
Czech University of Life Sciences Prague

Faculty of Economics and Management

Department of Information Engineering

B a c h e l o r T h e s i s

Automatic Recognition of graphic patterns

Bunna C H O M

© 2022 CZU Prague

CZECH UNIVERSITY OF LIFE SCIENCES PRAGUE
Faculty of Economics and Management

BACHELOR THESIS ASSIGNMENT
B u n n a C h o m

Systems Engineering and Informatics

Informatics

Thesis title

Automatic recognition of graphic patterns

Objectives of thesis

The aim of the work is the practical use of OCR technologies (ideally in C # or Java) for reading characters
and graphic templates (logos, icons, signatures)

Methodology

Follow the fol lowing methodology:

- perform a research of the current state

- design a suitable application architecture

- program the application in the selected language and using selected technologies

- test the result

- define conclusions

Official document * Czech University of Life Sciences Prague * Kamycka 129,165 00 Praha - Suchdol

The proposed extent of the thesis

30-40

Keywords

ORC, Shape Recognition, Artificial Intelligence, Java, C#

Recommended information sources

Authors: Horst Bunk, Patrick S P Wang. Handbook of Character Recognition and Document image Analysis
ISBN: 981-02-2270-X May 1997 852 Pages

Authors: SergiosTheodoridis, Konstantinos Koutroumbas, Pattern Recognition 4th Edition ISBN:

9781597492720 October 984 Pages
Authors: Shunji Mori, Hirobumi Nishida, Hiromitsu Yamada. Optical Character Recognition ISBN:

978-0-471-30819-5 April 1999 560 Pages
Dougherty, Geoff, Pattern Recognition and Classification: An Introduction ISBN 978-1-4614-5323-9

January 2012 203 Pages
Chaudhuri, A. Mandaviya, K,, Badelia, P., K Ghosh, S. Optical Character Recognition System for Different

Languages with Soft Computing. ISBN 978-3-319-50252-6

Expected date of thesis defence

2021/22 W S - F E M

The Bachelor Thesis Supervisor

Ing. Josef Pavlicek, Ph.D.

Supervising department

Department of Information Engineering

Electronic approval: 19.11. 2020

Ing. Martin Pelikan, Ph.D.

Head of department

Electronic approval: 19.11. 2020

Ing. Martin Pelikan, Ph.D.

Dean

Prague on 15. 03. 2022

Official document * Czech University of Life Sciences Prague * Kamycka 129,165 00 Praha - Suchdo

Declaration

I declare that I have worked on my bachelor thesis titled "Automatic Recognition

graphic pattern" by myself and I have used only the sources mentioned at the end of the

thesis. A s the author of the bachelor thesis, I declare that the thesis does not break any

copyrights.

In Prague on 15/03/2022 Bunna C H O M

Acknowledgement

I would like to thank Ing. Josef Pavlíček, Ph.D, For his suggestions and

encouragement during my efforts on this work.

Automatic Recognition of Graphic Patterns

Abstract

Pattern recognition is the automated detection of shapes or patterns and reliabilities

in data. It is the performance of algorisms and techniques such as image analysis, statistical

data analysis, Artificial Intelligence (AI) and machine learning analyze documents in the

form of image with an insistence on those for graphics recognition and translation. Optical

character recognition (OCR) is a branch of research in Pattern recognition. It is the technique

which implement a system to determine letter or characters in many languages into human's

verbal expression without human involvement. Meanwhile, a number of companies work

with multiple kind of documents, some of which are digitized and some of which are

undigitized. Such undigitized type document are not editable must be re-typed manually into

the system. This bachelor's thesis aims to leverage on O C R technologies to build an

application that is capable of reading characters and graphic templates (logos, icons,

signatures) and transforming those to digitize document.

Keywords: O R C , Shape Recognition, Pattern Recognition, Artificial Intelligence,

Tesseract.js

Automatické rozpoznání grafických vzorů

Abstrakt

Rozpoznávání vzoruje automatická detekce tvarů nebo vzorů a spolehlivosti dat. Jedná se o

provádění algoritmů a technik, jako je analýza obrazu, statistická analýza dat, umělá

inteligence (AI) a strojové učení analyzující dokumenty ve formě obrazu s důrazem na

rozpoznávání a překlad grafiky. Optické rozpoznávání znaků (OCR) je odvětvím výzkumu

v rozpoznávání vzorů. Je to technika, která implementuje systém pro určování písmen nebo

znaků v mnoha jazycích do lidského verbálního vyjádření bez lidské účasti. Mezitím řada

společností pracuje s více druhy dokumentů, z nichž některé jsou digitalizované a některé

nedigitalizované. Takto nedigitalizovaný typový dokument, který nelze upravovat, je nutné

do systému přepsat ručně. Tato bakalářská práce si klade za cíl využít technologie O C R k

vytvoření aplikace, která je schopna číst znaky a grafické šablony (loga, ikony, podpisy) a

transformovat je pro digitalizaci dokumentu.

Klíčová slova: O R C , rozpoznávání tvaru, rozpoznávání vzoru, umělá inteligence,

Tesseract.js

Table of content

Chapter 1: Introduction 12

Chapter 2: Objectives and Methodology 14

2.1 Objectives 14

2.2 Methodology 14

Chapter 3: Literature Review 15

3.1 History of O C R 15

3.2 Techniques of Optical Character Recognition Systems 17

3.3 Tesseract 21

3.4 Architecture 21

3.5 Tesseract's Operation 22

3.5.1 Line Finding 24

3.5.2 Baseline Fitting 24

3.5.3 Word Segmentation 24

3.5.4 Character Segmentation 25

3.5.5 Associating broken characters 25

3.5.6 Character Classification 26

3.5.7 Word Classification 27

Chapter 4: Current And Future technology 27

4.1 O C R Library 27

4.1.1 Google Tesseract O C R 27

4.1.2 G O R C 28

4.1.3 Cuneiform 28

4.1.4 Kraken 28

4.1.5 A9T5 28

4.2 O C R Applications 29

4.2.1 Nanonents 30

4.2.2 Adobe Acrobat 30

4.2.3 A B B Y Y Cloud Reader 31

4.2.4 OmniPage Ultimate 31

4.2.5 Onl ineOCR 31

4.3 Future Technology 32

Chapter 5: Implementation 32

5.1 Setup Languages Selection 33

5.2 Setup html element 33

5.3 Tesseract: Setup and Run 34

5.4 Display Progress and Results 35

5.5 Architecture 36

5.6 Preprocessing step 39

5.6.1 Luminosity technique 39

5.6.2 D P I Enhancement 40

Chapter 6: Test and Results 42

6.1 Experiment result of O C R by Tesseract 42

6.2 Test and results on application 47

6.2.1 Select language 47

6.2.2 Input Image 48

6.2.3 Processing 48

6.2.4 Results 49

Chapter 7: Conclusion 50

Chapter 8: References 52

Chapter 9: Annex 54

List of pictures
Figure 1 Tesseract architecture 22

Figure 2 Image contain text 22

Figure 3 Output of processing done by Tesseract 23

Figure 4 Baseline Fitting 24

Figure 5 Word segmentation 25

Figure 6 character segmentation 25

Figure 7 association broken characters 25

Figure 8 character classification 26

Figure 9 word classicfication 27

Figure 10 Language selector 33

Figure 11 Language selector setup 33

Figure 12 TesseractWork language selector 33

Figure 13 Image input html element 33

Figure 14 Image thumbnail 34

Figure 15 Placeholder html element 34

Figure 16JavaScript recognize function 34

Figure 17 Result after Image processing 2 35

Figure 18 Result after Image processing 35

Figure 19 progressUpadat function 35

Figure 20 Application process 36

Figure 21 Processing vs Accuracy 37

Figure 22 Processing subsystem 37

Figure 23 Application Architecture 38

Figure 24Colored Image 39

Figure 25 Output of luminosity vs simple gray scale 39

Figure 26algorithm 40

Figure 27 Algorithm for DPI enhancement 41

Figure 28 Comparison of accuracy 44

Figure 29 Comparison of processing time of O C R 46

Figure 30 Language selection 47

Figure 31 Input Image 48

Figure 32 Processing 48

Figure 33 Result box 50

List of tables
Table 1 Tesseract O C R Result analysis 43

Table 2 Tesseract and Transym O C R Comparison 45

Table 3 Transym O C R Result analysis 45

Chapter 1: Introduction

A B B Y Y , one of the world's major providers of commercial optical character

recognition (OCR) solutions and services, defines O C R as follows:" The specific

processes that enable people to identify things are still being researched, but scientists

are already aware of the three fundamental principles that govern object recognition:

integrity, purposefulness, and adaptability (IPA). These ideas form the foundation of

A B B Y Y FineReader O C R , which enables it to duplicate natural or human-like

recognition in documents.Examine the way FineReader O C R identifies text in the

following example: First, the application examines the document image's overall

structure and composition. Text blocks, tables, photos, and other page components are

divided into sections by this element. Following that, the lines are broken down into

words and finally into characters. A s soon as the characters have been identified, the

algorithm compares them to a collection of pattern pictures to determine their identity.

