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Vedoućı práce: Prof. RNDr. Jǐŕı Rach̊unek, DrSc.

Rok obhajoby práce: 2016
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jako Booleovské algebry plńı tuto funkci pro klasickou dvouhodnotovou logiku.
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Chapter 1

Introduction

Topological Boolean algebras (closure algebras, resp. interior algebras) are

generalizations of topological spaces defined by means of topological closure and

interior operators [35].

Recall that if B is a Boolean algebra and g : B → B is a mapping then g is

called a topological closure operator on B if for any x, y ∈ B,

1. g(x ∨ y) = g(x) ∨ g(y),

2. x ≤ g(x),

3. g(g(x)) = g(x),

4. g(0) = 0.

A topological interior operator is defined dually.

In [33], additive closure and multiplicative interior operators on MV -algebras

were introduced as generalization of topological Boolean algebras. It is well

known that MV -algebras are an algebraic counterpart of the  Lukasiewicz in-

finite valued propositional logic as well as Boolean algebras play this role for

classical two valued logic. Every Boolean algebra is in fact an MV -algebra and

conversely, every MV -algebra A contains the greatest Boolean subalgebra B(A)

formed by complemented (i.e. additive, resp. multiplicative, idempotent) ele-

ments. According to [33], the restriction of each additive closure operator of

an MV -algebra is a topological closure operator on the Boolean algebra B(A).
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Moreover, in every complete MV -algebra, each topological closure operator on

B(A) can be extended to an additive closure operator on A.

The  Lukasiewicz logic is one of the most important logics in the theory of

fuzzy sets. Hájek’s basic fuzzy logic generalizes many of such logics. It is known

that BL-algebras introduced also by Hájek are an algebraic counterpart of the

basic fuzzy logic. Bounded residuated lattices form a wide class of algebras, which

contains not only the class of all BL-algebras, but also the class of all Heyting

algebras. Therefore bounded residuated lattices can be taken as an algebraic

semantics of a more general logic than the basic logic.

In MV -algebras there are two binary operations ⊕ and � which are mutually

dual. Therefore by [33], for the MV -algebras the research of additive closure

operators (ac-operators) is equivalent with that of multiplicative interior oper-

ators (mi-operators). Nevertheless, in the case of R`-monoids and then also in

more general bounded residuated lattices an operation with dual properties to

the binary operation � does not generally exist.

The commutative residuated lattices were first introduced by M. Ward and

R.P. Dilworth [36] as generalization of ideal lattices of rings. Non-commutative

residuated lattices, sometimes called pseudo-residuated lattices, biresiduated lat-

tices or generalized residuated lattices are algebraic counterparts of substructural

logics, that is, logics which lack some of the three structural rules, namely con-

traction, weakening and exchange. Complete studies on residuated latticfes were

developed by N. Galatos, P. Jipsen, T. Kowalski and H. Ono [18], C. Tsinakis

[22] and others.

Non-commutative bounded integral residuated lattices form a large class of

algebras containing some classes of algebras behind many-valued and fuzzy logics,

such as pseudo MV -algebras [19] (or equivalently GMV -algebras [27]), pseudo

BL-algebras [9], pseudo MTL-algebras [16] and R`-monoids [14], and conse-

quently the classes of their commutative cases, i.e. MV -algebras [7], BL-algebras

[20], MTL-algebras [15] and commutative R`-monoids [11]. Moreover, Heyting

algebras [1] which are algebras of the intuitionistic logic can be also considered
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as residuated lattices.

A bounded integral residuated lattice is an algebra M = (M ;�,∨,∧,→, 

, 0, 1) of type (2, 2, 2, 2, 2, 0, 0) satisfying the following conditions:

(i) (M ;�, 1) is a monoid,

(ii) (M ;∨,∧, 0, 1) is a bounded lattice,

(iii) x� y ≤ z iff x ≤ y → z iff y ≤ x z for any x, y ∈M .

In what follows, by a residuated lattice we will mean a bounded integral resid-

uated lattice. If the operation � on a residuated lattice M is commutative then

M is called a commutative residuated lattice. In such a case the operations →

and  coincide.

In a residuated lattice M we define two unary operations (negations) “−” and

“∼” on M such that x− := x→ 0 and x∼ := x 0 for each x ∈M.

Recall that the mentioned algebras of many-valued and fuzzy logics are char-

acterized in the class of residuated lattices as follows:

A residuated lattice M is

(a) a pseudo MTL-algebra if M satisfies the identities of pre-linearity

(iv) (x→ y) ∨ (y → x) = 1 = (x y) ∨ (y  x);

(b) an R`-monoid if M satisfies the identities of divisibility

(v) (x→ y)� x = x ∧ y = y � (y  x);

(c) a pseudo BL-algebra if M satisfies both (iv) and (v);

(d) involutive if M satisfies the identities

(vi) x−∼ = x = x∼−;

(e) a GMV -algebra (or equivalently a pseudo MV -algebra) if M satisfies (iv),

(v) and (vi);
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(f) a Heyting algebra if the operations “�” and “∧” coincide.

A residuated lattice M is called good, if M satisfies the identity x−∼ = x∼−.

For example, every commutative residuated lattice, every GMV -algebra and ev-

ery pseudo BL-algebra which is a subdirect product of linearly ordered pseudo

BL-algebras [12] is good.

By [8], every good residuated lattice satisfies the identity (x−�y−)∼ = (x∼�

y∼)−. If M is good, we define binary operation “⊕” on M as follows:

x⊕ y = (y− � x−)∼.

A residuated lattice M is called normal if it satisfies the identities

(x� y)−∼ = x−∼ � y−∼, (x� y)∼− = x∼− � y∼−.

For example, every Heyting algebra and every good pseudo BL-algebra is

normal [28], [13].

We introduce multiplicative interior operators (mi-operators) on bounded

commutative residuated lattices as the generalization of analogous operators on

MV -algebras and R`-monoids and we show their properties. The binary opera-

tion ⊕, which need not to be dual to � in general, but it makes possible to intro-

duce some analogy of an additive closure operator (ac-operator) from the theory

of MV -algebras. We show mutual relationships between mi- and ac-operators,

especially for the case of normal residuated lattices. Further, we describe mi- and

ac-operators induced by operators on the quotient residuated lattice M/D(M)

of a residuated lattice M by the filter D(M) of dense elements in M and on the

residuated lattice of regular elements in M .

The second class of algebras on which we investigate the properties of interior

and closure operators are basic algebras. Basic algebras have been introduced in

[3] as non-associative generalizations of MV -algebras. The name “basic algebra”

was selected because these algebras are in a sense a common base forMV -algebras

and orthomodular lattices [3], and should not be confused with BL- algebras as

the intersection of classes of basic algebras and BL-algebras is just the class of

MV -algebras.
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Definition. A basic algebra is an algebra 〈A;⊕,¬, 0〉 of type 〈2, 1, 0〉 that satisfies

the identities

(i) x⊕ 0 = x,

(ii) ¬¬x = x,

(iii) ¬(¬x⊕ y)⊕ y = ¬(¬y ⊕ x)⊕ x,

(iv) ¬(¬(¬(x⊕ y)⊕ y)⊕ z)⊕ (x⊕ z) = ¬0.

Moreover, if x ⊕ y = y ⊕ x for any x, y ∈ A, then A is called a commutative

basic algebra.

If A = 〈A;⊕,¬, 0〉 is a basic algebra, then (A,∧,∨, 1, 0), where

x ∨ y := ¬(¬x⊕ y)⊕ y

x ∧ y := ¬(¬x ∨ ¬y)

1 := ¬0,

is a bounded lattice whose induced order is given by

x ≤ y ⇐⇒ ¬x⊕ y = 1.

If A is commutative, then this lattice is distributive [3]. Moreover [4], this lattice

(A;∧,∨) is endowed by a set (a)a∈A of so-called sectional antitone involutions,

i.e. for every a ∈ A there is a mapping x 7→ xa of the interval [a, 1] into intself

such that for any x, y ∈ [a, 1]

xaa = x, x ≤ y =⇒ ya ≤ xa.

This system L(A) = (L;∧,∨, (a)a∈L, 0, 1) is called a lattice with sectional

antitone involutions assigned to A = (A;⊕,¬, 0). Also conversely, starting with

a bounded lattice with sectional antitone involutions L = (L;∧,∨, (a)a∈L, 0, 1),

one can convert it into a basic algebra A(L) = (L;⊕,¬, 0), where

¬x = x0, x⊕ y = (¬x ∨ y)y.
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Moreover, the assignments A → L(A) and L → A(L) are one-to-one correspon-

dences, i.e. A(L(A)) = A and (L(A(L)) = L.

Note that analogously as MV -algebras are an algebraic counterpart of the

propositional infinite-valued  Lukasiewicz logic (and Boolean algebras are a coun-

terpart of the propositional classical two-valued logic), commutative basic alge-

bras constitute an algebraic semantics of the propositional logic LCBA [2] which

is a non-associative generalization of the  Lukasiewicz logic.

We introduce and investigate additive closure and multiplicative interior op-

erators on commutative basic algebras and describe connections between such

operators. Further we show that (additively) idempotent elements of any com-

mutative basic algebra A form a subalgebra B(A) of A which is a Boolean algebra,

and we give relations between e.g. additive closure operators on A and topologi-

cal operators on B(A). Moreover, we study operators on quotient commutative

basic algebras.

Another type of operators that we investigate on the above-mentioned alge-

bras are so called modal operators. Modal operators are special cases of closure

operators. Recall [26] that the notion of a modal operator has its main source in

the theory of topoi and sheafification (see [17], [24], [25], [37]). Moreover, modal

operators have become also from the theory of frames, where frame maps can be

recognized as modal operators on a complete Heyting algebra (see [10]).
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Chapter 2

Main results

2.1. Interior and closure operators

In this section we describe the results from the papers [A], [B] and [C].

2.1.1. Operators on commutative residuated lattices

A commutative bounded integral residuated lattice is an algebraM = (M ;�,∨,∧,→

, 0, 1) of type (2, 2, 2, 2, 0, 0) satisfying the following conditions:

(i) (M ;�, 1) is a commutative monoid,

(ii) (M ;∨,∧, 0, 1) is a bounded lattice,

(iii) x� y ≤ z iff x ≤ y → z for all x, y, z ∈M .

In what follows, by a residuated lattice we will mean a commutative bounded

integral residuated lattice.

Let M be a residuated lattice. We define a unary operation − on M such that

x− := x→ 0. Furthermore, we define a binary operation ⊕ on M as follows:

x⊕ y = (x− � y−)−.

Definition. Let M be a residuated lattice. A mapping f : M → M is called a

multiplicative interior operator (mi-operator) on M if for any x, y ∈M

1. f(x� y) = f(x)� f(y),
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2. f(x) ≤ x,

3. f(f(x)) = f(x),

4. f(1) = 1.

5. x ≤ y =⇒ f(x) ≤ f(y).

IfM is an R`-monoid, i.e. a residuated lattice satisfying x�(x→ y) = x∧y for

any x, y ∈ M , then it can be shown [32] that the property 5 from the definition

follows from properties 1 - 4. This is not true for the more general setting of

residuated lattices. One can find an example (clA, 3.2) of a mapping f on a

residuated lattice M that satisfies the conditions 1 - 4 from the definition of an

multiplicative interior operator, but the mapping f is not monotone.

Definition. Let M be a residuated lattice. A mapping g : M → M is called an

additive closure operator (ac-operator) on M if for any x, y ∈M

1. g(x⊕ y) = g(x)⊕ g(y),

2. x ≤ g(x),

3. g(g(x)) = g(x),

4. g(0) = 0,

5. x ≤ y =⇒ g(x) ≤ g(y).

Let f : M → M be a mapping on a residuated lattice M . We define a

mapping f− : M →M such that

f−(x) = (f(x−))−,

for any x ∈M .

We call a residuated lattice M normal if it satisfies the identity

(x� y)−− = x−− � y−−.
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Proposition (clA, 3.8). If M is a normal residuated lattice and f is an mi-

operator on M , then the mapping f− is an ac-operator on M .

If g is an ac-operator on a normal residuated lattice M , then g− need not be

an mi-operator, i.e. condition 2 from the definition of an mi- operator need not

be satisfied on M as we can see in the Example ([A], 3.12).

A residuated lattice M is called involutive if it satisfies x−− = x for any

x ∈ M . One can see that any involutive residuated lattice is normal. Hence by

previous proposition, if f is an mi-operator on such a residuated lattice M , then

f− is an ac-operator on M . Furthermore, if g is an ac-operator on an involutive

residuated lattice M , then by Proposition ([A], 3.10), g− is an mi-operator on

M. Moreover, f 7→ f− and g 7→ g− are one-to-one correspondences between

mi-operators and ac-operators on an involutive residuated lattice.

The situation for normal residuated lattices which are not involutive is more

complicated. Namely, although f− is still an ac-operator for any mi-operator f

on a residuated lattice M , for ac-operator g on M , g− need not be an mi-operator.

Furthermore, if f is an mi-operator on M then f− satisfies in fact a condition that

is stronger than axiom 2 in the definition of an ac-operator on M . Therefore, we

will introduce now the notions of wmi- and sac- operators on normal residuated

lattices.

Definition. Let M be a residuated lattice and f : M → M . Then f is called a

weak mi-operator (a wmi-operator) on M if it satisfies conditions 1 and 3 - 5 of

the definition of an mi-operator and for any x ∈M

2a. f(x) ≤ x−−.

Definition. Let M be a normal residuated lattice and g : M → M . Then g is

called a strong ac-operator (an sac-operator) on M if it satisfies conditions 1 and

3 - 5 of the definition of an ac-operator and for any x ∈M

2b. x−− ≤ g(x).

Now we will describe connections among mi-, ac-, wmi- and sac-operators on

normal residuated lattices.
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Proposition (A, 3.16). Let M be a normal residuated lattice.

(i) If f is a wmi-operator on M , then f− is an sac-operator on M .

(ii) If g is an sac-operator on M , then g− is a wmi-operator on M .

If M is a normal residuated lattice, denote by wmi(M) the set of wmi-

operators on M and by sac(M) the set of sac-operators on M . Suppose that

wmi(M) and sac(M) are pointwise ordered.

Let α : wmi(M) → sac(M) be the mapping such that α(f) = f−, for any

f ∈ wmi(M), and β : sac(M)→ wmi(M) be the mapping such that β(g) = g−,

for any g ∈ sac(M).

Theorem (A, 3.17). If M is a normal residuated lattice, then α and β form

an antitone Galois connection, i.e. f ≤ β(g) if and only if g ≤ α(f), for any

f ∈ wmi(M) and g ∈ sac(M).

Definition. Let M be a residuated lattice. A nonempty subset F of M is called

a filter of M if the following conditions hold

1. x, y ∈ F =⇒ x� y ∈ F ,

2. x ∈ F, y ∈M, x ≤ y =⇒ y ∈ F .

By [22], filters of commutative residuated lattices are in a one-to-one corre-

spondence with their congruences. If F is a filter of a commutative residuated

lattice M , then for the corresponding congruence ΘF we have:

〈x, y〉 ∈ ΘF ⇐⇒ (x→ y) ∧ (y → x) ∈ F ⇐⇒ (x→ y)� (y → x) ∈ F

⇐⇒ x→ y, y → x ∈ F,

for each x, y ∈ M . In such a case, F = {x ∈ M : 〈x, 1〉 ∈ ΘF}. For any filter F

of M we put M/F := M/ΘF .

If M is a residuated lattice, denote D(M) = {x ∈ M : x−− = 1} the set of

dense elements in M .

Proposition (A, 4.6). If M is a residuated lattice, then D(M) is a filter of M .
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We say that a residuated lattice M has Glivenko property [6] if for any x, y ∈

M

(x→ y)−− = x→ y−−.

Recall that the notion of a residuated lattice with Glivenko property was

introduced and investigated in [6].

Proposition ([6]). A residuated lattice M has Glivenko property if and only if

M satisfies the identity

(x−− → x)−− = 1.

An element x of a residuated lattice M is called regular if x−− = x. Denote

by Reg(M) the set of all regular elements in M . If x, y ∈ Reg(M), put x∨∗ y :=

(x ∨ y)−−, x ∧∗ y := (x ∧ y)−−, x�∗ y := (x� y)−− and x⊕∗ y = (x⊕ y)−−.

Theorem. [6] For any residuated lattice M the following conditions are equiva-

lent.

(i) M has Glivenko property,

(ii) (Reg(M);∨∗,∧∗,�∗,→, 0, 1) is an involutive residuated lattice and the map-

ping −− : M → Reg(M) such that −− : x 7→ x−− is a surjective homomor-

phism of residuated lattices.

Notice that if M is a normal residuated lattice and x, y ∈ Reg(M), then

x �∗ y = (x � y)−− = x−− � y−− = x � y. For arbitrary residuated lattice we

have x⊕∗ y = x⊕ y.

The following assertions concerning connections between D(M) and Reg(M)

are consequences of the previous Theorem:

Theorem (A, 4.7). If M is a residuated lattice with Glivenko property, then for

any x, y ∈ M we have 〈x, y〉 ∈ ΘD(M) if and only if x−− = y−−. Moreover, the

quotient residuated lattice M/D(M) is involutive.

Theorem (A, 4.8). If M is a residuated lattice with Glivenko property, then the

residuated lattices Reg(M) and M/D(M) are isomorphic.
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Theorem (A, 4.10). Let M be a normal residuated lattice with Glivenko prop-

erty, f an mi-operator (resp. an ac-operator) on M and f ∗ : M/D(M) →

M/D(M) the mapping such that f ∗(x/D(M)) = f(x−−)/D(M). Then f ∗ is

an mi-operator (resp. an ac-operator) on M/D(M).

Theorem (A, 4.11). If M is a normal residuated lattice with Glivenko property

and f is an mi-operator (resp. an ac-operator) on M , then the mapping f#

such that f#(x) = f(x)−− for any x ∈ Reg(M) is an mi-operator (resp. an

ac-operator) on the residuated lattice Reg(M).

Theorem (A, 4.12). Let M be a normal residuated lattice with Glivenko prop-

erty. If g : Reg(M) → Reg(M) is an mi-operator on the involutive residuated

lattice Reg(M), then the mapping g+ : M → M such that g+(x) := g(x−−) for

any x ∈M , is a wmi-operator on M .

2.1.2. Interior and closure operators on residuated lattices

In this section we ivestigate properties of additive closure operators and mul-

tiplicative interior operators on bounded integral residuated lattices that need

not be commutative.

Recall that a bounded integral residuated lattice is an algebraM = (M ;�,∨,∧,→

, , 0, 1) of type (2, 2, 2, 2, 2, 0, 0) satisfying the following conditions:

(i) (M ;�, 1) is a monoid,

(ii) (M ;∨,∧, 0, 1) is a bounded lattice,

(iii) x� y ≤ z iff x ≤ y → z iff y ≤ x z for any x, y ∈M .

In what follows, by a residuated lattice we will mean a bounded integral resid-

uated lattice.

A residuated lattice M is called good, if M satisfies the identity x−∼ = x∼−.

For example, every commutative residuated lattice, every GMV -algebra and ev-

ery pseudo BL-algebra which is a subdirect product of linearly ordered pseudo

BL-algebras [12] is good.
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By [8], every good residuated lattice satisfies the identity (x−�y−)∼ = (x∼�

y∼)−. If M is good, we define binary operation “⊕” on M as follows:

x⊕ y = (y− � x−)∼.

Let M be a residuated lattice. We define interior multiplicative operators and

additive closure operators on M in the same manner as in the case of commutative

residuated latttices.

Let f : M →M be a mapping, and consider two new mappings

f∼− : M →M, f−∼ : M →M,

such that for each x ∈M

f∼− (x) := (f(x−))∼

and

f−∼ (x) := (f(x∼))−.

Proposition (B, 3.4). If f : M → M is a monotone mapping on a residuated

lattice M , then both mappings f−∼ , f
∼
− are monotone.

Theorem (B, 3.7). If M is a good normal residuated lattice and f is an mi-

operator on M , then the mappings f−∼ and f∼− are ac-operators on M .

Theorem (B, 3.9). Let M be a good normal residuated lattice and let g be an

ac-operator on M . Then the mappings g∼−, g
−
∼ satisfy identities 1, 3, 4, 5 from

definition of an mi-operator.

If g is an ac-operator on a good normal residuated lattice M , then g∼− need not

be an mi-operator, i.e. condition 2 from the definition of an mi- operator need

not be satisfied on M as we can see in the Example (B, 3.11) of a commutative

residuated lattice.

Definition. Let M be a residuated lattice and f : M → M . Then f is called a

weak mi-operator (a wmi-operator) on M if it satisfies conditions 1 and 3 - 5 of

the definition of an mi-operator, and for any x ∈M

19



2a. f(x) ≤ x−∼.

Definition. Let M be a good normal residuated lattice and g : M → M . Then

g is called a strong ac-operator (an sac-operator) on M if it satisfies conditions 1

and 3 - 5 of the definition of an ac-operator, and for any x ∈M

2b. x−∼ ≤ g(x).

