scale or over a large area with limited observations. Therefore,
finding a resolution representing a compromise between the resolution
of available data and a resolution most suited to the application is often
necessary. A common practice to ensure the valid integration of data
from multiple scales (for example, to avoid an ecological fallacy or the
modifiable areal unit problem; see Lecours et al. 2015), is to modify
the resolution of some of the data so that it matches the resolution at
which the study is to be performed (e.g., by averaging environmental
variables within field plots; Gottschalk et al. 2011, Moudry et al. 2017).

The effects of altering data resolution (i.e., matching the observational
scales with ecological scales) (e.g. Lechner et al. 2012b, Svensson et al.
2013, Mateo Sanchez et al. 2014, Mertes and Jetz 2018) on the outcomes
of ecological analyses (e.g., SDM) have recently received more atten-
tion because of a growing demand on users to provide more detailed
methodologies (e.g., exact computer code for GIS analyses and data

processing) to allow complete reproducibility of their results (e.g., Mich-
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ener and Jones 2012, Rocchini and Neteler 2012, Meynard et al. 2019).
However, details on the use of terrain attributes derived from digital
terrain models (DTMs) using neighbourhood operations (e.g., slope,
rugosity, orientation, curvature) in SDMs has received less attention.
Deriving terrain attributes has become a routine operation, despite
several potential pitfalls in the data processing workflow (Lecours et al.
2017c). Specifically, the approach used and the step at which the scale
is altered are particularly important for DTM-derived attributes, as
they will cause the analytical scale of a study to vary, thus providing
different representations of the reality and potentially producing dif-
ferent outcomes. Therefore, selecting an inappropriate scale alteration
technique could have an unforeseen impact on SDMs. However, this
has not been demonstrated yet. Thus, there is a need to show how
SDMs may be affected when the different approaches to altering data

resolution are used.

3.7 Virtual species spproach

To study a compound effect of various species and data characteristics
(both species and environmental) using real species could be challenging
due to the above-mentioned data complexities. A virtual species,
which is increasingly used in ecological studies (see Table 3.2), on the
other hand, allows to ensure the full knowledge of the exact ecological
and geographical characteristics of the species and to avoid unknown

complexities associated with real data.

The process of simulation involves four steps: (i) generating a virtual
species, (ii) projecting it into the landscape, (iii) converting its probabil-
ity to presence-absence data and (iv) sampling occurrences (Figure 3.5;
Meynard et al. 2019). The first step involves definition of the species
response to environment (e.g. gaussian, linear, logistic or beta response)
using one or more environmental variables and then combining these
functions into a single suitability function. In this step, potential effects

of environmental variables (i.e. their complexity and number), and
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species characteristics (i.e. commonness or rarity and niche breadth)
could be addressed.

Table 3.2 Examples of various virtual species studies in SDMs.

Environmental data resolution and
extent effects

SDMs performance metrics effects

Species spatial data quality, sam-
pling size or sampling bias effects

Species specialization, niche breadth
effects

Effects of various SDMs modeling

Moudry et al. 2019b, Friedrichs-
Manthey et al. 2020

Leroy et al. 2018, Warren et al. 2020
Fernandes et al. 2018, Liu et al. 2019
Proosdij et al. 2016, Connor et al.
2018

Zurell et al. 2016, Hallgren et al. 2019

techniques, approaches

Based on (Meynard et al. 2019)

In the second step, the simulated virtual species is projected into the
landscape (real or virtual). As highlighted by Meynard et al. (2019),
the use of real environmental data has the advantage of being simple
and allowing a realistic set of explanatory environmental variables with
collinearity and interactions that could be related to real case studies.
On the other hand, a virtual landscape allows the use of environmental
variables with various heterogeneity / homogeneity or with different
spatial autocorrelation. At this step, the influence of the resolution and
extent of environmental variables, of their processing strategies, or of

climate change could be tested.

The next step is to convert the probability of virtual species occurrence
(generated in the previous step) into a presence-absence distribution.
Two main conversion methods for translating initial suitability (proba-
bility of virtual species occurrence) to presence/absence are currently
used: a threshold approach (Hirzel et al. 2001) and a probability ap-
proach (Meynard and Kaplan 2012, 2013, Meynard et al. 2019). The
threshold approach generates occurrences where species always oc-

cur above a given threshold and never below it. On the other hand,
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the probability approach allows generating species presences and ab-
sences along the whole environmental gradients (i.e. the shape of the
logit function used to transform the occurrence probability to pres-
ences/absences). Moreover, the probability approach allows to consider

species prevalence.

The process of virtual species simulation

(i) Generate virtual species
- Define species response to environment (e.g. gaussian, linear,
logistic or beta response) and then combine these functions to
a single suitability function

v

(ii) Project virtual species to landscape
- Use real or virtual landscape

L J

(iii) Convert its probability to presence-ahsence data
- Define how the suitability of virtual species will be translated
into presence/absence

L J

(iv) Sample occurrences
- Determine type of data (presence/absence versus presence
only), sample size and sampling strategy (random, sampling
bias) how the suitability of virtual species will be translated
into presence/absence

T
1
1
1
1
h 4

Species distribution modeling workflow

Figure 3.5 The virtual species approach simulation process (Meynard et al.
2019).
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Thus, the probability approach is closer to ecological theories supporting
the idea of dynamic occupancy patterns in space and time (see Hanski
1998, Meynard and Kaplan 2012, 2013). Therefore, the probability
approach has been deemed more appropriate for generating virtual
species than the threshold approach (Meynard and Kaplan 2012, 2013,
Moudry 2015, Meynard et al. 2019). In this step, the effect of species

prevalence and dispersal constraints could be analyzed.

The last step is sampling species occurrences. Here, different data
types (presence only versus presence/absence), sample size or sampling

strategy could be assessed.
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Abstract

Species distribution models (SDMs) are widely used in ecology and
conservation. However, their performance is known to be affected
by a variety of factors related to species occurrence characteristics.
In this study, we used a virtual species approach to overcome the
difficulties associated with testing of combined effects of those factors on
performance of presence-only SDMs when using real data. We focused
on the individual and combined roles of factors related to response
variable (i.e. sample size, sampling bias, environmental filtering, species
prevalence, and species response to environmental gradients). Results
suggest that environmental filtering is not necessarily helpful and should
not be performed blindly, without evidence of bias in species occurrences.
The more gradual the species response to environmental gradients
is, the greater is the model sensitivity to an inappropriate use of
environmental filtering, although this sensitivity decreases with higher
species prevalence. Results show that SDMs are affected to the greatest
degree by the species response to environmental gradients, species
prevalence, and sample size. Models” accuracy decreased with sample
size below 300 presences. Furthermore, a high level of interactions
among individual factors was observed. Ignoring the combined effects

of factors may lead to misleading outcomes and conclusions.

Keywords: MaxEnt, Schoener’s D, Species rarity, Spatial data filtering,

Virtual species
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4.1 Introduction

Many of the modeling techniques developed in the last two decades are
now recognized to play an important role in monitoring of biodiversity
and its conservation (Guisan and Zimmermann 2000, Honrado et al.
2016). Species distribution models (SDMs) have become a common
tool for the assessment of species-environment relationships. The
objective of SDMs is to relate species occurrence data (i.e. response
variable) and environmental data (i.e. predictor variables) in order to
either describe relationships between them (‘explanatory modeling’)
or predict probabilities of species occurrences at unsampled sites or
times ('predictive modeling’) (see review by Ferrier et al. 2017). SDMs
are now routinely used, for example to assess the spread of invasive
species (Gillard et al. 2017, Bazzichetto et al. 2018a), the impact of
climate change on biodiversity (Sun et al. 2017), or species ranges
(Williams and Crouch 2017). High-quality species occurrence records
(i.e. unbiased, positionally accurate data without false presences and
absences) are essential to generate informative and accurate SDMs
(Osborne and Leitao 2009, Duputié et al. 2014, Moudry et al. 2017).
However, acquisition of such data is often challenging and the underlying
challenge in SDMs is to derive response curves from incomplete and

biased datasets.

