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Abstract

In the last decades, species distribution models (SDMs) have been widely
applied to model species-environment relationships, often involving
environmental variables (based on remotely sensed data) and species
occurrences (based on field observations). Although these models
are now routinely used, they still have critical limitations, especially
those related to spatial data quality issues. However, studying the
influence of varying spatial data quality on SDMs using real species
would be extremely difficult as a real species itself brings additional
(often unknown) uncertainties into the equation. For example, the
real species prevalence or response to environmental gradients may
be unknown or only approximate, as well as the magnitude of data
error. Virtual species approach, on the other hand, allows researchers
to isolate certain aspects of spatial data quality and to test its effect on
SDMs. This thesis aims to test how different species characteristics and
the quality of both species and environmental data affect SDMs and
to answer the question whether species data or environmental data of
high accuracy may be replaced by lower accuracy data. Specifically, the
thesis addresses: 1) the influence of species characteristics (e.g. species
response to environmental gradients, species prevalence, niche breadth);
2) the effect of species data quality (e.g. sample size, sampling bias,
positional error); 3) the interactions between species characteristics
and diverse data quality and 4) how different sources of environmental
data (e.g. digital elevation models), its processing and subsequent use
in modeling affect SDMs. Overall, the results showed that all these
factors have a considerable effect on the output models. Therefore, it is
always critical to evaluate the quality of input data with respect to their



source or the way of their processing. In the case of previously gathered
species and environmental data where the accuracy is questionable or
unknown, scientists should be cautious when interpreting their results.
Where new surveys are undertaken, it is recommended to pay attention
to data collection techniques to minimize the data error (e.g. positional
error in species occurrences) and to help avoid its negative effect on
SDMs. Additionally, it has been shown that there is a high level of
interactions among individual species characteristics and the influence
of various data quality on SDMs. Ignoring this may lead to misleading
outcomes and conclusions.



Abstrakt (Czech)

Modely druhové distribuce jsou v posledních desetiletích běžně používány
k modelování vztahů mezi druhem a prostředím, ve kterém se vysky-
tuje. Tyto modely jsou založeny na environmentálních proměnných
(často získaných pomocí metod dálkového průzkumu země, DPZ) a
datech o výskytu druhů získaných především při terénních pozorováních.
Přestože jsou dnes tyto modely používány rutinně, stále narážejí na
mnohá omezení, a to především na ta spojené s kvalitou vstupních
dat. Studovat vliv různé kvality prostorových dat na modely druhové
distribuce s použitím reálných druhových dat je nicméně velmi obtížné,
jelikož reálné druhy vnášejí do celého procesu řadu dalších, často
neznámých faktorů, které mohou výsledné modely ovlivnit. U reál-
ných druhů se může stát, že například neznáme prevalenci nebo reakci
na změny v prostředí, ve kterém se studovaný druh vyskytuje, stejně
tak jako často neznáme chybovost použitých druhových dat. Oproti
tomu použití virtuálního druhu umožňuje vědcům izolovat specifické
aspekty spojené s kvalitou prostorových dat a studovat jejich vliv na
výsledné modely. Cílem této disertační práce je testovat vliv různých
druhových charakteristik a kvality prostorových dat (druhových i en-
vironmentálních) na modely druhové distribuce a zodpovědět otázku,
zda a za jakých podmínek je možné nahradit přesná prostorová data
těmi s nižší přesností. Specificky se tato disertační práce zabývá: 1)
vlivem druhových charakteristik (např. reakcí druhu na environmentální
gradient, druhovou prevalencí, šířkou niky); 2) vlivem různé kvality
druhových dat (např. velikostí vzorku, nadměrným sběrem dat v
určitých lokalitách, polohovou chybou); 3) interakcemi mezi druhovými
charakteristikami a různou kvalitou prostorových dat a 4) otázkou,



jak různé zdroje environmentálních dat (např. digitálních výškových
modelů), jejich zpracování a následné využití ovlivňují kvalitu modelů
druhové distribuce. Výsledky této práce ukazují, že všechny tyto faktory
mají na výsledné modely významný vliv. Proto je nezbytné před samot-
ným modelováním kriticky zhodnotit kvalitu vstupních prostorových
dat s ohledem na jejich zdroj nebo způsob zpracování. V případě využití
druhových nebo environmentálních dat, která byla sbírána v minulosti
a jejichž kvalita je neznámá nebo pochybná je nutné výsledné modely
interpretovat obezřetně. V případě sběru nových dat, jak druhových,
tak environmentálních, je nutné zaměřit se na správnou metodiku sběru
s cílem minimalizovat jejich prostorovou chybovost (například polo-
hovou chybu), která negativně ovlivňuje výsledné modely. Dále bylo
prokázáno, že vliv různé kvality prostorových dat na modely druhové
distribuce se mění v závislosti na odlišných druhových charakteristikách
a ignorovaní těchto interakcí může vést k zavádějícím výsledkům a
závěrům.
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Chapter 1

Thesis Preface

1.1 Foreword

Biodiversity has been decreasing at a rate unprecedented in human
history and its conservation should be the world´s highest priority. A
proper understanding of the relationships between species and their
environment represents a fundamental prerequisite for effective con-
servation actions. Species distribution models (SDMs), also known as
species niche models or climatic models have, become a powerful tool
helping scientists to understand such relationships. With the increasing
availability of both species and environmental data in the last two
decades, the implementation of SDMs has dramatically increased. How-
ever, despite this boom, the question of how such models are affected
by the quality of spatial data has been only poorly investigated. We
do neither know how SDMs based on data of poor quality may interact
with species characteristics, nor how this may vary at different spatial
scales. This lack of knowledge offers a broad field of research opportu-
nities. Besides, handling spatial data through geographic information
systems is often naive (e.g., different approaches to deriving terrain
attributes derived from DEM are used), which in turn hampers the
repeatability of studies. The presented thesis partially answers some
unresolved issues related to interactions data and species character-
istics and provides guidelines for appropriate spatial data handling.
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Specifically, positional error in species occurrences, sampling bias and
sample size across different species characteristics (i.e. prevalence, niche
breadth), and the influence of various sources of environmental data
and their processing on SDMs were explored.

1.2 Scientific motivation

Species distribution models (SDMs) use species occurrences and envi-
ronmental data to produce a set of rules explaining the environmental
space where species were collected or observed. In the last few decades,
SDM-related methodological studies have been mostly focused on choos-
ing appropriate modeling algorithms or evaluation metrics. However, to
my surprise, the effect of varying data quality on SDMs has remained
mostly uncharted for a long time, assuming that the input data were
free of spatial error. Nonetheless, all spatial data inherently contain a
certain level and type of spatial errors.

When I was going through prior studies focusing on the effect of varying
quality of spatial data on SDMs, I realized several things. Firstly,
studies that focused solely on the quality of species data often yielded
contradictory conclusions. Secondly, prior studies mostly did not include
interactions between various ecological characteristics of species and
differences in data quality. Thirdly, I began to realize that many studies
on SDMs use data non-critically, without the necessary GIS knowledge.
Therefore, I personally believe that it is necessary to demonstrate,
quantify and understand the consequences of using spatial data of
varying quality in SDMs. Such research can lead to much-needed
improvements in the current methodological standards for SDMs and
its conclusions should be used for practical nature conservation and
biodiversity protection.
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1.3 Thesis structure

The thesis consists of four published studies and is divided into 2 Parts
and 8 Chapters. The Part I contains a preface and general introduction
into the field of species distribution modeling. The Part II consists of
individual published studies:

• Study I: How do species and data characteristics affect species
distribution models and when to use environmental filtering?

• Study II: The effect of positional error on fine scale species distri-
bution models increases for specialist species

• Study III: On the use of global DEMs in ecological modelling and
the accuracy of new bare-earth DEMs

• Study IV: Potential pitfalls in rescaling digital terrain model-derived
attributes for ecological studies.
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Chapter 2

Objectives of the Thesis

The aim of this thesis is to test how different species characteristics
and quality of species and environmental data affect SDMs and to
answer the question whether species and/or environmental data of
high accuracy may be replaced by those of lower accuracy. Specifically,
the thesis addresses: 1) the influence of species characteristics (e.g.
species response to the environmental gradient, species prevalence,
niche breadth); 2) the effect of species data quality (e.g. sample size,
sampling bias, positional error); 3) the interactions between species
characteristics and diverse data quality and 4) how different sources of
environmental data (e.g. digital elevation models), its processing and
subsequent use in modeling affect SDMs.
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Chapter 3

Theoretical Background

3.1 Introduction

Biodiversity is declining throughout the world and understanding of
how species are distributed in space and time is crucial for mitigat-
ing that decline and answering conservation questions at hand. Over
the last few decades, this effort was facilitated by advances in vari-
ous modeling techniques. The objective of modelling is to relate an
in situ response variable (e.g. species occurrences) and explanatory
variables (environmental variables, often derived by remote sensing) to
describe the relationship between them or to predict unknown values of
the response variables characterizing biodiversity (Ferrier et al. 2017).
Species distribution models (SDMs) represent the most frequently used
tool for such analyses. Although these models are now routinely used,
they still have critical limitations, especially those related to spatial
data quality (Araújo et al. 2019).

The use of accurate spatial data (e.g. Duputié et al. 2014, Guillera-
Arroita et al. 2015, Araújo et al. 2019, Gábor et al. 2019, 2020) is
an elementary prerequisite for creating a valid SDMs. Unfortunately,
there are many inherent sources of uncertainty of (both species and
environmental) input data that can affect the model performance.
Species data may be affected for example by sampling bias (Isaac and
Pocock 2015, Boria et al. 2014), by low sample size (Pearce and Ferrier
2000, Stockwell and Peterson 2002), by positional error (Johnson and
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Gillingham 2008, Fernandez et al. 2009, Osborne and Leitão 2009) or
limited by scale (Šímová et al. 2019). Similarly, environmental data can
be negatively affected by positional error (Osborne and Leitão 2009), by
its origin or type (Moudrý et al. 2018), by the way of data processing
(Moudrý et al. 2019b) or resolution (Gottschalk et al. 2011, Turner
et al. 2019). All these play a role when modelling species distribution
and were more or less explored.

In addition, the performance of SDMs is complicated by various spa-
tial (e.g. prevalence or range size) and ecological (e.g. niche breadth)
characteristics of the studied species (Luoto et al. 2005, Bulluck et al.
2006, McPherson and Jetz 2007, Evangelista et al. 2008, Chefaoui et al.
2011, Connor et al. 2018). These characteristics are usually studied
separately or in combinations of two or three (but see Thibaud et al.
2014, Fernandes et al. 2018, Liu et al. 2019) and rarely together with
data quality issues. Therefore, studies addressing both are particu-
larly valuable as they help understand interactions between ecological
characteristics of the studied species and issues related to poor data
quality.

Studying the influence of different spatial data quality and its inter-
actions with various species characteristics on SDMs with real species
is challenging. For example, species response to the environmental
gradient, its prevalence or rarity rate is unknown. In addition, the
magnitude of error in the data is often unknown or approximate. The
use of a virtual species approach, on the other hand, facilitates the
isolation of certain aspects of spatial data quality and species character-
istics and testing their effects on SDMs (Zurell et al. 2010). Therefore,
this approach is increasingly used for evaluating the effects of data
inaccuracies on model performances (see for example Meynard et al.
2019).

The presented thesis focuses on answering the question of how differences
in the quality of spatial data and in its processing, together with
differences in species characteristics, affect species distribution models.
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3.2 Species distribution models

Understanding of the relationship between species and its environment
is an ongoing effort of ecologists and biogeographers, representing one
of the cornerstones of these fields (see for example Humbold von and
Bonpland 1807). For this purpose, species and environment data from
in situ (i.e. field) observations are combined and used for explanatory
studies. The first experiments on modeling species-environment rela-
tionship can be dated back to the end of 1950s (e.g. Hairston 1959,
Neyman and Scott 1959, MacArthur 1960). The development of com-
puting technology, geographic information systems, remote sensing and
various statistical methods (with the greatest boom in the mid-1980s)
led to attempts to use more complex species-environment combinations
and to the first experiments with modeling species distribution (predic-
tive studies; see review by Ferrier et al. 2017) (see Figure 3.1 for SDMs
workflow).

Figure 3.1 SDMs workflow. Species data from in situ field observations
and various environmental data (for example derived from remote sensing)
are combined to study species-environment relationships or to predict species
distribution in geographical space.

29



As mentioned above, the objective of such modelling is to relate an
in situ response variable (e.g. species distribution) and explanatory
variables (e.g. remotely sensed environmental data) in order to describe
the relationship between these two or to predict unknown values of
the biodiversity response variable (Ferrier et al. 2017). Later, these
models became known as ecological niche models (ENMs) or, more
often, species distribution models (SDMs). They are widely used, for
example, in determining locations potentially threatened by invasive
species or for studying the impact of climate change on biodiversity
(see Table 3.1 for more examples).

Table 3.1 Examples of various uses of species distribution models.

Assessing species invasion Battini et al. 2019, Guan et al. 2020

Assessing the impact of climate
changes on species distributions

Della Rocca et al. 2019, Sun et al.
2020

Modelling species assemblages from
individual species predictions

Zurell et al. 2020, Norberg et al. 2019

Quantifying the environmental niche
of species

Chen et al. 2019, Manzoor et al. 2020

Suggesting unsurveyed sites with a
high potential of occurrence for rare
species

Escalera-Vázquez et al. 2018, Mc-
Cune 2019

Supporting conservation planning Filer et al. 2020, Préau et al. 2020

Testing biogeographical, ecological
and evolutionary hypotheses

Soley-Guardia et al. 2019, Dufresnes
et al. 2020

Based on Guisan and Thuiller 2005

SDMs can be classified into three categories: mechanical, empirical
and analytical models. When modeling species distribution, two out
of three desirable model characteristics (reality, precision and general-
ity) can be simultaneously optimized when a model is developed and
refined (Guisan and Zimmermann 2000). This fact is still generally ac-
cepted because no model can simultaneously achieve a high performance
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(precision), be based on natural processes (reality) and be universally
applicable (see Figure 3.2).

Figure 3.2 Classification of species distribution models based on their intrinsic
properties (Guisan and Zimmermann 2000).

The process of modeling species distribution could be divided into three
interconnected parts (Austin 2002, 2007, Williams et al. 2012):

• conceptual model based on ecological theory

• data model

• statistical model

The formulation of the conceptual model includes defining the objec-
tives of modeling, postulating working hypotheses and, in particular,
deciding what environmental data are relevant for studied species. The
data model part should be focused on both species (response) and
environmental (explanatory) data. For species data, their type (i.e.
presence-only versus presence-absence) and source (e.g. systematic filed
surveys, records from museums or global databases) are important. For
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example, techniques appropriate for presence-absence data modeling in-
clude generalized linear models, generalized additive models or boosted
decision trees whereas Bioclim, Maxent or multivariate distance are
designed for presence-only (presence-background) techniques (Elith
et al. 2006). For environmental data, their resolution and extent, source
(in situ observations versus remote sensing) and the way of processing
play a role. Finally, statistical modeling includes the elimination of
poorly performing variables and selection of proper statistical methods
of model fitting and evaluation (Williams et al. 2012).

Many studies focused on the conceptual model formulation and sta-
tistical model part (e.g. Austin 2007, Jiménez-Valverde et al. 2008,
Elith and Graham 2009, Peterson and Soberón 2012). Nevertheless,
the data model part has been neglected because the availability of
both species and environmental data was limited. The increased data
accessibility in the last few decades, however, changed the situation
considerably. Unfortunately, this has led to combining data of different
quality without any advanced knowledge of how this could affect SDMs
(Bayraktarov et al. 2019, Isaac et al. 2020). Therefore, this dissertation
aims to contribute to the knowledge related to the data model part
(sensu Austin 2002) of modelling species distribution.

3.3 Ecological niche

The term ecological niche describes how, rather than just where, species
live (Townsend et al. 2003). It is a quite old term that has undergone
much development over the last century (see for example Grinnell 1917).
The modern concept of the ecological niche was established by Hutchin-
son in 1957. Hutchinson (1957) defined the niche as a hypervolume
n-dimensional area shaped by the environmental conditions under which
species can exist indefinitely. It is easy to illustrate this relationship
for a one-dimensional niche. An example of this is the change of the
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probability of species occurrence along an environmental gradient (e.g.
temperature; see Figure 3.3).

Figure 3.3 An example of a changing probability of species occurrence for
species with wider (A – red line) and narrower (B – blue line) niche breadth
along the temperature gradient (one-dimensional species niche).

Hutchinson (1957)´s definition of ecological niche forms the theoretical
basis for describing the relationship between species and environmental
variables, which is crucial for understanding ecological processes and
has been used to frame SDMs studies (Franklin 2010).

This definition was further developed and in 1961, Hutchinson intro-
duced new terms - the fundamental and the realized niche (Figure
3.4). The term “fundamental niche” describes the range of natural
conditions where a species is naturally capable of living whereas the
“realized niche” exemplifies the real distribution of species. According
to Hutchinson (1961), the realized niche is made up of subsets of the
fundamental niche as a result of biotic interactions (e.g. predation,
symbiosis). Additionally, it is expected that the realized niche depends
also on the biogeography, respectively on the historical occurrence of
species. Although additional information on the co-occurrence of com-
peting / host species and detailed historical species records is rarely
available for modeling (but see Schweiger et al. 2012, Singer et al. 2018,
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Zurell 2017), it is generally agreed that SDMs allow us to quantify the
realized niche of the species (Guisan and Thuiller 2005).

Figure 3.4 A conceptual diagram of the Hutchinson’s (1961) fundamental and
realized niche. The fundamental niche (blue) color illustrates the fundamental
range of natural conditions where a hypothetical species is naturally capable
of living whereas a realized niche (green) exemplifies the real distribution
determined by biotic interactions (e.g. predation, symbiosis).

3.4 Species data and associated error

In terms of data collection, species data could be divided into struc-
tured and unstructured. Structured data are gathered from stratified,
repeatable sampling designs, which are mostly geographically restricted
(Kindsvater et al. 2018, Peterson and Soberón 2018), and it is expected
that they are free of any kind of spatial bias. Unstructured data, on
the other hand, suffer from various types of spatial bias; most of the
currently available species occurrence data are of this type (Isaac and
Pocock 2015, Isaac et al. 2020).
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Both structured and unstructured data are increasingly combined
in online global databases such as eBird (www.ebird.org), Vertnet
(www.vertnet.org) or iNaturalis (www.inaturalist.org) where not only
scientists but also general public throughout the world share their field
observations. Data from these databases are usually freely available and
together with data from other sources (e.g. museum records, atlases
or natural history collections) easily available for download through
global aggregators such as Global Biodiversity Information Facility
(GBIF; www.gbif.org) or Ocean Biogeographic Information System
(OBIS; www.obis.org). While the number of records in aggregated
databases is constantly growing, their spatial quality varies and not
all of them are, therefore, necessarily useful for modeling species dis-
tribution (Bayraktarov et al. 2019, Moudrý and Devillers 2020). Even
though some ecologists argue that quality datasets are essential for
decision-making processes (e.g. Bayraktarov et al. 2019), the majority
of them may still be seduced by the idea that “the more data, the
better”. However, existing studies addressing the question of whether a
smaller sample size of more accurate data is better than a larger sample
size with an inferior positional accuracy yielded inconsistent results
(Reside et al. 2011, Mitchell et al. 2017, Bayraktarov et al. 2019, Gábor
et al. 2020).

When modeling species distribution, high quality occurrence records
were suggested to generate informative and accurate SDMs (Osborne
and Leitão 2009, Duputié et al. 2014, Moudrý et al. 2017). Most of
the species in global databases are however under-sampled, particularly
rare and endangered species (i.e. those of the highest importance from
a conservation perspective), resulting in a sample size that is too low
to provide reliable models. The effects of the sample size on model
performance have been studied extensively (e.g. Jiménez-Valverde
et al. 2009, Moudrý and Šímová 2012), although no consensus has
been reached; some studies concluded that even very small sample sizes
can provide reliable models (Varela et al. 2014, Proosdij et al. 2016)
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while others have shown the opposite (Wisz et al. 2008, Tessarolo et al.
2014). Therefore, additional studies focusing on this topic, especially
in combination with additional data quality issues, are needed.

Furthermore, species occurrence records are often spatially biased (i.e.,
the sampling effort is uneven, typically higher in protected or easily
accessible areas) (Isaac and Pocock 2015). Such sampling bias has
been reported towards easily accessible areas (Reddy and Dávalos
2003), protected areas (Boakes et al. 2010), or more populated areas
(Geldmann et al. 2016). In the case of global databases, the sampling
bias can occur because species records are shared only by some countries
(Beck et al. 2014). It is important to account for spatial bias in SDMs
because it may affect model calibration and cause an overestimation of
SDM performance (Leitão et al. 2011, Hijmans 2012, Boria et al. 2014).
Various methods have been proposed to compensate for sampling bias
in species occurrence records, including manipulation of background
data (Phillips et al. 2009) and spatial filtering (Veloz 2009, Anderson
and Raza 2010, Boria et al. 2014, Tessarolo et al. 2014). Recently,
Varela et al. (2014) suggested that spatial filtering could fail because
species occurrences with unique environmental conditions could be
removed. Instead, they suggested the use of environmental filtering
to down-weight repeated species occurrences in similar environmental
conditions. However, filtering necessarily reduces the sample size, and
although Varela et al. (2014) suggested that a filtered subsample of
occurrences can be better than using all available records to calibrate
models, the trade-off between lower sample size after filtering and higher
sample size without filtering has yet to be tested.