In order to figure out who this character is, it makes a lot of assumptions. Following

these theories, the software examines several variations of line breaking into words

and characters, as well as numerous versions of word breaking into characters. After

evaluating a large number of such probabilistic possibilities, the software ultimately

makes a choice and displays the text that has been identified as the correct one." 1

According to Adnan Ul-2016 Hasan's PhD thesis," the job of printed Optical Character

Recognition (OCR) is deemed a "solved" problem by many Pattern Recognition (PR)

scholars, who believe that the work of printed Optical Character Recognition (OCR)

is a "solved" issue. The performance on many different types of documents seems to

be extremely excellent, even when using obsolete techniques and on a variety of

different typefaces and writing forms. He goes on to say that, although the issue is

often regarded to have addressed, this seems to be true only in the case of text written

in the most frequently used languages and scripts, which he believes is a mistake. He

primarily focuses on the possibilities of building a highly accurate O C R that may be

used for scripts and languages that are not often researched." 2." O C R software makes

it possible to edit and search a wide variety of documents, including scanned paper

documents, pdf files, and digital camera photos. A n O C R system has become one of

the most effective patterns recognition and artificial intelligence applications. Despite

the availability of numerous commercial O C R systems for a wide range of uses, these

12

machines cannot yet match the accuracy levels of humans when it comes to document

reading. It is a part of the machine-recognition family, which is used to identify objects

automatically. It is the process of using a recognition system to identify items, collect

data about them, and enter data into computer systems without the need for any human

intervention. Images, audio, and movies are analyzed to obtain the external data. A

transducer is used to convert the actual image or sound into a digital file in order to

record data. Afterwards, the file is saved so that it may be studied later on . " 3

13

Chapter 2: Objectives and Methodology

2.1 Objectives

The aim of the work is the practical use of Optical Character Recognition technologies

using JavaScript (Tesseract JS) for reading characters and graphic template (logos,

icon, signatures)

2.2 Methodology

Fol low the following methodology:

> Perform research of the current state

> Design a suitable application architecture

> Program the application in the selected language and using selected

technologies.

> Test the result

> Define conclusions

14

Chapter 3: Literature Review

3.1 History of OCR

In the field of pattern recognition, character recognition is a subset. Pattern recognition and

image processing are both used to develop several concepts and techniques used in optical

character recognition (OCR) . 4

Character recognition, on the other hand, was the impetus that propelled pattern recognition

and picture analysis into the realm of scientific and technical maturity.

The act of writing, which has long been the most natural manner of gathering information,

storing it and transmitting it, is today used not only for communication between humans, but

also for communication between humans and machines. In the field of optical character

recognition (OCR), there has been an intense research effort not only because of the

difficulty in simulating human reading, but also because it provides efficient applications

such as the automatic processing of large amounts of paper, the transfer of data into

machines, and the creation of a web interface to paper documents. To mimic human

functions with machines and to have machines execute ordinary tasks such as reading is a

long-held goal of many people. A retina scanner, which was an image transmission device

employing a mosaic of photocells, was developed in 1870 by C.R. Carey of Boston,

Massachusetts 5 " 7 . This was the first time that characters were recognized. In the beginning,

each character had to be taught with photos of its counterparts, and each font had to be

worked on one by one.

The origins of optical character recognition (OCR) can be traced back to 1900, when the

Russian scientist Tyuring attempted to design an aid for the visually impaired 8 . A s a result

of the development of digital computers9 the first character recognizers debuted in the middle

of the 1940s. Early research into automatic character recognition focused on either machine-

printed text or a small set of well-distinguished handwritten text or symbols, with the latter

serving as the basis for the former. During this time period, machine-printed O C R systems

were typically based on template matching, in which an image is compared to a database of

images. To extract feature vectors from a binary image of handwritten text, low-level image

processing techniques have been applied to the image to produce the feature vectors.

Statistical classifiers are then given the results of the various areas of character recognition

13. Successful but limited algorithms have been implemented mostly for Latin characters

15

and numerals, with some success in other languages. However, considerable research on

Japanese, Chinese, Hebrew, Indian, Cyri l l ic , Greek, and Arabic characters and numerals, in

both machine-printed and handwritten cases, has been undertaken9 as well as on Cyri l l ic ,

Greek, and Arabic numerals.

N i p k o w 1 0 followed this up with the invention of the sequential scanner, which was a

significant breakthrough for both modern television and reading machines. Several attempts

were made to construct devices to assist the blind through trials with optical character

recognition (OCR) during the first few decades of the nineteenth century7. The contemporary

version of optical character recognition (OCR) did not arrive until the mid-1940s, when the

first digital computer was introduced. The inspiration for the creation of optical character

recognition systems began shortly after that, when people began to consider possible

business and commercial uses. B y 1950, the technological revolution 5 was accelerating at a

breakneck pace, and electronic data processing was emerging as a promising and essential

area of research and development. Commercial character recognizers were initially made

accessible in the 1950s, when electronic tablets were used to capture the x - y coordinate data

of a pen tip's movement. The researchers were able to work on the online handwriting

recognition challenge because of this breakthrough9. Punched cards were used to enter the

data into the computer. The need for a cost-effective method of dealing with the growing

amount of data arose as a result. A t the same time, the technology for machine reading was

maturing to the point where it could be used in practical applications. B y the mid-1950s,

commercially available optical character recognition (OCR) machines were available 7. In

1954, Reader's Digest installed the world's first optical character recognition (OCR) reading

machine 9. A typewriter was used to turn typewritten sales reports into punched cards, which

were then fed into a computer using this equipment.

The commercial optical character recognition (OCR) devices that appeared between 1960

and 1965 were commonly referred to as first generation O C R 9 . The letter shapes of the O C R

machines of this generation were mostly limited, which was characteristic of this generation.

The symbols were created specifically for automatic reading by machines. When multi-font

machines first appeared on the scene, they could read up too many different fonts. The

pattern recognition algorithm used and template matching, which compares the character

picture with a library of prototype images for each character of each font, both served to

limit the number of fonts that could be created. The reading machines of the second

generation first debuted in the mid-1960s and early 1970s9. In addition to being able to

16

distinguish standard machine-printed characters, these systems also possessed the ability to

recognize hand-printed characters. When hand printed characters were taken into

consideration, the character set was limited to numerals and a few letters and symbols, with

no more options. It was I B M 1287 in 1965 that was the first and most well-known system

of this type. During this time, Toshiba built the world's first automatic letter sorting system

that could recognize postal code digits automatically. Hitachi also developed the world's first

optical character recognition (OCR) machine, which was both high-performing and low-

cost. There was a lot of effort done in the domain of standardization during this time. In

1966, a comprehensive examination of O C R requirements was completed, and the O C R - A

character set was declared as the American standard O C R character set. This font was

heavily styled and meant to be easily recognized by optical recognition software while

remaining readable by humans. A European typeface, O C R - B , was also created, which had

more natural fonts than the American standard font. Attempts were attempted to combine

two fonts into a single standard using computers that were capable of reading both standards.

3.2 Techniques of Optical Character Recognition Systems

The essential notion in automatic pattern recognition is to first teach the machine which

classes of patterns are possible and what they look l i k e 9 . The characters that appear in O C R

patterns include letters, numerals, and some special symbols such as commas, question

marks, and other symbols. In order to teach the computer, it is necessary to show it samples

of characters belonging to all distinct classes. A prototype or description of each class of

characters is created by the machine using the examples provided. During the recognition

process, the unknown characters are compared to previously obtained descriptions and

allocated to the class that best matches the descriptions. The character recognition training

procedure is completed in advance by the majority of commercial character recognition

systems nowadays. When new classes of characters are introduced into a system, some

systems incorporate training facilities to prepare players for the change.

A n O C R system,6-9, is composed of various components. With the use of an optical scanner,

the initial step is to digitize the analog document. A procedure known as segmentation is

used to extract each symbol from a region containing text that has been identified. In order

to aid feature extraction, the retrieved symbols are pre-processed in order to remove noise.

The identity of each symbol is determined by comparing the extracted attributes to

descriptions of symbol classes that were gained during a previous learning stage. When it

17

comes to reconstructing words and numbers from an original text, contextual information

comes in handy.

Optical Scanning

O C R starts with optical scanning. Scanner captures digital image of original document. On

line transcription (OCR) uses optical scanners that transform light intensity into grey levels.

Documents are printed in black on white. O C R converts multilevel images to bi-level black

and white. Thresholding is used on scanners to save memory and computational resources.

In fact, the quality of the bi-level image determines the results of recognition. O C R system

components are employed where gray levels below the threshold are black and levels above

are white. It is sufficient to pre-set a threshold for documents with strong contrast. However,

actual documents have a wide range. In these circumstances, more advanced thresholding

procedures are required. The best thresholding methods modify threshold to document

attributes like contrast and brightness.

Layered scanning of documents demands additional memory and processing power 5 .

Location Segmentation

Location segmentation is the next O C R step. Image segmentation identifies image elements.

II faut distinguish between data-filled areas of the paper and figures and graphics-filled areas.

A n address must be located and isolated from other prints like stamps and corporate logos

before being recognized by an automatic mail sorting system. Text segmentation is character

or word separation. Most O C R systems break words down into single characters. This is

usually done by segmenting each connected component. If characters contact or are

fragmented, this strategy fails. Segmentation issues include: (a) extraction of touched and

fractured characters (b) noise separation from text (c) misreading images and geometry as

text 5.

Pre-processing

Pre-processing is the third O C R component. The raw data is subjected to a number of

preliminary processing procedures, depending on the manner of data gathering, in order to

make it usable in the descriptive stages of character analysis. A certain degree of noise may

be present in the image created by the scanning process. The characters may be smeared or

broken depending on the scanner resolution and intrinsic thresholding. Some of these flaws,

which can lead to low identification rates, are addressed by smoothing digitized characters

18

in the pre-processor. F i l l ing and thinning are both involved in smoothing. Fi l l ing fills in

minor gaps, gaps, and holes in digital characters, while thinning narrows the line width. The

most popular method for smoothing involves moving a window across a binary image of a

character and applying certain rules to its contents. Normalization and smoothing are

included in pre-processing. Normalization is used to create characters with consistent size,

slant, and rotation. The angle determines the correct rotation. Hough transform variations

are often employed to identify skew in rotatable pages and lines of text 5.

Segmentation

A n image with sufficient shape information, good compression, and minimal noise is

obtained after pre-processing. Segmentation follows O C R . The character picture has been

subdivided here. A character's recognition rate is directly affected by how well it can be

segmented. Internal segmentation isolates lines and curves in the cursive scripts. Cursive

character segmentation remains an unsolved topic despite numerous remarkable

methodologies and strategies created in the past. (1) Explicit , (2) implicit and (3) hybrid

character segmentation techniques 5 .