In practice, the most commonly available species records are usually
non-systematic observations (see Bino et al. 2014), such as collections
of individual observations from various sources (e.g. museums, citizen
science data) available through global databases (e.g. the Global
Biodiversity Information Facility — GBIF; www.ghif.org). This type of
species observations are referred to as presence-only records (presence-
background records sensu Guillera-Arroita et al. 2015). Most of the
species in global databases are however under-sampled, particularly
rare and endangered species (i.e. those of the highest importance from

a conservation perspective), resulting in a sample size that is too low to
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provide reliable models (but see Breiner et al. 2015, 2018 for possibilities
of overcoming limitations of modeling species with few occurrences).
The effects of sample size on model performance have been studied
extensively (e.g. Jiménez-Valverde et al. 2009, Moudry and Simova
2012), although no consensus has been reached; some studies concluded
that even very small sample sizes can provide reliable models (Guisan
et al. 2007, Varela et al. 2014, Proosdij et al. 2016) while others have
shown the opposite (Wisz et al. 2008, Tessarolo et al. 2014).

Furthermore, species occurrence records are often spatially biased (Isaac
and Pocock 2015), which is usually caused by uneven sampling efforts
or data sharing. Such bias has been reported for data collected in
easily accessible areas (Reddy and Davalos 2003), protected areas
(Boakes et al. 2010), or heavily populated areas (Geldmann et al.
2016). It is important to account for spatial bias in SDMs because
it may affect model calibration and cause an overestimation of SDM
performance (Leitdao et al. 2011, Hijmans 2012, Boria et al. 2014).
Various methods have been proposed to compensate for sampling bias
in species occurrence records, including manipulation of background
data (Phillips et al. 2009) and spatial filtering (Veloz 2009, Anderson
and Raza 2010, Boria et al. 2014, Tessarolo et al. 2014). Spatial
filtering is used to reduce the negative influence of sampling bias in
geographic space. Recently, however, Varela et al. (2014) suggested
that this approach could fail because species occurrences with unique
environmental conditions could be removed. Instead, they suggested
the use of environmental filtering to down-weight repeated species
occurrences in similar environmental conditions, which we also adopted
in this study. Increasing attention has also been given to comparison or
evaluation of those methods (Kramer-Schadt et al. 2013, Varela et al.
2014, Ranc et al. 2016). Filtering necessarily reduces the sample size,
and although Varela et al. (2014) suggested that a filtered subsample of
occurrences can be better than using all available records to calibrate

models, the tradeoff between lower sample size after filtering and higher
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sample size without filtering has yet to be tested.

In addition to the quality of occurrence data (e.g. sample size, sampling
bias) and methods used to filter the data (e.g. environmental filtering,
geographic filtering), species characteristics also need to be considered.
Studies have shown that commonness and rarity or prevalence may
influence the ability to predict species distribution;models for rare
species (i.e. species with low prevalence) tend to have higher prediction
accuracy than models generated for more common species (i.e. with
high prevalence; Syphard and Franklin 2009, Sor et al. 2017).

Species characteristics (e.g. prevalence, response to environmental
gradients) and data characteristics (e.g. bias, filtering, sample size) are
usually studied separately or in combinations of two or three factors
(but see e.g. Thibaud et al. 2014, Fernandes et al. 2018, Liu et al. 2019).
It is therefore difficult to determine a characteristic affecting SDMs
performance the most, as well as to evaluate potential interactions
between species and data characteristics. In this study, we used a
virtual species approach to assess the effects of prevalence, response
to environmental gradients, sampling bias, sample size, and samples
filtering, as well as their interactions, on SDMs performance. The use of
virtual species approach enables full control over the factors influencing
models and the disentanglement of confounding effects (Zurell et al.
2010, Miller 2014). Consequently, this approach is increasingly used to
evaluate SDMs performance (e.g. Vaclavik and Meentemeyer 2012, Qiao
et al. 2015, Moudry et al. 2018). To test how the five species and data
characteristics affect SDMs performance, we produced SDMs for virtual
species with different responses to environmental gradients (abrupt,
nearly abrupt, nearly smooth, smooth), different levels of prevalence
(very rare, rare, common), different sample sizes, unbiased and biased
samples, and non-filtered and environmentally filtered datasets (Figure
4.1). Our specific objectives were to (i) determine the role of the sample
size and species prevalence in SDMs, (ii) assess whether environmental

filtering improves models based on biased samples, and (iii) evaluate the
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effect of species response to environmental gradients used to generate
virtual species on factors under study (i.e. sample size, sampling bias,

environmental filtering, species prevalence).

4.2 Material and methods

Figure 4.1 illustrates the workflow used in this study. First, virtual
species distributions were modeled for the study area, encompassing
to the Iberian Peninsula. The species distributions were modeled us-
ing various responses to environmental gradients and various species
prevalences. Subsets of species occurrences were subsequently extracted
from the species presence/absence distributions, using various sam-
ple sizes, sampling patterns and with/without application of filtering.
Finally, SDMs were produced using those different subsets and their

performance was evaluated and compared.

4.2.1 Simulating ecological patterns with virtual
species

Data derived from Worldclim (www.worldclim.org) database are often
adopted in SDMs (e.g. Moudry and Simovéa 2013). To build virtual
species distributions we used the same variables downloaded from
Wordclim that were adopted in the study by Varela et al. (2014) who
first presented the idea of environmental filtering. However, their study
used virtual species generated with threshold approach for evaluation,
which was recently criticized (Meynard and Kaplan 2012, Moudry 2015).
In our study, we used a probability approach (see Meynard and Kaplan
2012, 2013) to generate virtual species (see the next paragraph). Using
the same variables and study area allowed us to directly compare our
results with theirs. The adopted variables included the maximum

temperature of the warmest month (Bio5), minimum temperature of
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Figure 4.1 General modeling process. (i) Generating a map of probability oc-
currence for virtual species (environmental suitability map). (ii) Translating
the probability of occurrence into a presence-absence map for various species
prevalences. (iit) Sampling species occurrences randomly or with uneven
sampling intensity and repeating the sampling 50 times for every a value and
species prevalence. (iv) Applying environmental filter. (v) Creating models
of species distribution with and without filtered occurrences. (vi) Quantifying
SDMs performance using AUC and Schoener s D index and performing
ANOVA to statistically compare SDMs performance.
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the coldest month (Bio6), and annual precipitation of the driest month
(Biol4). Those were downloaded at a resolution of 30 arc seconds
(approximately 1 km?) from WorldClim and clipped to the extent of

the Iberian Peninsula.

Various software and packages have been developed to facilitate the
use of virtual species in SDMs (e.g. Duan et al. 2015, Leroy et al. 2016,
Qiao et al. 2016). There are currently two main methods for generating
virtual species: a threshold approach and a probability approach (Mey-
nard and Kaplan 2012). The threshold approach generates occurrences
where species always occur above a given threshold and never below
it. On the other hand, the probability approach allows to generate
species presences and absences along the whole environmental gradients
(i.e. the shape of the logit function used to transform the occurrence
probability to presences/absences). Moreover, the probability approach
allows to take species prevalence into consideration. It is thus closer to
ecological theories supporting the idea of dynamic occupancy patterns
in space and time (see Hanski 1998, Meynard and Kaplan 2012, 2013).
Therefore, the probability approach has been deemed more appropriate
for generating virtual species than the threshold approach (Meynard
and Kaplan 2012, 2013, Moudry 2015). Virtual species distributions
were created with the package virtualspecies (Leroy et al. 2016) in the

statistical software R (version 3.4.4).

The virtual species were created in three steps (Leroy et al. 2016).
First, we defined a relationship (i.e. the response function) between
the artificial species and each variable, using a Gaussian distribution.
Response functions were defined as follows (mean + standard devi-
ation): Bio5 (20 £ 10°C), Bio6 (10 =+ 10°C), and Biol4 (20 + 10
mm). The combination of these three response functions produced
environmental suitability rasters for the Iberian Peninsula (function
generateSpFromFun). Second, a probabilistic approach was used to
convert environmental suitability rasters to binary presence-absence

rasters (function convertToPA); a logistic function was applied to the
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suitability rasters to model the response to environmental gradients.
The logistic function had two parameters, a and {3, where 1/a corre-
sponded to the slope of the curve at the inflection point and 3 to the
position of the inflection point. Therefore, using o, one can control the
steepness of the species response to the environmental gradients, and
with a given value of o, the species prevalence can be controlled by 3

(see Figure 4.2).
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Figure 4.2 Contrasting examples of conversion curves for all species responses
to environmental gradients and species prevalences (dotdash line = 0.05,
dotted line = 0.2, solid line = 0.5, dashed line = 0.8).

