TECHNISCHE BRNO | mm
UNIVERSITAT UNIVERSITY r
WIEN OF TECHNOLOGY

SDR OFDM Frame Generation
according to IEEE 802.22

OFDMA modulation scheme for sub-GHz band

DIPLOMA THESIS

submitted in partial fulfilment of the requirements for the degree of
Diplom-Ingenieur
in
Telecommunications
by

Bc. Marek Honek
Registration Number 12024729

to the Faculty of Electrical Engineering and Information Technology

at the TU Wien
Advisor: Univ.Prof. Dr.-Ing. Christoph Mecklenbrauker

Assistance: Dipl.-Ing. Bernhard Isemann

Vienna, 11" August, 2022

Marek Honek Christoph Mecklenbrauker

Technische Universitat Wien
A-1040 Wien = Karlsplatz 13 = Tel. +43-1-58801-0 = www.tuwien.at

http://www.tuwien.at

TECHNISCHE

UNIVERSITAT
WIEN N
Yiien
1eiisst “, 12 /,) = \389
» . s‘-_f' waikStly = ustrla
Meldung einer Masterarbeit '° b
Studierender
Matrikelnummer: 12024729
Familienname: Honek
Vorname: Marek
Studium
Typ: Master
Studium: 066507 Telecommunications
Arbeit
Titel DE: Software-defined Radio OFDM Frame Generation according to IEEE 802.22
Titel EN: Software-defined Radio OFDM Frame Generation according to IEEE 802.22
Institut: E389 - Institute of Telecommunications
Betreuung
Hauptbetreuung: Univ.Prof. Ing. Dipl.-Ing. Dr.-Ing. Christoph Mecklenbrauker

230004 hauk do o 140U @?/&ML .

Datum, Unterschrift Studierender Datum, Unterschrift Betreuer

;30?/4/@/@//% ________________

Datum, Unterschyifi-Studiendekan_in

BRNO FACULTY OF ELECTRICAL
I UNIVERSITY ENGINEERING

OF TECHNOLOGY AND COMMUNICATION

Master's Thesis

Master's study program Telecommunications

Department of Radio Electronics
Student: Bc. Marek Honek ID: 191847
Year of

Academic year: 2021/22
study:

TITLE OF THESIS:

Software-defined radio OFDM frame generation according to IEEE 802.22

INSTRUCTION:

The work shall contribute to the setup of a new digital transmission procedure in the frequency band 50-54 MHz
(6m wavelength) by implementing an OFDM frame in software defined radio in C++ and the Liquid-Library. The
radio frontend is LimeSDR with a low-power power amplifier. OFDM frame parameters are configurable in
software and follow the IEEE 802.22 ("Wireless Regional Area Networks") specifications very closely with small
required changes.

There are 14 different PHY modes in IEEE 802.22 and four different lengths of cyclic prefix. The thesis
investigates bit error ratio performance of coded OFDM frames over AWGN channels and compares selected
simulation results with experimental measurements.

RECOMMENDED LITERATURE:

[1] BANACIA, A. S., GELU, Q. P. , A simplified IEEE 802.22 PHY layer in Matlab-Simulink and SDR platform,
International Conference on Electronics, Information, and Communications (ICEIC), 2016, pp. 1-4, doi:
10.1109/ELINFOCOM.2016.7562988.

[2] TOH, K. et al, A physical layer implementation of IEEE 802.22 prototype, 18th IEEE International Conference
on Networks (ICON), 2012, pp. 304-308, doi: 10.1109/ICON.2012.6506574.

Date of project Deadline for
. 11.2.2022 .. 11.8.2022
specification: submission:

Supervisor: prof. Ing. Roman Marsalek, Ph.D.
Consultant: Dr. Ing. Christoph Mecklenbrduker

prof. Dr. Ing. Zbynék Raida
Chair of study program board

WARNING:

The author of the Master's Thesis claims that by creating this thesis he/she did not infringe the rights of third persons and the personal and/or
property rights of third persons were not subjected to derogatory treatment. The author is fully aware of the legal consequences of an
infringement of provisions as per Section 11 and following of Act No 121/2000 Coll. on copyright and rights related to copyright and on
amendments to some other laws (the Copyright Act) in the wording of subsequent directives including the possible criminal consequences as
resulting from provisions of Part 2, Chapter VI, Article 4 of Criminal Code 40/2009 Coll.

Faculty of Electrical Engineering and Communication, Brno University of Technology / Technicka 3058/10 /616 00 / Brno

HONEK, Marek. Software-defined radio OFDM frame generation according to
[EEE 802.22. Brno, 2022. Dostupné také z: https://www.vutbr.cz/studenti/zav-
prace/detail /142583. Diplomova prace. Vysoké uceni technické v Brné, Fakulta
elektrotechniky a komunika¢nich technologif, Ustav radioelektroniky. Vedouci préace

Roman Marsalek.

https://www.vutbr.cz/studenti/zav-

Declaration of Authorship

Bc. Marek Honek

I hereby declare that I have written this Diploma Thesis independently, that I have
completely specified the utilized sources and resources and that I have definitely
marked all parts of the work - including tables, maps and figures - which belong to
other works or to the internet, literally or extracted, by referencing the source as
borrowed.

Vienna, 11" August, 2022

Marek Honek

X

Acknowledgements

[am very grateful to Christoph Mecklenbrauker for his willingness to help in writing
this thesis and also to Bernhard Isemann for his persistent and intensive technical

support.

I also thank Roman Marsalek a Michal Kubicek for help with administration and

proofreading.

This work was supported by the Internal Grant Agency of Brno University of
Technology, project no. FEKT-S-20-6325.

el

Abstrakt

Tato prace navrhuje novy radio komunika¢ni standard Amateurradio Wireless Re-
gional Area Network (AWRAN) urceny pro pristup k radioamatérké siti Highspeed
Amateurradio Multimedia NETwork (HAMNET) ktera nevyzaduje volny line-of-
sight (LOS) k pristupovému bodu. Déle se prace popisuje prototypovou imple-
mentaci zjednodusenych ramcu tohoto standardu na software-defined radio (SDR)

a testovaci aparaturou, ktera je pouzivana pro tyto ucely.

V prvni kapitole je predstaven standard IEEE 802.22 Wireless Regional Area Net-
work (WRAN), ze kterého AWRAN vychézi. Jsou popsany pojmy jako Orthogonal
Frequency Division Multiplex (OFDM) a Orthogonal Frequency Division Multi-
ple Access (OFDMA), vyhody a zpusoby jejich pouziti. Dale jsou zde popsany
také modulac¢ni techniky phase-shift keyinq (PSK) a quadrature amplitude-shift
keying (QAM), kédovéani pro detekei a opravu chyb prenosu a zdroje téchto chyb.

V druhé kapitole je zevrubny popis parametru navrhovaného standardu AWRAN.
Jsou popsany OFDM parametry, struktura ramcu a superramci. Je popsan zpusob
co-existence vice bunék AWRAN a presna podoba ¢trnacti ridicich zprav, které
umoznuji efektivni rozdéleni zdrojti prenosového pasma mezi az ¢tyti zakladnové

stanice a az 63 uzivatelt pripojenych ke kazdé z téchto stanic.

Treti kapitola popisuje strukturu zjednoduseniho ramce, ktery byl implementovan

na testovaci aparature RPX-100. Popisuje i aparaturu samotnou a jeji zakladni

xiii

stavebni hardwarové prvky i softwarovou knihovnu, ktera byla pro implementaci
zjednoduseného ramce pouzita. V této kapitole je popsan i pripraveny testovaci

spoj a teoreticky vypocet utlumu tohoto spoje.

Ctvrta kapitola se zabyva programy, které byly v ramci této prace vytvoreny.
Dva z nich slouzily pro prvni seznameni s hardwarem a softvarovymi knihovnami.
Dalsi program slouzi jako generator diive popsanych zjednodusenych ramci, které
nasledne odesila za pouziti SDR. Ten stejny program slouzi i jako prijmac téchto
ramct. Posledni pripraveny program provadi simulaci bezdratového prenosu pomoci
matematického modelu kanalu. Déle pocité zavislost bit error rate (BER) na signal-

to-noise ratio (SNR) u takto simulovaného prenosu.

V posledni kapitole jsou vypsany funkce, které byly nadefinovany a pouzity v

programech popsanych v predchozi kapitole.

Klicova slova

WRAN; AWRAN; HAMNET; SDR; OFDM; komunika¢ni schéma; vysila¢

Kurzfassung

In dieser Arbeit wird ein neues Funkiibertragungsverfahren Amateurradio Wireless
Regional Area Network (AWRAN) fiir den Zugang zum Amateurfunknetz Highs-
peed Amateurradio Multimedia NETwork (HAMNET) vorgeschlagen, das keine
direkte Sichtverbindung zum Zugangsknoten erfordert. Des Weiteren dokumentiert
und diskutiert diese Arbeit eine prototypische Implementierung von vereinfachten
Datenrahmen (engl: frames) dieses Ubertragungsprotokolls mittels software-defined

radio (SDR) auf den dafiir verwendeten Testgeréten.

Im ersten Kapitel wird der Standard IEEE 802.22 Wireless Regional Area Network
(WRAN) vorgestellt, auf dem AWRAN basiert. Begriffe wie OFDM und OFDMA
werden beschrieben, ebenso wie ihre Vorteile und Anwendungen. Beschrieben
werden auch die Modulationsverfahren phase-shift keyinq (PSK) und quadrature
amplitude-shift keying (QAM), die Kodierung zur Erkennung und Korrektur von

Ubertragungsfehlern sowie die Fehlerquellen.

Das zweite Kapitel enthélt eine detaillierte Beschreibung der Parameter des vorge-
schlagenen AWRAN-Protokolls. OFDM-Parameter, Rahmenstruktur und Superf-
rames werden beschrieben. Die Methode der Koexistenz mehrerer AWRAN-Zellen
und die genaue Form der vierzehn Kontrollnachrichten, die eine effiziente Zuweisung
von Bandbreitenressourcen zwischen bis zu vier Basisstationen und bis zu 63 mit

jeder dieser Stationen verbundenen Benutzern ermdglichen, werden beschrieben.

XV

Der dritte Abschnitt beschreibt die Struktur des Vereinfachungsrahmens, der auf
dem RPX-100 Testbed implementiert wurde. Er beschreibt auch das Gerét selbst
und seine grundlegenden Hardware-Bausteine sowie die Software-Bibliothek, die
zur Implementierung des vereinfachten Rahmens verwendet wurde. Dieses Kapitel
beschreibt auch die vorbereitete Teststrecke und die theoretische Berechnung der

Déampfung dieser Strecke.

Das vierte Kapitel befasst sich mit den Programmen, die im Rahmen dieser Arbeit
entwickelt wurden. Zwei von ihnen wurden fiir eine erste Einfithrung in die Hardware-
und Softwarebibliotheken verwendet. Ein weiteres Programm dient als Generator
der zuvor beschriebenen vereinfachten Rahmen, die es dann unter Verwendung von
SDR sendet. Das letzte vorbereitete Programm fiihrt eine Simulation der drahtlosen
Ubertragung unter Verwendung eines mathematischen Modells des Kanals durch
und berechnet dariiber hinaus die Abhéangigkeit von bit error rate (BER) von

signal-to-noise ratio (SNR) fiir die so simulierte Ubertragung.

Im letzten Abschnitt werden die Funktionen aufgefiihrt, die im vorherigen Abschnitt

definiert und verwendet wurden.

Schliusselworter

WRAN; AWRAN; HAMNET; SDR; OFDM; Kommunikationsschema; Transceiver

Abstract

This thesis proposes a new radio transmission protocol Amateurradio Wireless Re-
gional Area Network (AWRAN) for access to the amateur radio network Highspeed
Amateurradio Multimedia NETwork (HAMNET) that does not require LOS to the
access point. Furthermore, the thesis documents and discusses the prototypical
implementation of simplified frames of this protocol on software-defined radio (SDR)

and the test apparatus used for this purpose.

The first chapter introduces the IEEE 802.22 Wireless Regional Area Network
(WRAN) standard on which AWRAN is based. Terms such as Orthogonal Fre-
quency Division Multiplex (OFDM) and Orthogonal Frequency Division Multiple
Access (OFDMA) are described, as well as their advantages and applications. There
are described the modulation techniques phase-shift keyinq (PSK) and quadrature
amplitude-shift keying (QAM), channel coding for error detection and correction,

and the sources of these errors.

The second chapter gives a detailed description of the parameters of the proposed
AWRAN protocol. OFDM parameters, frame and superframe structures are de-
scribed. The method of co-existence of multiple AWRAN cells and the exact
form of the fourteen control messages that allow efficient allocation of bandwidth
resources among up to four base stations and up to 63 users connected to each of

these stations are described.

Xvii

The third section describes the structure of the simplified frame that was imple-
mented on the RPX-100 testbed. It also describes the apparatus itself and its basic
hardware building blocks as well as the software library that was used to implement
the simplified frame. This chapter also describes the prepared test link and the

theoretical calculation of the attenuation of this link.

The fourth chapter deals with the programs that were developed as part of this
work. Two of them were done for a first introduction to the hardware and software
libraries. Another program serves as a generator of the previously described
simplified frames, which are sent using SDR. The same program could be used
as well as the receiver of these frames. The last program prepared performs a
simulation of the wireless transmission using a mathematical model of the channel.
It calculates the dependence of bit error rate (BER) on signal-to-noise ratio (SNR)

for the simulated transmission.

The last section lists the functions that were defined and used in programs from

the previous section.

Keywords

WRAN; AWRAN; HAMNET; SDR; OFDM; communication scheme; transceiver

Contents

Abstrakt xiii
Klicova slova xiv
Kurzfassung XV
Schlusselworter xvi
Abstract xvii
Keywords xviii
Contents xix

1 Introduction
1.1 Wireless Regional Area Network (WRAN)
1.2 Other sub GHz standards, ...
1.3 Orthogonal Frequency Division Multiplex (OFDM)
1.3.1 Fourier transform (FT)
1.3.2 Cyclicprefix (CP)
1.3.3 Pilotsignals
1.3.4 Peak to Average Power Ratio
1.4 Orthogonal Frequency Division Multiple Access
1.5 Code division multiple access (CDMA)

© © J O O Ot k= W N -

XixX

1.6

1.7

1.8

1.9

1.5.1 Hadamard matrix
1.5.2 Multi Carrier (MC)-CDMA
Modulations
1.6.1 Phase-shift keyinqg (PSK)
1.6.2 Quadrature amplitude-shift keying (QAM)
Signal quality measures
1.7.1 Biterrorrate (BER)
Forward error correction (FEC)
1.8.1 Blockcodeso
1.8.2 Convolutional codes
1.8.3 Code puncturingo
Wireless Channel o o
1.9.1 Attenuation
192 Fading
1.9.3 Inter symbol interference (ISI)
1.9.4 Doppler shifto
1.9.5 NoOISe o e

System model

2.1

2.2
2.3

24

OFDM parameters

2.1.1 Bandwidth.o
2.1.2 Pilotsignals oo oo
Adaptive modulation and coding
Superframe (SF) structure
23.1 SFpreamble
2.3.2 SF control header
Frame structureo
2.4.1 Subchannels oo

10
10
11
12
13
13
14
15
16
17
17
17
18
20
21
21
21

23
24
24
25
26
27
27
29
29
30

2.4.2 Frame preamble
2.4.3 DSsubframeo
Frame control header (FCH)

Frame management window (FMW)

DS databurstso

2.4.4 USsubframe

US data bursts oo
Opportunistic window (OW)
Self-coexistence window (SCW)

2.5 Self-coexistence o
2.6 Management MeSSageS e e e e e
2.6.1 Downstream map
2.6.2 Upstream map
2.6.3 Channel descriptorso
2.6.4 Ranging messages
2.6.5 Registration messages
2.6.6 Bandwidth Request
2.6.7 Retransmission request
2.6.8 SCW frame bitmap
269 CPlength
2.6.10 Frame allocation (FA) map
2.6.11 Coexistence messages « o« o v oo

3 Prototype

3.1 Liquid DSP library
3.1.1 Flexible framing structure for OFDM
Frame generator

Frame synchronizer

30
31
32
32
33
33
33
34
34
35
35
36
37
37
39
40
41
41
41
42
42
43

45
45
47
48
48

3.1.2 Linear Digital Modulator/Demodulator

3.1.3 Forward Error-Correction

3.2 Implemented frame

3.3 LimeSDR

34 Raspberry Pio

3.5 Radio frequency (RF) front-end

3.6 Antenna

3.7 Experimental radio linko

3.7.1 Free space propagation attenuation

3.7.2 NLOS propagation attenuation

Influenceof hill B oo

Influence of hill A oo

Influence of hil C oo

Influenceof hill D 0oL

3.7.3 Total propagation attenuation
Programs

4.1 FMreceiver

4.2 FSK prototype

421 LimeSDRusage

4.2.2 liquid-dsp and LimeSuite data handover

4.3 Transceiver e

4.3.1 TX6mPTT mode

432 RXmode

4.3.3 Transmission over test link

4.3.4 Program structure

44 BER simulator

49
49
50
o1
53
%)
56
57
o8
58
29
60
61
62
63

65
65
67
67
69
70
70
71
72
72
74

5 Function set

5.1 Debug messages

5.2 setSampleRat
5.3 SDRinit . .

<

5.4 defineFrameGenerator

5.5 subcarrierAllocation e

5.6 frameAssemble

5.7 frameReception

5.8 frameSymbolso

5.9 payloadLength o

5.10 complexSymbolBufferLength

5.11 complexFrameBufferLength

5.12 printByteByByteo

5.13 sendFrame .
5.14 artificialChan
5.15 calculateBER
5.16 exportBER
5.17 alterMessage

6 Conclusion

List of Figures

List of Tables

Bibliography

Attachments

nel . .. e

81
81
82
82
82
83
83
83
84
84
84
84
85
85
85
86
86
86

89

91

93

101

107

CHAPTER

Introduction

HAMNET is an intranet exclusively operated by and for radio amateurs [31]
based on directive radio links via LOS propagation. It was initiated in Germany
in 2009 and nowadays covers significant parts of Europe. Unfortunately, many
radio amateurs are lacking a LOS connection to HAMNET and cannot currently
connect. The ultimate goal of the work in this thesis is to design and prototypically
implement a modulation and coding scheme that enables access to HAMNET in
non line-of-sight (NLOS) conditions for up to fifty users simultaneously which are
located at distances up to fifty kilometers from their access point. We have selected
three amateur radio frequency bands (50-54 MHz, 144-146 MHz, and 430-440 MHz)
for this purpose. The scope of this thesis covers the specification of the modulation
and coding scheme for a novel AWRAN; its prototypical implementation for frame
generation in the form of a C++ source code and compiled for the single board
computer Raspberry Pi [19]. The modulation and demodulation are implemented
in SDR developed by Lime Microsystems known as LimeSDR [15] for performance

measurement, of the frame transmission and reception.

1.

INTRODUCTION

Figure 1.1: Types of networks [27]

1.1 Wireless Regional Area Network (WRAN)

Regional Area Network (RAN) is a communication network that covers an area
larger than Metropolitan Area Network (MAN) and smaller than Wide Area
Network (WAN), see Figure 1.1.

The standard defining WRAN, IEEE 802.22 [26], was first developed in 2004 to
fulfill the requirements of internet access in rural areas with low population density,
where it would not be economically feasible to roll out a cable network. The current

version is IEEE 802.22-2019 [10].

The WRAN is designed to operate in unused television (TV) channels, so-called
white spaces. Although spectrum usage by commercial TV broadcast stations is
fairly static in the time domain, some changes do occur from time to time. It is not
allowed for the WRAN to interfere with TV broadcasting, thus several techniques

are specified to prevent this.

On one hand, all devices of the networks have to operate on a fixed geological

http://p02.11

1.2. Other sub GHz standards

location and the location must be known by the base station (BS). Each BS has
access to a database of information describing the protected broadcast operation

in the area.

On the other hand, all wireless devices have to observe the spectrum. If there
is observed a presence of analog or digital TV broadcasting or licensed auxiliary
device by a customer premises equipment (CPE), the fact is reported to the BS and
CPE reduces its own equivalent isotropic radiated power (EIRP) by placing a limit
on transmit power control (TPC). BS limits their EIRP also to reduce potential
interference. If the reduced power does not allow the proper function of links with

distant CPEs, the spectrum manager (SM) initiates a channel move procedure.

1.2 Other sub GHz standards

There are two other standards, namely IEEE 802.11af [4] and IEEE 802.11ah
[1], that deal with wireless networks operating under 1 GHz. They enhance the
coverage area of Wi-Fi taking advantage of less attenuation and better propagation

characteristics of longer wavelengths in comparison to 2.4 and 5 GHz.

The IEEE 802.11af focuses on spectrum sharing of unused TV channels. It has
complex architecture consisting of a Geolocation Database, Registered Location
Secure Server, Geolocation-Database-Dependent enabling stations and dependent

stations as well as complex communication control.

The other one, IEEE 80.11ah is designed to fulfill requirements that came up with
Internet of Things (IoT). The operating frequency is considered to be 900 MHz,

but re-use of TV white space is possible also.

1. INTRODUCTION

Channel .
bandwidth Guard band Individual channels
— /LN

ho ok Frequency
Channel o
bandwidth Individual sub-channels
—
/N

Bandwidth

|
|
|
1
|
|
|
|
|
: Bandwidth
: saving

|

|

|

|

|

|

|

|

|

saving

OFDM

A Frequency

Figure 1.2: FDM vs OFDM |[21]

1.3 Orthogonal Frequency Division
Multiplex (OFDM)

OFDM is a multicarrier modulation technique that transmits data over several
orthogonal carriers simultaneously. Conventional techniques, on the other hand,
transmits data using only a single carrier. OFDM is a special case of classical
frequency division multiplexing (FDM). The difference is, that OFDM takes

advantage of the orthogonality of precisely placed subcarriers. If the difference

between each neighboring subcarriers is , the subcarriers do not interfere

Tsymbol

with each other, thus do not require a guard band between them, and the spacing

is much lower than in FDM case as you can see on figure 1.2.

1.3. Orthogonal Frequency Division Multiplex (OFDM)

0 ——vEE—

Figure 1.3: OFDM modulation/demodulation using IDET/DFT [21]

1.3.1 Fourier transform (FT)

Although it may seem that the high number of subcarriers requires the same number
of modulators and mixers, there is a simpler and more convenient solution in the
usage of inverse fast Fourier transform (IFFT) in the modulator and fast Fourier

transform (FFT) in the demodulator as shown on figure 1.3.

A FT is a mathematical function (see eq. 1.1) that transforms other function from
it’s time domain into a frequency domain, often written as F(f(t)) = F(w) where

F'is a FT operator.

Flw) = / T F(t)etdr (1.1)

—00

Because the digital systems deal with a discrete values rather than continuous
functions, a special cases of F'T called discrete Fourier transform (DFT) (see eq.

1.2) is used.

Ap= > e 'vhg, (1.2)

Computing N-point sequence using a DFT algorithm takes N? complex multipli-
cations and additions, however if the number N is power of 2, faster algorithm
for calculating DFT could be used. Such algorithm is called FFT and reduces the
number of calculations to N*log(N), thus drastically reducing the computational

time, especially for large N.

1.

INTRODUCTION

An inverse Fourier transform, as the name suggests, does the inverse operation and
OFDM modulator takes advantage of that. For each subcarrier of the currently
assembles symbol is defined its amplitude and phase (according to the used modu-
lation) and then the whole symbol is transformed into a time domain then usually

mixed with a local oscillator frequency and transmitted. [7]

1.3.2 Cyclic prefix (CP)

OFDM is very useful for reducing trouble with ISI caused by multi-path propagation.
If n is the number of subcarriers, each OFDM symbol is n times longer in the
time domain than it would be in the single carrier technique. This longer time
duration of each symbol allows signals propagating by different paths to arrive
at the receiver with a relatively smaller time difference compared to the symbol

duration, but ISI is still present as you can see in figure 1.4.

For complete avoidance of ISI, a prefix is added before each symbol. If the prefix is
longer than the impulse response of the channel, it acts as a guard interval during
which all delayed signals of the previous symbol reach the receiver. There is a need
to transmit the symbol even during the prefix to maintain the orthogonality of
subcarriers. As shown in figure 1.4, it is done such, that corresponding last part of

the symbol is copied before the symbol itself.

1.3.3 Pilot signals

Time and frequency properties need to be recovered in the receiver, for this purpose
reference symbols - pilot signals are introduced. Pilots are subcarriers that contain
known information and are spread over the OFDM symbol. Pilots often change
their location after each OFDM symbol to be present on every subcarrier during

several symbols.