Representation

Representation is the fifth O C R element. Any recognition system relies heavily on picture

representation. To begin, a recognizer receives images in gray or binary format. To reduce

complexity and improve accuracy of optical character recognition systems, most systems

use the following techniques: A more compact and distinctive representation is necessary

for the algorithms. A t the same time, they are invariant to class-specific differences 5 . (a)

global transformation and series expansion (b) statistical representation (c) geometric and

topological representation (d) 5

Feature Extraction

Feature extraction is an O C R component. Feature extraction captures crucial symbol

features. Feature extraction is one of the most difficult pattern recognition challenges. The

simplest approach to describe character is by raster image. Another method is to remove

unnecessary qualities but keep the important ones. Techniques for extracting such properties

include: distribution of points, transformations and series expansions, and structural

analysis. The characteristics are rated for noise sensitivity, deformation, implementation,

and usability, (a) resilience against noise, distortions and style variation; (b) practicality in

19

terms of recognition speed, implementation complexity, and independence. Techniques for

extracting features include template matching and correlation, transformations, point

distribution, and structural analysis 5.

Training And Recogniton

Seventh O C R component is training and recognition. O C R systems heavily rely on pattern

recognition to categorize unknown samples. These include (a) template matching (b)

statistical techniques (c) structural techniques (d) and A N N s (a). These approaches aren't

mutually exclusive. Occasionally, an O C R technique in one approach can be deemed a

member of another. A l l of the above O C R techniques use holistic or analytic strategies for

training and recognition. The holistic technique eliminates segmentation by perceiving the

complete character from above. This computational benefit comes at the cost

of limiting O C R s vocabulary. Also, the complexity of a single character or stroke reduces

recognition accuracy. Conversely, analytic solutions work from the stroke or letter level up

to produce meaningful text. It is necessary to use explicit or implicit segmentation

procedures, which not only add complexity but also introduce segmentation mistake. With

the use of segmentation, the difficulty is simplified to simple single characters or strokes,

which can handle unbounded vocabulary with great recognition rates 5.

Post-Processing

Post-processing is an O C R component. Post-processing tasks include grouping and error

identification and correction. Strings are linked to 35 text grouping symbols. Plain text

symbol recognition yields a set of individual symbols. However, these symbols frequently

lack information. Words and numerals are made up of separate symbols. Symbols are

grouped into strings based on their document position. Symbols that are close enough are

grouped. For fixed pitch fonts, grouping is simple as each character's position is known. The

spacing between typeset characters varies. Words are much closer together than letters,

allowing for grouping. The issues arise when handwritten text is slanted. The context in

which each character appears has not been explored. In advanced optical text recognition

challenges, a single character recognition system is insufficient. Even the greatest

recognition systems cannot identify every character 5. Context can only detect or repair some

of these mistakes. There are two methods. The first makes use of character groups occurring

together. This is done by employing word syntactic rules. The odds of two or more characters

20

appearing in sequence can be estimated for various languages and used to detect errors. It is

thought that a combination of k after h in a word is a mistake in English. Another way is to

use dictionaries to detect and rectify errors. A term with a mistake is looked up in a

dictionary. If the word is not in the dictionary, it is repaired by replacing it with the closest

synonym. Classification probabilities help identify incorrectly classified characters. This

technique does not detect errors that change lawful words. The downside of dictionaries is

the time spent searching and comparing. 5

3.3 Tesseract

Tesseract started as a PhD project at H P Labs in Bristol. Between 1984 and 1994, H P created

it and it became popular. Tesseract was provided as open-source software by H P in 2005 1 1 .

Google has been working on it since 2006, Tesseract is also thought to be used in Google

Cloud Vis ion A I 1 1 . Tesseract is a text recognition (OCR) engine that is open source and

licensed under the Apache 2.0 license. It can be used directly or through an A P I (for

programmers) to extract written text from photos. It works with a wide range of languages1 2.

The most recent version 4, launched in October 2018, has a new O C R engine that employs

an LSTM-based neural network approach, which should greatly improve accuracy. Version

4 comes with 123 languages pre-installed 1 1.

3.4 Architecture

Tesseract O C R is a sophisticated layer-based engine. A s indicated in the block diagram in

fig. 1, it works in a step-by-step manner. The adaptive thresholding stage detects the image's

colour intensities and converts the image to binary images 1 3.

The image is then subjected to linked component analysis 1 1, which extracts character

outlines as the second phase. This stage is the most important part of the cycle since it

performs O C R on images with white text and black backgrounds 1 4.

Tesseract was perhaps the first 1 1 to process the input image using these cycles. Following

that, the image's outlines are turned into Blobs (Binary Long Objects). The data is then

grouped into 13 lines and areas, with subsequent analysis focused on a specific location 1 1 .

21

The extracted components are cut into words and separated by spaces after extraction. The

text recognition process then begins, which is a two-pass procedure. The initial part, as

indicated in image 1, is when each word is attempted to be recognized. Each acceptable word

is accepted, and the second pass begins to collect the remaining words. This is where the

adaptive classifier comes in. The adaptive classifier w i l l then classify text more precisely.

To work correctly, the adaptive classifier must first be trained. When the classifier receives

data, it must fix any errors and assign the text to its right location 1 5 .

Input
Image

Binary
Image Connected

Component
Analysis

Input
Image Adaptive

Binary
Image Connected

Component
Analysis

Character
Thresholding

Connected
Component

Analysis
••I Outlines

Connected
Component

Analysis

Extracted
Text Recognize

Word Pass 2

Figure 1 Tesseract architecture

Recognize
Word Pass 1

Find Text
Lines and

Words

Character outlines
organized into words

3.5 Tesseract's Operation

Tesseract functions in a similar way as a scanner. Its interface is rather straightforward, as it

accepts input from the command line using only the most fundamental instructions. We' l l

need to upload any image that has text. For example, the illustration in f ig .3 1 6 illustrates this.

Tesseract then takes over and processes the data. Figure 3 depicts the command that should

be used to do this. The Tesseract command accepts only two arguments in its most

Figure 2 Image contain text

22

basic form: 1 6 The first argument is an image that contains text, and the second argument is

an output text file, which is often a text file. Tesseract automatically selects the.txt extension

for the output file by default. 1 7 There is no need to specify the output file extension directly

because it is automatically detected.

Tesseract is available in a number of different languages. Each language includes a trained

language data file that has been customized for that language. The language file must be

stored in a location that Tesseract is familiar with. It is recommended that you keep it within

the project folder when utilizing it in the project. This folder serves as the Tesseract home

folder on your computer. Due to the fact that we are attempting to extract English characters

from the photographs in this study, we must maintain English data files. A s soon as the

processing step is completed, the output file is generated, as illustrated in fig. 4. In

straightforward photos, whether in color or black and white (gray scale).

| §]rnage30.M-WordPacl

Eft View Insert Format Help

—

& 0 s|a|«l!l^
PEACE

Figure 3 Output ofprocessing done by Tesseract

The Tesseract analytic architecture is created using an iterative pipeline technique that

includes revisiting previous steps1 1. The recognition is carried out twice: the first time, a

static classifier is employed, and the second time, an adaptive classifier is uti l ized 1 1 .

Tesseract is designed to recognize text with a tiny skew without needing to deskew the

image, even though it is desirable for better recognition to have the text horizontal 1 1 . The

connected component analysis is the initial step in the recognition process 1 1. Line detection,

baseline fitting, character and word segmentation are all included 1 1 . The static classifier's

output is then input into the adaptive classifier for training 1 1 . The adaptive classifier is

employed during the second recognition, and words that were not previously recognized by

the static classifier may now be recognized.

23

3.5.1 Line Finding

Blob filtering and line creation are essential for determining a baseline. A blob is any content

that isn't related to the rest of the image, such as a word or a symbol. The average height of

the blobs is estimated, which aids the engine in filtering and removing all little blobs, such

as punctuation or no i se 1 1 1 8 .

The blobs wi l l most likely fit together without overlapping and wi l l be parallel to the same

slope. The blobs aren't always identified in the correct order. The blobs are given an x-

coordinate to keep track of where they should go" .

When skew is present, this decreases the negative consequences of assigning an inaccurate

text. After each blob has been assigned a line, the baselines are approximated using the least

median of squares fit. The blobs are then reinserted into their respective lines 1 1 .

3.5.2 Baseline Fitting

Tesseract investigates the lines of blobs a little more closely once they've been discovered.

A quadratic spline, or four parallel lines that analyse the blob, is used to set the baselines

Figure 4 Baseline Fitting

more precisely. This function is extremely helpful in assisting Tesseract in handling curved

words, such as those seen in scanned books where the words are frequently curved in the

centre near the book bindings 6.

3.5.3 Word Segmentation

Words with identically sized letters (fixed pitch) are treated as a particular situation, with

the words cut evenly based on the pitch and marked for identification. Characters in words,

on the other hand, frequently have various pitches and must be addressed independently.

24

Tesseract measures the gaps in a limited vertical range between the baseline and mean line

to handle varying pitches 1 1. When it comes across spaces that are too close to the threshold,

it labels them as fuzzy. Tesseract then defers the judgment until later in the second

recognition, when the adaptive classifier may have gathered more helpful information.

00 J ©
Figure 5 Word segmentation

3.5.4 Character Segmentation

Tesseract seeks to resolve character segmentation by cutting the blob with the lowest

confidence provided by the character classifier. The concave vertices of a polygonal

approximation of the outlines are used to find potential candidate chop spots 1 1.

Figure 6 character segmentation

L A L A

The chops are arranged in a logical order. Any chop that does not boost the result's

confidence wi l l be undone, but not completely discarded. The broken character associator

wi l l examine it once more 1 1 .

3.5.5 Associating broken characters

If all the possible chops have been exhausted and the term remains unsatisfactory, it is given

to the associator. The associator evaluates candidate chops by identifying unclassified

•LS
Figure 7 association broken characters

25

combinations of fragments after trying them out from a prioritized queue. According to R.