We modeled four species types with respect to their response to envi-
ronmental gradients: species with an abrupt response (o = — 0.000001),
species with a nearly abrupt response (o = — 0.05), species with a nearly
smooth response (o = — 0.15), and species with a smooth response (o =
— 0.3). In addition, to evaluate the effect of prevalence for each type of

response, four different species prevalence values were produced (0.05,
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0.2, 0.5 and 0.8) by varying the parameter B (Figure 4.2). We generated
species occurrences 50 times for each combination of o and 8 to produce
multiple replications. For each replication, a valid estimation of the true
species distribution was provided (Leroy et al. 2016). This approach
contrasts with the threshold approach, which always generates the same

distribution (presences/absences).

The last step consisted of sampling occurrences of virtual species from
the modeled distributions using the sampleOccurrences function of
the package.To test for sampling bias, two different sampling methods
(survey designs) were used to generate presenceonly data: (i) random
sampling across the entire area and (ii) a scheme that extracted sam-
ples 40 more times in the 50 largest protected areas of the Iberian
Peninsula; this method has been used before to study sampling bias
(e.g. Tessarolo et al. 2014, Varela et al. 2014). The protected ar-
eas of the Iberian Peninsula were downloaded from Protected Planet
(www.protectedplanet.net). Eight different sample sizes were used to
test sample size effects on SDMs (n = 25, 50, 100, 300, 500, 700, 1000,
2000).

4.2.2 Environmental filtering
of sampled occurrences

We used the gridSample function of the dismo package to filter the sam-
pled presence-only data (Hijmans et al. 2012). Based on a pre-defined
grid, the function allows to eliminate repeated occurrences under simi-
lar environmental conditions. The environmental filters were defined
using only two of the three environmental variables — the maximum
temperature of the warmest month and the precipitation of the driest
month. This enabled simulating a situation in which some of the envi-
ronmental characteristics affecting species distribution were unknown,
which is often the case in SDMs (Varela et al. 2014). The resulting
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filters were applied to all versions of the generated virtual species (i.e.
combination of response to environmental gradients and prevalence; 12
species), to the eight sample sizes, and to both survey designs (random
and spatially biased). This totaled 384 unique combinations of model
parameters, enabling an indepth comparison of the effects of the five
different characteristics of SDMs under study. For each one of those
combinations, 50 models were computed using the previously described
probabilistic approach; each of those 50 repetitions can be viewed as a
different run of the same stochastic process. A total of 19,200 different

virtual species distributions were thus generated to be tested in SDMs.

4.2.3 Species distribution models

While there is currently no consensus on which SDM technique is best,
it is widely recognized that every single technique has benefits and
drawbacks (Elith et al. 2006, Elith and Graham 2009, Fernandes et al.
2019). For the purpose of this study, we needed a technique that could
be kept consistent across the methodology to allow the comparison
of outcomes. We selected the maximum entropy approach (MaxEnt),
which is often adopted in ecological studies as a presence-only model-
ing technique, due to its good performance when compared to other
techniques (Elith et al. 2006, Phillips et al. 2006). SDMs were built in
R using the dismo package and the same three environmental variables
that were used to generate virtual species distributions. To enable
comparison of the different SDMs produced, we needed to maintain
the parameters of the modeling technique unchanged. Although using
MaxEnt with default settings is usually not recommended as it can
overfit the models, it is not an issue when using virtually generated
species as virtually generated data fit the pre-defined response perfectly
and the risk of overfitting therefore is very low (we also employed hinge
and linear feature classes and got the same results as with the default
settings). Therefore, like many others before (e.g. Phillips et al. 2009,
Beltran et al. 2014, Ficetola et al. 2014, Fourcade et al. 2014, Franklin
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et al. 2014, Varela et al. 2014, Beaumont et al. 2016, Holloway et al.
2016, Ranc et al. 2016, Tingley et al. 2018, Ye et al. 2018), we produced

the models using the default settings, except for background points.

Since using background points that do not have the same bias as
species occurrences (e.g. using random background points when species
occurrences are spatially biased) has been shown to negatively affect
SDMs performance (Phillips et al. 2009, Leroy et al. 2018), we did
not use randomly generated background points. Instead, based on the
artificially generated binary map of the virtual species illustrating true
occupied and unoccupied areas, we generated a set of background points
(i) across the entire area for randomly drawn species presence data
(simulating unbiased dataset) and (ii) with higher sampling intensity
in the 50 largest protected areas of the Iberian Peninsula (simulating
biased dataset) and use those as background points. We used two times
more background points than species occurrences as recommended by
Liu et al. (2019). For each model replication, a new set of background
points was generated. Similarly, as Thibaud et al. (2014), we had
absence data available. Therefore, we generated background points in
locations where species were absent and used Maxent in a nonstandard
manner. Hence, the models can be viewed as presence-absence, allowing
us to use the area under the receiver operating characteristic curve
(AUC) as an appropriate measure for model performance. To evaluate
the models, a fivefold cross-validation was used where the data were
randomly divided into fifths. Four-fifths of the data were used to
train the model and the remaining one fifth was used to quantify the

performance.

4.2.4 Assessment of model performance

The AUC was calculated to quantify model performance. AUC indi-
cates model performance based on predictions of presences/absences

(Fielding and Bell 1997) and varies between 0 and 1 where values 0.9-1

60



indicate excellent models. In addition, we calculated Schoener’s D
index (Schoener 1968) to compare modeled probabilities of occurrence.
Schoener’s D is considered one of the best measures of evaluation of
SDMs outputs (Rodder and Engler 2011). This metric measures the ab-
solute spatial conformity between continuous predictions of the species

as,

1
D=1- §Z’Z1ij — Zaij|
ij

where zy;; is entity 1 occupancy (virtual reality) and zy;; is entity 2
occupancy (model prediction) (Renkonen 1938). It varies between
0 (no overlap/agreement) and 1 (complete overlap/agreement). An
analysis of variance (ANOVA) was used to assess the individual and
combined effects of species response to environmental gradients, species
prevalence, sample size, sampling bias and environmental filtering on
SDM’s performance. We fitted separate ANOVA models for AUC and
Schoener’s D index as a response, including all possible interactions

among all five factors in both models.

4.3 Results

The ANOVA including all possible interactions explained 96% of
Schoener’s D and 89% of AUC variability (variance of the models
explained by used characteristics). All analyses were highly significant
given the large number of iterations (n = 19,200). For both Schoener’s
D and AUC, most of their variability was explained by the species
response to environmental gradients (from abrupt to smooth), species
prevalence, and sample size; these factors together (and disregarding
their interactions) explained 53% of Schoener’s D variability and 64%
of AUC variability, with species prevalence being more influential for

Schoener’s D (17%) than for AUC (5%) (see Table 4.1).
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Table 4.1 Degrees of freedom (Df), R* (%), and F statistics for ANOVA of
Schoener’s D index and AUC performance metrics.

Schoener’s D AUC
Df R2 F Df R? F

Main effects:

Sampling method 1 02 1127 1 02 334.3
Species (Spec) 3 199 324792 3 30.8 17153.6
Species prevalence (Prev) 2 17.0 41424.6 2 5.1  4227.1
Sample size (Sample) 7 16.3 113533 7 281 6697.3
Filter application (Filter) 1 24 114749 1 1.6 2665.9
Pair-wise interactions:

Samp : Spec 3 03 4527 3 0.2 124.3
Samp : Prev 2 0.0 96.6 2 01 81.3
Spec : Prev 6 89 72069 6 25 7026
Samp : Size 7 0.1 58.7 7 0.0 10.0
Spec : Size 21 36 8351 21 22 170.8
Prev : Size 14 2.0 699.5 14 1.0 116.3
Samp : Filter 1 1.2 5894 1 0.0 31.6
Spec : Filter 3 5.7 9280.1 3 8.0 44728
Prev : Filter 2 5.1 12448 2 1.3 1093.8
Size : Filter 7 14  993.1 7 14 3351
Higher-order interactions: - 12.0 - - 6.3 -
Total: - 96.2 - - 888 -

The effect of sample size on SDMs was relatively constant across other
factors’ (e.g. species prevalence, species response to environmental
gradients) levels (see generally low R? values for its interaction terms
in Table 4.1). Results show an initial steep increase in performance
with increasing sample size, generally stabilizing around 300 samples
after which more samples do not necessarily result in better models (see
Figures 4.3 and 4.4). The initial increase was considerably steeper for
AUC metric than for Schoener’s D. The three exceptions to this general
pattern were (1) almost constant values of Schoener’s D across sample
sizes for species with smooth or nearly smooth response to environmental

gradients and with higher prevalence, (2) decreasing Schoener’s D for
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abrupt and nearly abrupt species with species prevalence 0.05 and
non-filtered models (Figure 4.3) and (3) no stabilization for AUC values

for species with nearly smooth or smooth response (Figure 4.4).
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Figure 4.8 Resulting Schoener’s D index values according to different species
responses to environmental gradients (abrupt, nearly abrupt, nearly smooth,
smooth), species prevalence (sp = 0.05, 0.2, 0.5, 0.8), various methods of
sampling occurrences (random, sampling bias) and different sample size (n
= 25, 50, 100, 300, 500, 700, 1000, 2000). Gray color indicates results for
non-filtered models, and the black color shows results for models where the
environmental filter was applied.

