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Abstrakt

Tato práce navrhuje nový radio komunikační standard Amateurradio Wireless Re-

gional Area Network (AWRAN) určený pro přístup k radioamatérké síťi Highspeed

Amateurradio Multimedia NETwork (HAMNET) která nevyžaduje volný line-of-

sight (LOS) k přístupovému bodu. Dále se práce popisuje prototypovou imple-

mentaci zjednodušených rámců tohoto standardu na software-defined radio (SDR)

a testovací aparaturou, která je používána pro tyto účely.

V první kapitole je představen standard IEEE 802.22 Wireless Regional Area Net-

work (WRAN), ze kterého AWRAN vychází. Jsou popsány pojmy jako Orthogonal

Frequency Division Multiplex (OFDM) a Orthogonal Frequency Division Multi-

ple Access (OFDMA), výhody a způsoby jejich použití. Dále jsou zde popsány

také modulační techniky phase-shift keyinq (PSK) a quadrature amplitude-shift

keying (QAM), kódování pro detekci a opravu chyb přenosu a zdroje těchto chyb.

V druhé kapitole je zevrubný popis parametrů navrhovaného standardu AWRAN.

Jsou popsány OFDM parametry, struktura rámců a superrámců. Je popsán způsob

co-existence více buněk AWRAN a přesná podoba čtrnácti řídících zpráv, které

umožňují efektivní rozdělení zdrojů přenosového pásma mezi až čtyři základnové

stanice a až 63 uživatelů pripojených ke každé z těchto stanic.

Třetí kapitola popisuje strukturu zjednodušeního rámce, který byl implementován

na testovací aparatuře RPX-100. Popisuje i aparaturu samotnou a její základní
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stavební hardwarové prvky i softwarovou knihovnu, která byla pro implementaci

zjednodušeného rámce použita. V této kapitole je popsán i připravený testovací

spoj a teoretický výpočet útlumu tohoto spoje.

Čtvrtá kapitola se zabývá programy, které byly v rámci této práce vytvořeny.

Dva z nich sloužily pro první seznámení s hardwarem a softvarovými knihovnami.

Další program slouží jako generátor dříve popsaných zjednodušených rámců, které

následne odesílá za použití SDR. Ten stejný program slouží i jako příjmač těchto

rámců. Poslední připravený program provádí simulaci bezdrátového přenosu pomocí

matematického modelu kanálu. Dále počítá závislost bit error rate (BER) na signal-

to-noise ratio (SNR) u takto simulovaného přenosu.

V poslední kapitole jsou vypsány funkce, které byly nadefinovány a použity v

programech popsaných v předchozí kapitole.

Klíčová slova

WRAN; AWRAN; HAMNET; SDR; OFDM; komunikační schéma; vysílač



Kurzfassung

In dieser Arbeit wird ein neues Funkübertragungsverfahren Amateurradio Wireless

Regional Area Network (AWRAN) für den Zugang zum Amateurfunknetz Highs-

peed Amateurradio Multimedia NETwork (HAMNET) vorgeschlagen, das keine

direkte Sichtverbindung zum Zugangsknoten erfordert. Des Weiteren dokumentiert

und diskutiert diese Arbeit eine prototypische Implementierung von vereinfachten

Datenrahmen (engl: frames) dieses Übertragungsprotokolls mittels software-defined

radio (SDR) auf den dafür verwendeten Testgeräten.

Im ersten Kapitel wird der Standard IEEE 802.22 Wireless Regional Area Network

(WRAN) vorgestellt, auf dem AWRAN basiert. Begriffe wie OFDM und OFDMA

werden beschrieben, ebenso wie ihre Vorteile und Anwendungen. Beschrieben

werden auch die Modulationsverfahren phase-shift keyinq (PSK) und quadrature

amplitude-shift keying (QAM), die Kodierung zur Erkennung und Korrektur von

Übertragungsfehlern sowie die Fehlerquellen.

Das zweite Kapitel enthält eine detaillierte Beschreibung der Parameter des vorge-

schlagenen AWRAN-Protokolls. OFDM-Parameter, Rahmenstruktur und Superf-

rames werden beschrieben. Die Methode der Koexistenz mehrerer AWRAN-Zellen

und die genaue Form der vierzehn Kontrollnachrichten, die eine effiziente Zuweisung

von Bandbreitenressourcen zwischen bis zu vier Basisstationen und bis zu 63 mit

jeder dieser Stationen verbundenen Benutzern ermöglichen, werden beschrieben.
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Der dritte Abschnitt beschreibt die Struktur des Vereinfachungsrahmens, der auf

dem RPX-100 Testbed implementiert wurde. Er beschreibt auch das Gerät selbst

und seine grundlegenden Hardware-Bausteine sowie die Software-Bibliothek, die

zur Implementierung des vereinfachten Rahmens verwendet wurde. Dieses Kapitel

beschreibt auch die vorbereitete Teststrecke und die theoretische Berechnung der

Dämpfung dieser Strecke.

Das vierte Kapitel befasst sich mit den Programmen, die im Rahmen dieser Arbeit

entwickelt wurden. Zwei von ihnen wurden für eine erste Einführung in die Hardware-

und Softwarebibliotheken verwendet. Ein weiteres Programm dient als Generator

der zuvor beschriebenen vereinfachten Rahmen, die es dann unter Verwendung von

SDR sendet. Das letzte vorbereitete Programm führt eine Simulation der drahtlosen

Übertragung unter Verwendung eines mathematischen Modells des Kanals durch

und berechnet darüber hinaus die Abhängigkeit von bit error rate (BER) von

signal-to-noise ratio (SNR) für die so simulierte Übertragung.

Im letzten Abschnitt werden die Funktionen aufgeführt, die im vorherigen Abschnitt

definiert und verwendet wurden.

Schlüsselwörter

WRAN; AWRAN; HAMNET; SDR; OFDM; Kommunikationsschema; Transceiver



Abstract

This thesis proposes a new radio transmission protocol Amateurradio Wireless Re-

gional Area Network (AWRAN) for access to the amateur radio network Highspeed

Amateurradio Multimedia NETwork (HAMNET) that does not require LOS to the

access point. Furthermore, the thesis documents and discusses the prototypical

implementation of simplified frames of this protocol on software-defined radio (SDR)

and the test apparatus used for this purpose.

The first chapter introduces the IEEE 802.22 Wireless Regional Area Network

(WRAN) standard on which AWRAN is based. Terms such as Orthogonal Fre-

quency Division Multiplex (OFDM) and Orthogonal Frequency Division Multiple

Access (OFDMA) are described, as well as their advantages and applications. There

are described the modulation techniques phase-shift keyinq (PSK) and quadrature

amplitude-shift keying (QAM), channel coding for error detection and correction,

and the sources of these errors.

The second chapter gives a detailed description of the parameters of the proposed

AWRAN protocol. OFDM parameters, frame and superframe structures are de-

scribed. The method of co-existence of multiple AWRAN cells and the exact

form of the fourteen control messages that allow efficient allocation of bandwidth

resources among up to four base stations and up to 63 users connected to each of

these stations are described.
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The third section describes the structure of the simplified frame that was imple-

mented on the RPX-100 testbed. It also describes the apparatus itself and its basic

hardware building blocks as well as the software library that was used to implement

the simplified frame. This chapter also describes the prepared test link and the

theoretical calculation of the attenuation of this link.

The fourth chapter deals with the programs that were developed as part of this

work. Two of them were done for a first introduction to the hardware and software

libraries. Another program serves as a generator of the previously described

simplified frames, which are sent using SDR. The same program could be used

as well as the receiver of these frames. The last program prepared performs a

simulation of the wireless transmission using a mathematical model of the channel.

It calculates the dependence of bit error rate (BER) on signal-to-noise ratio (SNR)

for the simulated transmission.

The last section lists the functions that were defined and used in programs from

the previous section.

Keywords

WRAN; AWRAN; HAMNET; SDR; OFDM; communication scheme; transceiver
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CHAPTER 1
Introduction

HAMNET is an intranet exclusively operated by and for radio amateurs [31]

based on directive radio links via LOS propagation. It was initiated in Germany

in 2009 and nowadays covers significant parts of Europe. Unfortunately, many

radio amateurs are lacking a LOS connection to HAMNET and cannot currently

connect. The ultimate goal of the work in this thesis is to design and prototypically

implement a modulation and coding scheme that enables access to HAMNET in

non line-of-sight (NLOS) conditions for up to fifty users simultaneously which are

located at distances up to fifty kilometers from their access point. We have selected

three amateur radio frequency bands (50-54 MHz, 144-146 MHz, and 430-440 MHz)

for this purpose. The scope of this thesis covers the specification of the modulation

and coding scheme for a novel AWRAN, its prototypical implementation for frame

generation in the form of a C++ source code and compiled for the single board

computer Raspberry Pi [19]. The modulation and demodulation are implemented

in SDR developed by Lime Microsystems known as LimeSDR [15] for performance

measurement of the frame transmission and reception.
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1. Introduction

Figure 1.1: Types of networks [27]

1.1 Wireless Regional Area Network (WRAN)

Regional Area Network (RAN) is a communication network that covers an area

larger than Metropolitan Area Network (MAN) and smaller than Wide Area

Network (WAN), see Figure 1.1.

The standard defining WRAN, IEEE 802.22 [26], was first developed in 2004 to

fulfill the requirements of internet access in rural areas with low population density,

where it would not be economically feasible to roll out a cable network. The current

version is IEEE 802.22-2019 [10].

The WRAN is designed to operate in unused television (TV) channels, so-called

white spaces. Although spectrum usage by commercial TV broadcast stations is

fairly static in the time domain, some changes do occur from time to time. It is not

allowed for the WRAN to interfere with TV broadcasting, thus several techniques

are specified to prevent this.

On one hand, all devices of the networks have to operate on a fixed geological

2



1.2. Other sub GHz standards

location and the location must be known by the base station (BS). Each BS has

access to a database of information describing the protected broadcast operation

in the area.

On the other hand, all wireless devices have to observe the spectrum. If there

is observed a presence of analog or digital TV broadcasting or licensed auxiliary

device by a customer premises equipment (CPE), the fact is reported to the BS and

CPE reduces its own equivalent isotropic radiated power (EIRP) by placing a limit

on transmit power control (TPC). BS limits their EIRP also to reduce potential

interference. If the reduced power does not allow the proper function of links with

distant CPEs, the spectrum manager (SM) initiates a channel move procedure.

1.2 Other sub GHz standards

There are two other standards, namely IEEE 802.11af [4] and IEEE 802.11ah

[1], that deal with wireless networks operating under 1 GHz. They enhance the

coverage area of Wi-Fi taking advantage of less attenuation and better propagation

characteristics of longer wavelengths in comparison to 2.4 and 5 GHz.

The IEEE 802.11af focuses on spectrum sharing of unused TV channels. It has

complex architecture consisting of a Geolocation Database, Registered Location

Secure Server, Geolocation-Database-Dependent enabling stations and dependent

stations as well as complex communication control.

The other one, IEEE 80.11ah is designed to fulfill requirements that came up with

Internet of Things (IoT). The operating frequency is considered to be 900 MHz,

but re-use of TV white space is possible also.

3
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Figure 1.2: FDM vs OFDM [21]

1.3 Orthogonal Frequency Division

Multiplex (OFDM)

OFDM is a multicarrier modulation technique that transmits data over several

orthogonal carriers simultaneously. Conventional techniques, on the other hand,

transmits data using only a single carrier. OFDM is a special case of classical

frequency division multiplexing (FDM). The difference is, that OFDM takes

advantage of the orthogonality of precisely placed subcarriers. If the difference

between each neighboring subcarriers is 1
Tsymbol

, the subcarriers do not interfere

with each other, thus do not require a guard band between them, and the spacing

is much lower than in FDM case as you can see on figure 1.2.
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Figure 1.3: OFDM modulation/demodulation using IDFT/DFT [21]

1.3.1 Fourier transform (FT)

Although it may seem that the high number of subcarriers requires the same number

of modulators and mixers, there is a simpler and more convenient solution in the

usage of inverse fast Fourier transform (IFFT) in the modulator and fast Fourier

transform (FFT) in the demodulator as shown on figure 1.3.

A FT is a mathematical function (see eq. 1.1) that transforms other function from

it’s time domain into a frequency domain, often written as F(f(t)) = F(ω) where

F is a FT operator.

F (ω) =
∫ ∞

−∞
f(t)e−iωtdt (1.1)

Because the digital systems deal with a discrete values rather than continuous

functions, a special cases of FT called discrete Fourier transform (DFT) (see eq.

1.2) is used.

Ak =
N−1∑
n=0

e−i 2π
N

knan (1.2)

Computing N -point sequence using a DFT algorithm takes N2 complex multipli-

cations and additions, however if the number N is power of 2, faster algorithm

for calculating DFT could be used. Such algorithm is called FFT and reduces the

number of calculations to N*log(N ), thus drastically reducing the computational

time, especially for large N.
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An inverse Fourier transform, as the name suggests, does the inverse operation and

OFDM modulator takes advantage of that. For each subcarrier of the currently

assembles symbol is defined its amplitude and phase (according to the used modu-

lation) and then the whole symbol is transformed into a time domain then usually

mixed with a local oscillator frequency and transmitted. [7]

1.3.2 Cyclic prefix (CP)

OFDM is very useful for reducing trouble with ISI caused by multi-path propagation.

If n is the number of subcarriers, each OFDM symbol is n times longer in the

time domain than it would be in the single carrier technique. This longer time

duration of each symbol allows signals propagating by different paths to arrive

at the receiver with a relatively smaller time difference compared to the symbol

duration, but ISI is still present as you can see in figure 1.4.

For complete avoidance of ISI, a prefix is added before each symbol. If the prefix is

longer than the impulse response of the channel, it acts as a guard interval during

which all delayed signals of the previous symbol reach the receiver. There is a need

to transmit the symbol even during the prefix to maintain the orthogonality of

subcarriers. As shown in figure 1.4, it is done such, that corresponding last part of

the symbol is copied before the symbol itself.

1.3.3 Pilot signals

Time and frequency properties need to be recovered in the receiver, for this purpose

reference symbols - pilot signals are introduced. Pilots are subcarriers that contain

known information and are spread over the OFDM symbol. Pilots often change

their location after each OFDM symbol to be present on every subcarrier during

several symbols.

6
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Figure 1.4: Multi-path propagation, guard interval and cyclic prefix [21]

1.3.4 Peak to Average Power Ratio

High peak to average power ratio (PAPR) (see fig.1.3) is the major drawback of

OFDM signals. Due to the finite output power of amplifiers, the average power

(without cutting off the peaks due to hard non-linearity) is always reduced at least

by the highest (expected) PAPR of the signal.

Because OFDM systems are sensitive to linearity, class A amplifiers are often

used. The output power is reduced even more to not distort the signal by soft

non-linearity by operating the amplifiers close to their limits. This results in poor

efficiency which is another related problem besides the lowered output power. That

affects especially power amplifiers at the transmitter side.

The high PAPR also makes a demand on a resolution of digital to analog converters

7
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Figure 1.5: peak to average power ratio [24]

(DACs) in the transmitter and analog to digital converters (ADCs) in the receiver.

If the resolution were not sufficient, the quantization noise would cause losing

information on the non-peak parts of the waveform.

The high peak on the OFDM symbol occurs while suddenly a high number of

individual subcarriers constructively interfere. The maximum achievable PAPR is

given by formula 1.3.

PAPRdB = 10log10(n) + PAPRc,dB (1.3)

where n is the number of subcarriers and PAPRc,dB is a the PAPR of each

subcarrier, which is 3.01 dB for sine signal.[37]

Several PAPR reducing techniques exist to overcome these problems, eg: clip-

ping ("giving up" the peaks and optimizing for the non-peak parts of the signal),

coding schemes, phase optimization, nonlinear companding transforms, tone reser-
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1.4. Orthogonal Frequency Division Multiple Access

vation, tone injection, constellation shaping, partial transmission sequence, selective

mapping. [12] [20]

1.4 Orthogonal Frequency Division Multiple

Access

Multi-user applications require any multiple access technique. OFDM can be

combined with conventional techniques like time division multiple access (TDMA)

or frequency division multiple access (FDMA) but the OFDM properties can also

be used for multiple access. OFDMA allows to transmit information to different

receivers on many orthogonal subcarriers and also receive orthogonal signals from

multiple transmitters simultaneously.

The set of orthogonal frequencies can be divided into several blocks, then we talk

about consecutive channel multiplexing, or can be interleaved (e. g. first user has

assigned odd subcarriers and the second user has assigned even subcarriers), then

we talk about distributed channel multiplexing.

Consecutive channel multiplexing has not had such high demands on frequency

synchronization as distributed channel multiplexing does, but is much more sensitive

to frequency selective fading. [21]

1.5 Code division multiple access (CDMA)

CDMA is a technique that allows the combining of data streams in the same time

and frequency band. The advantage over FDMA and TDMA, which distinguish the

data streams by frequency or time respectively, is significant especially for mobile

applications. The mobile systems introduce variable time delays and Doppler shifts

9



1. Introduction

in frequency due to changes in distance between transmitter and receiver.

Standard CDMA works such, that each transmitted symbol is modulated by a

chip sequence of +1 and -1 which effectively increase the data rate and thus

bandwidth (BW) of the transmitted signal.

Whenever there are more data streams, each modulated by known mutually or-

thogonal sequences, the receiver can perform a correlation of the received signal

with each sequence and thus separate these streams.

These mutually orthogonal sequences are taken from a Hadamard matrix.

1.5.1 Hadamard matrix

The Hadamard matrix is a matrix of orthogonal vectors, or in other words, each

line of the matrix has an equal number of matching values and non-matching

values (in corresponding columns) with each other line. The matrix could be easily

constructed and scaled up using Sylvester’s recursive construction algorithm:

When H is a Hadamard matrics of order n, thenH H

H −H


is a Hadamard matrix of order 2n. [41]

Thus first three orders are following: H1 =
[
1
]
; H2 =

1 1

1 −1

; H3 =



1 1 1 1

1 −1 1 −1

1 1 −1 −1

1 −1 −1 1



1.5.2 Multi Carrier (MC)-CDMA

Multi-carrier version of CDMA is a combination of CDMA with OFDM technique.

There is no transmission of the chipped data stream sequentially on a single carrier,
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but each subcarrier of the OFDM symbol belongs to one symbol of the chip sequence.

All the chips are transmitted simultaneously on orthogonal subcarriers such, that a

phase shift of 180◦ is introduced on carriers belonging to -1 of the chip sequence.

All the transmitters then transmit all the data on all the subcarriers using IFFT

modulator. The receiver converts the received signal to the frequency domain

using FFT and performs correlation with individual chip sequences which separates

individual data streams. [42]

1.6 Modulations

Modulation in communication theory is a technique for expressing information by

changes of electromagnetic (EM) field. There are baseband and carrier frequency

modulations.

When the pulse shape or position carries information, we are talking about base-

band modulation. Examples of such modulations could be pulse width modula-

tion (PWM), pulse position modulation (PPM) or pulse code modulation (PCM).