Smith, this method is inefficient at best and likely to overlook essential chops at worst. The

advantage is that words that are lacking crucial portions of fragments can still be

ident i f ied 1 1 1 9

3.5.6 Character Classification

There are two levels of character classification: pass 1 and pass 2. The static classifier is

used initially, followed by the adaptive classifier 1 9. The outlines are taken from the character

to be recognized in the first stage, which involves a transit through the static classifier. From

the outlines, different sized fixed-length features are retrieved and matched many-to-one to

a reference from the training data. Even when character outlines lack characteristics that can

be directly checked against a reference, the engine can use polygonal approximation to

match linked broken characters to a reference (see Figure 9) 1 9 .

The adaptive classifier is trained on every character that the static classifier correctly

matches. This training is required for the second step of the recognition process, in which it

wi l l employ the static classifier's general knowledge to help it match previously unsuccessful

characters. The adaptive classifier now considers all of the fuzzy spaces as well as the words;

once a character passes the adaptive classifier, it is safe to assume it is a match 1 9 .

Figure 8 character classification

26

3.5.7 Word Classification

Tesseract also recognizes words. The characters in a word are separated and then stitched

back together one by one. The program constantly compares the current word to a linguistic

model. It is undone i f the current character does not boost the word's confidence. The highest

confidence is considered a complete term 1 1 . Figure 9shows a D A S 2014 graphic example.

Cha racier
Chopper

Static

Try Again
On Pass2

Character Classifier

Adaptive

Adapt to
Ward

Char n-grams

Figure 9 word classicfication

Chapter 4: Current And Future technology

Optical character recognition (OCR) is a well-established technology with a wide range of

applications in the corporate world. In essence, it allows users to extract text from a picture

for use in a word processor or database. In other words, it transforms a difficult-to-use visual

into useful information 2 0. So, what are some of the most common O C R framework?

4.1 OCR Library

4.1.1 Google Tesseract O C R

Tesseract was originally created at H P Bristol and H P Greeley in Colorado between 1985

and 1994, with significant adjustments in 1996 for Windows porting and C++ in 1998. H P

opened sourced Tesseract in 2005. Google developed it from 2006 to November 2018 2 1 .

It is now one of the most accurate open-source O C R engines available on Linux, Windows,

and Mac OS X . The source code is also available for Android and iPhone. It supports 149

languages in various packages. Tesseract is an example-based text detection system, thus we

must either obtain the package or train the engine with our own samples.

The advantages of utilizing this engine are that it supports multiple languages and may be

compiled to run on multiple systems 2 2 ' 2 3.

27

4.1.2 G O R C

G O C R is a free and open-source character recognition software released under the G N U

General Public License. G O C R or J O C R - The abbreviation G O C R was used originally.

G N U Optical Character Recognition is the name of the software. However, at the time, it

had already been taken. After Jorg Schulenburg, the acronym J O C R (Jorg's Optical

Character Recognition) was coined (Initial Developer).

G O C R promises to be capable of translating barcodes and covering single-column sans-serif

fonts with a height of 20 to 60 pixels. It could also be used for other projects as a command-

line interface. It is compatible with the operating systems Linux, Windows, and OS/2 2 4 .

4.1.3 Cuneiform

Cuneiform is a free and open-source solution that is currently known as "Cognitive

OpenOCR." There's a database and output built in. It has a total of 23 languages included. It

also scans text formats, performs document layout analysis, and performs identification.

OpenOCR is a freeware/BSD application developed by Cognitive Technologies. It is cross-

platform; however, it does not provide a graphical user interface for Linux.

Its wrapper library, Puma.NET, makes character recognition work in any.NET Framework

2.0 or above application run more smoothly. To increase recognition quality, it runs a

dictionary check during the procedure 2 4.

4.1.4 Kraken

Kraken was created to address Ocropus's difficulties while not interfering with its other

features.

It uses its C L S T M neural network library, which gives it new data experience from past

projects. It requires some third-party libraries to run on different platforms.

This data is then used to predict upcoming data validation concerns better correctly. Later,

the company's work procedure aids in the development of new models 2 4.

4.1.5 A9T5

A9T9 is a free and open-source optical character reading and recognition software for

Windows developed by Microsoft. It offers an application system for Windows Store that is

very simple to use and install.

28

http://Puma.NET
http://any.NET

Other characteristics include zero advertising and a spyware-free operating system. It also

features easy-to-customize source codes for improved development and modification

possibilities.

OCRopus, Calamari, and Ocrad are some of the other options available 2 4.

4.2 OCR Applications

The computerized conversion of photos to written text is known as O C R (optical character

reader/recognition). There is a lot of O C R software out there that can help you extract text

from photographs and turn them into searchable files. These programs take a wide range of

image formats and convert them to well-known file formats such as Word, Excel , and Plain

Text.

The following is a hand-picked list of O C R Software, along with popular features and links

to respective websites. The list includes both free and paid open source and commercial

applicationsl 2 5.

Many different applications have benefited from the use of optical character recognition

(OCR). Some of the literatures covering these topics are written in languages other than

English, such as Latin, Cyri l l ic , Arabic, Hebrew, Indie, Bengali (Bangla), Devanagari,

Tamil, Chinese, Japanese, and Korean, among others. Latin, Cyri l l ic , Arabic, Hebrew, Indie

the document management method was revolutionized when it was first introduced in the

1950s 2 6. It was used across a wide range of sectors and became a highlight of the era. A s a

result of optical character recognition, scanned documents may now be transformed into

more than simply image files, becoming fully searchable documents with text content that

is recognized by computers. O C R is becoming increasingly popular. Instead of manually

retyping the text, optical character recognition retrieves the important information and

automatically enters it into an electronic database, thereby saving time and money. Practical

applications, invoice imaging, the legal profession, banking, and healthcare are just a few

examples of the many applications available in the field of optical character recognition.

O C R is also widely used in a variety of other fields, such as captcha, institutional repositories

and digital libraries, Optical Music Recognition (which does not require any human

correction or effort), Automatic number plate recognition, Handwritten Recognition, and

other industries, amongst others 2 5 .

29

4.2.1 Nanonents

NanoNets is an artificial intelligence-based O C R program that digitizes data from a variety

of corporate documents and photos [2]. B y capturing only, the data/information you require,

you can automate manual data extraction operations1 2. Automate time-consuming and error-

prone manual document processing tasks to boost productivity 1 2.

Features:

• Data can be extracted from invoices, tax forms, purchase orders, bank statements,

insurance forms, medical forms, id cards, and a variety of other sources.

• Only the information you require wi l l be exported to customized Excel, C S V , JSON,

X M L , or Word files.

• The ability to search P D F

• A P I response times are lightning fast.

• ERPs, databases, and cloud storage services can all be integrated.

• Compliant with the G D P R

• The software can be installed on your own computer.

4.2.2 Adobe Acrobat

P D F files and photos are converted into searchable and editable documents using Adobe

Acrobat, which is an optical character recognition technology. It offers custom fonts that are

close in appearance to printouts 2 7.

Features:

• Y o u can make immediate changes to any printed document.

• It allows you to quickly cut and paste text into other applications without difficulty.

• Exporting the file to Microsoft Office is made possible by Acrobat.

• Using the P D F format, you may easily convert scanned documents and move the

data from one area to another.

• This tool assists you in maintaining the appearance and feel of papers that are similar

to the original.

30

4.2.3 A B B Y Y Cloud Reader

A B B Y Y Cloud Reader is a software application that recognizes a complete printed or

handwritten page in its entirety. It is capable of detecting more than 200 different languages.

This program assists you in converting a P D F or image into a searchable M S Word, Excel ,

PDF , or other format1.

Features:

• It is compatible with mobile devices as well as desktop computers.

• Receipts and business cards can be recognized by this technology.

• A B B Y Y Cloud Reader is a RESTful service (Representational State Transfer).

• It transforms recognized data into X M L format (Extensible Markup Language).

• This tool includes a library that may be used with Java, .NET, iOS, and Python.

4.2.4 OmniPage Ultimate

OmniPage Ultimate is a piece of software that can convert your document into something

that is easy to edit and search for. It can scan files and convert them to any format with little

effort2 8.

Features:

• Provide document formats that are ready to utilize.

• This program can be used in conjunction with mobile devices and printers.

• There are numerous apps supported, including Microsoft Office and H T M L , amongst

other things.

• Y o u have the option of opening this program from a network connection.

• This application can recognize more than 120 different languages.

4.2.5 OnlineOCR

Using OnlineOCR, characters and text from P D F documents and photos are recognized. A

maximum of 15 photos can be converted into editable text formats every hour with this

software2 9.

Features:

• It is available in more than 46 languages, including English, Chinese, and French,

among others.

31

• Onl ineOCR can handle a variety of file types, including B M P (Bit Map), P N G

(Portable Network Graphics), zip files, and more.

• Text can be converted into a variety of formats, including Word, Excel , R T F , and

plain text.

• It is possible to incorporate converted files into your website using this service.

4.3 Future Technology

The methods of optical character recognition (OCR) systems have evolved over time from

primitive schemes that were suitable only for reading stylized printed numerals to more

complex and sophisticated techniques that can recognize a wide range of typeset fonts 3 0 as

well as hand printed characters. Because of the advancement of computer technology and

the reduction of computational constraints, new methods for character recognition are

constantly being developed 4 ' 9 3 0 . The greatest promise, however, comes in maximizing the

effectiveness of existing methods by hybridizing technologies and making greater use of

context. The integration of segmentation and contextual analysis improves the recognition

of characters that have been joined and split. Additionally, higher level contextual analysis

that examines the semantics of complete phrases is beneficial. In general, there is greater

possibility in utilizing context to a greater extent than is currently done. Additional research

has shown that a combination of numerous independent feature sets and classifiers, where

the weakness of one technique is balanced by the strength of another, can increase

recognition of individual characters 5 . Researchers are pushing the boundaries of character

recognition research even farther, with the goal of recognizing advanced cursive script,

which is handwritten connected or calligraphic characters, soon. In this field, some

interesting techniques are being developed that deal with recognition of complete words

rather than individual characters.