We have that if f is an mi-operator, then f−∼ and f∼− are sac-operators and

consequently ac-operators, and if g is an ac-operator then g∼− and g−∼ are wmi-

operators. Now we will describe connections among mi-, ac-, wmi- and sac-

operators on good normal residuated lattices.

Proposition. Let M be a good normal residuated lattice.

(i) If f is a wmi-operator on M , then f−∼ and f∼− are sac-operators on M .

(ii) If g is an sac-operator on M , then g−∼ and g∼− are wmi-operators on M .

If M is a normal residuated lattice, denote by wmi(M) the set of wmi-

operators on M and by sac(M) the set of sac-operators on M . Suppose that

wmi(M) and sac(M) are pointwise ordered.

Let α1, α2 : wmi(M) → sac(M) be the mappings such that α1(f) = f∼− ,

and α2(f) = f−∼ for any f ∈ wmi(M), and β1, β2 : sac(M) → wmi(M) be the

mappings such that β1(g) = g∼−, and β2(g) = g−∼ for any g ∈ sac(M).

Theorem (B, 3.14). Let M be a normal residuated lattice.

(i) α1 and β2 form an antitone Galois connection, i.e. f ≤ β2(g) if and only if

g ≤ α1(f), for any f ∈ wmi(M) and g ∈ sac(M).

(ii) α2 and β1 form an antitone Galois connection, i.e. f ≤ β1(g) if and only if

g ≤ α2(f), for any f ∈ wmi(M) and g ∈ sac(M).

The following theorem is now an immediate consequence.

Theorem (B, 3.15). Let M be a good normal residuated lattice.
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(i) If f is an mi-operator on M and h = (f−∼ )∼− = (f∼− )−∼, then f∼− = h∼− and

f−∼ = h−∼.

(ii) If g is an ac-operator on M and k = (g−∼)∼− = (g∼−)−∼, then g−∼ = k−∼ and

g∼− = k∼−.

We introduce Glivenko property of a residuated lattice as the noncommuta-

tive generalization of Glivenko property which was investigated in the case of

commutative residuated lattices.

Definition. We say that a residuated lattice M has Glivenko property (GP) if

for any x, y ∈M we have

(x→ y)−∼ = x→ y−∼, (x y)∼− = x y∼−.

It can be seen in Lemma (B, 4.2) that in the case of good residuated lattices the

equalities required in Glivenko property are in fact equivalent to these conditions:

(i) (x−∼ → x)−∼ = 1 = (x∼−  x)∼−, for any x ∈M ,

(ii) (x→ y)−∼ = x−∼ → y−∼, (x y)∼− = x∼−  y∼−, for any x, y ∈M .

Definition. Let M be a residuated lattice. A nonempty set F of M is called a

filter of M if the following conditions hold

(i) x, y ∈ F imply x� y ∈ F ,

(ii) x ∈ F, x ≤ y ∈M imply y ∈ F .

Definition. A subset D ⊆M is called a deductive system of M if

(i) 1 ∈ D,

(ii) x ∈ D, x→ y ∈ D imply y ∈ D.

Proposition (B, 4.4). If H ⊆ M , then H is a filter in M if and only if H is a

deductive system in M .

21



A filter H of M is called normal [34] if x → y ∈ H iff x  y ∈ H for

each x, y ∈ M . Normal filters of any residuated lattice M are in one-to-one

correspondence with the congruences on M . If H is a normal filter of M , then

H is the kernel of the unique congruence θH such that 〈x, y〉 ∈ θH if and only if

(x→ y)� (y → x) ∈ H if and only if (x y)� (y  x) ∈ H.

Hence we will consider quotient residuated lattices M/H of residuated lattices

M by their normal filters. If x ∈ M then we will denote by x/H the class of

M/H containing x.

If M is a residuated lattice, denote D(M) = {x ∈ M ;x−∼ = 1 = x∼−} the

set of dense elements in M .

Theorem (B, 4.5). (i) If M is a good residuated lattice, then D(M) is a filter

in M .

(ii) If, moreover, M satisfies (GP), then D(M) is a normal filter in M .

Theorem. [B, 4.6] Let M be a good residuated lattice satisfying (GP). Then

〈x, y〉 ∈ θD(M) if and only if x−∼ = y−∼ for all x, y ∈ M . Moreover, M/D(M) is

an involutive residuated lattice.

An element x of a residuated lattice M is called regular if x−∼ = x = x∼−.

Denote by Reg(M) the set of all regular elements in M . Clearly 0, 1 ∈ Reg(M).

If x, y ∈M , put x ∨∗ y := (x ∨ y)−∼, x ∧∗ y := (x ∧ y)−∼, x�∗ y := (x� y)−∼.

Theorem. [B, 4.7] Let M be a good normal residuated lattice satisfying (GP).

Then Reg(M) = (Reg(M);�∗,∨∗,∧∗,→, , 0, 1) is an involutive residuated lat-

tice and the mapping −∼ : M → Reg(M) such that −∼ : x 7→ x−∼ is a retract of

the reduct (M ;�,→, , 0, 1) onto (Reg(M);�,→, , 0, 1).

Theorem (B, 4.8). If M is a good normal residuated lattice such that Reg(M) =

(Reg(M);�,→, , 0, 1) is an involutive residuated lattice and the mapping −∼

is a retract of (M ;→, ) onto (Reg(M);→, ), then M satisfies (GP).

Theorem (B, 4.9). Let M be a good normal residuated lattice. Then the fol-

lowing statements are equivalent:
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1. M satisfies (GP).

2. (Reg(M);�,∨∗,∧,→, , 0, 1) is an involutive residuated lattice and the

mapping −∼ : M → Reg(M) such that −∼ : x 7→ x−∼ is a retract of

(M ;�,→, , 0, 1) onto (Reg(M);�,→, , 0, 1).

The following assertion is now an immediate consequence.

If M is a good normal residuated lattice satisfying (GP), then (�,→, , 0, 1)-

reducts of M/D(M) and Reg(M) are isomorphic.

Theorem (B, 4.11). If M is a good normal residuated lattice satisfying (GP) and

f is an mi-operator (an ac-operator) on M , then the mapping f ∗ : Reg(M) →

Reg(M) such that f ∗(x) = f(x)−∼, for any x ∈ Reg(M), is an mi-operator (an

ac-operator) on the residuated lattice Reg(M).

Theorem (B, 4.12). If M is a good normal residuated lattice satisfying (GP)

and f is an mi-operator on the residuated lattice Reg(M), then the mapping

f+ : M → M such that f+(x) = f(x−∼), for any x ∈ M , is a wmi-operator on

M .

Theorem (B, 4.13). Let M be a good residuated lattice satisfying (GP) and

g : Reg(M) → Reg(M) be an ac-operator on Reg(M). Then the mapping

g+ : M → M such that g+(x) = g(x−∼), for any x ∈ M , is an sac-operator on

M .

2.1.3. Interior and closure operators on basic algebras

Recall that a basic algebra is an algebra 〈A;⊕,¬, 0〉 of type 〈2, 1, 0〉 that

satisfies the identities

(i) x⊕ 0 = x,

(ii) ¬¬x = x,

(iii) ¬(¬x⊕ y)⊕ y = ¬(¬y ⊕ x)⊕ x,
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(iv) ¬(¬(¬(x⊕ y)⊕ y)⊕ z)⊕ (x⊕ z) = ¬0.

Moreover, if x ⊕ y = y ⊕ x for any x, y ∈ A, then A is called a commutative

basic algebra.

In a basic algebra A we define a binary operation (subtraction) such that

x	 y := ¬(¬x⊕ y).

Moreover, define for any x, y ∈ A

x� y := ¬(¬x⊕ ¬y).

Definition. Let A be a commutative basic algebra. A mapping g : A → A is

called an additive closure operator (ac-operator) on A if for any x, y ∈ A

1. g(x⊕ y) = g(x)⊕ g(y),

2. x ≤ g(x),

3. g(g(x)) = g(x),

4. g(0) = 0.

Proposition (C, X). Let g : A → A be an ac-operator on a commutative basic

algebra A. Then g is a monotone mapping.

Definition. Let A be a commutative basic algebra. A mapping f : A → A is

called a multiplicative interior operator (mi-operator) on A if for any x, y ∈ A

1. f(x� y) = f(x)� f(y),

2. f(x) ≤ x,

3. f(f(x)) = f(x),

4. f(1) = 1.
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Let f : A→ A be a mapping, and consider the mapping

f¬ : A→ A,

such that for each x ∈ A

f¬(x) := ¬(f(¬x)).

Theorem (C, 3.1). If g : A → A is an ac-operator on a commutative basic

algebra A, then the mapping g¬ : A→ A is an mi-operator on A.

Theorem (C, 3.2). If f : A → A is an mi-operator on a commutative basic

algebra A, then the mapping f¬ : A→ A is an ac-operator on A.

If A is a commutative basic algebra, denote by mi(A) the set of mi-operators

on A and by ac(A) the set of ac-operators on A. Suppose that mi(A) and ac(A)

are pointwise ordered.

Let α : mi(A) → ac(A) be the mapping such that α(f) = f¬, for any f ∈

mi(A), and β : ac(A) → mi(A) be the mapping such that β(g) = g¬, for any

g ∈ ac(A).

Theorem. [C, 3.3] If A is a commutative basic algebra, then α and β form

an antitone Galois connection, i.e. f ≤ β(g) if and only if g ≤ α(f), for any

f ∈ mi(A) and g ∈ ac(A).

The following theorem is now an immediate consequence.

Theorem. [C, 3.4] Let A be a commutative basic algebra.

(i) If f is an mi-operator on A and h = (f¬)¬ is the corresponding mi-operator

on A, then the induced ac-operators f¬ and h¬ are the same.

(ii) If g is an ac-operator on A and k = (g¬)¬ is the corresponding ac-operator

on A, then the induced mi-operators g¬ and k¬ are the same.

Let A be a basic algebra. Denote by B(A) := {x ∈ A : x⊕ x = x} the set of

all idempotent elements of A.
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Let A be a commutative basic algebra, C a subalgebra of A and g : A →

A (f : A→ A) an ac-operator (an mi-operator) on A. Then C is called a closure

subalgebra (an interior subalgebra) with respect to g (to f) if g(x) ∈ C (f(x) ∈ C)

for any x ∈ C.

Proposition (C, 4.2). If A is a commutative basic algebra, then B(A) is a

subalgebra of A.

Theorem (C, 4.1). If A is a commutative basic algebra, then B(A) is a Boolean

algebra.

Proposition (C, 4.3). Let A be a commutative basic algebra. Then the Boolean

subalgebra B(A) of A is a closure subalgebra (an interior subalgebra) with respect

to any ac-operator (any mi-operator) on A.

Theorem (C, 4.2). Let A be a commutative basic algebra and g : A → A an

ac-operator (f : A → A an mi-operator). Then the restriction of g to B(A) (f

to B(A)) is a topological closure (topological interior) operator on the Boolean

algebra B(A).

A commutative basic algebra is called complete if the underlying lattice (A;∨,∧)

is complete.

Theorem (C, 4.3). Let A be a complete commutative basic algebra and g a

topological closure operator on the Boolean algebra B(A). Then there is an

ac-operator g∗ on A such that the restriction of g∗ to B(A) is equal to g.

Let A be a basic algebra. A subset J ⊆ A is called an ideal of A [5], if it

contains 0 and satisfies the following conditions:

1. if a	 b ∈ J and b ∈ J , then a ∈ J ,

2. if a	 b ∈ J and a ≥ b, then (c	 b)	 (c	 a) ∈ J for every c ∈ A,

3. if a	 b ∈ J and b	 a ∈ J , then (a	 c)	 (b	 c) ∈ J for every c ∈ A.
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Theorem. [5] Let A be a commutative basic algebra and I ⊆ A be an ideal.

Then the relation ΘI defined by

〈a, b〉 ∈ ΘI ⇐⇒ a	 b ∈ I and b	 a ∈ I.

is a congruence on A such that [0]ΘI
= I.

Theorem (C, 5.2). Let A be a commutative basic algebra, g : A → A an ac-

operator and I a g-ideal in A. Then the mapping g∗ : A/I → A/I such that

g∗(x/I) = g(x)/I is an ac-operator on the commutative quotient algebra A/I.

2.2. Modal operators

Modal operators (special cases of closure operators) were introduced and in-

vestigated on Heyting algebras in [26], on MV -algebras in [21], on commutative

R`-monoids in [31] and on (non-commutative) R`-monoids in [30]. Moreover,

monotone modal operators on commutative bounded residuated lattices were

studied in [23].

We define and study monotone modal operators on general (not necessarily

commutative) residuated lattices and on commutative basic algebras, and de-

scribe the results from the papers [D] and [E].

2.2.1. Modal operators on residuated lattices

Recall that a bounded integral residuated lattice is an algebraM = (M ;�,∨,∧,→

, , 0, 1) of type (2, 2, 2, 2, 2, 0, 0) satisfying the following conditions:

(i) (M ;�, 1) is a monoid,

(ii) (M ;∨,∧, 0, 1) is a bounded lattice,

(iii) x� y ≤ z iff x ≤ y → z iff y ≤ x z for any x, y ∈M .

In what follows, by a residuated lattice we will mean a bounded integral resid-

uated lattice. A residuated lattice M is called good, if M satisfies the identity
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x−∼ = x∼−. If M is good, we define binary operation “⊕” on M as follows:

x⊕ y = (y− � x−)∼.

Definition. Let M be a residuated lattice. A mapping f : M −→M is called a

modal operator on M if for any x, y ∈M

(M1) x ≤ f(x),

(M2) f(f(x)) = f(x),

(M3) f(x� y) = f(x)� f(y).

A modal operator f is called monotone, if for any x, y ∈M

(M4) x ≤ y =⇒ f(x) ≤ f(y).

If M is a good residuated lattice and for any x, y ∈M

(M5) f(x⊕ y) = f(x⊕ f(y)) = f(f(x)⊕ y),

then f is called strong.

In all cases of R`-monoids every modal operator is already monotone. How-

ever, in general residuated lattices the converse need not hold. An example of a

modal operator that is not monotone is given in [23].

Proposition (D, 5). Let f be a monotone modal operator on a good residuated

lattice M . Then it is strong if and only if for any x ∈M

x⊕ f(0) = f(x−∼) = f(0)⊕ x.

Theorem (D, 6). Let M be a residuated lattice and f : M −→M be a mapping.

Then f is a monotone modal operator on M if and only if for any x, y ∈M :

(i) x→ f(y) = f(x)→ f(y),

(ii) x f(y) = f(x) f(y),
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(iii) f(x)� f(y) ≥ f(x� y).

In general, if f is a monotone modal operator, the equation f(0) = 0 need

not hold. An example of such modal operator is shown in [23]. Thus we will

investigate under which condition this equality holds.

Proposition (D, 7). Let M be a residuated lattice and f be a monotone modal

operator. Then the following conditions are equivalent.

(i) f(0) = 0,

(ii) f(x∼) = x∼, for all x ∈M ,

(iii) f(x−) = x−, for all x ∈M .

As a consequence of the previous proposition we obtain the following result.

Let M be a good residuated lattice satisfying x−∼ = x for all x ∈ M . Let f be

a monotone modal operator on M such that f(0) = 0. Then f is the identity on

M .

Let M be a residuated lattice and f be a modal operator on M . We denote

by

Fix(f) = {x ∈M ; f(x) = x}

the set of all fixed elements of the operator f . By the definition of a modal

operator it is obvious that Fix(f) = Im(f).

Proposition (D, 18). If f is a monotone modal operator on a residuated lattice

M , then Fix(f) = (Fix(f);�,∨Fix(f),∧,→, , f(0), 1), where x∨Fix(f)y = f(x∨y)

for any x, y ∈ Fix(f), and ∧,→, are the restrictions of the binary operations

from M on Fix(f), is a residuated lattice.

2.2.2. Modal operators on commutative basic algebras

Recall that a basic algebra is an algebra 〈A;⊕,¬, 0〉 of type 〈2, 1, 0〉 that

satisfies the identities

(i) x⊕ 0 = x,

29



(ii) ¬¬x = x,

(iii) ¬(¬x⊕ y)⊕ y = ¬(¬y ⊕ x)⊕ x,

(iv) ¬(¬(¬(x⊕ y)⊕ y)⊕ z)⊕ (x⊕ z) = ¬0,

(v) x⊕ y = y ⊕ x.

Moreover, if x ⊕ y = y ⊕ x for any x, y ∈ A, then A is called a commutative

basic algebra. In a commutative basic algebra A we define a binary operation

such that for any x, y ∈ A

x� y := ¬(¬x⊕ ¬y).

Definition. Let A be a commutative basic algebra. A mapping f : A → A is

called a modal operator on A if for any x, y ∈ A

1. x ≤ f(x),

2. f(f(x)) = f(x),

3. f(x� y) = f(x)� f(y).

A modal operator f is called strong, if for any x, y ∈ A

4. f(x⊕ y) = f(x⊕ f(y)).

Let A be a basic algebra. Denote by B(A) := {x ∈ A : x⊕ x = x} the set of

all idempotent elements of A.

Proposition. [29] If A is a commutative basic algebra, then B(A) is a subalgebra

of A.

Theorem. [29] If A is a commutative basic algebra, then B(A) is a Boolean

algebra.

For an arbitrary element a ∈ B(A) denote by ga : A → A the mapping such

that ga(x) = a⊕ x for any x ∈ A.
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Theorem (E, 3.5). Let A be a commutative basic algebra, and a ∈ B(A). Then

ga : A→ A is a modal operator on A.

For an element a ∈ B(A) consider mappings ha : A → A and ka : A → A

such that for any x ∈ A

ha(x) := a→ x, ka(x) := (x→ a)→ a.

Proposition (E, 3.6). If A is a commutative basic algebra and a ∈ B(A), then

the mappings ha and ka are modal operators on A.

Let A be a commutative basic algebra. Denote by M(A) and Ms(A) the set

of all modal and all strong modal operators on A.

Theorem (E, 3.7). If f1, f2 ∈ M(A), or f1, f2 ∈ Ms(A), then f1f2 ∈ M(A), or

f1f2 ∈Ms(A), respectively, if and only if f1f2 = f2f1.

Proposition (E, 3.8). Let A be a commutative basic algebra, a ∈ B(A) and

f ∈M(A). If f(x) ≤ ga(x) for any x ∈ A, then f(a) = a.

Theorem (E, 3.12). Let A be a commutative basic algebra, and f : A → A be

a mapping. Then f is a modal operator on A if and only if for any x, y ∈ A it

satisfies:

(i) x→ f(y) = f(x)→ f(y),

(ii) f(x)� f(y) ≥ f(x� y).
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[33] Rach̊unek, J., Švrček, F.: MV-algebras with additive closure operators. Acta
Univ. Palacki. Olomouc. Fac. Rer. Nat. Math. 39 (2000), 183 – 189.
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1. Introduction

Commutative bounded integral residuated lattices form a large class of algebras contain-
ing some classes of algebras behind many valued and fuzzy logics, such as MV -algebras
[2], BL-algebras [9], MTL-algebras [7] and commutative R`-monoids [12], [6]. Moreover,
Heyting algebras [1] which are algebras of the intuitionistic logic can be also viewed as
commutative bounded integral lattices.

Topological Boolean algebras, i.e. closure or interior algebras [15], are generalizations of
topological spaces defined by means of topological closure and interior operators. In [13]
closure and interior MV -algebras as generalizations of topological Boolean algebras were
introduced by means of so-called additive closure and multiplicative interior operators. It
is known that every MV -algebra M contains the greatest Boolean subalgebra B(M) of all
complemented elements. By [13], the restriction of any additive closure operator on M
onto B(M) is a topological closure operator on B(M). Moreover, if M is a complete MV -
algebra, then every topological closure operator on B(M) can be extended to an additive
closure operator on M . Since the addition and multiplication of MV -algebras are mutually
dual operations, analogous properties are also true for multiplicative interior operators on
M and B(M).

The notions of additive closure and multiplicative interior operators (ac- and mi- op-
erators, for short) were generalized in [14] to commutative residuated `-monoids (= com-
mutative R`-monoids), i.e. commutative bounded integral residuated lattices satisfying
divisibility [11], [8]. But the dual operation to multiplication in such residuated lattices
does not exist in general. Hence, connections between mi- and ac-operators are more
complicated than those in the case of MV -algebras.
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In the paper we introduce and investigate analogous operators on arbitrary commutative
bounded integral residuated lattices. We describe connections between mi-operators and
ac-operators in this general setting. Moreover, we generalize the notions of mi- and ac-
operators to so-called weak mi-operators and strong ac-operators and show that there is
an antitone Galois connection between them. Furthermore, we describe, for residuated
lattices with Glivenko property, connections between mi- and ac- operators on them and
on the residuated lattices of their regular elements.