The relatively low main-effect R? values of filter application term (see
Table 4.1) resulted from a reverse effect of this factor in different species
types (and also species prevalences in case of Schoener’s D) (see Figures
4.3 and 4.4). Indeed, taking into account also its pair-wise interactions,
filter application explained 16% of the Schoener’s D and 12% of the AUC
variability. For Schoener’s D, these interactions can be summarized as
follows (see Figure 4.3): the performance of the non-filtered SDMs was
the highest for species with abrupt response to environmental gradients

(about 0.85) and decreased to approximately 0.66 for those with smooth
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response. On the contrary, the performance of filtered SDMs was much
more stable, ranging from approx. 0.78 for species with abrupt response

to 0.70 for those with smooth response.
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Figure 4.4 Resulting AUC values according to different species responses
to environmental gradients (abrupt, nearly abrupt, nearly smooth, smooth),
species prevalence (sp = 0.05, 0.2, 0.5, 0.8), different methods of sampling
occurrences (random, sampling bias) and different sample sizes (n = 25, 50,
100, 300, 500, 700, 1000, 2000). Gray color indicates results for non-filtered
models, and the black color shows results for models where the environmental
filter was applied.

This led to a significantly better performance of non-filtered SDMs for
abruptly responding species but a slightly better performance of filtered
SDMs for those responding smoothly. This relationship was further
influenced by a significant decrease of non-filtered SDMs performance
with increasing species prevalence, which was more striking for species
with abrupt or nearly abrupt response. The exception from this general
pattern was models with sample size higher or equal 100 for abrupt and
nearly abrupt species and species prevalence 0.05. In this case, filtered

models achieved better results than non-filtered models. Moreover,their
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resulting Schoener’s D was even lower in comparison to smoothly or
nearly smoothly responding species. For AUC metric (Figure 4.4),
the pattern was similar, with generally larger performance ranges for
non-filtered SDMs (from almost 1.0 to approximately 0.5 for random
sampling), which led to larger differences between non-filtered and
filtered SDMs for species with smooth response. Sampling method
(random vs. biased sampling) showed the least importance, both as
main effect and in interactions with other effects (maximum R? being
1.2% but typically from 0.0% to 0.3%; see Table 4.1).

4.4 Discussion

Our results show that species prevalence and sample size have an equiv-
alent effect on variability in model performance when using the MaxEnt
modeling technique. Models performance increased with sample size
(often up to a certain level), and where the sample size was constant,
the model performance decreased with increasing prevalence. More-
over, our results show that both effects are independent of sampling
bias. As opposed to what is often done in other studies, here we were
changing the steepness of the response to environmental gradient (i.e.
logistic curve) to create virtual species from abrupt (i.e. similar to
what would be done with the threshold approach) to very smooth
(see Figure 4.3). Generally, the more abrupt the response of species
to the environmental gradient was, the greater the effect of species
prevalence, sample size, and environmental filtering was. Since both
measures (AUC and Schoener s D) showed similar trends, the following
discussion is based mostly on the behavior of the Schoener s D. We

highlight the differences in AUC behavior where necessary.
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4.4.1 Sample size

It has been shown many times that the performance of SDMs depends
on sample size (see review by Moudry and Simova 2012). Prior stud-
ies examined sample sizes that varied from a few occurrences up to
thousands of occurrences. While Guisan et al. (2007) or later Proosdij
et al. (2016) have shown that a few occurrences may suffice to produce
reliable models, other studies argued that it is best to use larger sample
sizes (Pearson et al. 2007, Wisz et al. 2008, Tessarolo et al. 2014).
Such opposing suggestions can be explained by the differences in data
characteristics and model selection in these studies. One reason can be
the complexity of species responses to environmental variables. It is
clear that the more complex is the species response to environmental
variables, the higher is the number of species occurrences required to
achieve high model performance (e.g. Barry and Elith 2006). Stud-
ies using virtually generated data (e.g. Jiménez-Valverde et al. 2009,
Varela et al. 2014, Proosdij et al. 2016) that have occurrences per-
fectly following the adopted response to environmental variables (e.g.
Gaussian) suggested that reliable models can be developed with very
small sample size (10 or even 5 samples). In contrast, studies with
real species occurrence data (Wisz et al. 2008, Tessarolo et al. 2014)
suggested the opposite. In addition, the effect of sample size could be
also affected by species prevalence. Proosdij et al. (2016) concluded
that increasing species prevalence decreases the influence of sample
size. It has also been shown that some modeling techniques are less
sensitive to sample size than others (Guisan et al. 2007, Tessarolo et al.
2014). Besides, Wisz et al. (2008) also show that the influence of sam-
ple size is changing across different spatial extents and resolutions of
environmental variables (sites with resolution of 100 x 100 m performed
better in comparison with those with resolution of 1000 x 1000 m).
Our results show that a larger sample size has a significant positive

effect on SDMs performance, although with a threshold after which
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more samples do not necessarily improve performance. In our case,
that threshold was usually at 300 or 500 samples. This effect, however,
was only consistent when measured by AUC, which was expected due
to the sensitivity of AUC to the ratio of sample prevalence and species
prevalence (see Meynard and Kaplan 2012). Our results are, moreover,
in accordance with prior studies by Thibaud et al. (2014) and Fernandes
et al. (2018) who also tested the impact of various factors affecting
SDMs using virtual species and concluded that sample size is one of
the most important factors. For Schoener’s D, the effect of sample
size considerably varied with species response to the environmental

gradients, species prevalence and the use of environmental filtering.

4.4.2 Species prevalence

Our results show that species prevalence is one of the most important
factors affecting SDMs, having generally a negative effect on both model
performance metrics (i.e. model performance was generally decreasing
with increasing species prevalence). While this negative effect has been
observed by a number of previous studies looking at AUC (e.g. Manel
et al. 2001, Allouche et al. 2006, Lobo and Tognelli 2011, Meynard
and Kaplan 2012, Syfert et al. 2013), it is to be noted that Proosdij
et al. (2016) have found an opposite trend for Schoener’s D. However,
the authors did not provide any explanation or hypothesis for that
trend, making its comparison with our study difficult. A potential
explanation for that difference could be that their sample sizes (5 to
50 occurrences) were much smaller than the ones used in the current
study (25 to 2000). In addition, our results show that this negative
effect only applies to species with abrupt or nearly abrupt response
to environmental gradients, a factor that was not specified in Proosdij
et al. (2016).
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4.4.3 Sampling bias

Sampling bias, caused by uneven sampling of species occurrences, is
often considered as one of the major factors that have a negative impact
on SDMs (e.g. Aratjo and Guisan 2006, Leitao et al. 2011, Duputié
et al. 2014, Guillera-Arroita et al. 2015). Prior studies have demon-
strated that the presence of sampling bias decreases model performance
(e.g. Loiselle et al. 2008, Leitao et al. 2011, Sdnchez-Fernandez et al.
2011, Fourcade et al. 2014, Ranc et al. 2016), While our results agree
with that, they show that the contribution of sampling bias to the
overall, combined effects of the different studied factors on SDMs is
relatively low, explaining no more than 2% of the variability of the
performance metrics. This demonstrates the importance of simultane-
ously studying multiple factors and their impacts on SDMs, whereas
other studies focused solely on the effect of sampling bias and did not
provide measures of explained variability, our study compared its effect
with the effect of other factors, finding it statistically significant but
relatively negligible. Our results are in agreement with the study by
Tessarolo et al. (2014) who also concluded that sampling bias has rather
minor effects on model performance compared to other factors (species
characteristics, sampling method, sample size, SDMs technique). In-
terestingly, they used the same study area as our study (i.e. Iberian
Peninsula), the difference lied in the use of 34 real species (amphibians,
reptiles, mammals). Nevertheless, the effect of sampling bias may be
related to autocorrelation in the predictor variables, which is relatively
high in interpolated climate data (such as Worldclim used in both their
and our study).