Chapter 5: Implementation

Tesseract is a C++ engine that runs outside of a browser. A s a result, the C++ engine can

only be used by sending a picture from a web application to a server, running it through the

machine, and returning the text. 1 1

However, for a few years, there has been a JavaScript port of the Tesseract C++ engine that

works in a browser without any server-side code. Tesseract.js is the name of the library.

32

I 'm using Tesseract.js to create an O C R web application for this work, the O C R frontend is

built with H T M L , CSS, JavaScript, and CSS library bootstrap

5.1 Setup Languages Selection

Create language selector in html file inside <body> section.

Use <select> element to create drop-down list.

When one language gets selected it w i l l trigger JavaScript at backend.

<select id="langsel">
<option value='eng' selected> English </option>

</select>

Figure 11 Language selector setup

Figure 10 Language selector

The bridge between frontend and backend is id attribute #langsel.

<body>

<div c l a s ="'container nt -3">
<div clas5= row".

<div c l a s ="col -12 co l -n id -4 >
•< s e l e c t id=" langse i " >

<opti n va lue=af r - - > A f r i k a a n s </option>

•iopti >n v a l u e ^ a r a 1 >• Arab ic </option>
<opti n v a l u e ^ a z e - A z e r b a i j a n i </option>
<opti >n v a l u e ^ b e l 1 Belarus ian </option>

•iopti >n va lus^ 'ben" Bengal i </option>
^ o p t i n va lue= 'bu l ' > Bu lgar ian </option>

<optii n v a l u e - 1 c a t " •- Catalan </option>
<optii n v a l u e - 1 c e s - - Czech </option>
^ o p t i n w a l u e = ' c h i _ s u ' Chinese < /opt ion >

<optii >n v a l u e - ' c h i j t r a T r a d i t i o n a l Chinese </option>
<opti n v a l u t ^ ' c h r 1 Cherokee < /opt ion >
<opti n v a l u t ^ ' d a n 1 Danish < /opt ion >
<opti n v a l u e = d e u i German </option>

<opti MI v a l u e = ' e l l ' > Greek </opticn>
<opti n value='eng' ielected> Eng l i sh </option>

const worker = new Tesseract.TesseractWorkerQ;
worker, recognize^ile, $("#langsel").val())

Figure 12 TesseractWork language selector

5.2 Setup html element

Image file selector

Using <input> tag which is specifies an input field where the user can upload the image.

Fol low the code below:

<div cla5s=Mcol-12 col-md-4 mt-3 mt-rad-B"?

<diu clasE="bax">

<input type="file" name=1,file-l[]M id="file-l" clä55="i putfile inputfile-l" data-multiple-captian='{count} files selected" multiple />

<label for="file-l,,><:svg xmlns="http://wiw.w3.org/2000/ vg" width="2B'' heighrt-"17M viewBox="0 9 20 17'xpath d="M10 01-5.2 U9h3.3v5.lh3.3v-5.lh3.31-5.2-4.

3.6l3.4-2.6h-2l-3.2 2.1c-.4.3-.7 1-.6 1.51.6 3.1c.1.5.7.9 1.2.9hl6.3c 6 8 1.1-.4 1.3-.9l.6-3.1c.l-.5-.2-1.2-.7-1.5z"/X/sve> <spari>thoo5e a fileahellip;-</spanX/label>

<:/div>

</div>|

Figure 13 Image input html element

Thumbnail

Using tag which is used to embed an image in an H T M L page.

This tag allows us to create thumbnail to preview image selected

33

http://wiw.w3
http://U9h3.3v5.lh3.3v-5.lh3

Fol low code below:

div class="col-12 col-ml-5">

<div class="Jmage-container"xinig id=" selected - image" src="images/Funny-ltinion-Quotes.jpg" class="col-12 p-B" /></div>

•!/div>

Figure 14 Image thumbnail

Placeholder of results after processing

The code below creates a box, which is show result after processing.

<div c l a 5 s = " c o l - 1 2 col -md-6">

<div id="log">

<a i d = " s t a r t L i n k " href="#">Results

</d±

< / s p a n >

Figure 15 Placeholder html element

5.3 Tesseract: Setup and Run

In addition, we'll create a TesseractWorker. Then use the recognize feature. This function

returns a TesseractJobobject and runs asynchronously.

f u n c t i o n r e c o g n i z e F i l e (f i l e) {
$ (^ l o g ") . empty Q ;

c o n s t c o r e P a t h = w i n d o w . n a v i g a t o r . L i se rAgent . i n d e x O f (" Edge 1 ') > - 1
? ' j s / t e s s e r a c t - c o r e . a s m . j s '

: ' j5/tes5eract-core. •. •= -r-1 . j s ' ;

c o n s t worker — new T e s s e r a c t . T e s s e r a c twbrker (- [
c o r e P a t h j

});
w o r k e r . r e c o g n i z e (f i l e ^

((• H a n g s e l - j . v a l O

)
. p r o g r e s s (f u n c t i o n (packet} - [

con s o l e . i n f o (p a c k e t)
p rog r e s s Update(p a c k e t)

1
1

» . t h e n (f u n c t i o n (dat a) -[
c o n s o l e . l o g (d a t a)
p r o g r e s s U p d a t e ({ s t a t u s : ' d o n e ' j d a t a : d a t a

}>
i

Figure 16JavaScript recognize function

34

The text result can be obtained by utilizing the then () method inside a callback function.

Additionally, use the progress () function to add a callback to track the status and progress

of the O C R operation.

5.4 Display Progress and Results

Use the TesseractJob object that is returned to display the results.

It returns a status string and the percentage of work performed during the processing stage.

The returned result includes a confidence level as well as the text extracted from the image.

Figure 18 Result after Image processing

{status: Loading tesseract core 3 p r o g r e s s : 9

progress: 3

statjs: "loading tesseract core"

9 [[Prototype]]: Object

• constructor: / Object()

• hasOwnProperty: / hasOunProperty()

• isPrototypeOf: / isPrototypeOf ()

• propcrtylsEnumerable: f property IsEnuirterabie(

• toLocaleString: / toLocaLe5tring()
• toString: f t o S t r i . n g ()

• valueOf: / valueOf()

• defineGetter : / defxneGetter ()

¥ defineSetter : / def-ineSetter {)

• lookupGetter : / LookupGetter ()

• lookupSetter : / LookupSetter ()

proto : (- - -)

• get proto : / p r o t o ()

• set proto : / p r o t o ()

Figure 17 Result after Image processing 2

The location of the word inside the image is also included in the array of words. To show it

to the user, we now use the progressUpdate method.

f u n c t i o n pre rate (pa cket>{
van l o g - document. getE] ementById("

i f (l o g . f i r s t C h i l d S& l o g . f i r s t C h i l d . s t a t u s packet s t a t u s) *
i f C P o g r e s s - i n packe

v a r progress. - l o g . f i r s t c h i l d . q j e r y 5 e l e c t o r (" p r o g •ess")
pro r e s s . v a l u e — pac čet . p rogres

>
}e l se {

v a r 1 ne - document .cr e a t e E l e m e n t (' d i v - J ;
l i n e . t a t u s — p a c k e t . s t a t u s ;
v a r s atus — document. c reateEleme n t { - d i V ")
s t a t u .classNarne — " s t a t u s 1

s t a t u .appendCh i ld (docu i ren t - c rea t E?Textr\lode(packet.s1 a t u s))
l i n e . a p p e n d c h i l d (s t a t u

i f (' p r o g r e s ? ' i n packe
v a r progress - docum e n t . c r e a t e E .ement("progress ")
pro r e s s . v a l u e = pac re t . p rogres
pro r e s - ; , max = 1
l i n . appendCh i ld (p ro g ress)

>

k e t . s t a t u s — *c one ') {

pre - document.c reateE lernen [{ ' p r e -)
pre appendChIId (docu n e n t . c r e a t e FeictNode (p a c k e t , dai a . te i c t . rep lace</\n\s .*V i/g , " \n)))

l i n . appendCh i ld (p re)
fa5 - - >. removeCla5 ^ • f a - s p i n n er f a - s p i n)

K " f a s - -) . a d d C l a s « : (- f a - c h e c k)

}

l A g . i l

}

)

s e r t B e f o r e (l i n e . l o E . f i r 5 t C r . i l d)

Figure 19 progressUpadat function

35

http://lAg.il
http://loE.fir5tCr.ild

5.5 Architecture

We conducted a thorough search of the existing application in the preceding stages.

Preprocessing is essential for higher accuracy in all these applications. In addition, most

applications support picture input via still camera capture and browser image mode. Let's

begin by sketching out the suggested system's broad architectural layout 3 1.

Figure 20 Application process

The system's overall architecture is seen in the graphic to the right. Essentially, it is divided

into two major subsystems. The Preprocessing step comes first, followed by the Tesseract

A P I step. The preprocessing stage, which works on the input image to prepare it for use by

the Tesseract engine, is the primary emphasis area of this study, and it is described in detail

below. In this case, it is important to remember that there is a compromise between

processing speed and accuracy. The more time you spend on preprocessing, the greater the

accuracy; however, the longer the runtime wi l l be. The relationship is very clearly seen in

the diagram below 3 1 .

When it comes to processing and accuracy, the graphic below demonstrates how the

distribution/weight for distinct processes in O C R are distributed and weighted. On the

processing side, the extraction step consumes most of the available time. It is since the better

the characters are extracted, the better the results w i l l be for the recognition stage.

Afterwards, recognition and translation are about equal in importance. On the accuracy front,

the recognition phase is where most of the error is committed. It is the responsibility of the

rule matching subsystem to recognize and match characters in an effective manner 3 1.