2. Preliminaries

A commutative bounded integral residuated lattice is an algebra M = (M ;�,∨,∧,→, 0, 1)
of type (2, 2, 2, 2, 0, 0) satisfying the following conditions:

(i) (M ;�, 1) is a commutative monoid,
(ii) (M ;∨,∧, 0, 1) is a bounded lattice,

(iii) x� y ≤ z iff x ≤ y → z for all x, y, z ∈M .

In what follows, by a residuated lattice we will mean a commutative bounded integral
residuated lattice.

For any residuated lattice M we define a unary operation (negation) − on M such that
x− := x→ 0.

Recall that algebras of logics mentioned in Introduction are characterized in the class of
residuated lattices as follows:

A residuated lattice M is

(a) an MTL-algebra if M satisfies the identity of pre-linearity
(iv) (x→ y) ∨ (y → x) = 1;

(b) involutive if M satisfies the identity of double negation
(v) x−− = x;

(c) an R`-monoid (or a bounded commutative GBL-algebra) if M satisfies the identity of
divisibility
(vi) (x→ y)� x = x ∧ y;

(d) a BL-algebra if M satisfies both (iv) and (vi);
(e) an MV -algebra if M is an involutive BL-algebra;
(f) a Heyting algebra if the operations “�” and “∧” coincide.

Proposition 2.1 ([4, 11]). Let M be a residuated lattice. Then for any x, y, z ∈ M we

have:

(i) x ≤ y =⇒ y− ≤ x−,

(ii) x� y ≤ x ∧ y,

(iii) (x→ y)� x ≤ y,

(iv) x ≤ x−−,

(v) x−−− = x−,

(vi) x→ (y → z) = y → (x→ z),

(vii) x→ (y → z) = (x� y)→ z,

(viii) x ≤ y =⇒ z → x ≤ z → y,

(ix) x ≤ y =⇒ y → z ≤ x→ z,
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(x) y → z ≤ (x→ y)→ (x→ z),

(xi) x→ y ≤ (y → z)→ (x→ z).

(xii) x−− → y−− = x→ y−−,

(xiii) (x→ y−−)−− = x→ y−−,

(xiv) (x� y)− = y → x− = x→ y− = x−− → y− = y−− → x−,

(xv) (x� y)−− ≥ x−− � y−−.

Let M be a residuated lattice. We define a binary operation ⊕ on M as follows:

x⊕ y = (x− � y−)−.

Lemma 2.2 ([4]). Let M be a residuated lattice. For any x, y ∈M we have

(i) x⊕ (y ⊕ z) = (x⊕ y)⊕ z,

(ii) x⊕ y ≥ x−− ∨ y−− ≥ x ∨ y,

(iii) x⊕ 0 = x−−,

(iv) (x⊕ y)−− = x−− ⊕ y−− = x⊕ y,

(v) x� x− = 0, x⊕ x− = 1.

We call a residuated lattice M normal if it satisfies the identity

(x� y)−− = x−− � y−−.

For example, every involutive residuated lattice, every Heyting algebra and every BL-
algebra is normal [5] (note that the name “normal” is sometimes used for non-commutative
residuated lattices where all filters are normal, see [10]).

Similarly as in [14] for residuated `-monoids we can prove the following identities.

Lemma 2.3. Let M be a normal residuated lattice. Then for any x, y ∈M

(i) (x⊕ y)− = x− � y−,

(ii) (x� y)− = x− ⊕ y−.

Proof. (i) Since M is normal, we have (x⊕ y)− = (x−� y−)−− = x−−−� y−−− = x−� y−.

(ii) By Lemma 2.2 (iv), we have x− ⊕ y− = (x− ⊕ y−)−− = ((x−− � y−−)−)−− =

(x−− � y−−)− = (x� y)−−− = (x� y)−. �

3. Connections between interior and closure operators

Definition. Let M be a residuated lattice. A mapping f : M →M is called a multiplica-

tive interior operator (mi-operator) on M if for any x, y ∈M

(1) f(x� y) = f(x)� f(y),

(2) f(x) ≤ x,

(3) f(f(x)) = f(x),

(4) f(1) = 1.

(5) x ≤ y =⇒ f(x) ≤ f(y).
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Remark 3.1. If M is an R`-monoid, i.e. a residuated lattice satisfying x�(x→ y) = x∧y
for any x, y ∈M , then it can be shown [14] that the property 5 from the definition follows

from properties 1 - 4.

Example 3.2. Let M1 = {0, u, a, b, v, 1}. We define the operations � and → on M1 as

follows:

� 0 u a b v 1

0 0 0 0 0 0 0

u 0 0 0 0 0 u

a 0 0 a 0 a a

b 0 0 0 b b b

v 0 0 a b v v

1 0 u a b v 1

→ 0 u a b v 1

0 1 1 1 1 1 1

u v 1 1 1 1 1

a b b 1 b 1 1

b a a a 1 1 1

v u u a b 1 1

1 0 u a b v 1

r

r
r

r
r
r
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u

ab

v
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Then M1 is an involutive normal residuated lattice in which pre-linearity and divisibility

are not satisfied since we have (a→ b) ∨ (b→ a) = b ∨ a 6= 1, and v � (v → u) = v � u =

0 6= u = v ∧ u. However, we get x−− = x for all x ∈M .

Let f1 : M1 → M1 be the mapping such that f1(0) = 0, f1(u) = u, f1(a) = a, f1(b) =

0, f1(v) = v, f1(1) = 1. Then the mapping f1 satisfies the conditions 1 - 4 from the

definition of an mi-operator, but the mapping f1 is not monotone since u < b, whereas

f1(u) � f1(b).

Example 3.3. Let M be the residuated lattice from Example 3.2. Let us consider the

mapping f2 : M → M such that f2(0) = f2(u) = f2(a) = f2(b) = 0, f2(v) = v, f2(1) = 1.

Then f2 is an mi-operator on M .

Lemma 3.4. Let f be an mi-operator on a residuated lattice M . Then for any x, y ∈M

f(x→ y) ≤ f(x)→ f(y).

Proof. Let x, y ∈ M . Then (x → y) � x ≤ y and we have f(x → y) � f(x) = f((x →
y)� x) ≤ f(y). Thus f(x→ y) ≤ f(x)→ f(y). �

Let f : M → M be a mapping on a residuated lattice M . We define a mapping
f− : M →M such that

f−(x) = (f(x−))−,

for any x ∈M .

Proposition 3.5. If f : M →M is a monotone mapping on a residuated lattice M , then

the mapping f− is monotone, too.
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Proof. Let x, y ∈ M be such that x ≤ y. Then by Proposition 2.1 y− ≤ x−, so f(y−) ≤
f(x−). Therefore (f(x−))− ≤ (f(y−))− or equivalently f−(x) ≤ f−(y). �

Proposition 3.6. Let M be a residuated lattice. If f is an mi-operator on M and x, y ∈M ,

then

(i) x ≤ f−(x),

(ii) f−(f−(x)) = f−(x),

(iii) f−(0) = 0,

(iv) x ≤ y =⇒ f−(x) ≤ f−(y).

Proof. (i): If x ∈M , then f−(x) = (f(x−))− ≥ x−− ≥ x.

(ii): For any x ∈M we have f−(f−(x)) = f−((f(x−))−) = (f(f(x−))−−)− and f(x−) ≤
(f(x−))−− by Proposition 2.1. Since f is monotone f(f(x−)) = f(x−) ≤ f((f(x−))−−),

thus (f(x−))− ≥ (f((f(x−))−−))−, and f−(x) ≥ f−(f−(x)). By (i) we also have f−(x) ≤
f−(f−(x)). Thus f−(f−(x)) = f−(x).

(iii): f−(0) = (f(0−))− = (f(1))− = 1− = 0.

(iv): It follows from Proposition 3.5. �

Proposition 3.7. Let M be a normal residuated lattice and f be an mi-operator on M .

Then the mapping f− satisfies the identity

f−(x⊕ y) = f−(x)⊕ f−(y).

Proof. Let x, y ∈ M . Then f−(x) ⊕ f−(y) = ((f−(x))− � (f−(y))−)− = ((f(x−))−− �
(f(y−))−−)− = (f(x−) � f(y−))−−− = (f(x−) � f(y−))− = (f(x− � y−))− = (f((x ⊕
y)−))− = f−(x⊕ y). �

Definition. Let M be a residuated lattice. A mapping g : M → M is called an additive

closure operator (ac-operator) on M if for any x, y ∈M

(1) g(x⊕ y) = g(x)⊕ g(y),

(2) x ≤ g(x),

(3) g(g(x)) = g(x),

(4) g(0) = 0,

(5) x ≤ y =⇒ g(x) ≤ g(y).

Proposition 3.8. If M is a normal residuated lattice and f is an mi-operator on M , then

the mapping f− is an ac-operator on M .

Proof. It follows from Propositions 3.6 and 3.7. �

Lemma 3.9. If M is a residuated lattice and g is an ac-operator on M , then g satisfies

the identity

g(x−−) = (g(x))−−.
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Proof. By Lemma 2.2 (iii), we have g(x−−) = g(x ⊕ 0) = g(x) ⊕ g(0) = g(x) ⊕ 0 =

(g(x))−−. �

Proposition 3.10. Let M be a normal residuated lattice and g be an ac-operator on M .

Then we have for any x, y ∈M

(i) g−(x� y) = g−(x)� g−(y),

(ii) g−(x) ≤ x−−,

(iii) g−(g−(x)) = g−(x),

(iv) g−(1) = 1,

(v) x ≤ y =⇒ g−(x) ≤ g−(y).

Proof. (i) Let x, y ∈M . Then we have g−(x� y) = (g((x� y)−))−, and by Lemma 2.3 we

get (g((x� y)−))− = (g(x−)⊕ g(y−))− = (g(x−))− � (g(y−))− = g−(x)� g−(y).

(ii) Since x− ≤ g(x−), we have (g(x−))− = g−(x) ≤ x−−.

(iii) By Lemma 3.9, g−(g−(x)) = (g((g(x−))−−))− = (g(g(x−)))−−− = (g(x−))− =

g−(x).

(iv) g−(1) = (g(1−))− = (g(0))− = 0− = 1.

(v) For any x, y ∈ M such that x ≤ y we have y− ≤ x−, thus g(y−) ≤ g(x−) and

g−(x) = (g(x−))− ≤ (g(y−))− = g−(y). �

Remark 3.11. If g is an ac-operator on a normal residuated lattice M , then g− need not

be an mi-operator, i.e. condition 2 from the definition of an mi- operator need not be

satisfied on M as we can see in the following example.

Example 3.12. Let M2 = {0, a, b, c, 1}. Let the operations � and → be defined on M2 as

follows.

� 0 a b c 1

0 0 0 0 0 0

a 0 a a a a

b 0 a b a b

c 0 a a c c

1 0 a b c 1

→ 0 a b c 1

0 1 1 1 1 1

a 0 1 1 1 1

b 0 c 1 c 1

c 0 b b 1 1

1 0 a b c 1
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Then M2 = (M2;�,∨,∧,→, 0, 1) is a residuated lattice which is both BL-algebra and

Heyting algebra with the derived operation ⊕:

⊕ 0 a b c 1

0 0 1 1 1 1

a 1 1 1 1 1

b 1 1 1 1 1

c 1 1 1 1 1

1 1 1 1 1 1
r

r
r

r
r

0

a

cb

1

@
@

@

�
�
�

�
�

�

@
@
@

Let g : M2 →M2 be the mapping such that g(0) = 0, g(a) = g(b) = b, g(c) = 1, g(1) = 1.

Then we can easily verify that g is an ac-operator onM2. However, the inequality g−(x) ≤ x

does not hold for all x ∈M2, since, for instance, g−(a) = (g(a−))− = (g(0))− = 0− = 1 � a.

Recall that a residuated lattice M is called involutive if it satisfies x−− = x for any
x ∈M .

Remark 3.13. It is obvious that any involutive residuated lattice is normal. Hence by

Proposition 3.8, if f is an mi-operator on such a residuated lattice M , then f− is an ac-

operator on M . Furthermore, if g is an ac-operator on an involutive residuated lattice M ,

then by Proposition 3.10, g− is an mi-operator on M. Moreover, f 7→ f− and g 7→ g−

are one-to-one correspondences between mi-operators and ac-operators on an involutive

residuated lattice.

Remark 3.14. The situation for normal residuated lattices which are not involutive is

more complicated. Namely, although f− is still an ac-operator for any mi-operator f on a

residuated lattice M , for ac-operator g on M , g− need not be an mi-operator. Furthermore,

if f is an mi-operator on M , then by the proof of Proposition 3.6 (i), f− satisfies in fact a

condition that is stronger than axiom 2 in the definition of an ac-operator on M . Therefore,

we will introduce now the notions of wmi- and sac- operators on normal residuated lattices.

Definition. Let M be a residuated lattice and f : M → M . Then f is called a weak

mi-operator (a wmi-operator) on M if it satisfies conditions 1 and 3 - 5 of the definition of

an mi-operator and for any x ∈M

2a. f(x) ≤ x−−.

Definition. Let M be a normal residuated lattice and g : M → M . Then g is called

a strong ac-operator (an sac-operator) on M if it satisfies conditions 1 and 3 - 5 of the

definition of an ac-operator and for any x ∈M

2b. x−− ≤ g(x).
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Remark 3.15. We have that if f is an mi-operator, then f− is an sac-operator and if g is

an ac-operator, then g− is a wmi-operator.

Now we will describe connections among mi-, ac-, wmi- and sac-operators on normal
residuated lattices.

Proposition 3.16. Let M be a normal residuated lattice.

(i) If f is a wmi-operator on M , then f− is an sac-operator on M .

(ii) If g is an sac-operator on M , then g− is a wmi-operator on M .

Proof. (i) It suffices to prove condition 2b. If x ∈ M , then by 2a., f(x−) ≤ x−−− = x−,

hence (f(x−))− = f−(x) ≥ x−−.

(ii) Analogously we will only verify condition 2a. If x ∈M , then x− = (x−)−− ≤ g(x−),

thus x−− ≥ (g(x−))− = g−(x). �

If M is a normal residuated lattice, denote by wmi(M) the set of wmi-operators on M
and by sac(M) the set of sac-operators on M . Suppose that wmi(M) and sac(M) are
pointwise ordered.

Let α : wmi(M)→ sac(M) be the mapping such that α(f) = f−, for any f ∈ wmi(M),
and β : sac(M)→ wmi(M) be the mapping such that β(g) = g−, for any g ∈ sac(M).

Theorem 3.17. If M is a normal residuated lattice, then α and β form an antitone Galois

connection, i.e. f ≤ β(g) if and only if g ≤ α(f), for any f ∈ wmi(M) and g ∈ sac(M).

Proof. Let f ∈ wmi(M), g ∈ sac(M) and f ≤ β(g) = g−. Then f(x) ≤ g−(x) = (g(x−))−,

thus f(x)− ≥ (g(x−))−−, for any x ∈M . Therefore (f(x−))− ≥ (g(x−−))−− ≥ (g(x))−− ≥
g(x), thus α(f)(x) ≥ g(x), for any x ∈M . That means g ≤ α(f).

Conversely, let g ≤ α(f). Then f−(x) ≥ g(x), i.e. (f(x−))− ≥ g(x), and so (f(x−))−− ≤
(g(x))−, for any x ∈ M . Hence (f(x−−))−− ≤ (g(x−))− = g−(x), and (f(x−−))−− ≥
(f(x))−− ≥ f(x). That means β(g)(x) = g−(x) ≥ (f(x−−))−− ≥ f(x), for any x ∈M , and

thus f ≤ β(g). �

The following theorem is now an immediate consequence.

Theorem 3.18. Let M be a normal residuated lattice.

(i) If f is an mi-operator on M and h = (f−)− is the corresponding wmi-operator on M ,

then the induced sac-operators f− and h− are the same.

(ii) If g is an ac-operator on M and k = (g−)− is the corresponding sac-operator on M ,

then the induced wmi-operators g− and k− are the same.

4. Operators on residuated lattices with Glivenko property

Definition. Let M be a residuated lattice. A nonempty subset F of M is called a filter

of M if the following conditions hold



INTERIOR AND CLOSURE OPERATORS ON RESIDUATED LATTICES 9

(1) x, y ∈ F =⇒ x� y ∈ F ,

(2) x ∈ F, y ∈M, x ≤ y =⇒ y ∈ F .

A subset D of M is called a deductive system of M if

(3) 1 ∈ D,
(4) x, x→ y ∈ D =⇒ y ∈ D.

It is known that a nonempty subset of M is a filter of M if and only if it is a deductive
system of M .

By [11], filters of commutative residuated lattices are in a one-to-one correspondence
with their congruences. If F is a filter of a commutative residuated lattice M , then for the
corresponding congruence ΘF we have:

〈x, y〉 ∈ ΘF ⇐⇒ (x→ y) ∧ (y → x) ∈ F ⇐⇒ (x→ y)� (y → x) ∈ F
⇐⇒ x→ y, y → x ∈ F,

for each x, y ∈ M . In such a case, F = {x ∈ M : 〈x, 1〉 ∈ ΘF}. For any filter F of M we
put M/F := M/ΘF .

If M is a residuated lattice, denote D(M) = {x ∈ M : x−− = 1} the set of dense
elements in M .

We say that a residuated lattice M has Glivenko property [3] if for any x, y ∈M
(x→ y)−− = x→ y−−.

Proposition 4.1 ([3]). A residuated lattice M has Glivenko property if and only if M

satisfies the identity

(x−− → x)−− = 1.

An element x of a residuated lattice M is called regular if x−− = x. Denote by Reg(M)
the set of all regular elements in M . If x, y ∈ Reg(M), put x ∨∗ y := (x ∨ y)−−, x ∧∗ y :=
(x ∧ y)−−, x�∗ y := (x� y)−− and x⊕∗ y = (x⊕ y)−−.

Theorem 4.2 ([3]). For any residuated lattice M the following conditions are equivalent.

(i) M has Glivenko property,

(ii) (Reg(M);∨∗,∧∗,�∗,→, 0, 1) is an involutive residuated lattice and the mapping −− :

M → Reg(M) such that −− : x 7→ x−− is a surjective homomorphism of residuated

lattices.

Remark 4.3. If M is a normal residuated lattice and x, y ∈ Reg(M), then x �∗ y =

(x� y)−− = x−− � y−− = x� y. For arbitrary residuated lattice we have x⊕∗ y = x⊕ y.

Proposition 4.4. If a residuated lattice M has Glivenko property if and only if (x →
y)−− = x−− → y−−, for any x, y ∈M .

Proof. It follows from Proposition 2.1 (xii). �

Remark 4.5. Every R`-monoid has Glivenko property because by [12] it satisfies the

identity (x→ y)−− = x−− → y−−.
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Proposition 4.6. If M is a residuated lattice, then D(M) is a filter of M .

Proof. Let x, y ∈ D(M), i.e. x−− = 1 = y−−. Then by Proposition 2.1, (x � y)−− ≥
x−− � y−− = 1, hence (x� y)−− = 1, and so x� y ∈ D(M).

If x ∈ D(M), z ∈M and x ≤ z, then obviously z ∈ D(M). �

The following assertions concerning connections between D(M) and Reg(M) are conse-
quences of Theorem 4.2.

Theorem 4.7. If M is a residuated lattice with Glivenko property, then for any x, y ∈M
we have 〈x, y〉 ∈ ΘD(M) if and only if x−− = y−−. Moreover, the quotient residuated lattice

M/D(M) is involutive.

Proof. Let x, y ∈ M . Then 〈x, y〉 ∈ ΘD(M) ⇐⇒ x → y, y → x ∈ D(M) ⇐⇒ (x →
y)−− = 1 = (y → x)−− ⇐⇒ x−− → y−− = 1 = y−− → x−− ⇐⇒ x−− ≤ y−−, y−− ≤
x−− ⇐⇒ x−− = y−−.

Therefore, (x/D(M))−− = x−−/D(M) = x/D(M). �

Theorem 4.8. If M is a residuated lattice with Glivenko property, then the residuated

lattices Reg(M) and M/D(M) are isomorphic.

Remark 4.9. It is obvious that the mappings ϕ : Reg(M)→M/D(M) and ψ : M/D(M)→
Reg(M) such that ϕ : x 7→ x/D(M) and ψ : y/D(M) 7→ y−− are mutually inverse isomor-

phisms between Reg(M) and M/D(M).

Theorem 4.10. Let M be a normal residuated lattice with Glivenko property, f an mi-

operator (resp. an ac-operator) on M and f ∗ : M/D(M) → M/D(M) the mapping such

that f ∗(x/D(M)) = f(x−−)/D(M). Then f ∗ is an mi-operator (resp. an ac-operator) on

M/D(M).

Proof. Let f be an mi-operator on M and x, y ∈ M be elements such that x/D(M) =

y/D(M). Then

f ∗(x/D(M)) = f(x−−)/D(M) = f(y−−)/D(M) = f ∗(y)/D(M).

Therefore f ∗ is defined correctly. We will verify that it is an mi-operator.