Besides, most applications of SDMs naively assume that species oc-
currence data are free of positional error, even though it is inherently
present in all datasets. The negative influence of positional error in spa-
tial modelling is a long-known fact (Heuvelink 1998) and many studies
addressed this issue. For example, several studies explored the limits
and impacts of image registration errors in remote sensing (Townshend
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et al. 1992, Wang and Ellis 2005), others suggested solutions for han-
dling georeferencing errors and calculating uncertainty (e.g. Wieczorek
et al. 2004). When modelling species distribution, it is often expected
that the negative effects of positional error in species occurrence data
are minimal or mainly associated with relatively older datasets that are
often georeferenced from textual descriptions of their locations, which
may cause errors of up to hundreds of meters (Wieczorek et al. 2004).
However, it is also necessary to consider positional errors inherent to
data georeferenced using global navigation satellite systems (GNSS).
Moreover, species occurrence data often represent the position of the
observer and not the actual position of the species (Zhang et al. 2018).
Therefore, even though the accuracy of a standard GNSS is usually
below 30 meters (Frair et al. 2010), the errors associated with such
data may be much bigger. The number of studies focusing on the
influence of positional error in species occurrences on the performance
of SDMs has been growing, there is, however, still little consensus on
how this influence is manifested. For instance, while Graham et al.
(2008) or Mitchell et al. (2017) concluded that SDMs are robust to
positional error, others argued that positional errors reduce the model
performance (Johnson and Gillingham 2008, Fernandez et al. 2009,
Osborne and Leitão 2009). Furthermore, prior studies used relatively
coarse environmental data (but see Mitchell et al. 2017). Positional
error considered in prior studies ranged from 50 m up to 50 km (see
Table 5.1). While such error results in a shift over several cells in a
coarse-resolution SDM (e.g. 1 × 1 km), it will cause a much greater
shift in a fine-resolution SDM (e.g. 10 × 10 m). Therefore, with the
increasing availability of fine-scale data, additional studies are needed
(Osborne and Leitão 2009); it can be expected that SDMs at fine scales
would be more sensitive to positional error. In addition, it is intuitive
that positional error of a given magnitude might have a greater effect
on specialist (narrow niche breadth) than generalist species (wide niche
breadth), as it is more likely that occurrences get incorrectly shifted
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into cells representing an unsuitable environment, i.e. an environment
that is outside of the species’ environmental niche. This, however, has
never been thoroughly explored.

3.5 Environmental variables and
associated error

Species distribution models rely on the availability of environmental
variables in the form of spatial data (Goodchild 1996, Franklin 2010),
which can be divided into three different categories, depending on their
effect on species distribution (Austin 1980: resource, direct and indirect
variables).

• Resource variables have a direct impact on the species growth (e.g.
the amount of light, water, nutrients)

• Direct variables have a direct impact on species growth, but in a
different way than resources (e.g. temperature, humidity, pH)

• Indirect variables don’t have a direct impact on species growth but
usually correlate with the resource or direct variables (e.g. altitude,
slope)

The traditional way of gathering mainly resource and direct environmen-
tal variables were long-term in situ observations. As an example of such
data sources, we could name the global weather and climate database
WorldClim (www.worldclim.org). Available environmental variables
from this database were created by interpolating data obtained from
in situ weather station measurements (Hijmans et al. 2005, Fick and
Hijmans 2017). However, the weather station network across the world
is sparse and thus, the final resolution of these data is coarse. Advances
in in-situ monitoring, such as the Temperature-Moisture-Sensor (TMS;
allows to gather air, surface and soil temperatures or moisture) (Wild
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et al. 2019) facilitated measuring resource and direct variables on a fine
scale. Still, fine-scale in situ monitoring remains limited to small areas.

For large areas and repeated monitoring, an alternative option is to
use remote sensing data. It has been shown that a wide range of
environmental variables derived from various types of remote sensing
can be used as explanatory variables for species distribution (Mahecha
et al. 2017, Randin et al. 2020). For example, the use of data on land
cover derived from passive remote sensing is common (Seoane et al. 2004,
Venier et al. 2004, Verburg et al. 2011). Similarly, the climatic variables
such as temperature and precipitation are increasingly based on remote
sensing data (Naumann et al. 2012, Chen and Li 2016, Macharia et al.
2020).

An excellent example of how SDMs benefit from advances in remote
sensing is the possibility to use 3D ecosystem structure variables derived
from active remote sensing methods. 3D ecosystem structure was long
ago suggested as an important variable that plays a role in species dis-
tribution (e.g. of birds) (Dunlavy 1935). Nevertheless, its standardized
measurement was extremely problematic in the past (MacArthur and
MacArthur 1961, Brown 1981). Nowadays, 3D vegetation structure
is commonly measured using active remote sensing methods such as
LiDAR (light detection and ranging - a remote sensing method that
uses light in the form of a pulsed laser to measure ranges) and variables
representing 3D vegetation structure were shown to be important vari-
ables of species distribution. As example, we can mention the canopy
structural variability or understory density derived from airborne laser
scanning data (see reviews by Davies and Asner 2014, Bakx et al. 2019.

Arguably one of the most common remote sensing products used in
SDMs is the digital elevation model (DEM) and terrain attributes
derived from it (e.g. slope, aspect, topographic wetness index). DEM’s
derived attributes can be used as surrogates for a variety of field-
measured environmental variables such as air temperature, soil moisture
and incoming solar radiation (Hengl and Reuter 2009). For example,
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topographic wetness index is a surrogate for soil moisture, an envi-
ronmental variable that affects the vegetation composition (Besnard
et al. 2013, Reif et al. 2018). Slope is another example of such a vari-
able. Slope affects the velocity of subsurface and surface flow and it is,
therefore, an important variable in predictive vegetation mapping (e.g.
Zhang et al. 2016).

Although highly accurate DEMs exist at both local and national lev-
els (for example from airborne laser scanning missions), many studies
rely on global space-borne DEMs that have lower spatial resolutions
and accuracy (e.g. Zhang et al. 2016). Nowadays, global or near-
global DEMs are available from several spaceborne missions: Shuttle
Radar Topography Mission (SRTM), Advanced Spaceborne Thermal
Emission Reflectometer (ASTER) onboard NASA’s Terra satellite,
Advanced Land Observing Satellite (ALOS), or TANDEM-X. Unfor-
tunately, both interferometric (SRTM, TANDEM-X) and stereoscopic
(ASTER, ALOS) DEMs suffer from local inaccuracies or errors due to
limitations associated with the methods used for elevation measure-
ments. It has been shown that such inaccuracies and errors can in turn
influence the derived topographic indices (Van Niel et al. 2004, Oksanen
and Sarjakoski 2005, Sofia et al. 2013, Lecours et al. 2017c, Moudrý
et al. 2018) and various steps of the species distribution modelling pro-
cess (e.g., the shape of response curves, prediction accuracy measures,
spatial extent of predictions) (Van Niel and Austin 2007, Lecours et al.
2017b, Moudrý et al. 2019b).

SRTM DEM (1 arc-second resolution; approximately 30m at the equa-
tor) is one of the most commonly used global DEMs. However, an
important but often misunderstood characteristic of the SRTM DEM
is that it does not provide a “bare-earth” elevation: the measurements
actually include a systematic positive bias due to the objects above
the ground (such as canopy), the height of which is included into
the model. This in turn produces considerable differences in accu-
racy between forested and open areas (e.g. Nelson et al. 2009). All
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available versions of the SRTM DEM are impacted by vertical error,
including one of the most – if not the most – cited versions of the
SRTM DEM produced by the Consultative Group for International
Agriculture Research Consortium for Spatial Information (CGIAR-CSI;
http://www.cgiar-csi.org/data; e.g. Šímová et al. 2015, Kosicki 2017).
By not acknowledging the vertical error, and more particularly its
vegetation offset component, most studies use global DEMs as digital
terrain models (DTM). If using the appropriate nomenclature, the
original SRTM product and many of its subsequent alterations are
actually digital surface models (DSM); they do not represent the bare
ground elevation in vegetated areas and require further processing to
remove vegetation height in order to create a proper ‘bare-earth’ DTM.

3.6 Spatial scale

Spatial scale is one of the most important characteristics of spatial data
and requires a thorough consideration in any ecological study. Three
types of spatial scale are relevant for modeling species distribution: (1)
the ecological scale, which is the scale at which a pattern or process
occurs, (2) the observational scale, which refers to the characteristics of
the data, usually defined by the spatial resolution and extent of the data
and (3) the analytical scale that refers to the methods used to analyse
the environmental data (e.g., the neighbourhood size used in focal
statistics or geomorphometry) (Dungan et al. 2002, Moudrý et al. 2019b).
It is well known that the lack of explicit consideration of scale affects
the outcomes of ecological analyses such as the assessment of species-
environment relationships (Levin 1992, Mertes and Jetz 2018). Almost
30 years ago, Wiens (1989) argued that most ecological studies had
been ignoring spatial scale and its effects. Most studies were performed
as if patterns and processes were scale-independent and studies from
different scales were often inappropriately compared. Since then, the
role and importance of spatial scale have been extensively discussed
in both the geographic and ecological literature (e.g., Schneider 2001,
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Dungan et al. 2002, Goodchild 2011, Moudrý and Šímová 2012), and
it is now widely recognized that ecological patterns and processes are
scale-dependent and that no single scale is appropriate for the study of
all natural phenomena.

One of the main challenges of using remotely sensed data in SDMs
is that the original spatial resolution of different datasets included in
the analysis may vary significantly (Cord et al. 2013). In terrestrial
applications, the use of high-resolution remotely sensed environmental
data is often limited by the resolution of species distribution data, which
are usually available at much coarser scales (Jetz et al. 2012, Šímová
et al. 2019). An opposite situation may occur in marine applications
(e.g., in deep water environments), where the scale at which the species
are observed can be much finer than that of available environmental
data. In some cases, the highest available resolution of environmental
data may not be required for the SDMs if the biological / ecological
processes, or species distribution / abundance in SDMs, occur at a
coarser scale or over a large area with limited observations. Therefore,
finding a resolution representing a compromise between the resolution
of available data and a resolution most suited to the application is often
necessary. A common practice to ensure the valid integration of data
from multiple scales (for example, to avoid an ecological fallacy or the
modifiable areal unit problem; see Lecours et al. 2015), is to modify
the resolution of some of the data so that it matches the resolution at
which the study is to be performed (e.g., by averaging environmental
variables within field plots; Gottschalk et al. 2011, Moudrý et al. 2017).

The effects of altering data resolution (i.e., matching the observational
scales with ecological scales) (e.g. Lechner et al. 2012b, Svensson et al.
2013, Mateo Sánchez et al. 2014, Mertes and Jetz 2018) on the outcomes
of ecological analyses (e.g., SDM) have recently received more atten-
tion because of a growing demand on users to provide more detailed
methodologies (e.g., exact computer code for GIS analyses and data
processing) to allow complete reproducibility of their results (e.g., Mich-
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ener and Jones 2012, Rocchini and Neteler 2012, Meynard et al. 2019).
However, details on the use of terrain attributes derived from digital
terrain models (DTMs) using neighbourhood operations (e.g., slope,
rugosity, orientation, curvature) in SDMs has received less attention.
Deriving terrain attributes has become a routine operation, despite
several potential pitfalls in the data processing workflow (Lecours et al.
2017c). Specifically, the approach used and the step at which the scale
is altered are particularly important for DTM-derived attributes, as
they will cause the analytical scale of a study to vary, thus providing
different representations of the reality and potentially producing dif-
ferent outcomes. Therefore, selecting an inappropriate scale alteration
technique could have an unforeseen impact on SDMs. However, this
has not been demonstrated yet. Thus, there is a need to show how
SDMs may be affected when the different approaches to altering data
resolution are used.

3.7 Virtual species spproach

To study a compound effect of various species and data characteristics
(both species and environmental) using real species could be challenging
due to the above-mentioned data complexities. A virtual species,
which is increasingly used in ecological studies (see Table 3.2), on the
other hand, allows to ensure the full knowledge of the exact ecological
and geographical characteristics of the species and to avoid unknown
complexities associated with real data.

The process of simulation involves four steps: (i) generating a virtual
species, (ii) projecting it into the landscape, (iii) converting its probabil-
ity to presence-absence data and (iv) sampling occurrences (Figure 3.5;
Meynard et al. 2019). The first step involves definition of the species
response to environment (e.g. gaussian, linear, logistic or beta response)
using one or more environmental variables and then combining these
functions into a single suitability function. In this step, potential effects
of environmental variables (i.e. their complexity and number), and
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species characteristics (i.e. commonness or rarity and niche breadth)
could be addressed.

Table 3.2 Examples of various virtual species studies in SDMs.

Environmental data resolution and
extent effects

Moudrý et al. 2019b, Friedrichs-
Manthey et al. 2020

SDMs performance metrics effects Leroy et al. 2018, Warren et al. 2020

Species spatial data quality, sam-
pling size or sampling bias effects

Fernandes et al. 2018, Liu et al. 2019

Species specialization, niche breadth
effects

Proosdij et al. 2016, Connor et al.
2018

Effects of various SDMs modeling
techniques, approaches

Zurell et al. 2016, Hallgren et al. 2019

Based on (Meynard et al. 2019)

In the second step, the simulated virtual species is projected into the
landscape (real or virtual). As highlighted by Meynard et al. (2019),
the use of real environmental data has the advantage of being simple
and allowing a realistic set of explanatory environmental variables with
collinearity and interactions that could be related to real case studies.
On the other hand, a virtual landscape allows the use of environmental
variables with various heterogeneity / homogeneity or with different
spatial autocorrelation. At this step, the influence of the resolution and
extent of environmental variables, of their processing strategies, or of
climate change could be tested.

The next step is to convert the probability of virtual species occurrence
(generated in the previous step) into a presence-absence distribution.
Two main conversion methods for translating initial suitability (proba-
bility of virtual species occurrence) to presence/absence are currently
used: a threshold approach (Hirzel et al. 2001) and a probability ap-
proach (Meynard and Kaplan 2012, 2013, Meynard et al. 2019). The
threshold approach generates occurrences where species always oc-
cur above a given threshold and never below it. On the other hand,
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the probability approach allows generating species presences and ab-
sences along the whole environmental gradients (i.e. the shape of the
logit function used to transform the occurrence probability to pres-
ences/absences). Moreover, the probability approach allows to consider
species prevalence.

Figure 3.5 The virtual species approach simulation process (Meynard et al.
2019).
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Thus, the probability approach is closer to ecological theories supporting
the idea of dynamic occupancy patterns in space and time (see Hanski
1998, Meynard and Kaplan 2012, 2013). Therefore, the probability
approach has been deemed more appropriate for generating virtual
species than the threshold approach (Meynard and Kaplan 2012, 2013,
Moudrý 2015, Meynard et al. 2019). In this step, the effect of species
prevalence and dispersal constraints could be analyzed.

The last step is sampling species occurrences. Here, different data
types (presence only versus presence/absence), sample size or sampling
strategy could be assessed.
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Abstract

Species distribution models (SDMs) are widely used in ecology and
conservation. However, their performance is known to be affected
by a variety of factors related to species occurrence characteristics.
In this study, we used a virtual species approach to overcome the
difficulties associated with testing of combined effects of those factors on
performance of presence-only SDMs when using real data. We focused
on the individual and combined roles of factors related to response
variable (i.e. sample size, sampling bias, environmental filtering, species
prevalence, and species response to environmental gradients). Results
suggest that environmental filtering is not necessarily helpful and should
not be performed blindly, without evidence of bias in species occurrences.
The more gradual the species response to environmental gradients
is, the greater is the model sensitivity to an inappropriate use of
environmental filtering, although this sensitivity decreases with higher
species prevalence. Results show that SDMs are affected to the greatest
degree by the species response to environmental gradients, species
prevalence, and sample size. Models’ accuracy decreased with sample
size below 300 presences. Furthermore, a high level of interactions
among individual factors was observed. Ignoring the combined effects
of factors may lead to misleading outcomes and conclusions.

Keywords: MaxEnt, Schoener´s D, Species rarity, Spatial data filtering,
Virtual species
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4.1 Introduction

Many of the modeling techniques developed in the last two decades are
now recognized to play an important role in monitoring of biodiversity
and its conservation (Guisan and Zimmermann 2000, Honrado et al.
2016). Species distribution models (SDMs) have become a common
tool for the assessment of species-environment relationships. The
objective of SDMs is to relate species occurrence data (i.e. response
variable) and environmental data (i.e. predictor variables) in order to
either describe relationships between them (’explanatory modeling’)
or predict probabilities of species occurrences at unsampled sites or
times (’predictive modeling’) (see review by Ferrier et al. 2017). SDMs
are now routinely used, for example to assess the spread of invasive
species (Gillard et al. 2017, Bazzichetto et al. 2018a), the impact of
climate change on biodiversity (Sun et al. 2017), or species ranges
(Williams and Crouch 2017). High-quality species occurrence records
(i.e. unbiased, positionally accurate data without false presences and
absences) are essential to generate informative and accurate SDMs
(Osborne and Leitão 2009, Duputié et al. 2014, Moudrý et al. 2017).
However, acquisition of such data is often challenging and the underlying
challenge in SDMs is to derive response curves from incomplete and
biased datasets.

In practice, the most commonly available species records are usually
non-systematic observations (see Bino et al. 2014), such as collections
of individual observations from various sources (e.g. museums, citizen
science data) available through global databases (e.g. the Global
Biodiversity Information Facility – GBIF; www.gbif.org). This type of
species observations are referred to as presence-only records (presence-
background records sensu Guillera-Arroita et al. 2015). Most of the
species in global databases are however under-sampled, particularly
rare and endangered species (i.e. those of the highest importance from
a conservation perspective), resulting in a sample size that is too low to
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provide reliable models (but see Breiner et al. 2015, 2018 for possibilities
of overcoming limitations of modeling species with few occurrences).
The effects of sample size on model performance have been studied
extensively (e.g. Jiménez-Valverde et al. 2009, Moudrý and Šímová
2012), although no consensus has been reached; some studies concluded
that even very small sample sizes can provide reliable models (Guisan
et al. 2007, Varela et al. 2014, Proosdij et al. 2016) while others have
shown the opposite (Wisz et al. 2008, Tessarolo et al. 2014).

Furthermore, species occurrence records are often spatially biased (Isaac
and Pocock 2015), which is usually caused by uneven sampling efforts
or data sharing. Such bias has been reported for data collected in
easily accessible areas (Reddy and Dávalos 2003), protected areas
(Boakes et al. 2010), or heavily populated areas (Geldmann et al.
2016). It is important to account for spatial bias in SDMs because
it may affect model calibration and cause an overestimation of SDM
performance (Leitão et al. 2011, Hijmans 2012, Boria et al. 2014).
Various methods have been proposed to compensate for sampling bias
in species occurrence records, including manipulation of background
data (Phillips et al. 2009) and spatial filtering (Veloz 2009, Anderson
and Raza 2010, Boria et al. 2014, Tessarolo et al. 2014). Spatial
filtering is used to reduce the negative influence of sampling bias in
geographic space. Recently, however, Varela et al. (2014) suggested
that this approach could fail because species occurrences with unique
environmental conditions could be removed. Instead, they suggested
the use of environmental filtering to down-weight repeated species
occurrences in similar environmental conditions, which we also adopted
in this study. Increasing attention has also been given to comparison or
evaluation of those methods (Kramer-Schadt et al. 2013, Varela et al.
2014, Ranc et al. 2016). Filtering necessarily reduces the sample size,
and although Varela et al. (2014) suggested that a filtered subsample of
occurrences can be better than using all available records to calibrate
models, the tradeoff between lower sample size after filtering and higher
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sample size without filtering has yet to be tested.

In addition to the quality of occurrence data (e.g. sample size, sampling
bias) and methods used to filter the data (e.g. environmental filtering,
geographic filtering), species characteristics also need to be considered.
Studies have shown that commonness and rarity or prevalence may
influence the ability to predict species distribution;models for rare
species (i.e. species with low prevalence) tend to have higher prediction
accuracy than models generated for more common species (i.e. with
high prevalence; Syphard and Franklin 2009, Sor et al. 2017).

Species characteristics (e.g. prevalence, response to environmental
gradients) and data characteristics (e.g. bias, filtering, sample size) are
usually studied separately or in combinations of two or three factors
(but see e.g. Thibaud et al. 2014, Fernandes et al. 2018, Liu et al. 2019).
It is therefore difficult to determine a characteristic affecting SDMs
performance the most, as well as to evaluate potential interactions
between species and data characteristics. In this study, we used a
virtual species approach to assess the effects of prevalence, response
to environmental gradients, sampling bias, sample size, and samples
filtering, as well as their interactions, on SDMs performance. The use of
virtual species approach enables full control over the factors influencing
models and the disentanglement of confounding effects (Zurell et al.
2010, Miller 2014). Consequently, this approach is increasingly used to
evaluate SDMs performance (e.g. Václavík and Meentemeyer 2012, Qiao
et al. 2015, Moudrý et al. 2018). To test how the five species and data
characteristics affect SDMs performance, we produced SDMs for virtual
species with different responses to environmental gradients (abrupt,
nearly abrupt, nearly smooth, smooth), different levels of prevalence
(very rare, rare, common), different sample sizes, unbiased and biased
samples, and non-filtered and environmentally filtered datasets (Figure
4.1). Our specific objectives were to (i) determine the role of the sample
size and species prevalence in SDMs, (ii) assess whether environmental
filtering improves models based on biased samples, and (iii) evaluate the
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effect of species response to environmental gradients used to generate
virtual species on factors under study (i.e. sample size, sampling bias,
environmental filtering, species prevalence).

4.2 Material and methods

Figure 4.1 illustrates the workflow used in this study. First, virtual
species distributions were modeled for the study area, encompassing
to the Iberian Peninsula. The species distributions were modeled us-
ing various responses to environmental gradients and various species
prevalences. Subsets of species occurrences were subsequently extracted
from the species presence/absence distributions, using various sam-
ple sizes, sampling patterns and with/without application of filtering.
Finally, SDMs were produced using those different subsets and their
performance was evaluated and compared.