36

Preprocessing:

Processing vs. Accuracy

30

20

Capture
IMG/VIDEO

r Extraction

f

Recognition

•\

Translation

40

30

A c c u r a c y Protesting

Figure 21 Processing vs Accuracy

The Preprocessing subsystem of the proposed application is depicted in the illustration to

the right. After that, the photos are subjected to the Luminosity gray scaling algorithm, which

is applied to them after they have been rotated, optimized for resolution, and adjusted for

DPI. The processed image is then supplied into Tesseract as an input signal. In case the

camera was not pointed at a zero-degree angle when the image was captured, the rotation

step rotates the image. Compared to other steps, this is a rather minor change. A smaller step

than resolution optimization, compression of larger images to the greatest possible resolution

Input Image

Rotation

Optimize
resolution

Adjust DPI

Luminosity
Algorithm

Pre processed
Image

Tesseract API

Figure 22 Processing subsystem

37

for Tesseract is also performed The Dpi adjustment and gray scaling algorithm take up most

of the time. They are the primary processes in preparing the image for use with the Tesseract

algorithm 3 1.

Web Application Architecture:

Choose Language

I
Import Image

I
Preprocessing

I
Tesseract API

I
Output

Figure 23 Application Architecture

A s seen in the graphic above, the architecture is explained from the perspective of a

Web application. The fol lowing is the flow of the application: The first step is to select

a language, and the second step is to select an input image, which can be selected from

a drive or folder where the image is stored. The image is passed to the preprocessing

subsystem after it has been selected. Fo l lowing processing, the image is passed into the

Tesseract A P I , which extracts characters from the image and displays the results on the

screen 3 1 .

38

5.6 Preprocessing step

5.6.1 Luminosity technique

Luminosity threshold grayscale conversion is a technique for turning a picture into grayscale

while retaining some of the color intensities in the original image. The Luminosity technique

is almost identical to the average color method, but it is more advanced because it considers

the human perception of color.

Certain colors are more sensitive to the human eye than others. For example, it is more

sensitive to green and less sensitive to blue 3 1 .

20 + 7Q + 150orer3

Each pixel is converted using the formula provided above. The images below are examples

of grayscale images that have been converted using both methods of gray scaling.

Result:

Figure 25 Output of luminosity vs simple gray scale

The following algorithm describes how we process the picture luminosity technique:

In this approach, we explore the image pixel by pixel and then store the results in an array

of numbers. Then the luminosity formula, as shown in the following illustration, is used.

luminosity = (0.2126 * red portion - 0.7152 * green portion - 0.0722 * blue potion);

This is the primary stage in which we change each pixel to extract the true details from it.

Finally, we reassemble all the pixels to reassemble the image once more.

39

5.6.2 DPI Enhancement

To obtain the best effects out of the photograph, we must also correct the DPI . When

there is no distortion, light effects, or other imperfections in the image, gray scaling

alone would be effective. Every time we look at something, we won't see something as

perfect as this. The fol lowing are some of the things we need to do to improve DPI : D P I

should be fixed (i f needed) Tesseract requires a minimum resolution of 300 DPI . The

extraction process is improved because of a wider D P I range 3 1 ' 3 2 .

// Get buffered image from input file;

// iterate all the pixels in the image with width=w and height=h

for int w=0 to w=width

For int h=0 to h=height

{

If call Bufferedlmage.getRGBO saves the color of the pixel
Image. set(lum)

// call Color(int) to grab the RGB value in pixel

}

1

// set the pixel in the new formed object

Colar= new colorQ;
}

1

If now use red.green.black components to calc average.

int luminosity = (int)|U2126 * red +0.7152 *green + 0.0722 *blue;

If now create new values

Color lum = new ColorLum

Figure 26algorithm

The rationale for this stage is that we w i l l be using this program on a variety of smart

phones, which makes it necessary. There are differences in camera specifications and

pixel density between each of them. A s a result, it is preferable to normalize the photo

before saving it in the gallery to ensure that it is consistent with the Tesseract

algori thm 3 1 .

40

Because the photographs in our case are not completely snapped and ideal, and because

we want to keep the procedure small and suited for mobile phones, we' l l l imit the scope

of the work to merely D P I improvement. For our photos, we set the resolution to 300

pixels per inch (as required by Tesseract). I f the photographs are larger than this, we

reduce the size of the images to a size where we can achieve 300 dots per inch or higher

resolution 3 1 .

start edge extract (low, high}{

/ / define edge
Edge edge;

/ / form image matrix
Int imgx[3][3]={

>
int imgy[3][3]={
>
Img height;
Img width;

/ /Get d i f f in dpi on X edge

/ / get d i f f in dpi on y edge
diffx= height* width;
diffy=r_Height* r_Width;

img magnitude^ s izeof (int)* r_Height +r_Width);
memset(diffx, 0, s izeof (int)* r_Height*r_Width);
memset(diffy, ©, s izeof (int)* r_Height +r_Width);
memset(mag, 8, s i zeof (int)* r_Height*r_WIdth);

/ / th i s computes the angles
/ / and magnitude in input img

For (int y-6 to y=height)
For (int x=0 to x=width)

Resu l tx s ide +=pixel*x[dy][dx];
Result_yside=pixel*y[dy][dx];

/ / return recreated image
result=new Image(edge, r_Height, rWidth)

return result ;

}

Figure 27 Algorithm for DPI enhancement

This algorithm's main function is to normalize the pixel density, which can be summarized

as follows: Each pixel has a specific size, and the depth of an image is determined by the

number of pixels that are packed into it. A s previously described, the system may face

images with a lower density than the minimum required or a picture that is significantly

larger than the minimum required 3 1.

41

Chapter 6: Test and Results

6.1 Experiment result of OCR by Tesseract

We have acquired photos of 20 distinct sorts of number plates from various types of

automobiles and performed optical character recognition (OCR) on these images to extract

the vehicle number. A s shown in Table I, Tesseract has 61 percent accuracy with color

images and 70 percent accuracy with gray scale photos when dealing with color images.

Consequently, when comparing gray scale photographs to color images, it may be concluded

that Tesseract delivers greater accuracy 3 3 3 4 . On a computer equipped with an Intel Pentium

(R) 4 2.4GHz processor and 1 G B of R A M , this experiment was carried out. 5-megapixel

camera is used to capture the photos of number plates on the road. If color photos are

transformed to gray scale and then provided as input to Tesseract, we can see that the

accuracy of text extraction is boosted. When text extraction accuracy is 100 percent or close

to 100 percent in color photos, and the image is transformed to gray scale, the text extraction

accuracy remains the same or increases somewhat. Tesseract is unable to produce more than

40% accuracy in some color photos; therefore, we have transformed these images into gray

scale images using the algorithm outlined in the preceding section and then fed these images

into Tesseract as input images for the algorithm. A s a result of completing this procedure,

the average accuracy with which the characters from the car number plate are extracted

improves significantly 3 5. It is possible to see in Table I that the accuracy of individual image

processing varies from 16 percent to 100 percent, as shown by the image numbers 10 to 18.

In addition, it has been noted that the processing time for extracting characters from gray

scale photos has been reduced as well . It is cut by 10%, bringing the total down to 50%. A s

a result, we may conclude that Tesseract processes gray scale number plate images quickly

and accurately, and that it gives greater text extraction accuracy than other methods 3 2 3 6 .

Comparison Study of Tesseract O C R with Transym.

42

* 3

3
n

2

§ 9 rt n
s ft

rra a -

ft Jfl
3

1
=

7
S

A a « Si

3 1 ft S
£|

5" • -

l a t
I I I
1 =

H
_ I
B -

1 =

S

3
r-

^_

J= 1 ^

£ s a

- m
& n ^ rt

* =• * 5
— = 2

s i g

5° A

9 _. B >

1 3 2 a
s E "ii c

E* S 3 A

ES.

_ i

=' s if z s =

p7

= 2 i - -. i=
„ ja ™
K n —
is =

1 color 12 5 42 0.4 gray scale 5 42 0,397

2 color 12 1 CK) 0.202 color 12 100 0 202

3 color 12 a 67 0.301 gray scale S 67 0 601

4 color 9 100 0.5 eolor 100 0.5
5 color a a 100 0.505 color S 100 0,505

6 color 9 7 7S 0.909 gray scale 7 7a 0,909

7 color S a LOO 0.805 color S 100 0.B05

a color 9 7 78 1.01 gray scale 7 78 1.01

9 col or III 7 70 0.65 gray scale - 70 079a

10 color 9 4 44 0.907 gray scale 5 56 0,402 20

11 color 10] 10 1.007 gray scale 4 40 0.548 75

12 color 10 4 4« 0.699 gray scale 7 70 0,402 42.86
13 color 10 3(1 1.51 gray scale 4 40 0,701 25

14 color 9 I) 0 1.008 gray scale 4 44 0,705 100

15 color 9 [) 0 1.315 gray scale 2 22 0.7 100

16 color 11 6 55 1.619 gray scale S 73 1,717 25

17 color 9 5 5* 0.99 gray scale 6 67 0 806 16.67

IB color 11 5 43 0.907 gray scale £ 55 0 596 16.67

19 color 9 9 100 3.04S eolor 100 3,(MS

20 color 9 9 100 1.007 eolor 9 100 1.0(17
Average
Accuracy 61

Ai t rn^L1

A c a i m c i 711

Table 1 Tesseract OCR Result analysis

Transym O C R is one of the proprietary Optical Character Recognition tools, and it also gives

a high level of accuracy. A s a result, we attempted to run O C R on the same collection of

photos that were described in Section 4.4 to see what kind of results Transym produced.

Transym converts color photos to grayscale images, after which it performs optical character

recognition (OCR) on the images. A s a result, when utilizing Transym, there is no need to

transform a color image to a grayscale image. Table II presents a summary of the O C R

processing results obtained by Transym O C R , which demonstrates that Transym achieves

an average accuracy of roughly 47 percent in our set of data 3 6" 3 8.

A comparison between Tesseract and Transym is carried out to determine which is superior.