4.4.4 Environmental filtering

Another goal of our study was to test the applicability of environmental

filtering on models generated with spatially biased data. According

68


https://www.worldclim.org/

to Varela et al. (2014), environmental filtering consistently improves
model performance. Our results show that the measured effect of envi-
ronmental filtering was significant, they however also showed that that
effect was relatively unimportant when compared to other factors (see
Table 4.1). Moreover, its positive or negative effect strongly depended
on the type of species response to environmental gradients, species
prevalence, and sample size. We only confirmed the positive effect for
species with smooth or nearly smooth response, whereas for species
with abrupt or nearly abrupt response the effect was negative (except
models with species prevalence 0.05). This contradicts the results of
Varela et al. (2014) as their positive effect was observed for species
generated using a threshold approach (i.e. the equivalent of our abrupt-
responding species). In addition, the positive effect was much stronger
when assessed by AUC (up to more than 20% increase, see Figure 4.4)
than by Schoener’s D (only approx. 5% increase, see Figure 4.3). This
is in accordance with previous concerns about using AUC as the only
model performance measure (Jiménez-Valverde 2012, Moudry 2015,
Fernandes et al. 2019).

We recognize that SDMs may be affected by many other factors (see
Thibaud et al. 2014, Fernandes et al. 2019). Thus, we recommend that
further studies focus on interactions of environmental filtering with
other factors, such as the effects of spatial scale (extent and resolution)
(e.g. Connor et al. 2018, Simové et al. 2019), spatial autocorrelation
(Thibaud et al. 2014) or modeling technique (Fernandes et al. 2018).

4.5 Conclusions

We focused on several factors related to species occurrences (response
variable) in SDMs (i.e. environmental filtering, sampling bias, sample
size, species prevalence and species response to environmental gradient).

We found that both sample size and species prevalence equivalently
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affect performance (measured by AUC and Schoener’s D) of SDMs (in
general, increasing sample size positively, increasing species prevalence
negatively). Our results also highlighted the importance of using a
probability approach to the generation of virtual species distribution,
which allowed us to model species with different response to environ-
mental gradient from abrupt to smooth, as opposed to a threshold
approach, which is still commonly used. Indeed, our results showed
that the response of a species to environmental gradients has a strong
effect not only on the model performance itself but also on the effects of
other factors. The unprecedented complexity of our study enabled us to
recognize the importance not only of each of the factors themselves but
also of their interactions. Ignoring such interactions, which is almost
inevitable in studies focusing on one or two factors only, may lead to

substantially misleading conclusions.

Our results suggest that environmental filtering is not always a good
idea and should not be performed blindly without evidence of bias in
species occurrences. Environmental filtering down-weights repeated
observations of the same environmental conditions and reduces sample
size. Therefore, sampling must be dense enough to characterize the
curve and the algorithms must be able to uncover the true form of
the relationship. Our results show that at least 300 presences are
necessary for accurate predictions when using presence-only models
fitted by MaxEnt. We suggest that models using original, unfiltered
data should be always fitted. We highlight that the more gradual is
the species response to environmental gradients (except species with
prevalence 0.05), the greater is the model sensitivity to inappropriate
use of environmental filtering, although the sensitivity decreases with
higher species prevalence. Finally, we advocate that additional data
and species characteristics (e.g. resolution, extent, positional error)
should be evaluated using more complex virtual species (e.g. with
more complex response curves) to improve SDM use in biodiversity

monitoring and conservation.
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Abstract

Species occurrences inherently include positional error. Such error can
be problematic for species distribution models (SDMs), especially those
based on fine-resolution environmental data. It has been suggested
that there could be a link between the influence of positional error and
the width of the species ecological niche. Although positional errors
in species occurrence data may imply serious limitations, especially
for modelling species with narrow ecological niche, it has never been
thoroughly explored. We used a virtual species approach to assess
the effects of the positional error on fine-scale SDMs for species with
environmental niches of different widths. We simulated three virtual
species with varying niche breadth, from specialist to generalist. The
true distribution of these virtual species was then altered by introduc-
ing different levels of positional error (from 5 to 500 m). We built
generalized linear models and MaxEnt models using the distribution of
the three virtual species (unaltered and altered) and a combination of
environmental data at 5 m resolution. The models’ performance and
niche overlap were compared to assess the effect of positional error with
varying niche breadth in the geographical and environmental space.
The positional error negatively impacted performance and niche overlap
metrics. The amplitude of the influence of positional error depended on
the species niche, with models for specialist species being more affected
than those for generalist species. The positional error had the same
effect on both modelling techniques. Finally, increasing sample size did
not mitigate the negative influence of positional error. We showed that
fine-scale SDMs are considerably affected by positional error, even when
such error is low. Therefore, where new surveys are undertaken, we
recommend paying attention to data collection techniques to minimize
the positional error in occurrence data and thus to avoid its negative

effect on SDMs, especially when studying specialist species.

Keywords: Data errors, Niche breadth, Spatial overlay, Virtual species
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5.1 Introduction

Studying relationships between species and their environment is fun-
damental for understanding Earth’s biodiversity. Species distribution
models (SDMs) are a common tool used to study these relationships.
They use species occurrence data and environmental data to produce
a set of rules explaining the environmental space where species were
collected or observed (Ferrier et al. 2017). All applications of SDMs,
however, assume that species occurrence data are largely free of spatial
error. Nonetheless, all spatial data inherently contain some level and
type of spatial errors. These errors can be, for example, related to
the use of inadequate spatial resolution (Cottschalk et al. 2011, Si-
mova et al. 2019), low sample size (Wisz et al. 2008, Moudry et al.
2017), biased sampling (Hijmans 2012, Ranc et al. 2016) or occurrences
with positional error (Graham et al. 2008, Osborne and Leitao 2009,
Mitchell et al. 2017). Data quality (both for species occurrences and
environmental variables) is currently considered a major factor limiting
SDM accuracy (Aratjo et al. 2019) and demonstrating, quantifying

and understanding the consequences of these errors is therefore critical.

It is often assumed that the negative effects of positional error (i.e. inac-
curate location of species occurrences) is minimal or mainly associated
with relatively older datasets that are often georeferenced from textual
descriptions of their locations (which may cause errors of up to hun-
dreds of meters, Wieczorek et al. 2004). However, it is also necessary to
consider positional errors inherent to data georeferenced using modern
global navigation satellite systems (GNSS). The positional error of
GNSS data may be caused by the use of outdated technology, by poor
satellite signal reception (e.g. because of inappropriate site conditions),
or by data processing (e.g. conversion between coordinate systems or
rounding of coordinate values). Moreover, species occurrence data often
represent the position of the observer and not the actual position of the

species (Zhang et al. 2018). Additionally, where the marine environment
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is concerned, species data are often acquired using underwater cameras,
in which case the positional error can be affected for example by the
camera depth; the deeper the camera is, the greater is the positional
error (Rattray et al. 2014, Mitchell et al. 2017). Therefore, even though
the accuracy of standard GNSS is usually below 30 m (Frair et al. 2010),

the errors associated with such data may be much larger.

In addition, performance of SDMs is complicated by various spatial
(e.g. prevalence or range size) and ecological (e.g. niche breadth)
characteristics of the studied species (Luoto et al. 2005, Bulluck et al.
2006, McPherson and Jetz 2007, Evangelista et al. 2008, Chefaoui et al.
2011, Connor et al. 2018). It has been hypothesized that range size is
positively correlated with niche breadth (i.e. the range of environments
that the species can inhabit), in other words that species able to tolerate
a wider range of conditions are typically more widespread (Brown 1984,
Gaston et al. 1997, Arribas et al. 2012, Boulangeat et al. 2012). The
niche breadth-range size relationship is one of the possible mechanisms
explaining commonness and rarity. Modelling rare species (i.e. species
with small geographical ranges) is particularly problematic and novel
approaches have been adopted for this purpose (Breiner et al. 2015) to
overcome the common problem of a low number of occurrences available
for modelling that may not be sufficient to completely describe the
species niche. Similar effects can be caused by a low positional accuracy
of the occurrences (Johnson and Gillingham 2008, Fernandez et al. 2009,
Osborne and Leitao 2009).