4.2.1 Simulating ecological patterns with virtual
species

Data derived from Worldclim (www.worldclim.org) database are often
adopted in SDMs (e.g. Moudrý and Šímová 2013). To build virtual
species distributions we used the same variables downloaded from
Wordclim that were adopted in the study by Varela et al. (2014) who
first presented the idea of environmental filtering. However, their study
used virtual species generated with threshold approach for evaluation,
which was recently criticized (Meynard and Kaplan 2012, Moudrý 2015).
In our study, we used a probability approach (see Meynard and Kaplan
2012, 2013) to generate virtual species (see the next paragraph). Using
the same variables and study area allowed us to directly compare our
results with theirs. The adopted variables included the maximum
temperature of the warmest month (Bio5), minimum temperature of
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Figure 4.1 General modeling process. (i) Generating a map of probability oc-
currence for virtual species (environmental suitability map). (ii) Translating
the probability of occurrence into a presence-absence map for various species
prevalences. (iii) Sampling species occurrences randomly or with uneven
sampling intensity and repeating the sampling 50 times for every α value and
species prevalence. (iv) Applying environmental filter. (v) Creating models
of species distribution with and without filtered occurrences. (vi) Quantifying
SDMs performance using AUC and Schoener´s D index and performing
ANOVA to statistically compare SDMs performance.
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the coldest month (Bio6), and annual precipitation of the driest month
(Bio14). Those were downloaded at a resolution of 30 arc seconds
(approximately 1 km2) from WorldClim and clipped to the extent of
the Iberian Peninsula.

Various software and packages have been developed to facilitate the
use of virtual species in SDMs (e.g. Duan et al. 2015, Leroy et al. 2016,
Qiao et al. 2016). There are currently two main methods for generating
virtual species: a threshold approach and a probability approach (Mey-
nard and Kaplan 2012). The threshold approach generates occurrences
where species always occur above a given threshold and never below
it. On the other hand, the probability approach allows to generate
species presences and absences along the whole environmental gradients
(i.e. the shape of the logit function used to transform the occurrence
probability to presences/absences). Moreover, the probability approach
allows to take species prevalence into consideration. It is thus closer to
ecological theories supporting the idea of dynamic occupancy patterns
in space and time (see Hanski 1998, Meynard and Kaplan 2012, 2013).
Therefore, the probability approach has been deemed more appropriate
for generating virtual species than the threshold approach (Meynard
and Kaplan 2012, 2013, Moudrý 2015). Virtual species distributions
were created with the package virtualspecies (Leroy et al. 2016) in the
statistical software R (version 3.4.4).

The virtual species were created in three steps (Leroy et al. 2016).
First, we defined a relationship (i.e. the response function) between
the artificial species and each variable, using a Gaussian distribution.
Response functions were defined as follows (mean ± standard devi-
ation): Bio5 (20 ± 10°C), Bio6 (10 ± 10°C), and Bio14 (20 ± 10
mm). The combination of these three response functions produced
environmental suitability rasters for the Iberian Peninsula (function
generateSpFromFun). Second, a probabilistic approach was used to
convert environmental suitability rasters to binary presence-absence
rasters (function convertToPA); a logistic function was applied to the
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suitability rasters to model the response to environmental gradients.
The logistic function had two parameters, α and β, where 1/α corre-
sponded to the slope of the curve at the inflection point and β to the
position of the inflection point. Therefore, using α, one can control the
steepness of the species response to the environmental gradients, and
with a given value of α, the species prevalence can be controlled by β
(see Figure 4.2).

Figure 4.2 Contrasting examples of conversion curves for all species responses
to environmental gradients and species prevalences (dotdash line = 0.05,
dotted line = 0.2, solid line = 0.5, dashed line = 0.8).

We modeled four species types with respect to their response to envi-
ronmental gradients: species with an abrupt response (α = – 0.000001),
species with a nearly abrupt response (α = – 0.05), species with a nearly
smooth response (α = – 0.15), and species with a smooth response (α =
– 0.3). In addition, to evaluate the effect of prevalence for each type of
response, four different species prevalence values were produced (0.05,
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0.2, 0.5 and 0.8) by varying the parameter β (Figure 4.2). We generated
species occurrences 50 times for each combination of α and β to produce
multiple replications. For each replication, a valid estimation of the true
species distribution was provided (Leroy et al. 2016). This approach
contrasts with the threshold approach, which always generates the same
distribution (presences/absences).

The last step consisted of sampling occurrences of virtual species from
the modeled distributions using the sampleOccurrences function of
the package.To test for sampling bias, two different sampling methods
(survey designs) were used to generate presenceonly data: (i) random
sampling across the entire area and (ii) a scheme that extracted sam-
ples 40 more times in the 50 largest protected areas of the Iberian
Peninsula; this method has been used before to study sampling bias
(e.g. Tessarolo et al. 2014, Varela et al. 2014). The protected ar-
eas of the Iberian Peninsula were downloaded from Protected Planet
(www.protectedplanet.net). Eight different sample sizes were used to
test sample size effects on SDMs (n = 25, 50, 100, 300, 500, 700, 1000,
2000).

4.2.2 Environmental filtering
of sampled occurrences

We used the gridSample function of the dismo package to filter the sam-
pled presence–only data (Hijmans et al. 2012). Based on a pre-defined
grid, the function allows to eliminate repeated occurrences under simi-
lar environmental conditions. The environmental filters were defined
using only two of the three environmental variables – the maximum
temperature of the warmest month and the precipitation of the driest
month. This enabled simulating a situation in which some of the envi-
ronmental characteristics affecting species distribution were unknown,
which is often the case in SDMs (Varela et al. 2014). The resulting
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filters were applied to all versions of the generated virtual species (i.e.
combination of response to environmental gradients and prevalence; 12
species), to the eight sample sizes, and to both survey designs (random
and spatially biased). This totaled 384 unique combinations of model
parameters, enabling an indepth comparison of the effects of the five
different characteristics of SDMs under study. For each one of those
combinations, 50 models were computed using the previously described
probabilistic approach; each of those 50 repetitions can be viewed as a
different run of the same stochastic process. A total of 19,200 different
virtual species distributions were thus generated to be tested in SDMs.

4.2.3 Species distribution models

While there is currently no consensus on which SDM technique is best,
it is widely recognized that every single technique has benefits and
drawbacks (Elith et al. 2006, Elith and Graham 2009, Fernandes et al.
2019). For the purpose of this study, we needed a technique that could
be kept consistent across the methodology to allow the comparison
of outcomes. We selected the maximum entropy approach (MaxEnt),
which is often adopted in ecological studies as a presence-only model-
ing technique, due to its good performance when compared to other
techniques (Elith et al. 2006, Phillips et al. 2006). SDMs were built in
R using the dismo package and the same three environmental variables
that were used to generate virtual species distributions. To enable
comparison of the different SDMs produced, we needed to maintain
the parameters of the modeling technique unchanged. Although using
MaxEnt with default settings is usually not recommended as it can
overfit the models, it is not an issue when using virtually generated
species as virtually generated data fit the pre-defined response perfectly
and the risk of overfitting therefore is very low (we also employed hinge
and linear feature classes and got the same results as with the default
settings). Therefore, like many others before (e.g. Phillips et al. 2009,
Beltrán et al. 2014, Ficetola et al. 2014, Fourcade et al. 2014, Franklin
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et al. 2014, Varela et al. 2014, Beaumont et al. 2016, Holloway et al.
2016, Ranc et al. 2016, Tingley et al. 2018, Ye et al. 2018), we produced
the models using the default settings, except for background points.

Since using background points that do not have the same bias as
species occurrences (e.g. using random background points when species
occurrences are spatially biased) has been shown to negatively affect
SDMs performance (Phillips et al. 2009, Leroy et al. 2018), we did
not use randomly generated background points. Instead, based on the
artificially generated binary map of the virtual species illustrating true
occupied and unoccupied areas, we generated a set of background points
(i) across the entire area for randomly drawn species presence data
(simulating unbiased dataset) and (ii) with higher sampling intensity
in the 50 largest protected areas of the Iberian Peninsula (simulating
biased dataset) and use those as background points. We used two times
more background points than species occurrences as recommended by
Liu et al. (2019). For each model replication, a new set of background
points was generated. Similarly, as Thibaud et al. (2014), we had
absence data available. Therefore, we generated background points in
locations where species were absent and used Maxent in a nonstandard
manner. Hence, the models can be viewed as presence-absence, allowing
us to use the area under the receiver operating characteristic curve
(AUC) as an appropriate measure for model performance. To evaluate
the models, a fivefold cross-validation was used where the data were
randomly divided into fifths. Four-fifths of the data were used to
train the model and the remaining one fifth was used to quantify the
performance.

4.2.4 Assessment of model performance

The AUC was calculated to quantify model performance. AUC indi-
cates model performance based on predictions of presences/absences
(Fielding and Bell 1997) and varies between 0 and 1 where values 0.9–1
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indicate excellent models. In addition, we calculated Schoener’s D
index (Schoener 1968) to compare modeled probabilities of occurrence.
Schoener’s D is considered one of the best measures of evaluation of
SDMs outputs (Rödder and Engler 2011). This metric measures the ab-
solute spatial conformity between continuous predictions of the species
as,

𝐷 = 1 − 1
2

∑︁
𝑖𝑗

|𝑍1𝑖𝑗 − 𝑍2𝑖𝑗|

where z1𝑖𝑗 is entity 1 occupancy (virtual reality) and z2𝑖𝑗 is entity 2
occupancy (model prediction) (Renkonen 1938). It varies between
0 (no overlap/agreement) and 1 (complete overlap/agreement). An
analysis of variance (ANOVA) was used to assess the individual and
combined effects of species response to environmental gradients, species
prevalence, sample size, sampling bias and environmental filtering on
SDM’s performance. We fitted separate ANOVA models for AUC and
Schoener’s D index as a response, including all possible interactions
among all five factors in both models.

4.3 Results

The ANOVA including all possible interactions explained 96% of
Schoener’s D and 89% of AUC variability (variance of the models
explained by used characteristics). All analyses were highly significant
given the large number of iterations (n = 19,200). For both Schoener’s
D and AUC, most of their variability was explained by the species
response to environmental gradients (from abrupt to smooth), species
prevalence, and sample size; these factors together (and disregarding
their interactions) explained 53% of Schoener’s D variability and 64%
of AUC variability, with species prevalence being more influential for
Schoener’s D (17%) than for AUC (5%) (see Table 4.1).
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Table 4.1 Degrees of freedom (Df), R2 (%), and F statistics for ANOVA of
Schoener’s D index and AUC performance metrics.

Schoener’s D AUC
Df R2 F Df R2 F

Main effects:
Sampling method 1 0.2 1127 1 0.2 334.3
Species (Spec) 3 19.9 32479.2 3 30.8 17153.6
Species prevalence (Prev) 2 17.0 41424.6 2 5.1 4227.1
Sample size (Sample) 7 16.3 11353.3 7 28.1 6697.3
Filter application (Filter) 1 2.4 11474.9 1 1.6 2665.9

Pair-wise interactions:
Samp : Spec 3 0.3 452.7 3 0.2 124.3
Samp : Prev 2 0.0 96.6 2 0.1 81.3
Spec : Prev 6 8.9 7206.9 6 2.5 702.6
Samp : Size 7 0.1 58.7 7 0.0 10.0
Spec : Size 21 3.6 835.1 21 2.2 170.8
Prev : Size 14 2.0 699.5 14 1.0 116.3
Samp : Filter 1 1.2 5859.4 1 0.0 31.6
Spec : Filter 3 5.7 9280.1 3 8.0 4472.8
Prev : Filter 2 5.1 12.448 2 1.3 1093.8
Size : Filter 7 1.4 993.1 7 1.4 335.1

Higher-order interactions: - 12.0 - - 6.3 -
Total: - 96.2 - - 88.8 -

The effect of sample size on SDMs was relatively constant across other
factors’ (e.g. species prevalence, species response to environmental
gradients) levels (see generally low R2 values for its interaction terms
in Table 4.1). Results show an initial steep increase in performance
with increasing sample size, generally stabilizing around 300 samples
after which more samples do not necessarily result in better models (see
Figures 4.3 and 4.4). The initial increase was considerably steeper for
AUC metric than for Schoener’s D. The three exceptions to this general
pattern were (1) almost constant values of Schoener’s D across sample
sizes for species with smooth or nearly smooth response to environmental
gradients and with higher prevalence, (2) decreasing Schoener’s D for
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abrupt and nearly abrupt species with species prevalence 0.05 and
non-filtered models (Figure 4.3) and (3) no stabilization for AUC values
for species with nearly smooth or smooth response (Figure 4.4).

Figure 4.3 Resulting Schoener’s D index values according to different species
responses to environmental gradients (abrupt, nearly abrupt, nearly smooth,
smooth), species prevalence (sp = 0.05, 0.2, 0.5, 0.8), various methods of
sampling occurrences (random, sampling bias) and different sample size (n
= 25, 50, 100, 300, 500, 700, 1000, 2000). Gray color indicates results for
non-filtered models, and the black color shows results for models where the
environmental filter was applied.

The relatively low main-effect R2 values of filter application term (see
Table 4.1) resulted from a reverse effect of this factor in different species
types (and also species prevalences in case of Schoener’s D) (see Figures
4.3 and 4.4). Indeed, taking into account also its pair-wise interactions,
filter application explained 16% of the Schoener’s D and 12% of the AUC
variability. For Schoener’s D, these interactions can be summarized as
follows (see Figure 4.3): the performance of the non-filtered SDMs was
the highest for species with abrupt response to environmental gradients
(about 0.85) and decreased to approximately 0.66 for those with smooth
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response. On the contrary, the performance of filtered SDMs was much
more stable, ranging from approx. 0.78 for species with abrupt response
to 0.70 for those with smooth response.

Figure 4.4 Resulting AUC values according to different species responses
to environmental gradients (abrupt, nearly abrupt, nearly smooth, smooth),
species prevalence (sp = 0.05, 0.2, 0.5, 0.8), different methods of sampling
occurrences (random, sampling bias) and different sample sizes (n = 25, 50,
100, 300, 500, 700, 1000, 2000). Gray color indicates results for non-filtered
models, and the black color shows results for models where the environmental
filter was applied.

This led to a significantly better performance of non-filtered SDMs for
abruptly responding species but a slightly better performance of filtered
SDMs for those responding smoothly. This relationship was further
influenced by a significant decrease of non-filtered SDMs performance
with increasing species prevalence, which was more striking for species
with abrupt or nearly abrupt response. The exception from this general
pattern was models with sample size higher or equal 100 for abrupt and
nearly abrupt species and species prevalence 0.05. In this case, filtered
models achieved better results than non-filtered models. Moreover,their
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resulting Schoener’s D was even lower in comparison to smoothly or
nearly smoothly responding species. For AUC metric (Figure 4.4),
the pattern was similar, with generally larger performance ranges for
non-filtered SDMs (from almost 1.0 to approximately 0.5 for random
sampling), which led to larger differences between non-filtered and
filtered SDMs for species with smooth response. Sampling method
(random vs. biased sampling) showed the least importance, both as
main effect and in interactions with other effects (maximum R2 being
1.2% but typically from 0.0% to 0.3%; see Table 4.1).

4.4 Discussion

Our results show that species prevalence and sample size have an equiv-
alent effect on variability in model performance when using the MaxEnt
modeling technique. Models performance increased with sample size
(often up to a certain level), and where the sample size was constant,
the model performance decreased with increasing prevalence. More-
over, our results show that both effects are independent of sampling
bias. As opposed to what is often done in other studies, here we were
changing the steepness of the response to environmental gradient (i.e.
logistic curve) to create virtual species from abrupt (i.e. similar to
what would be done with the threshold approach) to very smooth
(see Figure 4.3). Generally, the more abrupt the response of species
to the environmental gradient was, the greater the effect of species
prevalence, sample size, and environmental filtering was. Since both
measures (AUC and Schoener´s D) showed similar trends, the following
discussion is based mostly on the behavior of the Schoener ´s D. We
highlight the differences in AUC behavior where necessary.

65



4.4.1 Sample size

It has been shown many times that the performance of SDMs depends
on sample size (see review by Moudrý and Šímová 2012). Prior stud-
ies examined sample sizes that varied from a few occurrences up to
thousands of occurrences. While Guisan et al. (2007) or later Proosdij
et al. (2016) have shown that a few occurrences may suffice to produce
reliable models, other studies argued that it is best to use larger sample
sizes (Pearson et al. 2007, Wisz et al. 2008, Tessarolo et al. 2014).
Such opposing suggestions can be explained by the differences in data
characteristics and model selection in these studies. One reason can be
the complexity of species responses to environmental variables. It is
clear that the more complex is the species response to environmental
variables, the higher is the number of species occurrences required to
achieve high model performance (e.g. Barry and Elith 2006). Stud-
ies using virtually generated data (e.g. Jiménez-Valverde et al. 2009,
Varela et al. 2014, Proosdij et al. 2016) that have occurrences per-
fectly following the adopted response to environmental variables (e.g.
Gaussian) suggested that reliable models can be developed with very
small sample size (10 or even 5 samples). In contrast, studies with
real species occurrence data (Wisz et al. 2008, Tessarolo et al. 2014)
suggested the opposite. In addition, the effect of sample size could be
also affected by species prevalence. Proosdij et al. (2016) concluded
that increasing species prevalence decreases the influence of sample
size. It has also been shown that some modeling techniques are less
sensitive to sample size than others (Guisan et al. 2007, Tessarolo et al.
2014). Besides, Wisz et al. (2008) also show that the influence of sam-
ple size is changing across different spatial extents and resolutions of
environmental variables (sites with resolution of 100 x 100 m performed
better in comparison with those with resolution of 1000 × 1000 m).
Our results show that a larger sample size has a significant positive
effect on SDMs performance, although with a threshold after which
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more samples do not necessarily improve performance. In our case,
that threshold was usually at 300 or 500 samples. This effect, however,
was only consistent when measured by AUC, which was expected due
to the sensitivity of AUC to the ratio of sample prevalence and species
prevalence (see Meynard and Kaplan 2012). Our results are, moreover,
in accordance with prior studies by Thibaud et al. (2014) and Fernandes
et al. (2018) who also tested the impact of various factors affecting
SDMs using virtual species and concluded that sample size is one of
the most important factors. For Schoener’s D, the effect of sample
size considerably varied with species response to the environmental
gradients, species prevalence and the use of environmental filtering.

4.4.2 Species prevalence

Our results show that species prevalence is one of the most important
factors affecting SDMs, having generally a negative effect on both model
performance metrics (i.e. model performance was generally decreasing
with increasing species prevalence). While this negative effect has been
observed by a number of previous studies looking at AUC (e.g. Manel
et al. 2001, Allouche et al. 2006, Lobo and Tognelli 2011, Meynard
and Kaplan 2012, Syfert et al. 2013), it is to be noted that Proosdij
et al. (2016) have found an opposite trend for Schoener’s D. However,
the authors did not provide any explanation or hypothesis for that
trend, making its comparison with our study difficult. A potential
explanation for that difference could be that their sample sizes (5 to
50 occurrences) were much smaller than the ones used in the current
study (25 to 2000). In addition, our results show that this negative
effect only applies to species with abrupt or nearly abrupt response
to environmental gradients, a factor that was not specified in Proosdij
et al. (2016).

67



4.4.3 Sampling bias

Sampling bias, caused by uneven sampling of species occurrences, is
often considered as one of the major factors that have a negative impact
on SDMs (e.g. Araújo and Guisan 2006, Leitão et al. 2011, Duputié
et al. 2014, Guillera-Arroita et al. 2015). Prior studies have demon-
strated that the presence of sampling bias decreases model performance
(e.g. Loiselle et al. 2008, Leitão et al. 2011, Sánchez-Fernández et al.
2011, Fourcade et al. 2014, Ranc et al. 2016), While our results agree
with that, they show that the contribution of sampling bias to the
overall, combined effects of the different studied factors on SDMs is
relatively low, explaining no more than 2% of the variability of the
performance metrics. This demonstrates the importance of simultane-
ously studying multiple factors and their impacts on SDMs, whereas
other studies focused solely on the effect of sampling bias and did not
provide measures of explained variability, our study compared its effect
with the effect of other factors, finding it statistically significant but
relatively negligible. Our results are in agreement with the study by
Tessarolo et al. (2014) who also concluded that sampling bias has rather
minor effects on model performance compared to other factors (species
characteristics, sampling method, sample size, SDMs technique). In-
terestingly, they used the same study area as our study (i.e. Iberian
Peninsula), the difference lied in the use of 34 real species (amphibians,
reptiles, mammals). Nevertheless, the effect of sampling bias may be
related to autocorrelation in the predictor variables, which is relatively
high in interpolated climate data (such as Worldclim used in both their
and our study).

4.4.4 Environmental filtering

Another goal of our study was to test the applicability of environmental
filtering on models generated with spatially biased data. According
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to Varela et al. (2014), environmental filtering consistently improves
model performance. Our results show that the measured effect of envi-
ronmental filtering was significant, they however also showed that that
effect was relatively unimportant when compared to other factors (see
Table 4.1). Moreover, its positive or negative effect strongly depended
on the type of species response to environmental gradients, species
prevalence, and sample size. We only confirmed the positive effect for
species with smooth or nearly smooth response, whereas for species
with abrupt or nearly abrupt response the effect was negative (except
models with species prevalence 0.05). This contradicts the results of
Varela et al. (2014) as their positive effect was observed for species
generated using a threshold approach (i.e. the equivalent of our abrupt-
responding species). In addition, the positive effect was much stronger
when assessed by AUC (up to more than 20% increase, see Figure 4.4)
than by Schoener’s D (only approx. 5% increase, see Figure 4.3). This
is in accordance with previous concerns about using AUC as the only
model performance measure (Jiménez-Valverde 2012, Moudrý 2015,
Fernandes et al. 2019).

We recognize that SDMs may be affected by many other factors (see
Thibaud et al. 2014, Fernandes et al. 2019). Thus, we recommend that
further studies focus on interactions of environmental filtering with
other factors, such as the effects of spatial scale (extent and resolution)
(e.g. Connor et al. 2018, Šímová et al. 2019), spatial autocorrelation
(Thibaud et al. 2014) or modeling technique (Fernandes et al. 2018).