1.3. Orthogonal Frequency Division Multiplex (OFDM)

a) Multipath introduces inter-symbol-interference (ISI)

S~ - \/'—‘“\,
PP I Pl “N N
-~ - 2 ~
l ""..,‘-‘ = < P ’/I
-~ -
b) Prefix is added to avoid ISI
Tc T
| - -
| - =, -~
- -~ - —
‘@K\ — — A s

| ~ AR A S

c) The prefix is made cyclic to avoid inter-carrier-interference (ICI)
(maintain orthogonality)

Figure 1.4: Multi-path propagation, guard interval and cyclic prefix [21]

1.3.4 Peak to Average Power Ratio

High peak to average power ratio (PAPR) (see fig.1.3) is the major drawback of
OFDM signals. Due to the finite output power of amplifiers, the average power
(without cutting off the peaks due to hard non-linearity) is always reduced at least

by the highest (expected) PAPR of the signal.

Because OFDM systems are sensitive to linearity, class A amplifiers are often
used. The output power is reduced even more to not distort the signal by soft
non-linearity by operating the amplifiers close to their limits. This results in poor
efficiency which is another related problem besides the lowered output power. That

affects especially power amplifiers at the transmitter side.

The high PAPR also makes a demand on a resolution of digital to analog converters

1.

INTRODUCTION

18 T T T T T T

16F \e_ -
14+ Peak Power
12+ e
10 .

HH il | J‘ 0| .‘.| ‘ I ‘

LLELR
| | I I O O
N Dt NH\ H”l\ |“ N [h—
Power
2 i
DIII 1DIEI 260 E[l[l AEIID EEIIEI El;[l

Figure 1.5: peak to average power ratio [24]

(DACs) in the transmitter and analog to digital converters (ADCs) in the receiver.
If the resolution were not sufficient, the quantization noise would cause losing

information on the non-peak parts of the waveform.

The high peak on the OFDM symbol occurs while suddenly a high number of
individual subcarriers constructively interfere. The maximum achievable PAPR is

given by formula 1.3.

PAPR;p = 10l0910(n) + PAPRQdB (13)

where n is the number of subcarriers and PAPR, 5 is a the PAPR of each

subcarrier, which is 3.01 dB for sine signal.[37]

Several PAPR reducing techniques exist to overcome these problems, eg: clip-
ping ("giving up' the peaks and optimizing for the non-peak parts of the signal),

coding schemes, phase optimization, nonlinear companding transforms, tone reser-

1.4. Orthogonal Frequency Division Multiple Access

vation, tone injection, constellation shaping, partial transmission sequence, selective

mapping. [12] [20]

1.4 Orthogonal Frequency Division Multiple
Access

Multi-user applications require any multiple access technique. OFDM can be
combined with conventional techniques like time division multiple access (TDMA)
or frequency division multiple access (FDMA) but the OFDM properties can also
be used for multiple access. OFDMA allows to transmit information to different
receivers on many orthogonal subcarriers and also receive orthogonal signals from

multiple transmitters simultaneously.

The set of orthogonal frequencies can be divided into several blocks, then we talk
about consecutive channel multiplexing, or can be interleaved (e. g. first user has
assigned odd subcarriers and the second user has assigned even subcarriers), then

we talk about distributed channel multiplexing.

Consecutive channel multiplexing has not had such high demands on frequency
synchronization as distributed channel multiplexing does, but is much more sensitive

to frequency selective fading. [21]

1.5 Code division multiple access (CDMA)

CDMA is a technique that allows the combining of data streams in the same time
and frequency band. The advantage over FDMA and TDMA, which distinguish the
data streams by frequency or time respectively, is significant especially for mobile

applications. The mobile systems introduce variable time delays and Doppler shifts

1.

INTRODUCTION

10

in frequency due to changes in distance between transmitter and receiver.

Standard CDMA works such, that each transmitted symbol is modulated by a
chip sequence of +1 and -1 which effectively increase the data rate and thus

bandwidth (BW) of the transmitted signal.

Whenever there are more data streams, each modulated by known mutually or-
thogonal sequences, the receiver can perform a correlation of the received signal

with each sequence and thus separate these streams.

These mutually orthogonal sequences are taken from a Hadamard matrix.

1.5.1 Hadamard matrix

The Hadamard matrix is a matrix of orthogonal vectors, or in other words, each
line of the matrix has an equal number of matching values and non-matching
values (in corresponding columns) with each other line. The matrix could be easily

constructed and scaled up using Sylvester’s recursive construction algorithm:

When H is a Hadamard matrics of order n, then

H H
H —-H
is a Hadamard matrix of order 2n. [41]
11 1
1 1 1 -1 1
Thus first three orders are following: H; = [1]; Hy, = s Hy =
1 -1 1 1 -1
_1 -1 -1

1.5.2 Multi Carrier (MC)-CDMA

Multi-carrier version of CDMA is a combination of CDMA with OFDM technique.

There is no transmission of the chipped data stream sequentially on a single carrier,

1.6. Modulations

but each subcarrier of the OFDM symbol belongs to one symbol of the chip sequence.
All the chips are transmitted simultaneously on orthogonal subcarriers such, that a

phase shift of 180° is introduced on carriers belonging to -1 of the chip sequence.

All the transmitters then transmit all the data on all the subcarriers using IFFT
modulator. The receiver converts the received signal to the frequency domain
using FFT and performs correlation with individual chip sequences which separates

individual data streams. [42]

1.6 Modulations

Modulation in communication theory is a technique for expressing information by
changes of electromagnetic (EM) field. There are baseband and carrier frequency

modulations.

When the pulse shape or position carries information, we are talking about base-
band modulation. Examples of such modulations could be pulse width modula-
tion (PWM), pulse position modulation (PPM) or pulse code modulation (PCM).
Sometimes baseband codes are referred to as modulation, so return to zero (RZ),
non-return to zero (NRZ), alternate mark inversion (AMI) or Manchester codes

would belong under baseband modulations also.

But we are interested in carrier frequency modulation which is a process of changing
a property or multiple properties of a high-frequency sinusoidal signal. The high-
frequency signal is called a carrier because enables the possibility of wireless
transmission. Its properties are changed by a modulation signal that carries the

information.

Examples could be amplitude modulation (AM), frequency modulation (FM), or

phase modulation (PM) that uses a continuous (analog) modulation signal, typically

11

1.

INTRODUCTION

12

Q
A
01 11
o 1+ L)
| — I
1 1
00 10
® 1—- ®

Figure 1.6: QPSK Gray mapping [10]

an output of some transducer (eg. microphone).

Digital carrier frequency modulations work in a similar manner, but there are
discrete values of the carrier signal properties. That is why these modulations often

(but not always) use "shift-keying" in their name.

1.6.1 Phase-shift keyinq (PSK)

PSK is a modulation technique that represents information in changing phase
of the fixed frequency carrier signal. The simplest form is binary phase-shift
keying (BPSK) which uses only two discrete phases and hence carries a single
bit per symbol. quadrature phase-shift keying (QPSK) (sometimes called 4-PSK)
works with four different phases and hence two bits per symbol. To minimize the
number of erroneous bits in case wrong reading of the phase Gray mapping of the

constellation is used, see fig. 1.6

There are also higher-order PSK modulation like 8-PSK or more complex types
such as 7/4-QPSK or differential phase-shift keying (DPSK). [43]

1.7. Signal quality measures

1.6.2 Quadrature amplitude-shift keying (QAM)

This modulation uses two carriers with a fixed matching frequency that have 90°
phase difference. The two carriers are referred to as in-phase (I) and quadrature (Q).
Each of them is amplitude-shift keying (ASK) modulated and the resultant signal is
their combination. Because the amplitude of each carrier is changing (the amplitude
could be also negative - or the signal has 180° phase shift in other words), the final

signal changes not only its amplitude but also the phase.

This technique allows very high modulation depths. Up to 4096-QAM carrying 12
bits per symbol is currently used. However such high modulation depth requires
excellent SNR. Another disadvantage of this technique is high PAPR (see chapter
1.3.4). [17]

To minimize the number of erroneous bits in case wrong reading of the received
signal Gray mapping of the constellation is used as well as in the PSK case.

Constellation diagram of 64-QAM is on fig. 1.7.

1.7 Signal quality measures

A typical measure of received signal quality is SNR (eq. 1.4), commonly stated in

decibels (eq. 1.5).

Piional
SNR = 2% 1.4
Pnoise ()
SNRdB = Psignal,dB - Pnoise,dB (15)

The SNR was originally used for an evaluation of baseband analog signals after

demodulation and filtering.

Technically the same equations could be used for the received RF signal on its
carrier frequency. Such measure is called the carrier to noise ratio but the term

SNR is often used interchangeably. [33]

13

1.

INTRODUCTION

14

Q
000100 001100 011100 Lgleatee) 110100 111100 101100 100100
e L] e ® L ® L] L]
000101 Go1101 oatiod [l 110101 111104 1011 100101
® L L] ® 5T L] L L [
000111 o111 o111 @il 110111 1111 101111 100111
L L] L] T L] L L L
000110 o110 o111 g0 110110 11 101110 100110
® L [] L] T [] L L L
]] I I]]] I
T T T T T T T T I
-7 -5 -3 -1 1 3 5 7
000010 o110 o10i0 g gi] 110010 111010 101010 100010
L ® L] “H e L L L
000011 o011 011011 010011 110011 111011 101011 100011
L L] [] L T [] L L L
000001 091001 011001 010001 110001 111001 101001 100001
® L L] L] T L] L L L]
Q00000 01000 011000 010000 110000 111000 101000 100000
L] L] [) L] - L] L L [

Figure 1.7: 64-QAM Gray mapping [10]

The most useful measure for a digital system is BER.

1.7.1 Bit error rate (BER)

BER is defined as the ratio of received bits with error to the number of all received
bits. A similar measure is a frame-error ratio where the same applies to frames

with an error and number of all frames.

Theoretical curves for BER are usually plotted on a logarithmic scale versus energy

per bit to noise power spectral density ratio (E, / No) (dB), sometimes referred to

1.8. Forward error correction (FEC)

as normalized SNR or SNR per bit. Because we can only measure SNR directly a

conversion that depends on the transmission format such eq. 1.6 is needed.

Nbits

N TX samples

Ey/Ng=SNR x c=SNR x (1.6)
Where the constant ¢ depends on preambles, number of pilots, constellation size
(modulation depth), code rate, and duration of the cyclic prefix. Basically, it is a

ratio of the useful bit rate to the transmitter’s sample rate.

1.8 Forward error correction (FEC)

For the detection of digital data corruption and its correction (whether it happens
during transmission over a noisy channel or storing on some unreliable medium),
some sort of redundancy - error detection codes (EDC) or error correction codes
(ECC) - needs to be added. While the EDC can only bring the information that
the received data were corrupted, the ECC can even correct a limited amount
of corrupted bits. The use of ECC is mostly referred to as FEC in the data

transmission.

Due to FEC the receiver can easily recover corrupted data without the need to
send a request for retransmission. That is handy, particularly for simplex links
where the request can not be sent at all. Many algorithms exist. They are typically

distinguished as block codes and convolutional codes.

FEC enhances the final BER of the radio link for the price of higher BW due to
the redundancy. How well the protection works and how much the BW is increased
depends on the coding rate. The coding rate is is noted as fraction k/n where k

stands for uncoded message length and n for the coded message length (hence n-k

15

1.

INTRODUCTION

16

BER

—O— rate=4/7
1073 f| —&— rate=1/2

rate=4/9
——rate=2/5

rate=4/11
104 F rate=1/3
—O—rate=1/4
—f— rate=2/11
—h— rate=1/8

l

107
05 1 15 2 25 3

E_/N,(dB)

Figure 1.8: FEC impact on BER [3]

is the redundancy). Plotting BER against E;, / Ny (see fig. 1.8) for different code

rates gives a good comparison of their performance. [38]

1.8.1 Block codes

Block codes break the entire data stream into fixed-size messages and handle them
independently. Based on the message, the block codes generate the parity bits
and create a block with the message and parity combined. For decoding the block

codes a hard decision algorithm is typically used.

Richard W. Hamming comes with the idea of block codes back in 1950 to overcome
an issue of wrong readings of puncture cards. He proposed a general idea but was
specifically focused on Hamming(7,4). This code adds three redundant bits to four
message bits allowing single error correction and double error detection. Such code

can correct all single-bit errors and detect all double-bit errors. [32]

1.9. Wireless Channel

1.8.2 Convolutional codes

Unlike block codes, convolutional codes slide over the full length of the data stream.

The produced parity is also dependent on already encoded data. Convolutional
codes are characterized by the coding rate k/n as well as by a memory depth K of
the encoder. The memory length describes how many bits are taken into account

while the parity is computed.

The best advantage of convolutional codes is maximum-likelihood soft-decision

decoding which increases the performance of the coding for correcting burst errors.

[36]

1.8.3 Code puncturing

Puncturing is an easy method for increasing the code rate by dropping some of the

parity bits. It is convenient to use puncturing while a high code rate is not required

because the same decoder can be used for both - punctured or not punctured code.

This increases the flexibility of the system without increasing its complexity. [44]

1.9 Wireless Channel

A communication channel could refer to a physical or logical medium used for
the transmission of information. The physical case is when the information is
represented by changes in a physical quantity. For radio links that transmit over

the wireless channel, the physical quantity is a EM field.

In fact EM field is used for carrying data also in wires. Even light is an alternating
electromagnetic field so both, fiber and free-space optical links, represent the

information using the same physical property as radio links. It is obvious that

17

1.

INTRODUCTION

18

the basic physical principles must be the same, but each of the named cases faces

different challenges.

Although the physical quantity is always continuous in time and magnitude, the
transmitted information may be continuous (analog, eg. FM radio broadcast) or
discrete (digital). The channel is characterized by its BW in Hertz or by its capacity

in bits per second in the case of a digital channel. [2§]

The relation between channel BW, SNR and its maximum data rate is given by

the Shannon-Hartley theorem, eq. 1.7

C = BWlog, (1 + SNR) (1.7)

where C stands for capacity (data rate) in b/s, BW in Hz, and SNR is in linear
form (not in dB).

1.9.1 Attenuation

Attenuation of the signal power is common for all kinds of physical channels. It is
rate between received and transmitted power (see eq. 1.8), or their difference on

dB scale (see eq. 1.9).

A=-L (1.8)

P
AdB = 1010g (P—T> = PT,dB — PR,dB (19)
R

In radio links usually, the main contributor to attenuation is the spreading of
the signal power with the square of distance called free space attenuation (FSA)

according to eq. 1.10 or 1.11 respectively.

1.9. Wireless Channel

dnd\”
Ay = <T> (1.10)

4rd

AO,dB =20 IOg <T> (111)

where d stands for length of the LOS and A stands for wavelength, both in meters.
[40]

The signal experiences attenuation in a wire and antenna itself even before being
actually transmitted. The same applies on the receiver side where the power

captured by an antenna is attenuated before reaches the receiver’s circuitry.

The next kind of attenuation is introduced by obstacles that could be still (such
as buildings, trees, or hills) or time-varying. While the still obstacles are usually
considered in overall attenuation, the time-varying attenuation is referred to as

shadow fading.

In fixed application is convenient to use directive antennas that concentrate the
radiated power in one direction (effectively increasing EIRP) or collect more power
on receiving side. The directivity D of a non-isotropic antenna is defined as the
ratio of its radiation in a given direction over that of an isotropic antenna would

have. [22]

Although it does not decrease the attenuation of the link, the result is higher received
power without the need to increase transmit power (in comparison to isotropic
- omnidirectional antennas). The average received power would be described in

equation 1.12.

Pr i = Prap — Aap + Dras + Dras (1.12)

19

1.

INTRODUCTION

20

where Pg 45 and Pr 4p are received and transmitted power in dB, A4p is attenuation
of all kinds (including attenuation in cables and antennas itself) and Dr4p and

Dp 4p are directivities of both antennas. [35]

1.9.2 Fading

Fading generally refers to attenuation variation over time or frequency. When the
variations occur in time, we talk about fast fading and slow fading - relative to
the symbol period. When the variations occur over frequency it is referred to as

selective fading, otherwise, it is a flat fading.

The slow fading is commonly caused by shadowing by temporary obstacles. Because
slow fading changes attenuation slowly, the channel transfer function could be

estimated out of preambles or pilot signals in the receiver.

The fast fading is usually caused by multi-path propagation. Interference of multiple
signal images (propagated thru multiple paths) creates places where constructive
or destructive interference occurs. Such places are denser the frequency is higher.
Receiver propagating thru such an environment experiences rapid (proportionally
to movement velocity) changes in received signal power. A low data-rate (narrow
band) as well as OFDM systems experience fast fading more likely (compared to

high data rate - single carrier systems) due to their long symbol duration.

The selective fading is being caused also by multi-path propagation. The time
difference between two signal images causes interference. For frequency f according
to equation 1.13 is the interference destructive when n is an odd integer and

constructive when n is an even integer.

n

I =351

(1.13)

1.9. Wireless Channel

where At is the time difference between signal images arrival. [39] [9] [§]

1.9.3 Inter symbol interference (ISI)

ISI occurs when a significant part of symbol energy spreads over time and affects
another symbol. Such a thing could happen either by tight filtering or a channel
distortion such as multi-path propagation. Time difference between individual
paths could be lowered relatively to symbol duration by using the OFDM. For

complete avoidance of ISI, guard intervals between symbols are added.

1.9.4 Doppler shift

Doppler effect is a change of frequency induced by the relative motion of receiver

and transmitter according to general equation 1.14.

ctwv,

f=1

1.14
ct v, ()

where f is the observed frequency, fy is the original frequency, ¢ is a speed of wave
propagation (a speed of light in case of EM waves), v, and v, are the velocity of

receiver or source respectively.

When the distance between receiver and source is decreasing, the observed frequency

is higher than the original and vice versa.

1.9.5 Noise

Noise refers to unwanted energy that modifies the desired signal. There are many
types and sources of noise. They can be differentiated into external and internal

noises.

21

1.

INTRODUCTION

22

Examples of external noises could be atmospheric noise mainly from thunderstorms

or man-made noise from wireless transmissions or other electronics.

Examples of internal noise are thermal noise, shot noise, and flicker noise. Quan-
tization noise as a result of analog to digital conversion. The nonlinearity of the

signal processing path could be considered a noise source also.[45]

Another differentiation could be done according to the frequency spectrum of the
noise. There are narrow band noises such as powerline noise at 50 Hz which is
familiar to nearly everybody from audio. Noise with flat spectral characteristics
is called white noise (according to white light that contains all frequencies of the
visible light, although it does not have a flat characteristic). A lot of broadband
noises can be considered as white noise across a finite BW. For those who can not,
other color noise models exist. The one whose power decreases with a frequency of
10 dB per decade is called 1/f or pink noise. When it is 20 dB per decade it is 1/f>
or red noise. On the other hand, noise whose power increases with a frequency of
10 dB per decade is called blue noise. When it is 20 dB per decade it is a violet

noise. [34]

A typical measure of broadband noise is a power spectral density Ny for continuous
noise or energy spectral density for impulse noise concentrated in a narrow time

window (typically narrower than a symbol duration).[47]

Channels are often modeled with so-called additive white Gaussian noise (AWGN)
which approximates various natural sources of noise (distant thunderstorms, thermal
noise, shot noise). This noise is added to the signal, has flat spectral characteristics

and its magnitude follows a normal distribution with a mean time value at zero.

[30]

CHAPTER

System model

The new OFDMA communication scheme for accessing HAMNET - Amateurradio
Wireless Regional Area Network (AWRAN) is introduced in this chapter.

The new AWRAN scheme is tailored to be used in the following three amateur-radio

frequency bands:

e 50-54 MHz (6m band)
e 144-146 MHz (2m band)

o 430-440 MHz (70cm band)

WRAN is designed to operate in the unused portions of the TV broadcast bands:
the so-called TV white space which can be anywhere in the VHF/UHF frequency
range, 54 MHz and 862 MHz[10]. One frequency band for AWRAN is just below this
frequency range. Propagation phenomena and interference scenarios are expected

to be practically identical in these cases.

23

2.

SYSTEM MODEL

24

The IEEE 802.22 WRAN was chosen as a baseline for the novel scheme AWRAN.
Please, do not confuse with the IEEE 802.22b variant of WRAN called advanced
WRAN (A-WRAN).

On the lines below are proposed properties of the new communication scheme

Amateurradio Wireless Regional Area Network.

2.1 OFDM parameters

The channel access technique is a OFDMA, so we need to discuss the fundamental
properties of OFDM first. The selected parameters are inspired by WRAN and

modified to fit the available amateur radio regulations, most importantly the BWs.

The frame duration is fixed at 10 ms. The number of OFDM symbols in one frame
varies between 26 and 31 for different lengths of CP. The allowed lengths of CP
are i, %, %6 and 3i2 of the FFT length. The cyclic prefix is specified by BS in

superframe control header (SCH).

2.1.1 Bandwidth

As stated above, the OFDM properties of WRAN were adjusted to the available
BW. Unlike the TV channels, which are 6 (somewhere 7 or 8) MHz wide, the
dedicated bands for AWRAN are 2, 4, and 10 MHz wide.

The different BW of AWRAN compared to the original WRAN is achieved by
changing the number of subcarriers from 1680 to 560, 1120, or 2800 respectively

while the symbol duration remains the same.

Generally is necessary to set real BW of wireless transmission approximately 10 %
[21] smaller compared to the dedicated BW to avoid interference with neighboring

services.

2.1. OFDM parameters

CP | number symbols 2 MHz channel 4 MHz channel 20 MHz channel
length | per frame BW (MHz) BW (MHz) BW (MHz)
i 26 1,820 3,640 9,100
% 28 1,764 3,528 8,820
1—16. 30 1,785 3,570 8,925
3—12 31 1,780 3,560 8,900

Table 2.1: Supported CPs and corresponding number of symbols in frame and BW
[26]

In order to maintain the frame duration of 10 ms with, the number of OFDM
symbols roughly compensates for changing CP duration. The fine compensation is

achieved by slight BW adjustment for each length of CP.

The equation 2.1 shows calculation of BW really occupied by OFDM with 560

subcarriers, 26 symbols per frame and i cyclic prefix.

x (1+CP)

N subcarriers X Nsymbols
BWorpm =

tframe -
560 x 26 x (1+ 1)

=1.82 MH 2.1
10 ms 8 g ()

Since the calculation is for 2 MHz BW, the result is 9 % smaller which is a good
starting point. Calculation of BW for all combinations of CP length, BW and

corresponding number of symbols are listed in table 2.1.

2.1.2 Pilot signals

The AWRAN scheme consists of 560, 1120, or 2800 subcarriers out of which every
seventh is a pilot used for channel estimation, frequency offset estimation, and

phase noise estimation.

For better performance, all the pilots move with each OFDM symbol. Their offset
follows pattern 0, 3, 5, 1, 4, 6, and 2 for OFDMA symbol indexes 0, 1, ... 6. Hence

25

2.

SYSTEM MODEL

26

PHY mode | modulation coding rate

1 | BPSK Uncoded

2 | QPSK 1/2 and repeat: 3
3| QPSK 1/2

4 | QPSK 2/3

5| QPSK 3/4

6 | QPSK 5/6

71 16-QAM 1/2

8|16QAM 2/3

9| 16-QAM 3/4

10 | 16cQAM 5/6
11 | 64-QAM 1/2
12 | 64-QAM 2/3
13 | 64-QAM 3/4
14 | 64-QAM 5/6

Table 2.2: Supported modulations and coding rates

in seven OFDM symbols every single subcarrier is a pilot once and carries data
six times. The OFDMA symbol index is reset to 0 at beginning of each subframe -
downstream (DS) and upstream (US).

These pilots carry BPSK modulated pseudo-random binary sequence (PRBS)
generated out of fixed seed value. For more details see the detailed description of

generator and pilots in WRAN in chapter 9.6.1 of [10].

2.2 Adaptive modulation and coding

AWRAN support several combinations of modulations and coding rates described
in table 2.2. These combinations are called physical layer (PHY) modes. PHY
modes 3 to 14 can be flexibly chosen for data communication to achieve desire
trade-off between data rate and robustness of the system. The PHY mode 1 is
used for multi carrier code division multiple access (MC-CDMA) transmission in

OW. The PHY mode 2 is used for SCH, FCH and for transmission in SCW.

2.3. Superframe (SF) structure

The PHY mode for data transmission is selected by BS for each CPE individually
based on the previous transmission reliability and channel estimation. The selected

PHY mode is announced in DS or US map respectively.

2.3 Superframe (SF) structure

SF is 160 ms long and consists of sixteen 10 ms frames. At the beginning of the
first frame is a SF preamble followed by the first frame preamble, SCH then FCH
and the rest of the first frame. The whole SF and frame structure is shown on

figure 2.1.

2.3.1 SF preamble

The first frame of SF starts with SF preamble which contains four repetition of short
training sequence (STS). It serves time and frequency synchronization between BS

and CPEs. The SF preamble is always sent with CP length ;11 of the FFT length.

The STS has length of i of the FF'T. Four repetition results in one symbol period.
The CP effectively adds another full repetition of the STS (a copy of the last one).