Although the magnitude of the niche breadth-range size relationship is
still under debate, a recent meta-analysis of 64 studies found a significant
positive relationship between the range size and niche breadth (Slatyer
et al. 2013). Such a synergic relationship can increase the already
high vulnerability of specialist species to environmental changes. In
addition, Slatyer et al. (2013) suggested that specialist species might be
particularly vulnerable to any environmental change due to synergistic

effects of a narrow niche and small range size. Specialist species are

74



of high conservation concern, and SDMs might be the only tractable
means of estimating their distribution and reaction to environmental
change. However, confounding effects of inaccurate data on modelling
species that utilize a narrow niche breadth (i.e. specialist) versus species
that utilize a wide niche breadth (i.e. generalist) are unknown (Connor
et al. 2018).

It is intuitive that positional error of a given magnitude might have
a greater effect on specialist than generalist species, as it is more
likely that occurrences get incorrectly shifted into cells representing
an unsuitable environment, i.e. environment that is outside of the
species’ environmental niche. This, however, has never been thoroughly
explored because it is extremely difficult, if not impossible, to estimate
the true responses of a real species to the environment and, consequently,
to be able to fully understand the true suitability of an area for the

species in question.

In this study, we focused on Light Detection and Ranging (LiDAR)-
derived variables that are being more and more often combined with
species distribution data of unknown positional accuracy to study
species—environment relationships at fine scales. Studies published so
far have used real species to test the effect of positional error. However,
real species distribution data are usually affected by a complex set of
other uncertainties (e.g. sampling bias, incompleteness, inaccuracies).
As a consequence, the isolation and identification of the effects of
positional error can be very challenging, if not impossible. This is
likely one of the reasons why little consensus exists on how the effect
of positional error manifests in SDMs (Naimi et al. 2011, Mitchell et al.
2017). For example, Graham et al. (2008) concluded that SDMs are
robust to positional error while others argued that positional errors
reduce models’ performance (Johnson and Gillingham 2008, Fernandez
et al. 2009, Osborne and Leitao 2009).
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Another aspect may be that positional errors of species occurrences were
studied using relatively coarse environmental data (but see Mitchell
et al. 2017). Positional error considered in prior studies ranged from
50 m up to 50 km (Table 5.1). While such error results in a shift over
several cells in a coarse-resolution SDM (e.g. 1 x 1 km), it will cause a
much greater shift in a fine-resolution SDM (e.g. 10 x 10 m). Therefore,
with the increasing availability of fine-scale data, additional studies are
needed (Osborne and Leitao 2009); it can be expected that SDMs at

fine scales would be more sensitive to positional error.

Table 5.1 Overview of prior studies focused on the influence of positional
error in species occurrence data on SDMs.

Species data Environmental data
Graham et al. 2008 observed categorical,continuous
Johnson and Gillingham 2008 observed categorical
Fernandez et al. 2009 observed continuous
Naimi et al. 2011 artificial continuous
Mitchell et al. 2017 observed continuous

Range of shifting occurrences

Graham et al. 2008 0-5 km 0-50 pixels
Johnson and Gillingham 2008 50-1000 m (over 50 m) 1-34 pixels
Fernandez et al. 2009 5-10-25-50 km 1-5, 1-10, 1-25, 1-50 pixels
Naimi et al. 2011 X 1-30 (over 1 pixel)
Mitchell et al. 2017 5-25-50-20-400 m 1-2, 1-12, 1-80, 1-160 pixels

Resolution of input environmental data (pixel size)

Graham et al. 2008 100 x 100 m
Johnson and Gillingham 2008 30 x 30 m
Fernandez et al. 2009 1 x 1km
Naimi et al. 2011 artificial data
Mitchell et al. 2017 25 x 2.5 m

To ensure the full knowledge of the exact ecological and geographi-
cal characteristics of the species and to avoid unknown complexities
associated with real data, we used a virtual species approach to test
the effect of the positional error in species occurrences on fine-scale
SDMs in the context of species niche breadth (i.e. specialist versus
generalist species). We generated three virtual species that differed in
characteristics related to the geographic distribution of the species, i.e.

prevalence and relative occurrence area (ROA); the proportion of the
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total study area occupied by the species (Lobo 2008).

The virtual species approach allowed us to control the experiment and to
isolate the effects of positional error (Zurell et al. 2010). This approach
is increasingly used to evaluate the effects of data inaccuracies on model
performance (Barbet-Massin et al. 2012, Véaclavik and Meentemeyer
2012, Qiao et al. 2015, Ranc et al. 2016, Fernandes et al. 2018, Leroy
et al. 2018, Moudry et al. 2018, Gébor et al. 2019, Meynard et al.
2019), but has yet to be adopted for the study of positional error. In
particular, we tested whether: 1) SDMs for specialist species are more
affected by positional error than those for generalist species; 2) it is
possible to compensate the assumed negative effect of a positional error
with a higher sample size; and 3) the positional error has different
effects when using a parametric (e.g. generalized linear model) versus

a nonparametric (e.g. MaxEnt) modelling technique.

5.2 Material and Methods

5.2.1 LiDAR data acquisition, processing and vari-
able selection

Discrete LiDAR data were collected in Krkonose Mountains National
Park (KRNAP), Czech Republic (Supplementary material Appendix
I Fig. Al) in 2012 using a small-footprint airborne LiDAR system
(RIEGL LMS Q-680i). The average point density was approximately
six points per square meter. The LiDAR point cloud was automatically
classified into ground, vegetation, building, wire and transmission
tower classes in the ENVI LiDAR software (ver. 5.3) and LAStools
(ver. 171215). The terrain data points were used to produce a digital
terrain model (DTM), and the vegetation data points were used to
produce a canopy height model (CHM) (Khosravipour et al. 2016).

Both models were generated from the point cloud at a 0.5 m resolution
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and subsequently resampled to 5 m cell resolution for the analysis to
improve processing time. A topographic wetness index (TWI) was
derived from the DTM based on the equation

As

TWI =1
W n(tcmﬁ

)

where As is the specific catchment area and tan 3 is the local slope in
radians (Beven and Kirkby 1979). To calculate the specific catchment
area, we used the multiple flow routing algorithm of Quinn et al.
(1991), recommended by Kopecky and Cizkova (2010), using SAGA-
GIS (Conrad 2003).

The selection of these three variables (DTM, CHM, TWI) was moti-
vated by the need to simulate a realistic situation that includes variables
with various levels of spatial autocorrelation (Supplementary material
Appendix 2 Fig. A2). CHM describes a horizontal structural variability
of the vegetation and is known to affect species richness (Lefsky et al.
2002). For example, higher vegetation was found to be related to higher
bird species richness (Davies and Asner 2014). TWI is a surrogate
for soil moisture, an environmental variable that affects the vegetation
composition and that has been previously used to predict bird occur-
rences (Besnard et al. 2013, Reif et al. 2018). The relationships between
CHM and TWI on the one side and bird distribution and richness
on the other side make our study relatable to applications with real
species; our virtual species could theoretically be birds with specific
habitat requirements in terms of terrain characteristic and vegetation
structure. We also used the DTM as a surrogate for climatic variables
and to restrict our virtual species to certain altitudes (Coops et al.
2010, Vogeler et al. 2014).
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5.2.2 Simulating virtual species
with different niche breadths

Virtual species were generated with the virtualspecies package (Leroy
et al. 2016) in the statistical software R v.3.4.4 (R Development Core
Team). The process involved three steps: a) generating the true distri-
bution of the virtual species’ environmental suitability, b) converting the
environmental suitability into presences and absences and ¢) sampling

species occurrences for further analysis and modelling.

Applying the formatFunctions function in R, we defined the species—

environment relationships using normal distribution curves. To simulate
species with different niche breadth, prevalence and ROA, we used the
same means and varied standard deviations of the used environmental
variables (Supplementary material Appendix 3 Table B1). Specifically,
we simulated three distinct virtual species with varying ROAs and
prevalence that represent realistic scenarios of species’ extent of occur-
rence in the study area. The species with low ROA (4%) represents a
specialist with low species prevalence (0.04), narrow niche breadth and
small geographical range. The species with medium ROA (12%) may
be described as an intermediate species (species prevalence = 0.12) with
a wider niche breadth and medium geographical range. Finally, the
species with high ROA (52%) can be perceived as a generalist with high
species prevalence (0.47), wide niche breadth and wide geographical
range (Futuyma and Moreno 1988, Devictor et al. 2010, Franklin 2010,
Peers et al. 2012). Subsequently, we multiplied individual species’ re-
sponses to environmental variables in order to acquire an environmental
suitability raster (function generateSpFromFun). We opted for multi-
plication of the variables to assume irreplaceability of environmental
conditions (i.e. we assumed that unsuitability of one condition causes
a low probability of occurrence even though remaining conditions are

in species’ range of suitable values).