(1) f ∗(x/D(M))� f ∗(y/D(M)) = f(x−−)/D(M)� f(y−−)/D(M) =

(f(x−−�y−−))/D(M) = f((x�y)−−)/D(M) = f ∗((x�y)/D(M)) = f ∗((x/D(M))�
(y/D(M))).

(2) f ∗(x/D(M)) = f(x−−)/D(M) ≤ x−−/D(M) = x/D(M).

(3) f ∗(f ∗(x/D(M))) = f ∗(f(x−−)/D(M)) = f((f(x−−))−−)/D(M)

≤ (f(x−−))−−/D(M) = f(x−−)/D(M) = f ∗(x/D(M)). Conversely, (f(x−−))−−/D(M)

≥ f(x−−)/D(M) =⇒ f((f(x−−))−−)/D(M) ≥ f(f(x−−))/D(M) = f(x−−)/D(M) =⇒
f ∗(f ∗(x/D(M))) ≥ f ∗(x/D(M)). Hence, f ∗(f ∗(x/D(M))) = f ∗(x/D(M)).
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(4) f ∗(1/D(M)) = f(1−−)/D(M) = f(1)/D(M) = 1/D(M).

(5) x/D(M) ≤ y/D(M) =⇒ x−−/D(M) ≤ y−−/D(M) =⇒ f(x−−)/D(M)

≤ f(y−−)/D(M) =⇒ f ∗(x/D(M)) ≤ f ∗(y/D(M)).

Similarly for ac-operators on M . �

Theorem 4.11. If M is a normal residuated lattice with Glivenko property and f is an

mi-operator (resp. an ac-operator) on M , then the mapping f# such that f#(x) = f(x)−−

for any x ∈ Reg(M) is an mi-operator (resp. an ac-operator) on the residuated lattice

Reg(M).

Proof. If x ∈ Reg(M), then also f(x)−− ∈ Reg(M). The assertion is hence a direct

consequence of the preceeding theorem because the mapping ψ from Remark 4.9 is an

isomorphism of residuated lattices. �

Theorem 4.12. Let M be a normal residuated lattice with Glivenko property. If g :

Reg(M) → Reg(M) is an mi-operator on the involutive residuated lattice Reg(M), then

the mapping g+ : M → M such that g+(x) := g(x−−) for any x ∈ M , is a wmi-operator

on M .

Proof. Let g be an mi-operator on Reg(M) and g+(x) = g(x−−) for any x ∈M .

(1) g+(x� y) = g((x� y)−−) = g(x−− � y−−) = g(x−− �∗ y
−−) = g(x−−)�∗ g(y−−) =

g(x−−)� g(y−−) = g+(x)� g+(y).

(2) g+(x) = g(x−−) ≤ x−−.

(3) g+(g+(x)) = g((g+(x))−−) = g((g(x−−))−−) = g(g(x−−)) = g(x−−) = g+(x).

(4) g+(1) = g(1−−) = g(1) = 1.

(5) x ≤ y =⇒ g+(x) = g(x−−) ≤ g(y−−) = g+(y).

Hence g is an mi-operator on M . �

Theorem 4.13. Let M be a residuated lattice with Glivenko property. If h : Reg(M) →
Reg(M) is an ac-operator on Reg(M), then the mapping ĥ(x) = h(x−−) for any x ∈ M ,

is an sac-operator on M .

Proof. 1. ĥ(x⊕y) = h((x⊕y)−−) = h(x−−⊕y−−) = h(x−−⊕∗ y
−−) = h(x−−)⊕∗h(y−−) =

h(x−−)⊕ h(y−−) = ĥ(x)⊕ ĥ(y).

2. ĥ(x) = h(x−−) ≥ x−−.

3. - 5. Similarly as in the proof of Theorem 4.12. �
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[5] Dvurečenskij, A., Rach̊unek, J.: On Riečan and Bosbach states for bounded R`-monoids. Math. Slo-

vaca 56 (2006), 487–500.
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1. Introduction

Bounded integral residuated lattices form a large class of algebras containing some classes of algebras behind

many-valued and fuzzy logics, such as pseudo MV -algebras [12] (or equivalently GMV -algebras [16]), pseudo BL-

algebras [5], pseudo MTL-algebras [11] and R`-monoids [9], and consequently the classes of their commutative

cases, i.e. MV -algebras [2], BL-algebras [13], MTL-algebras [10] and commutative R`-monoids [8]. Moreover,

Heyting algebras [1] which are algebras of the intuitionistic logic can be also considered as residuated lattices.

Topological Boolean algebras, i.e. closure or interior algebras [22], are generalizations of topological spaces defined

by means of topological closure and interior operators. In [20] closure and interior MV -algebras as generalizations

of topological Boolean algebras were introduced by means of so-called additive closure and multiplicative interior

operators. It is known that every MV -algebra M contains the greatest Boolean subalgebra B(M) of all comple-

mented elements. By [20], the restriction of any additive closure operator on M onto B(M) is a topological closure
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operator on B(M). Moreover, if M is a complete MV -algebra, then every topological closure operator on B(M)

can be extended to an additive closure operator on M . Since the addition and multiplication of MV -algebras

are mutually dual operations, analogous properties are also true for multiplicative interior operators on M and

B(M).

The notions of additive closure and multiplicative interior operators (ac- and mi- operators, for short) were gen-

eralized in [21] to commutative residuated `-monoids (= commutative R`-monoids), i.e. commutative bounded

integral residuated lattices satisfying divisibility [14], [15]. But the dual operation to multiplication in such resid-

uated lattices does not exist in general. Hence, connections between mi- and ac- operators are more complicated

than those in the case of MV -algebras. Note that mi- and ac- operators on bounded residuated lattice ordered

monoids were studied in [23].

In the paper we introduce and investigate analogous operators on arbitrary bounded integral residuated lattices.

We describe connections between mi-operators and ac-operators in this general setting. Moreover, we generalize

the notions of mi- and ac- operators to so-called weak mi-operators and strong ac-operators and show that there

is an antitone Galois connection between them. Furthermore, we describe, for residuated lattices with Glivenko

property, connections between mi- and ac- operators on them and on the residuated lattices of their regular

elements.

2. Preliminaries

A bounded integral residuated lattice is an algebra M = (M ;�,∨,∧,→, , 0, 1) of type (2, 2, 2, 2, 2, 0, 0) satisfying

the following conditions:

(i) (M ;�, 1) is a monoid,

(ii) (M ;∨,∧, 0, 1) is a bounded lattice,

(iii) x� y ≤ z iff x ≤ y → z iff y ≤ x z for any x, y ∈M .

In what follows, by a residuated lattice we will mean a bounded integral residuated lattice. If the operation �

on a residuated lattice M is commutative then M is called a commutative residuated lattice. In such a case the

operations → and  coincide.

In a residuated lattice M we define two unary operations (negations) “−” and “∼” on M such that x− := x →

0 and x∼ := x 0 for each x ∈M.

Recall that the mentioned algebras of many-valued and fuzzy logics are characterized in the class of residuated

lattices as follows:

A residuated lattice M is

(a) a pseudo MTL-algebra if M satisfies the identities of pre-linearity

2
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(iv) (x→ y) ∨ (y → x) = 1 = (x y) ∨ (y  x);

(b) an R`-monoid if M satisfies the identities of divisibility

(v) (x→ y)� x = x ∧ y = y � (y  x);

(c) a pseudo BL-algebra if M satisfies both (iv) and (v);

(d) involutive if M satisfies the identities

(vi) x−∼ = x = x∼−;

(e) a GMV -algebra (or equivalently a pseudo MV -algebra) if M satisfies (iv), (v) and (vi);

(f) a Heyting algebra if the operations “�” and “∧” coincide.

A residuated lattice M is called good, if M satisfies the identity x−∼ = x∼−. For example, every commutative

residuated lattice, every GMV -algebra and every pseudo BL-algebra which is a subdirect product of linearly

ordered pseudo BL-algebras [6] is good.

By [4], every good residuated lattice satisfies the identity (x− � y−)∼ = (x∼ � y∼)−. If M is good, we define

binary operation “⊕” on M as follows:

x⊕ y = (y− � x−)∼.

In the next proposition we recall some basic properties of residuated lattices.

Proposition 2.1 ([4],[15],[14]).
Let M be a residuated lattice. Then for any x, y, z ∈M we have:

(i) x� y ≤ x ∧ y,

(ii) x ≤ y =⇒ x� z ≤ y � z, z � x ≤ z � y,

(iii) x ≤ y =⇒ z → x ≤ z → y, z  x ≤ z  y,

(iv) x ≤ y =⇒ x→ z ≥ y → z, x z ≥ y  z,

(v) (x� y)→ z = x→ (y → z), (y � x) z = x (y  z),

(vi) (y → z)� (x→ y) ≤ x→ z, (x y)� (y  z) ≤ x z,

(vii) x ≤ x−∼, x ≤ x∼−,

(viii) x−∼− = x−, x∼−∼ = x∼,

(ix) x ≤ y =⇒ y− ≤ x−, y∼ ≤ x∼,

(x) x� (x y) ≤ y, (x→ y)� x ≤ y,

(xi) y ≤ x→ y, y ≤ x y,

(xii) x→ y ≤ y−  x−, x y ≤ y∼  x∼,

(xiii) (x� y)− = x→ y−, (x� y)∼ = y  x∼,

(xiv) if M is good, (x� y)−∼ ≥ x−∼ � y−∼, (x� y)∼− ≥ x∼− � y∼−,

3
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(xv) x→ y ≤ (z → x)→ (z → y),

(xvi) x y ≤ (z  x) (z  y),

(xvii) y−  x− = x−∼ → y−∼ = x→ y−∼,

(xviii) y∼ → x∼ = x∼−  y∼− = x y∼−.

Moreover, if M is good, then

(xv) x−∼ ⊕ y−∼ = x−∼ ⊕ y = x⊕ y−∼ = x⊕ y,

(xvi) x⊕ 0 = x−∼ = 0⊕ x,

(xvii) x⊕ y = x−  y−∼ = y∼ → x−∼,

(xviii) y ⊕ x− = x→ y−∼, x∼ ⊕ y = x y−∼,

(xix) (x⊕ y)⊕ 0 = x⊕ y,

(xx) x ≤ y =⇒ z ⊕ x ≤ z ⊕ y, x⊕ z ≤ y ⊕ z,

(xxi) ⊕ is associative.

A residuated lattice M is called normal if it satisfies the identities

(x� y)−∼ = x−∼ � y−∼, (x� y)∼− = x∼− � y∼−.

For example, every Heyting algebra and every good pseudo BL-algebra is normal [19], [7].

Proposition 2.2 ([17]).
Let M be a good and normal residuated lattice. Then for any x, y ∈M

(i) (x⊕ y)− = y− � x−, (x⊕ y)∼ = y∼ � x∼,

(ii) x− ⊕ y− = (y � x)−, x∼ ⊕ y∼ = (y � x)∼.

3. Connections between interior and closure operators

Definition .
Let M be a residuated lattice. A mapping f : M → M is called a multiplicative interior operator (mi-operator)
on M if for any x, y ∈M

1. f(x� y) = f(x)� f(y),

2. f(x) ≤ x,

3. f(f(x)) = f(x),

4. f(1) = 1,

5. x ≤ y =⇒ f(x) ≤ f(y).

Remark 3.1.
If M is a R`-monoid, i.e. a residuated lattice satisfying x � (x → y) = x ∧ y for any x, y ∈ M , then it can be
shown [21] that the property 5 from the definition follows from properties 1 - 4.
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Example 3.2.
Let M1 = {0, u, a, b, v, 1}. We define the operations � and → on M1 as follows:

� 0 u a b v 1

0 0 0 0 0 0 0

u 0 0 0 0 0 u

a 0 0 a 0 a a

b 0 0 0 b b b

v 0 0 a b v v

1 0 u a b v 1

→ 0 u a b v 1

0 1 1 1 1 1 1

u v 1 1 1 1 1

a b b 1 b 1 1

b a a a 1 1 1

v u u a b 1 1

1 0 u a b v 1 r

r
r

r
r
r

0

u

ab

v

1

@
@

@

�
�
�

�
�

�

@
@
@

Then M1 is a commutative involutive normal residuated lattice in which pre-linearity and divisibility are not
satisfied since we have (a→ b) ∨ (b→ a) = b ∨ a 6= 1, and v � (v → u) = v � u = 0 6= u = v ∧ u. However, we get
x−− = x for all x ∈M .
Let f1 : M1 → M1 be the mapping such that f1(0) = 0, f1(u) = u, f1(a) = a, f1(b) = 0, f1(v) = v, f1(1) = 1.
Then the mapping f1 satisfies the conditions 1 - 4 from the definition of an mi-operator, but the mapping f1 is
not monotone since u < b, whereas f1(u) � f1(b).

Lemma 3.3.
Let f be an mi-operator on a residuated lattice M . Then for any x, y ∈M

f(x→ y) ≤ f(x)→ f(y), f(x y) ≤ f(x) f(y).

Proof. Let x, y ∈ M . By Proposition 2.1 we have x � (x  y) ≤ y, and by monotony of f we have f(x) �

f(x  y) ≤ f(y). Thus f(x  y) ≤ f(x)  f(y). Similarly, since by Proposition 2.1 (x → y) � x ≤ y,

f(x→ y) ≤ f(x)→ f(y).

Let f : M →M be a mapping, and consider two new mappings

f∼− : M →M, f−∼ : M →M,

such that for each x ∈M

f∼− (x) := (f(x−))∼

and

f−∼ (x) := (f(x∼))−.

Proposition 3.4.
If f : M →M is a monotone mapping on a residuated lattice M , then both mappings f−∼ , f

∼
− are monotone.

Proof. Let x, y ∈ M be such that x ≤ y. Then y− ≤ x− and f(y−) ≤ f(x−). Therefore f∼− (x) = (f(x−))∼ ≤

(f(y−))∼ = f−∼ (y). Analogously for f−∼ .
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Proposition 3.5.
Let f : M →M be an mi-operator on a residuated lattice M . Then for any x ∈M we have

(i) x ≤ f∼− (x),

(ii) f∼− (f∼− (x)) = f∼− (x),

(iii) f∼− (0) = 0,

(iv) x ≤ y =⇒ f∼− (x) ≤ f∼− (y).

Proof. (i): If x ∈M then f∼− (x) = (f(x−))∼ ≥ x−∼ ≥ x.

(ii): By (i), for any x ∈M we have f∼− (x) ≤ f∼− (f∼− (x)). Further we know that f(x−) ≤ (f(x−))∼− and so

f∼− (f∼− (x)) = f∼− ((f(x−))∼) = (f((f(x−))∼−))∼ ≤ (f(f(x−)))∼ = (f(x−))∼ = f∼− (x).

(iii): f∼− (0) = (f(0−))∼ = (f(1))∼ = 1∼ = 0.

(iv): It follows from Proposition 3.4.

Remark 3.6.
It can be readily shown that analogous properties hold for the operator f−∼ .

Definition .
Let M be a good residuated lattice. A mapping g : M → M is called an additive closure operator (ac-operator)
on M if for any x, y ∈M

1. g(x⊕ y) = g(x)⊕ g(y),

2. x ≤ g(x),

3. g(g(x)) = g(x),

4. g(0) = 0,

5. x ≤ y =⇒ g(x) ≤ g(y).

Theorem 3.7.
If M is a good normal residuated lattice and f is an mi-operator on M , then the mappings f−∼ and f∼− are
ac-operators on M .

Proof. By Propositions 3.4 and 3.5, we need only verify the identity 1 from the definition of an ac-operator.

Let x, y ∈M . Then

f∼− (x⊕ y) = (f((x⊕ y)−))∼ = (f(y− � x−))∼ = (f(y−)� f(x−))∼

= (f(x−))∼ ⊕ (f(y−))∼ = f∼− (x)⊕ f∼− (y).
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Lemma 3.8.
If M is a good normal residuated lattice and g is an ac-operator on M then g satisfies the identity

g(x−∼) = (g(x))−∼.

Proof. We have g(x−∼) = g(x⊕ 0) = g(x)⊕ g(0) = g(x)⊕ 0 = (g(x))−∼.

Theorem 3.9.
Let M be a good normal residuated lattice and let g be an ac-operator on M . Then the mappings g∼− , g

−
∼ satisfy

identities 1, 3, 4, 5 from definition of an mi-operator.

Proof. Let x, y ∈M . Then we have for g∼− :

1. g∼−(x� y) = (g((x� y)−))∼ = (g(y− ⊕ x−))∼ = (g(y−)⊕ g(x−))∼ = (g(x−))∼ � (g(y−))∼ = g∼−(x)� g∼−(y),

3. g∼−(g∼−(x)) = g∼−((g(x−))∼) = (g((g(x−))∼−))∼ = (g(g(x−∼−)))∼ = (g(g(x−)))∼ = (g(x−))∼ = g∼−(x),

4. g∼−(1) = (g(1−))∼ = (g(0))∼ = 0∼ = 1.

5. Similarly as in Proposition 3.4.

Analogously for the mapping g−∼ .

Remark 3.10.
If g is an ac-operator on a good normal residuated lattice M , then g−∼ need not be an mi-operator, i.e. condition
2 from the definition of an mi- operator need not be satisfied on M as we can see in the following example of a
commutative residuated lattice.

Example 3.11.
Let M2 = {0, a, b, c, 1}. Let the operations � and → be defined on M2 as follows.

� 0 a b c 1

0 0 0 0 0 0

a 0 a a a a

b 0 a b a b

c 0 a a c c

1 0 a b c 1

→ 0 a b c 1

0 1 1 1 1 1

a 0 1 1 1 1

b 0 c 1 c 1

c 0 b b 1 1

1 0 a b c 1

Then M2 = (M2;�,∨,∧,→, , 0, 1) is a commutative R`-monoid which is both BL-algebra and Heyting algebra
with the derived operation ⊕:

⊕ 0 a b c 1

0 0 1 1 1 1

a 1 1 1 1 1

b 1 1 1 1 1

c 1 1 1 1 1

1 1 1 1 1 1 r

r
r

r
r

0

a

cb

1

@
@
@

�
�
�

�
�
�

@
@
@

Let g : M2 → M2 be the mapping such that g(0) = 0, g(a) = g(b) = b, g(c) = 1, g(1) = 1. Put g− = g∼− = g−∼ .
Then we can easily verify that g is an ac-operator on M2. However, the inequality g−(x) ≤ x does not hold for
all x ∈M2, since, for instance, g−(a) = (g(a−))− = (g(0))− = 0− = 1 � a.
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Definition .
Let M be a residuated lattice and f : M →M . Then f is called a weak mi-operator (a wmi-operator) on M if it
satisfies conditions 1 and 3 - 5 of the definition of an mi-operator, and for any x ∈M

2a. f(x) ≤ x−∼.

Definition .
Let M be a good normal residuated lattice and g : M →M . Then g is called a strong ac-operator (an sac-operator)
on M if it satisfies conditions 1 and 3 - 5 of the definition of an ac-operator, and for any x ∈M

2b. x−∼ ≤ g(x).

Remark 3.12.
We have that if f is an mi-operator, then f−∼ and f∼− are sac-operators and consequently ac-operators, and if g is
an ac-operator then g∼− and g−∼ are wmi-operators.

Now we will describe connections among mi-, ac-, wmi- and sac-operators on good normal residuated lattices.

Proposition 3.13.
Let M be a good normal residuated lattice.

(i) If f is a wmi-operator on M , then f−∼ and f∼− are sac-operators on M .

(ii) If g is an sac-operator on M , then g−∼ and g∼− are wmi-operators on M .

Proof. (i) It suffices to prove condition 2b. If x ∈ M then by 2a, f(x−) ≤ (x−)−∼ = (x−)∼− = x−, hence

f∼− (x) = (f(x−))∼ ≥ x−∼. Similarly for f−∼ .

(ii) Analogously, we will only verify condition 2a. If x ∈M then x∼ = (x∼)−∼ ≤ g(x∼), thus x∼− ≥ (g(x∼))− =

g−∼(x).

If M is a normal residuated lattice, denote by wmi(M) the set of wmi-operators on M and by sac(M) the set of

sac-operators on M . Suppose that wmi(M) and sac(M) are pointwise ordered.

Let α1, α2 : wmi(M) → sac(M) be the mappings such that α1(f) = f∼− , and α2(f) = f−∼ for any f ∈ wmi(M),

and β1, β2 : sac(M)→ wmi(M) be the mappings such that β1(g) = g∼− , and β2(g) = g−∼ for any g ∈ sac(M).

Theorem 3.14.
Let M be a normal residuated lattice.

(i) α1 and β2 form an antitone Galois connection, i.e. f ≤ β2(g) if and only if g ≤ α1(f), for any f ∈ wmi(M)
and g ∈ sac(M).

(ii) α2 and β1 form an antitone Galois connection, i.e. f ≤ β1(g) if and only if g ≤ α2(f), for any f ∈ wmi(M)
and g ∈ sac(M).