Sometimes baseband codes are referred to as modulation, so return to zero (RZ),

non-return to zero (NRZ), alternate mark inversion (AMI) or Manchester codes

would belong under baseband modulations also.

But we are interested in carrier frequency modulation which is a process of changing

a property or multiple properties of a high-frequency sinusoidal signal. The high-

frequency signal is called a carrier because enables the possibility of wireless

transmission. Its properties are changed by a modulation signal that carries the

information.

Examples could be amplitude modulation (AM), frequency modulation (FM), or

phase modulation (PM) that uses a continuous (analog) modulation signal, typically

11
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Figure 1.6: QPSK Gray mapping [10]

an output of some transducer (eg. microphone).

Digital carrier frequency modulations work in a similar manner, but there are

discrete values of the carrier signal properties. That is why these modulations often

(but not always) use "shift-keying" in their name.

1.6.1 Phase-shift keyinq (PSK)

PSK is a modulation technique that represents information in changing phase

of the fixed frequency carrier signal. The simplest form is binary phase-shift

keying (BPSK) which uses only two discrete phases and hence carries a single

bit per symbol. quadrature phase-shift keying (QPSK) (sometimes called 4-PSK)

works with four different phases and hence two bits per symbol. To minimize the

number of erroneous bits in case wrong reading of the phase Gray mapping of the

constellation is used, see fig. 1.6

There are also higher-order PSK modulation like 8-PSK or more complex types

such as π/4-QPSK or differential phase-shift keying (DPSK). [43]
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1.6.2 Quadrature amplitude-shift keying (QAM)

This modulation uses two carriers with a fixed matching frequency that have 90◦

phase difference. The two carriers are referred to as in-phase (I) and quadrature (Q).

Each of them is amplitude-shift keying (ASK) modulated and the resultant signal is

their combination. Because the amplitude of each carrier is changing (the amplitude

could be also negative - or the signal has 180◦ phase shift in other words), the final

signal changes not only its amplitude but also the phase.

This technique allows very high modulation depths. Up to 4096-QAM carrying 12

bits per symbol is currently used. However such high modulation depth requires

excellent SNR. Another disadvantage of this technique is high PAPR (see chapter

1.3.4). [17]

To minimize the number of erroneous bits in case wrong reading of the received

signal Gray mapping of the constellation is used as well as in the PSK case.

Constellation diagram of 64-QAM is on fig. 1.7.

1.7 Signal quality measures

A typical measure of received signal quality is SNR (eq. 1.4), commonly stated in

decibels (eq. 1.5).

SNR = Psignal

Pnoise

(1.4)

SNRdB = Psignal,dB − Pnoise,dB (1.5)

The SNR was originally used for an evaluation of baseband analog signals after

demodulation and filtering.

Technically the same equations could be used for the received RF signal on its

carrier frequency. Such measure is called the carrier to noise ratio but the term

SNR is often used interchangeably. [33]
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Figure 1.7: 64-QAM Gray mapping [10]

The most useful measure for a digital system is BER.

1.7.1 Bit error rate (BER)

BER is defined as the ratio of received bits with error to the number of all received

bits. A similar measure is a frame-error ratio where the same applies to frames

with an error and number of all frames.

Theoretical curves for BER are usually plotted on a logarithmic scale versus energy

per bit to noise power spectral density ratio (Eb / N0) (dB), sometimes referred to

14
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as normalized SNR or SNR per bit. Because we can only measure SNR directly a

conversion that depends on the transmission format such eq. 1.6 is needed.

Eb/N0 = SNR × c = SNR × Nbits

NT Xsamples

(1.6)

Where the constant c depends on preambles, number of pilots, constellation size

(modulation depth), code rate, and duration of the cyclic prefix. Basically, it is a

ratio of the useful bit rate to the transmitter’s sample rate.

1.8 Forward error correction (FEC)

For the detection of digital data corruption and its correction (whether it happens

during transmission over a noisy channel or storing on some unreliable medium),

some sort of redundancy - error detection codes (EDC) or error correction codes

(ECC) - needs to be added. While the EDC can only bring the information that

the received data were corrupted, the ECC can even correct a limited amount

of corrupted bits. The use of ECC is mostly referred to as FEC in the data

transmission.

Due to FEC the receiver can easily recover corrupted data without the need to

send a request for retransmission. That is handy, particularly for simplex links

where the request can not be sent at all. Many algorithms exist. They are typically

distinguished as block codes and convolutional codes.

FEC enhances the final BER of the radio link for the price of higher BW due to

the redundancy. How well the protection works and how much the BW is increased

depends on the coding rate. The coding rate is is noted as fraction k/n where k

stands for uncoded message length and n for the coded message length (hence n-k
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Figure 1.8: FEC impact on BER [3]

is the redundancy). Plotting BER against Eb / N0 (see fig. 1.8) for different code

rates gives a good comparison of their performance. [38]

1.8.1 Block codes

Block codes break the entire data stream into fixed-size messages and handle them

independently. Based on the message, the block codes generate the parity bits

and create a block with the message and parity combined. For decoding the block

codes a hard decision algorithm is typically used.

Richard W. Hamming comes with the idea of block codes back in 1950 to overcome

an issue of wrong readings of puncture cards. He proposed a general idea but was

specifically focused on Hamming(7,4). This code adds three redundant bits to four

message bits allowing single error correction and double error detection. Such code

can correct all single-bit errors and detect all double-bit errors. [32]
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1.8.2 Convolutional codes

Unlike block codes, convolutional codes slide over the full length of the data stream.

The produced parity is also dependent on already encoded data. Convolutional

codes are characterized by the coding rate k/n as well as by a memory depth K of

the encoder. The memory length describes how many bits are taken into account

while the parity is computed.

The best advantage of convolutional codes is maximum-likelihood soft-decision

decoding which increases the performance of the coding for correcting burst errors.

[36]

1.8.3 Code puncturing

Puncturing is an easy method for increasing the code rate by dropping some of the

parity bits. It is convenient to use puncturing while a high code rate is not required

because the same decoder can be used for both - punctured or not punctured code.

This increases the flexibility of the system without increasing its complexity. [44]

1.9 Wireless Channel

A communication channel could refer to a physical or logical medium used for

the transmission of information. The physical case is when the information is

represented by changes in a physical quantity. For radio links that transmit over

the wireless channel, the physical quantity is a EM field.

In fact EM field is used for carrying data also in wires. Even light is an alternating

electromagnetic field so both, fiber and free-space optical links, represent the

information using the same physical property as radio links. It is obvious that
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the basic physical principles must be the same, but each of the named cases faces

different challenges.

Although the physical quantity is always continuous in time and magnitude, the

transmitted information may be continuous (analog, eg. FM radio broadcast) or

discrete (digital). The channel is characterized by its BW in Hertz or by its capacity

in bits per second in the case of a digital channel. [28]

The relation between channel BW, SNR and its maximum data rate is given by

the Shannon-Hartley theorem, eq. 1.7

C = BW log2 (1 + SNR) (1.7)

where C stands for capacity (data rate) in b/s, BW in Hz, and SNR is in linear

form (not in dB).

1.9.1 Attenuation

Attenuation of the signal power is common for all kinds of physical channels. It is

rate between received and transmitted power (see eq. 1.8), or their difference on

dB scale (see eq. 1.9).

A = PT

PR

(1.8)

AdB = 10 log
(

PT

PR

)
= PT,dB − PR,dB (1.9)

In radio links usually, the main contributor to attenuation is the spreading of

the signal power with the square of distance called free space attenuation (FSA)

according to eq. 1.10 or 1.11 respectively.
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A0 =
(

4πd

λ

)2

(1.10)

A0,dB = 20 log
(

4πd

λ

)
(1.11)

where d stands for length of the LOS and λ stands for wavelength, both in meters.

[40]

The signal experiences attenuation in a wire and antenna itself even before being

actually transmitted. The same applies on the receiver side where the power

captured by an antenna is attenuated before reaches the receiver’s circuitry.

The next kind of attenuation is introduced by obstacles that could be still (such

as buildings, trees, or hills) or time-varying. While the still obstacles are usually

considered in overall attenuation, the time-varying attenuation is referred to as

shadow fading.

In fixed application is convenient to use directive antennas that concentrate the

radiated power in one direction (effectively increasing EIRP) or collect more power

on receiving side. The directivity D of a non-isotropic antenna is defined as the

ratio of its radiation in a given direction over that of an isotropic antenna would

have. [22]

Although it does not decrease the attenuation of the link, the result is higher received

power without the need to increase transmit power (in comparison to isotropic

- omnidirectional antennas). The average received power would be described in

equation 1.12.

PR,dB = PT,dB − AdB + DT,dB + DR,dB (1.12)
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where PR,dB and PT,dB are received and transmitted power in dB, AdB is attenuation

of all kinds (including attenuation in cables and antennas itself) and DT,dB and

DR,dB are directivities of both antennas. [35]

1.9.2 Fading

Fading generally refers to attenuation variation over time or frequency. When the

variations occur in time, we talk about fast fading and slow fading - relative to

the symbol period. When the variations occur over frequency it is referred to as

selective fading, otherwise, it is a flat fading.

The slow fading is commonly caused by shadowing by temporary obstacles. Because

slow fading changes attenuation slowly, the channel transfer function could be

estimated out of preambles or pilot signals in the receiver.

The fast fading is usually caused by multi-path propagation. Interference of multiple

signal images (propagated thru multiple paths) creates places where constructive

or destructive interference occurs. Such places are denser the frequency is higher.

Receiver propagating thru such an environment experiences rapid (proportionally

to movement velocity) changes in received signal power. A low data-rate (narrow

band) as well as OFDM systems experience fast fading more likely (compared to

high data rate - single carrier systems) due to their long symbol duration.

The selective fading is being caused also by multi-path propagation. The time

difference between two signal images causes interference. For frequency f according

to equation 1.13 is the interference destructive when n is an odd integer and

constructive when n is an even integer.

f = n

2∆t
(1.13)
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where ∆t is the time difference between signal images arrival. [39] [9] [8]

1.9.3 Inter symbol interference (ISI)

ISI occurs when a significant part of symbol energy spreads over time and affects

another symbol. Such a thing could happen either by tight filtering or a channel

distortion such as multi-path propagation. Time difference between individual

paths could be lowered relatively to symbol duration by using the OFDM. For

complete avoidance of ISI, guard intervals between symbols are added.

1.9.4 Doppler shift

Doppler effect is a change of frequency induced by the relative motion of receiver

and transmitter according to general equation 1.14.

f = f0
c ± vr

c ± vs

(1.14)

where f is the observed frequency, f0 is the original frequency, c is a speed of wave

propagation (a speed of light in case of EM waves), vr and vs are the velocity of

receiver or source respectively.

When the distance between receiver and source is decreasing, the observed frequency

is higher than the original and vice versa.

1.9.5 Noise

Noise refers to unwanted energy that modifies the desired signal. There are many

types and sources of noise. They can be differentiated into external and internal

noises.
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Examples of external noises could be atmospheric noise mainly from thunderstorms

or man-made noise from wireless transmissions or other electronics.

Examples of internal noise are thermal noise, shot noise, and flicker noise. Quan-

tization noise as a result of analog to digital conversion. The nonlinearity of the

signal processing path could be considered a noise source also.[45]

Another differentiation could be done according to the frequency spectrum of the

noise. There are narrow band noises such as powerline noise at 50 Hz which is

familiar to nearly everybody from audio. Noise with flat spectral characteristics

is called white noise (according to white light that contains all frequencies of the

visible light, although it does not have a flat characteristic). A lot of broadband

noises can be considered as white noise across a finite BW. For those who can not,

other color noise models exist. The one whose power decreases with a frequency of

10 dB per decade is called 1/f or pink noise. When it is 20 dB per decade it is 1/f2

or red noise. On the other hand, noise whose power increases with a frequency of

10 dB per decade is called blue noise. When it is 20 dB per decade it is a violet

noise. [34]

A typical measure of broadband noise is a power spectral density N0 for continuous

noise or energy spectral density for impulse noise concentrated in a narrow time

window (typically narrower than a symbol duration).[47]

Channels are often modeled with so-called additive white Gaussian noise (AWGN)

which approximates various natural sources of noise (distant thunderstorms, thermal

noise, shot noise). This noise is added to the signal, has flat spectral characteristics

and its magnitude follows a normal distribution with a mean time value at zero.

[30]
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CHAPTER 2
System model

The new OFDMA communication scheme for accessing HAMNET - Amateurradio

Wireless Regional Area Network (AWRAN) is introduced in this chapter.

The new AWRAN scheme is tailored to be used in the following three amateur-radio

frequency bands:

• 50–54 MHz (6m band)

• 144–146 MHz (2m band)

• 430–440 MHz (70cm band)

WRAN is designed to operate in the unused portions of the TV broadcast bands:

the so-called TV white space which can be anywhere in the VHF/UHF frequency

range, 54 MHz and 862 MHz[10]. One frequency band for AWRAN is just below this

frequency range. Propagation phenomena and interference scenarios are expected

to be practically identical in these cases.
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The IEEE 802.22 WRAN was chosen as a baseline for the novel scheme AWRAN.

Please, do not confuse with the IEEE 802.22b variant of WRAN called advanced

WRAN (A-WRAN).

On the lines below are proposed properties of the new communication scheme

Amateurradio Wireless Regional Area Network.

2.1 OFDM parameters

The channel access technique is a OFDMA, so we need to discuss the fundamental

properties of OFDM first. The selected parameters are inspired by WRAN and

modified to fit the available amateur radio regulations, most importantly the BWs.

The frame duration is fixed at 10 ms. The number of OFDM symbols in one frame

varies between 26 and 31 for different lengths of CP. The allowed lengths of CP

are 1
4 , 1

8 , 1
16 and 1

32 of the FFT length. The cyclic prefix is specified by BS in

superframe control header (SCH).

2.1.1 Bandwidth

As stated above, the OFDM properties of WRAN were adjusted to the available

BW. Unlike the TV channels, which are 6 (somewhere 7 or 8) MHz wide, the

dedicated bands for AWRAN are 2, 4, and 10 MHz wide.

The different BW of AWRAN compared to the original WRAN is achieved by

changing the number of subcarriers from 1680 to 560, 1120, or 2800 respectively

while the symbol duration remains the same.

Generally is necessary to set real BW of wireless transmission approximately 10 %

[21] smaller compared to the dedicated BW to avoid interference with neighboring

services.
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CP number symbols 2 MHz channel 4 MHz channel 20 MHz channel
length per frame BW (MHz) BW (MHz) BW (MHz)

1
4 26 1,820 3,640 9,100
1
8 28 1,764 3,528 8,820
1
16 30 1,785 3,570 8,925
1
32 31 1,780 3,560 8,900

Table 2.1: Supported CPs and corresponding number of symbols in frame and BW
[26]

In order to maintain the frame duration of 10 ms with, the number of OFDM

symbols roughly compensates for changing CP duration. The fine compensation is

achieved by slight BW adjustment for each length of CP.

The equation 2.1 shows calculation of BW really occupied by OFDM with 560

subcarriers, 26 symbols per frame and 1
4 cyclic prefix.

BWOF DM = nsubcarriers × nsymbols × (1 + CP )
tframe

=

=
560 × 26 × (1 + 1

4)
10 ms = 1.82 MHz (2.1)

Since the calculation is for 2 MHz BW, the result is 9 % smaller which is a good

starting point. Calculation of BW for all combinations of CP length, BW and

corresponding number of symbols are listed in table 2.1.

2.1.2 Pilot signals

The AWRAN scheme consists of 560, 1120, or 2800 subcarriers out of which every

seventh is a pilot used for channel estimation, frequency offset estimation, and

phase noise estimation.

For better performance, all the pilots move with each OFDM symbol. Their offset

follows pattern 0, 3, 5, 1, 4, 6, and 2 for OFDMA symbol indexes 0, 1, ... 6. Hence
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PHY mode modulation coding rate
1 BPSK Uncoded
2 QPSK 1/2 and repeat: 3
3 QPSK 1/2
4 QPSK 2/3
5 QPSK 3/4
6 QPSK 5/6
7 16-QAM 1/2
8 16-QAM 2/3
9 16-QAM 3/4

10 16-QAM 5/6
11 64-QAM 1/2
12 64-QAM 2/3
13 64-QAM 3/4
14 64-QAM 5/6

Table 2.2: Supported modulations and coding rates

in seven OFDM symbols every single subcarrier is a pilot once and carries data

six times. The OFDMA symbol index is reset to 0 at beginning of each subframe -

downstream (DS) and upstream (US).

These pilots carry BPSK modulated pseudo-random binary sequence (PRBS)

generated out of fixed seed value. For more details see the detailed description of

generator and pilots in WRAN in chapter 9.6.1 of [10].

2.2 Adaptive modulation and coding

AWRAN support several combinations of modulations and coding rates described

in table 2.2. These combinations are called physical layer (PHY) modes. PHY

modes 3 to 14 can be flexibly chosen for data communication to achieve desire

trade-off between data rate and robustness of the system. The PHY mode 1 is

used for multi carrier code division multiple access (MC-CDMA) transmission in

OW. The PHY mode 2 is used for SCH, FCH and for transmission in SCW.
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The PHY mode for data transmission is selected by BS for each CPE individually

based on the previous transmission reliability and channel estimation. The selected

PHY mode is announced in DS or US map respectively.

2.3 Superframe (SF) structure

SF is 160 ms long and consists of sixteen 10 ms frames. At the beginning of the

first frame is a SF preamble followed by the first frame preamble, SCH then FCH

and the rest of the first frame. The whole SF and frame structure is shown on

figure 2.1.

2.3.1 SF preamble

The first frame of SF starts with SF preamble which contains four repetition of short

training sequence (STS). It serves time and frequency synchronization between BS

and CPEs. The SF preamble is always sent with CP length 1
4 of the FFT length.

The STS has length of 1
4 of the FFT. Four repetition results in one symbol period.

The CP effectively adds another full repetition of the STS (a copy of the last one).

See fig. 2.2

The OFDM symbol is constructed using IFFT with its standard length depending

on the number of subcarriers. The short time duration of the training sequence

and its repetitions in the time domain over the symbol duration is achieved by

using only one of four subcarriers. It means that between two non-zero subcarriers

are three subcarriers with zero amplitude. On the non-zero subcarriers is a BPSK

modulated PRBS.

The series is generated by linear feedback shift register (LFSR) with an aim to

achieve low PAPR. The generation process and seed sequence for WRAN is
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Figure 2.1: SF and frame structure [26]

Figure 2.2: SF preamble using four STS and 1
4 CP length[10]
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described in chapter 9.4.1.1.1 of [10].

2.3.2 SF control header

The SCH is always a whole OFDM symbol which is transmitted in the first frame

of SF immediately after the frame preamble. Especially in the case of transmission

in a 2 MHz bandwidth, one OFDM symbol can not be sufficient. In such cases,

the SCH can occupy more OFDM symbols.

The SCH is always modulated and coded according to PHY mode 2 (see Table 2.2)

and transmitted with CP length of 1
4 . The exact form of SCH is documented in

Table 2.3.