See fig. 2.2

The OFDM symbol is constructed using IFFT with its standard length depending
on the number of subcarriers. The short time duration of the training sequence
and its repetitions in the time domain over the symbol duration is achieved by
using only one of four subcarriers. It means that between two non-zero subcarriers

are three subcarriers with zero amplitude. On the non-zero subcarriers is a BPSK

modulated PRBS.

The series is generated by linear feedback shift register (LFSR) with an aim to
achieve low PAPR. The generation process and seed sequence for WRAN is

27

2.

SYSTEM MODEL

|j¢——— 160 ms 4&1

| _""-«______ J_-“: "‘n“‘ e T
Frame
reamble|

Buperframe] Frame
@m@

Time
v Superframen -1 Superframen Superframen + 1 tee
.~ 10 ms > 10 ms » - 10 ms >
‘ Frame 0 | Frame 1 . Frame 15

..'.; 26 to 42 symbols corresponding to bandwidths from 6 MHz to 8 MHz and cyclic prefixes from 1/4 to 1/32 :.'..
— P T S T S S S TS SR S T S T , -
g big Ranging/BW request/UCS notification i
I | : :
21210 i
| i
| /13
|]
alllf E
Al 2
| T
L
L “en o
(o o
2 B E
&P
8 w |5
a 5|2
g | L3 a|E =
] b =& z |F
| 2| 2|3 g
! E
| [+
. 5
5
2| | — g
=1 ; .,_\Z'
|
L
US subframe ke
l¢——— DS subframe ——»| [¢——— (smallest US burst portion on a given ——»

60 subchannels

subchannel = 7 symbols)

Figure 2.1: SF and frame structure [26]

CcpP

(STS)

STS | STS | STS | STS

TS YM

Figure 2.2: SF preamble using four STS and ; CP length([10]

28

2.4. Frame structure

described in chapter 9.4.1.1.1 of [10].

2.3.2 SF control header

The SCH is always a whole OFDM symbol which is transmitted in the first frame
of SF immediately after the frame preamble. Especially in the case of transmission
in a 2 MHz bandwidth, one OFDM symbol can not be sufficient. In such cases,

the SCH can occupy more OFDM symbols.

The SCH is always modulated and coded according to PHY mode 2 (see Table 2.2)
and transmitted with CP length of i. The exact form of SCH is documented in
Table 2.3.

Data | size
BS MAC | 48 bits
SF number | 8 bits
FA map CPL | 2 bits
DCD | (see DCD)
UCD | (see UCD)
SCW-FB | 21 bits

Table 2.3: SCH form

2.4 Frame structure

The frame forms the basic transmission unit of this OFDM system. Its time
duration is defined to be 10 ms. A group of sixteen frames is called SF and is

discussed above.

Only the first frame of a SF starts with a SF preamble and continues with a frame
preamble. All other frames start with the frame preamble which consists of two

repetitions of long training sequence (LTS) as discussed below.

29

2.

SYSTEM MODEL

30

The remainder of the frame is divided into two parts, which are called the DS and
US subframes. These are divided into subchannels in the frequency domain, see
details further below. The first symbol (or several symbols) of a DS subframe is
the SCH, in the case of the first frame of SF. The rest of the frames start their DS
subframes with a FCH followed by FMW and the user DS data.

The US subframe contains users US data. An OW can be scheduled in the US
subframe. It is used by CPE for transmitting requests to BS using MC-CDMA
management messages. At the end of some DS subframes, can be located SCW

which allows other BSs contact the transmitting BS with coexistence request.

2.4.1 Subchannels

The US and DS subframes feature subchannels, which are groups of neighboring
subcarriers. The entire OFDM symbol is divided into several subchannels depending
on BW of the transmission. Each subchannel is 28 subcarriers wide. Thus the 2
MHz wide channel, which uses 560 subcarriers, is divided into 20 subchannels, in

the 4 MHz wide are 40 subchannels and the 10 MHz wide has 100 subchannels.

Each subchannel contains 24 data carriers and 4 pilots. The pilots change their
location from symbol to symbol as described above. Subchannels serve as a measure
for resource allocation e.g. in downstream channel descriptor (DCD) and upstream

channel descriptor (UCD) messages.

2.4.2 Frame preamble

Each frame has its own preamble consisting of two repetitions of LTS used for
synchronization, channel estimation, frequency offset estimation, and received

power estimation.

2.4. Frame structure

cp LTS LTS

TSYM

Figure 2.3: frame preamble using two LTS and 1 CP length[10]

The LTS is twice as long as the STS discussed above, thus it is one-half of FFT
length. The frame preamble is transmitted as well as the SF preamble BPSK
modulated binary sequence with CP length of i. Thus the OFDM symbol with
CP contains two and half LTS. This is illustrated in Fig. 2.3.

The generation with the aim to create low PAPR signal, and LFSR with seed
sequence used in WRAN is described in Chapter 9.4.1.3 of [10].

2.4.3 DS subframe

The most significant parts of frames are the DS subframe and US subframe. Their
sizes are modified adaptively, to fulfill current needs. The DS subframe starts right
after the frame preamble. First OFDM symbol is a SCH in case of first frame of
SF, otherwise the first symbol starts with the FCH and continues FMW.

The DS subframe divided into data bursts defined by DCD message. This message

is being transmitted by BS in SCH. Or, when the data bursts allocation is being
changed during SF, in FMW.

After the last OFDM symbol of DS subframe, the US subframe does not start
immediately. A transmit-receive turnaround gap (TTG) with a length of one OFDM
symbol is introduced to allow CPE to transmit with proper timing alignment to

overcome a problem with the propagation delay of the signal.

31

2.

SYSTEM MODEL

32

Frame control header (FCH)

The FCH is a first part of DS subframe (except the case when SCH is transmitted).
It contains frame number, length of the FMW and its PHY mode.

The header is modulated and coded according to PHY mode 2 (see table 2.2).

Data | size note
frame number | 4 bit
FMW length | 8 bit subcarrier x OFDM symbol
FMW PHY mode | 4 bit the most robust PHY mode
used for data in current frame
shall be used

Table 2.4: FCH form

Frame management window (FMW)

The FMW is present after each FCH. It contains all the management messages
the BS transmits and which are not part of SCH or FCH. Some of these messages
(depending on the type) can be addressed to all CPEs (broadcast). Others are
addressed to particular CPE which identification (ID) is noted in the first part of

the message.

The number of transmitted management messages varies frame to frame, so the
length of FMW is noted in FCH. The FMW is placed over the data bursts. If the
FMW occupies the whole data burst, the data burst is not assigned to any CPE in
the DS map (CPE ID for the occupied data burst is zero). If the FMW occupies
only part of a data burst, the data bust is assigned to a CPE and the actual data
starts right after the end of the FMW.

2.4. Frame structure

DS data bursts

Data bursts are two-dimensional containers for location data in the frame. One
dimension is defined by subchannels (groups of neighboring subcarriers) and the

other by OFDM symbols.

In DS subframe are data bursts allocated vertically such, that typically all bursts
are spread across the whole BW (all subchannels) and each burst occupies just a
few OFDM symbols. US bursts are on the other hand allocated horizontally, more
about that below.

Vertical allocation of bursts has an advantage, especially in reduced demodulation
effort in CPEs. They are not interested in all the OFDM symbols, but only in those
which contain preambles, headers, FMW and to them associated burst. Other

OFDM symbols can be scratched.

Although after the US subframe is a TTG to absorb a propagation delay, there
is another advantage of vertical allocation for more distant CPEs. The earlier
sent bursts are associated to them, so they have an additional time buffer for

propagation delay.

2.4.4 US subframe

The US subframe comes after DS subframe. There is one symbol long TTG between
them which serves as a propagation delay buffer and enables the CPEs to transmit

with proper time alignment.

US data bursts

The US data bursts are described by UCD. They are allocated horizontally on

the US subframe, unlike the DS bursts which are allocated vertically. It means,

33

2.

SYSTEM MODEL

34

that each burst occupies typically the whole length of US subframe and only a few

subchannels.

There is a limitation for burst boundary in a subchannel. The minimum number of
OFDM symbols occupied at the subchannel can not be smaller than seven symbols
for each burst (see figure 2.1). This is because seven symbols are a period of the

pilot pattern. So all of the subcarriers in the part of burst are pilot at least once.

The horizontal allocation has a particular advantage for CPEs. Thanks to longer
time duration and reduced number of subcarriers of the bursts, the radiated power

per subcarrier could be higher with lower EIRP compared to short and wide bursts.

Opportunistic window (OW)

The first twelve subchannels serves as a OW for CPEs to contact the BS. The
OWs are scheduled by BS in a US map transmitted during FMW. The length of
DS subframe (without SCW) must be at least twelve OFDM symbols when the
OW is scheduled.

The CPEs transmits MC-CDMA management messages such BW requests or
ranging requests all at once during single OW. The code for data scrambling
derived from CPE ID which BS assigns to each CPE during registration process.
Subcarriers that would serve as pilot signals (when the OW would not be scheduled)

shall remain unused by all CPEs.

Self-coexistence window (SCW)

A SCW could be located at the end of US subframe. It is announced by BS in a
SCW frame bitmap transmitted in SCH. The SCW is four OFDM symbols long

and needs one symbol before itself and one symbol after itself as a guard interval.

2.5. Self-coexistence

The SCW is dedicated for a BSs of a different AWRANSs to transmit coexistence

request. The request is modulated according to PHY mode 2.

2.5 Self-coexistence

When there are multiple overlapping AWRANSs, some kind of multiplexing needs
to be done. When each of them operates in the different frequency band, there is a
natural FDM and nothing has to be solved. If they share the same transmission

band, a time division multiplexing (TDM) takes the place.

When a BS recognizes another AWRAN transmission on the same band it is about

to operate, it shall decode SCH and read SCW frame bitmap management message.

This message contains SCW allocation across frames of the SF.

Once a frame with SCW is on schedule, the BS transmits a coexistence request
informing the already operating BS about the need for coexistence. This BS
responds with a coexistence response message which is sent during SCH. This
message contains a BS ID which was associated to the requesting BS. Another
message called FA map shall be found in the SCH. This message associates

individual frames of the SF to individual AWRANSs.

There can be up to four individual AWRANSs operating in the same frequency band

using this TDM coexistence.

2.6 Management messages

As was mentioned previously, there are so-called management messages in the
AWRAN. They are transmitted either by BS to CPEs as a part of a SCH and
FMW or by CPE to BS during OW. Coexistence requests are sent by BS that

observes the current transmission (in the table 2.5 is referred to as "other BS") to

35

2. SYSTEM MODEL

the transmitting BS during SCW. The coexistence response message is sent during

the first SCH.

The table 2.5 lists all management messages:

type | message description transmit by transmit to transmit
during
0| DCD DS channel BS all CPEs SCH
descriptor
1 | DS-MAP DS map BS all CPEs FMW
ucCb US channel BS all CPEs SCH
descriptor
3 | US-MAP US map BS all CPEs FMW
4 | RNG-REQ Ranging CPE BS oW
request
5 | RNG-CMD Ranging BS one CPE FMW
command
6 | REG-REQ Registration CPE BS oW
request
7 | REG-RSP Registration BS one CPE FMW
response
8 | BW-REQ BW request CPE BS oW
9 | RET-REQ Retransmission BS one CPE oW
request oe CPE or BS or FMW
10 | SCW-FB SCW frame BS all CPEs SCH
bitmap
11 | CPL CP length BS all CPEs SCH
12 | FA map Frame allocation BS all CPEs SCH
map and BSs
13 | CO-REQ Coexistence other BS BS SCW
request
14 | CO-RSP Coexistence BS other BS SCH

Table 2.5: List of management messages

2.6.1 Downstream map

The DS map is a management message sent by BS during FMW as a broadcast
to all CPEs. It contains association of data bursts (predefined by latest DCD) to

36

2.6. Management messages

individual CPEs and information about the chosen PHY mode, see table 2.6.

At least a part of the first data burst is always occupied by FCH and FMW. So, if
some space remains unoccupied, the burst is assigned to CPE and the user data
fill the unoccupied part of the burst modulated and coded as described in the DS
map. If no space is left, the burst is not assigned to any CPE.

Data | size
type = 1 | 5 bit
NDB repetitions of assignment:
CPE ID | 6 bit
PHY mode | 4 bit

Table 2.6: DS-MAP form

2.6.2 Upstream map

The US map is a management message sent by BS during FMW as a broadcast
to all CPEs. In the case of a frame without US subframe, the US map is not

transmitted.

The US map contains information if the OW is on schedule during the frame. It
further associates data bursts (predefined by latest UCD) to individual CPEs and
informs which PHY mode and transmit power per subcarrier should be used by
each CPE, see table 2.7. When OW or SCW occupies part of the data burst, only
the unoccupied part of the burst is used for user data. When any data burst is

covered as a whole by such windows, the burst is not assigned to any CPE.

2.6.3 Channel descriptors

DS and US channel descriptors are a management messages broadcast by BS to all

CPEs. These messages are sent during SCH or FMW.

37

2.

SYSTEM MODEL

38

Data | size
type = 3 | 5 bit
OW bit | 1 bit

NUB repetitions of assignment:
CPE ID | 6 bits
PHY mode | 4 bits

power per subcarrier | 8 bits

Table 2.7: US-MAP form

These messages defines sizes of data bursts (see figure 2.1). These bursts are

associated in US and DS maps to individual CPEs for each frame individually.

Channel descriptors are always a part of SCH. They must be stored in each
CPE and used for all following frames of the SF. If new channel descriptors are
transmitted as part of any frame, the stored descriptors shall be rewritten and

applied immediately to the frame they were part of.

The DS bursts are allocated vertically such, that each OFDM symbol is filled before
the next symbol starts to be filled. First DS burst is counted from the beginning
of DS subframe, thus at least part of it is always occupied by FCH and FMW. (In
the case of the first frame of SF when two preambles are sent, the first burst is one
symbol shorter.) The size is expressed in subchannels x OFDM symbols (e.g. size
of 100 mean 5 OFDM symbols in 2 MHz system, 2.5 symbols in 4 MHz system and
1 symbol in 10 MHz system). The Sum of sizes of all data bursts divided by the
number of subchannels is the length of DS subframe. The form of DCD is in table
2.8.

Data | size notes
type = 0 | 5 bit
number of DS bursts (NDB) | 8 bit
length of each burst | NDB x 8 bit symbol x subchannel

Table 2.8: DCD form

2.6. Management messages

The US bursts are allocated horizontally analogically to DS burst allocated vertically.
So, each subchannel is filled across all OFDM symbols of US subframe before another
subchannel is being filled. Sum of all burst lengths divided by number of OFDM

symbols in US subframe must be equal to number of subchannels. The form of

DCD is in table 2.9.

Data | size notes
type = 2 | 5 bit
number of US bursts (NUB) | 8 bit
length of each burst | NDB x 8 bit symbol x subchannel

Table 2.9: UCD form

2.6.4 Ranging messages

There are two types of ranging messages. Ranging request is sent by CPE to BS
when the received signal has poor or unnecessarily high quality. The BS alters
transmit power, modulation depth or code rate of the transmitted signal in iterative
manner. The form of ranging request is in table 2.10. The BS tells desired PHY

mode and transmit power in each US map, so it does not need to sent such requests.

Data | size notes
type = 4 | 5 bit
action | 1 bit 1 - increase robustness;
0 - increase throughput

Table 2.10: RNG-REQ form

The ranging command is sent by BS to CPE. The aim of this command is to
synchronize the arrival time of the signal from all CPEs. The CPE must start the

next transmission sooner or later according to the correction time in the command.

39

2.

SYSTEM MODEL

40

Data | size notes
type = 5 | 5 bits
CPE ID | 6 bits
time shift | 16 bits tens of ns; signed int

Table 2.11: RNG-CMD form

2.6.5 Registration messages

Registration messages are used for registration of CPEs to the AWRAN. The
CPE observes ongoing communication and reads US maps to see if the OW is on

schedule.

The, so far non registered, CPE does not have an ID nor propagation delay
estimation. So it waits for SCW and sends MC-CDMA registration request (see
table 2.12) coded according to first row of 64x64 Hadamard matrix constructed
by Sylvesters algorithm - thus 64 ones. The transmission is repeated during each
OW with a 50us time shift trying to guess the propagation delay. When the BS

successfully reads the message, answers with a registration response.

Data | size
type = 6 | 5 bits
CPE MAC | 48 bits

Table 2.12: REG-REQ form

The registration response contains CPE MAC address and ID assigned to the
CPE. When the registration is declined, the ID field contains zero. The form of

registration response is in table 2.13.

Data | size notes
type = 7 | 5 bits
CPE MAC | 48 bits
CPE ID | 6 bits 0 - registration declined

Table 2.13: REG-RSP form

2.6. Management messages

2.6.6 Bandwidth Request

The BW request is sent by CPE in OW. The first bit means a type of the BW
request (incremental or aggregate). The rest of the message is a number of US

bytes the CPE wants to transmit, see table 2.14.

Data | size notes
type = 8 | 5 bits
BW request type | 1 bit 1 - incremental,
0 - aggregate

number of bytes | 10 bits
Table 2.14: BW-REQ form

2.6.7 Retransmission request

Either BS or CPE can ask for retransmission of user data that were not properly
received. The retransmission request contains SF and frame number of the data
to be retransmitted. The request transmitted by BS during FMW contains ID of
the CPE it belongs to. Request sent by CPE during OW does not contain its ID,
because the BS knows origin of each message from CDMA code. The form of the

retransmission request is in table 2.15.

Data | size notes
type = 9 | 5 bits
CPE ID | 6 bits only if transmitted by BS to CPE
SF number | 8 bits
frame number | 4 bits

Table 2.15: RET-REQ form

2.6.8 SCW frame bitmap

The SCW frame bitmap is a message located in SCH which defines frames of SF
that end with a SCW. The bitmap consists of sixteen bits, each bit corresponds to

41

2.

SYSTEM MODEL

42

one frame of the SF. The form of SCW frame bitmap message is in table 2.16.

Data | size
type = 10 | 5 bits
bitmap | 16 bits

Table 2.16: SCW-FB form

2.6.9 CP length

CP length message is transmitted during SCH and defines CP for the whole SF

(except preambles). The form of this message is in table 2.17.

Data | size notes
type = 11 | 5 bits
time shift | 2 bits 00 - 7; 01 - ;

10 - 45 11- 4

Table 2.17: CPL form

2.6.10 Frame allocation (FA) map

This message is sent in SCH only when the AWRAN works in a coexistence mode.
The bitmap features 32 bits - hence two bits belong to one frame. These two bits
carry BS ID and tell which AWRAN cell will transmit during the frame. The first
two bits are always 00 - meaning the first frame belongs to AWRAN cell of the
transmitting BS. The form of the FA map message is in table 2.18.

Data | size
type = 12 | 5 bits
bitmap | 32 bits

Table 2.18: FA-MAP form

2.6. Management messages

2.6.11 Coexistence messages

Request for coexistence and coexistence response are two messages transmitted

between BS negotiating on self-coexistence of its transmission.

When any BS spots another AWRAN transmission, it shall wait for SCW and

transmit coexistence request during the window according to table 2.19.

Data | size
type = 13 | 5 bits
asking BS MAC | 48 bits

Table 2.19: CO-REQ form

The BS which receives request for coexistence transmits coexistence response during

first SCH assigning BS ID to the requesting BS. It must include also FA map

message to the SCH and assign a proportional part of its resources to the other

AWRAN.

There can be up to four coexisting AWRAN cells. If a fifth one asks for coexistence,

the master BS will respond with ID 00 which means declination of the request.

The form of coexistence response is in table 2.20.

Data | size notes
type = 14 | 5 bits
other BS MAC | 48 bits
other BS ID | 2 bits 00 - declined

Table 2.20: CO-RSP form

43

CHAPTER

Prototype

The Vienna University of Technology has permission for test operation at frequencies
52 to 54 MHz. The frame structure with OFDM properties of the 2 MHz variant
of the proposed communication scheme was simplified and implemented as a C++
program. It is running on prepared transceiver boxes RPX-100 [11]. These boxes
contain Raspberry Pi (RPi) compute module 4 and the LimeSDR followed by a
custom RF front-end. The output of the RPX-100 is connected to the HBOCV

antenna. See the diagram in fig. 3.1.

The C++ program runs on the RPi. Two libraries are essential for this program.
The first one is LimeSuite ensuring communication between the RPi and the
LimeSDR. The second one is liquid-dsp which handles the OFDM frame generation

and synchronization.

3.1 Liquid DSP library

Time samples of the implemented OFDM frame (described in chapter 3.2 are

created using liquid digital signal processing library. It is written in C as an open

45

3. PROTOTYPE

web REST API CLI
Software implementation of transmission protocol and Lo LT
P P SDR direct management and
channel access method
control
Lime HW Driver and C++ API
Software Defined Radio
Raspberry Compute Lime SDR mini Radio Frontend
Module CM4 12V supply

Cortex-A72 (ARM vB) @ 10W PA P30, 3made

64-bit SoC E Bandpass Filter

Raspbian

Hat Board for CM4

Figure 3.1: RPX-100 block diagram [11]

source library for software-defined radios. [6]

This library has a number of modules that focuses on various signal processing

tasks and other wireless communication-related problems. For example:

o FIR and IIR filters
o« FFT
« auto-correlation
e automatic gain control
o channel emulation
« modulators
- AM

46

3.1. Liquid DSP library

— CPFSK

- GMSK

— OFDM

3.1.1 Flexible framing structure for OFDM

The essential module of liquid-dsp library for this thesis is called ofdmflexframe. 1t
brings objects OFDM frame generator, which generates time samples for SDR to
transmit, and OFDM frame synchronizer, which finds the OFDM frame in samples
sampled by the SDR and passes received data. The module allows to set the
number of subcarriers and make a custom map of null/data/pilot carriers, set
length of cyclic prefix, set modulation, and FEC. The length of the payload is
defined in bytes.

Although this module is called flexible, it has some predetermined structure. The
first few symbols of each frame serve ad frame preamble and are dedicated to

synchronization.

The preamble itself consists of two parts. The first part has a length of two or

more OFDM symbols, depending on the number of subcarriers and their allocation.

The symbols are transmitted always without CP and are used for coarse carrier
frequency and timing offsets. The second part is always one OFDM symbol with
CP matching the rest of the frame. It is used for fine timing and equalizer gain

estimation.

The preamble is followed by a header which consists of 14 bytes where 6 of which
are used internally by the library and 8 of them are user-defined. The 6 internally

used bytes contain framing information such as modulation, FEC and payload

47

3.

PROTOTYPE

48

length. The header itself is protected by FEC and its length in symbols depends

on the number of data subcarriers. The header is followed by the payload.

For detailed information see chapter 16.7 of [5]

Frame generator

Frame generators are a group of objects in the liquid-dsp library that accepts
raw data and (according to chosen modulation and its properties) produces time
samples for SDR to transmit. The used frame generator is called ofdmflexframegen

thus produces OFDM frames. Its properties allow to define:

» number and allocation of subcarriers
o cyclic prefix and taper length

« modulation

o inner and outer FEC scheme

o data validity check

o payload length

Frame synchronizer

Frame generators, similarly to frame generators, are another group of objects in the
liquid-dsp library. They accept the time series of samples sampled by SDR and try

to find the corresponding frame. The used synchronizer is called ofdmflexframesync.

The synchronizer needs to know the number and allocation of subcarriers as well
as cyclic prefix length. All other parameters required for successful demodulation

read out of the first six reserved bytes of each frame header.

3.1. Liquid DSP library

The synchronizer thanks to the preamble and pilot subcarriers located in each
transmitted symbol can compensate for carrier frequency and phase offset as well
as multi-path fading. If FEC is used, the synchronizer automatically corrects errors.

The received data are returned via a callback function.

3.1.2 Linear Digital Modulator/Demodulator

So-called modem is another module of liquid-dsp library which is used. The
modulator works as part of the OFDM frame generator and the demodulator as

part of the synchronizer. The supported modulations are:

phase-shift keyinq (PSK) 2 to 256

o differential phase-shift keying (DPSK) 2 to 256
 amplitude-shift keying (ASK) 2 to 256

o quadrature amplitude-shift keying (QAM) 2 to 256
« amplitude and phase-shift keying (APSK) 2 to 256

« on-off keying (OOK)

3.1.3 Forward Error-Correction

The FEC module is also incorporated into the frame generator and synchronizer.

Any supported error correction scheme can be used as a generator and synchronizer

property:

o Hamming codes

o Repetition codes

49

3.

PROTOTYPE

50

Convolutional codes

Reed-Solomon codes

Golay(24,12) block code

single error correction - double error detection (SEC-DED) block codes

3.2 Implemented frame

As mentioned before, the OFDM generation is served by the liquid-dsp library. The
library and its capability are described in section 3.1. It works only with singleplex

frames, so the generated frame lacks the US subframe.