Proof. (i) Let f ∈ wmi(M), g ∈ sac(M) and f ≤ β2(g) = g−∼ . Then f(x) ≤ g−∼(x) = (g(x∼))−, thus

f(x)∼ ≥ (g(x∼))−∼, for any x ∈M . Therefore (f(x−))∼ ≥ (g(x−∼))−∼ ≥ g(x−∼) ≥ g(x), thus α1(f)(x) ≥ g(x),

for any x ∈M . That means g ≤ α1(f).
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Conversely, let g ≤ α1(f). Then f∼− (x) ≥ g(x), i.e. (f(x−))∼ ≥ g(x), and so (f(x−))∼− ≤ (g(x))−, for

any x ∈ M . Hence (f(x∼−))∼− ≤ (g(x∼))− = g−∼(x), and (f(x∼−))∼− ≥ f(x∼−) ≥ f(x). That means

β2(g)(x) = g−(x∼) ≥ (f(x∼−))∼− ≥ f(x), for any x ∈M , and thus f ≤ β2(g).

(ii): Analogously.

The following theorem is now an immediate consequence.

Theorem 3.15.
Let M be a good normal residuated lattice.

(i) If f is an mi-operator on M and h = (f−∼ )∼− = (f∼− )−∼, then f∼− = h∼− and f−∼ = h−∼.

(ii) If g is an ac-operator on M and k = (g−∼)∼− = (g∼−)−∼, then g−∼ = k−∼ and g∼− = k∼−.

4. Operators on residuated lattices with Glivenko properties

Lemma 4.1.
Let M be a residuated lattice. For any x, y ∈M we have

(x→ y∼−)∼− = x→ y∼−, (x y−∼)−∼ = x y−∼.

Proof. Let x, y ∈ M . Then (x → y∼−)∼− = ((x � y∼)−)∼− = (x � y∼)− = x → y∼−. Analogously for the

second identity.

As a corollary we obtain that if M is a good residuated lattice, then for any x, y ∈M

(x→ y−∼)−∼ = x→ y−∼.

Lemma 4.2.
Let M be a good residuated lattice. Then the following conditions are equivalent:

(i) (x→ y)−∼ = x→ y−∼, (x y)∼− = x y∼−, for any x, y ∈M .

(ii) (x−∼ → x)−∼ = 1 = (x∼−  x)∼−, for any x ∈M .

(iii) (x→ y)−∼ = x−∼ → y−∼, (x y)∼− = x∼−  y∼−, for any x, y ∈M .

Proof. (i) =⇒ (ii): Let M satisfy (i) and x ∈ M . Then (x−∼ → x)−∼ = x−∼ → x−∼ = 1, and similarly

(x∼−  x)∼− = 1.

(ii) =⇒ (i): Let M satisfy (ii) and x, y ∈ M . Then y−∼ → y ≤ (x → y−∼) → (x → y), hence 1 = (y−∼ →

y)−∼ ≤ ((x → y−∼) → (x → y))−∼ ≤ ((x → y−∼) → (x → y)−∼)−∼ = (x → y−∼) → (x → y)−∼, therefore

x→ y−∼ ≤ (x→ y)−∼. Conversely, (x→ y)−∼ ≤ (x→ y−∼)−∼ = x→ y−∼.

(i) =⇒ (iii): We have (x→ y)−∼ = x→ y−∼ = x−∼ → y−∼. Analogously for the second identity.

(iii) =⇒ (ii): (x∼− → x)−∼ = x−∼ → x−∼ = 1. Analogously (x∼−  x)∼− = 1.

9
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Definition .
We say that a residuated lattice M has Glivenko property (GP) if M satisfies the equivalent conditions in Lemma
4.2.

Remark 4.3.
Recall that the notion of a residuated lattice with Glivenko property in the commutative case (as a residuated
lattice satisfying the identity (x→ y)−− = x→ y−−) was introduced and investigated in [3].

Definition .
Let M be a residuated lattice. A nonempty set F of M is called a filter of M if the following conditions hold

(i) x, y ∈ F imply x� y ∈ F ,

(ii) x ∈ F, x ≤ y ∈M imply y ∈ F .

Definition .
A subset D ⊆M is called a deductive system of M if

(i) 1 ∈ D,

(ii) x ∈ D,x→ y ∈ D imply y ∈ D.

Proposition 4.4.
If H ⊆M , then H is a filter in M if and only if H is a deductive system in M .

Proof. Let H be a filter. Then clearly 1 ∈ H. Now let x ∈ H,x → y ∈ H. Then (x → y) � x ∈ H, and since

(x→ y)� x ≤ x ∧ y it follows that y ∈ H.

Conversely, let H be a deductive system and let x, y ∈ H. Then x → (y → (x � y)) = (x � y) → (x � y) = 1,

thus y → (x � y) ∈ H and hence x � y ∈ H. Let x ∈ H and z ∈ M be such that x ≤ z. Then x → z = 1 ∈ H,

therefore z ∈ H.

Now it can be readily shown that H is a filter in M if and only if

(i) 1 ∈ H,

(ii) x ∈ H,x y ∈ H imply y ∈ H.

A filter H of M is called normal [18] if x → y ∈ H iff x  y ∈ H for each x, y ∈ M . Normal filters of any

residuated lattice M are in one-to-one correspondence with the congruences on M . If H is a normal filter of M ,

then H is the kernel of the unique congruence θH such that 〈x, y〉 ∈ θH if and only if (x → y) � (y → x) ∈ H if

and only if (x y)� (y  x) ∈ H.

Hence we will consider quotient residuated lattices M/H of residuated lattices M by their normal filters. If x ∈M

then we will denote by x/H the class of M/H containing x.

If M is a residuated lattice, denote D(M) = {x ∈M ;x−∼ = 1 = x∼−} the set of dense elements in M .

Theorem 4.5. (i) If M is a good residuated lattice, then D(M) is a filter in M .

(ii) If, moreover, M satisfies (GP), then D(M) is a normal filter in M .
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Proof. (i): Clearly 1 ∈ D(M). Let x, y ∈ D(M), i.e. x−∼ = 1 = y−∼. Then (x�y)−∼ ≥ x−∼�y−∼ = 1�1 = 1,

hence x� y ∈ D(M). If x ∈ D(M), z ∈M and x ≤ z, then obviously z ∈ D(M).

(ii): Let now M satisfy (GP), x, y ∈ M and x → y ∈ D(M), i.e. (x → y)−∼ = 1. Then x−∼ → y−∼ = 1, thus

x−∼ ≤ y−∼, and since M is good we have (x y)−∼ = x−∼  y−∼ = 1. Therefore x y ∈ D(M).

It can be shown in a similar manner that x  y ∈ D(M) implies x → y ∈ D(M). Hence the filter D(M) is

normal.

Theorem 4.6.
Let M be a good residuated lattice satisfying (GP). Then 〈x, y〉 ∈ θD(M) if and only if x−∼ = y−∼ for all x, y ∈M .
Moreover, M/D(M) is an involutive residuated lattice.

Proof. Let x, y ∈M . Then

〈x, y〉 ∈ θD(M) ⇐⇒ x → y, y → x ∈ D(M) ⇐⇒ (x → y)−∼ = 1 = (y → x)−∼. Since x → y ≤ x → y−∼ we

get (x → y)−∼ ≤ (x → y−∼)−∼, and thus (x → y−∼)−∼ = 1. By Lemma 4.1, 1 = (x → y−∼)−∼ = x → y−∼,

hence x ≤ y−∼, and consequently x−∼ ≤ y−∼. Analogously we get y−∼ ≤ x−∼. Moreover, (x/D(M))−∼ =

x−∼/D(M) = x/D(M).

An element x of a residuated lattice M is called regular if x−∼ = x = x∼−. Denote by Reg(M) the set of all regular

elements in M . Clearly 0, 1 ∈ Reg(M). If x, y ∈M , put x∨∗y := (x∨y)−∼, x∧∗y := (x∧y)−∼, x�∗y := (x�y)−∼.

Theorem 4.7.
Let M be a good normal residuated lattice satisfying (GP). Then Reg(M) = (Reg(M);�∗,∨∗,∧∗,→, , 0, 1) is
an involutive residuated lattice and the mapping −∼ : M → Reg(M) such that −∼ : x 7→ x−∼ is a retract of the
reduct (M ;�,→, , 0, 1) onto (Reg(M);�,→, , 0, 1).

Proof. The mapping −∼ : M → M is a closure operator on the lattice (M ;∧,∨) and Reg(M) is the set of

all fixed elements of −∼. Therefore Reg(M) is a lattice with respect to the induced ordering on M , and for the

lattice operations ∨∗ and ∧∗ we have x ∧∗ y = x ∧ y and x ∨∗ y = (x ∨ y)−∼ for all x, y ∈ Reg(M).

Let x, y ∈ Reg(M). Since M is normal we have x�∗ y = (x� y)−∼ = x−∼ � y−∼ = x� y, thus x�∗ y = x� y.

Since M satisfies (GP) we get for any x, y ∈ Reg(M)

(x→ y)−∼ = x−∼ → y−∼ = x→ y,

(x y)∼− = x∼−  y∼− = x y

Hence the restriction of � onto Reg(M) has left and right adjunctions, therefore Reg(M) = (Reg(M);�,∧,∨∗,→

, , 0, 1) is a residuated lattice.

Finally, it is clear that −∼ is a surjective homomorphism of (M ;�,→, , 0, 1) onto (Reg(M);�,→, , 0, 1).

From Therem 4.6 and Theorem 4.7 we obtain the following.
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Theorem 4.8.
If M is a good normal residuated lattice such that Reg(M) = (Reg(M);�,→, , 0, 1) is an involutive residuated
lattice and the mapping −∼ is a retract of (M ;→, ) onto (Reg(M);→, ), then M satisfies (GP).

Proof. We have (x → y)−∼ = x−∼ → y−∼ for any x, y ∈ M . Therefore (x−∼ → x)−∼ = x−∼ → x−∼ = 1 for

any x ∈M . Moreover, (x y)∼− = (x y)−∼ = x−∼  y−∼ = x∼−  y−∼. Hence M satisfies (GP).

Theorem 4.9.
Let M be a good normal residuated lattice. Then the following statements are equivalent:

1. M satisfies (GP).

2. (Reg(M);�,∨∗,∧,→, , 0, 1) is an involutive residuated lattice and the mapping −∼ : M → Reg(M) such
that −∼ : x 7→ x−∼ is a retract of (M ;�,→, , 0, 1) onto (Reg(M);�,→, , 0, 1).

The following assertion is now an immediate consequence.

Corollary 4.10.
If M is a good normal residuated lattice satisfying (GP), then (�,→, , 0, 1)-reducts of M/D(M) and Reg(M)
are isomorphic.

Theorem 4.11.
If M is a good normal residuated lattice satisfying (GP) and f is an mi-operator (an ac-operator) on M , then
the mapping f∗ : Reg(M) → Reg(M) such that f∗(x) = f(x)−∼, for any x ∈ Reg(M), is an mi-operator (an
ac-operator) on the residuated lattice Reg(M).

Proof. Let f be an mi-operator on M and x, y ∈ Reg(M).

(1) f∗(x� y) = f(x� y)−∼ = (f(x)� f(y))−∼ = f(x)−∼ � f(y)−∼ = f∗(x)� f∗(y).

(2) f∗(x) = f(x)−∼ ≤ x−∼ = x.

(3) f∗(f∗(x)) = f∗(f(x)−∼) = (f(f((x))−∼))−∼ ≥ (f(f(x)))−∼ = f(x)−∼ = f∗(x). Conversely, f∗(f∗(x)) =

f∗(f(x)−∼) ≤ f(x)−∼ = f∗(x).

(4) f∗(1) = f(1)−∼ = 1−∼ = 1.

(5) x ≤ y =⇒ f∗(x) = f(x)−∼ ≤ f(y)−∼ = f∗(y).

Similarly for ac-operators on M .

Theorem 4.12.
If M is a good normal residuated lattice satisfying (GP) and f is an mi-operator on the residuated lattice Reg(M),
then the mapping f+ : M →M such that f+(x) = f(x−∼), for any x ∈M , is a wmi-operator on M .

Proof. Let f be an mi-operator on Reg(M).

(1) f+(x � y) = f((x � y)−∼) = f(x−∼ � y−∼) = f(x−∼ �∗ y−∼) = f(x−∼) �∗ f(y−∼) = f(x−∼) � f(y−∼) =

f+(x)� f+(y).

(2) f+(x) = f(x−∼) ≤ x−∼.

12
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(3) f+(f+(x)) = f((f+(x))−∼) = f(f(x−∼)) = f(x−∼) = f+(x).

(4) f+(1) = f(1−∼) = f(1) = 1.

(5) x ≤ y =⇒ f+(x) = f(x−∼) ≤ f(y−∼) = f+(y).

Theorem 4.13.
Let M be a good residuated lattice satisfying (GP) and g : Reg(M) → Reg(M) be an ac-operator on Reg(M).
Then the mapping g+ : M →M such that g+(x) = g(x−∼), for any x ∈M , is an sac-operator on M .

Proof. Let x, y ∈M .

(1) By Proposition 2.1, x−∼ ⊕ y−∼ = x ⊕ y. Hence (x ⊕ y)−∼ = (x−∼ ⊕ y−∼)−∼ = (x−∼− � y−∼−)∼−∼ =

(x−∼− � y−∼−)∼ = x−∼ ⊕ y−∼, thus g+(x⊕ y) = g((x⊕ y)−∼) = g(x−∼ ⊕ y−∼) = g(x−∼ ⊕∗ y−∼) = g(x−∼)⊕∗

g(y−∼) = g(x−∼)⊕ g(x−∼) = g+(x)⊕ g+(y).

(2) g+(x) = g(x−∼) ≥ x−∼.

(3) g+(g+(x)) = g((g+(x))−∼) = g((g(x−∼))−∼) = g(g(x−∼)) = g(x−∼) = g+(x).

(4) - (5) Similarly as in the proof of preceeding theorem.
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INTERIOR AND CLOSURE OPERATORS ON COMMUTATIVE

BASIC ALGEBRAS

JIŘÍ RACHŮNEK AND ZDENĚK SVOBODA*

Abstract. Commutative basic algebras are non-associative generaliza-

tions of MV-algebras and form an algebraic semantics of a non-associative

generalization of the propositional infinite-valued  Lukasiewicz logic. In the
paper we investigate additive closure and multiplicative interior operators

on commutative basic algebras as a generalization of topological operators.

1. Introduction

Topological Boolean algebras, i.e. closure or interior algebras [10], are gen-
eralizations of topological spaces defined by means of topological closure and
interior operators. In [9] closure and interior MV -algebras as generalizations
of topological Boolean algebras were introduced and investigated by means of
so-called additive closure and multiplicative interior operators.

Commutative basic algebras have been introduced in [4] as non-associative
generalizations ofMV -algebras. (The name “basic algebra” was selected because
these algebras are in a sense a common base for the structures that were dealt
with in [4].) Note that analogously as MV -algebras are an algebraic counterpart
of the propositional infinite-valued  Lukasiewicz logic (and Boolean algebras are
a counterpart of the propositional classical two-valued logic), commutative basic
algebras constitute an algebraic semantics of the propositional logic LCBA [1]
which is a non-associative generalization of the  Lukasiewicz logic.

In the paper we introduce and investigate additive closure and multiplicative
interior operators on commutative basic algebras and describe connections be-
tween such operators. Further we show that (additively) idempotent elements
of any commutative basic algebra A form a subalgebra B(A) of A which is a
Boolean algebra, and we give relations between e.g. additive closure operators on
A and topological operators on B(A). Moreover, we study operators on quotient
commutative basic algebras.
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2. Preliminaries

Definition 2.1. A basic algebra is an algebra 〈A;⊕,¬, 0〉 of type 〈2, 1, 0〉 that
satisfies the identities

(i) x⊕ 0 = x,
(ii) ¬¬x = x,

(iii) ¬(¬x⊕ y)⊕ y = ¬(¬y ⊕ x)⊕ x,
(iv) ¬(¬(¬(x⊕ y)⊕ y)⊕ z)⊕ (x⊕ z) = ¬0.

Moreover, if x ⊕ y = y ⊕ x for any x, y ∈ A, then A is called a commutative
basic algebra.

If A = 〈A;⊕,¬, 0〉 is a basic algebra, then (A,∧,∨, 1, 0), where

x ∨ y := ¬(¬x⊕ y)⊕ y
x ∧ y := ¬(¬x ∨ ¬y)

1 := ¬0

is a bounded lattice whose induced order is given by

x ≤ y ⇐⇒ ¬x⊕ y = 1.

If A is commutative, then this lattice is distributive [4].
In a basic algebra A we define a binary operation (subtraction) such that

x	 y := ¬(¬x⊕ y).

Moreover, define for any x, y ∈ A

x� y := ¬(¬x⊕ ¬y).

Lemma 2.1. [2][8] Let A be a commutative basic algebra. Then for any x, y, z ∈
A we have:

(i) if x ≤ y, then x⊕ z ≤ y ⊕ z, z 	 y ≤ z 	 x and x	 z ≤ y 	 z,
(ii) (x ∧ y)⊕ z = (x⊕ z) ∧ (y ⊕ z),

(iii) x⊕ y ≥ x ∨ y,
(iv) x� y ≤ x ∧ y,
(v) ¬(x ∧ y) = ¬x ∨ ¬y,
(vi) ¬(x ∨ y) = ¬x ∧ ¬y,
(vii) (x ∨ y)⊕ z = (x⊕ z) ∨ (y ⊕ z).

3. Operators on basic algebras

In this section we introduce additive closure and multiplicative interior op-
erators on commutative basic algebras which are generalizations of topological
operators on Boolean algebras.
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Definition 3.1. Let A be a commutative basic algebra. A mapping g : A→ A
is called an additive closure operator (ac-operator) on A if for any x, y ∈ A
1. g(x⊕ y) = g(x)⊕ g(y),
2. x ≤ g(x),
3. g(g(x)) = g(x),
4. g(0) = 0.

Proposition 3.1. Let g : A → A be an ac-operator on a commutative basic
algebra A. Then g is a monotone mapping.

Proof. Let x, y ∈ A such that x ≤ y. Then
x ≤ y =⇒ x ∨ y = y =⇒ g(x ∨ y) = g(y) =⇒ g(¬(¬y ⊕ x) ⊕ x) = g(y) =⇒
g(¬(¬y ⊕ x))⊕ g(x) = g(y) =⇒ g(x) ≤ g(y).

�

Let f : A→ A be a mapping, and consider the mapping

f¬ : A→ A,

such that for each x ∈ A
f¬(x) := ¬(f(¬x)).

Proposition 3.2. Let g : A → A be an ac-operator on a commutative basic
algebra A. Then for any x, y ∈ A we have

(i) g¬(x� y) = g¬(x)� g¬(y),
(ii) g¬(x) ≤ x,
(iii) g¬(g¬(x)) = g¬(x),
(iv) g¬(1) = 1.

Proof. (i): Let x, y ∈ A. Then g¬(x � y) = g¬(¬(¬x ⊕ ¬y)) = ¬g(¬¬(¬x ⊕
¬y)) = ¬(g(¬x ⊕ ¬y)) = ¬(g(¬x) ⊕ g(¬y)) = ¬(¬(¬g(¬x)) ⊕ ¬(¬g(¬y))) =
¬(g(¬x))� ¬(g(¬y)) = g¬(x)� g¬(y).

(ii): g¬(x) = ¬(g(¬x)) ≤ ¬¬x = x.
(iii): g¬(g¬(x)) = g¬(¬(g(¬x))) = ¬g(¬¬(g(¬x))) = ¬(g(g(¬x))) = ¬(g(¬x)) =

g¬(x).
(iv): g¬(1) = ¬(g(¬1)) = ¬g(0) = ¬0 = 1. �

Definition 3.2. Let A be a commutative basic algebra. A mapping f : A→ A
is called a multiplicative interior operator (mi-operator) on A if for any x, y ∈ A
1. f(x� y) = f(x)� f(y),
2. f(x) ≤ x,
3. f(f(x)) = f(x),
4. f(1) = 1.

Theorem 3.1. If g : A → A is an ac-operator on a commutative basic algebra
A, then the mapping g¬ : A→ A is an mi-operator on A.
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Proof. It follows from Proposition 3.2. �

Proposition 3.3. Let f : A → A be an mi-operator on a commutative basic
algebra A. Then for any x ∈ A we have

(i) f¬(x⊕ y) = f¬(x)⊕ f¬(y),
(ii) x ≤ f¬(x),

(iii) f¬(f¬(x)) = f¬(x),
(iv) f¬(0) = 0.

Proof. Let f be an mi-operator on A and let x ∈ A.
(i): f¬(x⊕ y) = ¬(f(¬(x⊕ y))) = ¬(f(¬(¬¬x⊕ ¬¬y))) = ¬(f(¬x� ¬y)) =

¬(f(¬x)� f(¬y)) = ¬(f(¬x))⊕ ¬(f(¬y)) = f¬(x)⊕ f¬(y).
(ii): f¬(x) = ¬(f(¬x)) ≥ ¬(¬x) = x.
(iii): f¬(f¬(x)) = f¬(¬(f(¬x))) = ¬(f(¬¬(f(¬x)))) = ¬(f(f(¬x))) =

¬(f(¬x)) = f¬(x).
(iv): f¬(0) = ¬(f(¬0)) = ¬(f(1)) = ¬1 = 0.