4.5 Conclusions

We focused on several factors related to species occurrences (response
variable) in SDMs (i.e. environmental filtering, sampling bias, sample
size, species prevalence and species response to environmental gradient).
We found that both sample size and species prevalence equivalently
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affect performance (measured by AUC and Schoener´s D) of SDMs (in
general, increasing sample size positively, increasing species prevalence
negatively). Our results also highlighted the importance of using a
probability approach to the generation of virtual species distribution,
which allowed us to model species with different response to environ-
mental gradient from abrupt to smooth, as opposed to a threshold
approach, which is still commonly used. Indeed, our results showed
that the response of a species to environmental gradients has a strong
effect not only on the model performance itself but also on the effects of
other factors. The unprecedented complexity of our study enabled us to
recognize the importance not only of each of the factors themselves but
also of their interactions. Ignoring such interactions, which is almost
inevitable in studies focusing on one or two factors only, may lead to
substantially misleading conclusions.

Our results suggest that environmental filtering is not always a good
idea and should not be performed blindly without evidence of bias in
species occurrences. Environmental filtering down-weights repeated
observations of the same environmental conditions and reduces sample
size. Therefore, sampling must be dense enough to characterize the
curve and the algorithms must be able to uncover the true form of
the relationship. Our results show that at least 300 presences are
necessary for accurate predictions when using presence-only models
fitted by MaxEnt. We suggest that models using original, unfiltered
data should be always fitted. We highlight that the more gradual is
the species response to environmental gradients (except species with
prevalence 0.05), the greater is the model sensitivity to inappropriate
use of environmental filtering, although the sensitivity decreases with
higher species prevalence. Finally, we advocate that additional data
and species characteristics (e.g. resolution, extent, positional error)
should be evaluated using more complex virtual species (e.g. with
more complex response curves) to improve SDM use in biodiversity
monitoring and conservation.
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Abstract

Species occurrences inherently include positional error. Such error can
be problematic for species distribution models (SDMs), especially those
based on fine-resolution environmental data. It has been suggested
that there could be a link between the influence of positional error and
the width of the species ecological niche. Although positional errors
in species occurrence data may imply serious limitations, especially
for modelling species with narrow ecological niche, it has never been
thoroughly explored. We used a virtual species approach to assess
the effects of the positional error on fine-scale SDMs for species with
environmental niches of different widths. We simulated three virtual
species with varying niche breadth, from specialist to generalist. The
true distribution of these virtual species was then altered by introduc-
ing different levels of positional error (from 5 to 500 m). We built
generalized linear models and MaxEnt models using the distribution of
the three virtual species (unaltered and altered) and a combination of
environmental data at 5 m resolution. The models’ performance and
niche overlap were compared to assess the effect of positional error with
varying niche breadth in the geographical and environmental space.
The positional error negatively impacted performance and niche overlap
metrics. The amplitude of the influence of positional error depended on
the species niche, with models for specialist species being more affected
than those for generalist species. The positional error had the same
effect on both modelling techniques. Finally, increasing sample size did
not mitigate the negative influence of positional error. We showed that
fine-scale SDMs are considerably affected by positional error, even when
such error is low. Therefore, where new surveys are undertaken, we
recommend paying attention to data collection techniques to minimize
the positional error in occurrence data and thus to avoid its negative
effect on SDMs, especially when studying specialist species.

Keywords: Data errors, Niche breadth, Spatial overlay, Virtual species
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5.1 Introduction

Studying relationships between species and their environment is fun-
damental for understanding Earth’s biodiversity. Species distribution
models (SDMs) are a common tool used to study these relationships.
They use species occurrence data and environmental data to produce
a set of rules explaining the environmental space where species were
collected or observed (Ferrier et al. 2017). All applications of SDMs,
however, assume that species occurrence data are largely free of spatial
error. Nonetheless, all spatial data inherently contain some level and
type of spatial errors. These errors can be, for example, related to
the use of inadequate spatial resolution (Gottschalk et al. 2011, Ší-
mová et al. 2019), low sample size (Wisz et al. 2008, Moudrý et al.
2017), biased sampling (Hijmans 2012, Ranc et al. 2016) or occurrences
with positional error (Graham et al. 2008, Osborne and Leitão 2009,
Mitchell et al. 2017). Data quality (both for species occurrences and
environmental variables) is currently considered a major factor limiting
SDM accuracy (Araújo et al. 2019) and demonstrating, quantifying
and understanding the consequences of these errors is therefore critical.

It is often assumed that the negative effects of positional error (i.e. inac-
curate location of species occurrences) is minimal or mainly associated
with relatively older datasets that are often georeferenced from textual
descriptions of their locations (which may cause errors of up to hun-
dreds of meters, Wieczorek et al. 2004). However, it is also necessary to
consider positional errors inherent to data georeferenced using modern
global navigation satellite systems (GNSS). The positional error of
GNSS data may be caused by the use of outdated technology, by poor
satellite signal reception (e.g. because of inappropriate site conditions),
or by data processing (e.g. conversion between coordinate systems or
rounding of coordinate values). Moreover, species occurrence data often
represent the position of the observer and not the actual position of the
species (Zhang et al. 2018). Additionally, where the marine environment
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is concerned, species data are often acquired using underwater cameras,
in which case the positional error can be affected for example by the
camera depth; the deeper the camera is, the greater is the positional
error (Rattray et al. 2014, Mitchell et al. 2017). Therefore, even though
the accuracy of standard GNSS is usually below 30 m (Frair et al. 2010),
the errors associated with such data may be much larger.

In addition, performance of SDMs is complicated by various spatial
(e.g. prevalence or range size) and ecological (e.g. niche breadth)
characteristics of the studied species (Luoto et al. 2005, Bulluck et al.
2006, McPherson and Jetz 2007, Evangelista et al. 2008, Chefaoui et al.
2011, Connor et al. 2018). It has been hypothesized that range size is
positively correlated with niche breadth (i.e. the range of environments
that the species can inhabit), in other words that species able to tolerate
a wider range of conditions are typically more widespread (Brown 1984,
Gaston et al. 1997, Arribas et al. 2012, Boulangeat et al. 2012). The
niche breadth–range size relationship is one of the possible mechanisms
explaining commonness and rarity. Modelling rare species (i.e. species
with small geographical ranges) is particularly problematic and novel
approaches have been adopted for this purpose (Breiner et al. 2015) to
overcome the common problem of a low number of occurrences available
for modelling that may not be sufficient to completely describe the
species niche. Similar effects can be caused by a low positional accuracy
of the occurrences (Johnson and Gillingham 2008, Fernandez et al. 2009,
Osborne and Leitão 2009).

Although the magnitude of the niche breadth–range size relationship is
still under debate, a recent meta-analysis of 64 studies found a significant
positive relationship between the range size and niche breadth (Slatyer
et al. 2013). Such a synergic relationship can increase the already
high vulnerability of specialist species to environmental changes. In
addition, Slatyer et al. (2013) suggested that specialist species might be
particularly vulnerable to any environmental change due to synergistic
effects of a narrow niche and small range size. Specialist species are
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of high conservation concern, and SDMs might be the only tractable
means of estimating their distribution and reaction to environmental
change. However, confounding effects of inaccurate data on modelling
species that utilize a narrow niche breadth (i.e. specialist) versus species
that utilize a wide niche breadth (i.e. generalist) are unknown (Connor
et al. 2018).

It is intuitive that positional error of a given magnitude might have
a greater effect on specialist than generalist species, as it is more
likely that occurrences get incorrectly shifted into cells representing
an unsuitable environment, i.e. environment that is outside of the
species’ environmental niche. This, however, has never been thoroughly
explored because it is extremely difficult, if not impossible, to estimate
the true responses of a real species to the environment and, consequently,
to be able to fully understand the true suitability of an area for the
species in question.

In this study, we focused on Light Detection and Ranging (LiDAR)-
derived variables that are being more and more often combined with
species distribution data of unknown positional accuracy to study
species–environment relationships at fine scales. Studies published so
far have used real species to test the effect of positional error. However,
real species distribution data are usually affected by a complex set of
other uncertainties (e.g. sampling bias, incompleteness, inaccuracies).
As a consequence, the isolation and identification of the effects of
positional error can be very challenging, if not impossible. This is
likely one of the reasons why little consensus exists on how the effect
of positional error manifests in SDMs (Naimi et al. 2011, Mitchell et al.
2017). For example, Graham et al. (2008) concluded that SDMs are
robust to positional error while others argued that positional errors
reduce models’ performance (Johnson and Gillingham 2008, Fernandez
et al. 2009, Osborne and Leitão 2009).
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Another aspect may be that positional errors of species occurrences were
studied using relatively coarse environmental data (but see Mitchell
et al. 2017). Positional error considered in prior studies ranged from
50 m up to 50 km (Table 5.1). While such error results in a shift over
several cells in a coarse-resolution SDM (e.g. 1 × 1 km), it will cause a
much greater shift in a fine-resolution SDM (e.g. 10 × 10 m). Therefore,
with the increasing availability of fine-scale data, additional studies are
needed (Osborne and Leitão 2009); it can be expected that SDMs at
fine scales would be more sensitive to positional error.

Table 5.1 Overview of prior studies focused on the influence of positional
error in species occurrence data on SDMs.

Species data Environmental data
Graham et al. 2008 observed categorical,continuous
Johnson and Gillingham 2008 observed categorical
Fernandez et al. 2009 observed continuous
Naimi et al. 2011 artificial continuous
Mitchell et al. 2017 observed continuous

Range of shifting occurrences
Graham et al. 2008 0–5 km 0–50 pixels
Johnson and Gillingham 2008 50–1000 m (over 50 m) 1–34 pixels
Fernandez et al. 2009 5–10–25–50 km 1–5, 1–10, 1–25, 1–50 pixels
Naimi et al. 2011 x 1–30 (over 1 pixel)
Mitchell et al. 2017 5–25–50–20–400 m 1–2, 1–12, 1–80, 1–160 pixels

Resolution of input environmental data (pixel size)
Graham et al. 2008 100 × 100 m
Johnson and Gillingham 2008 30 × 30 m
Fernandez et al. 2009 1 × 1 km
Naimi et al. 2011 artificial data
Mitchell et al. 2017 2.5 × 2.5 m

To ensure the full knowledge of the exact ecological and geographi-
cal characteristics of the species and to avoid unknown complexities
associated with real data, we used a virtual species approach to test
the effect of the positional error in species occurrences on fine-scale
SDMs in the context of species niche breadth (i.e. specialist versus
generalist species). We generated three virtual species that differed in
characteristics related to the geographic distribution of the species, i.e.
prevalence and relative occurrence area (ROA); the proportion of the
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total study area occupied by the species (Lobo 2008).

The virtual species approach allowed us to control the experiment and to
isolate the effects of positional error (Zurell et al. 2010). This approach
is increasingly used to evaluate the effects of data inaccuracies on model
performance (Barbet-Massin et al. 2012, Václavík and Meentemeyer
2012, Qiao et al. 2015, Ranc et al. 2016, Fernandes et al. 2018, Leroy
et al. 2018, Moudrý et al. 2018, Gábor et al. 2019, Meynard et al.
2019), but has yet to be adopted for the study of positional error. In
particular, we tested whether: 1) SDMs for specialist species are more
affected by positional error than those for generalist species; 2) it is
possible to compensate the assumed negative effect of a positional error
with a higher sample size; and 3) the positional error has different
effects when using a parametric (e.g. generalized linear model) versus
a nonparametric (e.g. MaxEnt) modelling technique.

5.2 Material and Methods

5.2.1 LiDAR data acquisition, processing and vari-
able selection

Discrete LiDAR data were collected in Krkonose Mountains National
Park (KRNAP), Czech Republic (Supplementary material Appendix
1 Fig. A1) in 2012 using a small-footprint airborne LiDAR system
(RIEGL LMS Q-680i). The average point density was approximately
six points per square meter. The LiDAR point cloud was automatically
classified into ground, vegetation, building, wire and transmission
tower classes in the ENVI LiDAR software (ver. 5.3) and LAStools
(ver. 171215). The terrain data points were used to produce a digital
terrain model (DTM), and the vegetation data points were used to
produce a canopy height model (CHM) (Khosravipour et al. 2016).
Both models were generated from the point cloud at a 0.5 m resolution
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and subsequently resampled to 5 m cell resolution for the analysis to
improve processing time. A topographic wetness index (TWI) was
derived from the DTM based on the equation

𝑇𝑊𝐼 = ln( 𝐴𝑠

𝑡𝑎𝑛𝛽
)

where As is the specific catchment area and tan β is the local slope in
radians (Beven and Kirkby 1979). To calculate the specific catchment
area, we used the multiple flow routing algorithm of Quinn et al.
(1991), recommended by Kopecký and Čížková (2010), using SAGA-
GIS (Conrad 2003).

The selection of these three variables (DTM, CHM, TWI) was moti-
vated by the need to simulate a realistic situation that includes variables
with various levels of spatial autocorrelation (Supplementary material
Appendix 2 Fig. A2). CHM describes a horizontal structural variability
of the vegetation and is known to affect species richness (Lefsky et al.
2002). For example, higher vegetation was found to be related to higher
bird species richness (Davies and Asner 2014). TWI is a surrogate
for soil moisture, an environmental variable that affects the vegetation
composition and that has been previously used to predict bird occur-
rences (Besnard et al. 2013, Reif et al. 2018). The relationships between
CHM and TWI on the one side and bird distribution and richness
on the other side make our study relatable to applications with real
species; our virtual species could theoretically be birds with specific
habitat requirements in terms of terrain characteristic and vegetation
structure. We also used the DTM as a surrogate for climatic variables
and to restrict our virtual species to certain altitudes (Coops et al.
2010, Vogeler et al. 2014).
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5.2.2 Simulating virtual species
with different niche breadths

Virtual species were generated with the virtualspecies package (Leroy
et al. 2016) in the statistical software R v.3.4.4 (R Development Core
Team). The process involved three steps: a) generating the true distri-
bution of the virtual species’ environmental suitability, b) converting the
environmental suitability into presences and absences and c) sampling
species occurrences for further analysis and modelling.

Applying the formatFunctions function in R, we defined the species–
environment relationships using normal distribution curves. To simulate
species with different niche breadth, prevalence and ROA, we used the
same means and varied standard deviations of the used environmental
variables (Supplementary material Appendix 3 Table B1). Specifically,
we simulated three distinct virtual species with varying ROAs and
prevalence that represent realistic scenarios of species’ extent of occur-
rence in the study area. The species with low ROA (4%) represents a
specialist with low species prevalence (0.04), narrow niche breadth and
small geographical range. The species with medium ROA (12%) may
be described as an intermediate species (species prevalence = 0.12) with
a wider niche breadth and medium geographical range. Finally, the
species with high ROA (52%) can be perceived as a generalist with high
species prevalence (0.47), wide niche breadth and wide geographical
range (Futuyma and Moreno 1988, Devictor et al. 2010, Franklin 2010,
Peers et al. 2012). Subsequently, we multiplied individual species’ re-
sponses to environmental variables in order to acquire an environmental
suitability raster (function generateSpFromFun). We opted for multi-
plication of the variables to assume irreplaceability of environmental
conditions (i.e. we assumed that unsuitability of one condition causes
a low probability of occurrence even though remaining conditions are
in species’ range of suitable values).

As noted in several studies (Meynard and Kaplan 2012, 2013, Moudrý
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2015, Meynard et al. 2019), an appropriate setting of the whole sim-
ulation with respect to the research questions is crucial for obtaining
reliable results. In addition, Meynard et al. (2019) highlighted that
simulation studies based on the threshold approach fail in appropriately
separating factors such as prevalence and niche breadth. Therefore,
due to these concerns, we adopted a probabilistic simulation approach
(logistic function with α = -0.05 and β = 0.3) to convert the environ-
mental suitability rasters into probabilities of occurrences that were
subsequently used to sample binary presence/absence rasters (function
convertToPA). To sample species occurrences (function sampleOccur-
rences), we randomly generated, using a uniform random distribution,
both presence-only and presence/absence data. Both types of oc-
currence datasets were generated in order to test different modelling
techniques (cf. section Model fitting and evaluation). To test whether
it is possible to compensate the assumed negative effect of positional
error with a higher sample size, we generated four different sample sizes.
Specifically, 30, 100, 500 and 1000 species presences were generated,
complemented for the purpose of GLM modelling by twice as many
absences.

5.2.3 Simulating positional error in species occur-
rences

It is generally assumed that the magnitude of the positional error in
species occurrence varies based on the source of the error. The positional
error associated with GNSS points (e.g. species occurrences) may range
from a few centimetres up to several metres. Furthermore, in some
species such as birds or big predators, it is usually impossible to record
their accurate position and such data are shifted by tens or hundreds
of meters. An even greater shift is sometimes observed in museum
databases. Therefore, to evaluate the range of possible magnitudes of
the positional error, we simulated the positional error by shifting the
sampled locations (i.e. presences and, in case of GLM, also absences)
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in a random direction according to six scenarios that corresponded to
different distances ranging from 5–10 m up to 100–500 m. The error in
the focal virtual species locations was 5–10 m for S1 scenario, 10–15 m
for S2, 15–20 m for S3, 20–50 m for S4, 50–100 m for S5 and 100–500
m for S6 (Supplementary material Appendix 4 Table C1). Scenarios
S1–S4 simulated realistic degrees of error if using modern monitoring
technologies like GNSS, while scenarios S5–S6 simulated more extreme
positional errors that could be associated with species observations
recorded without GNSS, species difficult to pinpoint properly such as
birds or big predators, or occurrences from museum databases. If the
shifting of the original data points resulted in the points falling outside
the study area, we recalculated the shift until the new coordinates
were located within the boundaries of the study area. We provide a
script of how we simulated virtual species and shifting occurrences in
Supplementary material Appendix 2.

5.2.4 Model fitting and evaluation

We selected generalized linear models (GLM; Nelder and Baker 1972,
Oksanen and Minchin 2002) as a presence/absence method and MaxEnt
(Phillips et al. 2006) as a presence-background method that are often
adopted in ecological studies (Moudrý and Šímová 2013, Linda et al.
2016, Malavasi et al. 2018, Gábor et al. 2020, Watts et al. 2019). In
addition, Graham et al. (2008) showed that these two approaches
were among the better performing modelling techniques when the data
was affected by positional errors. Models were built in the statistical
software R using the dismo (ver. 1.1.4) and glm2 (ver. 1.2.1) packages.
The GLM was run with a logit-link function and binomial distribution.
The quadratic terms of the three environmental variables were included
because of the known normal distribution curves of the response function.
To enable the comparison of individual SDMs, we needed to maintain
the parameters of MaxEnt unchanged, as done in many prior studies
(Franklin et al. 2014, Fourcade et al. 2014, Holloway et al. 2016, Ranc
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et al. 2016, Tingley et al. 2018, Ye et al. 2018). The default settings
established by Phillips et al. (2009) were used with randomly drawn
background data generated from the binary map of the true occurrences
of the virtual species. The same three environmental variables (DTM,
CHM and TWI) used in the process of generating virtual species
were used in the SDMs. Fivefold cross-validation where the data were
randomly divided into fifths was used to evaluate the models. Four fifths
of the data were used to train the model and the remaining one fifth
was used to assess the performance. Control models without positional
error were calculated for all three species with different niche breadth,
prevalence and ROA and for both modelling techniques, allowing an
easy comparison of the effect of positional error on model performance.

The area under the receiver operating characteristic curve (AUC) (Field-
ing and Bell 1997, Jiménez-Valverde 2012) and the true-skill statistic
(TSS; Allouche et al. 2006) were used to assess model performance (i.e.
discrimination accuracy). AUC is widely used in ecological studies as a
single threshold independent measure of model performance (Václavík
and Meentemeyer 2012, Mitchell et al. 2017). The AUC ranges from
0 to 1 where a score of 1 indicates perfect discrimination, a score of
0.5 indicates random performance and values lower than 0.5 indicate a
worse than random performance. TSS is a frequently used threshold
dependent metric (Cianfrani et al. 2018, Eaton et al. 2018) taking both
omission and commission errors into account. It ranges from -1 to +1
where +1 indicates perfect agreement and values of zero or less indicate
random performance (Allouche et al. 2006).

To quantify differences between the true probability of occurrence of
virtual species and the predicted distribution inferred from the models
in geographical space, their niche overlap was compared using the I
measure (Warren et al. 2008, Rödder and Engler 2011) and Spearman’s
rank correlation. The I ranges between 0 (no overlap) and 1 (perfect
overlap). Following Rödder and Engler (2011), we used the following
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Figure 5.1 General modelling process. (i) We first acquired and processed
LiDAR data and selected three fine-scale environmental predictors: DTM,
CHM and TWI. (ii) We simulated virtual species with different niche breadths
(ROA) by defining their response to environmental gradients for each environ-
mental variable. (iii) We multiplied those variables to generate environmental
suitability (‘true’ distribution of virtual species). (iv) We translated the prob-
ability of species occurrence to a presence–absence raster. (v) We sampled
occurrences based on the presence–absence raster. (vi) We simulated the
positional error in species occurrences. (vii) We generated SDMs with ac-
curate as well as shifted occurrences, evaluated their performances (AUC,
TSS) and assessed the niche overlap (I, Spearman´s rank correlation) in the
geographical and environmental space.
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classes to interpret the results: no or very limited overlap (0-0.2), low
overlap (0.2-0.4), moderate overlap (0.4-0.6), high overlap (0.6-0.8) and
very high overlap (0.8-1.0). Spearman’s rank correlation ranges between
-1 and +1, where -1 indicates that species responses to the environment
are exactly negatively correlated (opposite) and +1 indicates perfectly
positively correlated overlap (identical). The closer the values are to
zero, the lower is the niche overlap.