The implemented frame is always 10 ms long with number od OFDM symbols
corresponding to the four allowed CP lengths - 26 symbols for CP i, 28 for %, 30

1 1
for 5 and 31 for 35

All of the 14 PHY modes were implemented and can be arbitrarily chosen. The
liquid library does not allow the selection of multiple different modulations or error
codes within a single frame. The information about chosen PHY mode is carried

in the frame header.

When a library libcorrec is installed before the liquid library installation, the FEC
codes could be chosen as a property of the liquid frame generator object. Thus the

FEC coding is done automatically.

The pilots in AWRAN change their position on the symbol to symbol basis. That
is not possible using the liquid library. So the implemented version has pilots on

fixed locations 7 subcarriers apart.

The preamble which liquid library generates is, as well as AWRAN uses, BPSK
modulated binary sequence with the aim to low PAPR. On the other hand,

3.3. LimeSDR

AWRAN uses one OFDM symbol for SF preamble and one symbol for the frame

preamble. Both with CP length of 1. The liquid library generates preamble

1
three OFDM symbols long. The first two OFDM symbols are two repetitions of Sy
symbol without CP. The third OFDM symbol of the preamble is S; symbol with

CP matching the rest of the frame.

One OFDM symbol, sent after the preamble, is a header. The liquid library
automatically generates 14 bytes long headers out of which 6 bytes are used by the
library and 8 bytes are accessible for users. There is stored information about the
used modulation and coding of the payload as well as payload length in the first 6
bytes. The 8 user-defined bytes are all set to zero in this stage. Later on, could be
used for BS ID and FMW length if the usage of the liquid-dsp library will persist

to further versions.

3.3 LimeSDR

Software-defined radio (SDR) is modern radio technology using direct digital
processing of radio signal. This becomes possible with the increasing computational
power of modern chips. Unlike traditional - hardware-defined - technologies, SDRs
does its job according to software that could be on one hand overwritten on the
fly, on the other hand, programmed to fit very specific requirements. SDRs are
extremely flexible and allows to be programmed to transmit and receive arbitrary

RF signals within its operating BW.

The LimeSDR developed by Lime microsystems contains three major integrated
circuits (ICs): USB microcontroller, field programmable gate array (FPGA) and RF
transceiver. See the block diagram on figure 3.2. In basic operation, the LimeSDR
accepts in-phase and quadrature (IQ) samples via universal serial bus (USB) and

sends corresponding RF signal via U.FL connector to the antenna, or receives RF

51

3.

PROTOTYPE

52

signal and sends I and QQ samples to USB respectively.

Figure 3.2: LimeSDR block diagram [15]

T. Sen=or,
EEPROM, LMSTO0ZM Ly] 2xEEPROM
Flﬂy_l] MO e
) b
r r
-~ "\ N
USB 3.0 RF Matching UFLMMCX
USE 3 perpheml " ___ M etwork & e RF
Connector cantroller Loopbadc Connectors
o0 14)
\. / FPGA Cydone IV E \ /
! (EPACENFZI or
EPSCESIF23)
Dual channel
Power gg nGi? DDR2 RAM
| (2560 B Tod
Supply F lash ASACBAMIEDR
25BCHY
TTock
M etwork
Netv GPIO[T:0]
{ADF 5002 EE— .
ADSE01 RGLEDs pinheader
WETSHD,
SRISIC) L 'J

LimeSDR features FPGA Altera Cyclone IV EP4CE40F23 with factory pre-

programmed gateware. The gateware handles the following features:

o Interface to LMS7002 LimeLightTM digital 1Q interface in TRXIQ double

data rate mode;

o Real-time data transfer between PC and LMS7002 chip.

o Connection to FX3 Slave FIFO interface for transferring data through USB3.0.

o TX samples synchronization with RX samples time stamp;

e SPI connection between LMS7002 chip and other on-board devices;

o« WFM player which enables to load waveform to external DDR2 memory from

USB3.0 host and translate to LMS7002 RXIQ interface.

http://2r.fi

3.4. Raspberry Pi

o Reconfigurable PLL blocks for LMS7002 clocking.

o Internal SPI registers for FPGA control.

The RF signal itself is produced by field porgrammable radio frequency (FPRF)
chip LMS7002M. Its dual-transmit and dual-receive channels enable full-duplex
multiple-input multiple-output (MIMO) communications, although this application
is way more simple. Each channel consists of in-phase and quadrature signal paths
with phase locked loop (PLL), mixers, filters and ADCs or DACs respectively, see
figure 3.3. It accepts 1Q samples via LimeLight Digital 1Q Interface which are

converted to the analog signal, mixed with LO frequency, and amplified.

3.4 Raspberry Pi

RPi is a group of single board computers that are developed by Raspberry Pi
Foundation from Cambridge, United Kingdom.[19] The first generation came out
in February 2012 with a single core 32-bit ARM CPU running on 700 MHz and 256
MB of RAM. Nowadays, its successor RPi 4 model B has four core 64-bit ARM
CPU clocked at 1.5 GHz. [46]

The model used in the project is called RPi Compute Module 4, it has the same
processing power as RPi 4 model B but reduced input-output (IO) possibilities
and differently shaped printed circuit board (PCB).

On the RPi runs a Linux-based operating system specifically developed for RPi
computers called Raspberry Pi OS (its predecessor was called Raspbian). The
operating system enables SSH connection and thus remote access to the boxes via

the internet.

53

3. PROTOTYPE
RXLNAL — —_—
RXINL
- | > B o™
)=
RXLNAH [+]
RXINH RXMIX XI RXLPF o
a
RXLNAW —» g > e g
RXINW P
H : >
TX B8 i i RXOUTSW e
LPF -
T RXLO RX RXOUTIRXOUTQ a
RSSI Cham Synthosizer — RXOUTIRXOUTQ : D —_ c D
LPF RXOUTSW -
RXLNAL 1 a
RXINL 6
™ ' L " o I S
RMLNAH — -
L
RXINH RIGMIX XT RXLPF RXPGA 3-3 o
= -
S ﬂJ
RMXLNAW " - ADC - .6 £
RXINW 3 3
t t t 5
Q
Mic ro E
RF Temperalure P Cloek PLL o
RESI Sansor Confroller DLE
©
,—D Connects nLNA l TX B8 i - l c
oulputn RF Loop Back LPF INN'.TXN(“ g!
Swih | mode 4 0
= -~
TXOUTY W . Q ©
. DAC
Power I—~ :—: ‘g
Dot DPAD [z} _
X B8 MO TXL P 2 fi]
Power TXPAD m %
Dat o
DAC = b =
THOUT2 Hie + ® ‘— < | [7]
—
i =
Connects DLNA _
oupuitn RF Loop Bac k 0
moda — @
TXLO T =
Ch Synt
Connects bLNA an nhasizar —
oulpuiin RF Loop Back D
swich | mode 2 @é
o
TXOUT1 e 4 1 -
-l "l DAC " __c
Power L= |
Dat -
RX BB TXMIX TXLPF g
Power —
Dat . Ny~ !
TXOUT2 [’
Connecls bLNA ¥ . . .
oufpulin RF Loop Back TxX B8 TXINITXING
moda LPF

o4

Figure 3.3: LMS7002M block diagram [16]

3.5. Radio frequency (RF) front-end

3.5 Radio frequency (RF) front-end

The custom RF front-end is a PCB prepared to amplify the output power of the

LimeSDR while transmitting and pre-amplify the received signal before entering

the SDR. [11]

It consists of power amplifiers, filters and RF switches creating eight possible RF
paths: Three different frequency bands with BP! (BP!) filters, one direct path,
and all this with or without power amplifier (PA). Mode with "PTT" in name use
the PAs. Which RF path, or mode respectively, is active is selected by the C++

program via general purpose input-output (GPIO) pins of the LimeSDR.

The important RF ICs:

« monolithic amplifier (0-10 GHz) - PSA-14+

« switches (0 - 3.5 GHz) - HMC241AQS16E

o RF MOSFET power amplifier module (66 - 88 MHz) - RA30H0608M
o RF MOSFET amplifier module (135 - 175 MHz) - RAOSH1317M

« RF MOSFET Amplifier Module (400 - 470 MHz) - RA0TH4047M

o SPDT RF Switch (50 - 3000 MHz) - VSW2-33-10W
Supported modes:

« RX

o TX direct

o TX direct PTT
e TX 6m

95

3. PROTOTYPE

N16 N16

N2 -0,92

2
N8
1 -I_l
N2
Figure 3.4: HBICV antenna diagram [29]

e TX 6 mPTT
e TX 2m

e TX2m PTT
« TX 70 cm

e TX 70 cm PTT

For more information about the RPX-100 boxes and its RF frontend including

schematic and layout visit [11].

3.6 Antenna

On both stations are used directional antennas HBICV, see fig. 3.4. It is a two-
element phased array of active dipoles designed in 1960s by Rudolf Baumgartner.
Its design is inspired by the ZL-Special antenna which uses two folded dipoles that
were replaced by standard dipoles. Both these antennas improve the performance

of the well-known single active element Yagi-Uda.

The Yagi-Uda consist of an active element surrounded by a number of passive

elements which are parasitically fed. The rear element (single or more on top of

56

3.7. Experimental radio link

each other) of Yagi-Uda, called the reflector, is longer than the resonant length
which causes inductive load and thus phase shift. The front elements (could be
single, but typically multiple in a row) called directors are on the other hand shorter
than the resonant length causing capacitive load and opposing phase shift. All this
together causes constructive interference in the forward direction and destructive

interference in the backward direction creating directional radiation.

The principle of the HBICV antenna is similar to the Yagi-Uda. There are only two
elements that are actively fed which increases their efficiency. Thus the two-element
HBICV performs similarly to three or four-element Yagi-Uda. The two elements

are spaced 4 (or 45 °) apart. The front element is 0.96 x 4 long which causes 45 °

shift of phase. The rear element is 1.04 x % long which causes -45 ° phase shift.

Another -45 ° phase shift on the rear element is introduced by % long feeding line
difference between the two elements. The remaining 180 ° phase shift is achieved

by flipped feeding orientation. [2]

Reducing the number of elements (hence the size of the antenna) is convenient,
especially for large wavelengths. The HB9CV was originally designed for 10, 15,
and 20 m bands. But the antennas for the 6 m band are still quite large, so the

reduced size is welcomed.

3.7 Experimental radio link

There is an established experimental radio link between two RPX-100 boxes. The

endpoint locations:

1st: Amateur Radio Station OE3BIA, at Maidenhead Locator JN88af, at 208
m above sea level with antenna 20 m above ground, 3443 Sieghartskirchen,

Austria.

o7

3.

PROTOTYPE

o8

2nd: Amateur Radio Station OE1XDU at Maidenhead Locator JN88ee, at 176 m
above sea level with antenna 46 m above ground, 1040 Vienna, Austria.
The link is 27.3 km long with hills that obstruct the LOS. See figure 3.6.

An estimation of attenuation caused by the RF signal propagation is described on

the lines below.

3.7.1 Free space propagation attenuation

The major contributor to the link attenuation is the propagation distance of 27.3

km. An attenuation of free space propagation is calculated by the equation 3.1.

4d

Ag = 20log <T> = 20log

Am2
(ﬂ) ~ 96 dB (3.1)

where:

A, stands for free space attenuation (dB)
d stands for link length (m)

A stands for wavelength (m)

3.7.2 NLOS propagation attenuation

Estimation of the NLOS propagation attenuation is very rough. On the terrain
profile in fig. 3.6 [25] are visible four major hills marked as A, B, C, and D. For
the calculation, all of the hills were approximated with the obstacle by sphere. [13]

Hill B was selected as a major obstacle. Its contribution to overall attenuation was

calculated first using equations 3.2, 3.3, 3.4 and 3.5.

3.7. Experimental radio link

Two imaginary links from top of the hill B (one to each box) were considered for
further calculation of the attenuation contribution of hills A (see eq. 3.6, 3.7, 3.8
and 3.9), C (see eq. 3.10, 3.11, 3.12 and 3.13), and D (see eq. 3.14, 3.15, 3.16 and
3.17).

The eq. 3.4, 3.8, 3.12, and 3.16 were done according to plot on fig. 3.5.

Influence of hill B

1| — 1 27300 —
. \ﬁ \rilr—r) _ \ﬁ\/67500(7300 —7500) _ (3.2)
3 r 3 27300

where Hj is a specific clearance, A is a wavelength, r; is the distance from the first

station to hill B, and r is the total distance of the link.

Ay 12 2 H Az?
v =202 2411 (1 & >\4/1+ A

A2 Hy \" 147y driry Ay
s/ 200 75002 7500 2 4 —260 50002
— 2.02 (1 -) 14+ —
A50002 104.3 7500 + 19800 4 % 7500 x 19800 200
—27 (33)

where v is an obstacle parameter, Ay and Ax are shape parameters of hill B, H is
the height of the hill B with respect to the link, r; is the distance from the first

station to hill B, and ry is the distance from the hill B to the second station.

vy [dB]
80 50 40 30 20 20 16 A2 -8B B
0.2 03 04 05 07 0708 1 2 3 @
Y —

Figure 3.5: obstacle parameter to basic attenuation factor conversion

v=2.7=>vy=—-9dB (3.4)

99

3. PROTOTYPE

where v is a obstacle parameter and v, is a basic attenuation factor.

H 260
W= (Ho) ! (104.3) s1.4dB (3:5)

where W is an attenuation factor, H is the height of the hill B with respect to the

link, and Hj is a specific clearance.

Influence of hill A

For estimation of contribution to attenuation of the link by the hill A is considered

an imaginary link between the first station and top of the hill B.

1| ri(r—r) \f \/ 3000(7500 — 300)
Hy= /5[Ax——2 =/24/6 = 52. .
0 \/; r 3 7500 52.9m (36)

where Hj is a specific clearance, A\ is a wavelength, r; is the distance from the first

station to hill A, and r is the total distance of the imaginary link between the first

station and hill B.

2 2 2
2722.023&701 (1 T1) C/l—*— H A,ZE .

Az? Hy Cr 1y drry Ay
2 2 _ 2
_ 2.02\3/ 60 3000 (1 _ 3000) </1 . 90 1000 _
A1000% 52.9 3000 + 4500 4 x 3000 x 4500 60
=31 (3.7)

where v is an obstacle parameter, Ay and Ax are shape parameters of the hill A,
H is the height of the hill A with respect to the imaginary link, r; is the distance
from the first station to hill A and rs is the distance from the hill A to the hill B.

v=231=>vy=—-7dB (3.8)

60

3.7. Experimental radio link

where v is an obstacle parameter and vy is a basic attenuation factor.

H -90
W = vy (1 Ho) 7 (52.9) 8.9d (3.9)

where W is an attenuation factor, H is the height of hill A with respect to the

imaginary link, and Hy is a specific clearance.

Influence of hill C

For estimation of contribution to attenuation of the link by the hill C, an imaginary

link between the top of hill B and the second station is considered.

1 [mer—mr) [1 \/ 7500(19800 — 7500)
o= \3\V A V3V0 19300 m (3.10)

where Hj is a specific clearance, X is a wavelength, ry is the distance from the top

of hill B to the hill C and r is the total distance of the imaginary link between hill

B and the second station.

A 2 2 H AQ
av = 2.02¢ 2L 1 (1— &)C/H A

Az? H, 1+ 7 driry Ay
o \3/ 70 75007 (1 7500)2 \4%1 B 50 20002
T A2000% 104.3 7500 + 12300 4 % 7500 x 12300 70
=36 (3.11)

where v is an obstacle parameter, Ay and Ax are shape parameters of the hill C,
H is the height of the hill C with respect to the imaginary link, r; is the distance
from the hill B to the hill C and r; is the distance from the hill C to the second

station.

61

3. PROTOTYPE

v=23.6=>vy=—6dB (3.12)

where v is a obstacle parameter and vy is a basic attenuation factor.

0 50
o (1—) = 6(1- =2 = —9.1dB 1
W UO(H0> 6(96.5) 9.1d (3.13)

where W is an attenuation factor, H is the height of the hill C with respect to the

imaginary link, and Hj is a specific clearance.

Influence of hill D

For estimation of contribution to attenuation of the link by the hill D, an imaginary

link between the top of the hill C and the second station is considered.

1 [(mr—r) [1 \/ 6000(13300 — 6000)
Hy= /o222 2 6 —81.2 3.14
0= \3 r 3 13300 m (3.14)

where Hj is a specific clearance, \ is a wavelength, r; is the distance from the hill

C to the hill D and r is the total distance of the imaginary link between hill C and

the second station.

Ay 12 2 H Az
v=202¢ 241 (1 &)C/H L

A2 Hy \" 1141y driry Ay
2 2 2
_ 2.02\3/ 50 6000 (1 _ 6000) (/1 . 30 1500 _
A1500% 81.2 6000 + 7300 4 x 6000 x 7300 50
=29 (3.15)

where v is an obstacle parameter, Ay and Ax are shape parameters of the hill D,
H is the height of the hill D with respect to the imaginary link, r; is the distance
from the hill C to hill D and r; is the distance from the hill D to the second station.

62

3.7. Experimental radio link

v =29 => v, = —85dB (3.16)

where v is a obstacle parameter and vy is a basic attenuation factor.

jt 30
o (1- Y= —85(1— 2L = —5.4dB 317
w ”0(HO) (81.2) (3.17)

where W is an attenuation factor, H is the height of the hill D with respect to the
imaginary link, and Hy is a specific clearance.
Wit =Was+Wg+We+Wp=-189—31.4—9.1 — 5.4 =064.8 = 65dB (3.18)

The total attenuation caused by the obstacles is estimated in equation 3.18 to be

65 dB.

3.7.3 Total propagation attenuation

is estimated as a sum of the free space attenuation and contribution by obstacles.

In our case the estimated attenuation is (96465) dB = 161 dB

63

3. PROTOTYPE

Line-of-Sight Mapped To Surface Elevation Profile Total Distance: 27.3km
— Surface Elevation (m) = Line of Sight Elevation (m) Elevation Difference: -171.2m
500
. 400
g
8
= 300
3
]
§ 200
5
[5]

100

0
O AN M al w3 oB oh 1D gD 9P o1 w1 a® 2% D WD M @7 07 22k p ,ﬁ,.‘-ﬂ 2 5P '1.‘-”1

Distance (km)

Figure 3.6: Terrain profile for the RF link between Station OE3BIA, Locator:JN88af,
on the left and Station OE1XTU, Locator:JN88ee, on the right.

64

CHAPTER

Programs

In this chapter, four individual programs are described. The first two - "FM
receiver" and "FSK prototype" - could be considered as development stages and

the last two - "transceiver" and "BER simulator" - as working prototypes.

4.1 FM receiver

At the very beginning, there was a need to connect the LimeSDR to the computer

and validate its functionality.

A software (SW) collection called Lime Suite [14] was installed. It contains drivers
for the LMS7002M transceiver radio-frequency integrated circuit (RFIC), and other
tools for developing with LMS7-based hardware such as Lime SDR.

The FM receiver program was created in a graphical tool GNU radio which provides

various signal processing blocks such[23]:

« analog modulation

« audio interface

65

4.

PROGRAMS

66

 digital modulation

channel model blocks

« packet communication

« FEC

« FFT

e voice coders and decoders

Options
Title: UHD WEFM Receive
Author: Example
Description: WEFM Receive
‘Output Language: Python
‘Generate Options: QT GUI

Parameter
Id: samp_rate
Label: Sample Rate
Value: 10M
Type: Float
Short ID: s

Id: freq

Label: Default Frequency
Value: 103.4M

Type: Float

Shert ID: f

Id: gain

Label: Default Gain
Value: 1

Type: Float

Shert ID: g

10

LimeSDR Source (RX)
RF frequency: 103M
Sample rate: 10M
Oversample: Default

QT GUI Range
Id: tun_fregq
Label: UHD Freq (MHz)
Default Value: 103
Start: 87.9
Stop: 108.1
Step: 1

Gain: 1

‘Cutoff Freq: 50k

Window: Kaiser

Low Pass Filter

Sample Rate: 10M

Transition Width: 50k

Beta: 6.76
QT GUI Range
Id: fine

Label: Fine Freg (MHz)
Default Value: 0
Start: -1

Stop: 1

Step: 10m

Figure 4.1: FM receiver in GNU

Rational Resampler
Interpolation: 48
Decimation: 100
Taps:

Fractional BW: 0

QT GUI Frequency Sink

FFT Size: 1,024k
9 center Frequency (Hz): 103M
Bandwidth (Hz): 101

'WBFM Receive
Quadrature Rate: 480k
Audio Decimation: 10

QT GUI Range
Id: variable_cutoff freq
Default Value: 50k
Start: 0
Stop: 500k
Step: 50

QT GUI Range
Id: variable_transition_width
Default Value: 50k
Start: 100
Stop: 500k
Step: 50

QT GUI Range
Id: velume
Label: Volume
Default Value: 1
Start: 0

Stop: 10

Step: 100m

radio

Audioc Sink
Sample Rate: 48 kHz

The Lime SDR was connected with a computer via USB. To the LimeSDR was

connected a whip antenna. The block structure on figure 4.1 was done according

to an example available on [15]. The LimeSDR Source (RX) block sets parameters

of the SDR. When a proper frequency was set, the tuned radio station was audible

via computer speakers.

4.2. FSK prototype

4.2 FSK prototype

In order to learn how the liquid-dsp library and Lime Suite work, and how to
interface between them, the first C++ program prototype was written with one of
the simplest digital modulations - the frequency shift keying (FSK). The starting

point was a code skeleton serving RF frontend settings.

For time samples creation of the FSK modulated signal, the fskmodem module of
liquid-dsp library was used. The module brings objects fskmod (modulator) and
fskdem (demodulator). These objects are returned by functions fskmod_create
or fskdem_create respectively. Both these functions accept three parameters:

number of bits per symbol, number of samples per symbol, and frequency spacing.

The objects of the modulator and demodulator were defined with basic settings.
Single bit per symbol to have just two separate frequencies in the signal. Four

samples per symbol and a default frequency spacing of 0.2.

Function fskmod_modulate has three parameters: the modulator object, the
input symbol, and a pointer to a transmit buffer. This function fills the buffer
with complex time samples of the desired symbol which needs to be passed to the

LimeSDR. Function fskdem_demodulate works similarly with the demodulator

object and receive (RX) buffer as parameters and received symbol as return value.

4.2.1 LimeSDR usage

Usage of LimeSDR is provided by LimuSuite library. The initialization procedure
is following. An array of type 1ms_info_str_t needs to be created to hold
information about all potential connected LimeSDRs. In this case, only one is used,
but the array is prepared for up to eight devices. The following functions must be

executed for initialization and setting up the LimeSDR:

67

4.

PROGRAMS

68

The function LMS_GetDeviceList with the mentioned array as its argument
searches for connected LimeSDRs. The array is filled with information about all

discovered LimeSDRs and a number of discovered devices is returned.

A pointer to data type 1ms_device_t needs to be prepared for addressing the

desired device. The pointer is used as an argument for all the following functions.

A function LMS_Open accepts the memory address of the device pointer and the
information about the discovered LimeSDR. Execution of the function makes the

device pointer point on the opened LimeSDR.

A LMS_Init function initializes the opened device with default settings. Function
LMS_EnableChannel with either LMS_CH_TX or LMS_CH_RX macro as its
argument enables transmit (TX) or RX channel. Function LMS_SetSample-
—Rate sets sample rate of the SDR. the functions LMS_SetLOFrequency, and

LMS_SetAntenna set properties for particular channel.

Both, TX and RX gain are adjustable using one of the functions LMS_SetNormali-

—-zedGain and LMS_SetGaindB depending on desired units. [18§]

For the data passage to the SDR, an object of class 1ms_stream_t representing
the stream of time samples has to be created. The object has the following attributes:
channel, fifoSize, throughputVsLatency, 1sTx, and dataFmt (data
format of the time samples). An object of class 1ms_stream_meta_t could be

defined for the precision timing of the transmission.

Once the stream is set by function LMS_SetupStream and started by function
LMS_StartStream, the transmit buffer containing I and Q samples of the desired
signal could be transmitted using function LMS_Send- -Stream. In case of
receiving a function LMS_RecvStream fills the RX buffer with received I and Q

samples.

4.2. FSK prototype

An important note is, that functions LMS_SendStream and LMS_RecvStream
accepts as arguments buffers of interleaved I and) samples and a number of
samples, but the number of samples means number of I and Q pairs. Thus the

number of samples shall be half the buffer length.

The stram is closed by function LMS_StopStream and the object is destroyed
by function LMS_DestroyStream after the transmission. The SDR is closed by

function LMS_Close before the program terminates.

4.2.2 liquid-dsp and LimeSuite data handover

An important part of the program is the handover of time samples between the two li-
braries. The liquid-dsp works with proprietary data type 1iquid_float_complex.
The LimeSuite on the other hand uses standard float. The data stream consists
of repeating I and QQ samples where I sample matches the real part of the complex

number and Q sample matches the imaginary part.