�

Theorem 3.2. If f : A→ A is an mi-operator on a commutative basic algebra
A, then the mapping f¬ : A→ A is an ac-operator on A.

Proof. It follows from Proposition 3.3. �

Proposition 3.4. Let g : A → A be an ac-operator on a commutative basic
algebra A. Then for any x ∈ A we have g¬(x	 y) = g¬(x)	 g(y).

Proof. Let x, y ∈ A. Then g¬(x 	 y) = ¬(g(¬(x 	 y))) = ¬(g(¬¬(y ⊕ ¬x))) =
¬(g(y)⊕ g(¬x)) = ¬(g(¬x))	 g(y) = g¬(x)	 g(y). �

If A is a commutative basic algebra, denote by mi(A) the set of mi-operators
on A and by ac(A) the set of ac-operators on A. Suppose that mi(A) and ac(A)
are pointwise ordered.

Let α : mi(A) → ac(A) be the mapping such that α(f) = f¬, for any f ∈
mi(A), and β : ac(A) → mi(A) be the mapping such that β(g) = g¬, for any
g ∈ ac(A).

Theorem 3.3. If A is a commutative basic algebra, then α and β form an
antitone Galois connection, i.e. f ≤ β(g) if and only if g ≤ α(f), for any
f ∈ mi(A) and g ∈ ac(A).

Proof. Let f ∈ mi(A), g ∈ ac(A) and f ≤ β(g) = g¬. Then f(x) ≤ g¬(x) =
¬(g(¬x)), thus ¬f(x) ≥ ¬¬(g(¬x)), for any x ∈ A. Therefore ¬(f(¬x)) ≥
¬¬(g(¬¬x)) = g(x), thus α(f)(x) ≥ g(x), for any x ∈ A. That means g ≤ α(f).

Conversely, let g ≤ α(f). Then f¬(x) ≥ g(x), i.e. ¬(f(¬x)) ≥ g(x), and so
¬¬(f(¬x)) ≤ ¬(g(x)), for any x ∈ A. Hence ¬¬(f(¬¬x)) = f(x) ≤ ¬(g(¬x)) =
g¬(x). That means β(g)(x) = g¬(x) ≥ f(x), for any x ∈ A, and thus f ≤
β(g). �
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The following theorem is now an immediate consequence.

Theorem 3.4. Let A be a commutative basic algebra.

(i) If f is an mi-operator on A and h = (f¬)¬ is the corresponding mi-operator
on A, then the induced ac-operators f¬ and h¬ are the same.

(ii) If g is an ac-operator on A and k = (g¬)¬ is the corresponding ac-operator
on A, then the induced mi-operators g¬ and k¬ are the same.

4. Boolean subalgebras of commutative basic algebras

Lemma 4.1. Let A be a commutative basic algebra. Then for any x, y, z ∈ A
x� (y ∨ z) = (x� y) ∨ (x� z).

Proof. Let x, y, z ∈ A. Then x�(y∨z) = ¬(¬x⊕¬(y∨z)) = ¬(¬x⊕(¬y∧¬z)) =
¬((¬x⊕ ¬y) ∧ (¬x⊕ ¬z)) = ¬¬(x� y) ∨ ¬¬(x� z) = (x� y) ∨ (x� z). �

Lemma 4.2. Let A be a commutative basic algebra, and x, y ∈ A. Then the
following statements are equivalent:

(i) x⊕ y = y,
(ii) x� y = x,
(iii) y ∨ ¬x = 1,
(iv) x ∧ ¬y = 0.

Proof. Let x, y ∈ A.
(ii) ⇐⇒ (iii): If x � y = x, then ¬x ∨ y = y ∨ ¬x = ¬(¬y ⊕ ¬x) ⊕ ¬x =

(y � x) ⊕ ¬x = x ⊕ ¬x = 1. Conversely, if y ∨ ¬x = 1, then x = x � 1 =
x� (¬x ∨ y) = (x� ¬x) ∨ (x� y) = 0 ∨ (x� y) = x� y.

(iii) ⇐⇒ (iv): If y ∨ ¬x = 1, then x ∧ ¬y = ¬(¬x ∨ ¬¬y) = ¬(¬(¬¬x ⊕
y) ⊕ y) = ¬(¬(x ⊕ y) ⊕ y) = ¬(¬x ∨ y) = 0. Conversely, if x ∧ ¬y = 0, then
¬x ∨ y = ¬(¬¬x⊕ y)⊕ y = ¬(x⊕ y)⊕ y = ¬x ∨ y = ¬(x ∧ ¬y) = 1.

(iv) ⇐⇒ (i): Dual to (ii) ⇐⇒ (iii). �

From the previous lemma we obtain the following.

Lemma 4.3. Let A be a commutative basic algebra, and x ∈ A. Then the
following statements are equivalent.

(i) x⊕ x = x,
(ii) x� x = x,
(iii) ¬x⊕ ¬x = ¬x,
(iv) ¬x� ¬x = ¬x,
(v) x ∨ ¬x = 1,
(vi) x ∧ ¬x = 0.

Let A be a basic algebra. Denote by B(A) := {x ∈ A : x⊕ x = x} the set of
all idempotent elements of A.
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Lemma 4.4. Let A be a commutative basic algebra. Then for any a ∈ B(A)
and x, y ∈ A

(i) x� a = x ∧ a,
(ii) a� (x⊕ y) = (a� x)⊕ (a� y),

(iii) x⊕ a = x ∨ a,
(iv) a⊕ (x� y) = (a⊕ x)� (a⊕ y).

Proof. (i): Let a ∈ B(A), x ∈ A. Then

x ≤ a =⇒ a ≤ x⊕ a ≤ a⊕ a = a =⇒ x⊕ a = a =⇒ x� a = x = x ∧ a.
Let y ∈ A. We have y � a ≤ y, a. Let z ∈ A, z ≤ y, a. Then z = z � a ≤ y � a,
thus y � a = y ∧ a.

(ii): Let a ∈ B(A) and x, y ∈ A. Then (a ∧ x)⊕ (a ∧ y) = (a⊕ a) ∧ (x⊕ a) ∧
(a⊕ y) ∧ (x⊕ y) = a ∧ (x⊕ y), thus a� (x⊕ y) = (a� x)⊕ (a� y).

(iii), (iv): Similarly. �

Let A be a commutative basic algebra, C a subalgebra of A and g : A →
A (f : A→ A) an ac-operator (an mi-operator) on A. Then C is called a closure
subalgebra (an interior subalgebra) with respect to g (to f) if g(x) ∈ C (f(x) ∈
C) for any x ∈ C.

Proposition 4.1. A subalgebra C is a closure (interior) subalgebra with respect
to an ac-operator g (an mi-operator f) if and only if C is an interior (closure)
subalgebra with respect to the mi-operator g¬ (ac-operator f¬).

Proof. Let C be a closure subalgebra with respect to an ac-operator g. If x ∈ C,
then ¬x ∈ C and g(¬x) ∈ C. Therefore g¬(x) = ¬(g(¬x)) ∈ C, and C is an
interior subalgebra with respect to the mi-operator g¬.

Analogously we can show that if D is a interior subalgebra with respect to
an mi-operator f , then D is a closure subalgebra with respect to f¬. �

Proposition 4.2. If A is a commutative basic algebra, then B(A) is a subalge-
bra of A.

Proof. Let x, y ∈ B(A). By Lemma 4.3, ¬x ∈ B(A). Moreover, by Lemma
2.1(vii), (x ⊕ y) ⊕ (x ⊕ y) = (x ∨ y) ⊕ (x ∨ y) = ((x ∨ y) ⊕ x) ∨ ((x ∨ y) ⊕ y) =
(x⊕ x) ∨ (y ⊕ x) ∨ (x⊕ y) ∨ (y ⊕ y) = x ∨ (x ∨ y) ∨ (x ∨ y) ∨ y = x ∨ y = x⊕ y,
thus x⊕ y ∈ B(A). Further we can see that 0 ∈ B(A).

�

Theorem 4.1. If A is a commutative basic algebra, then B(A) is a Boolean
algebra.

Proof. If x, y ∈ B(A), then ¬x,¬y ∈ B(A), thus ¬x ∨ ¬y ∈ B(A), and x ∧ y =
¬(¬x ∨ ¬y) ∈ B(A). Therefore B(A) = (B(A);∨,∧, 0, 1) is a bounded lattice.
Since A is commutative, the underlying lattice (A;∨,∧) is distributive, and it
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follows that the lattice B(A) is distributive. Moreover, for any x ∈ B(A) we
have that ¬x is the complement of x in B(A). �

Proposition 4.3. Let A be a commutative basic algebra. Then the Boolean
subalgebra B(A) of A is a closure subalgebra (an interior subalgebra) with re-
spect to any ac-operator (any mi-operator) on A.

Proof. Let g : A → A be an ac-operator, and x ∈ B(A). Since g(x) ⊕ g(x) =
g(x⊕ x) = g(x), we have g(x) ∈ B(A).

Analogously for any mi-operator on A. �

Recall that if B is a Boolean algebra and g : B → B is a mapping then g is
called a topological closure operator on B if for any x, y ∈ B,

1. g(x ∨ y) = g(x) ∨ g(y),
2. x ≤ g(x),
3. g(g(x)) = g(x),
4. g(0) = 0.

A topological interior operator is defined dually.

Theorem 4.2. Let A be a commutative basic algebra and g : A → A an ac-
operator (f : A → A an mi-operator). Then the restriction of g to B(A) (f
to B(A)) is a topological closure (topological interior) operator on the Boolean
algebra B(A).

A commutative basic algebra is called complete if the underlying lattice
(A;∨,∧) is complete.

Theorem 4.3. Let A be a complete commutative basic algebra and g a topolog-
ical closure operator on the Boolean algebra B(A). Then there is an ac-operator
g∗ on A such that the restriction of g∗ to B(A) is equal to g.

Proof. First we show that the lattice B(A) is a complete sublattice of A.
Let xi ∈ B(A), i ∈ I, and x =

∧
(xi : i ∈ I) in the lattice A. Then x ⊕ x =∧

(xi : i ∈ I) ⊕
∧

(xi : i ∈ I), hence x ⊕ x ≤ xj ⊕ xj for any j ∈ I and
x⊕ x ≤ xj ⊕ xj = xj for any j ∈ I. Therefore x⊕ x ≤

∧
(xi : i ∈ I) = x, which

implies x ∈ B(A). Thus (B(A);∨,∧) is a complete sublattice of (A;∨,∧).
Now let g be a topological closure operator on B(A). Let g∗ : A → A be a

mapping such that g∗(x) = g(
∧

(a ∈ B(A) : x ≤ a)) for any x ∈ A. To verify
that g∗ is an ac-operator on A, let x, y ∈ A:

1. Let a ∈ B(A) such that x ⊕ y ≤ a. Then
∧

(b ∈ B(A) : x ≤ b) ≤ a and∧
(c ∈ B(A) : y ≤ c) ≤ a, hence

∧
(b ∈ B(A) : x ≤ b) ⊕

∧
(c ∈ B(A) : y ≤ c) ≤

a⊕a = a. Therefore
∧

(b ∈ B(A) : x ≤ b)⊕
∧

(c ∈ B(A) : y ≤ c) ≤
∧

(a ∈ B(A) :
x ⊕ y ≤ a). Now we have g∗(x) ⊕ g∗(y) = g(

∧
(b ∈ B(A) : x ≤ b)) ⊕ g(

∧
(c ∈

B(A) : y ≤ c)) = g(
∧

(b ∈ B(A) : x ≤ b) ⊕
∧

(c ∈ B(A) : y ≤ c)) ≤ g(
∧

(a ∈
B(A) : x⊕ y ≤ a)) = g∗(x⊕ y).
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Conversely, x ⊕ y ≤
∧

(b ∈ B(A) : x ≤ b) ⊕
∧

(c ∈ B(A) : y ≤ c), hence∧
(a ∈ B(A) : x ⊕ y ≤ a) ≤

∧
(b ∈ B(A) : x ≤ b) ⊕

∧
(c ∈ B(A) : y ≤ c).

Thus we obtain g(
∧

(a ∈ B(A) : x ⊕ y ≤ a)) ≤ g(
∧

(b ∈ B(A) : x ≤ b) ⊕
∧

(c ∈
B(A) : y ≤ c)) = g(

∧
(b ∈ B(A) : x ≤ b)) ⊕ g(

∧
(c ∈ B(A) : x ≤ c)), that is

g∗(x⊕ y) ≤ g∗(x)⊕ g∗(y).
2. By the definition, x ≤ g∗(x) for any x ∈ A.
3. g∗(g∗(x)) = g∗(g(

∧
(a ∈ B(A) : x ≤ a))) = g(g(

∧
(a ∈ B(A) : x ≤ a))) =

g(
∧

(a ∈ B(A) : x ≤ a)) = g∗(x).
4. Since 0 ∈ B(A), we have g∗(0) = g(0) = 0. �

5. Operators on quotient commutative basic algebras

Recall that a commutative residuated l-groupoid (see e.g. [3]) is an algebra
L = (L;∧,∨,�,→, 0, 1) of type (2, 2, 2, 2, 0, 0) such that

(i) (L;∧,∨, 0, 1) is a bounded lattice;
(ii) (L;�, 1) is a commutative groupoid with identity 1;

(iii) the operation � and → satisfy the adjointness property

x� y ≤ z ⇐⇒ x ≤ y → z.

The notion of a commutative residuated l-groupoid is a generalization of that
of a commutative bounded integral residuated lattice (see e.g. [7], [6]) in which
the multiplication � need not be associative.

We can introduce the dual notion called commutative dually residuated l-
groupoid, which is an algebra L = (L;∧,∨,⊕,−, 1, 0) again of type (2, 2, 2, 2, 0,
0) such that

(i) (L;∧,∨, 1, 0) is a bounded lattice,
(ii) (L;⊕, 0) is a commutative groupoid with zero 0;

(iii) the operations ⊕ and − satisfy the dual adjointness property

x⊕ y ≥ z ⇐⇒ x ≥ z − y.

Let A = (A;⊕,¬, 0) be a commutative basic algebra and x → y = y ⊕ ¬x for
any x, y ∈ A. Then by [3], (A;∧,∨,�,→, 0, 1) is a commutative residuated
l-groupoid.

Recall that in each commutative basic algebra A = (A;⊕,¬, 0) the binary
operation � such that x�y := ¬(¬x⊕¬y), for any x, y ∈ A, has been introduced.
At the same time, x⊕y = ¬(¬x�¬y), hence the operations⊕ and� are mutually
dual.

Moreover one can see that in commutative basic algebras, the connections
between the operations ⊕ and − are dual to those between the operations �
and →. Therefore in any commutative basic algebra A, y− x = y�¬x = y	 x,
for any x, y ∈ A, thus x⊕ y ≥ z ⇐⇒ x ≥ z 	 y. Hence (A;∧,∨,⊕,	, 1, 0) is a
commutative dually residuated `-groupoid.
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Let A be a basic algebra. A subset J ⊆ A is called an ideal of A [5], if it
contains 0 and satisfies the following conditions:

(1) if a	 b ∈ J and b ∈ J , then a ∈ J ,
(2) if a	 b ∈ J and a ≥ b, then (c	 b)	 (c	 a) ∈ J for every c ∈ A,
(3) if a	 b ∈ J and b	 a ∈ J , then (a	 c)	 (b	 c) ∈ J for every c ∈ A.

Theorem 5.1. [5] Let A be a commutative basic algebra and I ⊆ A be an ideal.
Then the relation ΘI defined by

〈a, b〉 ∈ ΘI ⇐⇒ a	 b ∈ I and b	 a ∈ I.

is a congruence on A such that [0]ΘI
= I.

Moreover, according to [5], the ideals of basic algebras are, in fact, in a one-to-
one correspondence with their congruences. Therefore we can write A/I instead
of A/ΘI .

Let A be a commutative basic algebra, g : A → A an ac-operator on A and
I ⊆ A an ideal of A. Then I is called a g-ideal if g(x) ∈ I for any x ∈ I.

Theorem 5.2. Let A be a commutative basic algebra, g : A→ A an ac-operator
and I a g-ideal in A. Then the mapping g∗ : A/I → A/I such that g∗(x/I) =
g(x)/I is an ac-operator on the commutative quotient algebra A/I.

Proof. First we will show that the mapping g∗ is correctly defined. Let x/I =
y/I i.e. 〈x, y〉 ∈ ΘI . Then x� ¬y,¬x� y ∈ I, hence g(x� ¬y), g(¬x� y) ∈ I.
Since we have g(y)⊕g(x�¬y) = g(y⊕(x�¬y)) = g(x∨y) ≥ g(x), it follows, by
the definition of a commutative dually residuated l-groupoid, that g(x� ¬y) ≥
g(x)	g(y) = g(x)�¬g(y). Since g(x�¬y) ∈ I, (and since by [5] every ideal of a
basic algebra is downwards closed) we obtain g(x)�¬g(y) ∈ I. It can be proved
similarly that ¬g(x) � g(y) ∈ I, thus 〈g(x), g(y)〉 ∈ ΘI , i.e. g(x)/I = g(y)/I.
Moreover, we have shown that ΘI is a congruence with respect to the unary
operation g on A.

Now we will verify that g∗ satisfies the conditions from the definition of a
ac-operator. Let x, y ∈ A.

1. g∗(x/I ⊕ y/I) = g∗((x ⊕ y)/I) = (g(x ⊕ y))/I = (g(x) ⊕ g(y))/I =
g(x)/I ⊕ g(y)/I = g∗(x/I)⊕ g∗(y/I).

2. Since x ≤ g(x), we have g(x) = x ∨ g(x). Thus x/I ∨ g∗(x/I) = x/I ∨
g(x)/I = (x ∨ g(x))/I = g(x)/I = g∗(x/I). Therefore x/I ≤ g∗(x/I).

3. g∗(g∗(x/I)) = g∗(g(x)/I) = g(g(x))/I = g(x)/I = g∗(x/I).
4. g∗(0/I) = g(0)/I = 0/I.

�
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Abstract. Bounded integral residuated lattices form a large class of alge-
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tors (special cases of closure operators) are introduced and studied.
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Bounded integral residuated lattices form a large class of algebras
containing some classes of algebras behind many-valued and fuzzy logics,
such as pseudo MV -algebras [15] (or equivalently GMV -algebras [23]),
pseudo BL-algebras [5], pseudo MTL-algebras [12] and R`-monoids [10],
and consequently, the classes of their commutative cases, i. e. MV -
algebras [3], BL-algebras [16], MTL-algebras [11] and commutative R`-
monoids [9]. Moreover, Heyting algebras [2] which are algebras of the
intuitionistic logic can be also viewed as residuated lattices.

Modal operators (special cases of closure operators) were introduced
and investigated on Heyting algebras in [22], on MV -algebras in [17], on
commutative R`-monoids in [24] and on (non-commutative) R`-monoids
in [26]. Moreover, monotone modal operators on commutative bounded
residuated lattices were studied in [19].

In the paper we define and study monotone modal operators on general
(not necessarily commutative) residuated lattices.
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A bounded integral residuated lattice is an algebra M = (M ;�,∨,∧,
→, , 0, 1) of type (2, 2, 2, 2, 2, 0, 0) satisfying the following conditions:

(i) (M ;�, 1) is a monoid,
(ii) (M ;∨,∧, 0, 1) is a bounded lattice,

(iii) x� y ≤ z iff x ≤ y → z iff y ≤ x z for any x, y ∈M .

In what follows, by a residuated lattice we will mean a bounded integral
residuated lattice. If the operation ”�” on a residuated lattice M is
commutative then M is called a commutative residuated lattice.

In a residuated lattice M we define two unary operations ”−” and ”∼”
on M such that x− := x→ 0 and x∼ := x 0 for each x ∈M.

Recall that the above mentioned algebras of many-valued and fuzzy
logics are characterized in the class of residuated lattices as follows:

A residuated lattice M is

(a) a pseudo MTL-algebra if M satisfies the identities of pre-linearity
(iv) (x→ y) ∨ (y → x) = 1 = (x y) ∨ (y  x);

(b) an R`-monoid if M satisfies the identities of divisibility
(v) (x→ y)� x = x ∧ y = y � (y  x);

(c) a pseudo BL-algebra if M satisfies both (iv) and (v);
(d) a GMV -algebra (or equivalently a pseudo MV -algebra) if M satis-

fies (iv), (v) and the identities
(vi) x−∼ = x = x∼−;

(e) a Heyting algebra if the operations ”�” and ”∧” coincide.

A residuated lattice M is called good, if M satisfies the identity
x−∼ = x∼−. For example, every commutative residuated lattice, eve-
ry GMV -algebra and every pseudo BL-algebra which is a subdirect
product of linearly ordered pseudo BL-algebras [7] are good.