The magnitude of the negative effect of the positional error on SDMs is
dependent on the size of the positional error and distribution of species’
suitable environment in the geographical space (Naimi et al. 2011). The
positional data may be shifted in the geographical space and even a
relatively low positional error in geographical space can have a profound
effect on environmental niche estimates in environmental space and vice
versa. Furthermore, we expected this would be related to the species
niche breadth. Therefore, we were also interested in how the positional
error is manifested in the environmental space and measured the niche
overlap in the environmental space as well. We used I and Spearman’s
rank correlation implemented in ENMTools 0.2 (Warren 2019, Warren
et al. 2020) to estimate overlap in the environmental space between
models fitted with accurate occurrences without any positional error
(hereafter unaltered models) and models fitted with shifted occurrences
(i.e. scenarios S1–S6)

We ran the entire process from species generation to model evaluation
30 times (Figure 5.1). In addition, we used the analysis of variance
(ANOVA) to assess the strength of the individual effects of the posi-
tional error, sample size, ROA and modelling technique, including all
possible interactions. We compared the relative importance of indi-
vidual predictors based on their contribution to the overall explained
variation (R2). Instead of formal testing, we plotted the effects (and
their confidence intervals) of all predictors combinations and evaluated
them qualitatively. Because both AUC and TSS values were highly het-
eroscedastic (e.g. the ratio between maximum and minimum standard
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deviation across all factors combinations was 22 resp. 19 for AUC resp.
TSS), we used robust variance–covariance matrix estimator suggested
by Mackinnon and White (1985) for computation of confidence intervals.
This was done using an R package sandwich (Zeileis 2006).

5.3 Results

5.3.1 Unaltered models

Both performance metrics (AUC and TSS) largely followed the same
pattern and highlighted excellent model performance for all, i.e. spe-
cialist, intermediate and generalist, species (AUC ranged from 0.91 up
to 0.97 for MaxEnt models and from 0.80 up to 0.85 for GLM mod-
els). The only exception were the MaxEnt models for generalist species
where AUC achieved only good performance (mean AUC 0.73). MaxEnt
models were more successful in modelling specialist and intermediate
species while GLM models were more accurate for the generalist species
(Figure 5.2)

Models achieved high or very high niche overlaps in geographical space
according to both I and Spearman´s rank correlation. In general, the
niche overlap decreased in the following order: generalist, specialists
and intermediate species except for the Spearman´s rank correlation
for specialists modelled by MaxEnt that achieved very high correla-
tion. Comparison of modelling techniques showed that MaxEnt models
achieved a higher niche overlap than GLM for all species with the most
obvious differences in specialist species. An increase in the sample size
of unaltered models led to none or negligible increase in niche overlap
(Figure 5.3).
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Figure 5.2 Resulting AUC (A) and TSS (B) scores according to different
species niche breadth (specialist, intermediate, generalist), positional error
(S0, unaltered models; S1, 5–10 m; S2, 10–15 m; S3, 15–20 m; S4 20–50 m,
S5, 50–100 m; S6, 100–500 m) and sample size (number of presences = 30,
100, 500, 1000; note that for GLM models twice as many absences compared
to presences were generated). Black colour shows results for GLM models
while grey shows results for MaxEnt models.
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Figure 5.3 Resulting I (A) and Spearman’s rank correlation (B) scores of
niche overlap in geographical space according to different species niche breadth
(specialist, intermediate, generalist), positional error (S0, unaltered models;
S1, 5–10 m; S2, 10–15 m; S3, 15–20 m; S4, 20–50 m, S5, 50–100 m; S6,
100–500 m) and sample sizes (number of presences = 30, 100, 500, 1000;
note that for GLM models twice as many absences compared to presences
were generated). Black colour shows results for GLM models while grey shows
results for MaxEnt models.
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Figure 5.4 Resulting I (A) and Spearman’s rank correlation (B) scores of
niche overlap in the environmental space according to different species niche
breadth (specialist, intermediate, generalist), positional error and sample
size (number of presences = 30, 100, 500, 1000; note that for GLM models,
twice as many absences as presences were generated). Also note that here we
show the niche overlap between unaltered models and models affected by a
specified positional error (and not a comparison with simulated probability of
occurrences as in Figure 5.3). Thus, for example, S1 shows a comparison of
niche overlap between unaltered models and models affected with positional
error in the range of 5–10 m. Black colour shows results for GLM models
while grey shows results for MaxEnt models.
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5.3.2 Effect of positional error on models
of species with different niche breadth

Results show, independently of the modelling technique, a clear trend
of the positional error worsening model performance (both AUC and
TSS). The highest drop is evident between unaltered models and models
affected by the smallest simulated positional error (5–10 m).

Increasing the positional error further led to additional decrease in
model performances; however, this decrease was minimal (positional
error 10–50 m). Even the extreme cases of positional error (50–100 and
100–500 m) led to a relatively low decrease in models’ performances
in contrast to the drop caused by the 5–10 m error. For example, in
the case of MaxEnt models for intermediate species, AUC dropped
on average from 0.91 (unaltered models) to 0.79 for the positional
error of magnitude inherent to any occurrence data (i.e. up to 10 m),
and to 0.71 in the case of the extreme positional error (100–500 m),
respectively (Figure 5.2). Nevertheless, the magnitude of the negative
effect of positional error varied according to the species niche breadth.
For both GLM and MaxEnt models the drop between unaltered models
and the smallest simulated positional error (5–10 m) was higher for
specialist and intermediate species (AUC dropped on average about
0.12) than for generalist species (AUC dropped on average about 0.05).

The results showed that the positional error in the occurrence data
reduced the niche overlap in both the geographical and environmental
space of both GLM and MaxEnt models. Niche overlap decreased
gradually with the increasing positional error with an especially sig-
nificant decrease in models’ niche overlap at the extreme case of the
positional error (100–500 m) (Figures 5.3, 5.4). However, the effect of
the positional error on the niche overlap varied depending on species’
niche breadth. Decrease in the niche overlap was higher for specialist
and intermediate species than for generalist species, especially in the
geographical space. For example, in case of MaxEnt models, Spear-
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man´s rank correlation was reduced from 0.98 to 0.58 for the specialist
and from 0.83 to 0.70 for the generalist species, respectively (Figure
5.3). However, the effect of the positional error was not that evident
from I, especially for the generalist species in geographical space. For
example, the decrease for generalist species and MaxEnt models was
on average only from 0.96 to 0.9 and the GLM models appeared as not
being affected at all.

Finally, independently of the validation metric, results showed that
increasing the sample size cannot compensate for the effect of positional
error (Figures 5.2, 5.3, 5.4). On the contrary, it is evident that a
combination of low sample size of 30 samples with positional error led
to erratic behaviour and generally low performance of the models.

5.3.3 Comparison of the relative importance of
individual predictors (R2)

The results show that the positional error and modelling technique had
the highest relative importance (R2) for the model performance (AUC,
TSS). The relative importance of the sample size and niche breadth was
much smaller and mutually comparable (Table 5.2). According to the
niche overlap in geographical space assessed by I (model predictions),
niche breadth had the greatest effect, followed by the positional error,
modelling technique and sample size, the importance of which was
almost negligible. In contrast, according to correlations, the modelling
technique and positional error had the highest relative importance (R2)
followed by the niche breadth and by sample size, the importance of
which was minimal. When assessing relative importance for niche over-
lap in the environmental space, the modelling technique and positional
error showed the highest contribution followed by the niche breadth
and by sample size, the importance of which was almost negligible, just
like in the above metrics. All those factors significantly affected SDMs
performance and predictions (p-value < 0.05).
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5.4 Discussion

In this study, we focused on the effect of positional error in species
occurrences on fine-scale SDMs. We simulated species with different
levels of niche breadth to assess whether there was a link between the
width of the environmental niche and the effect of the size of positional
error. Our results showed that introducing positional error into species
occurrence data led to a decrease in model performance and prediction
accuracy in both the geographical and environmental space. However,
the effect of the positional error varied with species niche breadth. The
same positional error had a greater impact on specialist (low ROA and
prevalence, narrow breadth of niche) than on generalist (high ROA and
prevalence, wide breadth of niche) species. This is likely because in case
of specialist species, occurrences could be easily shifted to inappropriate
environments outside of the species’ environmental niche. This could
also explain the inconsistent conclusions of previous studies (Graham
et al. 2008, Fernandez et al. 2009).

Table 5.2 Comparison of the relative importance of individual factors (R2,
%) for ANOVA of performance metrics (AUC, TSS) and niche overlap in
the geographical and environmental spaces (I, correlation).

Factor AUC TSS
ROA 4 4.14
Sample size 1.1 1.78
Modelling technique 18.7 21.35
Positional error 25.4 24.58

Factor I geographical space Correlation geographical space
ROA 75 11.2
Sample size 0.1 1
Modelling technique 8 24.7
Positional error 8.4 27.5

Factor I environmental space Correlation environmental space
ROA 9.7 1.7
Sample size 0.2 0.4
Modelling technique 45.4 21.5
Positional error 13.2 18.3
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Higher sample sizes slightly improved unaltered models’ accuracy; the
results however showed that increasing the sample size could not com-
pensate for the effect of positional error on models’ accuracy (Figures
5.2, 5.3, 5.4). On the other hand, low sample sizes of positionally inac-
curate data were especially problematic for modelling. These results
are in general agreement with the study by Mitchell et al. (2017) who
investigated the influence of sample size (ranging from 100 samples
to 400) in conjunction with the positional error; their results showed
that models based on smaller sample sizes were more affected by a
positional error than those with higher numbers of species occurrences.
However, it is difficult to conclude whether or not 100 records with
positional error of 10 m are better or worse for modelling at the scale
of 5 m than 500 records with positional error 25 m. For example,
Moudrý and Šímová (2012) suggested that the spatial resolution of the
environmental data should be coarser than the biggest positional error
of the occurrence data and Naimi et al. (2011) showed that the effect of
positional error is reduced by spatial autocorrelation in environmental
variables. However, the trade-off between the scale and positional error
has not been thoroughly studied.

The degree of decrease between unaltered and altered models (i.e. those
with positional error) differed among adopted validation metrics and
assuming a sufficiently large sample size, AUC and TSS provided clear
evidence of decreasing model quality. The ability of evaluation metrics
to identify the magnitude of error caused by positional inaccuracies
was previously discussed by Osborne and Leitão (2009). Interestingly,
they found that the use of AUC for the error quantification in models
affected by positional error was limited as AUC did not decrease when
compared to the control models. We hypothesize that this contradiction
results from confounding effects of real data used in their study (i.e.
they did not use virtual species). In Osborne and Leitão (2009), the
modelling algorithms were allowed to choose the best combination of
environmental variables from a set of twelve variables for scenarios
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with different levels of positional error. Indeed, they showed that posi-
tional error led to alteration of the variables selected by the modelling
algorithm. The selected variables however often failed to represent
the conditions pertinent to the species during habitat selection. In
contrast, here we used the same variables throughout, both to generate
the virtual species and to model their distribution. Hence, our mod-
elling approaches (GLM, MaxEnt) did not have the option to select
variables that would provide a closer fit to the altered occurrence data
but that were lacking ecological relevance and as a result did not lead
to spurious increase in AUC and TSS values. We suggest that the effect
of positional error on selection of environmental variables should be
further investigated.

The effects discussed above raise serious concerns as it is possible that
the use of positionally inaccurate data combined with an arbitrary
selection of environmental variables that may lack ecological relevance
results in seemingly accurate but entirely wrong models. For instance,
Fourcade et al. (2018) successfully fitted SDMs with non-ecological
variables such as paintings to demonstrate this point. While Osborne
and Leitão (2009)) and Mitchell et al. (2017) suggested that useful
predictions can still be generated from data affected by positional
error, they warned that the ecological interpretation of such data and
predictions was dangerous. Our results support the importance of
assessing data in terms of fitness-for-use (Lecours 2017). Fitness-for-use
is the concept of determining whether or not a dataset is of sufficient
quality for a particular purpose (Goodchild 2006). Spatial scale is
intrinsically linked to such assessment of fitness-foruse (Lecours et al.
2017a) as data accuracy is dependent on the spatial resolution of the
environmental data. As indicated by Moudrý and Šímová (2012), the
spatial resolution of the environmental data should always be coarser
than the largest positional error associated with occurrence data.

In line with previous work (Van Niel and Austin 2007, Rocchini et al.
2011, Lecours et al. 2017a), we believe that attempts to predict species
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distributions with data of unknown accuracy are potentially dangerous
and as such, we highlight the necessity of quantifying the positional
accuracy of data. If such assessment is limited by metadata availabil-
ity, for example in case of historical data, we recommend to at least
approximate the positional accuracy based on known information such
as the collection methodology or the number of decimals recorded with
coordinates. With a proper fitness-for-use assessment that includes
data quality and scale, the resolution of environmental variables can be
coarsened before they are integrated into a modelling exercise to mini-
mize the adverse effects of the positional error of species occurrences.
However, we are aware that this may involve altering the spatial resolu-
tion of data to a level that is no longer eligible for potentially optimal
resolution(s), i.e. the scale at which species respond to the environment
(Lecours et al. 2015, Moudrý et al. 2019b). As demonstrated in Lecours
et al. (2017a), there is a tradeoff between spatial scale and data quality
that needs to be evaluated as a part of the fitness-for-use assessment.
While no experiments are currently available to help quantify which is
more important for successful modelling (whether it is the data quality
or scale), we suggest that pre-analyses be performed to test whether
keeping a finer resolution is more important than minimizing positional
error, or vice-versa. For new surveys, we suggest paying a close at-
tention to measurement techniques to minimize positional error, for
instance by using differential GNSS, especially for species with a narrow
ecological niche as our results show that the positional error of species
occurrence data has a profound effect on results of SDMs. Finally, we
advocate for additional studies focused on the influence of positional
error using more complex virtual species (e.g. with a higher number
of environmental variables or with more complex response curves) to
improve SDM use in ecology, macroecology and biogeography.
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5.5 Conclusions

In this study, we explored how positional error in species occurrences
affects fine-scale SDMs. We showed that the influence of positional error
on SDMs differed according to the width of species’ ecological niches
and this effect was evident in both geographical and environmental
space. The effect of the positional error on generalist species was
much smaller than the effect on specialist species, which were affected
the most. In addition, our results show that the negative effects of
positionally inaccurate data entering SDMs cannot be mitigated by
increasing the sample size. Therefore, a take away message of our
study is that improving positional accuracy of data appears to be more
effective than increasing sample size. We suggest that it is critical
to evaluate the quality of data with respect to the spatial resolution
of the environmental variables and to select occurrences with a low
positional error (note that a low positional error can be even 1km
if the spatial resolution of environmental variables is of similar size).
Future research should be focused on the influence of positional error
using more complex virtual species (e.g. with a higher number of
environmental variables or with more complex response curves) and
on how positional accuracy errors may affect the selection of variables
in modelling species distribution to improve its future application in
ecology, macroecology and biogeography.

Supplementary materials

Supplementary materials to this chapter (article) can be found online
at http://www.ecography.org/appendix/ecog-04687.
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Abstract

It is now widely acknowledged that the increasing availability of remotely
sensed data facilitates ecological modelling. Digital elevation models
(DEMs) are arguably one of the most common remote sensing products
used in this context. Topographic indices (e.g. slope, orientation,
rugosity) derived from DEMs are widely used as surrogates for field-
measured environmental variables. Available global DEMs, such as
those from the shuttle radar topography mission (SRTM), however,
do not provide information on bare-earth elevation as they measure
elevation of the highest objects above the ground (e.g. canopy). This
affects the derived topographic indices and limits the use of global
DEMs in ecological modelling. Unfortunately, most ecological studies
ignore this limitation despite the fact that methods to remove the
vegetation offset have been developed. We used high resolution LiDAR
DTM to assess the accuracy of two newly available global bare-earth
DEMs where such methods were applied and to compare them with
the SRTM DEM. Furthermore, we assessed the effect of DEMs’ vertical
error on species distribution models (SDMs) by calculating slope and
topographic wetness index (TWI) from these different models and
evaluating their suitability for SDMs by adopting a virtual species
approach. We simulated virtual species based on slope and TWI
derived from accurate LiDAR DTM at three resolutions (30 m, 90m
and 900 m) and developed univariate generalized models to assess the
performance of the bare-earth and SRTM DEMs. Our results show that
the vertical error in both newly available, vegetation-corrected global
DEMs is indeed successfully reduced. The overall vertical root mean
squared error (RMSE) was 10.52m for SRTM, while it was 6.80m and
6.25m for the two global bare-earth DEMs. The effect of the vertical
error on SDMs was most significant at finer spatial resolutions. Using
SRTM DEM, as opposed to a more accurate bare-earth DEM, led to
a decline in area under curve (AUC) values from 0.94 to 0.77. SDMs
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fitted with slope and TWI derived from new global bare-earth DTMs
performed slightly better than SRTM. Since methods for vegetation-
offset removal in DEMs exist and corrected DEMs are freely available,
we argue that the vertical accuracy of DEMs should be more consistently
considered. Local, high-accuracy DEMs should be used where available;
in remaining instances, however, global DEMs where vertical bias was
minimized should be used in ecological modelling. Further improvement
of global DEMs at 30m and better resolutions are needed to enhance
accuracy of derived indices and ecological models.

Keywords: Geomorphometry, Remote sensing, Scale, Species distribu-
tion model, Vertical error, Virtual species
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6.1 Introduction

Understanding the principles that drive the spatial distribution of organ-
isms and ecosystems is of central interest in ecology and the application
of these principles to conservation and management problems is funda-
mental to the development of successful conservation and management
strategies (Whittaker et al. 2005, Piroddi et al. 2015). Over the last
few decades, this effort was facilitated by advances in modelling tech-
niques. The objective of such modelling is either to relate a biodiversity
response variable (e.g. the distribution of individual species or species
richness) and explanatory variables to quantify their relationships (‘ex-
planatory modelling’), or to predict unknown values of the biodiversity
response variable based on pre-established relationships with other vari-
ables (‘predictive modelling’) (Ferrier et al. 2017). Species distribution
models (SDMs) are the most popular examples of such analysis (e.g.
Alba-Sánchez et al. 2010, Reino et al. 2013, Piroddi et al. 2015, Zhang
et al. 2016).

The improved accessibility of remotely sensed data facilitates ecological
modelling (Geller et al. 2017). However, it may potentially bring hidden
dangers emerging from the use of such data by users with limited
understanding of data collection and processing methods, leading them
to make erroneous conclusions (Lecours et al. 2017c). A joint effort
from ecology and remote sensing practitioners is often needed to ensure
a robust and valid use of available data and methods (Cord et al. 2013).

Arguably, one of the most common remote sensing product used in
ecological modelling is the digital elevation model (DEM). Topographic
indices derived from DEMs (e.g. slope, aspect, topographic wetness
index) are routinely calculated using geographic information systems
(GIS) and are widely used as surrogates for a variety of field-measured
environmental variables such as air temperature, soil moisture and
incoming solar radiation (Hengl and Reuter 2009). DEMs and their
derived topographic indices have long been used for a vast range of
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studies in ecology (Leempoel et al. 2015, Meineri et al. 2015, Lecours
et al. 2016) and constitute a backbone of SDMs (see Franklin 1995, Mod
et al. 2016). It is essential that a DEM used in a modelling exercise
captures the relevant topographic details affecting species distribution
(Lecours et al. 2015). Although highly accurate DEMs exist at both
local and national level (for example from airborne laser scanning
missions), many studies rely on global space-borne DEMs that have
lower spatial resolutions and accuracy (e.g. Zhang et al. 2016).

Nowadays, global or near-global DEMs are available from several
space-based data collection missions: Shuttle Radar Topography Mis-
sion (SRTM), Advanced Spaceborne Thermal Emission Reflectometer
(ASTER) onboard NASA’s Terra satellite, Advanced Land Observing
Satellite (ALOS), or TANDEM-X. Unfortunately, both interferometric
(SRTM, TANDEM-X) and stereoscopic (ASTER, ALOS) DEMs suf-
fer from local inaccuracies or errors due to limits associated with the
methods used for elevation measurements. Furthermore, the vertical
accuracy of all space-borne DEMs strongly depends on the relief and
ruggedness of the terrain as well as on the vegetation cover (Thomas
et al. 2015). Importantly, it has been shown that such inaccuracies and
errors can in turn influence the derived topographic indices (Van Niel
et al. 2004, Oksanen and Sarjakoski 2005, Sofia et al. 2013, Lecours
et al. 2017a) and various steps of the species distribution modelling
process (e.g. shape of response curves, prediction accuracy measures,
spatial extent of predictions) (Van Niel and Austin 2007, Lecours et al.
2017b).

SRTM DEM is one of the most commonly used global DEMs. The
SRTM raw data were collected by C-band radar during an 11-days
mission in February 2000 (Farr et al. 2007). The processed data were
first released in June 2003. The SRTM DEM product was initially
provided as SRTM-3 with a resolution of 3 arc-seconds (approximately
90m at the equator), but the United States Government recently re-
leased an updated version (SRTM-1) with a resolution of 1 arc-second
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(approximately 30m at the equator) and a near-global coverage. The
raw data, however, contain voids (areas for which no radar signal was
returned), which reduces its usability in modelling. Since its initial
release, the SRTM-3 was post-processed to fill data voids and is now
available for free download, which greatly encouraged its widespread
use.

The SRTM DEM contains various errors, the description of which is
beyond the scope of this study (more information can be found in
Rodríguez et al. 2006). However, an important but often misunder-
stood characteristic of the SRTM DEM is that it does not provide a
“bare-earth” elevation: the measurements actually include a systematic
positive bias due to the objects above the ground (such as canopy), the
height of which is included into the model and this in turn produces
considerable differences in accuracy between forested and open areas
(e.g. Nelson et al. 2009). It is caused by the inability of the C-band
radar signal to penetrate the vegetation canopy and to reach the bare
ground: most of the incoming signals are reflected by various scatter-
ers in the upper part of the canopy (e.g. leaves, branches) with the
size similar to the relatively short wavelength of the C-band (5.6 cm).
Consequently, the elevation values captured by the sensor are located
somewhere between the ground and the top of the vegetation canopy
(depending on vegetation structure). The theoretical vertical accuracy
according to SRTM mission specifications is 16 m. Similarly, other
available global DEMs (ASTER GDEM, ALOS DEM, TANDEM-X
DEM) are also subject to the effects of vegetation offsets (e.g. Nelson
et al. 2009, Thomas et al. 2015).