The buffer of complex numbers working with liquid-dsp functions is half the size of
the real numbers buffer working with LimeSuite. The conversions are done in for

loops, see the following code examples.

ligquid_float_complex complex_i (0, 1);
ligquid_float_complex c_buffer[c_buffer_len];
float r buffer[2+c_buffer_ len];

//complex to real buffer conversion

for (int 1 = 0; i < c_buffer_len; i++) {
r buffer[2+xc_buffer len+2+xi] = c_buffer[i].real();
r_buffer[2xc_buffer_len+2+i+1] = c_buffer[i].imag();}

69

4. PROGRAMS

//real to complex buffer conversion
for (int i = 0; 1 < c_buffer_ len; i++) {
c_buffer[i] = r_buffer[2+xi] +

r_buffer[2+i+1] % complex_i.imag();}

4.3 Transceiver

The transceiver is the program, that transmits or receives the simplified AWRAN
frame described in the chapter 3.2. It writes possible settings to the terminal (see
fig. 4.2) when is called with argument help. Otherwise is started as a transmitter
or receiver using arguments TX6mPTT or RX respectively. The default mode is

RX.

marek@RPX-100: fopt/build/thesis/OFDMscheme $ sudo ./RPX-18@-transciever help
Options for starting RPX-188-transciever

MODE :
RX for receive mode

TX6mPTT for transmit mode with PTT with bandpass filter for 58-54 MHz

CYCLIC PREFIX:
4, 8, 16 or 32 for 1/n cyclic prefix

PHY MODE :
Number 1 to 14 for PHY mode (applies only for TX mode)

MESSAGE :
String to be transmitted (applies only for TX mode)

Figure 4.2: RPX-100-transciever with argument help

4.3.1 TX6mPTT mode

When is started in TX mode it accepts three additional arguments: CP length,

PHY mode, and a message string.

70

4.3. Transceiver

The CP length argument could be 4, 8, 16, or 32. The number is a denominator
of the desired CP length. This number defines the sample rate of the SDR and
affects the number of transmitted OFDM symbols.

The payload length of the frame depends on the number of OFDM symbols as well
as on the selected PHY mode which are specified in chapter 2.2. The PHY mode is
a third argument of the program and could be set anywhere from one to fourteen.

The default PHY mode 1 is used when the argument is not used.

The last accepted argument is a message of type string. For the transmission of
multiple words, quotation marks must be used. When the message is not specified,

the default message "OE1XTU AWRAN at 52.8 MHz" is transmitted.

If the message argument is longer than the payload length with current settings

(CP and PHY mode), only the corresponding part is accepted and transmitted.

4.3.2 RX mode

When is started in RX mode it accepts only one additional argument - CP length
(see 4.3.1). Then enters the infinite reception loop. Once a frame is recognized, its
header and payload are printed into the terminal by a callback function, see fig.
4.3.

##*x*% callback invoked!

header valid
payload valid

Received header:
2600600000

Received payload:
OE1XTU AWRAN at 52.8 MHz

payload len: 1559

Figure 4.3: Received frame

71

4.

PROGRAMS

72

4.3.3 Transmission over test link

Unfortunately, neither of the transmitted OFDM frames was actually received by
the other station on the test link described in chapter 3.7. The reason is insufficiently
strong PA in the RF frontend. The RPX-100 is under ongoing development and
this part is not ready yet.

There is another software running on the RPX-100 which shows a waterfall graph
of the transmission band. When a transceiver is started, on the graph is visible
the calibration procedure of the SDR as a small peak close above the noise floor
caused by powered on PA amplifying the local oscillator signal. This indicates that
some of the transmitted energy is actually received. And it is proven by successful
transmission and reception of a narrowband FSK signal transmitted by the FSK

prototype described in chapter 4.2.

The OFDM frame has a very broadband signal, compared to the FSK. Thus the
small power produced by the PA is spread across the band and hidden under the

noise.

The transceiver was modified to transmit the frame one hundred times in a row,
thus the transmission takes one full second and is observable on the waterfall
graph. Look at figure 4.4, the bright line indicates the calibration procedure, then
is followed by vanished broad line and after the one-second OFDM transmission

ends, the bright line appears again.

4.3.4 Program structure

In the main function, program arguments are parsed and control variables are set
accordingly. Then the LimeSDR initialization and all settings are done as described
in chapter 4.2.1 in function SDRinit. The sample rate is set according to selected

CP. The calculation for CP i is done in equation 4.1 and all the possibilities

4.3. Transceiver

51.000 MHz RX: 52,000 MHZ | TX: 52.000 MHz 53.000 MHz
10

Figure 4.4: Waterfall spectrogram of received OFDM signal across the test link

CP | number symbols sample rate
126 3328000
s |28 3225600
=130 3264000
+ | 31 3273600

Table 4.1: Sample rate settings according to selected CP

are listed in table 4.1. In case of successful initialization either sendFrame or

frameReception function is called, depending on selected operation mode.

symbols 1+CP 1024 x 26 x (1 + 1
gp - TFFT X Ny bois X (1+CP) (+4):3328000 (4.1)
tframe 10 ms

If RX mode is selected, the reception is done in an endless loop. If TX mode
is selected, in the sendFrame function executes frameAssemble which fills
transmit buffer with time samples using liquid-dsp and passes the buffer for the
actual transmission to the function start SDRTXstream. After the transmission,
the SDRinit function is called again with the RX settings which disables PA on
RF front end. Before termination of the program, the LimeSDR is disconnected by

calling function LMS_Close.

All these functions are described in chapter 5.

73

4. PROGRAMS

The terminal output with enabled debug messages (see 5.1) for RX mode is on fig.
4.5 and for TX mode is on fig. 4.6.

marek@RPX-100: /opt/build/thesis/OFDMscheme $ sudo ./RPX-108@-transciever RX 16
main - program started
Starting RPX-188-transciever with following setting:
Mode: RX
cyclic prefix: 16

main - logger initalized

main - first log message saved

setSampleRate - setSampleRate started

Reference clock 40.80 MHz

Selected RX path: LNAW

LMAL has no connection to RF ports

Rx calibration finished

frameReception - frameReception started
complexFrameBufferLength - complexFrameBufferlength started
complexSymbolBufferLength - complexSymbolBufferlLength started
frameSymbols - frameSymbols started

frameSymbols - symbolCnt: 30

frameReception - buffers initialized

subcarrierAllocation - subcarrierAllocation started
frameReception - subcarrierAllocation exited; allocation_array defined
frameReception - frame synchronizer created

frameReception - entering reception loop

frameReception - r_sync_buffer filled

frameReception - r_sync_buffer[8]: ©@.808195318
frameReception - real buffer converted to complex buffer
frameReception - synchronization ended

frameReception - r_sync_buffer filled

frameReception - r_sync_buffer[8]: ©.00145489
frameReception - real buffer converted to complex buffer

frameRarentinn - cuncrhranizatinn endad

Figure 4.5: termial output of RPX-100-transceiver in RX mode

4.4 BER simulator

The BER simulator program is based on the transceiver. All SDR related chunks
of code were removed and the frame assembling part with frame synchronizing part

were interconnected by an artificial channel.

74

4.4. BER simulator

marek@RPX-100: /opt/build/thesis/OFDMscheme $ sudo ./RPX-10@-transciever TX6mPTT 32 8 "Hello world!"
Starting RPX-108-transciever with following setting:
Mode: TX6mPTT

cyclic prefix: 32

PHY mode: 8

Reference clock 48.8@ MHz
Selected TX path: Band 2

Tx calibration finished
frameAssemble - frame assembled
ofdmflexframegen:

num subcarriers 1024
* NULL 464
* pilot 30
* data 480
cyclic prefix len 32
taper len 8
properties:

* mod scheme
* fec (inner)
* fec (outer)
* CRC scheme

guadrature amplitude-shift keying (16)
convolutional r2/3 K=7 (punctured)
none

none

frame assembled ves
payload:

* decoded bytes 4319

* encoded bytes 6480

* modulated syms 12960
total OFDM symbols 31

* 5@ symbols 2 [@ 1056

* 51 symbols 1@ 1056

* header symbols 1@ 1856

* payload symbols : 27 @ 1056
spectral efficiency : 1.8555 b/s/Hz
Reference clock 48.8@ MHz
Selected RX path: LNAW
LNAL has no connection to RF ports
Rx calibration finished

Figure 4.6: terminal output of RPX-100-transceiver in TX6mPTT mode

In the first part of the main function are four nested for loops. In the inner one,
artificial channel and frame reception is executed for all simulated SNRs. The
second is responsible for going thru all the PHY modes such, that a new frame is
assembled for each PHY mode, and then the assembled frame enters the inner loop

which executes the artificial channel and frame reception.

The second most outer for loop is responsible for going thru all CP lengths. All
this together simulated all the possible settings of the transceiver with all desired

SNRs.

75

4. PROGRAMS

The BER is calculated for each combination and stored in a three-dimensional
(CP, PHY mode, and SNR) global array BER_1o0g. Because usually, desired BER
values are very low (eg. 1€9 meaning one error bit per one billion bites) a statistic

over a single frame is not sufficient.

For increased resolution, the final outer for loop was added. It executes alterMessage
function which creates a new random payload and repeats the whole process accord-
ing to a number stored in macro SIMULATION_REPETITIONS. All the resultant

BER values are summed up in the BER_1og array.

After that is done, another three nested for loops goes thru the BER_1og array
and divide each record by the number of repetition. This computes an average of

all results.

At the end of the program, function exportBER which stores the results into a

.csv file is executed.

The BER is considered to be one when the frame is not recognized at all or is
not decodable. If the frame is decoded, function calculateBER compares the
received payload with the transmitted one on a bit-to-bit basis. The BER is the

number of unmatched bits to the total number of payload bits.

The liquid-dsp channel enables broad possibilities for setting different channel
properties. In this version only SNR was taken into account, but for further
investigation also frequency offsets, fading, or multi-path propagation modes could

be set.

Because the simulation, especially with a high number of repetitions, takes a long
time, a note is written to the terminal output each time the second outer for loop

starts with an updated CP number.
A simulation with 1000 repetitions was launched across SNRs 0 to 25. Plots of

76

4.4. BER simulator

the results are in figures 4.7 and 4.8. It is clearly visible that with a higher bit
rate (used in higher-number PHY modes, see table 2.2) a higher SNR is required
to achieve low BER.

There are no visible variations between different CPs. There would be interesting
to play around with multipath parameters of the artificial channel and observe

their impact on the performance.

7

4. PROGRAMS

PHY mode 1
10° T T T T
CP14
CP 18
T | ——CP 116
o 4 CP1/32
u 1p°® ‘ 1
] 5 10 15 20 25
SR (dB)
PHY mode 3
10° \ T T T
x
-5 4
w10
] 5 10 15 20 25
SNR (dB)
PHY mode 5
10° — \.\ " T T
xz 1
i 10°° | :
] 5 10 15 20 25
SR (dB)
PHY mode 7
10° . - T T
T .
-5 4
W qp \
0 5 10 15 20 25

78

SNR (dB)

PHY mode 2
\\\
i) 5 10 15 20 25
SNR (dB)
PHY mode 4
5 10 15 20 25
SNR (dB)
PHY mode 6
5 10 15 20 25
SNR (dB)
PHY mode 8
5 10 15 20 25

SNR (dB)

Figure 4.7: BER simulation outcome - PHY modes 1 to 8

4.4. BER simulator

PHY mode 9

10° "
i 1001 \ 1
0 10 15 20 25
SNR (dB)
o PHY mode 11
10 ; . .
o N
Sk 4
1o \
0 10 15 20 25
SNR (dB)
o PHY mode 13
10 ; . .
% 10°°F \-_.]
@ \
0 10 15 20 25
SNR (dB)

PHY mode 10

10° "
% 10-5 \'\ g
0 10 15 20 25
SNR (dB)
PHY mode 12
10° ‘ " "
o
5 4
o
10 15 20 25
SNR (dB)
PHY mode 14
100 . . .
m“"‘ CP 1/4 \
w 1p5 CP 1/8 ; 1
CP 1/16 \
CP 1/32
10 15 20 25
SNR. (dB)

Figure 4.8: BER simulation outcome - PHY modes 9 to 14

79

CHAPTER

Function set

Initially, all the code was written in a linear manner such, that any revisions and
modifications were progressively more difficult. The need for a new structure of
the code was progressively raising. The code was reviewed and several functions
were defined with the aim to create building blocks that make upcoming program
versions and derivations easier to create, read and debug. These functions are

described in this chapter.

5.1 Debug messages

One major thing that all the functions have in common is a condition i f (PRINT).
The PRINT is a macro that can be set either to t rue or false depending if the
debug messages are needed or not. The command following the condition prints
into the terminal output name of the function where the program currently is and
the last action that was performed in format

functionName - last performed action.

81

5.

FUNCTION SET

82

5.2 setSampleRate

void setSampleRate(int cyclic_prefix);

The sample rate of the SDR can not be hardcoded in the program because it needs
to be adjusted together with the CP in order to maintain the duration of the frame

at 10 ms. This function modifies directly a global variable sampleRate.

5.3 SDRinit

int SDRinit (double frequency, double sampleRate, int modeSelector,

double normalizedGain);

This function initializes the LimeSDR as described in 4.2.1.

5.4 defineFrameGenerator

ofdmflexframegen DefineFrameGenerator (int dfg_cycl_pref, int

dfg_PHYmode) ;

The frame generator object returned by the function is specified according to

selected PHY mode and CP.

Although some parameters like the number of subcarriers, CP or taper length are
direct parameters of the ofdmflexframegen_create function within the liquid
library, for the full definition of the frame generator a lot of code is needed. Other pa-
rameters are encapsulated in properties structure ofdmflexframegenprops_s
which needs to be created and set according to selected PHY mode and the

subcarrier allocation array needs to be created and filled.

5.5. subcarrierAllocation

5.5 subcarrierAllocation

void subcarrierAllocation (unsigned char =xarray);

This function accepts the pointer to the allocation array as an input parameter,
which is needed for the frame generator and synchronizer definition. The imple-
mented scheme uses a fixed number of subcarriers so additional information is
not needed. Inside the function a for loop is found which marks the entries in
the array with zeros for unused subcarriers, ones for pilots, and twos for the data

subcarriers.

5.6 frameAssemble

void frameAssemble (float *r_frame_buffer, int cyclic_prefix,

int phy_mode);

The frameAssemble is a large function accepting a pointer to buffer for real time-
samples of the whole frame and CP with PHY mode. The function reads global
variable message and do all the steps needed to fill the buffer with time samples

ready to stream into LimeSDR.

5.7 frameReception

void frameReception (int cyclic_prefix);

The frameReception creates a synchronizer object of the liquid library. Then
continuously translates real time-samples from SDR into complex samples for the
synchronizer object and executes the synchronization. Every time the synchronizer
recognizes a frame in the received signal, a callback function specified in the

synchronizer object is invoked and executed.

83

5.

FUNCTION SET

84

5.8 frameSymbols

int frameSymbols (int cyclic_prefix);

This a very simple function that return number of OFDM symbols in one frame

according to chosen CP using switch - case structure.

5.9 payloadLength

uint payloadLength (int cyclic_prefix, int phy_mode);

This function returns the length of payload according to selected CP and PHY

mode.

A switch - case structure selects number of OFDM symbols that carries the
payload. Then another switch - case computes how many bits are modulated
on one subcarrier according to selected modulation and FEC. Both these numbers
are multiplied together with the number of data subcarriers and divided by 8 to

obtain bytes instead of bits.

5.10 complexSymbolBufferLength

uint complexSymbolBufferLength(int cyclic_prefix);

This function simply calculates and returns the number of complex samples per

OFDM by the formula (1 + CP) X FFTjeng.

5.11 complexFrameBufferLength

uint complexFrameBufferLength (int cyclic_prefix);

5.12. printByteByByte

This function returns the number of a complex symbol across the whole frame. It

calls complexSymbolBufferLength and frameSymbols and multiplies their results.

5.12 printByteByByte
void printByteByByte (unsigned int payload_len, unsigned char
*transmitted, unsigned char xreceived);

This function was defined for debugging of BER simulator code. It accepts pointers

on transmitted and received char arrays with their length.

All the transmitted and receiver bytes are printed into the terminal as decimal

numbers.

5.13 sendFrame

void sendFrame (int cyclic_prefix, int phy_mode);

The sendFrame function creates a buffer for storing all real time-samples of the
frame, invokes frameAssemble function which fills that buffer, sets the sampling

rate of the SDR and passes the buffer for transmission.
startSDRTXStream int startSDRTXStream (int *tx_buffer, int FrameSampleCnt) ;

This function passes the tx_buffer into the LimeSDR as described in 4.2.1.

5.14 artificialChannel

void artificialChannel (int cyclic_prefix);

This function was created for the BER simulation. It works with global buffers of

real time-samples before_cahnnel_buffer and after_cahnnel_buffer.

85

5.

FUNCTION SET

86

The object channel_cccf is created and SNR is set according to global variable
artificial_SNR, then the first buffer is converted to complex numbers. The
channel is then executed over the complex buffer and then converted again into

real buffer for frameReception function.

5.15 calculateBER

float calculateBER (unsigned int payload_len, string transmitted,

unsigned char =*received);

This function is meant to be called from a callback function for BER simulation.
The callback function must handle cases when the frame was recognized but
synchronization was not successful. The function itself goes bit-by-bit over the
payload and compares the transmitted message with the received one. At the end

divides the number of errors by the number of bits and pass the result.

5.16 exportBER

int exportBER (void);

Calling this function exports the BER_1og array into a .csv file in folder BER_calculation_out
called BER_simulation_currentDateAndTime.csv. Before the function is
called is necessary to divide all the values of BER_1o0g by the number of repetitions

of the BER calculation.

5.17 alterMessage

string alterMessage (int payload_len);

5.17. alterMessage

While the channel is simulated many times for increasing the resolution of BER
results, this function alters the global string message for increasing the credibility

of the simulation.

87

CHAPTER

Conclusion

This work investigates the telecommunication standard IEEE 802.22 WRAN and
on its basis creates a new standard for access to the amateur radio network
HAMNET. This new standard was named Amateurradio Wireless Regional Area
Network (AWRAN), and is designed to operate in the 6 m, 2 m, and 70 cm bands
with 2 MHz, 4 MHz, and 10 MHz BW. The OFDM parameters of WRAN have
been adapted to these BWs.

AWRAN can accommodate up to 63 subscribers under a single BS and allows up to
four overlapping BSs to operate simultaneously on a single band. For this purpose,
fourteen management messages have been defined for communication between BSs

and subscribers providing efficient allocation of the available spectrum.

The simplified frame structure of the defined standard has been implemented on
the SDR using the liquid-dsp library. A test link has been established, which
unfortunately is not fully functional yet. Only narrowband FSK transmission has
been successfully adopted. For wideband OFDM transmission, the power is too

spread out for successful frame reception.

89

6.

CONCLUSION

90

For full-scale AWRAN implementation, the chosen liquid-dsp library is unsuitable.
However, the program is divided into basic control functions that will allow easy

adaptation of new changes.

A program simulating the BER dependence on SNR was prepared and the first
results are included in this thesis. This program can be easily modified to test

other wireless channel phenomena such as multipath propagation or fading.

1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8

2.1
2.2
2.3

3.1
3.2
3.3
3.4
3.5
3.6

4.1

Types of networks [27] . .
FDM vs OFDM [21] . . .

List of Figures

OFDM modulation/demodulation using IDFT/DFT [21]

Multi-path propagation, guard interval and cyclic prefix [21]

peak to average power ratio
QPSK Gray mapping [10]
64-QAM Gray mapping [10]
FEC impact on BER [3] .

SF and frame structure [26]

24] .

SF preamble using four STS and § CP length[10]

frame preamble using two LTS and ; CP length[10]

RPX-100 block diagram [11]
LimeSDR block diagram [15]

LMS7002M block diagram |

16] . o

HBICV antenna diagram [29]

obstacle parameter to basic

Terrain profile for the RF link between Station OE3BIA, Locator:JN88af,

on the left and Station OE1

FM receiver in GNU radio

attenuation factor conversion

XTU, Locator:JN88ee, on the right.

co =~ Ot = N

12
14
16

28
28
31

46
92
o4
o6
99

66

91

4.2
4.3
4.4
4.5
4.6
4.7
4.8

92

RPX-100-transciever with argument help . . .

Received frame

Waterfall spectrogram of received OFDM signal across the test link .

termial output of RPX-100-transceiver in RX mode

terminal output of RPX-100-transceiver in TX6mPTT mode

BER simulation outcome - PHY modes 1 to 8
BER simulation outcome - PHY modes 9 to 14

70
71
73
74
I0)
78
79

2.1

2.2
2.3
24
2.5
2.6
2.7
2.8
2.9
2.10
2.11
2.12
2.13
2.14
2.15
2.16
2.17
2.18
2.19

List of Tables

Supported CPs and corresponding number of symbols in frame and BW

[26] . . . 25
Supported modulations and coding rates 26
SCH form o o e e 29
FCH form 32
List of management messages 36
DS-MAP form o 37
US-MAP form o 38
DCD form v v o 38
UCD form 39
RNG-REQ form 39
RNG-CMD form o it 40
REG-REQ form 40
REG-RSP form e 40
BW-REQ form 41
RET-REQ form 41
SCW-FB form. 42
CPL form o 42
FA-MAP form 42
CO-REQ form 43

93

2.20 CO-RSP form

4.1 Sample rate settings according to selected CP

94

ADC

AM

AMI

APSK

ASK

AWGN

A-WRAN

AWRAN

BER

BPSK

BS

BW

CDMA

Cp

CPE

DAC

DCD

List of Algorithms

analog to digital converter
amplitude modulation

alternate mark inversion
amplitude and phase-shift keying
amplitude-shift keying

additive white Gaussian noise
advanced WRAN

Amateurradio Wireless Regional Area Network
bit error rate

binary phase-shift keying

base station

bandwidth

code division multiple access
cyclic prefix

customer premises equipment
digital to analog converter
downstream channel descriptor

95

DFT
DPSK
DS

E, / Np
ECC
EDC
EIRP
EM

FA
FDM
FDMA
FEC
FFT
FCH
FM
FMW
FPGA
FPRF
FSA
FSK
FT
GPIO
HAMNET

96

discrete Fourier transform
differential phase-shift keying
downstream

energy per bit to noise power spectral density ratio
error correction codes

error detection codes

equivalent isotropic radiated power
electromagnetic

frame allocation

frequency division multiplexing
frequency division multiple access
forward error correction

fast Fourier transform

frame control header

frequency modulation

frame management window

field programmable gate array
field porgrammable radio frequency
free space attenuation

frequency shift keying

Fourier transform

general purpose input-output

Highspeed Amateurradio Multimedia NETwork

IC

ID
IFFT
10

IoT

IQ

ISI
LFSR
LOS
LTS
MAN
MC-CDMA
MIMO
NLOS
NRZ
OFDM
OFDMA
OOK
ow
PA
PAPR

PCB

in-phase

integrated circuit
identification

inverse fast Fourier transform
input-output

Internet of Things

in-phase and quadrature

inter symbol interference
linear feedback shift register
line-of-sight

long training sequence
Metropolitan Area Network
multi carrier code division multiple access
multiple-input multiple-output
non line-of-sight

non-return to zero

Orthogonal Frequency Division Multiplex

Orthogonal Frequency Division Multiple Access

on-off keying

opportunistic window
power amplifier

peak to average power ratio

printed circuit board

PCM pulse code modulation

PHY physical layer

PLL phase locked loop

PM phase modulation

PPM pulse position modulation
PRBS pseudo-random binary sequence
PSK phase-shift keying

PWM pulse width modulation

Q quadrature

QAM quadrature amplitude-shift keying
QPSK quadrature phase-shift keying
RAN Regional Area Network

RF radio frequency

RFIC radio-frequency integrated circuit
RPi Raspberry Pi

RX receive

RZ return to zero

SCW self-coexistence window

SDR software-defined radio
SEC-DED single error correction - double error detection
SF superframe

SCH subchannel

SCH superframe control header

98

SM

SNR

STS

SW

TDM

TDMA

TPC

TTG

TV

TX

[8]@7D)

UsS

USB

WAN

WRAN

spectrum manager
signal-to-noise ratio

short training sequence
software

time division multiplexing
time division multiple access
transmit power control
transmit-receive turnaround gap
television

transmit

upstream channel descriptor
upstream

universal serial bus

Wide Area Network

Wireless Regional Area Network

99

Bibliography

Stefan Aust, R. Venkatesha Prasad, and Ignas G. M. M. Niemegeers. “IEEE
802.11ah: Advantages in standards and further challenges for sub 1 GHz
Wi-Fi”. In: (2012), pp. 6885-6889. poI: 10.1109/ICC.2012.6364903.

Rudolf Baumgartner. translation of Die HBIC'V Richtstrahlantenne. [Online;
accessed 5-August-2022]. DL1CU. 1969. URL: https : //www . ok2kkw .
com/hb9cv/hb9cv_1969.htm.