Many additional optical character recognition (OCR) tools are proprietary and not open

source. Several other tools are not capable of providing the same level of accuracy as

Tesseract. Because Transym gives a high level of accuracy, we used the trial version of the

software to perform O C R on the images given in Table II. Even though it cannot be utilized

in the form of a Dynamic L ink Library (D L L) , Tesseract can be used in another application

in the form of a D L L for a variety of purposes since it is not a complete tool but an O C R
32 33 35

engine

When comparing the accuracy of color photos and gray scale images, we can see that

Tesseract delivers a greater accuracy of 61 percent for color images and 70 percent for gray

43

scale images when compared to Transym, which only provides a 47 percent accuracy in our

collection of data. In comparison to Transym, Tesseract is significantly faster because it

processes a single image in an average of 1 second and 0.82 seconds for color and gray scale

images, respectively, whereas Transym processes a single image in an average of 6 seconds

and 0.82 seconds. For color and gray scale images, the Standard Deviations of Accuracy

offered by Tesseract are 34.21 and 24.64, respectively, which are both fewer than the

Standard Deviation of Accuracy provided by Transym, which is 40. A s a result, Tesseract is

more consistent in terms of giving accuracy for the data set described above. The standard

deviations of processing time for color images and grayscale images, respectively, are 0.63

and 0.61, respectively, which are significantly smaller than the standard deviation of

processing time for Transym, which is 12 (for color photos). A s a

result, Tesseract is more consistent in this situation of processing photos in less t ime 1 6 ' 3 9 .

120

Figure 28 Comparison of accuracy

44

Table 3 Transym OCR Result

-.

i
H

_L C
^ a
- 7
E' ^

1

" -

l \
1

_
2 B if

h f
I 1

H

. 1
= SS

1 « i h r I i 0 • S4J4

: cakr I i 10 2 .US

3 •CG k r 12 0 a IDJB

. oakr t 0 a 2 i|

5 cakir • ü i m I.Inf,

- •CG Vi r 9 1 LI 10.725

7 oakr I 0 • 7.S9I

cakr t t (,1 4.SK9

• cakr It f. • i 1.316

Ii co k r 9 i m 2.416

Ii kr]• 0 • 3.2A4

i : cakir I" 1 1 i m 1.1(14

i • cakr It 0 • 1.7

11 kr 9 T TU 3.S27

r cakr t 4 *7 2.904

Ii cakr 0 0 1.717

r cakr 9 t 0.HJ2

oakr II 6 S5 2.914

i . cakir t 4 17.256.

:• cakr 9 9 ino 1.513.

A m p
J7

Taö/e 2 Tesseract and Transym OCR
Comparison
1 L- i L r 11 C :1

D T R

L ran m iJk

H I

F i « N D

1 Trial Version ii

ir- ailobb: 1

Dpm SLUITLI: N D

Li^nsc I?.iJ:. Fnypnclary

Online Sa N D

: i | - . : i S.y*1crn Window. Ma/C,

Linux.

Winouwi-

1 .IIILT-I L:.IJC.|.: vcraiHi 1.01 1

\ \ . I.-.i- e Year 311(1 : O I H

DLL Available 1 N D

IJLL:.'^\ il ••:

-vlraLtiniJ. eharaiLcT

turn vehicle dumber

plilc'l

gLtt (CDIDT

rmacci}

70% (gray KTJIC

.ir.ij'L-* •

iV. cm [c Time '. > .-.'.•i:J
1 cular nrkiccij
H.K2 Soiondr

.'I .1; 11 .

t. TS second x

•~ .i M.2L|FHH-cDlDr

Images}

Scale Images i

or Ii.fiJ (Fen- color

I r 11F ~ i -- r urjy
«eile :m3L.-:s 1

12

G^C - 5tandanl dcviaLiHi of Amjrau)

C 7 | 5tanJarcJ dchialiim of Time bjjcai ID

perfbem OCR

Figure 29 depicts a comparison graph of the Tesseract and Transym tools, which allows you

to evaluate the performance of both tools when the accuracy parameter is taken into

consideration. F ig 9 shows that Transym gives 0 percent or near 0 percent accuracy for some

photos, indicating that it is incapable of extracting any character from those images.

Tesseract, on the other hand, gives 100 percent accuracy for none of the photos, meaning

that it is capable of extracting at least some characters from any image. It is necessary to

make this comparison once color photos have been converted to gray scale for use with

Tesseract3 7-3 8.

45

u
O

in

9 £

v t o
TO
4-«
a
E

60

50

40

30
• T e s s e r a c t

• T r a n s y m

0 20 40

Number of Images

Figure 29 Comparison ofprocessing time of OCR

Another comparison is made between these two tools based on the amount of time it takes

to process O C R images. Figure 10 shows that Tesseract takes less than 1 second to O C R

several images, whereas Transym takes more than 1 second to O C R any image, as seen in

the graph. O C R processing can take anything from one to eighteen seconds for some photos.

Figure 10 shows that one of the photographs took more than 50 seconds to complete, as can

be seen for one of the images. A s a result, we can see that Tesseract is significantly faster

than Transym when it comes to O C R processing 3 4- 3 6" 3 8 .

46

6.2 Test and results on application

6.2.1 Select language

The Tesseract O C R engine is capable of processing data in a variety of languages, for the

O C R engine to recognize characters from a specific language, the language must be

English

Bengal i
Bulgar ian

Figure 30 Language selection

provided before image have been selected.

While performing O C R , the Language Abbreviation instructs the O C R engine to look for a

specific language in the Language Data Path, which should contain the data file for the

relevant language i f one exists. In this data file, you wi l l find all the information that was

utilized to train the O C R engine in the first place.

If you are looking for language abbreviations and data files for Tesseract O C R , you can

find them at one of the following links:

• https:// github. com/tesseract-ocr/tessdata/

• https://tesseract-ocr.github.io/tessdoc/Data-Files

47

https://tesseract-ocr.github.io/tessdoc/Data-Files

6.2.2 Input Image

After language has selected, choose image that has some texts in it from folder where its

stored. W i l l be incorporating the Tesseract Engine to turn the image into text in this

project. Tesseract scans the image and provides text, which we store and show on our

computer.

Figure 31 Input Image

6.2.3 Processing

After image have been added and because we're utilizing the capability in ocr/progress,

we're seeing the image load immediately.

Introduction
The Web application made by using Opt cal Character Recognition (ORG) technology, the tesseract engine. And the user will be able to
convert image or photo into text

Figure 32 Processing

48

6.2.4 Results

The promise returned by the recognize () method is a Promise. The object you receive

because of a successful call comprises the property data, which contains information about

the recognized text, as well as other information. Y o u can either access the text through the

text property, which contains the recognized text as a single string, or through the lines,

paragraphs, words, and symbols properties, which each hold a single string of the recognized

text. Each group element carries a confidence score, which indicates how confident the

engine is in the group element. Typically, scores range between zero and one hundred; higher

values indicate greater confidence.

• b locks : [{_}]
box: n u l l
confidence: 94

• f i l e s : O
hocr: '<div class='ocr_page' id='page_l ' t i t l e = ' image \ " \ " ; bbox <3 0 737 326;

• l i n e s : (4) [-[-.}, -[...J, {..}, {..}]
oen: •,LSTM_ONLV'
osd: n u l l

• paragraphs: (2) [{..}, -[...}]

psm: "SIWQLE_BLOCK"
• symbols: (69) [{..}, {..}, {->, {-}, {-}, {-}, {-}, t -

t e x t : "This i s the f i r s t l i n e o f\n th i s text example.\n\nThis i s the second l i
tsv: " 1 \ t l \ t B\tfl\t0\t0\t0\t 0Vt737 Vt 326Vt - l \ t \ n 2 \ t l \ t 1 \ W \ t 0 \ t B \ t l 8 v t 1 5 U 7 0 3 \ t
j n l v : n u l l
v e r s i o n : " 4 . 8 . 0 "

• words: (IS) [{..}, {..}, {..}, {..}, {..}, {..}, {..}, {..}, {..}, {..}, {..}, {..}, {..},
• [[Prototype]] : Object

When you access the text using the properties lines and paragraphs, you wi l l see that the

text has been divided into sections by the properties.

Y o u can access each character through the symbols field, which has an array containing

every recognized word in the dictionary.

A bounding box is represented by the x and y coordinates of the bounding box, and each

element of these properties contains a property called bbox. In the demo application, I use

this information to draw a rectangle around the text that has been selected.
• paragraphs: (2) [{..}, {...}]

psm: , ,SINQLE_BL'XK"
T symbols: Ar ray(69)

• Q
• 1
• 2
• 3

<;choices: A r ray (1) , image: n u l l , t e x t : "T", confidence: 99.41S9376S310547, base l ine : {,.}, ..}
{choices: A r ray (1) , image: n u l l , t e x t : ' h" , confidence: 99.57482147216797, base l ine : {...}, ...}
{choices: A r r a y (l) , image: n u l l , t e x t : ' i " , confidence: 99.53646S5S5S5938, base l ine : {...}, ...}
<;choices: A r ray (1) , image: n u l l , t e x t : ' s " , confidence: 99.5478439331S547, base l ine : {,.}, ..}

A s an illustration of an element in the words array, consider the following. The text property

holds the word, and the confidence property indicates how confident we should be in the

term, line and paragraph are used to refer to the line and paragraph object where this word

is found. Each character is represented as a separate element in the array symbols (T, H , I,

S).

49

file:///n/nThis
file:///t0/tB/tl8

And, in user interface we wi l l see the result of extracted text in the right box as picture

below.

Introduction
The Web application made by using Optical Character Recognition (ORC) technology, the tesseract engine. And the user will be able to

convert image or photo into text.