All available versions of the SRTM DEM are impacted by vertical error,
including one of the most – if not the most – cited versions of the
SRTM DEM produced by the Consultative Group for International
Agriculture Research Consortium for Spatial Information (CGIAR-CSI;
http://www.cgiar-csi.org/data; e.g. Moudrý and Šímová 2013, Reino
et al. 2013, Šímová et al. 2015, Kosicki 2017). By not acknowledging
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the vertical error, and more particularly its vegetation offset component,
most studies use global DEMs as digital terrain models (DTM). If using
the appropriate nomenclature, the original SRTM product and many
of its subsequent alterations are actually digital surface models (DSM):
they do not represent the bare ground elevation in vegetated areas
and require further processing to remove vegetation heights in order to
create a proper ‘bare-earth’ DTM.

Methods for vegetation offset removal rely on maps of tree cover and veg-
etation height from independent sources. Such data however must have
an appropriate resolution and match the environmental conditions at
the time of DSM acquisition. Consequently, most efforts to remove veg-
etation offset have been only applied locally. Gallant and Read (2016)
developed a method consisting of three steps. First, a map of tree pres-
ence/absence yielding the best fit to the DEM offset is created from avail-
able global data on vegetation cover (e.g. www.globallandcover.com,
www.earthenginepartners.appspot.com). Subsequently, the offsets near
the edges of vegetation patches and in areas of continuous vegetation
cover are estimated. Finally, the estimated offsets are subtracted from
the DSM to produce bare-earth DTM. A similar method has been used
by O’Loughlin et al. (2016) to develop the first near-global ‘Bare-earth’
DTM based on SRTM DEM at 3 arcseconds resolution. This DTM,
hereafter referred to as the SGS-UB DTM, was made freely available for
non-commercial use by the School of Geographical Sciences at University
of Bristol, United Kingdom (https://data.bris.ac.uk/data/). More re-
cently, Yamazaki et al. (2017) developed MERIT DTM, a high-accuracy
global DTM at 3 arc-seconds resolution produced by eliminating mul-
tiple error components, including vegetation offset. MERIT DTM
was also made freely available for noncommercial use by the Japan
Agency for Marine-Earth Science and Technology (http://hydro.iis.u-
tokyo.ac.jp/yamadai/MERITDEM/).

The general aim of this study is to promote the valid and robust use
of global DEMs in ecological modelling by raising awareness about
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the importance of using DEMs that are corrected for vegetation offset.
Specific objectives are to (1) assess accuracy of SRTM DEM compared
with newly available SGS-UB and MERIT DTMs with respect to land
cover type (forested and non-forested areas); (2) evaluate whether
topographic indices derived from newly available bare-earth DTMs
perform better in SDMs than those derived from SRTM DEM; and (3)
assess the role of spatial resolution for DEMs vertical error propagation
to SDMs.

6.2 Materials and Methods

6.2.1 Study area and reference DTM

Our study area encompassed the Czech part of Krkonose mountains na-
tional park (KRNAP), located in Central Europe (15°25´–15°50´E and
50°38´–50°50´N). Krkonose is the highest mountain range in Czechia
and constitutes an area significant for biodiversity on the regional level.
The area is approximately 35 km in length, with the main ridges and
valleys arranged in a northwest to southeast direction. The altitude
range from 400 to 1600m is covered mostly by grasslands, pastures,
and spruce monocultures with remnants of original broad-leaf and
mixed mountain forests. The tree line traverses the altitudinal range of
1200–1350 m.

For the purpose of the comparison, a high-quality DTM derived from
small-footprint airborne LiDAR data provided by KRNAP was used.
LiDAR data were collected in 2012 and comprise an area of 478 km2
with the average pulse density of 5 pulses perm2. We classified the point
cloud into “ground” and “non-ground” returns using lasground_ new
with default setting for nature with following amendments: a) all returns
were considered as possible ground and b) intensified search for initial
ground points was set to fine (LAStools 2017). We filtered the ground
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returns only and, using blast2dem, generated a DTM with a cell size
of 1m (hereafter referred as LiDAR DTM). The horizontal coordinate
system of LiDAR DTM is Datum of Uniform Trigonometric Cadastral
Network (S-JTSK; EPSG: 5514) and the vertical coordinate system
is Mean Sea Level (MSL; Baltic Vertical Datum – after adjustment;
EPSG: 5705). The vertical datum of SRTM DEM, SGS-UB DTM
and MERIT DTM is EGM96 (EPSG: 5171), which is a very close
approximation of MSL (in Czechia, the differences should be below
1 m), and all models can therefore be directly compared. The data
were horizontally referenced to WGS84 and projected to S-JTSK using
the bilinear resampling method to 30m cell resolution for SRTM DEM
and 90m resolution for SGS-UB DTM and MERIT DTM, respectively.
There were no changes in the terrain height in the study area between
the data acquisition for global DEMs and LiDAR data.

6.2.2 DEMs validation

The LiDAR DTM is considerably more accurate compared to other
DEMs and can thus be used as the reference dataset (true elevation).
To assess the accuracy of remaining DEMs, we first calculated vertical
differences between LiDAR DTM and remaining models (SRTM DEM,
SGS-UB DTM, and MERIT DTM) using pairwise combinations of all
DEMs on cell-by-cell basis. We used the differences to calculate root
mean square error (RMSE) and mean error (ME), expressed as:

𝑅𝑀𝑆𝐸 =
⎯⎸⎸⎷ 1

𝑛

𝑛∑︁
𝑖=1

(𝐷𝐸𝑀𝑖 − 𝑅𝐸𝐹𝑖)2

𝑀𝐸 = 1
𝑛

𝑛∑︁
𝑖=1

(𝐷𝐸𝑀𝑖 − 𝑅𝐸𝐹𝑖)

where 𝐷𝐸𝑀𝑖 is the ith elevation from DEM surface, 𝑅𝐸𝐹𝑖 is the corre-
sponding “true” measured elevation, and n is the number of elevation
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points (cells) sampled. The RMSE expresses the dispersion of the
frequency distribution of deviations between the true elevation (in this
case represented by LiDAR DTM) and the DEM data. The ME tells
us whether a set of measurements consistently overestimate (positive
value) or underestimate (negative value) the true elevation. To evaluate
the success of SGS-UB DTM and MERIT DTM in removing vegetation
offset, we additionally assessed RMSE and ME in forested and non-
forested areas. The information on forested areas was obtained from
the vector CORINE land cover database (CORINE 3.1.1; 3.1.2; 3.1.3)
for the year 2000.

6.2.3 Derived topographic indices

We aggregated LiDAR DTM using focal statistics (i.e. mean value) at
30m and 90m resolutions and derived commonly employed direct and
indirect variable. The indirect variable we used was slope, calculated
according to Zevenbergen and Thorne (1987). Slope (i.e. rate of change
of elevation) affects the velocity of subsurface and surface flow and
other surface processes (Gallant and Wilson 2000) and it is therefore
an important variable in predictive vegetation mapping (e.g. Zhang
et al. 2016). The direct variable was the topographic wetness index
(TWI) which is a surrogate for soil moisture (Raduła et al. 2018). Soil
moisture is among the most important environmental variables affecting
vegetation composition (e.g. Kopecký and Čížková 2010). The TWI is
defined as

𝑇𝑊𝐼 = ln( 𝐴𝑠

𝑡𝑎𝑛𝛽
)

where As is the specific catchment area and β is the local slope in
radians (Beven and Kirkby 1979). To calculate the specific catchment
area, we used the multiple flow routing algorithm of Quinn et al. (1991)
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recommended by Kopecký and Čížková (2010). Slope and TWI were
derived from four different datasets: (i) the LiDAR DTM used as a
reference dataset in the simulation of virtual species, (ii) SRTM DEM
as a model burdened with vegetation offset, (iii) the SGS-UB DTM
and (iv) the MERIT DTM as models that were corrected for vertical
error caused by vegetation.

6.2.4 Virtual species generation

In order to exemplify the effect of vertical error on SDMs and to
assess whether the recently introduced ”error-free” global MERIT
DTM and SGS-UB improve model performance, we used the virtual
species approach (Meynard and Kaplan 2012, Moudrý 2015). We used
a simulated virtual species to ensure complete knowledge of species
distribution in order to enable a proper assessment of model performance
without confounding effects of real data (e.g. Moudrý et al. 2017). We
simulated relationships (response function) between species and an
environmental variable (i.e., slope and TWI derived from LiDAR DEM)
to generate environmental suitability. The response to both variables
was defined as the Gaussian response function (Slope: mean=15° and
standard deviation=2°; TWI: mean=8 and standard deviation=1) (e.g.
Varela et al. 2014). We adopted a probabilistic approach (logistic
function with alpha= -0.15 and beta=0.65) to convert environmental
suitability into probability of occurrence that is subsequently applied
to randomly sampled presences and absences. Finally, we simulated the
sampling of 400 presences and 400 absences of the virtual species. The
use of relatively simple species-environment relationships allows us to
highlight the effects of vertical error on the performance of SDMs. All
simulations were undertaken in R v.3.2.2, using the recently developed
package virtualspecies (Leroy et al. 2016), recommended by Moudrý
(2015) to simulate virtual species.
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6.2.5 Model fitting and evaluation

It is customary to fit Gaussian response with a polynomial model. We
used generalized linear models (GLMs) with binomial error distribution
and logit link function (McCullagh and Nelder 1989, Oksanen and
Minchin 2002). The modelling was performed as univariate logistic
regression. The linear and quadratic term of slope and TWI were
included because of the known Gaussian shape of the response function.
We modelled species distribution at 30 m, 90m and 900m to evaluate
the effect of spatial resolution.

To evaluate the models, we split sampled presences-absences into test
(50%) and training (50%) datasets. We run the entire process from
species generation to model evaluation 100 times. Each repetition pro-
vided a different presence-absence distribution (Leroy et al. 2016). We
evaluated model calibration by plotting the estimated environmental
relationships and their discrimination capacity, assessed by means of
computing the area under the curve (AUC) of the receiver operating
characteristic plot (Fielding and Bell 1997). In addition, we calculated
RMSE from differences between true (i.e. virtual) and predicted prob-
ability of occurrence. All spatial analyses were performed in ArcGIS
10.4.1. and Saga 2.1.4 (Conrad et al. 2015).

6.3 Results and discussion

6.3.1 DEMs and derived attributes accuracy

Among the DEMs studied, only slight differences of the mean, minimum
and maximum values of elevation, slope and TWI were detected. The
values of mean elevation for both error corrected DTMs were closer to
the LiDAR DTM than those of the original SRTM DEM (Table 6.1).
The overall RMSE for the SRTM DEM was 10.52 with a mean bias of
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7.62 m. The vertical error of SRTM DEM significantly differed between
forested and non-forested areas as expected due to limits associated
with the methods used for DEM measurements and shown by numerous
studies (e.g. Nelson et al. 2009). In the forested areas, the RMSE was
13.25 and elevations were, on average, 11.60m higher than the LiDAR
DTM elevations. In the non-forested areas, the RMSE was 5.74 and
the difference was 2.85m (Table 6.2).

Table 6.1 Descriptive statistics of elevation, slope, and topographic wet-
ness index (TWI) estimated from different DEMs at 90m spatial resolution.
Elevation is present as height above mean sea level.

Elevation Slope TWI
Mean ± s.d. [m] Range [m] Mean ± s.d. [°] Range [°] Mean ± s.d. Range

LiDAR 853 ± 235 396–1553 13.9 ± 6.5 0.1–48.4 7.7 ± 1.4 4.8–17.4
SRTM 860 ± 233 402–1549 3.1 ± 6.2 0.1–44.2 7.8 ± 1.3 5.4–15.9
SGS-UB 850 ± 233 397–1548 13.1 ± 6.2 0.1–44.7 7.8 ± 1.3 4.8–16.0
MERIT 856 ± 233 400–1552 13.3 ± 6.3 0.1–45.7 7.8 ± 1.3 4.8–16.3

The overall RMSE for the SGS-US DTM was 6.80 with a mean bias
of -2.30 m. In the forested areas, the RMSE was 6.94 and elevations,
on average, -1.08m lower than the LiDAR DEM elevations. This
improvement was consistent with RMSE of 6m reported by O’Loughlin
et al. (2016). The vertical error has significantly improved in forested
areas, the terrain was however on average slightly underestimated as
shown by our results (Table 6.2, Figure 6.1). This is likely due to
overestimation of tree heights. O’Loughlin et al. (2016) admitted that
artefacts may exist at the boundaries between forested and non-forested
areas with the elevation in forested areas possibly being slightly lower
than that of the adjacent non-forested area. This can be especially
true in higher altitudes of our study area where tree heights can be
significantly lower than those expected by the models. In addition,
the results of SGS-UB DTM got worse in nonforested areas (Table 6.2,
Figure 6.1) with the RMSE of 6.62 (compare to RMSE of 5.74m for
the SRTM DEM) and the mean bias of -3.75 m.

The overall RMSE for the MERIT DTM was 6.25 with mean bias
of 3.09 m. Compared to SRTM, the vertical error has significantly
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improved in both forested and non-forested areas (Table 6.2, Figure
6.1). In the forested areas, the RMSE was 7.30 and elevations, on
average, 4.58m higher than the LiDAR DTM elevations. In the non-
forested areas, the RMSE was 4.70 and the difference 1.30 m. Our
results suggest a better accuracy of MERIT DTM over SGS-UB DTM.
This is likely due to multiple error components considered (i.e. speckle
noise, stripe noise, absolute bias, and tree height bias) compared to
study by O’Loughlin et al. (2016)who only removed tree height bias
to construct their SGS-UB DTM. Furthermore, the accuracy is highly
dependent on the estimation of tree heights and size of individual
forested areas. SGS-UB DTM accuracy decline in non-forested areas
is likely due to overestimation of the size of individual forested areas
caused by limitations of adopted 250m MODIS Vegetation Continuous
Field product DiMiceli et al. (2017), compared to Yamazaki et al. (2017)
who adopted 30m resolution data (Hansen et al. 2013).

Table 6.2 RMSE and ME of elevation of SRTM, SGS-UB and MERIT in
forested and nonforested areas.

RMSE ME
Overall Forest Non-forest Overall Forest Non-forest

SRTM 10.52 13.25 5.74 7.62 11.60 2.85
SGS-UB 6.80 6.94 6.62 -2.30 -1.08 -3.75
MERIT 6.25 7.30 4.70 3.09 4.58 1.30

6.3.2 SDM accuracy

Our results show considerable differences in RMSE and AUC values
between models fitted with DEM affected by vertical bias (SRTM DEM)
and “error-free” DTMs. Models fitted with “error-free” DTMs (SGS-UB
DTM and MERIT DTM) performed better than SRTM in most cases
(and never worse). However, the improvement in AUC values was rather
small and did not achieve the quality of models fitted with LiDAR
DTM (which was used for virtual species generation).For instance, the
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AUC of the model fitted with topographic wetness index derived from
MERIT DTM was 0.83 as opposed to 0.79 with SRTM DEM and 0.88
with the LiDAR-derived reference DTM (Table 6.3).

Figure 6.1 Scatter plots showing relationship between elevation at 90m reso-
lution derived from SRTM DEM (blue), MERIT DTM (green), and SGS-UB
DTM (red), respectively, and elevation derived from LiDAR DTM. Top row
of figures show forested while bottom figures non-forested areas. The solid line
indicates y=x. Average altitude of the study area is approximately 850m and
only cells with elevation from 800m to 900m were selected as a representative
example. Note that accuracy is affected by the accuracy of land use data used
(CORINE land cover).

We also tested models with logistic response function, obtaining the
same results (therefore we only present results for Gaussian response).
However, the effect of vertical bias on performance of individual models
was more evident for models with Gaussian response function than for
simple logistic response. This suggests that the effect of the vegetation
offset can be much more significant for more complex response func-
tions (skewed, unimodal responses), often occurring in real ecological
and biogeographical contexts (Oksanen and Minchin 2002, Dvorský
et al. 2017). It is also likely that using additional explanatory variables
would increase differences in models performance. When the multiple
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topographic indices and the elevation surface are combined for species
distribution modelling applications, the errors add up and can signif-
icantly impact the accuracy of the modelling (Van Niel and Austin
2007).

Table 6.3 Median AUC (and 2.5th–97.5th percentiles) and mean RMSE
of probability of occurrence of the evaluated models for four datasets, two
variables and three resolutions obtained from 100 simulated data sets with
400 training sites and 400 validation sites. For 900m resolution the sampling
was 10 times lower.

DEM 30m resolution 90m resolution 900m resolution
Slope TWI Slope TWI Slope TWI

AUC
LiDAR DTM 0.94 (0.90–0.96) 0.90 (0.87–0.92) 0.93 (0.81–0.99) 0.88 (0.83–0.91) 0.92 (0.83–0.98) 0.81 (0.63–0.91)
SRTM DEM 0.77 (0.72–0.82) 0.77 (0.72–0.81) 0.85 (0.70–0.95) 0.79 (0.73–0.83) 0.90 (0.81–0.98) 0.78 (0.61–0.91)
SGS-UB DTM not available not available 0.86 (0.71–0.96) 0.81 (0.75–0.85) 0.90 (0.82–0.98) 0.78 (0.61–0.91)
MERIT DTM not available not available 0.87 (0.72–0.96) 0.83 (0.77–0.88) 0.92 (0.82–0.98) 0.80 (0.62–0.91)

RMSE
LiDAR DTM 0.19 0.10 0.17 0.14 0.14 0.27
SRTM DEM 0.35 0.25 0.29 0.23 0.18 0.28
SGS-UB DTM not available not available 0.28 0.22 0.16 0.28
MERIT DTM not available not available 0.27 0.20 0.15 0.28

The ability to model species-environment relationships and to discrim-
inate between presences and absences was also strongly affected by
spatial resolution. In ecological studies, species distribution data are
often available at a coarser resolution than data on elevation and to-
pographic indices. The latter are thus often aggregated/resampled to
match the coarser spatial resolution of the species data (e.g. Alba-
Sánchez et al. 2010, Zhang et al. 2016, Kosicki 2017). It is well known
that when DEMs contain vertical errors, the accuracy of derived topo-
graphic indices increases with lower resolution (e.g. Zhou and Liu 2004).
In accordance with this, shifts in the modelled response functions and
differences in AUC values (Table 6.3) were almost negligible at 900m
resolution. However, models based on SRTM DEM at 30m resolution
significantly underestimated the highest probability of occurrence and
overestimated low probability of occurrence (Figure 6.2). This caused
the highest drop in AUC values, decreasing from 0.94 and 0.90 for slope
and TWI, respectively (reference LiDAR DTM) to 0.77 (SRTM DEM).
As expected, the differences in TWI values are the highest at forest
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boundaries where the SRTM DEM records false increases in elevation
and the areas of highest TWI values are therefore shifted compared
to values derived from LiDAR DTM (Figure 6.3). It is therefore likely
that such vertical error in DEMs may also be the reason why some
multi-scale studies reported better models at intermediate scales than
at the highest resolution available. For example, Zhang et al. (2016) as-
sessed performance of topographic indices derived from ASTER GDEM
(which suffer from vegetation offset error) at five resolutions from 30m
to 900m and reported the best models for Abies faxoniana and Quercus
aquifolioides to be at 120m and 240 m. In contrast, Mohamedou et al.
(2017) tested the effect of LiDAR derived (i.e., free of vertical bias)
DTM resolution on TWI ability to predict tree growth. They adopted
resolutions ranging from 1m to 30m and found the best models to
be derived at 1m and 15m resolutions, respectively. Although differ-
ent species may respond to environment at different resolutions (e.g.
Lecours et al. 2015), it supports our hypothesis that vertical bias in
DEMs can prevent from getting the best models in higher resolutions.

Figure 6.2 Environmental relationships between slope (a) and topographic
wetness index (b) estimated with generalized linear models for LiDAR DTM
(blue) and SRTM DEM (red) at 30m resolution. The shaded areas represent
the regions delimited by the 5th–95th percentiles of the estimated probability
of occurrence obtained from 100 simulations. Black lines show the “true”
relationships.
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According to Zhang et al. (2016), it is possible to use solely DEMs
to predict vegetation distribution. In combination with the recent
availability of global DEMs at higher spatial resolution (e.g. 12m
TANDEMX DEM), this can provide better grounds for conservation
and management actions. However, vertical accuracy bias can become
even more problematic and using models burdened with it (albeit having
good spatial resolution) may provide misleading results and must be
carefully interpreted to avoid the risk of making incorrect decisions.

Figure 6.3 The difference between TWI calculated from SRTM DEM and
LiDAR DTM at 30m resolution. On the left detail, the major effect of the
forest boundary along the stream on TWI error is obvious. On the right, the
differences over shaded relief are depicted. The most striking errors of TWI
are evident along rivers in valleys. Positive values show areas of (incorrectly)
higher TWI index (orange and red colours) while negative values (green)
show areas of lower TWI index calculated from SRTM DEM compared to
LiDAR DTM. Streams are shown in blue, transparent pixels of the model
denote good fit (-0.9–+1).

SDMs are increasingly generated using high resolution data (Moudrý
and Šímová 2012, Lecours et al. 2015), particularly DEMs (Pradervand
et al. 2014, Matawa et al. 2016, Nezer et al. 2017, Bazzichetto et al.
2018a). It is therefore necessary to take into consideration the vertical
accuracy of DEMs before including them and their derived topographic
indices in the modelling process. Failure to do so can lead to misinter-
pretation of species-environment relationships and misidentification of
areas important for species conservation. Local high-accuracy DTMs
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should be used when available. For example, such models are avail-
able through governmental agencies in Europe (e.g. Fogl and Moudrý
2016). Where not available, the recently released global DTMs with
reduced vertical error represent an adequate substitute. While our
study area and the environmental conditions studied were limited in
scope and extent, our results are in line with those of other studies that
have achieved satisfactory global accuracy assessments. For instance,
O’Loughlin et al. (2016) showed that improvement in DTM accuracy
was consistent over all types of forest vegetation (evergreen forest, decid-
uous forest, etc.). In addition, Yamazaki et al. (2017) showed that the
most significant improvement was in flat forested areas and that most
residual errors were found in mountainous areas due to large subpixel
topographic variability. While studies looking at the accuracy of newly
created global DTMs will be required to validate our conclusions in
other study areas, our results show that correcting for vertical bias in
mountainous area significantly improved the DTMs’ vertical accuracy
and consequently the performance of SDMs. Based on those results,
we recommend the adoption of the MERIT DTM in any area where
forests are present.