Dan Dong et al. “Joint source—channel rate allocation with unequal er-
ror protection for space image transmission”. In: International Journal

of Distributed Sensor Networks 13 (July 2017), p. 155014771772114. DOT:
10.1177/1550147717721145.

Adriana B. Flores et al. “IEEE 802.11af: a standard for TV white space
spectrum sharing”. In: IEEE Communications Magazine 51.10 (2013), pp. 92—
100. por: 10.1109/MCOM.2013.6619571.

Joseph D. Gaeddert. 2012. URL: https: //www . liquidsdr . org/
downloads/ligquid-dsp-1.0.0.pdf.

Joseph D. Gaeddert. liguidsdr.org making software radio portable since 2007.
URL: https://liquidsdr.org/. (accessed: 05.04.2021).

Paul Heckbert. Fourier Transforms and the Fast Fourier Transform (FFT)
Algorithm. Feb. 1995.

101

http://liquidsdr.org
https://liquidsdr.org/

8]

[10]

[11]

[12]

[13]

[14]

[15]

102

Systems lain Explains Signals and Digital Comms. What are Fast Fading and
Slow Fading? [Online; accessed 20-July-2022]. Youtube. 2020. URL: https:

//www.youtube.com/watch?v=Tm-Uyajcugs.

Systems lain Explains Signals and Digital Comms. What are Flat Fading and
Frequency Selective Fading? [Online; accessed 20-July-2022]. Youtube. 2020.

URL: https://www.youtube.com/watch?v=KiKPFT4rtHg.

“IEEE Standard - Information Technology-Telecommunications and infor-
mation exchange between systems-Wireless Regional Area Networks-Specific
requirements-Part 22: Cognitive Wireless RAN MAC and PHY specifications:
Policies and Procedures for Operation in the Bands that Allow Spectrum
Sharing where the Communications Devices May Opportunistically Operate
in the Spectrum of Primary Service”. In: IEEE Std 802.22-2019 (Revision
of IEEE Std 802.22-2011) (2020), pp. 1-1465. por: 10.1109/IEEESTD.
2020.9086951.

Bernhard Isemann. RPX-100. [Online; accessed 20-July-2022]. Austrian Radio

Amateur Association. 2022. URL: https://rpx—100.net/#.

Tao Jiang and Yiyan Wu. “An Overview: Peak-to-Average Power Ratio Re-
duction Techniques for OFDM Signals”. In: IEEE Communications Magazine
54.2 (2008), pp. 257-268. bOI: 10.1109/TBC.2008.915770.

Jaroslav Lacik. Antennas and Radio Links - Lecture 9: Propagation of Radio

Wawves for Terrestrial Radio Links, Surface and Space Wave. Apr. 2020.

Lime Microsystems Limited. Lime Suite. URL: https://wiki.myriadrf.

org/Lime_Suite. (accessed: 22. 01. 2021).

Lime Microsystems Limited. LimeSDR - USB - hardware description. URL:

https://wiki.myriadrf.org/LimeSDR-USB_hardware_description.

(accessed: 29. 03. 2022).

http://www.youtube.com/watch?v=Tm-Uyaj
https://www.youtube.com/watch?v=KiKPFT4rtHg
https://wiki.myriadrf.org/LimeSDR-USB_hardware_description

[16]

[17]

[18]

[19]

[20]

[23]

Lime Microsystems Limited. LMS7002M - FPRF MIMO Transceiver IC With
Integrated Microcontroller. URL: https://cz.mouser.com/datasheet/
2/982/1LMS7002M-Data—Sheet-v3.1r00-1600568.pdf. (accessed:
29. 03. 2022).

Wireless Excellence Limited. Comparing Microwave Links using 512-QAM,
1024-QAM, 2048-QAM, 4096-QAM. https://www.microwave—link.
com/tag/4096gam/. [Online; accessed 10-August-2022]. 2018.

LMS API - Quick start guide. [Online; accessed 5-December-2020]. lime

microsystems. 2017. URL: https ://usermanual . wiki/Document /

Ims7apiquickstartguide.1805960724.pdf.

Raspberry Pi Ltd. Raspberry Pi Foundation. URL: https://www.raspberrypi.

org/about/. (accessed: 25.03.2022).

Martha C. Paredes Paredes and M. Julia Fenandez-Getino Garcia. The
Problem of Peak-to-Average Power Ratio in OFDM Systems. URL: https:
//arxiv.org/pdf/1503.08271.pdf. (accessed: 15. 07. 2022).

Frode Bohagen Per Hjalmar Lehne. OFDM(A) for wireless communication.
RI Research Report. Telenor, 2008. 1SBN: 82-423-0614-1.

Dragan Poljak and Mario Cvetkovi¢. Chapter 2 - Theoretical Background: an
Outline of Computational Electromagnetics (CEM). Ed. by Dragan Poljak
and Mario Cvetkovi¢. 2019. DOI: https://doi.org/10.1016/B978-0—
12-816443-3.00010-8. URL: https://www.sciencedirect.com/
science/article/pii/B9780128164433000108.

GNU Radio project. GNU Radio Manual and C++ API Reference. URL:
https://www.gnuradio.org/doc/doxygen/page_components.

html#components_blocks. (accessed: 06. 07. 2022).

103

http://www.microwave-link
https://www.sciencedirect.com/
https://www.gnuradio.org/doc/doxygen/page_components

[24]

[25]

[26]

[27]

28]

[29]

[30]

[31]

[32]

104

Sohangjot Kaur Randhawa and Prof. Daljeet Singh Bajwa. “PAPR Reduction
in OFDM using PTS Technique”. In: International Journal of Engineering
Research Technology 6.7 (2017), pp. 466-468. 1SSN: 2278-0181.

Solwise. Surface elevation tool: Solwise ltd, URL: https://www.solwise.

co.uk/wireless-elevationtool.html. (accessed: 07. 04. 2022).

C. R. Stevenson et al. “IEEE 802.22: The first cognitive radio wireless regional
area network standard”. In: IEEE Communications Magazine 47.1 (2009),
pp. 130-138. DOL: 10.1109/MCOM.2009.4752688.

Justin Thiel. Metropolitan and Regional Wireless Networking. URL: https:
//www.cse.wustl.edu/~jain/cse574-06/ftp/wimax/. (accessed:

05.04.2021).

Ch.Radika Venkateswarlu S. Rani. “Channel Modelling- Parameters and
Conditions to be Considered”. In: International Journal of Engineering and

Manufacturing Science 7.2 (2017), pp. 1-8. 18SN: 2249-3115.

Wikimedia. hb9cv.svg. https : //commons . wikimedia .org/wiki /

File:Hb9cv.svg. [Online; accessed 10-August-2022]. 2011.

Wikipedia. Additive white Gaussian noise — Wikipedia, The Free Encyclope-
dia. http://en.wikipedia.org/w/index.php?title=Additive%
20white%$20Gaussian%20noise&0l1did=1051832268. [Online; ac-
cessed 10-August-2022]. 2022.

Wikipedia. Amateur radio — Wikipedia, The Free Encyclopedia. http :
//en.wikipedia.org/w/index.php?title=Amateur%$20radio&

01did=1101690277. [Online; accessed 11-August-2022]. 2022.

Wikipedia. Block code — Wikipedia, The Free Encyclopedia. http://en.
wikipedia.org/w/index .php?title=Block%20code&oldid=
1079065291. [Online; accessed 10-August-2022]. 2022.

http://co.uk/wireless-elevationtool.html
http://www.cse.wustl.edu/~jain/cse574-06/ftp/wimax/
http://en.wikipedia.org/w/index.php?title=Additive%25

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

Wikipedia. Carrier-to-noise ratio. URL: https://en.wikipedia.org/

wiki/Carrier—-to-noise_ratio. (accessed: 12. 07. 2022).

Wikipedia. Colors of noise — Wikipedia, The Free Encyclopedia. http :
//en.wikipedia.org/w/index .php?title=Colors%$200f%
20noise&01did=1100630200. [Online; accessed 10-August-2022]. 2022.

Wikipedia. Communication channel — Wikipedia, The Free Encyclopedia.
http://en.wikipedia.org/w/index.php?title=Communication%

20channel&oldid=1096192105. [Online; accessed 31-July-2022]. 2022.

Wikipedia. Convolutional code — Wikipedia, The Free Encyclopedia. http:
//en.wikipedia.org/w/index.php?title=Convolutional$%

20code&01did=1100051594. [Online; accessed 10-August-2022]. 2022.

Wikipedia. Crest factor. URL: https://en.wikipedia.org/wiki/

Crest_factor. (accessed: 15. 07. 2022).

Wikipedia. Error correction code — Wikipedia, The Free Encyclopedia. http:
//en.wikipedia.org/w/index.php?title=Error%20correction%

20code&01did=1098274639. [Online; accessed 10-August-2022]. 2022.

Wikipedia. Fading — Wikipedia, The Free Encyclopedia. http ://en.
wikipedia.org/w/index.php?title=Fading&oldid=1087212868.
[Online; accessed 31-July-2022]. 2022.

Wikipedia. Free-space path loss — Wikipedia, The Free Encyclopedia. http:
//en.wikipedia.org/w/ index .php?title=Free - space$%
20path%20loss&01did=1080664589. [Online; accessed 31-July-2022].
2022.

Wikipedia. Hadamard matric — Wikipedia, The Free Encyclopedia. http://
en.wikipedia.org/w/index.php?title=Hadamard%$20matrixé&

01did=1076843854. [Online; accessed 31-July-2022]. 2022.

105

http://en.wikipedia.org/w/index.php?title=Communication%25

[42]

[46]

[47]

106

Wikipedia. Multi-carrier code-division multiple access — Wikipedia, The Free
Encyclopedia. http://en.wikipedia.org/w/index.php?title=
Multi - carrier $20code - division % 20multiple $20access &

01did=972219240. [Online; accessed 10-August-2022]. 2022.

Wikipedia. Phase-shift keying — Wikipedia, The Free Encyclopedia. http:
//en.wikipedia.org/w/index .php?title=Phase—-shift %
20keying&oldid=1101144122. [Online; accessed 10-August-2022]. 2022.

Wikipedia. Punctured code — Wikipedia, The Free Encyclopedia. http :
//en.wikipedia.org/w/index.php?title=Punctured%20codes&
01did=1093456207. [Online; accessed 10-August-2022]. 2022.

Wikipedia. Quantization (signal processing) — Wikipedia, The Free En-
cyclopedia. http://en.wikipedia.org/w/index .php?title=
Quantization%20 (signal%20processing) &o0ldid=1084500420.
[Online; accessed 10-August-2022]. 2022.

Wikipedia. Raspberry Pi. URL: https://en.wikipedia.org/wiki/
Raspberry_Pi. (accessed: 25.03.2022).

Wikipedia. Spectral density — Wikipedia, The Free Encyclopedia. http://
en.wikipedia.org/w/index.php?title=Spectral%20densityé&
01did=1103158362. [Online; accessed 10-August-2022]. 2022.

Attachments

RPX-100-transceiver.h
RPX-100-transceiver.cpp
RPX-100-BER_ simulator.h

RPX-100-BER simulator.cpp

107

11.08.22 2:44 RPX-100-transceiver.h

/**

* C++ source of RPX-100-transceiver

*
* File: RPX-100-transceiver.h
* Author: Bernhard Isemann

* Marek Honek
*
*
*

Created on 21 Jul 2022, 16:20
**/

11 #include <sys/types.h>

12 #include <sys/stat.h>

13 #include <stdio.h>

14 #include <string.h>

15 #include <stdlib.h>

16 #include <fcntl.h>

17 #include <errno.h>

18 #include <unistd.h>

19 #include <sstream>

20 #include <syslog.h>

21 #include <string.h>

22 #include <iostream>

23 #include <fstream>

24 #include <cstdio>

25 #include <ctime>

26 #include <math.h>

27 #include <complex.h>

28 #include <time.h>

29 #include <chrono>

30 #include <cstring>

31 #include <bitset>

32 #include "stuff/ini.h"

33 #include "stuff/log.h"

34 #include <chrono>

35 #include "lime/LimeSuite.h"
36 #include "liquid/liquid.h"
37 #include "stuff/ServerSocket.h"
38 #include "stuff/SocketException.h"
39 #include <iterator>

40 #include <signal.h>

41 #include "stuff/Util.h"

42 #include "stuff/WebSocketServer.h"
43 #include <correct.h>

44 #pragma once

47 1ms_device_t *device = NULL;

50 #define SUBCARRIERS 1024
51 #define DATACARRIERS 480

54 #define TX_6m_MODE 6
55 #define RX_MODE ©

57 // print each step for debuggigng
58 #define PRINT false

59

60

61 // Radio Frontend - Define GPIO settings for CM4 hat module

62 uint8_t setRX = 0x18; // GPIO@=LOW - RX, GPIO3=HIGH - PTT off,

63 uint8_t setTXDirect = OxOF; // GPIOO=HIGH - TX, GPIO3=HIGH - PTT off, GPIO1=HIGH,
GPIO2=HIGH

64 uint8_t setTX6m = 0x@D; // GPIO@=HIGH - TX, GPIO3=HIGH - PTT off, GPIO1=LOW,
GPIO2=LOW

65 uint8_t setTX2m = 0x09; // GPIO@=HIGH - TX, GPIO3=HIGH - PTT off, GPIO1=LOW,
GPIO2=HIGH

66 uint8_t setTX70cm = OxOB; // GPIO@=HIGH - TX, GPIO3=HIGH - PTT off, GPIO1=HIGH,
GPIO2=LOW

67

68 uint8_t setTXDirectPTT = 0x07; // GPIOO=HIGH - TX, GPIO3=LOW - PTT on, GPIO1=HIGH,
GPIO2=HIGH

69 uint8_t setTX6mPTT = 0Ox05; // GPIO@=HIGH - TX, GPIO3=LOW - PTT on, GPIO1=LOW,
GPIO2=LOW

localhost:4649/?mode=clike 1/2

11.08.22 2:44
70

71

72
73

74

75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93

94
95
96
97
98
99
100
lo1
102
103

104
105
106
107
108
109
110
111
112
113
114
115
116

RPX-100-transceiver.h

uint8_t setTX2mPTT = 0x01; // GPIO@=HIGH - TX, GPIO3=LOW - PTT on, GPIO1=LOW,
GPIO2=HIGH
uint8_t setTX70cmPTT = 0x03; // GPIO@=HIGH - TX, GPIO3=LOW - PTT on, GPIO1=HIGH,

GPIO2=LOW

string modeName[9] = {"RX", "TXDirect", "TXém", "TX2m", "TX7@cm", "TXDirectPTT",
"TXemPTT", "TX2mPTT", "TX70cmPTT"};

uint8_t modeGPIO[9] = {setRX, setTXDirect, setTXé6m, setTX2m, setTX7@cm,
setTXDirectPTT, setTXemPTT, setTX2mPTT, setTX70cmPTT};

int error();
string exec(string command);

// Log facility

void print_gpio(uint8_t gpio_val);
stringstream msgSDR;

stringstream HEXmsg;

// Initialize sdr buffers
liquid_float_complex complex_i(0,1);
int samplesRead = 1048;

bool rxON = true;
bool txON = true;
int startSDRTXStream(float *tx_buffer, int FrameSampleCnt);

void frameAssemble(float *r_frame_buffer, int cyclic_prefix, int phy_mode, string
message);

void subcarrierAllocation (unsigned char *array);

ofdmflexframegen DefineFrameGenerator (int dfg_cycl_pref, int dfg_PHYmode);
int frameSymbols(int cyclic_prefix);

uint complexFrameBufferLength(int cyclic_prefix);

uint complexSymbolBufferLength(int cyclic_prefix);

uint payloadLength(int cyclic_prefix, int phy_mode);

double setSampleRate(int cyclic_prefix);

void sendFrame(int cyclic_prefix, int phy_mode, string message);

void frameReception(int cyclic_prefix);

int SDRinit(double frequency, double sampleRate, int modeSelector, double
normalizedGain);

int startSDRTXStream(int *tx_buffer, int FrameSampleCnt);

int callbackWhatsReceived(unsigned char *_header,
int _header_valid,
unsigned char *_payload,
unsigned int _payload_len,
int _payload_valid,
framesyncstats_s _stats,
void *_userdata);

localhost:4649/?mode=clike

2/2

11.08.22 2:45

OVWoOoNOUVEA WNR

A DA DWWWWWWWWWWNNNNNNMNNNMNNNNRPRPRPRPRRPEPRRRERRRE
WINPOOVONOOTUPAWNRPEPOOVONOCUP,WNRERPROOVONOOTUEA,WNEREO

44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72

73
74

RPX-100-transceiver.cpp

/ 3k 3k 3k 5k 3k 3k >k >k 3k 5k 3k ok 3k 3k >k >k 3k >k 3k ok 3k sk ok ok 3k >k 3k 3k 3k Sk ok sk sk >k 3k ok 3k sk ok sk ok >k sk ok 3k 3k 5k sk ok >k sk >k 3k 3k 3k sk ok >k sk >k 3k ok sk k ok >k ok >k ok ok ok k ok kok k ok

C++ source of RPX-100-transceiver

File: RPX-100-transceiver.cpp
Author: Bernhard Isemann

Created on 21 Jul 2022, 16:20

Predecessor
**/

*
*
*
*
*
* Marek Honek
*
*
*
*
*

RPX-100-synchronizer.cpp

#include "RPX-100-transceiver.h"

using namespace std;

int main(int argc, char *argv[])

{
if (PRINT)
cout << "main - program started" << endl;
// Default start values
string mode = "RX";
int cycl_prefix = 4;
int phy_mode = 1;
string message = "OELXTU AWRAN at 52.8 MHz";
// Default SDR values
double sampleRate = 3328000;
double normalizedGain = 1;
double frequency = 52.8e6;
int modeSel = RX_MODE;
if (argc == 1)
{
cout << "Starting RPX-100-transciever with default settings:\n";
cout << "Mode: RX" << endl;
cout << "Cyclic prefix: 1/4" << endl;
cout << endl;
cout << "type \@33[36m'RPX-100-transciever help'\@33[0m to see all options!"
<< endl;
}
else if (argc >= 2)
{
for (int ¢ = 1; c < argc; c++)
switch (c)
{
case 1:
mode = (string)argv[c];
if (mode == "RX")
{
cout << "Starting RPX-100-transciever with following setting:\n";
cout << "Mode: " << argv[c] << endl;
modeSel = RX_MODE;
}
else if (mode == "TX6mPTT")
{
cout << "Starting RPX-100-transciever with following setting:\n";
cout << "Mode: " << argv[c] << endl;
modeSel = TX_6m_MODE;
}
else if (mode == "help")
{
cout << "Options for starting RPX-100-transciever" << endl;
cout << endl;
cout << "\@33[36mMODE\@33[@m:" << endl;
cout << " \033[32mRX\033[@m for receive mode" << endl;
cout << endl;
cout << " \033[31mTX6mPTT\@33[@m for transmit mode with PTT

with bandpass filter for 50-54 MHz" << endl;

localhost:4649/?mode=clike

cout << endl;
cout << "\@33[36mCYCLIC PREFIX\@33[Om:" << endl;

11.08.22 2:45 RPX-100-transceiver.cpp

75 cout << " \033[32m4, 8, 16 or 32\033[0m for 1/n cyclic
prefix" << endl;

76 cout << endl;

77 cout << "\@33[36mPHY MODE\@33[0Om:" << endl;

78 cout << " \033[32mNumber 1 to 14\033[0m for PHY mode (applies
only for TX mode)" << endl;

79 cout << endl;

80 cout << "\@33[36mMESSAGE\@33[@m:" << endl;

81 cout << " \033[32mString to be transmitted\@33[@m (applies
only for TX mode)" << endl;

82 cout << endl;

83 return 0;

84 }

85 else

86 {

87 cout << "Wrong settings, please type \033[36m'RPX-100-
transciever help'\@33[0@m to see all options !" << endl;

88 return 0;

89 }

90 break;

91 case 2:

92 cycl_prefix = stoi((string)argv(c]);

93 if ((cycl_prefix == 4) || (cycl_prefix == 8) || (cycl_prefix == 16)
|| (cycl_prefix == 32))

94 {

95 cout << " cyclic prefix: " << cycl_prefix << endl;

96 cout << endl;

97 }

98 else

99 {

100 cout << "Wrong settings, please type \033[36m'RPX-100-
transciever help'\@33[0@m to see all options !" << endl;

101 return 0;

102 }

103 break;

104 case 3:

105 phy_mode = stoi((string)argv(c]);

106 if (phy_mode > © && phy_mode < 15)

107 {

108 cout << " PHY mode: " << phy_mode << endl;

109 cout << endl;

110 }

111 else

112 {

113 cout << "Wrong settings, please type \033[36m'RPX-100-
transciever help'\@33[0@m to see all options !" << endl;

114 return 0;

115 }

116 break;

117 case 4:

118 message = (string)argv[c];

119 break;

120 }

121 }

122 }

123

124 LogInit();

125 if (PRINT)

126 cout << "main - logger initalized" << endl;

127

128 Logger ("RPX-100-synchronizer was started.\n");

129 msgSDR << "Mode: " << modeSel << endl;

130 msgSDR << "Cyclic prefix: " << cycl_prefix << endl;

131 msgSDR << "PHY mode: " << phy_mode << endl;

132 Logger(msgSDR.str());

133 msgSDR.str("");

134 if (PRINT)

135 cout << "main - first log message saved" << endl;

136

137 sampleRate = setSampleRate(cycl_prefix);

138 if (sampleRate == -1)

139 return -1;

140

141

142 if (SDRinit(frequency, sampleRate, modeSel, normalizedGain) != 0)

143 {

localhost:4649/?mode=clike 2/13

11.08.22 2:45 RPX-100-transceiver.cpp

144 msgSDR.str("");

145 msgSDR << "ERROR: " << LMS_GetLastErrorMessage();

146 Logger(msgSDR.str());

147 cout << msgSDR.str() << endl;

148 }

149

150 if (device == NULL)

151 {

152 cout << "main - device is NULL" << endl;

153 }

154 else

155

156 if (modeSel == TX_6m_MODE)

157 {

158 sendFrame(cycl_prefix, phy_mode, message);

159 if (PRINT)

160 cout <<"main - sendFrame exitted" << endl;

161 }

162 if (modeSel == RX_MODE)

163 {

164 frameReception(cycl_prefix);

165 if (PRINT)

166 cout <<"main - frameReception exitted" << endl;

167 }

168 }

169

170 SDRinit(frequency, sampleRate, RX_MODE, normalizedGain);

171

172 // Close device

173 if (LMS_Close(device) == 0)

174 {

175 msgSDR.str("");

176 msgSDR << "Closed" << endl;

177 Logger(msgSDR.str());

178 }

179

180

181 return(9);

182 }

183

184

185 void sendFrame(int cyclic_prefix, int phy_mode, string message)

186 {

187 if (PRINT)

188 cout << "sendFrame - sendFrame started - cyclic_prefix: " << cyclic_prefix <<
"; phy_mode: " << phy_mode << endl;

189

190 int tx_buffer_len = 2*complexFrameBufferLength(cyclic_prefix);

191 if (PRINT)

192 cout << "sendFrame - complexFrameBufferLength exitted - buffer_len: " <«
tx_buffer_len << endl;

193

194 float tx_buffer[tx_buffer_len]; //buffer for whole frame

195 if (PRINT)

196 cout << "sendFrame - buffer initialized" << endl;

197

198 frameAssemble(tx_buffer, cyclic_prefix, phy_mode, message);

199 if (PRINT)

200 {

201 cout << "sendFrame - frameAssemble exitted" << endl;

202 cout << "sendFrame - tx_buffer[0]: " << tx_buffer[0] << endl;

203 }

204

205 if (PRINT)

206 cout << "sendFrame - setSampleRate exitted" << endl;

207

208

209 if (PRINT)

210 cout << "sendFrame - SDR has been set" << endl;

211

212

213 startSDRTXStream(tx_buffer, complexFrameBufferLength(cyclic_prefix));

214

215

216 if (PRINT)

217 {

localhost:4649/?mode=clike 313

11.08.22 2:45 RPX-100-transceiver.cpp

218 cout << "sendFrame - frame in tx_buffer has been transmitted" << endl;

219 }

220

221 }

222

223 void frameAssemble(float *r_frame_buffer, int cyclic_prefix, int phy_mode, string
message)

224 {

225 if (PRINT)

226 cout << "frameAssemble - frameAssemble started" << endl;

227

228 liquid_float_complex complex_i(0, 1);

229

230 unsigned int payload_len = payloadLength(cyclic_prefix, phy_mode); //depends on
PHY mode and cyclic prefix

231 if (PRINT)

232 {

233 cout << "frameAssemble - payloadLength exitted" << endl;

234 cout << "frameAssemble - payload_len: " << payload_len << endl;

235 }

236

237 uint c_buffer_len = complexSymbolBufferLength(cyclic_prefix); //depends on cyclic
prefix

238 if (PRINT)

239 cout << "frameAssemble - complexSymbolBufferLength exitted" << endl;

240

241 // create frame generator

242 ofdmflexframegen fg = DefineFrameGenerator(cyclic_prefix, phy_mode);

243 if (PRINT)

244 {

245 cout << "frameAssemble - DefineFrameGenerator exitted, frame generator
setted" << endl;

246 ofdmflexframegen_print(fg);

247 }

248

249 // buffers

250 liquid_float_complex c_buffer[c_buffer_len]; // time-domain buffer

251 unsigned char header[8]; // header data

252 unsigned char payload[payload_len] = {}; // payload data

253 if (PRINT)

254 cout << "frameAssemble - header and payload buffers initialized" << endl;

255

256 // ... initialize header/payload ...