Data size
BS MAC 48 bits

SF number 8 bits
FA map CPL 2 bits

DCD (see DCD)
UCD (see UCD)

SCW-FB 21 bits

Table 2.3: SCH form

2.4 Frame structure

The frame forms the basic transmission unit of this OFDM system. Its time

duration is defined to be 10 ms. A group of sixteen frames is called SF and is

discussed above.

Only the first frame of a SF starts with a SF preamble and continues with a frame

preamble. All other frames start with the frame preamble which consists of two

repetitions of long training sequence (LTS) as discussed below.
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The remainder of the frame is divided into two parts, which are called the DS and

US subframes. These are divided into subchannels in the frequency domain, see

details further below. The first symbol (or several symbols) of a DS subframe is

the SCH, in the case of the first frame of SF. The rest of the frames start their DS

subframes with a FCH followed by FMW and the user DS data.

The US subframe contains users US data. An OW can be scheduled in the US

subframe. It is used by CPE for transmitting requests to BS using MC-CDMA

management messages. At the end of some DS subframes, can be located SCW

which allows other BSs contact the transmitting BS with coexistence request.

2.4.1 Subchannels

The US and DS subframes feature subchannels, which are groups of neighboring

subcarriers. The entire OFDM symbol is divided into several subchannels depending

on BW of the transmission. Each subchannel is 28 subcarriers wide. Thus the 2

MHz wide channel, which uses 560 subcarriers, is divided into 20 subchannels, in

the 4 MHz wide are 40 subchannels and the 10 MHz wide has 100 subchannels.

Each subchannel contains 24 data carriers and 4 pilots. The pilots change their

location from symbol to symbol as described above. Subchannels serve as a measure

for resource allocation e.g. in downstream channel descriptor (DCD) and upstream

channel descriptor (UCD) messages.

2.4.2 Frame preamble

Each frame has its own preamble consisting of two repetitions of LTS used for

synchronization, channel estimation, frequency offset estimation, and received

power estimation.
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Figure 2.3: frame preamble using two LTS and 1
4 CP length[10]

The LTS is twice as long as the STS discussed above, thus it is one-half of FFT

length. The frame preamble is transmitted as well as the SF preamble BPSK

modulated binary sequence with CP length of 1
4 . Thus the OFDM symbol with

CP contains two and half LTS. This is illustrated in Fig. 2.3.

The generation with the aim to create low PAPR signal, and LFSR with seed

sequence used in WRAN is described in Chapter 9.4.1.3 of [10].

2.4.3 DS subframe

The most significant parts of frames are the DS subframe and US subframe. Their

sizes are modified adaptively, to fulfill current needs. The DS subframe starts right

after the frame preamble. First OFDM symbol is a SCH in case of first frame of

SF, otherwise the first symbol starts with the FCH and continues FMW.

The DS subframe divided into data bursts defined by DCD message. This message

is being transmitted by BS in SCH. Or, when the data bursts allocation is being

changed during SF, in FMW.

After the last OFDM symbol of DS subframe, the US subframe does not start

immediately. A transmit-receive turnaround gap (TTG) with a length of one OFDM

symbol is introduced to allow CPE to transmit with proper timing alignment to

overcome a problem with the propagation delay of the signal.
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Frame control header (FCH)

The FCH is a first part of DS subframe (except the case when SCH is transmitted).

It contains frame number, length of the FMW and its PHY mode.

The header is modulated and coded according to PHY mode 2 (see table 2.2).

Data size note
frame number 4 bit
FMW length 8 bit subcarrier × OFDM symbol

FMW PHY mode 4 bit the most robust PHY mode
used for data in current frame
shall be used

Table 2.4: FCH form

Frame management window (FMW)

The FMW is present after each FCH. It contains all the management messages

the BS transmits and which are not part of SCH or FCH. Some of these messages

(depending on the type) can be addressed to all CPEs (broadcast). Others are

addressed to particular CPE which identification (ID) is noted in the first part of

the message.

The number of transmitted management messages varies frame to frame, so the

length of FMW is noted in FCH. The FMW is placed over the data bursts. If the

FMW occupies the whole data burst, the data burst is not assigned to any CPE in

the DS map (CPE ID for the occupied data burst is zero). If the FMW occupies

only part of a data burst, the data bust is assigned to a CPE and the actual data

starts right after the end of the FMW.
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DS data bursts

Data bursts are two-dimensional containers for location data in the frame. One

dimension is defined by subchannels (groups of neighboring subcarriers) and the

other by OFDM symbols.

In DS subframe are data bursts allocated vertically such, that typically all bursts

are spread across the whole BW (all subchannels) and each burst occupies just a

few OFDM symbols. US bursts are on the other hand allocated horizontally, more

about that below.

Vertical allocation of bursts has an advantage, especially in reduced demodulation

effort in CPEs. They are not interested in all the OFDM symbols, but only in those

which contain preambles, headers, FMW and to them associated burst. Other

OFDM symbols can be scratched.

Although after the US subframe is a TTG to absorb a propagation delay, there

is another advantage of vertical allocation for more distant CPEs. The earlier

sent bursts are associated to them, so they have an additional time buffer for

propagation delay.

2.4.4 US subframe

The US subframe comes after DS subframe. There is one symbol long TTG between

them which serves as a propagation delay buffer and enables the CPEs to transmit

with proper time alignment.

US data bursts

The US data bursts are described by UCD. They are allocated horizontally on

the US subframe, unlike the DS bursts which are allocated vertically. It means,
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that each burst occupies typically the whole length of US subframe and only a few

subchannels.

There is a limitation for burst boundary in a subchannel. The minimum number of

OFDM symbols occupied at the subchannel can not be smaller than seven symbols

for each burst (see figure 2.1). This is because seven symbols are a period of the

pilot pattern. So all of the subcarriers in the part of burst are pilot at least once.

The horizontal allocation has a particular advantage for CPEs. Thanks to longer

time duration and reduced number of subcarriers of the bursts, the radiated power

per subcarrier could be higher with lower EIRP compared to short and wide bursts.

Opportunistic window (OW)

The first twelve subchannels serves as a OW for CPEs to contact the BS. The

OWs are scheduled by BS in a US map transmitted during FMW. The length of

DS subframe (without SCW) must be at least twelve OFDM symbols when the

OW is scheduled.

The CPEs transmits MC-CDMA management messages such BW requests or

ranging requests all at once during single OW. The code for data scrambling

derived from CPE ID which BS assigns to each CPE during registration process.

Subcarriers that would serve as pilot signals (when the OW would not be scheduled)

shall remain unused by all CPEs.

Self-coexistence window (SCW)

A SCW could be located at the end of US subframe. It is announced by BS in a

SCW frame bitmap transmitted in SCH. The SCW is four OFDM symbols long

and needs one symbol before itself and one symbol after itself as a guard interval.
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The SCW is dedicated for a BSs of a different AWRANs to transmit coexistence

request. The request is modulated according to PHY mode 2.

2.5 Self-coexistence

When there are multiple overlapping AWRANs, some kind of multiplexing needs

to be done. When each of them operates in the different frequency band, there is a

natural FDM and nothing has to be solved. If they share the same transmission

band, a time division multiplexing (TDM) takes the place.

When a BS recognizes another AWRAN transmission on the same band it is about

to operate, it shall decode SCH and read SCW frame bitmap management message.

This message contains SCW allocation across frames of the SF.

Once a frame with SCW is on schedule, the BS transmits a coexistence request

informing the already operating BS about the need for coexistence. This BS

responds with a coexistence response message which is sent during SCH. This

message contains a BS ID which was associated to the requesting BS. Another

message called FA map shall be found in the SCH. This message associates

individual frames of the SF to individual AWRANs.

There can be up to four individual AWRANs operating in the same frequency band

using this TDM coexistence.

2.6 Management messages

As was mentioned previously, there are so-called management messages in the

AWRAN. They are transmitted either by BS to CPEs as a part of a SCH and

FMW or by CPE to BS during OW. Coexistence requests are sent by BS that

observes the current transmission (in the table 2.5 is referred to as "other BS") to
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the transmitting BS during SCW. The coexistence response message is sent during

the first SCH.

The table 2.5 lists all management messages:

type message description transmit by transmit to transmit
during

0 DCD DS channel BS all CPEs SCH
descriptor

1 DS-MAP DS map BS all CPEs FMW
2 UCD US channel BS all CPEs SCH

descriptor
3 US-MAP US map BS all CPEs FMW
4 RNG-REQ Ranging CPE BS OW

request
5 RNG-CMD Ranging BS one CPE FMW

command
6 REG-REQ Registration CPE BS OW

request
7 REG-RSP Registration BS one CPE FMW

response
8 BW-REQ BW request CPE BS OW
9 RET-REQ Retransmission BS one CPE OW

request oe CPE or BS or FMW
10 SCW-FB SCW frame BS all CPEs SCH

bitmap
11 CPL CP length BS all CPEs SCH
12 FA map Frame allocation BS all CPEs SCH

map and BSs
13 CO-REQ Coexistence other BS BS SCW

request
14 CO-RSP Coexistence BS other BS SCH

Table 2.5: List of management messages

2.6.1 Downstream map

The DS map is a management message sent by BS during FMW as a broadcast

to all CPEs. It contains association of data bursts (predefined by latest DCD) to
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individual CPEs and information about the chosen PHY mode, see table 2.6.

At least a part of the first data burst is always occupied by FCH and FMW. So, if

some space remains unoccupied, the burst is assigned to CPE and the user data

fill the unoccupied part of the burst modulated and coded as described in the DS

map. If no space is left, the burst is not assigned to any CPE.

Data size
type = 1 5 bit

NDB repetitions of assignment:
CPE ID 6 bit

PHY mode 4 bit

Table 2.6: DS-MAP form

2.6.2 Upstream map

The US map is a management message sent by BS during FMW as a broadcast

to all CPEs. In the case of a frame without US subframe, the US map is not

transmitted.

The US map contains information if the OW is on schedule during the frame. It

further associates data bursts (predefined by latest UCD) to individual CPEs and

informs which PHY mode and transmit power per subcarrier should be used by

each CPE, see table 2.7. When OW or SCW occupies part of the data burst, only

the unoccupied part of the burst is used for user data. When any data burst is

covered as a whole by such windows, the burst is not assigned to any CPE.

2.6.3 Channel descriptors

DS and US channel descriptors are a management messages broadcast by BS to all

CPEs. These messages are sent during SCH or FMW.

37



2. System model

Data size
type = 3 5 bit
OW bit 1 bit

NUB repetitions of assignment:
CPE ID 6 bits

PHY mode 4 bits
power per subcarrier 8 bits

Table 2.7: US-MAP form

These messages defines sizes of data bursts (see figure 2.1). These bursts are

associated in US and DS maps to individual CPEs for each frame individually.

Channel descriptors are always a part of SCH. They must be stored in each

CPE and used for all following frames of the SF. If new channel descriptors are

transmitted as part of any frame, the stored descriptors shall be rewritten and

applied immediately to the frame they were part of.

The DS bursts are allocated vertically such, that each OFDM symbol is filled before

the next symbol starts to be filled. First DS burst is counted from the beginning

of DS subframe, thus at least part of it is always occupied by FCH and FMW. (In

the case of the first frame of SF when two preambles are sent, the first burst is one

symbol shorter.) The size is expressed in subchannels × OFDM symbols (e.g. size

of 100 mean 5 OFDM symbols in 2 MHz system, 2.5 symbols in 4 MHz system and

1 symbol in 10 MHz system). The Sum of sizes of all data bursts divided by the

number of subchannels is the length of DS subframe. The form of DCD is in table

2.8.

Data size notes
type = 0 5 bit

number of DS bursts (NDB) 8 bit
length of each burst NDB × 8 bit symbol × subchannel

Table 2.8: DCD form
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The US bursts are allocated horizontally analogically to DS burst allocated vertically.

So, each subchannel is filled across all OFDM symbols of US subframe before another

subchannel is being filled. Sum of all burst lengths divided by number of OFDM

symbols in US subframe must be equal to number of subchannels. The form of

DCD is in table 2.9.

Data size notes
type = 2 5 bit

number of US bursts (NUB) 8 bit
length of each burst NDB × 8 bit symbol × subchannel

Table 2.9: UCD form

2.6.4 Ranging messages

There are two types of ranging messages. Ranging request is sent by CPE to BS

when the received signal has poor or unnecessarily high quality. The BS alters

transmit power, modulation depth or code rate of the transmitted signal in iterative

manner. The form of ranging request is in table 2.10. The BS tells desired PHY

mode and transmit power in each US map, so it does not need to sent such requests.

Data size notes
type = 4 5 bit

action 1 bit 1 - increase robustness;
0 - increase throughput

Table 2.10: RNG-REQ form

The ranging command is sent by BS to CPE. The aim of this command is to

synchronize the arrival time of the signal from all CPEs. The CPE must start the

next transmission sooner or later according to the correction time in the command.
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Data size notes
type = 5 5 bits
CPE ID 6 bits

time shift 16 bits tens of ns; signed int

Table 2.11: RNG-CMD form

2.6.5 Registration messages

Registration messages are used for registration of CPEs to the AWRAN. The

CPE observes ongoing communication and reads US maps to see if the OW is on

schedule.

The, so far non registered, CPE does not have an ID nor propagation delay

estimation. So it waits for SCW and sends MC-CDMA registration request (see

table 2.12) coded according to first row of 64×64 Hadamard matrix constructed

by Sylvesters algorithm - thus 64 ones. The transmission is repeated during each

OW with a 50µs time shift trying to guess the propagation delay. When the BS

successfully reads the message, answers with a registration response.

Data size
type = 6 5 bits

CPE MAC 48 bits

Table 2.12: REG-REQ form

The registration response contains CPE MAC address and ID assigned to the

CPE. When the registration is declined, the ID field contains zero. The form of

registration response is in table 2.13.

Data size notes
type = 7 5 bits

CPE MAC 48 bits
CPE ID 6 bits 0 - registration declined

Table 2.13: REG-RSP form
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2.6.6 Bandwidth Request

The BW request is sent by CPE in OW. The first bit means a type of the BW

request (incremental or aggregate). The rest of the message is a number of US

bytes the CPE wants to transmit, see table 2.14.

Data size notes
type = 8 5 bits

BW request type 1 bit 1 - incremental;
0 - aggregate

number of bytes 10 bits

Table 2.14: BW-REQ form

2.6.7 Retransmission request

Either BS or CPE can ask for retransmission of user data that were not properly

received. The retransmission request contains SF and frame number of the data

to be retransmitted. The request transmitted by BS during FMW contains ID of

the CPE it belongs to. Request sent by CPE during OW does not contain its ID,

because the BS knows origin of each message from CDMA code. The form of the

retransmission request is in table 2.15.

Data size notes
type = 9 5 bits
CPE ID 6 bits only if transmitted by BS to CPE

SF number 8 bits
frame number 4 bits

Table 2.15: RET-REQ form

2.6.8 SCW frame bitmap

The SCW frame bitmap is a message located in SCH which defines frames of SF

that end with a SCW. The bitmap consists of sixteen bits, each bit corresponds to
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one frame of the SF. The form of SCW frame bitmap message is in table 2.16.

Data size
type = 10 5 bits

bitmap 16 bits

Table 2.16: SCW-FB form

2.6.9 CP length

CP length message is transmitted during SCH and defines CP for the whole SF

(except preambles). The form of this message is in table 2.17.

Data size notes
type = 11 5 bits
time shift 2 bits 00 - 1

4 ; 01 - 1
8 ;

10 - 1
16 ; 11 - 1

32

Table 2.17: CPL form

2.6.10 Frame allocation (FA) map

This message is sent in SCH only when the AWRAN works in a coexistence mode.

The bitmap features 32 bits - hence two bits belong to one frame. These two bits

carry BS ID and tell which AWRAN cell will transmit during the frame. The first

two bits are always 00 - meaning the first frame belongs to AWRAN cell of the

transmitting BS. The form of the FA map message is in table 2.18.

Data size
type = 12 5 bits

bitmap 32 bits

Table 2.18: FA-MAP form
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2.6.11 Coexistence messages

Request for coexistence and coexistence response are two messages transmitted

between BS negotiating on self-coexistence of its transmission.

When any BS spots another AWRAN transmission, it shall wait for SCW and

transmit coexistence request during the window according to table 2.19.

Data size
type = 13 5 bits

asking BS MAC 48 bits

Table 2.19: CO-REQ form

The BS which receives request for coexistence transmits coexistence response during

first SCH assigning BS ID to the requesting BS. It must include also FA map

message to the SCH and assign a proportional part of its resources to the other

AWRAN.

There can be up to four coexisting AWRAN cells. If a fifth one asks for coexistence,

the master BS will respond with ID 00 which means declination of the request.

The form of coexistence response is in table 2.20.

Data size notes
type = 14 5 bits

other BS MAC 48 bits
other BS ID 2 bits 00 - declined

Table 2.20: CO-RSP form
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CHAPTER 3
Prototype

The Vienna University of Technology has permission for test operation at frequencies

52 to 54 MHz. The frame structure with OFDM properties of the 2 MHz variant

of the proposed communication scheme was simplified and implemented as a C++

program. It is running on prepared transceiver boxes RPX-100 [11]. These boxes

contain Raspberry Pi (RPi) compute module 4 and the LimeSDR followed by a

custom RF front-end. The output of the RPX-100 is connected to the HB9CV

antenna. See the diagram in fig. 3.1.

The C++ program runs on the RPi. Two libraries are essential for this program.

The first one is LimeSuite ensuring communication between the RPi and the

LimeSDR. The second one is liquid-dsp which handles the OFDM frame generation

and synchronization.

3.1 Liquid DSP library

Time samples of the implemented OFDM frame (described in chapter 3.2 are

created using liquid digital signal processing library. It is written in C as an open
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Figure 3.1: RPX-100 block diagram [11]

source library for software-defined radios. [6]

This library has a number of modules that focuses on various signal processing

tasks and other wireless communication-related problems. For example:

• FIR and IIR filters

• FFT

• auto-correlation

• automatic gain control

• channel emulation

• modulators

– AM
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– CPFSK

– FM

– GMSK

– OFDM

3.1.1 Flexible framing structure for OFDM

The essential module of liquid-dsp library for this thesis is called ofdmflexframe. It

brings objects OFDM frame generator, which generates time samples for SDR to

transmit, and OFDM frame synchronizer, which finds the OFDM frame in samples

sampled by the SDR and passes received data. The module allows to set the

number of subcarriers and make a custom map of null/data/pilot carriers, set

length of cyclic prefix, set modulation, and FEC. The length of the payload is

defined in bytes.

Although this module is called flexible, it has some predetermined structure. The

first few symbols of each frame serve ad frame preamble and are dedicated to

synchronization.

The preamble itself consists of two parts. The first part has a length of two or

more OFDM symbols, depending on the number of subcarriers and their allocation.

The symbols are transmitted always without CP and are used for coarse carrier

frequency and timing offsets. The second part is always one OFDM symbol with

CP matching the rest of the frame. It is used for fine timing and equalizer gain

estimation.

The preamble is followed by a header which consists of 14 bytes where 6 of which

are used internally by the library and 8 of them are user-defined. The 6 internally

used bytes contain framing information such as modulation, FEC and payload
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length. The header itself is protected by FEC and its length in symbols depends

on the number of data subcarriers. The header is followed by the payload.