By [4], every good residuated lattice satisfies the identity (x−�y−)∼ =
(x∼ � y∼)−. If M is good, we define a binary operation ”⊕” on M as

x⊕ y = (y− � x−)∼.

In the following proposition we recall some necessary basic properties
of residuated lattices.

Proposition 1 ([1],[4],[14],[18]). Let M be a residuated lattice. For

all x, y, z ∈M we have

(1) x� y ≤ x ∧ y,

2



(2) x ≤ y =⇒ x� z ≤ y � z, z � x ≤ z � y,

(3) x ≤ y =⇒ z → x ≤ z → y, z  x ≤ z  y,

(4) x ≤ y =⇒ x→ z ≥ y → z, x z ≥ y  z,

(5) (x� y)→ z = x→ (y → z), (y � x) z = x (y  z),

(6) (y → z)� (x→ y) ≤ x→ z, (x y)� (y  z) ≤ x z,

(7) x ≤ x−∼, x ≤ x∼−,

(8) x−∼− = x−, x∼−∼ = x∼,

(9) x ≤ y =⇒ y− ≤ x−, y∼ ≤ x∼,

(10) x� (x y) ≤ y, (x→ y)� x ≤ y,

(11) y ≤ x→ y, y ≤ x y,

(12) x→ y ≤ y− → x−, x→ y ≤ y∼  x∼.

Moreover, if M is good, then

(13) (x� y)− = x→ y−.

(14) x−∼ ⊕ y−∼ = x−∼ ⊕ y = x⊕ y−∼ = x⊕ y,

(15) x⊕ 0 = x−∼ = 0⊕ x,

(16) x⊕ y = x−  y−∼ = y∼ → x−∼,

(17) y ⊕ x− = x→ y−∼, x∼ ⊕ y = x y−∼,

(18) (x⊕ y)⊕ 0 = x⊕ y,

(19) x ≤ y =⇒ z ⊕ x ≤ z ⊕ y, x⊕ z ≤ y ⊕ z,

(20) ⊕ is associative.

Definition. Let M be a residuated lattice. A mapping f : M −→M is

called a modal operator on M if for any x, y ∈M

(M1) x ≤ f(x),

(M2) f(f(x)) = f(x),

(M3) f(x� y) = f(x)� f(y).

A modal operator f is called monotone, if for any x, y ∈M

(M4) x ≤ y =⇒ f(x) ≤ f(y).

If M is a good residuated lattice and for any x, y ∈M
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(M5) f(x⊕ y) = f(x⊕ f(y)) = f(f(x)⊕ y),

then f is called strong.

In all cases of R`-monoids every modal operator is already monotone.
However, in general residuated lattices the converse need not hold. The
example below was given in [19].

Example 1. Let X = ({x/10|0 ≤ x ≤ 10, x ∈ Z},∧,∨, 0, 1) be a

bounded lattice where x ∧ y = min{x, y} and x ∨ y = max{x, y}. If we

define operators � and → on X as

x� y =


x if y = 1

y if x = 1

0 otherwise

and x→ y =


1 if x ≤ y

y if x = 1

0.9 otherwise

then it is easy to show that the structure (X,∧,∨,�,→, 0, 1) is a

bounded commutative integral residuated lattice. We define an opera-

tor f : X → X by

f(x) =


0 if x = 0

1− x if 0 < x ≤ 0.5

x if x > 0.5

Although f is a modal operator it is not monotone, because we have

0.2 < 0.4 but f(0.2) = 0.8 � 0.6 = f(0.4).

Now we will show examples of monotone modal operators.
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Example 2. Let M1 = {0, a, b, c, 1}. We define the operations � and

→ on M1 as follows:

� 0 a b c 1

0 0 0 0 0 0

a 0 a a a a

b 0 a b a b

c 0 a a c c

1 0 a b c 1

→ 0 a b c 1

0 1 1 1 1 1

a 0 1 1 1 1

b 0 c 1 c 1

c 0 b b 1 1

1 0 a b c 1

Then M1 = (M1;�,∨,∧,→, 0, 1) is a commutative R`-monoid which

is both a BL-algebra and a Heyting algebra (i. e. a Gödel algebra).

Since M1 is commutative, we can also consider the operation ⊕.

Let now f1 : M1 → M1 be the mapping such that f1(0) = 0, f1(a) =

f1(b) = b and f1(c) = f1(1) = 1. Then f1 is a strong monotone modal

operator on M1.

Example 3. Let M2 = {0, a, b, c, 1} and let the operations �,→, on

M2 be defined as follows:

� 0 a b c 1

0 0 0 0 0 0

a 0 0 0 a a

b 0 a b a b

c 0 0 0 c c

1 0 a b c 1

→ 0 a b c 1

0 1 1 1 1 1

a c 1 1 1 1

b c c 1 c 1

c 0 b b 1 1

1 0 a b c 1

 0 a b c 1

0 1 1 1 1 1

a b 1 1 1 1

b 0 c 1 c 1

c b b b 1 1

1 0 a b c 1

Then M2 = (M2;�,∨,∧,→, , 0, 1) is a non-commutative residuated

lattice which is a pseudo MTL-algebra but not an R`-monoid beause

(b→ a)� b = c� b = 0 6= a = a∧ b. (Notice that the lattices (M1;∨,∧)

and (M2;∨,∧) are isomorphic.)
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Let us consider the mapping f2 : M2 →M2 such that f2(0) = f2(a) =

f2(b) = b and f2(c) = f2(1) = 1. Then f2 is a monotone modal operator

on M2.

Since a−∼ = b 6= c = a∼−, the residuated lattice M2 is not good, hence

the addition on M2 does not exist.

Example 4. Let M3 = {0, a, b, c, 1}. We define operations �,→, as

follows:

� 0 a b c 1

0 0 0 0 0 0

a 0 a a a a

b 0 a a b b

c 0 a a c c

1 0 a b c 1

→ 0 a b c 1

0 1 1 1 1 1

a 0 1 1 1 1

b 0 c 1 1 1

c 0 a b 1 1

1 0 a b c 1

 0 a b c 1

0 1 1 1 1 1

a 0 1 1 1 1

b 0 b 1 1 1

c 0 b b 1 1

1 0 a b c 1

Then M3 = (M3;�,∨,∧,→, , 0, 1) is a linearly ordered (non-

commutative) residuated lattice, which is a pseudo MTL-algebra. Since

c� (c b) = c� 1 = c 6= b = b ∧ c, M3 is not an R`-monoid.

Let f3 : M3 → M3 be the mapping such that f3(0) = f3(a) =

a, f3(b) = b, f3(c) = c and f3(1) = 1. Then f3 is a monotone modal

operator on M3. Moreover, the residuated lattice M3 is good, hence the

operation ⊕ exists and one can easily see that the operator f3 is strong.

Remark. Recall [22] that the notion of a modal operator has its main

source in the theory of topoi and sheafification (see [13], [20], [21], [28]).

Moreover, modal operators have come also from the theory of frames,

where frame maps can be recognized as modal operators on a complete

Heyting algebra (see [6]). Therefore the modal operators do not have

direct and explicit connections to modal logics. Moreover, modal op-

erators have some diferent properties than e. g. the logic operator

”necessarily”. Among other, we show that for every modal operator f
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on any good residuated lattice satisfying the identity x−∼ = x, f(0) = 0

if and only if f is the identity.

Proposition 2. Let M be a residuated lattice. If f is a monotone

modal operator on M and x, y ∈M , then

(i) f(x→ y) ≤ f(x)→ f(y) = f(f(x)→ f(y)) = x→ f(y) =

= f(x→ f(y)),

f(x y) ≤ f(x) f(y) = f(f(x) f(y)) = x f(y) =

= f(x f(y)),

(ii) f(x) ≤ (x f(0))→ f(0), f(x) ≤ (x→ f(0)) f(0),

(iii) x− � f(x) ≤ f(0), f(x)� x∼ ≤ f(0),

(iv) f(x ∨ y) = f(x ∨ f(y)) = f(f(x) ∨ f(y)).

Moreover, if M is good, then for any x ∈M

(v) x⊕ f(0) ≥ f(x−∼) ≥ f(x), f(0)⊕ x ≥ f(x−∼) ≥ f(x).

Proof. (i) By Proposition 1 (10), (x→ y)�x ≤ y. It follows immediately

that f((x → y) � x) = f(x → y) � f(x) ≤ f(y). Thus we have f(x →
y) ≤ f(x) → f(y). By Proposition 1, f(x) → f(y) ≤ x → f(y) ≤
f(x → f(y)) ≤ f(x) → f(f(y)) = f(x) → f(y), therefore f(x) →
f(y) = x→ f(y) = f(x→ f(y)).

Moreover, f(x) → f(y) ≤ f(f(x) → f(y)) ≤ f(f(x)) → f(f(y)) =

f(x) → f(y), which implies that f(f(x) → f(y)) = f(x) → f(y). The

proof can be done similarly for ” ”.

(ii) By (i), f(x) f(0) = x f(0) and by Proposition 1(10), f(x)�
(f(x)  f(0)) ≤ f(0). Thus we have f(x) ≤ (f(x)  f(0)) → f(0) =

(x f(0))→ f(0).

(iii) Since 0 ≤ f(0), it follows that x− = x → 0 ≤ x → f(0) =

f(x) → f(0). Therefore x− � f(x) ≤ f(0). In a similar way we get

f(x)� x∼ ≤ f(0).

(iv) By the monotony of f we get f(x ∨ y) ≤ f(x ∨ f(y)) ≤ f(f(x) ∨
f(y)) ≤ f(f(x ∨ y)) = f(x ∨ y).

7



(v) By Proposition 1 and by (i), x ⊕ f(0) = x−  f(0)−∼ ≥ x−  

f(0) = f(x−  f(0)) ≥ f(x−  0) = f(x−∼) ≥ f(x).

Analogously we prove the remaining inequalities. �

Proposition 3. If M is a good residuated lattice and f is a strong

monotone modal operator on M , then for any x, y ∈M

(i) f(x⊕ y) = f(f(x)⊕ f(y)),

(ii) x⊕ f(0) = f(x−∼) = f(0)⊕ x.

Proof. (i) Obvious.

(ii) Since f is strong, we have f(x⊕ f(0)) = f(x⊕ 0) = f(x−∼). This

means that by Proposition 2 (v), f(x−∼) = f(x ⊕ f(0)) ≥ x ⊕ f(0) ≥
f(x−∼). The proof of f(x−∼) = f(0)⊕x follows in the same manner. �

Proposition 4. Let M be a good residuated lattice and f a monotone

modal operator on M .

(1) If for any x ∈M we have x⊕ f(0) = f(x⊕ 0), then

a) f(x)⊕ f(0) = x⊕ f(0),

b) f(0)⊕ f(x) = f(0)⊕ x.

(2) If for any x ∈M we have f(0)⊕ x = f(0⊕ x), then

a) f(x)⊕ f(0) = f(0)⊕ x,

b) f(x)⊕ f(0) = x⊕ f(0).

Proof. Let f be a monotone modal operator on a good residuated lattice

M .

(1) It follows from Proposition 2 (v) that f(x) ≤ x ⊕ f(0). Thus

f(x)⊕f(0) ≤ x⊕f(0)⊕f(0). By the assumption, we have f(0)⊕f(0) =

f(f(0) ⊕ 0) = f(0 ⊕ f(0)) = f(f(0 ⊕ 0)) = f(0 ⊕ 0) = f(0). Therefore

f(x) ⊕ f(0) ≤ x ⊕ f(0). Conversely, it is obvious that x ⊕ f(0) ≤
f(x)⊕ f(0). Thus we get f(x)⊕ f(0) = x⊕ f(0). It can be shown in a

similar manner that f(0)⊕ f(x) = f(0)⊕ x.

(2) Analogously. �
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From the above proposition we get a characterization of strong modal
operators.

Proposition 5. Let f be a monotone modal operator on a good resid-

uated lattice M . Then it is strong if and only if for any x ∈M

x⊕ f(0) = f(x−∼) = f(0)⊕ x.

Proof. If f is strong, then by Proposition 3(ii) x ⊕ f(0) = f(x−∼) =

f(0)⊕ x.

Conversely, suppose that x⊕ f(0) = f(x−∼) = f(x⊕ 0). By Proposi-

tion 1 (18), x⊕ y = x⊕ y⊕ 0 holds for all x, y ∈M , and by Proposition

4 we have

f(x⊕ f(y)) = f((x⊕ f(y))⊕ 0)

= x⊕ f(y)⊕ f(0)

= x⊕ y ⊕ f(0)

= f(x⊕ y ⊕ 0)

= f(x⊕ y).

By Proposition 4 we can find in the same manner that f(f(x)⊕ y) =

f(x⊕ y). Therefore f is a strong modal operator.

�

Theorem 6. Let M be a residuated lattice and f : M −→ M a

mapping. Then f is a monotone modal operator on M if and only if we

have for any x, y ∈M :

(i) x→ f(y) = f(x)→ f(y),

(ii) x f(y) = f(x) f(y),

(iii) f(x)� f(y) ≥ f(x� y).

Proof. Suppose a mapping f satisfies (i) - (iii). We will show that f also

satisfies the conditions (M1) - (M4) from the definition of a monotone

modal operator.
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(M1) By (i), x → f(x) = f(x) → f(x) = 1, which implies that

x ≤ f(x).

(M2) Since 1 = f(x) → f(x) = f(f(x)) → f(x), it follows that

f(f(x)) ≤ f(x), thus by (1) we have f(f(x)) = f(x).

(M3) By (M1) , x � y ≤ f(x � y), and it follows that y ≤ x  

f(x � y) = f(x)  f(x � y) and f(x) � y ≤ f(x � y). Thus we get

f(x) ≤ y → f(x � y) = f(y) → f(x � y) and f(x) � f(y) ≤ f(x � y).

Therefore f(x)� f(y) = f(x� y).

(M4) Note that if x ≤ y, then x ≤ f(y). From the fact that 1 = x→
f(y) = f(x)→ f(y) we obtain f(x) ≤ f(y). �

In general, if f is a monotone modal operator, the equation f(0) = 0
need not hold. An example is shown in [19]. Thus we will investigate
under which condition this equality holds.

Proposition 7. Let M be a residuated lattice and f a monotone

modal operator. Then the following conditions are equivalent.

(i) f(0) = 0,

(ii) f(x∼) = x∼, for all x ∈M ,

(iii) f(x−) = x−, for all x ∈M .

Proof. (i) =⇒ (ii): Suppose that f(0) = 0. It follows from Proposition

2 (ii) that f(x) ≤ (x→ f(0)) f(0) = (x→ 0) 0 = x−∼. Therefore

f(x) ≤ x−∼ and f(x∼) ≤ (x∼)−∼ = x∼. Since x∼ ≤ f(x∼), we have

that f(x∼) = x∼ for all x ∈M .

(ii) =⇒ (i): Suppose that f(x∼) = x∼ for all x ∈ M . Then we get

f(0) = f(1∼) = 1∼ = 0.

It can be proved in a similar manner that (i) =⇒ (iii) and (iii) =⇒
(i). �

Corollary 8. Let M be a good residuated lattice satisfying x−∼ = x

for all x ∈ M . Let f be a monotone modal operator on M such that

f(0) = 0. Then f is the identity on M .
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A residuated lattice M is called normal if it satisfies the identities

(x� y)−∼ = x−∼ � y−∼,

(x� y)∼− = x∼− � y∼−.

For example, every Heyting algebra and every good pseudo BL-
algebra is normal [27], [8].

Proposition 9 ([25]). Let M be a good and normal residuated lattice.

Then for any x, y ∈M

(i) (x⊕ y)− = y− � x−, (x⊕ y)∼ = y∼ � x∼,

(ii) x− ⊕ y− = (y � x)−, x∼ ⊕ y∼ = (y � x)∼.

Denote by
I(M) = {a ∈M ; a� a = a}

the set of all multiplicative idempotents in a residuated lattice M .
Clearly 0, 1 ∈M .

Proposition 10. Let M be a good and normal residuated lattice.

Then the following conditions are equivalent.

(i) a− ∈ I(M),

(ii) a∼ ∈ I(M),

(iii) a⊕ a = a−∼.

Proof. (ii) ⇐⇒ (iii): If a∼ ∈ I(M), then a⊕ a = (a∼� a∼)− = (a∼)− =

a−∼. Conversely, suppose that a ⊕ a = a−∼. By Proposition 9(i), we

have a∼ = (a−∼)∼ = (a⊕ a)∼ = a∼ � a∼. Therefore a∼ ∈ I(M).

(i) ⇐⇒ (iii): Analogously. �

Let M be a good residuated lattice and a ∈ M . We denote by ϕa :
M →M the mapping such that ϕa(x) = a⊕ x for all x ∈M .

Proposition 11. Let M be a good and normal residuated lattice and

let a ∈ M . If ϕa is a strong monotone modal operator on M , then

a−, a∼, a−∼ ∈ I(M).
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Proof. Since ϕa(x � y) = ϕa(x) � ϕa(y), we have a ⊕ (x � y) = (a ⊕
x) � (a ⊕ y) for any x, y ∈ M . By setting x = y = 0, we obtain

a ⊕ 0 = (a ⊕ 0) � (a ⊕ 0), thus a−∼ = a−∼ � a−∼, which implies that

a−∼ ∈ I(M).

Further, a⊕ (x⊕ y) = ϕa(x⊕ y) = ϕa(x⊕ ϕa(y)) = a⊕ (x⊕ (a⊕ y))

for any x, y ∈ M . For x = y = 0 we have a−∼ = a⊕ 0 = a⊕ (0⊕ 0) =

a⊕ (0⊕ (a⊕ 0)) = (a⊕ 0)⊕ a−∼ = a−∼⊕ a−∼, thus a−∼ = (a−� a−)∼.

This implies that a− = (a− � a−)∼− = a−∼− � a−∼− = a− � a− and so

a− ∈ I(M).

Moreover, by Proposition 10, a∼ ∈ I(M). �

Proposition 12. If M is a good and normal residuated lattice and

a ∈ M is such that a−, a−∼ ∈ I(M), then ϕa satisfies conditions (M1),

(M2), (M4) from the definition of a strong monotone modal operator,

and

(M5’) f(x⊕ y) = f(f(x)⊕ y).

Moreover, if a commutes with every x ∈M , then ϕa satisfies (M5).

Proof. (M1) For any we have x ∈ M ϕa(x) = a ⊕ x = (x− � a−)∼ ≥
x−∼ ≥ x.

(M2) Since a− ∈ I(M), we get ϕa(ϕa(x)) = a⊕(a⊕x) = a⊕x = ϕa(x).

(M4) If x ≤ y, then ϕa(x) = a⊕ x ≤ a⊕ y = ϕa(y).

(M5’) Let x, y ∈ M . We have ϕa(ϕa(x) ⊕ y) = ϕa(a ⊕ x ⊕ y) =

a⊕ a⊕ x⊕ y = a⊕ x⊕ y = ϕa(x⊕ y).

Now suppose that a commutes with every x ∈ M . For any x, y ∈ M
we get ϕa(x⊕ϕa(y)) = a⊕(x⊕(a⊕y)) = ((a⊕a)⊕x)⊕y = (a−∼⊕x)⊕y =

a⊕ (x⊕ y) = ϕa(x⊕ y). �

Proposition 13. Let M be a good and normal residuated lattice and

f a monotone modal operator on M such that f(x) = f(x−∼) for all

x ∈M . Then f is strong if and only if f = ϕf(0) and f(0)− ∈ I(M).
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Proof. Let f be a monotone modal operator on M satisfying the identity

f(x) = f(x−∼).

If f is strong then by Proposition 5, f(x) = f(x−∼) = x ⊕ f(0)

for any x ∈ M , hence f = ϕf(0) and therefore, by Proposition 11,

f(0)−, f(0)−∼ ∈ I(M).

Conversely, let f be any modal operator on M . Then f(0)−∼ = f(0�
0)−∼ = (f(0) � f(0))−∼ = f(0)−∼ � f(0)−∼, thus f(0)−∼ ∈ I(M). Let

now f be monotone, f = ϕf(0) and f(0)− ∈ I(M). Then by Proposition

11 we get that f is strong. �

Let M be a residuated lattice and a ∈ I(M). Consider the mappings
ψ1
a : M −→ M and ψ2

a : M −→ M such that ψ1
a(x) = a → x and

ψ2
a(x) = a x.

Proposition 14. Let M be a good residuated lattice and a ∈ I(M).

Then for any x, y ∈M

(1) ψ1
a(x⊕ y) = ψ1

a(x⊕ ψ1
a(y)),

(2) ψ1
a(x⊕ y) ≤ ψ1

a(ψ1
a(x)⊕ y),

(3) ψ2
a(x⊕ y) = ψ2

a(ψ2
a(x)⊕ y),

(4) ψ2
a(x⊕ y) ≤ ψ2

a(x⊕ ψ2
a(y)).