257 strcpy((char *)payload, message.c_str());

258

259 header[0] = '0';

260 header[1] = '0";

261 header[2] = '0';

262 header[3] = '0';

263 header[4] = '0';

264 header[5] = '0';

265 header[6] = '0";

266 header[7] = '0";

267

268 if (PRINT)

269 {

270 cout << "frameAssemble - header and payload written" << endl;

271 cout << "frameAssemble - payload: " << payload << endl; // prints as text

272 cout << "frameAssemble - payload: "; // prints as numbers

273 for (int i=0; i<payload_len; i++)

274 {

275 cout << unsigned(payload[i]) << " ";

276 }

277 cout << endl << endl;

278 }

279

280

281 // assemble frame

282 ofdmflexframegen_assemble(fg, header, payload, payload_len);

283 if (true)

284 {

285 cout << "frameAssemble - frame assembled" << endl;

286 ofdmflexframegen_print(fg);

287 }

288

289 int last_symbol = 0;

localhost:4649/?mode=clike

4/13

11.08.22 2:45

RPX-100-transceiver.cpp

290 int i = 9;

291 int 1 = 0;

292

293 while (!last_symbol)

294 {

295 // generate each OFDM symbol

296 last_symbol = ofdmflexframegen_write(fg, c_buffer, c_buffer_len);

297 if (PRINT)

298 {

299 cout << "frameAssemble - symbol " << 1+1 << " written" << endl;

300 cout << "frameAssemble - c_buffer[0]: " << c_buffer[0] << endl;

301 cout << "frameAssemble - last_symbol value: " << last_symbol << endl;

302 }

303

304

305 if (!last_symbol)

306 {

307 if (PRINT)

308 cout << "frameAssemble - starting complex to real buffer conversion”
<< endl;

309 for (i = 0; i < c_buffer_len; i++)

310 {

311 r_frame_buffer[1*2*c_buffer_len+2*i]=c_buffer[i].real();

312 r_frame_buffer[1*2*c_buffer_len+2*i+1]=c_buffer[i].imag();

313 }

314

315 if (PRINT)

316 {

317 cout << "frameAssemble - r_frame_buffer[0]: " << r_frame_buffer[0] <<
endl;

318 cout << "frameAssemble - exiting complex to real buffer conversion" <<
endl;

319 }

320

321 1++;

322 }

323 ofdmflexframegen_destroy(fg);

324 }

325

326 void frameReception(int cyclic_prefix)

327 {

328 if (PRINT)

329 cout << "frameReception - frameReception started" << endl;

330

331 liquid_float_complex complex_i (0, 1);

332

333 // Initialize stream

334 Ims_stream_t streamld; //stream structure

335 streamId.channel = 9; //channel number

336 streamId.fifoSize = 1024 * 1024; //fifo size in samples

337 streamId.throughputVsLatency = 1.0; //optimize for max throughput

338 streamId.isTx = false; //RX channel

339 streamId.dataFmt = Ims_stream_t::LMS_FMT_F32; //12-bit integers

340 if (LMS_SetupStream(device, &streamId) != 0)

341 error();

342

343

344 int c_sync_buffer_len = complexFrameBufferLength(cyclic_prefix); //synchronizer
buffer can be of arbitrary length

345 liquid_float_complex c_sync_buffer[c_sync_buffer_len];

346 float r_sync_buffer[c_sync_buffer_len*2];

347 if (PRINT)

348 cout << "frameReception - buffers initialized" << endl;

349

350 unsigned char allocation_array[SUBCARRIERS]; // subcarrier allocation array
(null/pilot/data)

351 subcarrierAllocation(allocation_array);

352 if (PRINT)

353 cout << "frameReception - subcarrierAllocation exited; allocation_array
defined" << endl;

354

355 unsigned int cp_len = (int)SUBCARRIERS / cyclic_prefix; // cyclic prefix length

356 unsigned int taper_len = (int)cp_len / 4; // taper length

357

358 ofdmflexframesync fs = ofdmflexframesync_create(SUBCARRIERS, cp_len, taper_len,

allocation_array, callbackWhatsReceived, NULL);

localhost:4649/?mode=clike

5113

11.08.22 2:45 RPX-100-transceiver.cpp

359 //ofdmflexframesync fs = ofdmflexframesync_create(SUBCARRIERS, cp_len, taper_len,
allocation_array, callbackBERCalculation, NULL);

360 if (PRINT)

361 cout << "frameReception - frame synchronizer created" << endl;

362

363 // Start streaming

364 LMS_StartStream(&streamId);

365

366 cout << "frameReception - entering reception loop" << endl;

367 while(rxON)

368 {

369 //Receive samples

370 LMS_RecvStream(&streamId, r_sync_buffer, c_sync_buffer_len, NULL, 1009);
//should work, for now replaced by tx_ buffer

371 //I and Q samples are interleaved in r_sync_buffer: IQIQIQ...

372

373 if (PRINT)

374 {

375 cout << "frameReception - r_sync_buffer filled" << endl;

376 cout << "frameReception - r_sync_buffer[0]: " << r_sync_buffer[0] <<
endl;

377 }

378

379 for (int i = 9; i < c_sync_buffer_len; i++)

380 {

381 c_sync_buffer[i]=r_sync_buffer[2*i]+r_sync_buffer[2*i+1] *
complex_i.imag();

382

383 if (PRINT)

384 cout << "frameReception - real buffer converted to complex buffer" <<
endl;

385

386 // receive symbol (read samples from buffer)

387 ofdmflexframesync_execute(fs, c_sync_buffer, c_sync_buffer_len);

388 if (PRINT)

389 cout << "frameReception - synchronization ended" << endl;

390

391 ofdmflexframesync_destroy(fs);

392

393 // Stop streaming

394 LMS_StopStream(&streamId); // stream is stopped but can be started
again with LMS_StartStream()

395 LMS_DestroyStream(device, &streamId); // stream is deallocated and can no longer
be used

39 }

397

398

399 void print_gpio(uint8_t gpio_val)

400 {

401 for (int 1 = 0; 1 < 8; i++)

402 {

403 bool set = gpio_val & (0x01 << i);

404 msgSDR << "GPIO" << i << ": " << (set ? "High" : "Low") << endl;

405 Logger(msgSDR.str());

406 msgSDR.str("");

407 }

408 }

409

410 double setSampleRate(int cyclic_prefix)

411 {

412 if (PRINT)

413 cout << "setSampleRate - setSampleRate started" << endl;

414 switch (cyclic_prefix)

415 {

416 case 4:

417 return 3328000;

418 case 8:

419 return 3225600;

420 case 16:

421 return 3264000;

422 case 32:

423 return 3273600;

424 }

425 return -1;

426 }

427

localhost:4649/?mode=clike 6/13

11.08.22 2:45

localhost:4649/?mode=clike

428 ofdmflexframegen DefineFrameGenerator (int dfg_cycl _pref, int dfg_PHYmode)

429 {
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503

if (PRINT)

cout << "DefineFrameGenerator - DefineFrameGenerator started" << endl;

RPX-100-transceiver.cpp

// initialize frame generator properties

ofdmflexframegenprops_s fgprops;

ofdmflexframegenprops_init_default(&Ffgprops);

fgprops.check = LIQUID_CRC_NONE;
fgprops.fecl = LIQUID_FEC_NONE;

unsigned int cp_len = (int)SUBCARRIERS / dfg_cycl pref; // cyclic prefix length

unsigned int taper_len = (int)cp_len / 4;

switch (dfg_PHYmode)

{

case 1:
fgprops.fec® = LIQUID_FEC_NONE;
fgprops.mod_scheme = LIQUID_MODEM_PSK2;
break;

case 2:
fgprops.fecl = LIQUID_FEC_REP3;
fgprops.fec@ = LIQUID_FEC_CONV_V27;
fgprops.mod_scheme = LIQUID_MODEM_QPSK;
break;

case 3:
fgprops.fecod = LIQUID FEC_CONV_V27;
fgprops.mod_scheme = LIQUID_MODEM_QPSK;
break;

case 4:
fgprops.fecd = LIQUID_FEC_CONV_V27P23;
fgprops.mod_scheme = LIQUID_MODEM_QPSK;
break;

case 5:
fgprops.fecd® = LIQUID_FEC_CONV_V27P34;
fgprops.mod_scheme = LIQUID_MODEM_QPSK;
break;

case 6:
fgprops.fec® = LIQUID_FEC_CONV_V27P56;
fgprops.mod_scheme = LIQUID_MODEM_QPSK;
break;

case 7:
fgprops.fecd = LIQUID_FEC_CONV_V27;
fgprops.mod_scheme = LIQUID_MODEM_QAM16;
break;

case 8:
fgprops.fecd® = LIQUID_FEC_CONV_V27P23;
fgprops.mod_scheme = LIQUID_MODEM_QAM16;
break;

case 9:
fgprops.fec® = LIQUID_FEC_CONV_V27P34;
fgprops.mod_scheme = LIQUID_MODEM_QAM16;
break;

case 10:
fgprops.fecd = LIQUID_FEC_CONV_V27P56;
fgprops.mod_scheme = LIQUID_MODEM_QAM16;
break;

case 11:
fgprops.fecd = LIQUID_FEC_CONV_V27;
fgprops.mod_scheme = LIQUID_MODEM_QAM64;
break;

case 12:
fgprops.fecd = LIQUID_FEC_CONV_V27P23;
fgprops.mod_scheme = LIQUID_MODEM_QAM64;
break;

case 13:
fgprops.fec@ = LIQUID_FEC_CONV_V27P34;
fgprops.mod_scheme = LIQUID_MODEM_QAM64;
break;

case 14:
fgprops.fecd = LIQUID_FEC_CONV_V27P56;
fgprops.mod_scheme = LIQUID_MODEM_QAM64;
break;

default:

return NULL;

// taper length

73

11.08.22 2:45 RPX-100-transceiver.cpp

504 }

505

506 unsigned char allocation_array[SUBCARRIERS]; // subcarrier allocation
array(null/pilot/data)

507 subcarrierAllocation(allocation_array);

508 if (PRINT)

509 cout << "DefineFrameGenerator - subarrierAllocation exitted" << endl;

510

511 return ofdmflexframegen_create(SUBCARRIERS, cp_len, taper_len, allocation_array,
&fgprops);

512 }

513

514 void subcarrierAllocation (unsigned char *array)

515 {

516 if (PRINT)

517 cout << "subcarrierAllocation - subcarrierAllocation started" << endl;

518 for (int i = 9; i < 1024; i++)

519 {

520 if (i < 232)

521 array[i] = ©; // guard band

522

523 if (231 < i && i < 792)

524 if (i %7 == 0)

525 array[i] = 1; // every 7th carrier pilot

526 else

527 array[i] = 2; // rest data

528

529 if (i > 791)

530 array[i] = ©; // guard band

531 }

532 }

533

534 int frameSymbols(int cyclic_prefix)

535 {

536 if (PRINT)

537 cout << "frameSymbols - frameSymbols started" << endl;

538 int symbolCnt;

539 switch (cyclic_prefix)

540 {

541 case 4:

542 symbolCnt = 22+4;

543 break;

544 case 8:

545 symbolCnt = 24+4;

546 break;

547 case 16:

548 symbolCnt = 26+4;

549 break;

550 case 32:

551 symbolCnt = 27+4;

552 break;

553 default:

554 symbolCnt = 0;

555 }

556

557 if (PRINT)

558 cout << "frameSymbols - symbolCnt: " << symbolCnt << endl;

559 return symbolCnt;

560 }

561

562 uint complexFrameBufferLength(int cyclic_prefix)

563 {

564 if (PRINT)

565 cout << "complexFrameBufferLength - complexFrameBufferlLength started" <<
endl;

566 return complexSymbolBufferLength(cyclic_prefix)*frameSymbols(cyclic_prefix);

567 }

568

569 uint complexSymbolBufferLength(int cyclic_prefix)

570 {

571 if (PRINT)

572 cout << "complexSymbolBufferlLength - complexSymbolBufferLength started" <<
endl;

573 return (SUBCARRIERS + ((int)SUBCARRIERS / cyclic_prefix));

574 }

575

localhost:4649/?mode=clike 8/13

11.08.22 2:45

576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650

RPX-100-transceiver.cpp

uint payloadLength(int cyclic_prefix, int phy_mode)
{
if (PRINT)
cout << "payloadLength - payloadLength started" << endl;
uint8_t useful_symbols; // number of OFDM symbols carrying payload
float coding_rate; // uncoded to coded ratio

switch (cyclic_prefix)
{
case 4:
useful_symbols = 22;
break;
case 8:
useful_symbols = 24;
break;
case 16:
useful_symbols = 26;
break;
case 32:
useful_symbols = 27;
break;
default:
return 0;

switch (phy_mode)

case 1:
coding_rate = 1;
break;

case 2:
coding_rate = 2.0 / (2.0 * 3.0f);
break;

case 3:
coding_rate = 2.0f / 2.0f;
break;

case 4:
coding_rate = 2.0f * 2.0f / 3.0f;
break;

case 5:
coding_rate = 2.0f * 3.0f / 4.0f;
break;

case 6:
coding_rate = 2.0f * 5.0f / 6.0f;
break;

case 7:
coding_rate = 4.0f / 2.0f;
break;

case 8:
coding_rate = 4.0f * 2.0f / 3.0f;
break;

case 9:
coding_rate = 4.0f * 3.0f / 4.0f;
break;

case 10:
coding_rate = 4.0f * 5.0f / 6.0f;
break;

case 11:
coding_rate = 6.0f / 2.0f;
break;

case 12:
coding_rate = 6.0f * 2.0f / 3.0f;
break;

case 13:
coding_rate = 6.0f * 3.0f / 4.0f;
break;

case 14:
coding_rate = 6.0f * 5.0f / 6.0f;
break;

default:
return 0;

}

return (uint)floor(DATACARRIERS * useful_symbols * coding rate / 8)-1; // Without
the -1, frame generator produces excess symbol

localhost:4649/?mode=clike

9/13

11.08.22 2:45

651 }
652
653
654
655
656
657
658
659
660
661 {
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710 }
711
712
713 int
714 {
715
716
717
718
719
720
721
722
723
724
725
726

// c

localhost:4649/?mode=clike

RPX-100-transceiver.cpp

allback function

int callbackWhatsReceived(unsigned char *_header,

int _header_valid,
unsigned char *_payload,
unsigned int _payload_len,
int _payload_valid,
framesyncstats_s _stats,
void *_userdata)

cout << endl;

cout << "**¥*¥¥* callback invoked!" << endl << endl;

if (_header_valid)

{
cout << " header valid" << endl;
}
else
{
cout << " header invalid" << endl;
}

if (_payload_valid)

cout << " payload valid" << endl;
}
else
{
cout << " payload invalid" << endl;
}

cout << endl;

unsigned int i;
if (_header_valid)

{
cout << "Received header: "<< endl;
for (1 =0; i < 8; i++)
{
cout << _header[i];
}
cout << endl << endl;
}
if (_payload_valid)
cout << "Received payload: " << endl;

for (i = 0; i < _payload_len; i++)
{
if (_payload[i] == 0)
break;
cout << _payload[i];
}

cout << endl << endl;

}

cout << "payload len:
cout << endl;

return 0;

<< _payload_len << endl;

startSDRTXStream(float *tx_buffer, int FrameSampleCnt)

// Initialize stream
Ims_stream_t streamld;
streamId.channel = 9;
streamId.fifoSize = 1024 * 1024;
streamId.throughputVsLatency = 1.0;
streamId.isTx = true;
streamId.dataFmt =
if (LMS_SetupStream(device, &streamId) != 0)
error();

// Start streaming
LMS_StartStream(&streamId);

Ims_stream_t::LMS_FMT_F32;

/7

stream structure

channel number

fifo size in samples
optimize for max throughput
TX channel

12-bit integers

10/13

11.08.22 2:45 RPX-100-transceiver.cpp

727

728 if (PRINT)

729 cout << "startSDRTXStream - FrameSampleCnt: " << FrameSampleCnt << endl;

730

731 for (int i = 0; 1 < 100; i++)

732 int ret = LMS_SendStream(&streamId, tx_buffer, FrameSampleCnt, nullptr,
1000) ;

733

734

735 // Stop streaming

736 LMS_StopStream(&streamId); // stream is stopped but can be started
again with LMS_StartStream()

737 LMS_DestroyStream(device, &streamId); // stream is deallocated and can no longer
be used

738

739 // Close device

740 if (LMS_Close(device) == 0)

741 {

742 msgSDR.str("");

743 msgSDR << "Closed" << endl;

744 Logger(msgSDR.str());

745 }

746

747 sleep(1);

748

749 return 0;

750 }

751

752 int SDRinit(double frequency, double sampleRate, int modeSelector, double
normalizedGain)

753 {

754 // Find devices

755 int n;

756 1lms_info_str_t 1list[8]; // should be large enough to hold all detected devices

757 if ((n = LMS_GetDevicelist(list)) < 0)

758 {

759 error(); // NULL can be passed to only get number of devices

760 }

761 msgSDR.str("");

762 msgSDR << "Number of devices found: " << n;

763 Logger(msgSDR.str()); // print number of devices

764 if (n < 1)

765 {

766 return -1;

767 }

768

769 // open the first device

770 if (LMS_Open(&device, 1list[@©], NULL))

771

772 error();

773 }

774 sleep(1);

775

776 // Initialize device with default configuration

777 if (LMS_Init(device) != 0)

778 {

779 error();

780

781 sleep(1);

782

783 // Set SDR GPIO diretion GPIO®-5 to output and GPIO6-7 to input

784 uint8_t gpio_dir = OxFF;

785 if (LMS_GPIODirWrite(device, &gpio_dir, 1) != 0)

786 {

787 error();

788 }

789

790 // Read and log GPIO direction settings

791 uint8_t gpio_val = 0;

792 if (LMS_GPIODirRead(device, &gpio_val, 1) != 0)

793 {

794 error();

795 }

796 msgSDR.str("");

797 msgSDR << "Set GPIOs direction to output.\n";

798 Logger (msgSDR.str());

localhost:4649/?mode=clike 1113

11.08.22 2:45

799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873

localhost:4649/?mode=clike

RPX-100-transceiver.cpp

// Set GPIOs to RX mode (initial settings)
if (LMS_GPIOWrite(device, &modeGPIO[modeSelector], 1) != 0)

{
}

// Read and log GPIO values
if (LMS_GPIORead(device, &gpio_val, 1) != 0)
{

}
msgSDR.str("");

msgSDR << "GPIO Output to High Level:\n";
print_gpio(gpio_val);
Logger(msgSDR.str());

error();

error();

msgSDR.str("");
msgSDR << "LimeRFE set to
Logger(msgSDR.str());

<< modeName[modeSelector] << endl;

// Enable RX or TX channel,Channels are numbered starting at ©
if (modeSelector == RX_MODE)

{
if (LMS_EnableChannel(device, LMS_CH_RX, 0, true) != 0)
{
error();
}
if (LMS_EnableChannel(device, LMS_CH_TX, 0, false) != 0)
{
error();
}
}
else
{
if (LMS_EnableChannel(device, LMS_CH_TX, 0, true) != 0)
{
error();
}
if (LMS_EnableChannel(device, LMS_CH_RX, 0, false) != 0)
{
error();
}
}

// Set sample rate
if (LMS_SetSampleRate(device, (float)sampleRate, 0) != 0)

{

}

msgSDR.str("");

msgSDR << "Sample rate:
Logger(msgSDR.str());

error();

<< sampleRate / 1le6 << " MHz" << endl;

// Set center frequency
if (modeSelector == RX_MODE)

{
if (LMS_SetLOFrequency(device, LMS_CH_RX, 0, frequency) != 0)
{
error();
}
}
else
{
if (LMS_SetLOFrequency(device, LMS_CH_TX, ©, frequency) != 0)
{
error();
}
}

msgSDR.str("");
msgSDR << "Center frequency:
Logger(msgSDR.str());

<< frequency / le6 << " MHz" << endl;

12/13

11.08.22 2:45 RPX-100-transceiver.cpp

874 // select Low TX path for LimeSDR mini --> TX port 2 (misslabed in MINI, correct
in USB)

875 if (modeSelector == RX_MODE)

876 {

877 if (LMS_SetAntenna(device, LMS_CH_RX, ©, LMS_PATH_LNAL) != 0)

878

879 error();

880 }

881 }

882 else

883 {

884 if (LMS_SetAntenna(device, LMS_CH_TX, @, LMS_PATH_TX2) != 0)

885 {

886 error();

887 }

888

889 // set TX gain

890 if (LMS_SetNormalizedGain(device, LMS_CH_TX, 0, normalizedGain) != 0)

891 {

892 error();

893 }

894 }

895

896

897 // calibrate Tx, continue on failure

898 if (modeSelector == RX_MODE)

899 {

900 LMS_Calibrate(device, LMS_CH_RX, ©, sampleRate, 0);

901 }

902 else

903 {

904 LMS_Calibrate(device, LMS_CH_TX, 0, sampleRate, 0);

905 }

906

907 sleep(2);

908

909 return 0;

910 }

911

912 int error()

913 {

914 msgSDR.str("");

915 msgSDR << "ERROR: " << LMS_GetLastErrorMessage();

916 Logger(msgSDR.str());

917 if (device != NULL)

918 LMS_Close(device);

919 return -1;

920 }

921

localhost:4649/?mode=clike 13/13

11.08.22 2:46

67
68
69
70
71
72
73
74

RPX-100-BER_simulator.h

/**
* C++ source of RPX-100-BER_simulator

*
* File: RPX-100-TX.h
* Author: Marek Honek
*
*
*

Created on 19 Apr 2022, 18:20
**/

#include <sys/types.h>
#include <sys/stat.h>
#tinclude <stdio.h>
#include <string.h>
#tinclude <stdlib.h>
#tinclude <fcntl.h>
#tinclude <errno.h>
#include <unistd.h>
#tinclude <sstream>
#include <syslog.h>
#include <string.h>
#include <iostream>
#tinclude <fstream>
#include <cstdio>
#tinclude <ctime>

#include <math.h>
#include <complex.h>
#tinclude <time.h>
#include <chrono>
#include <cstring>
#tinclude <bitset>
#include "stuff/ini.h"
#include "stuff/log.h"
#include <chrono>
#include "liquid/liquid.h"
#include "stuff/ServerSocket.h"
#include "stuff/SocketException.h"
#include <iterator>
#include <signal.h>
#include "stuff/uUtil.h"
#include "stuff/WebSocketServer.h"
#tinclude <correct.h>
#pragma once

#define SUBCARRIERS 1024
#define DATACARRIERS 480

// print each step for debuggigng
#define PRINT false

int error();
string exec(string command);

//BER simulation

#tdefine MIN_SNR ©

#tdefine MAX_SNR 25

#tdefine SIMULATION_REPETITIONS 1000

void sendFrame(int cyclic_prefix, int phy_mode);

void frameReception(int cyclic_prefix);

int global_cycl_pref_index;

int global_phy_mode;

liquid_float_complex before_channel_buffer[33280]; //buffer for artificial channel
liquid_float_complex after_channel_buffer[33280]; //buffer for artificial channel
int artificial_SNR;

float BER_1log[4][15][MAX_SNR+1] = {0}; //[cycl pref index][phy_mode][SNR]

float calculateBER(unsigned int payload_len, string transmitted, unsigned char
*received);

bool callback_invoked = false;

int exportBER(void);

string message = "";