As noted in several studies (Meynard and Kaplan 2012, 2013, Moudry
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2015, Meynard et al. 2019), an appropriate setting of the whole sim-
ulation with respect to the research questions is crucial for obtaining
reliable results. In addition, Meynard et al. (2019) highlighted that
simulation studies based on the threshold approach fail in appropriately
separating factors such as prevalence and niche breadth. Therefore,
due to these concerns, we adopted a probabilistic simulation approach
(logistic function with o = -0.05 and 8 = 0.3) to convert the environ-
mental suitability rasters into probabilities of occurrences that were
subsequently used to sample binary presence/absence rasters (function
convertToPA). To sample species occurrences (function sampleOccur-
rences), we randomly generated, using a uniform random distribution,
both presence-only and presence/absence data. Both types of oc-
currence datasets were generated in order to test different modelling
techniques (cf. section Model fitting and evaluation). To test whether
it is possible to compensate the assumed negative effect of positional
error with a higher sample size, we generated four different sample sizes.
Specifically, 30, 100, 500 and 1000 species presences were generated,
complemented for the purpose of GLM modelling by twice as many

absences.

5.2.3 Simulating positional error in species occur-
rences

It is generally assumed that the magnitude of the positional error in
species occurrence varies based on the source of the error. The positional
error associated with GNSS points (e.g. species occurrences) may range
from a few centimetres up to several metres. Furthermore, in some
species such as birds or big predators, it is usually impossible to record
their accurate position and such data are shifted by tens or hundreds
of meters. An even greater shift is sometimes observed in museum
databases. Therefore, to evaluate the range of possible magnitudes of
the positional error, we simulated the positional error by shifting the

sampled locations (i.e. presences and, in case of GLM, also absences)
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in a random direction according to six scenarios that corresponded to
different distances ranging from 5-10 m up to 100-500 m. The error in
the focal virtual species locations was 5-10 m for S1 scenario, 10-15 m
for S2, 15-20 m for S3, 20-50 m for S4, 50-100 m for S5 and 100-500
m for S6 (Supplementary material Appendix 4 Table C'1). Scenarios
S1-S4 simulated realistic degrees of error if using modern monitoring
technologies like GNSS, while scenarios S5-S6 simulated more extreme
positional errors that could be associated with species observations
recorded without GNSS, species difficult to pinpoint properly such as
birds or big predators, or occurrences from museum databases. If the
shifting of the original data points resulted in the points falling outside
the study area, we recalculated the shift until the new coordinates
were located within the boundaries of the study area. We provide a
script of how we simulated virtual species and shifting occurrences in

Supplementary material Appendix 2.

5.2.4 Model fitting and evaluation

We selected generalized linear models (GLM; Nelder and Baker 1972,
Oksanen and Minchin 2002) as a presence/absence method and MaxEnt
(Phillips et al. 2006) as a presence-background method that are often
adopted in ecological studies (Moudry and Simovéa 2013, Linda et al.
2016, Malavasi et al. 2018, Géabor et al. 2020, Watts et al. 2019). In
addition, Graham et al. (2008) showed that these two approaches
were among the better performing modelling techniques when the data
was affected by positional errors. Models were built in the statistical
software R using the dismo (ver. 1.1.4) and glm2 (ver. 1.2.1) packages.
The GLM was run with a logit-link function and binomial distribution.
The quadratic terms of the three environmental variables were included
because of the known normal distribution curves of the response function.
To enable the comparison of individual SDMs, we needed to maintain
the parameters of MaxEnt unchanged, as done in many prior studies
(Franklin et al. 2014, Fourcade et al. 2014, Holloway et al. 2016, Ranc
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et al. 2016, Tingley et al. 2018, Ye et al. 2018). The default settings
established by Phillips et al. (2009) were used with randomly drawn
background data generated from the binary map of the true occurrences
of the virtual species. The same three environmental variables (DTM,
CHM and TWI) used in the process of generating virtual species
were used in the SDMs. Fivefold cross-validation where the data were
randomly divided into fifths was used to evaluate the models. Four fifths
of the data were used to train the model and the remaining one fifth
was used to assess the performance. Control models without positional
error were calculated for all three species with different niche breadth,
prevalence and ROA and for both modelling techniques, allowing an

easy comparison of the effect of positional error on model performance.

The area under the receiver operating characteristic curve (AUC) (Field-
ing and Bell 1997, Jiménez-Valverde 2012) and the true-skill statistic
(TSS; Allouche et al. 2006) were used to assess model performance (i.e.
discrimination accuracy). AUC is widely used in ecological studies as a
single threshold independent measure of model performance (Vaclavik
and Meentemeyer 2012, Mitchell et al. 2017). The AUC ranges from
0 to 1 where a score of 1 indicates perfect discrimination, a score of
0.5 indicates random performance and values lower than 0.5 indicate a
worse than random performance. TSS is a frequently used threshold
dependent metric (Cianfrani et al. 2018, Eaton et al. 2018) taking both
omission and commission errors into account. It ranges from -1 to +1
where +1 indicates perfect agreement and values of zero or less indicate

random performance (Allouche et al. 2006).

To quantify differences between the true probability of occurrence of
virtual species and the predicted distribution inferred from the models
in geographical space, their niche overlap was compared using the I
measure (Warren et al. 2008, Rodder and Engler 2011) and Spearman’s
rank correlation. The I ranges between 0 (no overlap) and 1 (perfect

overlap). Following Rodder and Engler (2011), we used the following

82



(i) LIDAR data acquisition. processing and variable selection

Specialist (low ROA) Intermediate Generalist (hizh ROA)

l

(iii) Generating environmental suitability “True Distribution”
(DTM x CHM x TWI)

l

(i) Conversionto Presence-Absence

(v) Sample occurences (vi) Simulating positional error in

I--~ 30 times repeated ------
(accurate data) species occumrences

(vii) Species distribution
models

Model evaluation
(AUC. TSS)

Assessing niche overlap
(L Spearman 's rank
correlation)

Figure 5.1 General modelling process. (i) We first acquired and processed
LiDAR data and selected three fine-scale environmental predictors: DTM,
CHM and TWI. (ii) We simulated virtual species with different niche breadths
(ROA) by defining their response to environmental gradients for each environ-
mental variable. (iii) We multiplied those variables to generate environmental
suitability (‘true’ distribution of virtual species). (iv) We translated the prob-
ability of species occurrence to a presence—absence raster. (v) We sampled
occurrences based on the presence—absence raster. (vi) We simulated the
positional error in species occurrences. (vii) We generated SDMs with ac-
curate as well as shifted occurrences, evaluated their performances (AUC,
TSS) and assessed the niche overlap (I, Spearman “s rank correlation) in the
geographical and environmental space.
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classes to interpret the results: no or very limited overlap (0-0.2), low
overlap (0.2-0.4), moderate overlap (0.4-0.6), high overlap (0.6-0.8) and
very high overlap (0.8-1.0). Spearman’s rank correlation ranges between
-1 and +1, where -1 indicates that species responses to the environment
are exactly negatively correlated (opposite) and +1 indicates perfectly
positively correlated overlap (identical). The closer the values are to

zero, the lower is the niche overlap.

The magnitude of the negative effect of the positional error on SDMs is
dependent on the size of the positional error and distribution of species’
suitable environment in the geographical space (Naimi et al. 2011). The
positional data may be shifted in the geographical space and even a
relatively low positional error in geographical space can have a profound
effect on environmental niche estimates in environmental space and vice
versa. Furthermore, we expected this would be related to the species
niche breadth. Therefore, we were also interested in how the positional
error is manifested in the environmental space and measured the niche
overlap in the environmental space as well. We used I and Spearman’s
rank correlation implemented in ENMTools 0.2 (Warren 2019, Warren
et al. 2020) to estimate overlap in the environmental space between
models fitted with accurate occurrences without any positional error
(hereafter unaltered models) and models fitted with shifted occurrences

(i.e. scenarios S1-S6)

We ran the entire process from species generation to model evaluation
30 times (Figure 5.1). In addition, we used the analysis of variance
(ANOVA) to assess the strength of the individual effects of the posi-
tional error, sample size, ROA and modelling technique, including all
possible interactions. We compared the relative importance of indi-
vidual predictors based on their contribution to the overall explained
variation (R?). Instead of formal testing, we plotted the effects (and
their confidence intervals) of all predictors combinations and evaluated
them qualitatively. Because both AUC and TSS values were highly het-

eroscedastic (e.g. the ratio between maximum and minimum standard
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deviation across all factors combinations was 22 resp. 19 for AUC resp.
TSS), we used robust variance—covariance matrix estimator suggested
by Mackinnon and White (1985) for computation of confidence intervals.