Proof. (1) We have y ≤ a→ y = ψ1
a(y), thus ψ1

a(x⊕y) ≤ ψ1
a(x⊕ψ1

a(y)).

To prove the converse inequality first note that since (a→ x)�a ≤ x,

we have (a→ x)�(a�x∼) ≤ x�x∼ = 0, hence a�x∼ ≤ (a→ x)∼. Thus

we have ψ1
a(x⊕ ψ1

a(y)) = ψ1
a((ψ1

a(y)∼ � x∼)−) = a→ (ψ1
a(y)∼ � x∼)− =

(a � ψ1
a(y)∼ � x∼)−, hence a � ψ1

a(y)∼ � x∼ = a � (a → y)∼ � x∼ ≥
a � (a � y∼) � x∼ = (a � a) � (y∼ � x∼) = a � (y∼ � x∼), therefore

ψ1
a(x⊕ψ1

a(y)) = (a�ψ1
a(y)∼�x∼)− ≤ (a�y∼�x∼)− = a→ (y∼�x∼)− =

a→ (x⊕ y) = ψ1
a(x⊕ y), i. e. ψ1

a(x⊕ ψ1
a(y)) ≤ ψ1

a(x⊕ y).

(2) Since x ≤ a → x = ψ1
a(x), we get x ⊕ y ≤ ψ1

a(x) ⊕ y, thus

ψ1
a(x⊕ y) ≤ ψ1

a(ψ1
a(x)⊕ y).
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(3) We have x ≤ a  x = ψ2
a(x), hence x ⊕ y ≤ ψ2

a(x) ⊕ y, and so

ψ2
a(x ⊕ y) ≤ ψ2

a(ψ2
a(x) ⊕ y). Further, since a � (a  y) ≤ y, we get

(y− � a)� (a y) ≤ y− � y = 0, and so y− � a ≤ (a y)−.

We have ψ2
a(ψ2

a(x)⊕y) = ψ2
a((y−�ψ2

a(x)−)∼) = a (y−�ψ2
a(x)−)∼ =

((y− � ψ2
a(x)− � a)∼, hence y− � ψ2

a(x)− � a = y− � (a  x)− � a ≥
y−�(x−�a)�a = y−�x−�a, thus ψ2

a(ψ2
a(x)⊕y) = (y−�ψ2

a(x)−�a)∼ ≤
(y−�x−�a)∼ = ((y−�x−)�a)∼ = a (x⊕y) = ψ2

a(x⊕y). Therefore

ψ2
a(x⊕ y) = ψ2

a(ψ2
a(x)⊕ y).

(4) Similarly to (2).

�

Proposition 15. If M and a are as in Proposition 14 and, moreover,

a commutes with every element in M , then in (2) and (4) we have

equalities.

Proof. (2) We have ψ1
a(ψ1

a(x) ⊕ y) = ψ1
a((y∼ � ψ1

a(x)∼)−) = a → (y∼ �
ψ1
a(x)∼)− = (a � y∼ � ψ1

a(x)∼)− by Proposition 1(13), hence a � y∼ �
ψ1
a(x)∼ = a�y∼� (a→ x)∼ ≥ a�y∼� (a�x∼) = (a�a)� (y∼�x∼) =

a� (y∼�x∼), and similarly to the proof of (1) in Proposition 14 we get

ψ1
a(ψ1

a(x)⊕ y) ≤ ψ1
a(x⊕ y).

(4) Analogously as for (2). �

Corollary 16. If M is a commutative residuated lattice or M is a

bounded R`-monoid (not necessarily commutative), and a ∈ I(M), then

in (2) and (4) we have equalities.

Proof. For bounded R`-monoids see [26]. �

Corollary 17. If a ∈ M satisfies the conditions from Proposition 15

or Corollary 16, and ψ1
a and ψ2

a are monotone modal operators on M ,

then they are strong.
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Let M be a residuated lattice and f a modal operator on M . We
denote by

Fix(f) = {x ∈M ; f(x) = x}
the set of all fixed elements of the operator f . By the definition of a
modal operator it is obvious that Fix(f) = Im(f).

Proposition 18. If f is a monotone modal operator on a residuated

lattice M , then Fix(f) = (Fix(f);�,∨Fix(f),∧,→, , f(0), 1), where

x ∨Fix(f) y = f(x ∨ y) for any x, y ∈ Fix(f), and ∧,→, are the re-

strictions of the binary operations from M to Fix(f), is a residuated

lattice.

Proof. Let M be a residuated lattice and f a monotone modal operator

on M .

(i) If x, y ∈ Fix(f), then f(x � y) = f(x) � f(y) = x � y, thus

x� y ∈ Fix(f). Therefore (Fix(f);�, 1) is a residuated lattice.

(ii) Since f is a closure operator on the lattice (M ;∨,∧), it follows

that x ∧ y ∈ Fix(f) for each x, y ∈ Fix(f) and x ∨Fix(f) y = f(x ∨ y).

Therefore (Fix(f);∧, f(0), 1) is a bounded lattice.

(iii) Let x, y ∈ Fix(f). Then by Proposition 2, x → y = f(x) →
f(y) = f(f(x) → f(y)) = f(x → y), hence x → y ∈ Fix(f). Analo-

gously x y ∈ Fix(f).

(iv) Now, let x, y, z ∈ Fix(f). Then x � y, y → z, x  z ∈ Fix(f),

hence x�Fix(f) y ≤ z iff x ≤ y →Fix(f) z iff y ≤ x Fix(f) z. �

Conclusions. In the paper we have investigated monotone modal op-

erators, which are special cases of closure operators on bounded integral

residuated lattices. The results are applicable to a wide class of algebras

containing algebras of some algebras behind many-valued and fuzzy log-

ics. One can expect that these results will also be useful for studying

analogous operators on further classes of algebras, e. g. on algebras of

several quantum logics.
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[9] A. Dvurečenskij, J. Rach̊unek : Probabilistic averaging in bounded commutative

residuated l-monoids, Discrete Math. 306 (2006), 1317–1326. Zbl 1105.06011
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MODAL OPERATORS ON COMMUTATIVE BASIC ALGEBRAS

ZDENĚK SVOBODA*

Abstract. Commutative basic algebras are non-associative generalizations of MV-algebras
and form an algebraic semantics of a non-associative generalization of the propositional
infinite valued  Lukasiewicz logic. In the paper modal operators (special cases of closure
operators) are introduced and studied.

1. Introduction

Commutative basic algebras have been introduced in [5] as a non-associative generaliza-
tions of MV -algebras. Note that analogously as MV -algebras are an algebraic counterpart
of the propositional infinite valued  Lukasiewicz logic (and Boolean algebras are a counter-
part of the propositional classical two-valued logic), commutative basic algebras constitute
an algebraic semantices of the propositional logic LCBA [2] which is a non-associative gen-
eralization of the  Lukasiewicz logic.

Modal operators (special cases of closure operators) were introduced and investigated on
Heyting algebras in [7], on MV-algebras in [6], on commutative R`-monoids in [10] and on
(non-commutative) R`-monoids in [11]. Moreover, monotone modal operators on bounded
integral residuated lattices were studied in [12].

In this paper we introduce and investigate modal operators for arbitrary commutative
basic algebras.

2. Preliminaries

Definition. A basic algebra is an algebra 〈A;⊕,¬, 0〉 of type 〈2, 1, 0〉 that satisfies the
identities

(i) x⊕ 0 = x,
(ii) ¬¬x = x,
(iii) ¬(¬x⊕ y)⊕ y = ¬(¬y ⊕ x)⊕ x,
(iv) ¬(¬(¬(x⊕ y)⊕ y)⊕ z)⊕ (x⊕ z) = ¬0.

Moreover, if x⊕y = y⊕x for any x, y ∈ A, then A is called a commutative basic algebra.
If A = 〈A;⊕,¬, 0〉 is a basic algebra, then (A,∧,∨, 1, 0), where

x ∨ y := ¬(¬x⊕ y)⊕ y

x ∧ y := ¬(¬x ∨ ¬y)

1 := ¬0

This work was supported by Palacký University IGA PrF 2014016 and IGA PrF 2015010 and by ESF
Project CZ.1.07/2.3.00/20.0051

2010 Mathematics Subject Classification. 03G05, 03G10, 06D35, 06A15.
Key words and phrases. basic algebra, modal operator.
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2 ZDENĚK SVOBODA

is a bounded lattice whose induced order is given by

x ≤ y ⇐⇒ ¬x⊕ y = 1.

If A is commutative, then this lattice is distributive [5].
In a basic algebra A we define a binary operation (subtraction) such that

x	 y := ¬(y ⊕ ¬x).

Moreover, define for any x, y ∈ A

x� y := ¬(¬x⊕ ¬y), x→ y := ¬x⊕ y.

Lemma 2.1. [3],[9] Let A be a commutative basic algebra. Then for any x, y, z ∈ A we
have:

(i) if x ≤ y, then x⊕ z ≤ y ⊕ z, x� z ≤ y � z, z 	 y ≤ z 	 x and x	 z ≤ y 	 z,
(ii) (x ∧ y)⊕ z = (x⊕ z) ∧ (y ⊕ z),

(iii) x⊕ y ≥ x ∨ y,
(iv) x� y ≤ x ∧ y,
(v) ¬(x ∧ y) = ¬x ∨ ¬y,
(vi) ¬(x ∨ y) = ¬x ∧ ¬y,

(vii) (x ∨ y)⊕ z = (x⊕ z) ∨ (y ⊕ z).

Lemma 2.2. Let A be a commutative basic algebra. Then for any x, y, z ∈ A

x� (y ∨ z) = (x� y) ∨ (x� z).

Proof. Let x, y, z ∈ A. Then x � (y ∨ z) = ¬(¬x ⊕ ¬(y ∨ z)) = ¬(¬x ⊕ (¬y ∧ ¬z)) =
¬((¬x⊕ ¬y) ∧ (¬x⊕ ¬z)) = ¬¬(x� y) ∨ ¬¬(x� z) = (x� y) ∨ (x� z). �

Lemma 2.3. Let A be a commutative basic algebra, and x, y ∈ A. Then the following
statements are equivalent:

(i) x⊕ y = y,
(ii) x� y = x,
(iii) y ∨ ¬x = 1,
(iv) x ∧ ¬y = 0.

Proof. Let x, y ∈ A.
(ii)⇐⇒ (iii): If x� y = x, then ¬x∨ y = y ∨¬x = ¬(¬y⊕¬x)⊕¬x = (y� x)⊕¬x =

x⊕¬x = 1. Conversely, if y∨¬x = 1, then x = x�1 = x� (¬x∨y) = (x�¬x)∨ (x�y) =
0 ∨ (x� y) = x� y.

(iii) ⇐⇒ (iv): It follows directly from Lemma 2.1 (v), (vi).
(iv) ⇐⇒ (i): Dual to (ii) ⇐⇒ (iii). �

3. Modal operators on basic algebras

Definition. Let A be a commutative basic algebra. A mapping f : A → A is called an
modal operator on A if for any x, y ∈ A

1. x ≤ f(x),
2. f(f(x)) = f(x),
3. f(x� y) = f(x)� f(y).

A modal operator f is called strong, if for any x, y ∈ A

4. f(x⊕ y) = f(x⊕ f(y)).
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Let A be a basic algebra. Denote by B(A) := {x ∈ A : x ⊕ x = x} the set of all
idempotent elements of A.

Proposition 3.1. [13] If A is a commutative basic algebra, then B(A) is a subalgebra of
A.

Theorem 3.2. [13] If A is a commutative basic algebra, then B(A) is a Boolean algebra.

Corollary 3.3. Let A be a commutative basic algebra. Then for any element a ∈ A we
have that a ∈ B(A) if and only if ¬a ∈ B(A).

Lemma 3.4. Let A be a commutative basic algebra. Then for any a ∈ B(A) and x, y ∈ A

(i) x� a = x ∧ a,
(ii) a� (x⊕ y) = (a� x)⊕ (a� y),
(iii) x⊕ a = x ∨ a,
(iv) a⊕ (x� y) = (a⊕ x)� (a⊕ y).

Proof. (i): Let a ∈ B(A), x ∈ A. Then

x ≤ a =⇒ a ≤ x⊕ a ≤ a⊕ a = a =⇒ x⊕ a = a.

Hence, by Lemma 2.3, we have x � a = x. Therefore x � a = x ∧ a. Now let y ∈ A. We
have y � a ≤ y, a. Let z ∈ A, z ≤ y, a. Then z = z � a ≤ y � a, thus y � a = y ∧ a.

(ii): Let a ∈ B(A) and x, y ∈ A. Then (a∧x)⊕(a∧y) = (a⊕a)∧(x⊕a)∧(a⊕y)∧(x⊕y) =
a ∧ (x⊕ y), thus a� (x⊕ y) = (a� x)⊕ (a� y).

(iii): Let a ∈ B(A) and x ∈ A. By Corollary 3.3 and part (i) we obtain x ∨ a =
¬(¬x ∧ ¬a) = ¬(¬x� ¬a) = ¬(¬(x⊕ a)) = x⊕ a.

(iv): Let a ∈ B(A) and x, y ∈ A. Then (a ⊕ x) � (a ⊕ y) = (a ∨ x) � (a ∨ y) =
(a� a) ∨ (x� a) ∨ (a� y) ∨ (x� y) = a ∨ (x� y), thus a⊕ (x� y) = (a⊕ x)� (a⊕ y).

�

For an arbitrary element a ∈ B(A) denote by ga : A → A the mapping such that
ga(x) = a⊕ x for any x ∈ A.

Theorem 3.5. Let A be a commutative basic algebra, and a ∈ B(A). Then ga : A→ A is
a modal operator on A.

Proof. a) Let a ∈ B(A). Then for any x, y ∈ A we have
1. x ≤ x⊕ a = ga(x).
2. ga(ga(x)) = a⊕ (a⊕ x) = a ∨ (a ∨ x) = a ∨ x = a⊕ x = ga(x).
3. ga(x� y) = a⊕ (x� y) = (a⊕ x)� (a⊕ y) = ga(x)� ga(y).

�

For an element a ∈ B(A) consider mappings ha : A → A and ka : A → A such that for
any x ∈ A

ha(x) := a→ x, ka(x) := (x→ a)→ a.

Proposition 3.6. If A is a commutative basic algebra and a ∈ B(A), then the mappings
ha and ka are modal operators on A.

Proof. a) For any x ∈ A we have a→ x = ¬a⊕ x, thus ha = g¬a.
b) Let x ∈ A. Then (x→ a)→ a = (¬x⊕ a)→ a = ¬(¬x⊕¬¬a)⊕ a = (x�¬a)⊕ a =

(x⊕ a)� (¬a⊕ a) = a⊕ x, hence ka = ga. �

Let A be a commutative basic algebra. Denote by M(A) and Ms(A) the set of all modal
and all strong modal operators on A.
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Theorem 3.7. If f1, f2 ∈M(A), or f1, f2 ∈Ms(A), then f1f2 ∈M(A), or f1f2 ∈Ms(A),
respectively, if and only if f1f2 = f2f1.

Proof. By [8], the composition of two closure operators on an arbitrary ordered set is a
closure operator if and only if these operators commute. Therefore we only need to prove
that for any f1, f2 ∈ M(A) such that f1f2 = f2f1 the condition from the definition of a
modal operator is satisfied.

Let x, y ∈ A. Then f1f2(x � y) = f1(f2(x) � f2(y)) = f1f2(x) � f1f2(y). Moreover, if
f1f2 ∈ Ms(A) and f1f2 = f2f1, then f1f2(x ⊕ y) = f1f2(x ⊕ f2(y)) = f2f1(x ⊕ f2(y)) =
f2f1(x⊕ f1f2(y)). Hence f1f2 is a strong modal operator. �

Proposition 3.8. Let A be a commutative basic algebra, a ∈ B(A) and f ∈ M(A). If
f(x) ≤ ga(x) for any x ∈ A, then f(a) = a.

Proof. Let f ∈M(A), and x ∈ A. If f(x) ≤ ga(x), then f(x) ≤ a⊕ x for any x ∈ A. Thus
f(a) ≤ a⊕ a = a. Hence f(a) = a. �

Lemma 3.9. Let A be a commutative basic algebra. Then for any x, y, z ∈ A we have:

(i) x� (x→ y) = x ∧ y,
(ii) x� y ≤ z ⇐⇒ x ≤ y → z.

Proof. Let x, y, z ∈ A. Then
(i): x � (x → y) = ¬(¬x ⊕ ¬(x → y)) = ¬(¬x ⊕ ¬(¬x ⊕ y)) = ¬(¬(y ⊕ ¬x) ⊕ ¬x) =
¬(¬y ∨ ¬x) = x ∧ y.

(ii): If x ≤ y → z. Then x� y ≤ (y → z)� y = y � (y → z) = y ∧ z ≤ z. Conversely, if
x� y ≤ z, then ¬y ⊕ (x� y) ≤ ¬y ⊕ z = y → z, and ¬y ⊕ (x� y) = ¬(¬x⊕ ¬y)⊕ ¬y =
x ∨ ¬y ≥ x. �

Lemma 3.10. Let A be a commutative basic algebra, and f : A→ A be a modal operator
on A. Then for any x, y ∈ A:

(i) x ≤ y =⇒ f(x) ≤ f(y),
(ii) f(x→ y) ≤ f(x)→ f(y) = f(f(x)→ f(y)) = x→ f(y) = f(x→ f(y)),

(iii) f(x) ≤ (x→ f(0))→ f(0),
(iv) x⊕ f(0) ≥ f(x).

Proof. (i): Let x ≤ y. Then f(x) = f(x ∧ y) = f(y � (y → x)) = f(y)� f(y → x), which
implies f(x) ≤ f(y).

(ii): Let x, y ∈ A. Then f(x)� f(x→ y) = f(x� (x→ y)) = f(x∧ y) ≤ f(y), hence by
Lemma 3.9 f(x→ y) ≤ f(x)→ f(y). Moreover we have

f(f(x)→ f(y)) ≤ f(f(x))→ f(f(y)) = f(x)→ f(y) ≤ x→ f(y)

≤ f(x→ f(y)) ≤ f(x)→ f(f(y)) = f(x)→ f(y) ≤ f(f(x)→ f(y)),

hence f(x→ f(y)) = f(f(x)→ f(y)) = f(x)→ f(y) = x→ f(y). �

(iii): Since f(x) � (f(x) → f(0)) = f(x) ∧ f(0) ≤ f(0), we have f(x) ≤ (x → f(0)) →
f(0).

(iv): For any x ∈ A we have x ⊕ f(0) = ¬¬x ⊕ f(0) = ¬x → f(0) = f(¬x → f(0)) ≥
f(¬x→ 0) = f(¬¬x⊕ 0) = f(x).

Lemma 3.11. Let A be a commutative basic algebra, and let f : A→ A be a strong modal
operator. Then for any x, y ∈ A we have:

(i) f(x⊕ y) = f(f(x)⊕ f(y)),
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(ii) x⊕ f(0) = f(x).

Proof. (i): From the definition of a strong modal operator we obtain f(x ⊕ y) = f(x ⊕
f(y)) = f(f(y)⊕ x) = f(f(y)⊕ f(x)) = f(f(x)⊕ f(y)).

(ii): Let x ∈ A. By Lemma 3.10 (iv), we get f(x) = f(x⊕0) = f(x⊕f(0)) ≥ x⊕f(0) ≥
f(x).

�

Theorem 3.12. Let A be a commutative basic algebra, and f : A → A be a mapping.
Then f is a modal operator on A if and only if for any x, y ∈ A it satisfies:

(i) x→ f(y) = f(x)→ f(y),
(ii) f(x)� f(y) ≥ f(x� y).

Proof. ⇐=: Let f : A→ A be a mapping satisfying conditions (i) and (ii).
1. Let x ∈ A. By Lemma 3.10, x → f(x) = f(x) → f(x) = ¬f(x) ⊕ f(x) = 1, hence

x ≤ f(x).
2. By (i), for any x ∈ A we have 1 = ¬f(x) ⊕ f(x) = f(x) → f(x) = f(f(x)) → f(x),

hence f(f(x)) ≤ f(x). Therefore f(f(x)) = f(x).
3. Let x, y ∈ A. Then x � y ≤ f(x � y), and by Lemma 3.9 we obtain y ≤ x →

f(x� y) = f(x)→ f(x� y), hence y � f(x) ≤ f(x� y). By Lemma 3.9 and (i), we have
f(x) ≤ y → f(x � y) = f(y) → f(x � y). Thus f(x) � f(y) ≤ f(x � y), and since f
satisfies (ii), we obtain the equality f(x)� f(y) = f(x� y).

=⇒: It follows from the definiton of a modal operator and from Lemma 3.10 (ii). �
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[2] BOTUR, M.—HALAŠ, R. Commutative basic algebras and non-associative fuzzy logics, Arch. Math.
Logic 48 (2009), 243–255.
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[12] RACHŮNEK, J.—SVOBODA, Z.: Monotone modal operators on bounded integral residuated lattices,
Math. Bohem. 137, No. 3 (2012), 333–345.
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