For detailed information see chapter 16.7 of [5]

Frame generator

Frame generators are a group of objects in the liquid-dsp library that accepts

raw data and (according to chosen modulation and its properties) produces time

samples for SDR to transmit. The used frame generator is called ofdmflexframegen

thus produces OFDM frames. Its properties allow to define:

• number and allocation of subcarriers

• cyclic prefix and taper length

• modulation

• inner and outer FEC scheme

• data validity check

• payload length

Frame synchronizer

Frame generators, similarly to frame generators, are another group of objects in the

liquid-dsp library. They accept the time series of samples sampled by SDR and try

to find the corresponding frame. The used synchronizer is called ofdmflexframesync.

The synchronizer needs to know the number and allocation of subcarriers as well

as cyclic prefix length. All other parameters required for successful demodulation

read out of the first six reserved bytes of each frame header.
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The synchronizer thanks to the preamble and pilot subcarriers located in each

transmitted symbol can compensate for carrier frequency and phase offset as well

as multi-path fading. If FEC is used, the synchronizer automatically corrects errors.

The received data are returned via a callback function.

3.1.2 Linear Digital Modulator/Demodulator

So-called modem is another module of liquid-dsp library which is used. The

modulator works as part of the OFDM frame generator and the demodulator as

part of the synchronizer. The supported modulations are:

• phase-shift keyinq (PSK) 2 to 256

• differential phase-shift keying (DPSK) 2 to 256

• amplitude-shift keying (ASK) 2 to 256

• quadrature amplitude-shift keying (QAM) 2 to 256

• amplitude and phase-shift keying (APSK) 2 to 256

• on-off keying (OOK)

3.1.3 Forward Error-Correction

The FEC module is also incorporated into the frame generator and synchronizer.

Any supported error correction scheme can be used as a generator and synchronizer

property:

• Hamming codes

• Repetition codes
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• Convolutional codes

• Reed-Solomon codes

• Golay(24,12) block code

• single error correction - double error detection (SEC-DED) block codes

3.2 Implemented frame

As mentioned before, the OFDM generation is served by the liquid-dsp library. The

library and its capability are described in section 3.1. It works only with singleplex

frames, so the generated frame lacks the US subframe.

The implemented frame is always 10 ms long with number od OFDM symbols

corresponding to the four allowed CP lengths - 26 symbols for CP 1
4 , 28 for 1

8 , 30

for 1
16 and 31 for 1

32 .

All of the 14 PHY modes were implemented and can be arbitrarily chosen. The

liquid library does not allow the selection of multiple different modulations or error

codes within a single frame. The information about chosen PHY mode is carried

in the frame header.

When a library libcorrec is installed before the liquid library installation, the FEC

codes could be chosen as a property of the liquid frame generator object. Thus the

FEC coding is done automatically.

The pilots in AWRAN change their position on the symbol to symbol basis. That

is not possible using the liquid library. So the implemented version has pilots on

fixed locations 7 subcarriers apart.

The preamble which liquid library generates is, as well as AWRAN uses, BPSK

modulated binary sequence with the aim to low PAPR. On the other hand,
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AWRAN uses one OFDM symbol for SF preamble and one symbol for the frame

preamble. Both with CP length of 1
4 . The liquid library generates preamble

three OFDM symbols long. The first two OFDM symbols are two repetitions of S0

symbol without CP. The third OFDM symbol of the preamble is S1 symbol with

CP matching the rest of the frame.

One OFDM symbol, sent after the preamble, is a header. The liquid library

automatically generates 14 bytes long headers out of which 6 bytes are used by the

library and 8 bytes are accessible for users. There is stored information about the

used modulation and coding of the payload as well as payload length in the first 6

bytes. The 8 user-defined bytes are all set to zero in this stage. Later on, could be

used for BS ID and FMW length if the usage of the liquid-dsp library will persist

to further versions.

3.3 LimeSDR

Software-defined radio (SDR) is modern radio technology using direct digital

processing of radio signal. This becomes possible with the increasing computational

power of modern chips. Unlike traditional - hardware-defined - technologies, SDRs

does its job according to software that could be on one hand overwritten on the

fly, on the other hand, programmed to fit very specific requirements. SDRs are

extremely flexible and allows to be programmed to transmit and receive arbitrary

RF signals within its operating BW.

The LimeSDR developed by Lime microsystems contains three major integrated

circuits (ICs): USB microcontroller, field programmable gate array (FPGA) and RF

transceiver. See the block diagram on figure 3.2. In basic operation, the LimeSDR

accepts in-phase and quadrature (IQ) samples via universal serial bus (USB) and

sends corresponding RF signal via U.FL connector to the antenna, or receives RF
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Figure 3.2: LimeSDR block diagram [15]

signal and sends I and Q samples to USB respectively.

LimeSDR features FPGA Altera Cyclone IV EP4CE40F23 with factory pre-

programmed gateware. The gateware handles the following features:

• Interface to LMS7002 LimeLightTM digital IQ interface in TRXIQ double

data rate mode;

• Real-time data transfer between PC and LMS7002 chip.

• Connection to FX3 Slave FIFO interface for transferring data through USB3.0.

• TX samples synchronization with RX samples time stamp;

• SPI connection between LMS7002 chip and other on-board devices;

• WFM player which enables to load waveform to external DDR2 memory from

USB3.0 host and translate to LMS7002 RXIQ interface.
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• Reconfigurable PLL blocks for LMS7002 clocking.

• Internal SPI registers for FPGA control.

The RF signal itself is produced by field porgrammable radio frequency (FPRF)

chip LMS7002M. Its dual-transmit and dual-receive channels enable full-duplex

multiple-input multiple-output (MIMO) communications, although this application

is way more simple. Each channel consists of in-phase and quadrature signal paths

with phase locked loop (PLL), mixers, filters and ADCs or DACs respectively, see

figure 3.3. It accepts IQ samples via LimeLight Digital IQ Interface which are

converted to the analog signal, mixed with LO frequency, and amplified.

3.4 Raspberry Pi

RPi is a group of single board computers that are developed by Raspberry Pi

Foundation from Cambridge, United Kingdom.[19] The first generation came out

in February 2012 with a single core 32-bit ARM CPU running on 700 MHz and 256

MB of RAM. Nowadays, its successor RPi 4 model B has four core 64-bit ARM

CPU clocked at 1.5 GHz. [46]

The model used in the project is called RPi Compute Module 4, it has the same

processing power as RPi 4 model B but reduced input-output (IO) possibilities

and differently shaped printed circuit board (PCB).

On the RPi runs a Linux-based operating system specifically developed for RPi

computers called Raspberry Pi OS (its predecessor was called Raspbian). The

operating system enables SSH connection and thus remote access to the boxes via

the internet.

53



3. Prototype

Figure 3.3: LMS7002M block diagram [16]
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3.5 Radio frequency (RF) front-end

The custom RF front-end is a PCB prepared to amplify the output power of the

LimeSDR while transmitting and pre-amplify the received signal before entering

the SDR. [11]

It consists of power amplifiers, filters and RF switches creating eight possible RF

paths: Three different frequency bands with BP! (BP!) filters, one direct path,

and all this with or without power amplifier (PA). Mode with "PTT" in name use

the PAs. Which RF path, or mode respectively, is active is selected by the C++

program via general purpose input-output (GPIO) pins of the LimeSDR.

The important RF ICs:

• monolithic amplifier (0-10 GHz) - PSA-14+

• switches (0 - 3.5 GHz) - HMC241AQS16E

• RF MOSFET power amplifier module (66 - 88 MHz) - RA30H0608M

• RF MOSFET amplifier module (135 - 175 MHz) - RA08H1317M

• RF MOSFET Amplifier Module (400 - 470 MHz) - RA07H4047M

• SPDT RF Switch (50 - 3000 MHz) - VSW2-33-10W

Supported modes:

• RX

• TX direct

• TX direct PTT

• TX 6 m

55



3. Prototype

Figure 3.4: HB9CV antenna diagram [29]

• TX 6 m PTT

• TX 2 m

• TX 2 m PTT

• TX 70 cm

• TX 70 cm PTT

For more information about the RPX-100 boxes and its RF frontend including

schematic and layout visit [11].

3.6 Antenna

On both stations are used directional antennas HB9CV, see fig. 3.4. It is a two-

element phased array of active dipoles designed in 1960s by Rudolf Baumgartner.

Its design is inspired by the ZL-Special antenna which uses two folded dipoles that

were replaced by standard dipoles. Both these antennas improve the performance

of the well-known single active element Yagi-Uda.

The Yagi-Uda consist of an active element surrounded by a number of passive

elements which are parasitically fed. The rear element (single or more on top of
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each other) of Yagi-Uda, called the reflector, is longer than the resonant length

which causes inductive load and thus phase shift. The front elements (could be

single, but typically multiple in a row) called directors are on the other hand shorter

than the resonant length causing capacitive load and opposing phase shift. All this

together causes constructive interference in the forward direction and destructive

interference in the backward direction creating directional radiation.

The principle of the HB9CV antenna is similar to the Yagi-Uda. There are only two

elements that are actively fed which increases their efficiency. Thus the two-element

HB9CV performs similarly to three or four-element Yagi-Uda. The two elements

are spaced λ
8 (or 45 ◦) apart. The front element is 0.96 × λ

2 long which causes 45 ◦

shift of phase. The rear element is 1.04 × λ
2 long which causes -45 ◦ phase shift.

Another -45 ◦ phase shift on the rear element is introduced by λ
8 long feeding line

difference between the two elements. The remaining 180 ◦ phase shift is achieved

by flipped feeding orientation. [2]

Reducing the number of elements (hence the size of the antenna) is convenient,

especially for large wavelengths. The HB9CV was originally designed for 10, 15,

and 20 m bands. But the antennas for the 6 m band are still quite large, so the

reduced size is welcomed.

3.7 Experimental radio link

There is an established experimental radio link between two RPX-100 boxes. The

endpoint locations:

1st: Amateur Radio Station OE3BIA, at Maidenhead Locator JN88af, at 208

m above sea level with antenna 20 m above ground, 3443 Sieghartskirchen,

Austria.
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2nd: Amateur Radio Station OE1XDU at Maidenhead Locator JN88ee, at 176 m

above sea level with antenna 46 m above ground, 1040 Vienna, Austria.

The link is 27.3 km long with hills that obstruct the LOS. See figure 3.6.

An estimation of attenuation caused by the RF signal propagation is described on

the lines below.

3.7.1 Free space propagation attenuation

The major contributor to the link attenuation is the propagation distance of 27.3

km. An attenuation of free space propagation is calculated by the equation 3.1.

A0 = 20log

(
4πd

λ

)
= 20log

(4π27300
5.7

)
≈ 96 dB (3.1)

where:

A0 stands for free space attenuation (dB)

d stands for link length (m)

λ stands for wavelength (m)

3.7.2 NLOS propagation attenuation

Estimation of the NLOS propagation attenuation is very rough. On the terrain

profile in fig. 3.6 [25] are visible four major hills marked as A, B, C, and D. For

the calculation, all of the hills were approximated with the obstacle by sphere. [13]

Hill B was selected as a major obstacle. Its contribution to overall attenuation was

calculated first using equations 3.2, 3.3, 3.4 and 3.5.
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Two imaginary links from top of the hill B (one to each box) were considered for

further calculation of the attenuation contribution of hills A (see eq. 3.6, 3.7, 3.8

and 3.9), C (see eq. 3.10, 3.11, 3.12 and 3.13), and D (see eq. 3.14, 3.15, 3.16 and

3.17).

The eq. 3.4, 3.8, 3.12, and 3.16 were done according to plot on fig. 3.5.

Influence of hill B

H0 =
√

1
3

√
λ

r1(r − r1)
r

=
√

1
3

√
67500(27300 − 7500)

27300 = 104.3m (3.2)

where H0 is a specific clearance, λ is a wavelength, r1 is the distance from the first

station to hill B, and r is the total distance of the link.

v = 2.02 3

√
∆y

∆x2
r2

1
H0

(
1 − r1

r1 + r2

)2
4

√
1 + H

4r1r2

∆x2

∆y
=

= 2.02 3

√
200

∆50002
75002

104.3

(
1 − 7500

7500 + 19800

)2
4

√
1 + −260

4 × 7500 × 19800
50002

200 =

= 2.7 (3.3)

where v is an obstacle parameter, ∆y and ∆x are shape parameters of hill B, H is

the height of the hill B with respect to the link, r1 is the distance from the first

station to hill B, and r2 is the distance from the hill B to the second station.

Figure 3.5: obstacle parameter to basic attenuation factor conversion

v = 2.7 => v0 = −9dB (3.4)
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where v is a obstacle parameter and v0 is a basic attenuation factor.

W = v0

(
1 − H

H0

)
= −9

(
1 − −260

104.3

)
= −31.4dB (3.5)

where W is an attenuation factor, H is the height of the hill B with respect to the

link, and H0 is a specific clearance.

Influence of hill A

For estimation of contribution to attenuation of the link by the hill A is considered

an imaginary link between the first station and top of the hill B.

H0 =
√

1
3

√
λ

r1(r − r1)
r

=
√

1
3

√
63000(7500 − 300)

7500 = 52.9m (3.6)

where H0 is a specific clearance, λ is a wavelength, r1 is the distance from the first

station to hill A, and r is the total distance of the imaginary link between the first

station and hill B.

v = 2.02 3

√
∆y

∆x2
r2

1
H0

(
1 − r1

r1 + r2

)2
4

√
1 + H

4r1r2

∆x2

∆y
=

= 2.02 3

√
60

∆10002
30002

52.9

(
1 − 3000

3000 + 4500

)2
4

√
1 + −90

4 × 3000 × 4500
10002

60 =

= 3.1 (3.7)

where v is an obstacle parameter, ∆y and ∆x are shape parameters of the hill A,

H is the height of the hill A with respect to the imaginary link, r1 is the distance

from the first station to hill A and r2 is the distance from the hill A to the hill B.

v = 3.1 => v0 = −7dB (3.8)
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where v is an obstacle parameter and v0 is a basic attenuation factor.

W = v0

(
1 − H

H0

)
= −7

(
1 − −90

52.9

)
= −18.9dB (3.9)

where W is an attenuation factor, H is the height of hill A with respect to the

imaginary link, and H0 is a specific clearance.

Influence of hill C

For estimation of contribution to attenuation of the link by the hill C, an imaginary

link between the top of hill B and the second station is considered.

H0 =
√

1
3

√
λ

r1(r − r1)
r

=
√

1
3

√
67500(19800 − 7500)

19800 = 96.5m (3.10)

where H0 is a specific clearance, λ is a wavelength, r1 is the distance from the top

of hill B to the hill C and r is the total distance of the imaginary link between hill

B and the second station.

av = 2.02 3

√
∆y

∆x2
r2

1
H0

(
1 − r1

r1 + r2

)2
4

√
1 + H

4r1r2

∆x2

∆y
=

= 2.02 3

√
70

∆20002
75002

104.3

(
1 − 7500

7500 + 12300

)2
4

√
1 + −50

4 × 7500 × 12300
20002

70 =

= 3.6 (3.11)

where v is an obstacle parameter, ∆y and ∆x are shape parameters of the hill C,

H is the height of the hill C with respect to the imaginary link, r1 is the distance

from the hill B to the hill C and r2 is the distance from the hill C to the second

station.
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v = 3.6 => v0 = −6dB (3.12)

where v is a obstacle parameter and v0 is a basic attenuation factor.

W = v0

(
1 − H

H0

)
= −6

(
1 − −50

96.5

)
= −9.1dB (3.13)

where W is an attenuation factor, H is the height of the hill C with respect to the

imaginary link, and H0 is a specific clearance.

Influence of hill D

For estimation of contribution to attenuation of the link by the hill D, an imaginary

link between the top of the hill C and the second station is considered.

H0 =
√

1
3

√
λ

r1(r − r1)
r

=
√

1
3

√
66000(13300 − 6000)

13300 = 81.2m (3.14)

where H0 is a specific clearance, λ is a wavelength, r1 is the distance from the hill

C to the hill D and r is the total distance of the imaginary link between hill C and

the second station.

v = 2.02 3

√
∆y

∆x2
r2

1
H0

(
1 − r1

r1 + r2

)2
4

√
1 + H

4r1r2

∆x2

∆y
=

= 2.02 3

√
50

∆15002
60002

81.2

(
1 − 6000

6000 + 7300

)2
4

√
1 + 30

4 × 6000 × 7300
15002

50 =

= 2.9 (3.15)

where v is an obstacle parameter, ∆y and ∆x are shape parameters of the hill D,

H is the height of the hill D with respect to the imaginary link, r1 is the distance

from the hill C to hill D and r2 is the distance from the hill D to the second station.
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v = 2.9 => v0 = −8.5dB (3.16)

where v is a obstacle parameter and v0 is a basic attenuation factor.

W = v0

(
1 − H

H0

)
= −8.5

(
1 − 30

81.2

)
= −5.4dB (3.17)

where W is an attenuation factor, H is the height of the hill D with respect to the

imaginary link, and H0 is a specific clearance.

Wtot = WA + WB + WC + WD = −18.9 − 31.4 − 9.1 − 5.4 = 64.8 ≈ 65dB (3.18)

The total attenuation caused by the obstacles is estimated in equation 3.18 to be

65 dB.

3.7.3 Total propagation attenuation

is estimated as a sum of the free space attenuation and contribution by obstacles.

In our case the estimated attenuation is (96+65) dB = 161 dB
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Figure 3.6: Terrain profile for the RF link between Station OE3BIA, Locator:JN88af,
on the left and Station OE1XTU, Locator:JN88ee, on the right.
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CHAPTER 4
Programs

In this chapter, four individual programs are described. The first two - "FM

receiver" and "FSK prototype" - could be considered as development stages and

the last two - "transceiver" and "BER simulator" - as working prototypes.

4.1 FM receiver

At the very beginning, there was a need to connect the LimeSDR to the computer

and validate its functionality.

A software (SW) collection called Lime Suite [14] was installed. It contains drivers

for the LMS7002M transceiver radio-frequency integrated circuit (RFIC), and other

tools for developing with LMS7-based hardware such as Lime SDR.

The FM receiver program was created in a graphical tool GNU radio which provides

various signal processing blocks such[23]:

• analog modulation

• audio interface
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• channel model blocks

• digital modulation

• packet communication

• FEC

• FFT

• voice coders and decoders

Figure 4.1: FM receiver in GNU radio

The Lime SDR was connected with a computer via USB. To the LimeSDR was

connected a whip antenna. The block structure on figure 4.1 was done according

to an example available on [15]. The LimeSDR Source (RX) block sets parameters

of the SDR. When a proper frequency was set, the tuned radio station was audible

via computer speakers.
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4.2 FSK prototype

In order to learn how the liquid-dsp library and Lime Suite work, and how to

interface between them, the first C++ program prototype was written with one of

the simplest digital modulations - the frequency shift keying (FSK). The starting

point was a code skeleton serving RF frontend settings.