This was done using an R package sandwich (Zeileis 2006).

5.3 Results

5.3.1 Unaltered models

Both performance metrics (AUC and TSS) largely followed the same
pattern and highlighted excellent model performance for all, i.e. spe-
cialist, intermediate and generalist, species (AUC ranged from 0.91 up
to 0.97 for MaxEnt models and from 0.80 up to 0.85 for GLM mod-
els). The only exception were the MaxEnt models for generalist species
where AUC achieved only good performance (mean AUC 0.73). MaxEnt
models were more successful in modelling specialist and intermediate
species while GLM models were more accurate for the generalist species
(Figure 5.2)

Models achieved high or very high niche overlaps in geographical space
according to both I and Spearman ‘s rank correlation. In general, the
niche overlap decreased in the following order: generalist, specialists
and intermediate species except for the Spearman s rank correlation
for specialists modelled by MaxEnt that achieved very high correla-
tion. Comparison of modelling techniques showed that MaxEnt models
achieved a higher niche overlap than GLM for all species with the most
obvious differences in specialist species. An increase in the sample size
of unaltered models led to none or negligible increase in niche overlap
(Figure 5.3).
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Figure 5.2 Resulting AUC (A) and TSS (B) scores according to different
species niche breadth (specialist, intermediate, generalist), positional error
(S0, unaltered models; S1, 5-10 m; S2, 10-15 m; S3, 15-20 m; S4 20-50 m,
S5, 50-100 m; S6, 100-500 m) and sample size (number of presences = 30,
100, 500, 1000; note that for GLM models twice as many absences compared
to presences were generated). Black colour shows results for GLM models
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Figure 5.8 Resulting I (A) and Spearman’s rank correlation (B) scores of
niche overlap in geographical space according to different species niche breadth
(specialist, intermediate, generalist), positional error (S0, unaltered models;
S1, 5-10 m; 82, 10-15 m; S3, 15-20 m; S4, 20-50 m, S5, 50-100 m; S6,
100-500 m) and sample sizes (number of presences = 30, 100, 500, 1000;
note that for GLM models twice as many absences compared to presences
were generated). Black colour shows results for GLM models while grey shows
results for MaxzEnt models.
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Figure 5.4 Resulting I (A) and Spearman’s rank correlation (B) scores of
niche overlap in the environmental space according to different species niche
breadth (specialist, intermediate, generalist), positional error and sample
size (number of presences = 30, 100, 500, 1000; note that for GLM models,
twice as many absences as presences were generated). Also note that here we
show the niche overlap between unaltered models and models affected by a
specified positional error (and not a comparison with simulated probability of
occurrences as in Figure 5.3). Thus, for example, S1 shows a comparison of
niche overlap between unaltered models and models affected with positional
error in the range of 5-10 m. Black colour shows results for GLM models
while grey shows results for MaxEnt models.
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5.3.2 Effect of positional error on models
of species with different niche breadth

Results show, independently of the modelling technique, a clear trend
of the positional error worsening model performance (both AUC and
TSS). The highest drop is evident between unaltered models and models

affected by the smallest simulated positional error (5-10 m).

Increasing the positional error further led to additional decrease in
model performances; however, this decrease was minimal (positional
error 10-50 m). Even the extreme cases of positional error (50-100 and
100-500 m) led to a relatively low decrease in models’ performances
in contrast to the drop caused by the 5-10 m error. For example, in
the case of MaxEnt models for intermediate species, AUC dropped
on average from 0.91 (unaltered models) to 0.79 for the positional
error of magnitude inherent to any occurrence data (i.e. up to 10 m),
and to 0.71 in the case of the extreme positional error (100-500 m),
respectively (Figure 5.2). Nevertheless, the magnitude of the negative
effect of positional error varied according to the species niche breadth.
For both GLM and MaxEnt models the drop between unaltered models
and the smallest simulated positional error (5-10 m) was higher for
specialist and intermediate species (AUC dropped on average about

0.12) than for generalist species (AUC dropped on average about 0.05).

The results showed that the positional error in the occurrence data
reduced the niche overlap in both the geographical and environmental
space of both GLM and MaxEnt models. Niche overlap decreased
gradually with the increasing positional error with an especially sig-
nificant decrease in models’ niche overlap at the extreme case of the
positional error (100-500 m) (Figures 5.3, 5.4). However, the effect of
the positional error on the niche overlap varied depending on species’
niche breadth. Decrease in the niche overlap was higher for specialist
and intermediate species than for generalist species, especially in the

geographical space. For example, in case of MaxEnt models, Spear-
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man s rank correlation was reduced from 0.98 to 0.58 for the specialist
and from 0.83 to 0.70 for the generalist species, respectively (Figure
5.3). However, the effect of the positional error was not that evident
from I, especially for the generalist species in geographical space. For
example, the decrease for generalist species and MaxEnt models was
on average only from 0.96 to 0.9 and the GLM models appeared as not
being affected at all.

Finally, independently of the validation metric, results showed that
increasing the sample size cannot compensate for the effect of positional
error (Figures 5.2, 5.3, 5.4). On the contrary, it is evident that a
combination of low sample size of 30 samples with positional error led

to erratic behaviour and generally low performance of the models.

5.3.3 Comparison of the relative importance of
individual predictors (R?)

The results show that the positional error and modelling technique had
the highest relative importance (R?) for the model performance (AUC,
TSS). The relative importance of the sample size and niche breadth was
much smaller and mutually comparable (Table 5.2). According to the
niche overlap in geographical space assessed by I (model predictions),
niche breadth had the greatest effect, followed by the positional error,
modelling technique and sample size, the importance of which was
almost negligible. In contrast, according to correlations, the modelling
technique and positional error had the highest relative importance (R?)
followed by the niche breadth and by sample size, the importance of
which was minimal. When assessing relative importance for niche over-
lap in the environmental space, the modelling technique and positional
error showed the highest contribution followed by the niche breadth
and by sample size, the importance of which was almost negligible, just
like in the above metrics. All those factors significantly affected SDMs

performance and predictions (p-value < 0.05).
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5.4 Discussion

In this study, we focused on the effect of positional error in species
occurrences on fine-scale SDMs. We simulated species with different
levels of niche breadth to assess whether there was a link between the
width of the environmental niche and the effect of the size of positional
error. Our results showed that introducing positional error into species
occurrence data led to a decrease in model performance and prediction
accuracy in both the geographical and environmental space. However,
the effect of the positional error varied with species niche breadth. The
same positional error had a greater impact on specialist (low ROA and
prevalence, narrow breadth of niche) than on generalist (high ROA and
prevalence, wide breadth of niche) species. This is likely because in case
of specialist species, occurrences could be easily shifted to inappropriate
environments outside of the species’ environmental niche. This could
also explain the inconsistent conclusions of previous studies (Graham
et al. 2008, Fernandez et al. 2009).

Table 5.2 Comparison of the relative importance of individual factors (R2,
%) for ANOVA of performance metrics (AUC, TSS) and niche overlap in
the geographical and environmental spaces (I, correlation).

Factor AUC TSS

ROA 4 4.14

Sample size 1.1 1.78

Modelling technique 18.7 21.35

Positional error 25.4 24.58

Factor I geographical space Correlation geographical space
ROA 75 11.2

Sample size 0.1 1

Modelling technique 8 24.7

Positional error 8.4 27.5

Factor I environmental space Correlation environmental space
ROA 9.7 1.7

Sample size 0.2 0.4

Modelling technique 45.4 21.5

Positional error 13.2 18.3
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Higher sample sizes slightly improved unaltered models’ accuracy; the
results however showed that increasing the sample size could not com-
pensate for the effect of positional error on models’ accuracy (Figures