// Initialize sdr buffers
liquid_float_complex complex_i(0,1);

void frameAssemble(liquid_float_complex *c_frame_buffer, int cyclic_prefix, int
phy_mode); //buffer changed to c_frame_buffer for BER simulation (original

localhost:4649/?mode=clike 1/2

11.08.22 2:46

75
76
77
78
79
80
81
82

83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100

RPX-100-BER_simulator.h

r_frame_buffer)

void subcarrierAllocation (unsigned char *array);

ofdmflexframegen DefineFrameGenerator (int dfg_cycl_pref, int dfg_PHYmode);
int frameSymbols(int cyclic_prefix);

uint complexFrameBufferLength(int cyclic_prefix);

uint complexSymbolBufferLength(int cyclic_prefix);

uint payloadLength(int cyclic_prefix, int phy_mode);

void artificialChannel(int cyclic_prefix);

void printByteByByte(unsigned int payload_len, unsigned char *transmitted, unsigned
char *received);

string alterMessage(int payload_len);

int callbackWhatsReceived(unsigned char *_header,
int _header_valid,
unsigned char *_payload,
unsigned int _payload_len,
int _payload_valid,
framesyncstats_s _stats,
void *_userdata);

int callbackBERCalculation(unsigned char *_header,
int _header_valid,
unsigned char *_payload,
unsigned int _payload_len,
int _payload_valid,
framesyncstats_s _stats,
void *_userdata);

localhost:4649/?mode=clike

2/2

11.08.22 5:07

OVWoOoNOUVEA WNR

BPRRPRRRERRRRR
ONOUTAWNRO®

19
20
21
22

23
24

25
26
27

28
29

30
31
32
33

34
35
36
37
38
39
40
41
42
43
44
45

46
47
48
49
50
51

52
53

54
55

56

57
58

59
60
61

RPX-100-BER_simulator.cpp
/**
* C++ source of RPX-100-BER_simulator

File: RPX-100-BER_simulator.cpp
Author: Marek Honek

Created on 19 Apr 2022, 18:20

*
*
*
*
*
***/

#include "RPX-100-BER_simulator.h"
using namespace std;

int main(void)

{

cout << "main - program started" << endl;

for (int repetition = 0; repetition < SIMULATION_REPETITIONS; repetition++) //
repetition for higher resolution

{
message = alterMessage(8100); //max payload

for (global_cycl _pref_index = 0; global_cycl pref_index < 4;
global_cycl_pref_index++) // cyclic prefix

{
for (global_phy mode = 1; global_phy mode <= 14; global_phy mode++) //
PHY mode
{
if (PRINT)
cout << "main - global_phy mode: " << global_phy mode << ";

global_cycl_pref_index: << global_cycl_pref_index << "; cycl_pref: " << (4 <«

global_cycl_pref_index) << endl;

frameAssemble(before_channel_buffer, 4 << global_cycl_pref_index,
global_phy_mode);
if (PRINT)
cout <<"main - frameAssemble exitted" << endl;

for (artificial_SNR = MIN_SNR; artificial_SNR<=MAX_SNR;
artificial SNR++) // SNR sweep

{
artificialChannel(4 << global_cycl_pref_index);
if (PRINT)
cout << "main - artificialChannel exitted" << endl;
frameReception(4 << global_cycl_pref_index);
if (PRINT)
cout <<"main - frameReception exitted" << endl;
}

}
cout << "main - repetition:
(4<<global_cycl_pref_index) << endl;

<< repetition << "; cp: <<

}

// Up to now, BER_log contains sum of results from individual simulations.
Following for loop structure divides

// the value by number of simulations. Thus calculates the average of all
simulations.

for (global_cycl _pref_index = 0; global_cycl pref_index<4;
global_cycl_pref_index++) // cyclic prefix

for (global_phy mode = 1; global_phy mode <=14; global_phy_mode++) // PHY
mode
{
cout << "main - cyclic prefix: " << (4<<global_cycl_pref_index) << ";
mode: " << global_phy mode << endl;
for (artificial_SNR = MIN_SNR; artificial_ SNR<=MAX_SNR; artificial_ SNR++)

// SNR sweep

{
BER_log[global_cycl pref index][global_phy mode]
[artificial SNR]/=SIMULATION_REPETITIONS;
}
}
}

localhost:4649/?mode=clike

110

11.08.22 5:07

62
63
64
65
66
67
68
69

71
72
73
74
75
76

77
78
79
80
81
82
83

84
85
86
87
88
89
90
91

92

93

94

95

96

97

98

99
100
lo1
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120

121
122
123
124
125
126
127
128
129
130
131

localhost:4649/?mode=clike

RPX-100-BER_simulator.cpp

exportBER();

return(9);

void frameAssemble(liquid_float_complex *c_frame_buffer, int cyclic_prefix, int
phy_mode) //buffer changed to c_frame_buffer for BER simulation (original
r_frame_buffer)

70 {

if (PRINT)
cout << "frameAssemble - frameAssemble started" << endl;

liquid_float_complex complex_i(0, 1);

unsigned int payload_len = payloadLength(cyclic_prefix, phy_mode); //depends on

PHY mode and cyclic prefix

prefix

if (PRINT)
{
cout << "frameAssemble - payloadLength exitted" << endl;
cout << "frameAssemble - payload_len: " << payload_len << endl;
}
uint c_buffer_len = complexSymbolBufferLength(cyclic_prefix); //depends on cyclic
if (PRINT)
cout << "frameAssemble - complexSymbolBufferLength exitted" << endl;
// create frame generator
ofdmflexframegen fg = DefineFrameGenerator(cyclic_prefix, phy_mode);
if (PRINT)
{
cout << "frameAssemble - DefineFrameGenerator exitted, frame generator

setted" << endl;

numbers

ofdmflexframegen_print(fg);
}
// buffers
liquid_float_complex c_buffer[c_buffer_len]; // time-domain buffer
unsigned char header[8]; // header data
unsigned char payload[payload_len] = {}; // payload data
if (PRINT)
cout << "frameAssemble - header and payload buffers initialized" << endl;
// ... initialize header/payload ...
strcpy((char *)payload, message.c_str());
header[0] = '0';
header[1] = '0";
header[2] = '0';
header[3] = '0';
header[4] = '0';
header[5] = '0"';
header[6] = '0"';
header[7] = '0";
if (PRINT)
cout << "frameAssemble - header and payload written" << endl;
// cout << "frameAssemble - payload: " << payload << endl; // prints as text
if (PRINT)
{
cout << "frameAssemble - payload: "; // prints as
for (int i=0; i<payload_len; i++)
{
cout << unsigned(payload[i]) << " ";
}
cout << endl << endl;
}
// assemble frame
ofdmflexframegen_assemble(fg, header, payload, payload_len);
if (PRINT)

2/10

11.08.22 5:07

RPX-100-BER_simulator.cpp

132 {

133 cout << "frameAssemble - frame assembled" << endl;

134 ofdmflexframegen_print(fg);

135 }

136

137 int last_symbol = 0;

138 int i = 9;

139 int 1 = 0;

140

141 while (!last_symbol)

142

143 // pthread_mutex_lock(&SDRmutex);

144

145 // generate each OFDM symbol

146 last_symbol = ofdmflexframegen_write(fg, c_buffer, c_buffer_len);

147 if (PRINT)

148 {

149 cout << "frameAssemble - symbol " << 1+1 << " written" << endl;

150 cout << "frameAssemble - c_buffer[0]: " << c_buffer[0] << endl;

151 cout << "frameAssemble - last_symbol value: " << last_symbol << endl;

152 }

153

154

155 if (!last_symbol)

156 {

157 if (PRINT)

158 cout << "frameAssemble - starting complex to real buffer conversion”
<< endl;

159 for (i = 0; i < c_buffer_len; i++)

160 {

161 c_frame_buffer[1l*c_buffer_len+i]=c_buffer[i];

162 }

163 }

164 if (PRINT)

165 {

166 cout << "frameAssemble - c_frame_buffer[0]: " << c_frame_buffer[0] <<
endl;

167 cout << "frameAssemble - exiting complex to real buffer conversion" <<
endl;

168 }

169

170 1++;

171 }

172 ofdmflexframegen_destroy(fg);

173 }

174

175

176 void frameReception(int cyclic_prefix)

177 {

178 if (PRINT)

179 cout << "frameReception - frameReception started" << endl;

180

181 int c_sync_buffer_len = complexFrameBufferLength(cyclic_prefix); //synchronizer
buffer can be of arbitrary length

182 if (PRINT)

183 cout << "frameReception - buffers initialized" << endl;

184

185 unsigned char allocation_array[SUBCARRIERS]; // subcarrier allocation array
(null/pilot/data)

186 subcarrierAllocation(allocation_array);

187 if (PRINT)

188 cout << "frameReception - subcarrierAllocation exited; allocation_array
defined" << endl;

189

190 unsigned int cp_len = (int)SUBCARRIERS / cyclic_prefix; // cyclic prefix length

191 unsigned int taper_len = (int)cp_len / 4; // taper length

192

193 //ofdmflexframesync fs = ofdmflexframesync_create(SUBCARRIERS, cp_len, taper_len,
allocation_array, callbackWhatsReceived, NULL);

194 ofdmflexframesync fs = ofdmflexframesync_create(SUBCARRIERS, cp_len, taper_len,
allocation_array, callbackBERCalculation, NULL);

195 if (PRINT)

196 cout << "frameReception - frame synchronizer created" << endl;

197

198 // while(1)

199 {

localhost:4649/?mode=clike 3/10

11.08.22 5:07

200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219 }
220
221 ofdm
222 {
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275

localhost:4649/?mode=clike

RPX-100-BER_simulator.cpp

// receive symbol (read samples from buffer)
ofdmflexframesync_execute(fs, after_channel_buffer, c_sync_buffer_len);
if (PRINT)

cout << "frameReception - synchronization ended" << endl;

if (!callback_invoked)

if (PRINT)
cout << "frameReception - callback was not invoked" << endl;
BER_log[global_cycl_pref_index][global_phy mode][artificial SNR] += 1;
}

callback_invoked = false;

ofdmflexframesync_destroy(fs);
if (PRINT)
cout << "frameReception - ofdmflexframesync destroyed";

flexframegen DefineFrameGenerator (int dfg_cycl pref, int dfg_PHYmode)

if (PRINT)
cout << "DefineFrameGenerator - DefineFrameGenerator started" << endl;

// initialize frame generator properties
ofdmflexframegenprops_s fgprops;
ofdmflexframegenprops_init_default(&fgprops);
fgprops.check = LIQUID_CRC_NONE;

fgprops.fecl = LIQUID_FEC_NONE;

unsigned int cp_len = (int)SUBCARRIERS / dfg_cycl pref; // cyclic prefix length
unsigned int taper_len = (int)cp_len / 4; // taper length

switch (dfg_PHYmode)

{

case 1:
fgprops.fecd = LIQUID_FEC_NONE;
fgprops.mod_scheme = LIQUID_MODEM_PSK2;
break;

case 2:
fgprops.fecl = LIQUID_FEC_REP3;
fgprops.fec@0 = LIQUID_FEC_CONV_V27;
fgprops.mod_scheme = LIQUID_MODEM_QPSK;
break;

case 3:
fgprops.fec@0 = LIQUID_FEC_CONV_V27;
fgprops.mod_scheme = LIQUID_MODEM_QPSK;
break;

case 4:
fgprops.feco = LIQUID_FEC_CONV_V27P23;
fgprops.mod_scheme = LIQUID_MODEM_QPSK;
break;

case 5:
fgprops.feco = LIQUID_FEC_CONV_V27P34;
fgprops.mod_scheme = LIQUID_MODEM_QPSK;
break;

case 6:
fgprops.feco = LIQUID_FEC_CONV_V27P56;
fgprops.mod_scheme = LIQUID_MODEM_QPSK;
break;

case 7:
fgprops.fec@0 = LIQUID_FEC_CONV_V27;
fgprops.mod_scheme = LIQUID_MODEM_QAM16;
break;

case 8:
fgprops.feco = LIQUID_FEC_CONV_V27P23;
fgprops.mod_scheme = LIQUID_MODEM_QAM16;
break;

case 9:
fgprops.feco = LIQUID_FEC_CONV_V27P34;
fgprops.mod_scheme = LIQUID_MODEM_QAM16;
break;

case 10:

4/10

11.08.22 5:07

unsigned char allocation_array[SUBCARRIERS]; // subcarrier allocation

cout << "DefineFrameGenerator - subarrierAllocation exitted" << endl;

return ofdmflexframegen_create(SUBCARRIERS, cp_len, taper_len, allocation_array,

cout << "subcarrierAllocation - subcarrierAllocation started" << endl;

cout << "frameSymbols - frameSymbols started" << endl;

RPX-100-BER_simulator.cpp

= LIQUID MODEM_QAM16;

= LIQUID MODEM_QAM64;

= LIQUID MODEM_QAMG64;

= LIQUID MODEM_QAM64;

= LIQUID MODEM_QAMG64;

unsigned char *array)

1; // every 7th carrier pilot

2; // rest data

276 fgprops.fec@ = LIQUID_FEC_CONV_V27P56;
277 fgprops.mod_scheme
278 break;
279 case 11:
280 fgprops.fec@0 = LIQUID_FEC_CONV_V27;
281 fgprops.mod_scheme
282 break;
283 case 12:
284 fgprops.fec@ = LIQUID_FEC_CONV_V27P23;
285 fgprops.mod_scheme
286 break;
287 case 13:
288 fgprops.fec@ = LIQUID_FEC_CONV_V27P34;
289 fgprops.mod_scheme
290 break;
291 case 14:
292 fgprops.fec@ = LIQUID_FEC_CONV_V27P56;
293 fgprops.mod_scheme
294 break;
295 default:
296 return NULL;
297 }
298
299
array(null/pilot/data)
300 subcarrierAllocation(allocation_array);
301 if (PRINT)
302
303
304
&fgprops);
305 }
306
307 void subcarrierAllocation (
308 {
309 if (PRINT)
310
311 for (int i = 9; i < 1024; i++)
312 {
313 if (i < 232)
314 array[i] = ©; // guard band
315
316 if (231 < i && i < 792)
317 if (i %7 == 0)
318 array[i] =
319 else
320 array[i] =
321
322 if (i > 791)
323 array[i] = ©; // guard band
324 }
325 }
326
327 int frameSymbols(int cyclic_prefix)
328 {
329 if (PRINT)
330
331 int symbolCnt;
332 switch (cyclic_prefix)
333 {
334 case 4:
335 symbolCnt = 22+4;
336 break;
337 case 8:
338 symbolCnt = 24+4;
339 break;
340 case 16:
341 symbolCnt = 26+4;
342 break;
343 case 32:
344 symbolCnt = 27+4;
345 break;
346 default:
347 symbolCnt = 0;
348 }
349

localhost:4649/?mode=clike

5/10

11.08.22 5:07

350 if (PRINT)
351 cout << "frameSymbols - symbolCnt:
352 return symbolCnt;
353 }
354
355 uint complexFrameBufferLength(int cyclic_prefix)
356 {
357 if (PRINT)
358
endl;
359
360 }
361
362 uint complexSymbolBufferLength(int cyclic_prefix)
363 {
364 if (PRINT)
365
endl;
366
367 }
368
369 uint payloadLength(int cyclic_prefix, int phy_mode)
370 {
371 if (PRINT)
372
373 uint8_t useful_symbols;
374 float coding_rate;
375
376 switch (cyclic_prefix)
377 {
378 case 4:
379 useful_symbols = 22;
380 break;
381 case 8:
382 useful_symbols = 24;
383 break;
384 case 16:
385 useful_symbols = 26;
386 break;
387 case 32:
388 useful_symbols = 27;
389 break;
390 default:
391 return 0;
392 }
393
394
395 switch (phy_mode)
396 {
397 case 1:
398 coding_rate = 1;
399 break;
400 case 2:
401 coding_rate = 2.0 / (2.
402 break;
403 case 3:
404 coding_rate = 2.0f / 2.
405 break;
406 case 4:
407 coding_rate = 2.0f * 2.
408 break;
409 case 5:
410 coding_rate = 2.0f * 3
411 break;
412 case 6:
413 coding_rate = 2.0f * 5
414 break;
415 case 7:
416 coding_rate = 4.0f / 2
417 break;
418 case 8:
419 coding_rate = 4.0f * 2
420 break;
421 case 9:
422 coding_rate = 4.0f * 3
423 break;

cout << "complexFrameBufferLength - complexFrameBufferlLength started" <<

return complexSymbolBufferLength(cyclic_prefix)*frameSymbols(cyclic_prefix);

cout << "complexSymbolBufferlLength - complexSymbolBufferLength started" <<

return (SUBCARRIERS + ((int)SUBCARRIERS / cyclic_prefix));

cout << "payloadLength - payloadLength started" << endl;

localhost:4649/?mode=clike

RPX-100-BER_simulator.cpp

0 * 3.0f);

of;

of / 3.0f;

.of / 4.0f;

.of / 6.0f;

.0f;

.of / 3.0f;

.of / 4.0f;

<< symbolCnt << endl;

6/10

11.08.22 5:07 RPX-100-BER_simulator.cpp

424 case 10:

425 coding_rate = 4.0f * 5.0f / 6.0f;
426 break;

427 case 11:

428 coding_rate = 6.0f / 2.0f;

429 break;

430 case 12:

431 coding_rate = 6.0f * 2.0f / 3.0f;
432 break;

433 case 13:

434 coding_rate = 6.0f * 3.0f / 4.0f;
435 break;

436 case 14:

437 coding_rate = 6.0f * 5.0f / 6.0f;
438 break;

439 default:

440 return 0;

441 }

442

443 return (uint)floor(DATACARRIERS * useful_symbols * coding_rate / 8)-1;
444 }

445

446 // callback function
447 int callbackWhatsReceived(unsigned char *_header,
448 int _header_valid,

449 unsigned char *_payload,

450 unsigned int _payload_len,
451 int _payload_valid,

452 framesyncstats_s _stats,

453 void *_userdata)

454 {

455 cout << endl;

456 cout << "**¥*¥¥* callback invoked!" << endl << endl;
457 if (_header_valid)

458 {

459 cout << " header valid" << endl;
460 }

461 else

462 {

463 cout << " header invalid" << endl;
464 }

465

466 if (_payload_valid)

467

468 cout << " payload valid" << endl;
469 }

470 else

471 {

472 cout << " payload invalid" << endl;
473 }

474 cout << endl;

475

476 unsigned int i;

477 if (_header_valid)

478 {

479 cout << "Received header: "<< endl;
480 for (1 =0; i < 8; i++)

481 {

482 cout << _header[i];

483 }

484 cout << endl << endl;

485 }

486

487 if (_payload_valid)

488

489 cout << "Received payload: << endl;
490 for (i = 0; i < _payload_len; i++)
491 {

492 if (_payload[i] == 0)

493 break;

494 cout << _payload[i];

495 }

496 cout << endl << endl;

497 }

498

499 cout << "payload len:

<< _payload_len << endl;

localhost:4649/?mode=clike 710

11.08.22 5:07

500
501
502
503
504
505
506
507
508
509
510
511
512
513
514

515
516
517
518
519
520
521
522

523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541

542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572

localhost:4649/?mode=clike

}

RPX-100-BER_simulator.cpp
cout << endl;

return 0;

int callbackBERCalculation(unsigned char *_header,

int _header_valid,
unsigned char *_payload,
unsigned int _payload_len,
int _payload_valid,
framesyncstats_s _stats,
void *_userdata)

{
if (PRINT)
cout << "callbackBERCalculation invoked - _payload_len: "<< _payload_len <<
endl;
callback_invoked = true;
if (_payload_len != 0)
{
float BER = calculateBER(_payload_len, message, _payload);
if (PRINT)
cout << "callbackBERCalculation - calculateBER exitted; BER: "<< BER <<
endl;
if (PRINT)
{
cout << "calculateBER exitted" << endl;
cout << "BER: " << BER << endl;
}
BER_log[global_cycl pref index][global_phy mode][artificial_SNR] += BER;
}
else
BER_log[global_cycl _pref _index][global_phy mode][artificial_SNR] += 1;
return 0;
}

void artificialChannel(int cyclic_prefix)

{

if (PRINT)
cout << "artificialChannel - artificialChannel started" << endl;

int channel_buffer_len = complexFrameBufferLength(cyclic_prefix); //synchronizer

buffer can be of arbitrary length

if (PRINT)
cout << "artificialChannel - complexFrameBufferLength exitted" << endl;

// create channel object
channel_cccf channel = channel_cccf _create();

// additive white Gauss noise impairment

float noise_floor = -60.0f; // noise floor [dB]

float SNRdB = (float)artificial_SNR; // signal-to-noise ratio [dB]
channel_cccf_add_awgn(channel, noise_floor, SNRdB);

// carrier offset impairments

float dphi = @.00f; // carrier freq offset [radians/sample]
float phi = 0.0f; // carrier phase offset [radians]
//channel_cccf_add_carrier_offset(channel, dphi, phi);

// multipath channel impairments

liquid_float_complex* hc = NULL; // defaults to random coefficients
unsigned int hc_len = 4; // number of channel coefficients
//channel_cccf_add_multipath(channel, hc, hc_len);

// time-varying shadowing impairments (slow flat fading)

float sigma = 1.0f; // standard deviation for log-normal shadowing
float fd = 0.1f; // relative Doppler frequency
//channel_cccf_add_shadowing(channel, sigma, fd);

// print channel internals
if (PRINT)

channel_cccf_print(channel);

// fill buffer and repeat as necessary

8/10

11.08.22 5:07 RPX-100-BER_simulator.cpp

573 // apply channel to input signal

574 channel_cccf_execute_block(channel, before_channel_buffer, channel_buffer_len,
after_channel_buffer);

575

576 if (PRINT)

577 cout << "artificialChannel - channel executed" << endl;

578

579 // destroy channel

580 channel_cccf_destroy(channel);

581 if (PRINT)

582 cout << "artificialChannel - channel destroyed";

583 }

584

585 float calculateBER(unsigned int payload_len, string transmitted, unsigned char
*received)

586 {

587 unsigned int temp_payload_len = payload_len; // strcpy((char
*)u_ch_transmitted, transmitted.c_str()); makes diffilulties

588 if (PRINT)

589 cout << "calculateBER - calculateBER started; payload_len: "<< payload_len <<
endl;

590

591 float BER = 0;

592

593 if (PRINT)

594 cout << "calculateBER - 1st - payload_len: "<< payload_len<<";
temp_payload_len: "<< temp_payload_len << endl;

595

596 unsigned char u_ch_transmitted[8100] = {};

597 if (PRINT)

598 {

599 cout << "calculateBER - u_ch_transmitted initialized" << endl;

600 cout << "calculateBER - 2nd - payload_len: "<< payload_len <<";
temp_payload_len: "<< temp_payload_len << endl;

601 }

602

603 strcpy((char *)u_ch_transmitted, transmitted.c_str());

604

605 if (PRINT)

606 {

607 cout << "calculateBER - message copied" << endl;

608 cout << "calculateBER - 3rd - payload_len: "<< payload_len<<";
temp_payload_len: "<< temp_payload_len << endl;

609 }

610

611 payload_len = temp_payload_len;

612

613 if (PRINT)

614 {

615 cout << "calculateBER - 4th - payload_len: "<< payload_len <<";
temp_payload_len: "<< temp_payload_len<< endl;

616 printByteByByte(payload_len, u_ch_transmitted, received);

617 cout << "calculateBER - printByteByByte exitted" << endl;

618 }

619

620 for (int i=0; i<payload_len; i++)

621 {

622 for (int 1=0; 1<8; 1++)

623 {

624 BER += ((u_ch_transmitted[i]~received[i])>>1)&1;

625 }

626 }

627 BER /= payload_len*8;

628

629 return BER;

630 }

631

632 void printByteByByte(unsigned int payload_len, unsigned char *transmitted, unsigned
char *received)

633 {

634 if (PRINT)

635 cout << "printByteByByte - printByteByByte(payload_len = "<<payload_len<<")
started" << endl;

636

637 cout << "printByteByByte - transmitted: ";

638 for (int i=0; i<payload_len; i++)

localhost:4649/?mode=clike 9/10

11.08.22 5:07

639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669

670
671

672
673
674
675
676
677

678
679

680
681
682

683
684

685
686
687
688
689
690
691
692

RPX-100-BER_simulator.cpp
{

}

cout << endl << endl;

cout << unsigned(transmitted[i]) << ;

cout << "printByteByByte - received: ";
for (int i=0; i<payload_len; i++)

{
}

cout << endl << endl;

cout << unsigned(received[i]) <<

}

string alterMessage(int payload_len)

{

string s = "";
char random;
for (int i = 0; i < payload_len; i++)
{
random = rand()%255+1;
s = s + random;

}

return s;

int exportBER()

cout << "exportBER - export started" << endl;

std::ofstream myfile;

myfile.open ("./BER_simulation_outcome/BER_simulation_" +
getCurrentDateTime("now") + ".csv");

myfile << "Number of simulations: " << SIMULATION_REPETITIONS << endl;

for (artificial_SNR = MIN_SNR-1; artificial_SNR<=MAX_SNR; artificial_SNR++) //
SNR sweep
{
if (artificial SNR == MIN_SNR-1)
myfile << "SNR";
else
myfile << artificial_SNR;
for (global_phy mode = 1; global_phy mode <=14; global_phy_mode++) // PHY
mode
{
for (global_cycl _pref_index = 0; global_cycl pref_index<4;

global_cycl_pref_index++) // cyclic prefix

{
if (artificial SNR == MIN_SNR-1)

myfile << ", PHY mode " << global phy mode << "; CP " << (4 <<
global_cycl_pref_index);
else
myfile << "," << BER_log[global_cycl_pref_index][global_phy mode]
[artificial_SNR];
}
}
myfile << endl;
}
myfile.close();
return 0;
}

localhost:4649/?mode=clike

10/10