For time samples creation of the FSK modulated signal, the fskmodem module of

liquid-dsp library was used. The module brings objects fskmod (modulator) and

fskdem (demodulator). These objects are returned by functions fskmod_create

or fskdem_create respectively. Both these functions accept three parameters:

number of bits per symbol, number of samples per symbol, and frequency spacing.

The objects of the modulator and demodulator were defined with basic settings.

Single bit per symbol to have just two separate frequencies in the signal. Four

samples per symbol and a default frequency spacing of 0.2.

Function fskmod_modulate has three parameters: the modulator object, the

input symbol, and a pointer to a transmit buffer. This function fills the buffer

with complex time samples of the desired symbol which needs to be passed to the

LimeSDR. Function fskdem_demodulate works similarly with the demodulator

object and receive (RX) buffer as parameters and received symbol as return value.

4.2.1 LimeSDR usage

Usage of LimeSDR is provided by LimuSuite library. The initialization procedure

is following. An array of type lms_info_str_t needs to be created to hold

information about all potential connected LimeSDRs. In this case, only one is used,

but the array is prepared for up to eight devices. The following functions must be

executed for initialization and setting up the LimeSDR:
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The function LMS_GetDeviceList with the mentioned array as its argument

searches for connected LimeSDRs. The array is filled with information about all

discovered LimeSDRs and a number of discovered devices is returned.

A pointer to data type lms_device_t needs to be prepared for addressing the

desired device. The pointer is used as an argument for all the following functions.

A function LMS_Open accepts the memory address of the device pointer and the

information about the discovered LimeSDR. Execution of the function makes the

device pointer point on the opened LimeSDR.

A LMS_Init function initializes the opened device with default settings. Function

LMS_EnableChannel with either LMS_CH_TX or LMS_CH_RX macro as its

argument enables transmit (TX) or RX channel. Function LMS_SetSample-

-Rate sets sample rate of the SDR. the functions LMS_SetLOFrequency, and

LMS_SetAntenna set properties for particular channel.

Both, TX and RX gain are adjustable using one of the functions LMS_SetNormali-

-zedGain and LMS_SetGaindB depending on desired units. [18]

For the data passage to the SDR, an object of class lms_stream_t representing

the stream of time samples has to be created. The object has the following attributes:

channel, fifoSize, throughputVsLatency, isTx, and dataFmt (data

format of the time samples). An object of class lms_stream_meta_t could be

defined for the precision timing of the transmission.

Once the stream is set by function LMS_SetupStream and started by function

LMS_StartStream, the transmit buffer containing I and Q samples of the desired

signal could be transmitted using function LMS_Send- -Stream. In case of

receiving a function LMS_RecvStream fills the RX buffer with received I and Q

samples.
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An important note is, that functions LMS_SendStream and LMS_RecvStream

accepts as arguments buffers of interleaved I and Q samples and a number of

samples, but the number of samples means number of I and Q pairs. Thus the

number of samples shall be half the buffer length.

The stram is closed by function LMS_StopStream and the object is destroyed

by function LMS_DestroyStream after the transmission. The SDR is closed by

function LMS_Close before the program terminates.

4.2.2 liquid-dsp and LimeSuite data handover

An important part of the program is the handover of time samples between the two li-

braries. The liquid-dsp works with proprietary data type liquid_float_complex.

The LimeSuite on the other hand uses standard float. The data stream consists

of repeating I and Q samples where I sample matches the real part of the complex

number and Q sample matches the imaginary part.

The buffer of complex numbers working with liquid-dsp functions is half the size of

the real numbers buffer working with LimeSuite. The conversions are done in for

loops, see the following code examples.

liquid_float_complex complex_i (0, 1);

liquid_float_complex c_buffer[c_buffer_len];

float r_buffer[2*c_buffer_len];

//complex to real buffer conversion

for (int i = 0; i < c_buffer_len; i++) {

r_buffer[2*c_buffer_len+2*i] = c_buffer[i].real();

r_buffer[2*c_buffer_len+2*i+1] = c_buffer[i].imag();}
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//real to complex buffer conversion

for (int i = 0; i < c_buffer_len; i++) {

c_buffer[i] = r_buffer[2*i] +

r_buffer[2*i+1] * complex_i.imag();}

4.3 Transceiver

The transceiver is the program, that transmits or receives the simplified AWRAN

frame described in the chapter 3.2. It writes possible settings to the terminal (see

fig. 4.2) when is called with argument help. Otherwise is started as a transmitter

or receiver using arguments TX6mPTT or RX respectively. The default mode is

RX.

Figure 4.2: RPX-100-transciever with argument help

4.3.1 TX6mPTT mode

When is started in TX mode it accepts three additional arguments: CP length,

PHY mode, and a message string.
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The CP length argument could be 4, 8, 16, or 32. The number is a denominator

of the desired CP length. This number defines the sample rate of the SDR and

affects the number of transmitted OFDM symbols.

The payload length of the frame depends on the number of OFDM symbols as well

as on the selected PHY mode which are specified in chapter 2.2. The PHY mode is

a third argument of the program and could be set anywhere from one to fourteen.

The default PHY mode 1 is used when the argument is not used.

The last accepted argument is a message of type string. For the transmission of

multiple words, quotation marks must be used. When the message is not specified,

the default message "OE1XTU AWRAN at 52.8 MHz" is transmitted.

If the message argument is longer than the payload length with current settings

(CP and PHY mode), only the corresponding part is accepted and transmitted.

4.3.2 RX mode

When is started in RX mode it accepts only one additional argument - CP length

(see 4.3.1). Then enters the infinite reception loop. Once a frame is recognized, its

header and payload are printed into the terminal by a callback function, see fig.

4.3.

Figure 4.3: Received frame
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4.3.3 Transmission over test link

Unfortunately, neither of the transmitted OFDM frames was actually received by

the other station on the test link described in chapter 3.7. The reason is insufficiently

strong PA in the RF frontend. The RPX-100 is under ongoing development and

this part is not ready yet.

There is another software running on the RPX-100 which shows a waterfall graph

of the transmission band. When a transceiver is started, on the graph is visible

the calibration procedure of the SDR as a small peak close above the noise floor

caused by powered on PA amplifying the local oscillator signal. This indicates that

some of the transmitted energy is actually received. And it is proven by successful

transmission and reception of a narrowband FSK signal transmitted by the FSK

prototype described in chapter 4.2.

The OFDM frame has a very broadband signal, compared to the FSK. Thus the

small power produced by the PA is spread across the band and hidden under the

noise.

The transceiver was modified to transmit the frame one hundred times in a row,

thus the transmission takes one full second and is observable on the waterfall

graph. Look at figure 4.4, the bright line indicates the calibration procedure, then

is followed by vanished broad line and after the one-second OFDM transmission

ends, the bright line appears again.

4.3.4 Program structure

In the main function, program arguments are parsed and control variables are set

accordingly. Then the LimeSDR initialization and all settings are done as described

in chapter 4.2.1 in function SDRinit. The sample rate is set according to selected

CP. The calculation for CP 1
4 is done in equation 4.1 and all the possibilities
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Figure 4.4: Waterfall spectrogram of received OFDM signal across the test link

CP number symbols sample rate
1
4 26 3328000
1
8 28 3225600
1
16 30 3264000
1
32 31 3273600

Table 4.1: Sample rate settings according to selected CP

are listed in table 4.1. In case of successful initialization either sendFrame or

frameReception function is called, depending on selected operation mode.

SR = nF F T × nsymbols × (1 + CP )
tframe

=
1024 × 26 × (1 + 1

4)
10 ms = 3328000 (4.1)

If RX mode is selected, the reception is done in an endless loop. If TX mode

is selected, in the sendFrame function executes frameAssemble which fills

transmit buffer with time samples using liquid-dsp and passes the buffer for the

actual transmission to the function startSDRTXstream. After the transmission,

the SDRinit function is called again with the RX settings which disables PA on

RF front end. Before termination of the program, the LimeSDR is disconnected by

calling function LMS_Close.

All these functions are described in chapter 5.
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The terminal output with enabled debug messages (see 5.1) for RX mode is on fig.

4.5 and for TX mode is on fig. 4.6.

Figure 4.5: termial output of RPX-100-transceiver in RX mode

4.4 BER simulator

The BER simulator program is based on the transceiver. All SDR related chunks

of code were removed and the frame assembling part with frame synchronizing part

were interconnected by an artificial channel.
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Figure 4.6: terminal output of RPX-100-transceiver in TX6mPTT mode

In the first part of the main function are four nested for loops. In the inner one,

artificial channel and frame reception is executed for all simulated SNRs. The

second is responsible for going thru all the PHY modes such, that a new frame is

assembled for each PHY mode, and then the assembled frame enters the inner loop

which executes the artificial channel and frame reception.

The second most outer for loop is responsible for going thru all CP lengths. All

this together simulated all the possible settings of the transceiver with all desired

SNRs.
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The BER is calculated for each combination and stored in a three-dimensional

(CP, PHY mode, and SNR) global array BER_log. Because usually, desired BER

values are very low (eg. 1e9 meaning one error bit per one billion bites) a statistic

over a single frame is not sufficient.

For increased resolution, the final outer for loop was added. It executes alterMessage

function which creates a new random payload and repeats the whole process accord-

ing to a number stored in macro SIMULATION_REPETITIONS. All the resultant

BER values are summed up in the BER_log array.

After that is done, another three nested for loops goes thru the BER_log array

and divide each record by the number of repetition. This computes an average of

all results.

At the end of the program, function exportBER which stores the results into a

.csv file is executed.

The BER is considered to be one when the frame is not recognized at all or is

not decodable. If the frame is decoded, function calculateBER compares the

received payload with the transmitted one on a bit-to-bit basis. The BER is the

number of unmatched bits to the total number of payload bits.

The liquid-dsp channel enables broad possibilities for setting different channel

properties. In this version only SNR was taken into account, but for further

investigation also frequency offsets, fading, or multi-path propagation modes could

be set.

Because the simulation, especially with a high number of repetitions, takes a long

time, a note is written to the terminal output each time the second outer for loop

starts with an updated CP number.

A simulation with 1000 repetitions was launched across SNRs 0 to 25. Plots of
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the results are in figures 4.7 and 4.8. It is clearly visible that with a higher bit

rate (used in higher-number PHY modes, see table 2.2) a higher SNR is required

to achieve low BER.

There are no visible variations between different CPs. There would be interesting

to play around with multipath parameters of the artificial channel and observe

their impact on the performance.
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Figure 4.7: BER simulation outcome - PHY modes 1 to 8
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Figure 4.8: BER simulation outcome - PHY modes 9 to 14
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CHAPTER 5
Function set

Initially, all the code was written in a linear manner such, that any revisions and

modifications were progressively more difficult. The need for a new structure of

the code was progressively raising. The code was reviewed and several functions

were defined with the aim to create building blocks that make upcoming program

versions and derivations easier to create, read and debug. These functions are

described in this chapter.

5.1 Debug messages

One major thing that all the functions have in common is a condition if(PRINT).

The PRINT is a macro that can be set either to true or false depending if the

debug messages are needed or not. The command following the condition prints

into the terminal output name of the function where the program currently is and

the last action that was performed in format

functionName - last performed action.
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5. Function set

5.2 setSampleRate

void setSampleRate(int cyclic_prefix);

The sample rate of the SDR can not be hardcoded in the program because it needs

to be adjusted together with the CP in order to maintain the duration of the frame

at 10 ms. This function modifies directly a global variable sampleRate.

5.3 SDRinit

int SDRinit(double frequency, double sampleRate, int modeSelector,

double normalizedGain);

This function initializes the LimeSDR as described in 4.2.1.

5.4 defineFrameGenerator

ofdmflexframegen DefineFrameGenerator (int dfg_cycl_pref, int

dfg_PHYmode);

The frame generator object returned by the function is specified according to

selected PHY mode and CP.

Although some parameters like the number of subcarriers, CP or taper length are

direct parameters of the ofdmflexframegen_create function within the liquid

library, for the full definition of the frame generator a lot of code is needed. Other pa-

rameters are encapsulated in properties structure ofdmflexframegenprops_s

which needs to be created and set according to selected PHY mode and the

subcarrier allocation array needs to be created and filled.
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5.5. subcarrierAllocation

5.5 subcarrierAllocation

void subcarrierAllocation (unsigned char *array);

This function accepts the pointer to the allocation array as an input parameter,

which is needed for the frame generator and synchronizer definition. The imple-

mented scheme uses a fixed number of subcarriers so additional information is

not needed. Inside the function a for loop is found which marks the entries in

the array with zeros for unused subcarriers, ones for pilots, and twos for the data

subcarriers.

5.6 frameAssemble

void frameAssemble(float *r_frame_buffer, int cyclic_prefix,

int phy_mode);

The frameAssemble is a large function accepting a pointer to buffer for real time-

samples of the whole frame and CP with PHY mode. The function reads global

variable message and do all the steps needed to fill the buffer with time samples

ready to stream into LimeSDR.

5.7 frameReception

void frameReception(int cyclic_prefix);

The frameReception creates a synchronizer object of the liquid library. Then

continuously translates real time-samples from SDR into complex samples for the

synchronizer object and executes the synchronization. Every time the synchronizer

recognizes a frame in the received signal, a callback function specified in the

synchronizer object is invoked and executed.
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5. Function set

5.8 frameSymbols

int frameSymbols(int cyclic_prefix);

This a very simple function that return number of OFDM symbols in one frame

according to chosen CP using switch - case structure.

5.9 payloadLength

uint payloadLength(int cyclic_prefix, int phy_mode);

This function returns the length of payload according to selected CP and PHY

mode.

A switch - case structure selects number of OFDM symbols that carries the

payload. Then another switch - case computes how many bits are modulated

on one subcarrier according to selected modulation and FEC. Both these numbers

are multiplied together with the number of data subcarriers and divided by 8 to

obtain bytes instead of bits.

5.10 complexSymbolBufferLength

uint complexSymbolBufferLength(int cyclic_prefix);

This function simply calculates and returns the number of complex samples per

OFDM by the formula (1 + CP ) × FFTlength.

5.11 complexFrameBufferLength

uint complexFrameBufferLength(int cyclic_prefix);
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5.12. printByteByByte

This function returns the number of a complex symbol across the whole frame. It

calls complexSymbolBufferLength and frameSymbols and multiplies their results.

5.12 printByteByByte

void printByteByByte(unsigned int payload_len, unsigned char

*transmitted, unsigned char *received);

This function was defined for debugging of BER simulator code. It accepts pointers

on transmitted and received char arrays with their length.

All the transmitted and receiver bytes are printed into the terminal as decimal

numbers.

5.13 sendFrame

void sendFrame(int cyclic_prefix, int phy_mode);

The sendFrame function creates a buffer for storing all real time-samples of the

frame, invokes frameAssemble function which fills that buffer, sets the sampling

rate of the SDR and passes the buffer for transmission.

startSDRTXStream int startSDRTXStream(int *tx_buffer, int FrameSampleCnt);

This function passes the tx_buffer into the LimeSDR as described in 4.2.1.

5.14 artificialChannel

void artificialChannel(int cyclic_prefix);

This function was created for the BER simulation. It works with global buffers of

real time-samples before_cahnnel_buffer and after_cahnnel_buffer.
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5. Function set

The object channel_cccf is created and SNR is set according to global variable

artificial_SNR, then the first buffer is converted to complex numbers. The

channel is then executed over the complex buffer and then converted again into

real buffer for frameReception function.

5.15 calculateBER

float calculateBER(unsigned int payload_len, string transmitted,

unsigned char *received);

This function is meant to be called from a callback function for BER simulation.

The callback function must handle cases when the frame was recognized but

synchronization was not successful. The function itself goes bit-by-bit over the

payload and compares the transmitted message with the received one. At the end

divides the number of errors by the number of bits and pass the result.

5.16 exportBER

int exportBER(void);

Calling this function exports the BER_log array into a .csv file in folder BER_calculation_outcome

called BER_simulation_currentDateAndTime.csv. Before the function is

called is necessary to divide all the values of BER_log by the number of repetitions

of the BER calculation.

5.17 alterMessage

string alterMessage(int payload_len);
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5.17. alterMessage

While the channel is simulated many times for increasing the resolution of BER

results, this function alters the global string message for increasing the credibility

of the simulation.
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CHAPTER 6
Conclusion

This work investigates the telecommunication standard IEEE 802.22 WRAN and

on its basis creates a new standard for access to the amateur radio network

HAMNET. This new standard was named Amateurradio Wireless Regional Area

Network (AWRAN), and is designed to operate in the 6 m, 2 m, and 70 cm bands

with 2 MHz, 4 MHz, and 10 MHz BW. The OFDM parameters of WRAN have

been adapted to these BWs.

AWRAN can accommodate up to 63 subscribers under a single BS and allows up to

four overlapping BSs to operate simultaneously on a single band. For this purpose,

fourteen management messages have been defined for communication between BSs

and subscribers providing efficient allocation of the available spectrum.

The simplified frame structure of the defined standard has been implemented on

the SDR using the liquid-dsp library. A test link has been established, which

unfortunately is not fully functional yet. Only narrowband FSK transmission has

been successfully adopted. For wideband OFDM transmission, the power is too

spread out for successful frame reception.
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6. Conclusion

For full-scale AWRAN implementation, the chosen liquid-dsp library is unsuitable.

However, the program is divided into basic control functions that will allow easy

adaptation of new changes.