Figure 33 Result box

Chapter 7: Conclusion

A s a result of my experiments with various photos, I was able to identify both

advantages and disadvantage of Tesseract.js. advantages: Multiple languages are

supported with standard fonts and a clear background; the accuracy is quite great,

disadvantage: In noisy environments, it didn't perform as well , several bespoke fonts

can cause confusion,

Nonetheless, I believe it to be a fantastic JavaScript library in every respect. When

combined with web-based O C R , it provides a wealth of new possibilities for

developers and web-based O C R users.

Many papers are still produced on paper today, but automatic data recognition systems

are becoming increasingly common.... The document is continually copied and

updated during subsequent processing steps, resulting in many distinct copies of the

document. In some applications, they can be extremely beneficial to people, but in

others, they are completely ineffective. Even though scholars have proposed a variety

of complex ideas and strategies to cope with the recognition of unconstrained and

connected characters, current optical character recognition (OCR) systems are

hampered by a lack of such qualities. It is since the claims made by the researchers

have not been adequately substantiated by exposure of the systems to real working

environments/conditions that there is a lack of practical feasibility of such advanced

techniques with the currently available hardware from an economic standpoint. A s a

50

result of these limits and the lack of shown results, it may be inferred that the capacity

of machines to read text with the same fluency as humans is still an unachievable

objective, even though a significant amount of effort has previously been invested in

the subject, character recognition refers to the recognition of single and unrestrained

hand drawn characters, such as numbers, upper-case and lowercase characters of a

certain alphabet, that are not part of a larger text. However, the frontiers of character

recognition have now expanded to include the recognition of cursive script, which is

the recognition of characters that may be joined or written in calligraphy, as well as

the recognition of. Characters.

I've learned a lot of things while working on the project, such as using optical character

recognition framework (tesseract js) to build very useful application, as we know O C R

play very important role in business nowadays. The same time this work gave me

chance to improve my programming skills to another level. A n d I am really to study

in this university, especially my department that give me opportunities to working on

this great project.

51

Chapter 8: References

1. A B B Y Y Cloud O C R S D K - Text recognition via Web A P I | A B B Y Y . Accessed
March 9, 2022. https://www.abbyy.com/cloud-ocr-sdk/

2. Ul-Hasan A . Generic Text Recognition using Long Short-Term Memory Networks.
Published online January 11,2016. doi: 10.13140/RG.2.1.3256.6168

3. O C R Guide - SimpleOCR. Accessed March 10, 2022.
https://www.simpleocr.com/ocr-guide/

4. Dholakia K . A survey on handwritten character recognition techniques for various
indian languages. International Journal of Computer Applications. 2015; 115(1).

5. Bunke H , Wang PSP. Handbook of Character Recognition and Document Image
Analysis. Handbook of Character Recognition and Document Image Analysis.
Published online M a y 1997. doi: 10.1142/2757

6. Nagy G, Nartker T A , Rice S v. Optical character recognition: A n illustrated guide to
the frontier. In: Document Recognition and Retrieval VII. V o l 3967. SPIE; 1999:58-
69.

7. Schantz H F . The history of O C R , optical character recognition. Published online
1982:114. Accessed March 7, 2022.
http s: lib ooks. googl e. com/b ooks/about/TheHi story o f O C R O p t i c a l C h a r a c t e r R
ec .h tml?h l=cs&id=VehRAAAAMAAJ

8. Mantas J. A n overview of character recognition methodologies. Pattern recognition.
1986;19(6):425-430.

9. Chaudhuri A , Mandaviya K , Badelia P, Ghosh SK. Optical character recognition
systems. In: Optical Character Recognition Systems for Different Languages with
Soft Computing. Springer; 2017:9-41.

10. Young T Y , L i u PS. V L S I array architecture for pattern analysis and image
processing. In: Handbook of Pattern Recognition and Image Processing. Academic
Press; 1986:471-496.

11. Smith R. A n Overview of the Tesseract O C R Engine. Accessed March 9, 2022.
http://code.google.eom/p/tesseract-ocr.

12. [Tutorial] Tesseract O C R in Python with Pytesseract & OpenCV. Accessed March
9, 2022. https://nanonets.com/blog/ocr-with-tesseract/

13. Shafait F, Keysers D , Breuel T M . Efficient implementation of local adaptive
thresholding techniques using integral images. In: Document Recognition and
RetrievalXV. V o l 6815. International Society for Optics and Photonics;
2008:681510.

14. Patel C, Patel A , Patel D . Optical character recognition by open source O C R tool
tesseract: A case study. International Journal of Computer Applications.
2012;55(10):50-56.

15. Suen C Y . Automatic Recognition of Handwritten Characters. Fundamentals in
Handwriting Recognition. Published online 1994:70-80. doi: 10.1007/978-3-642-
78646-4_4

16. textl-how-to-create-typographic-wallpaper.jpg (570x356). Accessed March 9, 2022.
https://lstwebdesigner.com/wp-content/uploads/2009/ll/typography-tutorial/textl-
how-to-create-typographic-wallpaper.jpg

17. Patel Smt Chandaben Mohanbhai C P A C M S P S C M D . Optical Character Recognition
by Open Source O C R Tool Tesseract: A Case Study. International Journal of
Computer Applications. 2012;55(10):975-8887.

52

https://www.abbyy.com/cloud-ocr-sdk/
https://www.simpleocr.com/ocr-guide/
http://code.google.eom/p/tesseract-ocr
https://nanonets.com/blog/ocr-with-tesseract/
https://lstwebdesigner.com/wp-content/uploads/2009/ll/typography-tutorial/textl-

18. Rousseeuw PJ, Leroy A M . Robust Regression and Outlier Detection. John wiley &
sons; 2005.

19. Breaking down Tesseract O C R | Machine Learning Medium. Accessed March 9,
2022. https://machinelearningmedium.com/2019/01/15/breaking-down-tesseract-
ocr/

20. Where and H o w is O C R Used | Dynamsoft Document Image Blog. Accessed March
9, 2022. https://www.dynamsoft.com/blog/insights/where-and-how-is-ocr-used/

21. GitHub - tesseract-ocr/tesseract: Tesseract Open Source O C R Engine (main
repository). Accessed March 9, 2022. https://github.com/tesseract-ocr/tesseract

22. Text Recognition using Google Tesseract. Accessed March 9, 2022.
https://www.folio3.ai/blog/text-recognition-using-google-tesseract/

23. 7 Best O C R libraries as of 2022 - Slant. Accessed March 9, 2022.
https://www.slant.co/topics/2579/~best-ocr-libraries#l

24. List of Top 5 Open Source O C R Tools. Accessed March 9, 2022.
https://www.hitechnectar.com/blogs/open-source-ocr-tools/

25. 20+ Best Free O C R Software in Feb 2022. Accessed March 9, 2022.
https://www.guru99.com/firee-ocr-software-tools.html

26. Bacchuwar K S , Singh A , Bansal G, Tiwari S. A n Experimental Evaluation of
Preprocessing Parameters for G A Based O C R Segmentation. In: Proceedings of
2010 The 3rd International Conference on Computational Intelligence and
Industrial Application (Volume 2 / ; 2010.

27. H o w to use O C R software for PDFs in 4 easy steps | Adobe Acrobat D C . Accessed
March 9, 2022. https://www.adobe.com/acrobat/how-to/ocr-software-convert-pdf-
to-text.html?mv=affiliate&mv2=red

28. Kofax OmniPage Ultimate User's Guide. Published online 2019.
29. Free Online O C R - Image to text and P D F to Doc converter. Accessed March 9,

2022. https://www.onlineocr.net/
30. Cheriet M , Kharma N , Suen C, L i u C L . Character Recognition Systems: A Guide

for Students and Practitioners. John Wiley & Sons; 2007.
31. Badla S. I M P R O V I N G T H E E F F I C I E N C Y OF T E S S E R A C T O C R E N G I N E .

doi:10.31979/etd.5avd-kf2g
32. Roy A , Ghoshal DP . Number Plate Recognition for use in different countries using

an improved segmentation. In: 2011 2nd National Conference on Emerging Trends
and Applications in Computer Science. IEEE; 2011:1-5.

33. Plötz T, Fink G A . Markov models for offline handwriting recognition: a survey.
International Journal on Document Analysis and Recognition (IJDAR).
2009;12(4):269-298.

34. Bataineh B , Abdullah SNHS, Omar K . A n adaptive local binarization method for
document images based on a novel thresholding method and dynamic windows.
Pattern Recognition Letters. 2011;32(14): 1805-1813.

35. Pal U , Roy PP, Tripathy N , Lladös J. Multi-oriented Bangla and Devnagari text
recognition. Pattern Recognition. 2010;43(12):4124-4136.

36. Desai A A . Gujarati handwritten numeral optical character reorganization through
neural network. Pattern recognition. 2010;43(7):2582-2589.

37. Jiao J, Y e Q, Huang Q. A configurable method for multi-style license plate
recognition. Pattern Recognition. 2009;42(3):358-369.

38. Kocer H E , Cevik K K . Artificial neural networks based vehicle license plate
recognition. Procedia Computer Science. 2011;3:1033-1037.

53

https://machinelearningmedium.com/2019/01/15/breaking-down-tesseract-
https://www.dynamsoft.com/blog/insights/where-and-how-is-ocr-used/
https://github.com/tesseract-ocr/tesseract
https://www.folio3.ai/blog/text-recognition-using-google-tesseract/
https://www.slant.co/topics/2579/~best-ocr-libraries%23l
https://www.hitechnectar.com/blogs/open-source-ocr-tools/
https://www.guru99.com/firee-ocr-software-tools.html
https://www.adobe.com/acrobat/how-to/ocr-software-convert-pdf-
https://www.onlineocr.net/

39. Patel Smt Chandaben Mohanbhai C, Patel A , Chandaben Mohanbhai S, Patel Smt
Chandaben Mohanbhai D . Optical Character Recognition by Open Source O C R
Tool Tesseract: A Case Study. International Journal of Computer Applications.
2012;55(10):975-8887.

Chapter 9: Annex

The Web application available here: https://ocr-tesseract-js.web.app/

54

https://ocr-tesseract-js.web.app/