6.4 Conclusions

We have shown that recently available vertical error-corrected MERIT
DTM at 90m has a better accuracy in our study area than SRTM DEM.
Furthermore, models developed with MERIT DTM performed slightly
better than uncorrected SRTM DEM, thus being a more reliable alter-
native to DEMs affected by a vertical error. However, the improvement
is lower than expected particularly due to limitations associated with
estimates of tree heights and size of individual forested areas. Elimina-
tion or at least reduction of error components (e.g. vegetation offset)
for DEMs available at better resolutions (e.g. TANDEMX) should be a
priority for further enhancement of ecological modelling. Finally, users
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must be aware that substantial vertical bias can still be present even
in corrected DEMs, potentially propagating through the analysis and
affecting the outcomes of ecological modelling.
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Abstract

Terrain attributes (e.g., slope, rugosity) derived in Geographic Informa-
tion Systems (GIS) from digital terrain models (DTMs) are widely used
in both terrestrial and marine ecological studies due to their potential to
act as surrogates of species distribution. However, the spatial resolution
of DTMs is often altered to match the scale at which species observa-
tions were collected. Here, we highlight the significance of adequately
reporting the methods used to derive terrain attributes from DTMs
and the consequences of their incorrect reporting in ecological studies.
To ensure full repeatability of studies, they should report (i) the source
and the resolution of the original DTM; (ii) the algorithm used to
calculate terrain attributes; (iii) the method used for rescaling (e.g.,
aggregating or resampling, using the mean or maximum values); and
(iv) the order in which these operations were performed. We contrast
the effects of two common scale alteration approaches for the derivation
of terrain attributes from DTMs. These two scale alteration methods
differ in the step at which the change is performed: (i) the resolution
alteration is performed after computing terrain attributes from the
original DTM at the native resolution, or (ii) the resolution alteration
is performed on the native DTM before computing terrain attributes.
While these approaches conceptually do the same thing (i.e., change the
resolution of the terrain attributes), we demonstrate that they produce
two distinct sets of variables that are not interchangeable and describe
different properties of the terrain. In a species distribution modelling
(SDM) context, the first approach calculates terrain attribute values
within the cell where a species is found, while the second approach
calculates terrain attribute values with respect to neighbouring cells.
A mutual substitution of the two approaches results in a decrease of
models’ discrimination ability and in misleading spatial predictions
of species probability of occurrence. Regardless of the DTM-derived
attribute, we argue that the choice of the approach should be care-
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fully guided by both the ecological scale relevant to the question being
asked and the performance of pre-analyses. We emphasize that selected
methods be clearly described to encourage reproducibility and proper
interpretation of results, thus enabling a better understanding of the
role of scale in ecology.

Keywords: DTM, Geomorphometry, Remote sensing, Scale, Species
distribution model, Terrain attributes
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7.1 Introduction

In the last few decades, developments in ecology and biogeography have
been fuelled by progress in tools, modelling techniques, and software
such as Geographic Information Systems (GIS) (Rocchini et al. 2017),
along with the growing availability of high-quality data from a variety of
sources (Wiersma et al. 2011). Spatial data, particularly those acquired
with remote sensing methods, have become a critical part of species-
environment relationships studies across the terrestrial (e.g., Elith and
Leathwick 2009), marine (e.g., Robinson et al. 2011) and aquatic (e.g.,
Domisch et al. 2015) realms. However, the improved accessibility of
readily available tools and data may present pitfalls for non-critical
users with a limited understanding of spatial data characteristics and
of how they are collected and processed (Jarnevich et al. 2015, Lecours
2017, Moudrý et al. 2018).

One of the elements that often suffer a lack of explicit consideration is
spatial scale (Wheatley and Johnson 2009, Lecours et al. 2015, Araújo
et al. 2019). Spatial scale is one of the most important characteristics of
spatial data (Zhang et al. 2014) and one that has been defined numerous
times, with small variations depending on the context. Dungan et al.
(2002) and more recently Lecours et al. (2015) discussed three types of
spatial scale relevant for ecological studies that use spatial data: (1) the
ecological scale, which is the scale at which a pattern or process occurs,
(2) the observational scale, which refers to the characteristics of the
data used to represent or describe natural phenomena and is usually
defined by the spatial resolution and extent of the data, and (3) the
analytical scale that refers to the methods used to analyse the data (e.g.,
the neighbourhood size used in focal statistics or geomorphometry).

It is well known in ecology that the lack of explicit consideration
of scale may affect the outcomes of ecological analyses (e.g., species-
environment relationships). Thirty years ago, Wiens (1989) argued
that most ecological studies at the time were not considering spatial
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scale and its effect on analyses. Most studies were performed as if
patterns and processes were scale-independent, and studies performed
at different scales were often compared while they should not have
been. Since then, the role and importance of spatial scale have been
extensively discussed in both the geographic and ecological literature
(e.g., Schneider 2001, Dungan et al. 2002, Goodchild 2011, Moudrý
and Šímová 2012, Lecours et al. 2015), and it is now widely recognized
that ecological patterns and processes are scale-dependent and that no
single scale is appropriate for the study of all natural phenomena (e.g.,
Levin 1992). Nevertheless, Wheatley and Johnson (2009) showed that
70% of the studies considered in their analysis arbitrarily selected the
observational scales without consideration of whether they matched
the ecological scale. Indeed, the issues highlighted by Wiens (1989)
about overlooking spatial scale and its effect on analyses persist to some
extent.

In recent decades, species distribution modelling (SDM) has been widely
applied to model species-environment relationships, often involving the
use of remotely sensed data as predictor variables. One of the main
challenges of using remotely sensed data in SDM is that the original
spatial resolution of different datasets included in the analysis may
vary significantly (Cord et al. 2013). In terrestrial applications, the
use of high-resolution remotely sensed environmental data is often
limited by the resolution of species distribution data, which are usually
available at much coarser scales (Jetz et al. 2012, Šímová et al. 2019).
An opposite situation may occur in marine applications (e.g., in deep
water environments), where the scale at which the species are observed
can be much finer than that of available environmental data. In some
cases, the highest available resolution of environmental data may not be
required for the SDM, if the biological or ecological processes, or species
distribution or abundance in SDMs, occur at a coarser scale or over a
large area with limited observations. Therefore, finding a resolution
representing a compromise between the resolution of available data

121



and a resolution most suited to the application is often necessary. A
common practice to ensure the valid integration of data from multiple
scales, for example to avoid an ecological fallacy or the modifiable areal
unit problem (see Lecours et al. 2015), is to modify the resolution of
some of the data so that it matches the resolution at which the study
is meant to be performed (e.g., by averaging environmental variables
within field plots; Gottschalk et al. 2011, Moudrý et al. 2017). The
effects of altering data resolution (i.e., matching the observational
scales with ecological scales) (e.g., Lechner et al. 2012b, Svensson
et al. 2013, Mateo Sánchez et al. 2014, Lowen et al. 2016, Mertes and
Jetz 2018) and of changing analytical scale (e.g., Dolan and Lucieer
2014, Wilson et al. 2007) on the outcomes of ecological analyses (e.g.,
SDM) have recently received more attention because of a growing
demand on users to provide more detailed methodologies (e.g., exact
computer code for GIS analyses and data processing) to allow complete
reproducibility of their results (e.g., Michener and Jones 2012, Rocchini
and Neteler 2012, Meynard et al. 2019). However, details on the use
of terrain attributes derived from digital terrain models (DTMs) using
neighbourhood operations (e.g., slope, rugosity, orientation, curvature)
in SDM has received less attention. Deriving terrain attributes has
become a routine operation, despite several potential pitfalls in the
data processing workflow (Lecours et al. 2017c).

More specifically, the approach used and the step at which scale is
altered are particularly important for DTM-derived attributes, as they
will cause the analytical scale of a study to vary, thus providing different
representations of the reality and potentially producing different out-
comes (Figure 7.1). This paper aims (i) to illustrate which information
related to scale alteration approach should be provided in ecological
studies in order to facilitate their repeatability, and (ii) to demonstrate
how addressing the effects of the process of altering data resolution in
ecology can impact derived terrain attributes and subsequently SDMs.
Accordingly, this paper also aims to provide some guidelines for a crit-
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ical assessment of spatial data to be used in ecological studies. Our
general aim is to increase awareness about this topic and promote better
practice. Our examples and analyses will use slope as DTM-derived
terrain attribute, as slope is one the most common variables calculated
from DTM (Bradie and Leung 2017, Lucieer et al. 2018).

Figure 7.1 Multiple scale comparison of the two approaches. (a) Hill-shaded,
LiDAR-based DTM at 1m resolution. (b) Slope derived from the 1m resolution
LiDAR-based DTM. (c) Slope values resulting from the aggregation (mean
value) at 100m resolution of the slope derived from the original DTM at
1m resolution. (d) DTM resulting from aggregation (mean value) at 100m
resolution of the original DTM at 1m resolution (e) Slope values derived
from the aggregation of the original DTM at 100m resolution. Note that both
images (c, e) are at 100m resolution, but differ in slope values (f) because
they were produced by different approaches (i.e., the timing of scale alteration
within the data processing workflow was changed). Note the large differences
along the valleys. Streams are shown in blue. Slope was computed using a
3×3 cell neighbourhood with Horn’s (1981) algorithm.
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7.2 DTM-derived variables in SDM

DTMs and their derived terrain attributes constitute a backbone of SDM
(Franklin 1995, Mod et al. 2016) and are one of the most common types
of datasets that undergo scale alteration in preparation for inclusion
in SDM. Alterations induced to DTMs are known to affect terrain
attributes (e.g., slope, orientation, rugosity) that describe and quantify
terrain morphology (Pike et al. 2009, Lecours et al. 2017a) (Figure 7.1).
DTMs and their derived terrain attributes are widely used in both
terrestrial and marine ecological studies (Wilson et al. 2007, Moudrý
and Šímová 2013, Pradervand et al. 2014, Bouchet et al. 2015, Lecours
et al. 2016, Bazzichetto et al. 2018a,b, Walbridge et al. 2018) due to
their potential to act as surrogates for species distribution. For instance,
aspect (i.e., the orientation of the slope) can inform on exposure to
sunlight or dominant currents that can respectively be important for
vegetation (e.g., Li et al. 2010) and marine suspensionfeeders (e.g., Tong
et al. 2016). Terrain attributes are especially relevant for marine studies
where bathymetry is often one of the few continuous environmental
variables available, particularly in deeper waters.

Terrain attributes are derived from DTMs using neighbourhood oper-
ations; the size of the neighbourhood that is selected for a particular
analysis thus defines the analytical scale of the study. This makes
the integration of DTMs and terrain attributes in ecology particularly
relevant to the understanding of scale issues, including mismatches be-
tween types of scale, as it is one of the few applications that involve the
simultaneous consideration of ecological, observational and analytical
scales. Terrain attributes are highly scale-dependent (Tate and Wood
2001), and changes in native data resolution (observational scale) (Deng
et al. 2007, Dolan and Lucieer 2014, Grohmann 2015) and extent of
the analysis window (analytical scale) (Wilson et al. 2007, Dolan and
Lucieer 2014) will generally produce different resulting terrain attribute
surfaces. This variability, combined with the scale dependency of eco-
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logical patterns and processes, makes it challenging to adequately link
terrain attributes with observed ecological patterns, potentially leading
to misidentified scale-dependent patterns (Lechner et al. 2012a).

7.2.1 Transparency in reporting information used
to derive terrain attributes

In order to facilitate the repeatability of a study, a complete description
of the DTM processing workflow for the derivation of terrain attributes
should be provided. Studies should report (i) source and resolution of
the original DTM; (ii) algorithm used to calculate the terrain attributes;
(iii) method used for rescaling (e.g., aggregating or resampling, using
the mean or maximum values); and (iv) order in which operations have
been performed.

Of those five elements, the source and original resolution of DTMs
are the most commonly reported, although there are still some stud-
ies that omit to explicitly share this information. For example, Hsu
et al. (2012) highlighted that terrain-related factors must be incor-
porated when projecting species response to climate change, but did
not provide the source and resolution of the original DTM they used
to calculate slope and other terrain variables. This has implications
for their argumentation since the prediction of species responses to
climate change is directly dependent on the resolution and scale at
which terrain attributes are calculated. Similarly, many studies do not
provide information on the operations used for rescaling (i.e., statistical
operation used to calculate new values such as average or maximum)
their data or the interpolation method (e.g., nearest neighbour, bilinear,
cubic) used to do so. Most often, only a statement about the decreasing
or resampling of the resolution is provided (e.g., Brito et al. 2009, 2011,
Rodríguez-Soto et al. 2011, Martínez-Gutiérrez et al. 2018). This often
goes hand in hand with missing information about the order in which
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the operations were performed (e.g., Convertino et al. 2012, Mateo-
Tomás and Olea 2015). For example, Martínez-Gutiérrez et al. (2018)
stated that, among other terrain attributes, slope was calculated from
shuttle radar topography mission (SRTM) DTM at a spatial resolution
of 30´´. However, the original resolution of SRTM is either 1´´ or
3´´, depending on the version (Farr et al. 2007), highlighting that
information on the resampling method and the order of operations was
omited. A reader not familiar with the SRTM DTM would likely not be
aware that resampling had even occurred. In other cases, the methods
are not transparent and all the necessary information for judicious
use of terrain attributes in models are missing (i.e., i, ii, iii, iv) (e.g.,
Brambilla and Ficetola 2012, Abolmaali et al. 2018), thus preventing
reproducibility.

Nevertheless, there has been a promising increase in studies who do
report all the necessary information. Those studies should be used as
a starting point for developing good practices. For example, Guisan
and Hofer (2003) explicitly stated that they used the Swiss digital
elevation model (DEM) (i.e., the source (i)) at 25m resolution (i.e., the
resolution (i)), and provided a reference for accessing this DEM (OFT
2002). They also stated that they used the slope function implemented
in ArcGIS (ESRI, CA, USA) (i.e., the algorithm (ii)), which is known to
be Horn’s (1981) algorithm. A possibly even better way of reporting the
methods would have been to refer directly to the particular algorithm
(Horn’s) and neighbourhood shape and size used to calculate the terrain
attributes. Finally, the authors also explicitly mentioned that slope
was generated from the original DEM and then aggregated using the
mean within the scale of the study (1 km resolution).
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7.2.2 Two common approaches to DTM scale al-
teration and how they produce different out-
comes

The derivation of terrain attributes from DTMs is a particular case
in the broader context of altering data resolution as many different
techniques can be used (see Dolan 2012, Dolan and Lucieer 2014). Here
we present two main approaches that differ by the step at which the
alteration is performed (e.g., Grohmann 2015) (Figure 7.1). In the first
case (Figure 7.1c), terrain attributes are derived from the DTM at its
native resolution, and the resolution of the resulting terrain attributes
is then altered (e.g., Guisan and Hofer 2003). In the second case
(Figure 7.1e), the DTM native resolution is altered before deriving the
terrain attributes (e.g., Irl et al. 2015). Both approaches are commonly
used in the literature, but the rationale behind the chosen approach is
often left undocumented, casting doubt on whether it is haphazardly
or intentionally selected, and on the quality of the analytical outcomes.

A typical example that involves altering data resolution is the use of
terrain attributes to explain or model species distribution available
as gridded data in distributional atlases (e.g., Krojerova-Prokesova
et al. 2008, Šímová et al. 2015). Distributional atlases aim to provide
information on distribution and abundance of species over a geographical
area that may range from tens of square kilometers up to a whole
continent. A common approach for sampling species occurrences is to
cover the study area with a grid, the resolution of which typically ranges
from hundreds of meters to tens of kilometers (e.g., Gibbons et al. 2007).
Using distributional atlases as an example, Figure 7.2 shows how the
two approaches to scale alterations capture different representations of
reality (Figure 7.2c, g). The first approach (Figure 7.2a–d) calculates
terrain attribute values within the hypothetical atlas grid cell, while
the second one (Figure 7.2e–h) calculates terrain attribute values based
on neighbouring atlas grid cells. The calculation of terrain attributes is
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a focal (i.e., neighbourhood) operation and the output value for a given
cell is a function of the cell values within a specified neighbourhood
around that given cell. Note that the neighbouring cells used in terrain
attribute calculations might differ depending on the adopted algorithm
and its specifications. For example, to derive slope, Horn’s (1981)
algorithm uses eight neighbouring cells (queen’s case) while Zevenbergen
and Thorne’s (1987) algorithm uses only four neighbouring cells (rook’s
case) to calculate each slope value. Other methods (e.g., Wood 1996)
also include the center pixel in the calculations.

Figure 7.2 The upper row shows a (a) finer-resolution DTM (b) that is
directly used to calculate a terrain attribute at the same resolution of the
DTM. (c) The attributes are then aggregated into hypothetical atlas grid
cells (d) and used to calculate mean terrain attribute values in the atlas
grid cells. The lower row shows (e) the finer resolution DTM overlaid by a
coarser-resolution species occurrence data or a resolution at which the study
is meant to be performed. (f) The DTM is then aggregated or resampled
to that coarser resolution before (g) deriving a terrain attribute resulting in
terrain attribute values at the resolution of the (h) hypothetical atlas grid
cells. The grey areas in (c) and (g) represent the cells that are used to
calculate the resulting slope (i.e., different components of the reality).

Figure 7.2 demonstrates these concepts in a general context but can
be translated into an ecological example to show the importance of
differentiating between scale alteration methods. Mogotes are isolated
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steep-sided hills surrounded by flat plains; the slopes alongside mogotes
are thus very steep. If we were to survey a mogote and produce a DTM
representation of it, the application of the first approach (i.e., derive
terrain attributes first, then aggregate) would yield very high slope
values along the sides of the mogote. On the contrary, the application of
the second approach (i.e., aggregate first, then derive terrain attributes)
could yield lower slope values by computing a DTM with a cell size that
incorporates the elevation of the mogote with that of the surrounding
terrain – effectively “smoothing” out the slopes when calculated at
a coarser resolution (Figure 7.3). If an ecologist was to map habitat
suitability for a bird species that is known to nest on the very steep sides
of mogotes, the application of the first approach would appropriately
capture the high slopes and identify them as suitable habitat, while
the second approach could fail to do so. In general, the more complex
the topography (e.g., mountainous regions with steep slopes and deep
valleys), the higher the differences between the two approaches will be.

Although it is generally possible to always use both approaches, we
recommend basing the methodological decision on existing ecological
knowledge and research questions. We suggest that the first approach
(i.e., derive terrain attributes first, then aggregate) is appropriate when
characterising environment within the target cell size (e.g., atlas grid
square) where the species was observed (e.g., bird nest is located on
a steep rock wall). The first approach can depict the original features
of the terrain more realistically than the second approach (Grohmann
2015) and should be considered any time when features of scale finer
than the scale of the study are expected to affect modelled species.
On the other hand, we recommend using the second approach (i.e.,
aggregate first, then derive terrain attributes) when the goal is to relate
observation of species with topography at a scale broader than the
target cell size (e.g., bird’s home range can be related to variables
around the mogote).
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Figure 7.3 Different outcomes of the two scale alteration approaches can be
illustrated on an example of slope calculation for an isolated steep-sided hill
surrounded by flat plains. The first approach that derive terrain attributes
first and then aggregate to coarser resolution yields relatively high slope
values along the sides of the hill (left panel). The second approach that first
aggregate DTM to coarser resolution and then derive terrain attributes yields
lower slope values, especially with coarsening the resolution (right panel).
Note how the difference between the two approaches progresses with changes
in resolution. The resolution of the original DTM is 2 m, and its mean values
were used to aggregate the slope and the original DTM, respectively. Slope
was computed using a 3×3 cell neighbourhood with Horn’s (1981) algorithm.
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7.3 Virtual species experiment

7.3.1 Study area

Here we provide a virtual species example to demonstrate the effects
of the substitution of two scale alteration approaches in a controlled
environment on SDMs (Moudrý 2015, Gábor et al. 2019, Meynard
et al. 2019). Our study area is a real landscape located in north-west
Bohemia, Czech Republic (50°32´ N, 13°50´ E) and occupies an area of
35 km2 (Figure 7.4). The DTM for the study area was derived at 1m
resolution from airborne LiDAR data collected in May 2017 with an
average density of 8 points per square meter (see Moudrý et al. 2019a
for details about the flight parameters, point cloud processing, and
DTM generation).

Figure 7.4 Study area. (a) LIDAR-derived DTM; (b) hillshaded terrain; (c)
slope calculated at 1m resolution and subsequently aggregated using mean
value to 30m resolution; (d) slope calculated from aggregated DTM (mean
value) at 30m resolution.

7.3.2 Calculating slope

We used both approaches explained above to calculate slope from the
DTM. The first approach (hereafter, Approach 1) calculated the slope
at 1m resolution and subsequently aggregated to 30m resolution using
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mean value. The other approach (hereafter, Approach 2) consisted of
aggregating the DTM to 30m resolution using mean value and subse-
quently derive slope based on the aggregated DTM. In both instances,
we used Horn’s (1981) algorithm with the 3×3 cell neighbourhood to
calculate the slope.

7.3.3 Virtual species generation

We generated a virtual species and calculated its distribution based on
slopes acquired using both approaches using the following procedure.
We first simulated a relationship (response function) between a virtual
species and slope as a Gaussian response function (mean=8° and stan-
dard deviation=4°), which provided a map of environmental suitability.
We then adopted a probabilistic simulation approach (logistic func-
tion with α= -0.10 and β=0.65) to convert environmental suitability
into probabilities of occurrence that were subsequently used to sample
presences and absences in each cell (i.e., we made a random draw of
presence or absence weighted by the probability of occurrence). Finally,
we simulated the sampling of presences and absences of the virtual
species at 200 localities (i.e., cells). All simulations were conducted in
R v.3.5.1, using the virtualspecies package (Leroy et al. 2016).