A program simulating the BER dependence on SNR was prepared and the first

results are included in this thesis. This program can be easily modified to test

other wireless channel phenomena such as multipath propagation or fading.
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/******************************************************************************
 * C++ source of RPX-100-transceiver
 *
 * File:   RPX-100-transceiver.h
 * Author: Bernhard Isemann
 *         Marek Honek
 *
 * Created on 21 Jul 2022, 16:20
 *****************************************************************************/

#include <sys/types.h>
#include <sys/stat.h>
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <fcntl.h>
#include <errno.h>
#include <unistd.h>
#include <sstream>
#include <syslog.h>
#include <string.h>
#include <iostream>
#include <fstream>
#include <cstdio>
#include <ctime>
#include <math.h>
#include <complex.h>
#include <time.h>
#include <chrono>
#include <cstring>
#include <bitset>
#include "stuff/ini.h"
#include "stuff/log.h"
#include <chrono>
#include "lime/LimeSuite.h"
#include "liquid/liquid.h"
#include "stuff/ServerSocket.h"
#include "stuff/SocketException.h"
#include <iterator>
#include <signal.h>
#include "stuff/Util.h"
#include "stuff/WebSocketServer.h"
#include <correct.h>
#pragma once

lms_device_t *device = NULL;

#define SUBCARRIERS 1024
#define DATACARRIERS 480

#define TX_6m_MODE 6
#define RX_MODE 0

// print each step for debuggigng
#define PRINT false

// Radio Frontend - Define GPIO settings for CM4 hat module
uint8_t setRX = 0x18;       // GPIO0=LOW - RX, GPIO3=HIGH - PTT off,
uint8_t setTXDirect = 0x0F; // GPIO0=HIGH - TX, GPIO3=HIGH - PTT off, GPIO1=HIGH, 
GPIO2=HIGH
uint8_t setTX6m = 0x0D;     // GPIO0=HIGH - TX, GPIO3=HIGH - PTT off, GPIO1=LOW, 
GPIO2=LOW
uint8_t setTX2m = 0x09;     // GPIO0=HIGH - TX, GPIO3=HIGH - PTT off, GPIO1=LOW, 
GPIO2=HIGH
uint8_t setTX70cm = 0x0B;   // GPIO0=HIGH - TX, GPIO3=HIGH - PTT off, GPIO1=HIGH, 
GPIO2=LOW

uint8_t setTXDirectPTT = 0x07; // GPIO0=HIGH - TX, GPIO3=LOW - PTT on, GPIO1=HIGH, 
GPIO2=HIGH
uint8_t setTX6mPTT = 0x05;     // GPIO0=HIGH - TX, GPIO3=LOW - PTT on, GPIO1=LOW, 
GPIO2=LOW
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uint8_t setTX2mPTT = 0x01;     // GPIO0=HIGH - TX, GPIO3=LOW - PTT on, GPIO1=LOW, 
GPIO2=HIGH
uint8_t setTX70cmPTT = 0x03;   // GPIO0=HIGH - TX, GPIO3=LOW - PTT on, GPIO1=HIGH, 
GPIO2=LOW

string modeName[9] = {"RX", "TXDirect", "TX6m", "TX2m", "TX70cm", "TXDirectPTT", 
"TX6mPTT", "TX2mPTT", "TX70cmPTT"};
uint8_t modeGPIO[9] = {setRX, setTXDirect, setTX6m, setTX2m, setTX70cm, 
setTXDirectPTT, setTX6mPTT, setTX2mPTT, setTX70cmPTT};

int error();
string exec(string command);

// Log facility
void print_gpio(uint8_t gpio_val);
stringstream msgSDR;
stringstream HEXmsg;

// Initialize sdr buffers
liquid_float_complex complex_i(0,1);
int samplesRead = 1048;

bool rxON = true;
bool txON = true;

int startSDRTXStream(float *tx_buffer, int FrameSampleCnt);
void frameAssemble(float *r_frame_buffer, int cyclic_prefix, int phy_mode, string 
message);
void subcarrierAllocation (unsigned char *array);
ofdmflexframegen DefineFrameGenerator (int dfg_cycl_pref, int dfg_PHYmode);
int frameSymbols(int cyclic_prefix);
uint complexFrameBufferLength(int cyclic_prefix);
uint complexSymbolBufferLength(int cyclic_prefix);
uint payloadLength(int cyclic_prefix, int phy_mode);
double setSampleRate(int cyclic_prefix);
void sendFrame(int cyclic_prefix, int phy_mode, string message);
void frameReception(int cyclic_prefix);
int SDRinit(double frequency, double sampleRate, int modeSelector, double 
normalizedGain);
int startSDRTXStream(int *tx_buffer, int FrameSampleCnt);

int callbackWhatsReceived(unsigned char *_header,
               int _header_valid,
               unsigned char *_payload,
               unsigned int _payload_len,
               int _payload_valid,
               framesyncstats_s _stats,
               void *_userdata);
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/******************************************************************************
 * C++ source of RPX-100-transceiver
 *
 * File:   RPX-100-transceiver.cpp
 * Author: Bernhard Isemann
 *         Marek Honek
 *
 * Created on 21 Jul 2022, 16:20
 *
 * Predecessor  RPX-100-synchronizer.cpp
 *****************************************************************************/

#include "RPX-100-transceiver.h"

using namespace std;

int main(int argc, char *argv[])
{
    if (PRINT)
        cout << "main - program started" << endl;
    
    // Default start values
    string mode = "RX";
    int cycl_prefix = 4;
    int phy_mode = 1;
    string message = "OE1XTU AWRAN at 52.8 MHz";

    // Default SDR values
    double sampleRate = 3328000;
    double normalizedGain = 1;
    double frequency = 52.8e6;
    int modeSel = RX_MODE;
    

    if (argc == 1)
    {
        cout << "Starting RPX-100-transciever with default settings:\n";
        cout << "Mode: RX" << endl;
        cout << "Cyclic prefix: 1/4" << endl;
        cout << endl;
        cout << "type \033[36m'RPX-100-transciever help'\033[0m to see all options!" 
<< endl;
    }
    else if (argc >= 2)
    {
        for (int c = 1; c < argc; c++)
        {
            switch (c)
            {
            case 1:
                mode = (string)argv[c];
                if (mode == "RX")
                {
                    cout << "Starting RPX-100-transciever with following setting:\n";
                    cout << "Mode: " << argv[c] << endl;
                    modeSel = RX_MODE;
                }
                else if (mode == "TX6mPTT")
                {
                    cout << "Starting RPX-100-transciever with following setting:\n";
                    cout << "Mode: " << argv[c] << endl;
                    modeSel = TX_6m_MODE;
                }
                else if (mode == "help")
                {
                    cout << "Options for starting RPX-100-transciever" << endl;
                    cout << endl;
                    cout << "\033[36mMODE\033[0m:" << endl;
                    cout << "     \033[32mRX\033[0m for receive mode" << endl;
                    cout << endl;
                    cout << "     \033[31mTX6mPTT\033[0m for transmit mode with PTT 
with bandpass filter for 50-54 MHz" << endl;
                    cout << endl;
                    cout << "\033[36mCYCLIC PREFIX\033[0m:" << endl;

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43

44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72

73
74



11.08.22 2:45 RPX-100-transceiver.cpp

localhost:4649/?mode=clike 2/13

                    cout << "     \033[32m4, 8, 16 or 32\033[0m for 1/n cyclic 
prefix" << endl;
                    cout << endl;
                    cout << "\033[36mPHY MODE\033[0m:" << endl;
                    cout << "     \033[32mNumber 1 to 14\033[0m for PHY mode (applies 
only for TX mode)" << endl;
                    cout << endl;
                    cout << "\033[36mMESSAGE\033[0m:" << endl;
                    cout << "     \033[32mString to be transmitted\033[0m (applies 
only for TX mode)" << endl;
                    cout << endl;
                    return 0;
                }
                else
                {
                    cout << "Wrong settings, please type  \033[36m'RPX-100-
transciever help'\033[0m to see all options !" << endl;
                    return 0;
                }
                break;
            case 2:
                cycl_prefix = stoi((string)argv[c]);
                if ((cycl_prefix == 4) || (cycl_prefix == 8) || (cycl_prefix == 16) 
|| (cycl_prefix == 32))
                {
                    cout << "     cyclic prefix: " << cycl_prefix << endl;
                    cout << endl;
                }
                else
                {
                    cout << "Wrong settings, please type  \033[36m'RPX-100-
transciever help'\033[0m to see all options !" << endl;
                    return 0;
                }
                break;
            case 3:
                phy_mode  = stoi((string)argv[c]);
                if (phy_mode > 0 && phy_mode < 15)
                {
                    cout << "     PHY mode: " << phy_mode << endl;
                    cout << endl;
                }
                else
                {
                    cout << "Wrong settings, please type  \033[36m'RPX-100-
transciever help'\033[0m to see all options !" << endl;
                    return 0;
                }
                break;
            case 4:
                message = (string)argv[c];
                break;
            }
        }
    }

    LogInit();
    if (PRINT)
        cout << "main - logger initalized" << endl;

    Logger("RPX-100-synchronizer was started.\n");
    msgSDR << "Mode: " << modeSel << endl;
    msgSDR << "Cyclic prefix: " << cycl_prefix << endl;
    msgSDR << "PHY mode: " << phy_mode << endl;
    Logger(msgSDR.str());
    msgSDR.str("");
    if (PRINT)
        cout << "main - first log message saved" << endl;

    sampleRate = setSampleRate(cycl_prefix);
    if (sampleRate == -1)
        return -1;

    if (SDRinit(frequency, sampleRate, modeSel, normalizedGain) != 0)
    {
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        msgSDR.str("");
        msgSDR << "ERROR: " << LMS_GetLastErrorMessage();
        Logger(msgSDR.str());
        cout << msgSDR.str() << endl;
    }

    if (device == NULL)
    {
        cout << "main - device is NULL" << endl;
    }
    else
    {
        if (modeSel == TX_6m_MODE)
        {
            sendFrame(cycl_prefix, phy_mode, message);
            if (PRINT)
                cout <<"main - sendFrame exitted" << endl;
        }
        if (modeSel == RX_MODE)
        {
            frameReception(cycl_prefix);
            if (PRINT)
                cout <<"main - frameReception exitted" << endl;
        }
    }

    SDRinit(frequency, sampleRate, RX_MODE, normalizedGain);
    
    // Close device
    if (LMS_Close(device) == 0)
    {
        msgSDR.str("");
        msgSDR << "Closed" << endl;
        Logger(msgSDR.str());
    }

    return(0);    
}    
    

void sendFrame(int cyclic_prefix, int phy_mode, string message)
{
    if (PRINT)
        cout << "sendFrame - sendFrame started - cyclic_prefix: " << cyclic_prefix << 
"; phy_mode: " << phy_mode << endl;
 
    int tx_buffer_len = 2*complexFrameBufferLength(cyclic_prefix);
    if (PRINT)
        cout << "sendFrame - complexFrameBufferLength exitted - buffer_len: " << 
tx_buffer_len << endl;

    float tx_buffer[tx_buffer_len];  //buffer for whole frame
    if (PRINT)
        cout << "sendFrame - buffer initialized" << endl;

    frameAssemble(tx_buffer, cyclic_prefix, phy_mode, message);
    if (PRINT)
    {
        cout << "sendFrame - frameAssemble exitted" << endl;
        cout << "sendFrame - tx_buffer[0]: " << tx_buffer[0] << endl;
    }

    if (PRINT)
        cout << "sendFrame - setSampleRate exitted" << endl;

    
    if (PRINT)
        cout << "sendFrame - SDR has been set" << endl;

    startSDRTXStream(tx_buffer, complexFrameBufferLength(cyclic_prefix));

    if (PRINT)
    {
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        cout << "sendFrame - frame in tx_buffer has been transmitted" << endl;
    }

}

void frameAssemble(float *r_frame_buffer, int cyclic_prefix, int phy_mode, string 
message)
{
    if (PRINT)
        cout << "frameAssemble - frameAssemble started" << endl;
    
    liquid_float_complex complex_i(0, 1);
    
    unsigned int payload_len = payloadLength(cyclic_prefix, phy_mode); //depends on 
PHY mode and cyclic prefix
    if (PRINT)
    {   
        cout << "frameAssemble - payloadLength exitted" << endl;
        cout << "frameAssemble - payload_len: " << payload_len << endl;
    }

    uint c_buffer_len = complexSymbolBufferLength(cyclic_prefix); //depends on cyclic 
prefix
    if (PRINT)
        cout << "frameAssemble - complexSymbolBufferLength exitted" << endl;

    // create frame generator
    ofdmflexframegen fg = DefineFrameGenerator(cyclic_prefix, phy_mode);
    if (PRINT)
    {
        cout << "frameAssemble - DefineFrameGenerator exitted, frame generator 
setted" << endl;
        ofdmflexframegen_print(fg);
    }

    // buffers
    liquid_float_complex c_buffer[c_buffer_len]; // time-domain buffer
    unsigned char header[8];                     // header data
    unsigned char payload[payload_len] = {};          // payload data
    if (PRINT)
        cout << "frameAssemble - header and payload buffers initialized" << endl;

    // ... initialize header/payload ...
    strcpy((char *)payload, message.c_str());

    header[0] = '0';
    header[1] = '0';
    header[2] = '0';
    header[3] = '0';
    header[4] = '0';
    header[5] = '0';
    header[6] = '0';
    header[7] = '0';

    if (PRINT)
    {    
        cout << "frameAssemble - header and payload written" << endl;
        cout << "frameAssemble - payload: " << payload << endl;  // prints as text
        cout << "frameAssemble - payload: ";                     // prints as numbers
        for (int i=0; i<payload_len; i++)
        {
            cout << unsigned(payload[i]) << " ";
        } 
        cout << endl << endl;
    }
    

    // assemble frame
    ofdmflexframegen_assemble(fg, header, payload, payload_len);
    if (true)
    {
        cout << "frameAssemble - frame assembled" << endl;
        ofdmflexframegen_print(fg);
    }    

    int last_symbol = 0;
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    int i = 0;
    int l = 0;

    while (!last_symbol)
    {
        // generate each OFDM symbol
        last_symbol = ofdmflexframegen_write(fg, c_buffer, c_buffer_len);
        if (PRINT)
        {
            cout << "frameAssemble - symbol " << l+1 << " written" << endl;
            cout << "frameAssemble - c_buffer[0]: " << c_buffer[0] << endl;
            cout << "frameAssemble - last_symbol value: " << last_symbol << endl;
        }
        
        
        if (!last_symbol)
        {
            if (PRINT)
                cout << "frameAssemble - starting complex to real buffer conversion" 
<< endl;
            for (i = 0; i < c_buffer_len; i++)
            {
                r_frame_buffer[l*2*c_buffer_len+2*i]=c_buffer[i].real();
                r_frame_buffer[l*2*c_buffer_len+2*i+1]=c_buffer[i].imag();
            }
        }
        if (PRINT)
        {
            cout << "frameAssemble - r_frame_buffer[0]: " << r_frame_buffer[0] << 
endl;
            cout << "frameAssemble - exiting complex to real buffer conversion" << 
endl;
        }
        
        l++;
    }
    ofdmflexframegen_destroy(fg);
}

void frameReception(int cyclic_prefix)
{
    if (PRINT)
        cout << "frameReception - frameReception started" << endl;

    liquid_float_complex complex_i (0, 1);

    // Initialize stream
    lms_stream_t streamId;                        //stream structure
    streamId.channel = 0;                         //channel number
    streamId.fifoSize = 1024 * 1024;              //fifo size in samples
    streamId.throughputVsLatency = 1.0;           //optimize for max throughput
    streamId.isTx = false;                        //RX channel
    streamId.dataFmt = lms_stream_t::LMS_FMT_F32; //12-bit integers
    if (LMS_SetupStream(device, &streamId) != 0)
        error();

    
    int c_sync_buffer_len = complexFrameBufferLength(cyclic_prefix); //synchronizer 
buffer can be  of arbitrary length 
    liquid_float_complex c_sync_buffer[c_sync_buffer_len];
    float r_sync_buffer[c_sync_buffer_len*2];
    if (PRINT)
        cout << "frameReception - buffers initialized" << endl;

    unsigned char allocation_array[SUBCARRIERS];    // subcarrier allocation array 
(null/pilot/data)
    subcarrierAllocation(allocation_array);
    if (PRINT)
        cout << "frameReception - subcarrierAllocation exited; allocation_array 
defined" << endl;

    unsigned int cp_len = (int)SUBCARRIERS / cyclic_prefix; // cyclic prefix length
    unsigned int taper_len = (int)cp_len / 4;          // taper length
  
    ofdmflexframesync fs = ofdmflexframesync_create(SUBCARRIERS, cp_len, taper_len, 
allocation_array, callbackWhatsReceived, NULL);
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    //ofdmflexframesync fs = ofdmflexframesync_create(SUBCARRIERS, cp_len, taper_len, 
allocation_array, callbackBERCalculation, NULL);
    if (PRINT)
        cout << "frameReception - frame synchronizer created" << endl;

    // Start streaming
    LMS_StartStream(&streamId);

    cout << "frameReception - entering reception loop" << endl;
    while(rxON)
    {
        //Receive samples
        LMS_RecvStream(&streamId, r_sync_buffer, c_sync_buffer_len, NULL, 1000); 
//should work, for now replaced by tx_buffer
        //I and Q samples are interleaved in r_sync_buffer: IQIQIQ...

        if (PRINT)
        {
            cout << "frameReception - r_sync_buffer filled" << endl;
            cout << "frameReception - r_sync_buffer[0]: " << r_sync_buffer[0] << 
endl;
        }

        for (int i = 0; i < c_sync_buffer_len; i++)
        {
            c_sync_buffer[i]=r_sync_buffer[2*i]+r_sync_buffer[2*i+1] * 
complex_i.imag();
        }
        if (PRINT)
            cout << "frameReception - real buffer converted to complex buffer" << 
endl;

        // receive symbol (read samples from buffer)
        ofdmflexframesync_execute(fs, c_sync_buffer, c_sync_buffer_len);
        if (PRINT)
            cout << "frameReception - synchronization ended" << endl;       
    }
    ofdmflexframesync_destroy(fs);

    // Stop streaming
    LMS_StopStream(&streamId);            // stream is stopped but can be started 
again with LMS_StartStream()
    LMS_DestroyStream(device, &streamId); // stream is deallocated and can no longer 
be used
}

void print_gpio(uint8_t gpio_val)
{
    for (int i = 0; i < 8; i++)
    {
        bool set = gpio_val & (0x01 << i);
        msgSDR << "GPIO" << i << ": " << (set ? "High" : "Low") << endl;
        Logger(msgSDR.str());
        msgSDR.str("");
    }
}

double setSampleRate(int cyclic_prefix)
{
    if (PRINT)
        cout << "setSampleRate - setSampleRate started" << endl;
    switch (cyclic_prefix)
    {
    case 4:
        return 3328000;
    case 8:
        return 3225600;
    case 16:
        return 3264000;
    case 32:
        return 3273600;
    }
    return -1;
}
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ofdmflexframegen DefineFrameGenerator (int dfg_cycl_pref, int dfg_PHYmode)
{
    if (PRINT)
        cout << "DefineFrameGenerator - DefineFrameGenerator started" << endl;
    
    // initialize frame generator properties
    ofdmflexframegenprops_s fgprops;
    ofdmflexframegenprops_init_default(&fgprops);
    fgprops.check = LIQUID_CRC_NONE;
    fgprops.fec1 = LIQUID_FEC_NONE;

    unsigned int cp_len = (int)SUBCARRIERS / dfg_cycl_pref; // cyclic prefix length
    unsigned int taper_len = (int)cp_len / 4;          // taper length

    switch (dfg_PHYmode)
    {
        
    case 1: 
        fgprops.fec0 = LIQUID_FEC_NONE;
        fgprops.mod_scheme = LIQUID_MODEM_PSK2;
        break;
    case 2:
        fgprops.fec1 = LIQUID_FEC_REP3;
        fgprops.fec0 = LIQUID_FEC_CONV_V27;
        fgprops.mod_scheme = LIQUID_MODEM_QPSK;
        break;
    case 3:
        fgprops.fec0 = LIQUID_FEC_CONV_V27;
        fgprops.mod_scheme = LIQUID_MODEM_QPSK;
        break;
    case 4:
        fgprops.fec0 = LIQUID_FEC_CONV_V27P23;
        fgprops.mod_scheme = LIQUID_MODEM_QPSK;
        break;
    case 5:
        fgprops.fec0 = LIQUID_FEC_CONV_V27P34;
        fgprops.mod_scheme = LIQUID_MODEM_QPSK;
         break;
    case 6:
        fgprops.fec0 = LIQUID_FEC_CONV_V27P56;
        fgprops.mod_scheme = LIQUID_MODEM_QPSK;
        break;
    case 7:
        fgprops.fec0 = LIQUID_FEC_CONV_V27;
        fgprops.mod_scheme = LIQUID_MODEM_QAM16;
        break;
    case 8:
        fgprops.fec0 = LIQUID_FEC_CONV_V27P23;
        fgprops.mod_scheme = LIQUID_MODEM_QAM16;
        break;
    case 9:
        fgprops.fec0 = LIQUID_FEC_CONV_V27P34;
        fgprops.mod_scheme = LIQUID_MODEM_QAM16;
        break;
    case 10:
        fgprops.fec0 = LIQUID_FEC_CONV_V27P56;
        fgprops.mod_scheme = LIQUID_MODEM_QAM16;
        break;
    case 11:
        fgprops.fec0 = LIQUID_FEC_CONV_V27;
        fgprops.mod_scheme = LIQUID_MODEM_QAM64;
        break;
    case 12:
        fgprops.fec0 = LIQUID_FEC_CONV_V27P23;
        fgprops.mod_scheme = LIQUID_MODEM_QAM64;
        break;
    case 13:
        fgprops.fec0 = LIQUID_FEC_CONV_V27P34;
        fgprops.mod_scheme = LIQUID_MODEM_QAM64;
        break;
    case 14:
        fgprops.fec0 = LIQUID_FEC_CONV_V27P56;
        fgprops.mod_scheme = LIQUID_MODEM_QAM64;
        break;
    default:
        return NULL;
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    }

    unsigned char allocation_array[SUBCARRIERS]; // subcarrier allocation 
array(null/pilot/data)
    subcarrierAllocation(allocation_array);
    if (PRINT)
        cout << "DefineFrameGenerator - subarrierAllocation exitted" << endl;
    
    return ofdmflexframegen_create(SUBCARRIERS, cp_len, taper_len, allocation_array, 
&fgprops);
}

void subcarrierAllocation (unsigned char *array)
{
    if (PRINT)
        cout << "subcarrierAllocation - subcarrierAllocation started" << endl;
    for (int i = 0; i < 1024; i++)
    {
        if (i < 232)
            array[i] = 0; // guard band

        if (231 < i && i < 792)
            if (i % 7 == 0)
                array[i] = 1; // every 7th carrier pilot
            else
                array[i] = 2; // rest data

        if (i > 791)
            array[i] = 0; // guard band
    }
}

int frameSymbols(int cyclic_prefix)
{
    if (PRINT)
        cout << "frameSymbols - frameSymbols started" << endl;
    int symbolCnt;
    switch (cyclic_prefix)
    {
    case 4:
        symbolCnt = 22+4;
        break;
    case 8:
        symbolCnt = 24+4;
        break;
    case 16:
        symbolCnt = 26+4;
        break;
    case 32:
        symbolCnt = 27+4;
        break;
    default:
        symbolCnt = 0;
    }
    
    if (PRINT)
        cout << "frameSymbols - symbolCnt: " << symbolCnt << endl; 
    return symbolCnt;
}

uint complexFrameBufferLength(int cyclic_prefix)
{
    if (PRINT)
        cout << "complexFrameBufferLength - complexFrameBufferLength started" << 
endl;
    return complexSymbolBufferLength(cyclic_prefix)*frameSymbols(cyclic_prefix);
}

uint complexSymbolBufferLength(int cyclic_prefix)
{
    if (PRINT)
        cout << "complexSymbolBufferLength - complexSymbolBufferLength started" << 
endl;
    return (SUBCARRIERS + ((int)SUBCARRIERS / cyclic_prefix));
}
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uint payloadLength(int cyclic_prefix, int phy_mode)
{
    if (PRINT)
        cout << "payloadLength - payloadLength started" << endl;
    uint8_t useful_symbols; // number of OFDM symbols carrying payload
    float coding_rate;  // uncoded to coded ratio

    switch (cyclic_prefix)
    {
        case 4:
            useful_symbols = 22;
            break;
        case 8:
            useful_symbols = 24;
            break;
        case 16:
            useful_symbols = 26;
            break;
        case 32:
            useful_symbols = 27;
            break;
        default:
            return 0;
    }
    

    switch (phy_mode)
    {        
        case 1: 
            coding_rate = 1;
            break;
        case 2:
            coding_rate = 2.0 / (2.0 * 3.0f);
            break;
        case 3:
            coding_rate = 2.0f / 2.0f;
            break;
        case 4:
            coding_rate = 2.0f * 2.0f / 3.0f;
            break;
        case 5:
            coding_rate = 2.0f * 3.0f / 4.0f;
            break;
        case 6:
            coding_rate = 2.0f * 5.0f / 6.0f;
            break;
        case 7:
            coding_rate = 4.0f / 2.0f;
            break;
        case 8:
            coding_rate = 4.0f * 2.0f / 3.0f;
            break;
        case 9:
            coding_rate = 4.0f * 3.0f / 4.0f;
            break;
        case 10:
            coding_rate = 4.0f * 5.0f / 6.0f;
            break;
        case 11:
            coding_rate = 6.0f / 2.0f;
            break;
        case 12:
            coding_rate = 6.0f * 2.0f / 3.0f;
            break;
        case 13:
            coding_rate = 6.0f * 3.0f / 4.0f;
            break;
        case 14:
            coding_rate = 6.0f * 5.0f / 6.0f;
            break;
        default:
            return 0;
    }

    return (uint)floor(DATACARRIERS * useful_symbols * coding_rate / 8)-1; // Without 
the -1, frame generator produces excess symbol
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}

// callback function
int callbackWhatsReceived(unsigned char *_header,
               int _header_valid,
               unsigned char *_payload,
               unsigned int _payload_len,
               int _payload_valid,
               framesyncstats_s _stats,
               void *_userdata)
{
    cout << endl;
    cout << "***** callback invoked!" << endl << endl;
    if (_header_valid)
    {
        cout << "  header valid" << endl;
    }
    else
    {
        cout << "  header invalid" << endl;
    }

    if (_payload_valid)
    {
        cout << "  payload valid" << endl; 
    }
    else
    {
        cout << "  payload invalid" << endl;
    }
    cout << endl;

    unsigned int i;
    if (_header_valid)
    {
        cout << "Received header: "<< endl;
        for (i = 0; i < 8; i++)
        {
            cout << _header[i];
        }
        cout << endl << endl;
    }

    if (_payload_valid)
    {
        cout << "Received payload: " << endl;
        for (i = 0; i < _payload_len; i++)
        {
            if (_payload[i] == 0)
                break;
            cout << _payload[i];
        }
        cout << endl << endl;
    }

    cout << "payload len: " << _payload_len << endl;
    cout << endl;

    return 0;
}

int startSDRTXStream(float *tx_buffer, int FrameSampleCnt)
{
    // Initialize stream
    lms_stream_t streamId;                        // stream structure
    streamId.channel = 0;                         // channel number
    streamId.fifoSize = 1024 * 1024;              // fifo size in samples
    streamId.throughputVsLatency = 1.0;           // optimize for max throughput
    streamId.isTx = true;                         // TX channel
    streamId.dataFmt = lms_stream_t::LMS_FMT_F32; // 12-bit integers
    if (LMS_SetupStream(device, &streamId) != 0)
        error();

    // Start streaming
    LMS_StartStream(&streamId);
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    if (PRINT)
        cout << "startSDRTXStream - FrameSampleCnt: " << FrameSampleCnt << endl; 

    for (int i = 0; i < 100; i++)
        int ret = LMS_SendStream(&streamId, tx_buffer, FrameSampleCnt, nullptr, 
1000);

    // Stop streaming
    LMS_StopStream(&streamId);            // stream is stopped but can be started 
again with LMS_StartStream()
    LMS_DestroyStream(device, &streamId); // stream is deallocated and can no longer 
be used

    // Close device
    if (LMS_Close(device) == 0)
    {
        msgSDR.str("");
        msgSDR << "Closed" << endl;
        Logger(msgSDR.str());
    }

    sleep(1);

    return 0;
}

int SDRinit(double frequency, double sampleRate, int modeSelector, double 
normalizedGain)
{
    // Find devices
    int n;
    lms_info_str_t list[8]; // should be large enough to hold all detected devices
    if ((n = LMS_GetDeviceList(list)) < 0)
    {
        error(); // NULL can be passed to only get number of devices
    }
    msgSDR.str("");
    msgSDR << "Number of devices found: " << n;
    Logger(msgSDR.str()); // print number of devices
    if (n < 1)
    {
        return -1;
    }

    // open the first device
    if (LMS_Open(&device, list[0], NULL))
    {
        error();
    }
    sleep(1);

    // Initialize device with default configuration
    if (LMS_Init(device) != 0)
    {
        error();
    }
    sleep(1);

    // Set SDR GPIO diretion GPIO0-5 to output and GPIO6-7 to input
    uint8_t gpio_dir = 0xFF;
    if (LMS_GPIODirWrite(device, &gpio_dir, 1) != 0)
    {
        error();
    }

    // Read and log GPIO direction settings
    uint8_t gpio_val = 0;
    if (LMS_GPIODirRead(device, &gpio_val, 1) != 0)
    {
        error();
    }
    msgSDR.str("");
    msgSDR << "Set GPIOs direction to output.\n";
    Logger(msgSDR.str());
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    // Set GPIOs to RX mode (initial settings)
    if (LMS_GPIOWrite(device, &modeGPIO[modeSelector], 1) != 0)
    {
        error();
    }

    // Read and log GPIO values
    if (LMS_GPIORead(device, &gpio_val, 1) != 0)
    {
        error();
    }
    msgSDR.str("");
    msgSDR << "GPIO Output to High Level:\n";
    print_gpio(gpio_val);
    Logger(msgSDR.str());

    msgSDR.str("");
    msgSDR << "LimeRFE set to " << modeName[modeSelector] << endl;
    Logger(msgSDR.str());

    // Enable RX or TX channel,Channels are numbered starting at 0
    if (modeSelector == RX_MODE)
    {
        if (LMS_EnableChannel(device, LMS_CH_RX, 0, true) != 0)
        {
            error();
        }
        if (LMS_EnableChannel(device, LMS_CH_TX, 0, false) != 0)
        {
            error();
        }
    }
    else
    {
        if (LMS_EnableChannel(device, LMS_CH_TX, 0, true) != 0)
        {
            error();
        }
        if (LMS_EnableChannel(device, LMS_CH_RX, 0, false) != 0)
        {
            error();
        }
    }

    // Set sample rate
    if (LMS_SetSampleRate(device, (float)sampleRate, 0) != 0)
    {
        error();
    }
    msgSDR.str("");
    msgSDR << "Sample rate: " << sampleRate / 1e6 << " MHz" << endl;
    Logger(msgSDR.str());

    // Set center frequency
    if (modeSelector == RX_MODE)
    {
        if (LMS_SetLOFrequency(device, LMS_CH_RX, 0, frequency) != 0)
        {
            error();
        }
    }
    else
    {
        if (LMS_SetLOFrequency(device, LMS_CH_TX, 0, frequency) != 0)
        {
            error();
        }
    }

    msgSDR.str("");
    msgSDR << "Center frequency: " << frequency / 1e6 << " MHz" << endl;
    Logger(msgSDR.str());
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    // select Low TX path for LimeSDR mini --> TX port 2 (misslabed in MINI, correct 
in USB)
    if (modeSelector == RX_MODE)
    {
        if (LMS_SetAntenna(device, LMS_CH_RX, 0, LMS_PATH_LNAL) != 0)
        {
            error();
        }
    }
    else
    {
        if (LMS_SetAntenna(device, LMS_CH_TX, 0, LMS_PATH_TX2) != 0)
        {
            error();
        }

        // set TX gain
        if (LMS_SetNormalizedGain(device, LMS_CH_TX, 0, normalizedGain) != 0)
        {
            error();
        }
    }

    // calibrate Tx, continue on failure
    if (modeSelector == RX_MODE)
    {
        LMS_Calibrate(device, LMS_CH_RX, 0, sampleRate, 0);
    }
    else
    {
        LMS_Calibrate(device, LMS_CH_TX, 0, sampleRate, 0);
    }

    sleep(2);

    return 0;
}

int error()
{
    msgSDR.str("");
    msgSDR << "ERROR: " << LMS_GetLastErrorMessage();
    Logger(msgSDR.str());
    if (device != NULL)
        LMS_Close(device);
    return -1;
}
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/******************************************************************************
 * C++ source of RPX-100-BER_simulator
 *
 * File:   RPX-100-TX.h
 * Author: Marek Honek
 *
 * Created on 19 Apr 2022, 18:20
 *****************************************************************************/

#include <sys/types.h>
#include <sys/stat.h>
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <fcntl.h>
#include <errno.h>
#include <unistd.h>
#include <sstream>
#include <syslog.h>
#include <string.h>
#include <iostream>
#include <fstream>
#include <cstdio>
#include <ctime>
#include <math.h>
#include <complex.h>
#include <time.h>
#include <chrono>
#include <cstring>
#include <bitset>
#include "stuff/ini.h"
#include "stuff/log.h"
#include <chrono>
#include "liquid/liquid.h"
#include "stuff/ServerSocket.h"
#include "stuff/SocketException.h"
#include <iterator>
#include <signal.h>
#include "stuff/Util.h"
#include "stuff/WebSocketServer.h"
#include <correct.h>
#pragma once

#define SUBCARRIERS 1024
#define DATACARRIERS 480

// print each step for debuggigng
#define PRINT false

int error();
string exec(string command);

//BER simulation
#define MIN_SNR 0
#define MAX_SNR 25
#define SIMULATION_REPETITIONS 1000

void sendFrame(int cyclic_prefix, int phy_mode);
void frameReception(int cyclic_prefix);
int global_cycl_pref_index;
int global_phy_mode;
liquid_float_complex before_channel_buffer[33280]; //buffer for artificial channel
liquid_float_complex after_channel_buffer[33280]; //buffer for artificial channel
int artificial_SNR;
float BER_log[4][15][MAX_SNR+1] = {0}; //[cycl pref index][phy_mode][SNR]
float calculateBER(unsigned int payload_len, string transmitted, unsigned char 
*received);
bool callback_invoked = false;
int  exportBER(void);
string message = "";

// Initialize sdr buffers
liquid_float_complex complex_i(0,1);

void frameAssemble(liquid_float_complex *c_frame_buffer, int cyclic_prefix, int 
phy_mode); //buffer changed to c_frame_buffer for BER simulation (original 
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r_frame_buffer)
void subcarrierAllocation (unsigned char *array);
ofdmflexframegen DefineFrameGenerator (int dfg_cycl_pref, int dfg_PHYmode);
int frameSymbols(int cyclic_prefix);
uint complexFrameBufferLength(int cyclic_prefix);
uint complexSymbolBufferLength(int cyclic_prefix);
uint payloadLength(int cyclic_prefix, int phy_mode);
void artificialChannel(int cyclic_prefix);
void printByteByByte(unsigned int payload_len, unsigned char *transmitted, unsigned 
char *received);
string alterMessage(int payload_len);

int callbackWhatsReceived(unsigned char *_header,
               int _header_valid,
               unsigned char *_payload,
               unsigned int _payload_len,
               int _payload_valid,
               framesyncstats_s _stats,
               void *_userdata);

int callbackBERCalculation(unsigned char *_header,
               int _header_valid,
               unsigned char *_payload,
               unsigned int _payload_len,
               int _payload_valid,
               framesyncstats_s _stats,
               void *_userdata);
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/******************************************************************************
 * C++ source of RPX-100-BER_simulator
 *
 * File:   RPX-100-BER_simulator.cpp
 * Author: Marek Honek
 *
 * Created on 19 Apr 2022, 18:20
 *****************************************************************************/

#include "RPX-100-BER_simulator.h"

using namespace std;

int main(void)
{
    cout << "main - program started" << endl;

    for (int repetition = 0; repetition < SIMULATION_REPETITIONS; repetition++) // 
repetition for higher resolution
    {
        message = alterMessage(8100); //max payload
    
        for (global_cycl_pref_index = 0; global_cycl_pref_index < 4; 
global_cycl_pref_index++) // cyclic prefix
        {
            for (global_phy_mode = 1; global_phy_mode <= 14; global_phy_mode++) // 
PHY mode
            {   
                if (PRINT)
                    cout << "main - global_phy_mode: " << global_phy_mode << "; 
global_cycl_pref_index: " << global_cycl_pref_index << "; cycl_pref: " << (4 << 
global_cycl_pref_index) << endl;

                frameAssemble(before_channel_buffer, 4 << global_cycl_pref_index, 
global_phy_mode);    
                if (PRINT)
                    cout <<"main - frameAssemble exitted" << endl;
                
                for (artificial_SNR = MIN_SNR; artificial_SNR<=MAX_SNR; 
artificial_SNR++) // SNR sweep
                {
                    artificialChannel(4 << global_cycl_pref_index);

                    if (PRINT)
                        cout << "main - artificialChannel exitted" << endl;

                    frameReception(4 << global_cycl_pref_index);
                    if (PRINT)
                        cout <<"main - frameReception exitted" << endl;
                }
            }
            cout << "main - repetition: " << repetition << "; cp: " << 
(4<<global_cycl_pref_index) << endl;
        }
    }
    
    // Up to now, BER_log contains sum of results from individual simulations. 
Following for loop structure divides
    // the value by number of simulations. Thus calculates the average of all 
simulations.
    for (global_cycl_pref_index = 0; global_cycl_pref_index<4; 
global_cycl_pref_index++) // cyclic prefix
    {
        for (global_phy_mode = 1; global_phy_mode <=14; global_phy_mode++) // PHY 
mode
        {    
            cout << "main - cyclic prefix: " << (4<<global_cycl_pref_index) << "; PHY 
mode: " << global_phy_mode << endl;           
            for (artificial_SNR = MIN_SNR; artificial_SNR<=MAX_SNR; artificial_SNR++) 
// SNR sweep
            {    
                BER_log[global_cycl_pref_index][global_phy_mode]
[artificial_SNR]/=SIMULATION_REPETITIONS;
            }
        }
    }
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    exportBER();

    return(0);    
}    
    

void frameAssemble(liquid_float_complex *c_frame_buffer, int cyclic_prefix, int 
phy_mode) //buffer changed to c_frame_buffer for BER simulation (original 
r_frame_buffer)
{
    if (PRINT)
        cout << "frameAssemble - frameAssemble started" << endl;
    
    liquid_float_complex complex_i(0, 1);
    
    unsigned int payload_len = payloadLength(cyclic_prefix, phy_mode); //depends on 
PHY mode and cyclic prefix
    if (PRINT)
    {   
        cout << "frameAssemble - payloadLength exitted" << endl;
        cout << "frameAssemble - payload_len: " << payload_len << endl;
    }

    uint c_buffer_len = complexSymbolBufferLength(cyclic_prefix); //depends on cyclic 
prefix
    if (PRINT)
        cout << "frameAssemble - complexSymbolBufferLength exitted" << endl;

    // create frame generator
    ofdmflexframegen fg = DefineFrameGenerator(cyclic_prefix, phy_mode);
    if (PRINT)
    {
        cout << "frameAssemble - DefineFrameGenerator exitted, frame generator 
setted" << endl;
        ofdmflexframegen_print(fg);
    }