7.3.4 Model fitting

To illustrate the implications of confusing the two scaling approaches,
we ran generalized linear models (GLMs) with slope generated using
each of the approaches (resulting in creation of four different models, see
Figure 7.5). It is customary to fit Gaussian responses with a polynomial
model, so we used GLMs with binomial error distribution and logit
link function (McCullagh and Nelder 1989). Both linear and quadratic
terms of slope were included because of the known Gaussian shape of
the response function.
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Figure 7.5 The experimental workflow: Virtual species distribution was
acquired using slopes calculated from both approaches. Each distribution
was subsequently used to create two models using slopes generated by each
approach, and the models performances were tested.

7.3.5 Model evaluation

We evaluated each model and its performance For evaluation, we split
both datasets of presences-absences acquired in the previous step into
test (50%) and training (50%) datasets We evaluated the model cali-
bration by plotting the estimated environmental relationships and their
discrimination capacity, assessed by computing the area under the curve
(AUC) of the receiver operating characteristic plot (Fielding and Bell
1997). In addition, we calculated Spearman correlation coefficients
between the virtual species (i.e., true) and predicted probabilities of
occurrence. We ran the entire process from species generation to model
evaluation 50 times. Each repetition provided a different presence- ab-
sence distribution (Leroy et al. 2016). The entire workflow is illustrated
in Figure 7.5.
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7.4 Results and discussion

Results of this virtual experiment show considerable differences between
fitted GLMs. GLMs based on the same slope calculation approach
that was used for creating the virtual species distribution fit the “true”
response function perfectly (Figure 7.6). However, when the GLM is
based on a slope calculated using the other approach, a significant
underestimation of the highest probability of occurrence and overesti-
mation of the lowest probability of occurrence was observed (Figure
7.6), which resulted in a drop in median AUC values (from 0.94 to
0.84 in both cases) and Spearman correlation coefficients (from 0.99 to
0.74). These results show that the approaches are not interchangeable
as their mutual substitution can result in a decrease of models’ discrim-
ination ability and in misleading spatial predictions of probabilities of
occurrence.

7.5 Final remarks

Ecologists and biogeographers are facing an increasingly overwhelming
amount and diversity of data and tools, often with little guidance
to inform methodological and technical decisions (e.g., Lecours et al.
2017c, Michener and Jones 2012). In this paper, we illustrate that
critical information related to scale alteration approach of DTM terrain
attributes (e.g., slope) is often undocumented in ecological studies, and
we emphasize the effects that two standard scale alteration approaches
can have on an analytical output. While these approaches conceptually
do the same thing (change data resolution to the same end resolution),
they produce two distinct sets of variables and are therefore not inter-
changeable. In such a context, the data resulting from the alteration
used for modelling must capture the environmental variability that
influences species distribution (Goodchild 2011), thus matching the
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observational and analytical scales to the ecological scale (Lecours et al.
2015). With questions of scale being key in ecology and biogeography
(Schneider 2001), more consideration must be given to the impact of
scale selection on analyses. Sufficient pre-analyses should be performed
before making decisions about altering data resolution and selecting
scales.

Figure 7.6 Estimation of the probability of virtual species occurrence based on
generalized linear models. (a) Workflow using Approach 1, terrain attributes
are derived from the DTM at its native resolution, and the resolution of the
resulting terrain attributes is then altered (b) Workflow using Approach 2, the
DTM native resolution is altered before deriving the terrain attributes (see
Fig. 5). Black dashed line shows the “true” probability of occurrence of the
virtual species. Red colour represents probabilities resulting from GLM based
on the same slope calculation approach that was used for creating the virtual
species while blue shows the results of GLM based on a slope calculated using
the other approach. The shaded areas represent the regions delimited by the
5th–95th percentiles of the estimated probability of occurrence obtained from
50 simulations.)

In a geomorphological context, Grohmann (2015) compared the two ap-
proaches used in our example using 12 levels of aggregation (from 300m
to 1850m resolution), and concluded that the two terrain attributes
studied, slope and aspect, should be derived from the highest resolu-
tion available and then aggregated to a coarser resolution if needed,
rather than aggregating the DTM before deriving terrain attributes.
However, this may not always be the most appropriate course of action
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(see Dolan and Lucieer 2014). We suggest starting from the best data
resolution available in order to preserve more topographic details and
test the performance of the DTM and its derived terrain attributes
over a wide set of scales and using different approaches in pre-analyses.
Vaze et al. (2010) showed that a higher-resolution DTM that is coars-
ened still provides more topographic details than a coarserresolution
DTM. Consequently, more representative terrain attributes can also
be expected from fine-scale data (e.g., LiDAR) than easily accessible
coarser-resolution data (e.g., global elevation datasets; Moudrý et al.
2018), and it may often be beneficial to use a coarsened version of a
high-resolution DTM instead of a coarser-resolution DTM. However, we
are also aware that this criterion may not always hold in an ecological
context (e.g., in SDM implementation), with the acquisition of finer-
scale data being not necessarily cost-effective in relation to the species
and process to be investigated, in particular when the scales at which
specific terrain characteristics drive species distribution are already
known. It is essential to consider that a combination of multiple scales
is more likely to produce better, more representative models than a
single scale (Lecours et al. 2015, Tong et al. 2016, Misiuk et al. 2018).
A particular scale alteration approach is not necessarily superior to
the others, and the appropriateness of terrain attribute scale will also
depend on other non-topographic data used.

We also note that users must be aware of the DTMs they use and how
they were produced. Most users often assume that publicly available
DTMs are good and produced by valid methods, but not all DTMs are
appropriate for all purposes. For instance, many DTMs (e.g., GEBCO
2019) are compiled datasets for which some areas already went through
some process of resampling, interpolation, or aggregation, among others.
However, because spatial scale is intrinsically related to spatial data
quality (e.g., Sofia et al. 2013, Lecours 2017), it may not be adequate
to use the finest resolution available to derive terrain attributes for
inclusion in SDMs. Once again, tests must be performed during pre-
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analyses and users must be on the look-out for different types of errors
in the DTM they plan to use to determine whether the finest resolution
available is appropriate for their purpose. While Lecours et al. (2017a)
found that finer-resolution terrain attributes are more impacted by a
poor DTM quality than broader-resolution attributes, Lecours et al.
(2017b) established that this trend does not hold when a biological
or ecological context is integrated into the analysis, for instance in
habitat mapping and species distribution modelling. We recommend
acknowledging known issues with data or, when available, focus on data
with known provenance such as the LIDAR-derived DTM used in our
examples.

7.6 Conclusions

Knowledge is often derived from aggregated information in ecology and
biogeography. It is commonplace to superimpose a spatial grid over
species occurrence data to summarize them over a defined extent, or
to collect such data using a predefined sampling grid (e.g., atlases).
Environmental data are often coarsened to match the scale of these
data, or in some cases, like in the deep sea, species occurrence data
need to be aggregated to match the scale of environmental data. While
reductions in computer processing time and data size are among the
recognized advantages of coarsening data resolution, it may not always
be appropriate from an ecological perspective.

There is a need to replace what has previously been an arbitrary
selection of scales and resampling or aggregating methods with an
explicit selection of observational scale. Since the observational scale
should preferably be grounded in ecological knowledge, the approach
should be selected based on how well the representations of environment
characteristics capture what is relevant for the species of interest. When
this is unclear, it may be appropriate to test multiple methods. We
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argue that there is no single correct approach, but rather that the most
appropriate one(s) will depend on the objectives of a particular study.
In all cases, the methods should be explicit enough to enable replication
and meet fundamental norms of science (see conclusions by Goodchild
2011).

The problem of spatial scale is arguably one of the most important
in ecology, biogeography, and many other disciplines that use geomor-
phometry. Because of its complexity, it is essential to appropriately
address scale questions and generalize findings to infer ecological pat-
terns and processes appropriately. We emphasize the importance of
consistent choice of variables, of careful consideration of scales relative
to the organisms being studied as well as resampling techniques utilized,
and of the explicit and detailed description of methods and decisions
made. We recommend that authors explicitly report (i) the source and
the resolution of the original DTM(s) they use; (ii) the algorithm used
to calculate terrain attributes; (iii) the method used for rescaling (e.g.,
aggregating or resampling, using the mean or maximum values); (iv)
the order in which these operations were performed; and (v) a summary
of the pre-analyses that informed these choices.
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Chapter 8

Discussion and Summary

Thanks to the ever-developing computing technologies, geographic infor-
mation systems, remote sensing and various statistical methods, SDMs
became a powerful tool often used for exploring species-environment
relationships. However, despite its development during the last two
decades, the knowledge about how different quality of spatial data af-
fects species distribution models is insufficient (Araújo et al. 2019). This
dissertation offers additional insights into this research gap; nonetheless,
we are still far from a full understanding of this problem.

The introduced dissertation described how different quality of spatial
data and its processing affects species distribution models. This thesis
includes research on both species and environmental data and helps
to fill the research gap in the field of species distribution modelling.
Specifically, the titles of the studies are as follows:

Study I – How do species and data characteristics affect species distri-
bution models and when to use environmental filtering?

Study II – The effect of positional error on fine scale species distribu-
tion models increases for specialist species

Study III – On the use of global DEMs in ecological modelling and
the accuracy of new bare-earth DEMs

Study IV – Potential pitfalls in rescaling digital terrain model-derived
attributes for ecological studies
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As full discussion and conclusions are included in the respective previous
chapters, they will not be repeated here. Instead, this part aims to
provide links among the individual presented studies, major points
worth highlighting, suggestions for future research and an afterword.

8.1 Influence of various species
characteristics and species
data quality on SDMs

The fact that the performance of SDMs is complicated by various
spatial (e.g. prevalence or range size) and ecological (e.g. niche breadth)
characteristics of the studied species is well known (see for example
McPherson and Jetz 2007) and has been repeatedly assessed (Foody
2011, Tessarolo et al. 2014, Connor et al. 2018, Liu et al. 2019). However,
prior studies usually used a combination of two or three characteristics.
The uniqueness of Study I lies in the use of combinations of five species
characteristics in the same study. Specifically, different sample sizes
(with and without sampling bias), sampling methods, species prevalence
and species responses to environmental gradient were used together.
One of the most important conclusions of this study is that there is a
high level of interactions among individual characteristics (see Table 4.1)
and ignoring this may lead to misleading outcomes and conclusions. For
example, when studying sample size, the species prevalence and/or niche
breadth should be also considered as it is expected that for species with
low prevalence / narrow niche breadth, a smaller sample size could be
potentially enough. Therefore, when assessing the influence of varying
species data quality, as many of these characteristics as possible should
be included into or at least considered in the analysis to ensure that the
results are not affected by some hidden factor. For example, Varela et al.
(2014) tested whether environmental filtering of species occurrences
negatively affected by sampling bias could potentially increase SDMs

140



performance. They concluded that environmental filtering improves
the model performance. Specifically, AUC increased from 0.91 to 0.98
when an environmental filter was applied. However, Study I showed
that environmental filtering works only in a few specific cases, one of
which was coincidentally used in the study by Varela et al. (2014). The
experience from Study I taught us that the influence of varying data
quality also depends on species characteristics led us to the Study II
where species with different niche breadths (i.e. specialist, intermediate
and generalist species) were simulated and studied in interactions with
different magnitudes of positional error in species occurrences.

Positional error is one of the most common errors in species occurrence
data. Despite this fact, few prior studies focused on this topic and,
even more interestingly, they yielded contradictory results. In Study
II, we followed a suggestion by Osborne and Leitão (2009) who noted
that performing a comparative analysis of the effects of positional
error in SDMs in relation to species ecological characteristics could be
worthwhile and could potentially explain inconsistent results of prior
studies. Therefore, Study II focused on the effect of positional error in
species occurrences on fine-scale SDMs for species with different niche
breadths. As expected, results showed that introducing positional error
into species occurrence data led to a decrease in the model performance,
the magnitude of which varied with the species niche breadth. The same
positional error had a greater impact on species with a narrow niche
breadth than on those with a wide niche breadth. This could partly
explain the aforementioned inconsistent conclusions of prior studies.
Interestingly, we also showed that increasing sample size did not mitigate
the negative effect of the positional error in species occurrences. This
result is in concordance with recent studies, which concluded that
increasing the number of species occurrences in aggregated databases
is not necessarily useful for SDMs (see for example Bayraktarov et al.
2019) and contradicts the widely accepted assumption that more data
provide more reliable models.
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A follow-up research should verify whether coarsening the resolution
of environmental variables can compensate for the negative effect of
positional error as suggested by Moudrý and Šímová (2012). They
proposed that spatial resolution should be coarse enough to prevent
a shift of species occurrences due to positional error to inappropriate
environmental conditions. Nevertheless, Moudrý and Šímová (2012) did
not consider the scale of the effect (i.e. the scale at which environmental
variables determine species distribution). Additionally, the first results
of an ongoing research of mine and my colleagues indicate the opposite,
i.e, that coarsening resolution does not compensate for the negative
effect of positional error. However, even if it is concluded that it does
(compensate), an optimal trade-off between adopted spatial resolution
of environmental data and positional accuracy of species occurrences
will still have to be found. The reason is that the coarser is the
resolution, the higher is the loss of information about the environment
(see Figure 8.1), which may lead to misleading results. For example,
the distribution of species may be dependent on rare environmental
entities such as small or temporary water bodies (that can e.g. form a
habitat for birds) that cannot be detected using coarse resolution data
but which do exist in the natural world (Moudrý and Šímová 2012,
Šímová et al. 2019).
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Figure 8.1 Moudrý and Šímová (2012) proposed that spatial resolution should
be coarse enough to prevent a shift of species occurrences due to the positional
error to inappropriate environmental conditions. Nevertheless, the coarser is
the resolution of environmental data, the higher is the loss of information
about the environment. Therefore, if their assumption is confirmed, a trade-
off between the adopted spatial resolution of environmental variables and
positional accuracy of species occurrences has to be found, which could lead
to a major improvement in the current methodological SDMs standards.
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8.2 Influence of various
environmental data sources
and their processing on SDMs

Environmental data possess the same data quality issues as species
data. For example, a shift in environmental data (e.g. in DEMs) is
also common (Nuth and Kääb 2011). Despite this, research on the
influence of varying quality of environmental data in SDMs studies
has remained on the sidelines of scientific interest for a long time (but
see for example Seoane et al. 2004, Venier et al. 2004, Osborne and
Leitão 2009, Gottschalk et al. 2011). Consequently, some ecologists
and biogeographers have been processing and using various environ-
mental data with insufficient background about methodological and
technical decisions related to these processes (e.g. with spatial scale
alteration; Lecours et al. 2017c). Additionally, a majority of SDMs
studies failed to document at all (or just briefly mentioned) how they
processed the environmental data they utilized, which has decreased
their repeatability.

For instance, in prior ecological studies, SRTM DEM was naively used
as a model representing terrain, although SRTM DEM contains also
above-the-terrain features such as vegetation or buildings. Therefore,
Study III aimed to promote the valid and robust use of global DEMs in
species distribution modeling by raising awareness about the importance
of using DEMs that are corrected for vegetation offset. This issue was
addressed only in a few prior studies (e.g. Van Niel et al. 2004, Van Niel
and Austin 2007) and so it was not entirely certain how significant are
the effects of vertical error in DEMs on SDMs. The results of Study
III showed that there are considerable differences in model performance
between SDMs fitted with DEMs with and without vegetation offset.
Hence, at the beginning of the species distribution modelling process,
it is necessary to consider the vertical accuracy of DEMs and their
derived topographic indices. Otherwise, the resulting models may
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provide misleading results, which could lead to incorrect decisions and
consequently to misleading conservation actions.

Nowadays, a more precise, fine-resolution global TanDEM-X DEM is
available (0.4 arc-second resolution, approximately 12 m on the equator).
Therefore, further research is needed because it is expected that in finer
resolution, the differences in SDM performance between models fitted
with DEMs with and without vegetation offset will be even greater.
Additionally, only two selected terrain attributes (i.e. slope, twi) were
used in Study III. However, it would be helpful to know which terrain
attributes are affected by the vertical error of DEMs and which are not.

In SDMs studies, a decision about the spatial resolution of environ-
mental data and (therefore) about the approach to its alteration is,
no doubt, one of the most common decisions potentially affecting the
performance of resulting models (see for example Šímová et al. 2019).
However, as mentioned above, the methodological steps of the spatial
resolution alteration are rarely documented. Therefore, Study IV
aimed to determine which information related to the scale alteration
approach should be provided in SDMs studies in order to facilitate their
repeatability. Besides, we demonstrated the effects of the methods for
altering data resolution on the derived terrain attributes and subse-
quently on SDMs. The results showed that the way of deriving terrain
attributes from DEMs and the step in which the scale is changed,
respectively, can result in a decrease of models’ discrimination ability
and in misleading spatial predictions of probabilities of occurrence.
Despite this, the information on the approach used for DTM attributes
rescaling often remains undocumented in SDM studies. Therefore,
this study is important for future work as it promotes better practice
and emphasizes the importance of documenting the approach of scale
alteration. This allows to precisely repeat prior studies and facilitates
further development of species distribution modeling.
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8.3 Virtual species approach

One common thing for all individual studies presented here is the use
of the virtual species approach. The assessment of the conceptual and
methodological assumptions is common in SDMs literature. However,
addressing these questions with real data is challenging (Meynard et al.
2019). For example, specific species characteristics or the scale of the ef-
fect relevant for studied species may be unknown. Therefore, the virtual
species approach is, mainly in methodological testing, increasingly used
(see review by Meynard et al. 2019). This approach enabled to precisely
control both species characteristics (species prevalence, niche breadth,
response to environmental gradient) and species data quality (sampling
bias, sample size and the range of positional error), to combine them
with environmental data of varying quality and to test the influence of
these combinations on SDMs.

Our results indicate that in all future SDM studies, it is imperative
to properly document and share scripts used for virtual species gen-
eration as highlighted by Meynard et al. (2019) because it makes the
experiments easily repeatable and their conclusions verifiable. The
methodological studies using virtual species approach proved this to
be very important. Great examples were presented by Meynard et al.
(2019). Guillera-Arroita et al. (2014) have repeated the previous study
by Thibaud et al. (2014) using the original scripts (concluding that
MAXENT often outperformed the other SDMs models) and they showed
that conclusions by Thibaud et al. (2014) resulted from an artifact of
the inappropriate use of virtual species.

In addition, the virtual species approach could be used as a convincing
evidence of some issues related to SDMs. For example, it was hard to
convince reviewers that Study IV represents an important contribution
to the field of SDM. In the beginning, Study IV did not include the
virtual species example and failed to be sufficiently convincing. Most of
the reviewers thought that the scale alteration approach selection is not
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a big issue or that its influence is negligible and that documenting it is
not crucial. After a few unsuccessful submissions, we added the virtual
species approach. Being able to illustrate the possible consequences
with virtual species demonstrated the value of Study IV and it went
through more smoothly.

8.4 Conclusions

As detailed conclusions can be found in previous chapters, only some
major points are provided here:

• When modeling species distribution, there are many interactions
among individual spatial and ecological species characteristics;
ignoring this may cause misleading outcomes and conclusions.
Therefore, as many of these characteristics as possible should be
analyzed simultaneously as it could help understand interactions
between various ecological characteristics of the studied species
and different data quality.

− For instance, when studying sample size, species prevalence
and/or niche breadth should also be considered as it is ex-
pected that for species with low prevalence / narrow niche
breadth, a smaller sample size could potentially suffice. On
the other hand, such species will be more affected by erro-
neous data (e.g. by positional error).

• SDMs are affected by a variable quality of both species and envi-
ronmental spatial data; species occurrences and/or environmental
data of high accuracy can hardly be replaced by those of lower
accuracy. Specifically:

− Data accuracy is crucial as considerable differences in model
performance between accurate and inaccurate data have
been demonstrated. Interestingly, our results showed that
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the negative effects of inaccurate data entering SDMs cannot
be mitigated by increasing the sample size. The takeaway
message is that improving species data accuracy appears to
be more effective than increasing sample size.

− The environmental data source, their processing and resolu-
tion are important in SDMs. Therefore, future studies should
explicitly report the source and resolution of the original
environmental data (not only DTMs), the algorithm used to
calculate terrain attributes, the method used for rescaling,
the order in which these operations were performed and, of
course, a summary of the pre-analyses that resulted in these
choices.

• Based on our results, it is advocated for not using data with an
unknown level of accuracy as such models may lead to misleading
outcomes and conclusions and to improper conservation actions.

8.5 Further research

Future research should be focused on the influence of data uncertainty
using more complex virtual species and, consequently, real species
data across various resolutions of environmental variables and extents
of the study areas. Such studies will have the potential to further
improve the use of SDMs in biodiversity monitoring and conservation.
For example, at present, I participate in research on assessing the
influence of the positional error in species occurrence data using real
bird data (downloaded from eBird database) in a continental extent
across varying resolutions of environmental variables. Based on results
presented in chapters 6 and 7, future research should always consider the
source of the utilized environmental data, be consistent in processing
environmental data and always take into account both the scale of the
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species response to the environmental gradient and the resolution of
environmental data.

8.6 Afterword

Since 1960s, explanatory modeling (species-environment relationship
modeling) has come a long way, which gave rise to a whole new field
we call species distribution modeling. At the beginning, SDM studies
on methodological aspects mostly focused on the selection of the ap-
propriate modeling techniques (algorithms, see for example Elith et al.
2006). With the increasing number of such studies, it, however, became
more and more clear that the quality of spatial data plays an important
role in modeling processes (Araújo et al. 2019). Nevertheless, there
still is a research gap and the knowledge about the influence of varying
quality of spatial data on SDMs is not complete. It is remarkable how
deeply ecologists have immersed themselves in studying the data issues
in SDMs. This only underlines the importance of this topic – I am
really curious how far this effort will lead. Will we be able to predict
with pinpoint accuracy where the species occur and where not once we
fully understand the influence of data quality or once we find methods
how to overcome these issues? Is all this effort necessary or is it just a
dead end? These are the questions that will be hopefully answered by
the next decade(s) of research.
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