    // buffers
    liquid_float_complex c_buffer[c_buffer_len]; // time-domain buffer
    unsigned char header[8];                     // header data
    unsigned char payload[payload_len] = {};          // payload data
    if (PRINT)
        cout << "frameAssemble - header and payload buffers initialized" << endl;

    // ... initialize header/payload ...
    strcpy((char *)payload, message.c_str());

    header[0] = '0';
    header[1] = '0';
    header[2] = '0';
    header[3] = '0';
    header[4] = '0';
    header[5] = '0';
    header[6] = '0';
    header[7] = '0';

    if (PRINT)
        cout << "frameAssemble - header and payload written" << endl;
    
    // cout << "frameAssemble - payload: " << payload << endl;  // prints as text
    if (PRINT)
    {
        cout << "frameAssemble - payload: ";                        // prints as 
numbers
        for (int i=0; i<payload_len; i++)
        {
            cout << unsigned(payload[i]) << " ";
        } 
        cout << endl << endl;
    }
    

    // assemble frame
    ofdmflexframegen_assemble(fg, header, payload, payload_len);
    if (PRINT)
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    {
        cout << "frameAssemble - frame assembled" << endl;
        ofdmflexframegen_print(fg);
    }    

    int last_symbol = 0;
    int i = 0;
    int l = 0;

    while (!last_symbol)
    {
        // pthread_mutex_lock(&SDRmutex);
    
        // generate each OFDM symbol
        last_symbol = ofdmflexframegen_write(fg, c_buffer, c_buffer_len);
        if (PRINT)
        {
            cout << "frameAssemble - symbol " << l+1 << " written" << endl;
            cout << "frameAssemble - c_buffer[0]: " << c_buffer[0] << endl;
            cout << "frameAssemble - last_symbol value: " << last_symbol << endl;
        }
        
        
        if (!last_symbol)
        {
            if (PRINT)
                cout << "frameAssemble - starting complex to real buffer conversion" 
<< endl;
            for (i = 0; i < c_buffer_len; i++)
            {
                c_frame_buffer[l*c_buffer_len+i]=c_buffer[i];
            }
        }
        if (PRINT)
        {
            cout << "frameAssemble - c_frame_buffer[0]: " << c_frame_buffer[0] << 
endl;
            cout << "frameAssemble - exiting complex to real buffer conversion" << 
endl;
        }
        
        l++;
    }
    ofdmflexframegen_destroy(fg);
}

void frameReception(int cyclic_prefix)
{
    if (PRINT)
        cout << "frameReception - frameReception started" << endl;
    
    int c_sync_buffer_len = complexFrameBufferLength(cyclic_prefix); //synchronizer 
buffer can be  of arbitrary length 
    if (PRINT)
        cout << "frameReception - buffers initialized" << endl;

    unsigned char allocation_array[SUBCARRIERS];    // subcarrier allocation array 
(null/pilot/data)
    subcarrierAllocation(allocation_array);
    if (PRINT)
        cout << "frameReception - subcarrierAllocation exited; allocation_array 
defined" << endl;

    unsigned int cp_len = (int)SUBCARRIERS / cyclic_prefix; // cyclic prefix length
    unsigned int taper_len = (int)cp_len / 4;          // taper length
  
    //ofdmflexframesync fs = ofdmflexframesync_create(SUBCARRIERS, cp_len, taper_len, 
allocation_array, callbackWhatsReceived, NULL);
    ofdmflexframesync fs = ofdmflexframesync_create(SUBCARRIERS, cp_len, taper_len, 
allocation_array, callbackBERCalculation, NULL);
    if (PRINT)
        cout << "frameReception - frame synchronizer created" << endl;

    // while(1)
    {
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        // receive symbol (read samples from buffer)
        ofdmflexframesync_execute(fs, after_channel_buffer, c_sync_buffer_len);
        if (PRINT)
            cout << "frameReception - synchronization ended" << endl;

        if (!callback_invoked)
        {
            if (PRINT)
                cout << "frameReception - callback was not invoked" << endl;
            BER_log[global_cycl_pref_index][global_phy_mode][artificial_SNR] += 1;
        }
        
        callback_invoked = false;
        
        ofdmflexframesync_destroy(fs);
        if (PRINT)
            cout << "frameReception - ofdmflexframesync destroyed";
    }

}

ofdmflexframegen DefineFrameGenerator (int dfg_cycl_pref, int dfg_PHYmode)
{
    if (PRINT)
        cout << "DefineFrameGenerator - DefineFrameGenerator started" << endl;
    
    // initialize frame generator properties
    ofdmflexframegenprops_s fgprops;
    ofdmflexframegenprops_init_default(&fgprops);
    fgprops.check = LIQUID_CRC_NONE;
    fgprops.fec1 = LIQUID_FEC_NONE;

    unsigned int cp_len = (int)SUBCARRIERS / dfg_cycl_pref; // cyclic prefix length
    unsigned int taper_len = (int)cp_len / 4;          // taper length

    switch (dfg_PHYmode)
    {
        
    case 1: 
        fgprops.fec0 = LIQUID_FEC_NONE;
        fgprops.mod_scheme = LIQUID_MODEM_PSK2;
        break;
    case 2:
        fgprops.fec1 = LIQUID_FEC_REP3;
        fgprops.fec0 = LIQUID_FEC_CONV_V27;
        fgprops.mod_scheme = LIQUID_MODEM_QPSK;
        break;
    case 3:
        fgprops.fec0 = LIQUID_FEC_CONV_V27;
        fgprops.mod_scheme = LIQUID_MODEM_QPSK;
        break;
    case 4:
        fgprops.fec0 = LIQUID_FEC_CONV_V27P23;
        fgprops.mod_scheme = LIQUID_MODEM_QPSK;
        break;
    case 5:
        fgprops.fec0 = LIQUID_FEC_CONV_V27P34;
        fgprops.mod_scheme = LIQUID_MODEM_QPSK;
         break;
    case 6:
        fgprops.fec0 = LIQUID_FEC_CONV_V27P56;
        fgprops.mod_scheme = LIQUID_MODEM_QPSK;
        break;
    case 7:
        fgprops.fec0 = LIQUID_FEC_CONV_V27;
        fgprops.mod_scheme = LIQUID_MODEM_QAM16;
        break;
    case 8:
        fgprops.fec0 = LIQUID_FEC_CONV_V27P23;
        fgprops.mod_scheme = LIQUID_MODEM_QAM16;
        break;
    case 9:
        fgprops.fec0 = LIQUID_FEC_CONV_V27P34;
        fgprops.mod_scheme = LIQUID_MODEM_QAM16;
        break;
    case 10:
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        fgprops.fec0 = LIQUID_FEC_CONV_V27P56;
        fgprops.mod_scheme = LIQUID_MODEM_QAM16;
        break;
    case 11:
        fgprops.fec0 = LIQUID_FEC_CONV_V27;
        fgprops.mod_scheme = LIQUID_MODEM_QAM64;
        break;
    case 12:
        fgprops.fec0 = LIQUID_FEC_CONV_V27P23;
        fgprops.mod_scheme = LIQUID_MODEM_QAM64;
        break;
    case 13:
        fgprops.fec0 = LIQUID_FEC_CONV_V27P34;
        fgprops.mod_scheme = LIQUID_MODEM_QAM64;
        break;
    case 14:
        fgprops.fec0 = LIQUID_FEC_CONV_V27P56;
        fgprops.mod_scheme = LIQUID_MODEM_QAM64;
        break;
    default:
        return NULL;
    }

    unsigned char allocation_array[SUBCARRIERS]; // subcarrier allocation 
array(null/pilot/data)
    subcarrierAllocation(allocation_array);
    if (PRINT)
        cout << "DefineFrameGenerator - subarrierAllocation exitted" << endl;
    
    return ofdmflexframegen_create(SUBCARRIERS, cp_len, taper_len, allocation_array, 
&fgprops);
}

void subcarrierAllocation (unsigned char *array)
{
    if (PRINT)
        cout << "subcarrierAllocation - subcarrierAllocation started" << endl;
    for (int i = 0; i < 1024; i++)
    {
        if (i < 232)
            array[i] = 0; // guard band

        if (231 < i && i < 792)
            if (i % 7 == 0)
                array[i] = 1; // every 7th carrier pilot
            else
                array[i] = 2; // rest data

        if (i > 791)
            array[i] = 0; // guard band
    }
}

int frameSymbols(int cyclic_prefix)
{
    if (PRINT)
        cout << "frameSymbols - frameSymbols started" << endl;
    int symbolCnt;
    switch (cyclic_prefix)
    {
    case 4:
        symbolCnt = 22+4;
        break;
    case 8:
        symbolCnt = 24+4;
        break;
    case 16:
        symbolCnt = 26+4;
        break;
    case 32:
        symbolCnt = 27+4;
        break;
    default:
        symbolCnt = 0;
    }
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    if (PRINT)
        cout << "frameSymbols - symbolCnt: " << symbolCnt << endl; 
    return symbolCnt;
}

uint complexFrameBufferLength(int cyclic_prefix)
{
    if (PRINT)
        cout << "complexFrameBufferLength - complexFrameBufferLength started" << 
endl;
    return complexSymbolBufferLength(cyclic_prefix)*frameSymbols(cyclic_prefix);
}

uint complexSymbolBufferLength(int cyclic_prefix)
{
    if (PRINT)
        cout << "complexSymbolBufferLength - complexSymbolBufferLength started" << 
endl;
    return (SUBCARRIERS + ((int)SUBCARRIERS / cyclic_prefix));
}

uint payloadLength(int cyclic_prefix, int phy_mode)
{
    if (PRINT)
        cout << "payloadLength - payloadLength started" << endl;
    uint8_t useful_symbols;
    float coding_rate;

    switch (cyclic_prefix)
    {
        case 4:
            useful_symbols = 22;
            break;
        case 8:
            useful_symbols = 24;
            break;
        case 16:
            useful_symbols = 26;
            break;
        case 32:
            useful_symbols = 27;
            break;
        default:
            return 0;
    }
    

    switch (phy_mode)
    {        
        case 1: 
            coding_rate = 1;
            break;
        case 2:
            coding_rate = 2.0 / (2.0 * 3.0f);
            break;
        case 3:
            coding_rate = 2.0f / 2.0f;
            break;
        case 4:
            coding_rate = 2.0f * 2.0f / 3.0f;
            break;
        case 5:
            coding_rate = 2.0f * 3.0f / 4.0f;
            break;
        case 6:
            coding_rate = 2.0f * 5.0f / 6.0f;
            break;
        case 7:
            coding_rate = 4.0f / 2.0f;
            break;
        case 8:
            coding_rate = 4.0f * 2.0f / 3.0f;
            break;
        case 9:
            coding_rate = 4.0f * 3.0f / 4.0f;
            break;
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        case 10:
            coding_rate = 4.0f * 5.0f / 6.0f;
            break;
        case 11:
            coding_rate = 6.0f / 2.0f;
            break;
        case 12:
            coding_rate = 6.0f * 2.0f / 3.0f;
            break;
        case 13:
            coding_rate = 6.0f * 3.0f / 4.0f;
            break;
        case 14:
            coding_rate = 6.0f * 5.0f / 6.0f;
            break;
        default:
            return 0;
    }

    return (uint)floor(DATACARRIERS * useful_symbols * coding_rate / 8)-1;
}

// callback function
int callbackWhatsReceived(unsigned char *_header,
               int _header_valid,
               unsigned char *_payload,
               unsigned int _payload_len,
               int _payload_valid,
               framesyncstats_s _stats,
               void *_userdata)
{
    cout << endl;
    cout << "***** callback invoked!" << endl << endl;
    if (_header_valid)
    {
        cout << "  header valid" << endl;
    }
    else
    {
        cout << "  header invalid" << endl;
    }

    if (_payload_valid)
    {
        cout << "  payload valid" << endl; 
    }
    else
    {
        cout << "  payload invalid" << endl;
    }
    cout << endl;

    unsigned int i;
    if (_header_valid)
    {
        cout << "Received header: "<< endl;
        for (i = 0; i < 8; i++)
        {
            cout << _header[i];
        }
        cout << endl << endl;
    }

    if (_payload_valid)
    {
        cout << "Received payload: " << endl;
        for (i = 0; i < _payload_len; i++)
        {
            if (_payload[i] == 0)
                break;
            cout << _payload[i];
        }
        cout << endl << endl;
    }

    cout << "payload len: " << _payload_len << endl;
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    cout << endl;

    return 0;
}

int callbackBERCalculation(unsigned char *_header,
               int _header_valid,
               unsigned char *_payload,
               unsigned int _payload_len,
               int _payload_valid,
               framesyncstats_s _stats,
               void *_userdata)
{
    if (PRINT)
        cout << "callbackBERCalculation invoked - _payload_len: "<< _payload_len << 
endl;

    callback_invoked = true;

    if (_payload_len != 0)
    {
        float BER = calculateBER(_payload_len, message, _payload);
        if (PRINT)
            cout << "callbackBERCalculation - calculateBER exitted; BER: "<< BER << 
endl;
        if (PRINT)
        {
            cout << "calculateBER exitted" << endl;
            cout << "BER: " << BER << endl;
        }
        BER_log[global_cycl_pref_index][global_phy_mode][artificial_SNR] += BER;
    }
    else
        BER_log[global_cycl_pref_index][global_phy_mode][artificial_SNR] += 1;

    return 0;
}

void artificialChannel(int cyclic_prefix)
{
    if (PRINT)
        cout << "artificialChannel - artificialChannel started" << endl;

    int channel_buffer_len = complexFrameBufferLength(cyclic_prefix); //synchronizer 
buffer can be  of arbitrary length 
    if (PRINT)
        cout << "artificialChannel - complexFrameBufferLength exitted" << endl;
    
    // create channel object
    channel_cccf channel = channel_cccf_create();

    // additive white Gauss noise impairment
    float noise_floor   = -60.0f;   // noise floor [dB]
    float SNRdB         =  (float)artificial_SNR;   // signal-to-noise ratio [dB]
    channel_cccf_add_awgn(channel, noise_floor, SNRdB);

    // carrier offset impairments
    float dphi          =   0.00f;  // carrier freq offset [radians/sample]
    float phi           =   0.0f;   // carrier phase offset [radians]
    //channel_cccf_add_carrier_offset(channel, dphi, phi);

    // multipath channel impairments
    liquid_float_complex* hc   = NULL;     // defaults to random coefficients
    unsigned int hc_len = 4;        // number of channel coefficients
    //channel_cccf_add_multipath(channel, hc, hc_len);

    // time-varying shadowing impairments (slow flat fading)
    float sigma         = 1.0f;     // standard deviation for log-normal shadowing
    float fd            = 0.1f;     // relative Doppler frequency
    //channel_cccf_add_shadowing(channel, sigma, fd);

    // print channel internals
    if (PRINT)
        channel_cccf_print(channel);

    // fill buffer and repeat as necessary

500
501
502
503
504
505
506
507
508
509
510
511
512
513
514

515
516
517
518
519
520
521
522

523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541

542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572



11.08.22 5:07 RPX-100-BER_simulator.cpp

localhost:4649/?mode=clike 9/10

    // apply channel to input signal
    channel_cccf_execute_block(channel, before_channel_buffer, channel_buffer_len, 
after_channel_buffer);
    
    if (PRINT)
        cout << "artificialChannel - channel executed" << endl;
    
    // destroy channel
    channel_cccf_destroy(channel);
    if (PRINT)
        cout << "artificialChannel - channel destroyed";
}

float calculateBER(unsigned int payload_len, string transmitted, unsigned char 
*received)
{
    unsigned int temp_payload_len = payload_len; //    strcpy((char 
*)u_ch_transmitted, transmitted.c_str()); makes diffilulties
    if (PRINT)
        cout << "calculateBER - calculateBER started; payload_len: "<< payload_len << 
endl; 
    
    float BER = 0;
    
    if (PRINT)
        cout << "calculateBER - 1st - payload_len: "<< payload_len<<"; 
temp_payload_len: "<< temp_payload_len << endl;

    unsigned char u_ch_transmitted[8100] = {};
    if (PRINT)
    {
        cout << "calculateBER - u_ch_transmitted initialized" << endl;
        cout << "calculateBER - 2nd - payload_len: "<< payload_len <<"; 
temp_payload_len: "<< temp_payload_len << endl;
    }

    strcpy((char *)u_ch_transmitted, transmitted.c_str());

    if (PRINT)
    {
        cout << "calculateBER - message copied" << endl;
        cout << "calculateBER - 3rd - payload_len: "<< payload_len<<"; 
temp_payload_len: "<< temp_payload_len << endl;
    }

    payload_len = temp_payload_len;
    
    if (PRINT)
    {
        cout << "calculateBER - 4th - payload_len: "<< payload_len <<"; 
temp_payload_len: "<< temp_payload_len<< endl;
        printByteByByte(payload_len, u_ch_transmitted, received);
        cout << "calculateBER - printByteByByte exitted" << endl;
    }

    for (int i=0; i<payload_len; i++)
    {
        for (int l=0; l<8; l++)
        {
            BER += ((u_ch_transmitted[i]^received[i])>>l)&1;
        }
    }    
    BER /= payload_len*8;

    return BER;
}

void printByteByByte(unsigned int payload_len, unsigned char *transmitted, unsigned 
char *received)
{
    if (PRINT)
        cout << "printByteByByte - printByteByByte(payload_len = "<<payload_len<<") 
started" << endl;
        
    cout << "printByteByByte - transmitted: ";
    for (int i=0; i<payload_len; i++)
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    {
        cout << unsigned(transmitted[i]) << " ";
    } 
    cout << endl << endl;

    cout << "printByteByByte - received: ";
    for (int i=0; i<payload_len; i++)
    {
        cout << unsigned(received[i]) << " ";
    }
    cout << endl << endl;
}

string alterMessage(int payload_len)
{
    string s = "";
    char random;
    for (int i = 0; i < payload_len; i++)
    {
        random = rand()%255+1;
        s = s + random;
    }
    return s;   
}

int exportBER()
{
    cout << "exportBER - export started" << endl;
    std::ofstream myfile;
    myfile.open ("./BER_simulation_outcome/BER_simulation_" + 
getCurrentDateTime("now") + ".csv");
    myfile << "Number of simulations: " << SIMULATION_REPETITIONS << endl;
    for (artificial_SNR = MIN_SNR-1; artificial_SNR<=MAX_SNR; artificial_SNR++) // 
SNR sweep
    {
        if (artificial_SNR == MIN_SNR-1)
            myfile << "SNR";
        else
            myfile << artificial_SNR;
        for (global_phy_mode = 1; global_phy_mode <=14; global_phy_mode++) // PHY 
mode
        {
            for (global_cycl_pref_index = 0; global_cycl_pref_index<4; 
global_cycl_pref_index++) // cyclic prefix
            {
                if (artificial_SNR == MIN_SNR-1)
                    myfile << ", PHY mode " << global_phy_mode << "; CP " << (4 << 
global_cycl_pref_index);
                else
                    myfile << "," << BER_log[global_cycl_pref_index][global_phy_mode]
[artificial_SNR];
            }
        }
        myfile << endl;
    }
    myfile.close();
    return 0;
}
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